* infrun.c (follow_fork): Initialize new step_* locals
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "bfdlink.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcore.h"
29 #include "frame.h"
30 #include "target.h"
31 #include "value.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "source.h"
35 #include "gdbcmd.h"
36 #include "breakpoint.h"
37 #include "language.h"
38 #include "complaints.h"
39 #include "demangle.h"
40 #include "inferior.h"
41 #include "regcache.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "gdb-stabs.h"
44 #include "gdb_obstack.h"
45 #include "completer.h"
46 #include "bcache.h"
47 #include "hashtab.h"
48 #include "readline/readline.h"
49 #include "gdb_assert.h"
50 #include "block.h"
51 #include "observer.h"
52 #include "exec.h"
53 #include "parser-defs.h"
54 #include "varobj.h"
55 #include "elf-bfd.h"
56 #include "solib.h"
57 #include "remote.h"
58
59 #include <sys/types.h>
60 #include <fcntl.h>
61 #include "gdb_string.h"
62 #include "gdb_stat.h"
63 #include <ctype.h>
64 #include <time.h>
65 #include <sys/time.h>
66
67
68 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
69 void (*deprecated_show_load_progress) (const char *section,
70 unsigned long section_sent,
71 unsigned long section_size,
72 unsigned long total_sent,
73 unsigned long total_size);
74 void (*deprecated_pre_add_symbol_hook) (const char *);
75 void (*deprecated_post_add_symbol_hook) (void);
76
77 static void clear_symtab_users_cleanup (void *ignore);
78
79 /* Global variables owned by this file */
80 int readnow_symbol_files; /* Read full symbols immediately */
81
82 /* External variables and functions referenced. */
83
84 extern void report_transfer_performance (unsigned long, time_t, time_t);
85
86 /* Functions this file defines */
87
88 #if 0
89 static int simple_read_overlay_region_table (void);
90 static void simple_free_overlay_region_table (void);
91 #endif
92
93 static void load_command (char *, int);
94
95 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
96
97 static void add_symbol_file_command (char *, int);
98
99 static void reread_separate_symbols (struct objfile *objfile);
100
101 static void cashier_psymtab (struct partial_symtab *);
102
103 bfd *symfile_bfd_open (char *);
104
105 int get_section_index (struct objfile *, char *);
106
107 static struct sym_fns *find_sym_fns (bfd *);
108
109 static void decrement_reading_symtab (void *);
110
111 static void overlay_invalidate_all (void);
112
113 void list_overlays_command (char *, int);
114
115 void map_overlay_command (char *, int);
116
117 void unmap_overlay_command (char *, int);
118
119 static void overlay_auto_command (char *, int);
120
121 static void overlay_manual_command (char *, int);
122
123 static void overlay_off_command (char *, int);
124
125 static void overlay_load_command (char *, int);
126
127 static void overlay_command (char *, int);
128
129 static void simple_free_overlay_table (void);
130
131 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
132
133 static int simple_read_overlay_table (void);
134
135 static int simple_overlay_update_1 (struct obj_section *);
136
137 static void add_filename_language (char *ext, enum language lang);
138
139 static void info_ext_lang_command (char *args, int from_tty);
140
141 static char *find_separate_debug_file (struct objfile *objfile);
142
143 static void init_filename_language_table (void);
144
145 static void symfile_find_segment_sections (struct objfile *objfile);
146
147 void _initialize_symfile (void);
148
149 /* List of all available sym_fns. On gdb startup, each object file reader
150 calls add_symtab_fns() to register information on each format it is
151 prepared to read. */
152
153 static struct sym_fns *symtab_fns = NULL;
154
155 /* Flag for whether user will be reloading symbols multiple times.
156 Defaults to ON for VxWorks, otherwise OFF. */
157
158 #ifdef SYMBOL_RELOADING_DEFAULT
159 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
160 #else
161 int symbol_reloading = 0;
162 #endif
163 static void
164 show_symbol_reloading (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166 {
167 fprintf_filtered (file, _("\
168 Dynamic symbol table reloading multiple times in one run is %s.\n"),
169 value);
170 }
171
172 /* If non-zero, gdb will notify the user when it is loading symbols
173 from a file. This is almost always what users will want to have happen;
174 but for programs with lots of dynamically linked libraries, the output
175 can be more noise than signal. */
176
177 int print_symbol_loading = 1;
178
179 /* If non-zero, shared library symbols will be added automatically
180 when the inferior is created, new libraries are loaded, or when
181 attaching to the inferior. This is almost always what users will
182 want to have happen; but for very large programs, the startup time
183 will be excessive, and so if this is a problem, the user can clear
184 this flag and then add the shared library symbols as needed. Note
185 that there is a potential for confusion, since if the shared
186 library symbols are not loaded, commands like "info fun" will *not*
187 report all the functions that are actually present. */
188
189 int auto_solib_add = 1;
190
191 /* For systems that support it, a threshold size in megabytes. If
192 automatically adding a new library's symbol table to those already
193 known to the debugger would cause the total shared library symbol
194 size to exceed this threshhold, then the shlib's symbols are not
195 added. The threshold is ignored if the user explicitly asks for a
196 shlib to be added, such as when using the "sharedlibrary"
197 command. */
198
199 int auto_solib_limit;
200 \f
201
202 /* This compares two partial symbols by names, using strcmp_iw_ordered
203 for the comparison. */
204
205 static int
206 compare_psymbols (const void *s1p, const void *s2p)
207 {
208 struct partial_symbol *const *s1 = s1p;
209 struct partial_symbol *const *s2 = s2p;
210
211 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
212 SYMBOL_SEARCH_NAME (*s2));
213 }
214
215 void
216 sort_pst_symbols (struct partial_symtab *pst)
217 {
218 /* Sort the global list; don't sort the static list */
219
220 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
221 pst->n_global_syms, sizeof (struct partial_symbol *),
222 compare_psymbols);
223 }
224
225 /* Make a null terminated copy of the string at PTR with SIZE characters in
226 the obstack pointed to by OBSTACKP . Returns the address of the copy.
227 Note that the string at PTR does not have to be null terminated, I.E. it
228 may be part of a larger string and we are only saving a substring. */
229
230 char *
231 obsavestring (const char *ptr, int size, struct obstack *obstackp)
232 {
233 char *p = (char *) obstack_alloc (obstackp, size + 1);
234 /* Open-coded memcpy--saves function call time. These strings are usually
235 short. FIXME: Is this really still true with a compiler that can
236 inline memcpy? */
237 {
238 const char *p1 = ptr;
239 char *p2 = p;
240 const char *end = ptr + size;
241 while (p1 != end)
242 *p2++ = *p1++;
243 }
244 p[size] = 0;
245 return p;
246 }
247
248 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
249 in the obstack pointed to by OBSTACKP. */
250
251 char *
252 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
253 const char *s3)
254 {
255 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
256 char *val = (char *) obstack_alloc (obstackp, len);
257 strcpy (val, s1);
258 strcat (val, s2);
259 strcat (val, s3);
260 return val;
261 }
262
263 /* True if we are nested inside psymtab_to_symtab. */
264
265 int currently_reading_symtab = 0;
266
267 static void
268 decrement_reading_symtab (void *dummy)
269 {
270 currently_reading_symtab--;
271 }
272
273 /* Get the symbol table that corresponds to a partial_symtab.
274 This is fast after the first time you do it. In fact, there
275 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
276 case inline. */
277
278 struct symtab *
279 psymtab_to_symtab (struct partial_symtab *pst)
280 {
281 /* If it's been looked up before, return it. */
282 if (pst->symtab)
283 return pst->symtab;
284
285 /* If it has not yet been read in, read it. */
286 if (!pst->readin)
287 {
288 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
289 currently_reading_symtab++;
290 (*pst->read_symtab) (pst);
291 do_cleanups (back_to);
292 }
293
294 return pst->symtab;
295 }
296
297 /* Remember the lowest-addressed loadable section we've seen.
298 This function is called via bfd_map_over_sections.
299
300 In case of equal vmas, the section with the largest size becomes the
301 lowest-addressed loadable section.
302
303 If the vmas and sizes are equal, the last section is considered the
304 lowest-addressed loadable section. */
305
306 void
307 find_lowest_section (bfd *abfd, asection *sect, void *obj)
308 {
309 asection **lowest = (asection **) obj;
310
311 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
312 return;
313 if (!*lowest)
314 *lowest = sect; /* First loadable section */
315 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
316 *lowest = sect; /* A lower loadable section */
317 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
318 && (bfd_section_size (abfd, (*lowest))
319 <= bfd_section_size (abfd, sect)))
320 *lowest = sect;
321 }
322
323 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
324
325 struct section_addr_info *
326 alloc_section_addr_info (size_t num_sections)
327 {
328 struct section_addr_info *sap;
329 size_t size;
330
331 size = (sizeof (struct section_addr_info)
332 + sizeof (struct other_sections) * (num_sections - 1));
333 sap = (struct section_addr_info *) xmalloc (size);
334 memset (sap, 0, size);
335 sap->num_sections = num_sections;
336
337 return sap;
338 }
339
340
341 /* Return a freshly allocated copy of ADDRS. The section names, if
342 any, are also freshly allocated copies of those in ADDRS. */
343 struct section_addr_info *
344 copy_section_addr_info (struct section_addr_info *addrs)
345 {
346 struct section_addr_info *copy
347 = alloc_section_addr_info (addrs->num_sections);
348 int i;
349
350 copy->num_sections = addrs->num_sections;
351 for (i = 0; i < addrs->num_sections; i++)
352 {
353 copy->other[i].addr = addrs->other[i].addr;
354 if (addrs->other[i].name)
355 copy->other[i].name = xstrdup (addrs->other[i].name);
356 else
357 copy->other[i].name = NULL;
358 copy->other[i].sectindex = addrs->other[i].sectindex;
359 }
360
361 return copy;
362 }
363
364
365
366 /* Build (allocate and populate) a section_addr_info struct from
367 an existing section table. */
368
369 extern struct section_addr_info *
370 build_section_addr_info_from_section_table (const struct target_section *start,
371 const struct target_section *end)
372 {
373 struct section_addr_info *sap;
374 const struct target_section *stp;
375 int oidx;
376
377 sap = alloc_section_addr_info (end - start);
378
379 for (stp = start, oidx = 0; stp != end; stp++)
380 {
381 if (bfd_get_section_flags (stp->bfd,
382 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
383 && oidx < end - start)
384 {
385 sap->other[oidx].addr = stp->addr;
386 sap->other[oidx].name
387 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
388 sap->other[oidx].sectindex = stp->the_bfd_section->index;
389 oidx++;
390 }
391 }
392
393 return sap;
394 }
395
396
397 /* Free all memory allocated by build_section_addr_info_from_section_table. */
398
399 extern void
400 free_section_addr_info (struct section_addr_info *sap)
401 {
402 int idx;
403
404 for (idx = 0; idx < sap->num_sections; idx++)
405 if (sap->other[idx].name)
406 xfree (sap->other[idx].name);
407 xfree (sap);
408 }
409
410
411 /* Initialize OBJFILE's sect_index_* members. */
412 static void
413 init_objfile_sect_indices (struct objfile *objfile)
414 {
415 asection *sect;
416 int i;
417
418 sect = bfd_get_section_by_name (objfile->obfd, ".text");
419 if (sect)
420 objfile->sect_index_text = sect->index;
421
422 sect = bfd_get_section_by_name (objfile->obfd, ".data");
423 if (sect)
424 objfile->sect_index_data = sect->index;
425
426 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
427 if (sect)
428 objfile->sect_index_bss = sect->index;
429
430 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
431 if (sect)
432 objfile->sect_index_rodata = sect->index;
433
434 /* This is where things get really weird... We MUST have valid
435 indices for the various sect_index_* members or gdb will abort.
436 So if for example, there is no ".text" section, we have to
437 accomodate that. First, check for a file with the standard
438 one or two segments. */
439
440 symfile_find_segment_sections (objfile);
441
442 /* Except when explicitly adding symbol files at some address,
443 section_offsets contains nothing but zeros, so it doesn't matter
444 which slot in section_offsets the individual sect_index_* members
445 index into. So if they are all zero, it is safe to just point
446 all the currently uninitialized indices to the first slot. But
447 beware: if this is the main executable, it may be relocated
448 later, e.g. by the remote qOffsets packet, and then this will
449 be wrong! That's why we try segments first. */
450
451 for (i = 0; i < objfile->num_sections; i++)
452 {
453 if (ANOFFSET (objfile->section_offsets, i) != 0)
454 {
455 break;
456 }
457 }
458 if (i == objfile->num_sections)
459 {
460 if (objfile->sect_index_text == -1)
461 objfile->sect_index_text = 0;
462 if (objfile->sect_index_data == -1)
463 objfile->sect_index_data = 0;
464 if (objfile->sect_index_bss == -1)
465 objfile->sect_index_bss = 0;
466 if (objfile->sect_index_rodata == -1)
467 objfile->sect_index_rodata = 0;
468 }
469 }
470
471 /* The arguments to place_section. */
472
473 struct place_section_arg
474 {
475 struct section_offsets *offsets;
476 CORE_ADDR lowest;
477 };
478
479 /* Find a unique offset to use for loadable section SECT if
480 the user did not provide an offset. */
481
482 static void
483 place_section (bfd *abfd, asection *sect, void *obj)
484 {
485 struct place_section_arg *arg = obj;
486 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
487 int done;
488 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
489
490 /* We are only interested in allocated sections. */
491 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
492 return;
493
494 /* If the user specified an offset, honor it. */
495 if (offsets[sect->index] != 0)
496 return;
497
498 /* Otherwise, let's try to find a place for the section. */
499 start_addr = (arg->lowest + align - 1) & -align;
500
501 do {
502 asection *cur_sec;
503
504 done = 1;
505
506 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
507 {
508 int indx = cur_sec->index;
509 CORE_ADDR cur_offset;
510
511 /* We don't need to compare against ourself. */
512 if (cur_sec == sect)
513 continue;
514
515 /* We can only conflict with allocated sections. */
516 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
517 continue;
518
519 /* If the section offset is 0, either the section has not been placed
520 yet, or it was the lowest section placed (in which case LOWEST
521 will be past its end). */
522 if (offsets[indx] == 0)
523 continue;
524
525 /* If this section would overlap us, then we must move up. */
526 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
527 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
528 {
529 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
530 start_addr = (start_addr + align - 1) & -align;
531 done = 0;
532 break;
533 }
534
535 /* Otherwise, we appear to be OK. So far. */
536 }
537 }
538 while (!done);
539
540 offsets[sect->index] = start_addr;
541 arg->lowest = start_addr + bfd_get_section_size (sect);
542 }
543
544 /* Parse the user's idea of an offset for dynamic linking, into our idea
545 of how to represent it for fast symbol reading. This is the default
546 version of the sym_fns.sym_offsets function for symbol readers that
547 don't need to do anything special. It allocates a section_offsets table
548 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
549
550 void
551 default_symfile_offsets (struct objfile *objfile,
552 struct section_addr_info *addrs)
553 {
554 int i;
555
556 objfile->num_sections = bfd_count_sections (objfile->obfd);
557 objfile->section_offsets = (struct section_offsets *)
558 obstack_alloc (&objfile->objfile_obstack,
559 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
560 memset (objfile->section_offsets, 0,
561 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
562
563 /* Now calculate offsets for section that were specified by the
564 caller. */
565 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
566 {
567 struct other_sections *osp ;
568
569 osp = &addrs->other[i] ;
570 if (osp->addr == 0)
571 continue;
572
573 /* Record all sections in offsets */
574 /* The section_offsets in the objfile are here filled in using
575 the BFD index. */
576 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
577 }
578
579 /* For relocatable files, all loadable sections will start at zero.
580 The zero is meaningless, so try to pick arbitrary addresses such
581 that no loadable sections overlap. This algorithm is quadratic,
582 but the number of sections in a single object file is generally
583 small. */
584 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
585 {
586 struct place_section_arg arg;
587 bfd *abfd = objfile->obfd;
588 asection *cur_sec;
589 CORE_ADDR lowest = 0;
590
591 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
592 /* We do not expect this to happen; just skip this step if the
593 relocatable file has a section with an assigned VMA. */
594 if (bfd_section_vma (abfd, cur_sec) != 0)
595 break;
596
597 if (cur_sec == NULL)
598 {
599 CORE_ADDR *offsets = objfile->section_offsets->offsets;
600
601 /* Pick non-overlapping offsets for sections the user did not
602 place explicitly. */
603 arg.offsets = objfile->section_offsets;
604 arg.lowest = 0;
605 bfd_map_over_sections (objfile->obfd, place_section, &arg);
606
607 /* Correctly filling in the section offsets is not quite
608 enough. Relocatable files have two properties that
609 (most) shared objects do not:
610
611 - Their debug information will contain relocations. Some
612 shared libraries do also, but many do not, so this can not
613 be assumed.
614
615 - If there are multiple code sections they will be loaded
616 at different relative addresses in memory than they are
617 in the objfile, since all sections in the file will start
618 at address zero.
619
620 Because GDB has very limited ability to map from an
621 address in debug info to the correct code section,
622 it relies on adding SECT_OFF_TEXT to things which might be
623 code. If we clear all the section offsets, and set the
624 section VMAs instead, then symfile_relocate_debug_section
625 will return meaningful debug information pointing at the
626 correct sections.
627
628 GDB has too many different data structures for section
629 addresses - a bfd, objfile, and so_list all have section
630 tables, as does exec_ops. Some of these could probably
631 be eliminated. */
632
633 for (cur_sec = abfd->sections; cur_sec != NULL;
634 cur_sec = cur_sec->next)
635 {
636 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
637 continue;
638
639 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
640 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
641 offsets[cur_sec->index]);
642 offsets[cur_sec->index] = 0;
643 }
644 }
645 }
646
647 /* Remember the bfd indexes for the .text, .data, .bss and
648 .rodata sections. */
649 init_objfile_sect_indices (objfile);
650 }
651
652
653 /* Divide the file into segments, which are individual relocatable units.
654 This is the default version of the sym_fns.sym_segments function for
655 symbol readers that do not have an explicit representation of segments.
656 It assumes that object files do not have segments, and fully linked
657 files have a single segment. */
658
659 struct symfile_segment_data *
660 default_symfile_segments (bfd *abfd)
661 {
662 int num_sections, i;
663 asection *sect;
664 struct symfile_segment_data *data;
665 CORE_ADDR low, high;
666
667 /* Relocatable files contain enough information to position each
668 loadable section independently; they should not be relocated
669 in segments. */
670 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
671 return NULL;
672
673 /* Make sure there is at least one loadable section in the file. */
674 for (sect = abfd->sections; sect != NULL; sect = sect->next)
675 {
676 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
677 continue;
678
679 break;
680 }
681 if (sect == NULL)
682 return NULL;
683
684 low = bfd_get_section_vma (abfd, sect);
685 high = low + bfd_get_section_size (sect);
686
687 data = XZALLOC (struct symfile_segment_data);
688 data->num_segments = 1;
689 data->segment_bases = XCALLOC (1, CORE_ADDR);
690 data->segment_sizes = XCALLOC (1, CORE_ADDR);
691
692 num_sections = bfd_count_sections (abfd);
693 data->segment_info = XCALLOC (num_sections, int);
694
695 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
696 {
697 CORE_ADDR vma;
698
699 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
700 continue;
701
702 vma = bfd_get_section_vma (abfd, sect);
703 if (vma < low)
704 low = vma;
705 if (vma + bfd_get_section_size (sect) > high)
706 high = vma + bfd_get_section_size (sect);
707
708 data->segment_info[i] = 1;
709 }
710
711 data->segment_bases[0] = low;
712 data->segment_sizes[0] = high - low;
713
714 return data;
715 }
716
717 /* Process a symbol file, as either the main file or as a dynamically
718 loaded file.
719
720 OBJFILE is where the symbols are to be read from.
721
722 ADDRS is the list of section load addresses. If the user has given
723 an 'add-symbol-file' command, then this is the list of offsets and
724 addresses he or she provided as arguments to the command; or, if
725 we're handling a shared library, these are the actual addresses the
726 sections are loaded at, according to the inferior's dynamic linker
727 (as gleaned by GDB's shared library code). We convert each address
728 into an offset from the section VMA's as it appears in the object
729 file, and then call the file's sym_offsets function to convert this
730 into a format-specific offset table --- a `struct section_offsets'.
731 If ADDRS is non-zero, OFFSETS must be zero.
732
733 OFFSETS is a table of section offsets already in the right
734 format-specific representation. NUM_OFFSETS is the number of
735 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
736 assume this is the proper table the call to sym_offsets described
737 above would produce. Instead of calling sym_offsets, we just dump
738 it right into objfile->section_offsets. (When we're re-reading
739 symbols from an objfile, we don't have the original load address
740 list any more; all we have is the section offset table.) If
741 OFFSETS is non-zero, ADDRS must be zero.
742
743 MAINLINE is nonzero if this is the main symbol file, or zero if
744 it's an extra symbol file such as dynamically loaded code.
745
746 VERBO is nonzero if the caller has printed a verbose message about
747 the symbol reading (and complaints can be more terse about it). */
748
749 void
750 syms_from_objfile (struct objfile *objfile,
751 struct section_addr_info *addrs,
752 struct section_offsets *offsets,
753 int num_offsets,
754 int mainline,
755 int verbo)
756 {
757 struct section_addr_info *local_addr = NULL;
758 struct cleanup *old_chain;
759
760 gdb_assert (! (addrs && offsets));
761
762 init_entry_point_info (objfile);
763 objfile->sf = find_sym_fns (objfile->obfd);
764
765 if (objfile->sf == NULL)
766 return; /* No symbols. */
767
768 /* Make sure that partially constructed symbol tables will be cleaned up
769 if an error occurs during symbol reading. */
770 old_chain = make_cleanup_free_objfile (objfile);
771
772 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
773 list. We now establish the convention that an addr of zero means
774 no load address was specified. */
775 if (! addrs && ! offsets)
776 {
777 local_addr
778 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
779 make_cleanup (xfree, local_addr);
780 addrs = local_addr;
781 }
782
783 /* Now either addrs or offsets is non-zero. */
784
785 if (mainline)
786 {
787 /* We will modify the main symbol table, make sure that all its users
788 will be cleaned up if an error occurs during symbol reading. */
789 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
790
791 /* Since no error yet, throw away the old symbol table. */
792
793 if (symfile_objfile != NULL)
794 {
795 free_objfile (symfile_objfile);
796 symfile_objfile = NULL;
797 }
798
799 /* Currently we keep symbols from the add-symbol-file command.
800 If the user wants to get rid of them, they should do "symbol-file"
801 without arguments first. Not sure this is the best behavior
802 (PR 2207). */
803
804 (*objfile->sf->sym_new_init) (objfile);
805 }
806
807 /* Convert addr into an offset rather than an absolute address.
808 We find the lowest address of a loaded segment in the objfile,
809 and assume that <addr> is where that got loaded.
810
811 We no longer warn if the lowest section is not a text segment (as
812 happens for the PA64 port. */
813 if (!mainline && addrs && addrs->other[0].name)
814 {
815 asection *lower_sect;
816 asection *sect;
817 CORE_ADDR lower_offset;
818 int i;
819
820 /* Find lowest loadable section to be used as starting point for
821 continguous sections. FIXME!! won't work without call to find
822 .text first, but this assumes text is lowest section. */
823 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
824 if (lower_sect == NULL)
825 bfd_map_over_sections (objfile->obfd, find_lowest_section,
826 &lower_sect);
827 if (lower_sect == NULL)
828 {
829 warning (_("no loadable sections found in added symbol-file %s"),
830 objfile->name);
831 lower_offset = 0;
832 }
833 else
834 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
835
836 /* Calculate offsets for the loadable sections.
837 FIXME! Sections must be in order of increasing loadable section
838 so that contiguous sections can use the lower-offset!!!
839
840 Adjust offsets if the segments are not contiguous.
841 If the section is contiguous, its offset should be set to
842 the offset of the highest loadable section lower than it
843 (the loadable section directly below it in memory).
844 this_offset = lower_offset = lower_addr - lower_orig_addr */
845
846 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
847 {
848 if (addrs->other[i].addr != 0)
849 {
850 sect = bfd_get_section_by_name (objfile->obfd,
851 addrs->other[i].name);
852 if (sect)
853 {
854 addrs->other[i].addr
855 -= bfd_section_vma (objfile->obfd, sect);
856 lower_offset = addrs->other[i].addr;
857 /* This is the index used by BFD. */
858 addrs->other[i].sectindex = sect->index ;
859 }
860 else
861 {
862 warning (_("section %s not found in %s"),
863 addrs->other[i].name,
864 objfile->name);
865 addrs->other[i].addr = 0;
866 }
867 }
868 else
869 addrs->other[i].addr = lower_offset;
870 }
871 }
872
873 /* Initialize symbol reading routines for this objfile, allow complaints to
874 appear for this new file, and record how verbose to be, then do the
875 initial symbol reading for this file. */
876
877 (*objfile->sf->sym_init) (objfile);
878 clear_complaints (&symfile_complaints, 1, verbo);
879
880 if (addrs)
881 (*objfile->sf->sym_offsets) (objfile, addrs);
882 else
883 {
884 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
885
886 /* Just copy in the offset table directly as given to us. */
887 objfile->num_sections = num_offsets;
888 objfile->section_offsets
889 = ((struct section_offsets *)
890 obstack_alloc (&objfile->objfile_obstack, size));
891 memcpy (objfile->section_offsets, offsets, size);
892
893 init_objfile_sect_indices (objfile);
894 }
895
896 (*objfile->sf->sym_read) (objfile, mainline);
897
898 /* Discard cleanups as symbol reading was successful. */
899
900 discard_cleanups (old_chain);
901 xfree (local_addr);
902 }
903
904 /* Perform required actions after either reading in the initial
905 symbols for a new objfile, or mapping in the symbols from a reusable
906 objfile. */
907
908 void
909 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
910 {
911
912 /* If this is the main symbol file we have to clean up all users of the
913 old main symbol file. Otherwise it is sufficient to fixup all the
914 breakpoints that may have been redefined by this symbol file. */
915 if (mainline)
916 {
917 /* OK, make it the "real" symbol file. */
918 symfile_objfile = objfile;
919
920 clear_symtab_users ();
921 }
922 else
923 {
924 breakpoint_re_set_objfile (objfile);
925 }
926
927 /* We're done reading the symbol file; finish off complaints. */
928 clear_complaints (&symfile_complaints, 0, verbo);
929 }
930
931 /* Process a symbol file, as either the main file or as a dynamically
932 loaded file.
933
934 ABFD is a BFD already open on the file, as from symfile_bfd_open.
935 This BFD will be closed on error, and is always consumed by this function.
936
937 FROM_TTY says how verbose to be.
938
939 MAINLINE specifies whether this is the main symbol file, or whether
940 it's an extra symbol file such as dynamically loaded code.
941
942 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
943 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
944 non-zero.
945
946 Upon success, returns a pointer to the objfile that was added.
947 Upon failure, jumps back to command level (never returns). */
948 static struct objfile *
949 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
950 struct section_addr_info *addrs,
951 struct section_offsets *offsets,
952 int num_offsets,
953 int mainline, int flags)
954 {
955 struct objfile *objfile;
956 struct partial_symtab *psymtab;
957 char *debugfile = NULL;
958 struct section_addr_info *orig_addrs = NULL;
959 struct cleanup *my_cleanups;
960 const char *name = bfd_get_filename (abfd);
961
962 my_cleanups = make_cleanup_bfd_close (abfd);
963
964 /* Give user a chance to burp if we'd be
965 interactively wiping out any existing symbols. */
966
967 if ((have_full_symbols () || have_partial_symbols ())
968 && mainline
969 && from_tty
970 && !query (_("Load new symbol table from \"%s\"? "), name))
971 error (_("Not confirmed."));
972
973 objfile = allocate_objfile (abfd, flags);
974 discard_cleanups (my_cleanups);
975
976 if (addrs)
977 {
978 orig_addrs = copy_section_addr_info (addrs);
979 make_cleanup_free_section_addr_info (orig_addrs);
980 }
981
982 /* We either created a new mapped symbol table, mapped an existing
983 symbol table file which has not had initial symbol reading
984 performed, or need to read an unmapped symbol table. */
985 if (from_tty || info_verbose)
986 {
987 if (deprecated_pre_add_symbol_hook)
988 deprecated_pre_add_symbol_hook (name);
989 else
990 {
991 if (print_symbol_loading)
992 {
993 printf_unfiltered (_("Reading symbols from %s..."), name);
994 wrap_here ("");
995 gdb_flush (gdb_stdout);
996 }
997 }
998 }
999 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1000 mainline, from_tty);
1001
1002 /* We now have at least a partial symbol table. Check to see if the
1003 user requested that all symbols be read on initial access via either
1004 the gdb startup command line or on a per symbol file basis. Expand
1005 all partial symbol tables for this objfile if so. */
1006
1007 if ((flags & OBJF_READNOW) || readnow_symbol_files)
1008 {
1009 if ((from_tty || info_verbose) && print_symbol_loading)
1010 {
1011 printf_unfiltered (_("expanding to full symbols..."));
1012 wrap_here ("");
1013 gdb_flush (gdb_stdout);
1014 }
1015
1016 for (psymtab = objfile->psymtabs;
1017 psymtab != NULL;
1018 psymtab = psymtab->next)
1019 {
1020 psymtab_to_symtab (psymtab);
1021 }
1022 }
1023
1024 /* If the file has its own symbol tables it has no separate debug info.
1025 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1026 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1027 if (objfile->psymtabs == NULL)
1028 debugfile = find_separate_debug_file (objfile);
1029 if (debugfile)
1030 {
1031 if (addrs != NULL)
1032 {
1033 objfile->separate_debug_objfile
1034 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
1035 }
1036 else
1037 {
1038 objfile->separate_debug_objfile
1039 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
1040 }
1041 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1042 = objfile;
1043
1044 /* Put the separate debug object before the normal one, this is so that
1045 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1046 put_objfile_before (objfile->separate_debug_objfile, objfile);
1047
1048 xfree (debugfile);
1049 }
1050
1051 if (!have_partial_symbols () && !have_full_symbols ()
1052 && print_symbol_loading)
1053 {
1054 wrap_here ("");
1055 printf_unfiltered (_("(no debugging symbols found)"));
1056 if (from_tty || info_verbose)
1057 printf_unfiltered ("...");
1058 else
1059 printf_unfiltered ("\n");
1060 wrap_here ("");
1061 }
1062
1063 if (from_tty || info_verbose)
1064 {
1065 if (deprecated_post_add_symbol_hook)
1066 deprecated_post_add_symbol_hook ();
1067 else
1068 {
1069 if (print_symbol_loading)
1070 printf_unfiltered (_("done.\n"));
1071 }
1072 }
1073
1074 /* We print some messages regardless of whether 'from_tty ||
1075 info_verbose' is true, so make sure they go out at the right
1076 time. */
1077 gdb_flush (gdb_stdout);
1078
1079 do_cleanups (my_cleanups);
1080
1081 if (objfile->sf == NULL)
1082 return objfile; /* No symbols. */
1083
1084 new_symfile_objfile (objfile, mainline, from_tty);
1085
1086 observer_notify_new_objfile (objfile);
1087
1088 bfd_cache_close_all ();
1089 return (objfile);
1090 }
1091
1092
1093 /* Process the symbol file ABFD, as either the main file or as a
1094 dynamically loaded file.
1095
1096 See symbol_file_add_with_addrs_or_offsets's comments for
1097 details. */
1098 struct objfile *
1099 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1100 struct section_addr_info *addrs,
1101 int mainline, int flags)
1102 {
1103 return symbol_file_add_with_addrs_or_offsets (abfd,
1104 from_tty, addrs, 0, 0,
1105 mainline, flags);
1106 }
1107
1108
1109 /* Process a symbol file, as either the main file or as a dynamically
1110 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1111 for details. */
1112 struct objfile *
1113 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1114 int mainline, int flags)
1115 {
1116 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1117 addrs, mainline, flags);
1118 }
1119
1120
1121 /* Call symbol_file_add() with default values and update whatever is
1122 affected by the loading of a new main().
1123 Used when the file is supplied in the gdb command line
1124 and by some targets with special loading requirements.
1125 The auxiliary function, symbol_file_add_main_1(), has the flags
1126 argument for the switches that can only be specified in the symbol_file
1127 command itself. */
1128
1129 void
1130 symbol_file_add_main (char *args, int from_tty)
1131 {
1132 symbol_file_add_main_1 (args, from_tty, 0);
1133 }
1134
1135 static void
1136 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1137 {
1138 symbol_file_add (args, from_tty, NULL, 1, flags);
1139
1140 /* Getting new symbols may change our opinion about
1141 what is frameless. */
1142 reinit_frame_cache ();
1143
1144 set_initial_language ();
1145 }
1146
1147 void
1148 symbol_file_clear (int from_tty)
1149 {
1150 if ((have_full_symbols () || have_partial_symbols ())
1151 && from_tty
1152 && (symfile_objfile
1153 ? !query (_("Discard symbol table from `%s'? "),
1154 symfile_objfile->name)
1155 : !query (_("Discard symbol table? "))))
1156 error (_("Not confirmed."));
1157
1158 free_all_objfiles ();
1159
1160 /* solib descriptors may have handles to objfiles. Since their
1161 storage has just been released, we'd better wipe the solib
1162 descriptors as well. */
1163 no_shared_libraries (NULL, from_tty);
1164
1165 symfile_objfile = NULL;
1166 if (from_tty)
1167 printf_unfiltered (_("No symbol file now.\n"));
1168 }
1169
1170 struct build_id
1171 {
1172 size_t size;
1173 gdb_byte data[1];
1174 };
1175
1176 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1177
1178 static struct build_id *
1179 build_id_bfd_get (bfd *abfd)
1180 {
1181 struct build_id *retval;
1182
1183 if (!bfd_check_format (abfd, bfd_object)
1184 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1185 || elf_tdata (abfd)->build_id == NULL)
1186 return NULL;
1187
1188 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1189 retval->size = elf_tdata (abfd)->build_id_size;
1190 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1191
1192 return retval;
1193 }
1194
1195 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1196
1197 static int
1198 build_id_verify (const char *filename, struct build_id *check)
1199 {
1200 bfd *abfd;
1201 struct build_id *found = NULL;
1202 int retval = 0;
1203
1204 /* We expect to be silent on the non-existing files. */
1205 if (remote_filename_p (filename))
1206 abfd = remote_bfd_open (filename, gnutarget);
1207 else
1208 abfd = bfd_openr (filename, gnutarget);
1209 if (abfd == NULL)
1210 return 0;
1211
1212 found = build_id_bfd_get (abfd);
1213
1214 if (found == NULL)
1215 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1216 else if (found->size != check->size
1217 || memcmp (found->data, check->data, found->size) != 0)
1218 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1219 else
1220 retval = 1;
1221
1222 if (!bfd_close (abfd))
1223 warning (_("cannot close \"%s\": %s"), filename,
1224 bfd_errmsg (bfd_get_error ()));
1225
1226 xfree (found);
1227
1228 return retval;
1229 }
1230
1231 static char *
1232 build_id_to_debug_filename (struct build_id *build_id)
1233 {
1234 char *link, *s, *retval = NULL;
1235 gdb_byte *data = build_id->data;
1236 size_t size = build_id->size;
1237
1238 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1239 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1240 + 2 * size + (sizeof ".debug" - 1) + 1);
1241 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1242 if (size > 0)
1243 {
1244 size--;
1245 s += sprintf (s, "%02x", (unsigned) *data++);
1246 }
1247 if (size > 0)
1248 *s++ = '/';
1249 while (size-- > 0)
1250 s += sprintf (s, "%02x", (unsigned) *data++);
1251 strcpy (s, ".debug");
1252
1253 /* lrealpath() is expensive even for the usually non-existent files. */
1254 if (access (link, F_OK) == 0)
1255 retval = lrealpath (link);
1256 xfree (link);
1257
1258 if (retval != NULL && !build_id_verify (retval, build_id))
1259 {
1260 xfree (retval);
1261 retval = NULL;
1262 }
1263
1264 return retval;
1265 }
1266
1267 static char *
1268 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1269 {
1270 asection *sect;
1271 bfd_size_type debuglink_size;
1272 unsigned long crc32;
1273 char *contents;
1274 int crc_offset;
1275 unsigned char *p;
1276
1277 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1278
1279 if (sect == NULL)
1280 return NULL;
1281
1282 debuglink_size = bfd_section_size (objfile->obfd, sect);
1283
1284 contents = xmalloc (debuglink_size);
1285 bfd_get_section_contents (objfile->obfd, sect, contents,
1286 (file_ptr)0, (bfd_size_type)debuglink_size);
1287
1288 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1289 crc_offset = strlen (contents) + 1;
1290 crc_offset = (crc_offset + 3) & ~3;
1291
1292 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1293
1294 *crc32_out = crc32;
1295 return contents;
1296 }
1297
1298 static int
1299 separate_debug_file_exists (const char *name, unsigned long crc)
1300 {
1301 unsigned long file_crc = 0;
1302 bfd *abfd;
1303 gdb_byte buffer[8*1024];
1304 int count;
1305
1306 if (remote_filename_p (name))
1307 abfd = remote_bfd_open (name, gnutarget);
1308 else
1309 abfd = bfd_openr (name, gnutarget);
1310
1311 if (!abfd)
1312 return 0;
1313
1314 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1315 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1316
1317 bfd_close (abfd);
1318
1319 return crc == file_crc;
1320 }
1321
1322 char *debug_file_directory = NULL;
1323 static void
1324 show_debug_file_directory (struct ui_file *file, int from_tty,
1325 struct cmd_list_element *c, const char *value)
1326 {
1327 fprintf_filtered (file, _("\
1328 The directory where separate debug symbols are searched for is \"%s\".\n"),
1329 value);
1330 }
1331
1332 #if ! defined (DEBUG_SUBDIRECTORY)
1333 #define DEBUG_SUBDIRECTORY ".debug"
1334 #endif
1335
1336 static char *
1337 find_separate_debug_file (struct objfile *objfile)
1338 {
1339 asection *sect;
1340 char *basename;
1341 char *dir;
1342 char *debugfile;
1343 char *name_copy;
1344 char *canon_name;
1345 bfd_size_type debuglink_size;
1346 unsigned long crc32;
1347 int i;
1348 struct build_id *build_id;
1349
1350 build_id = build_id_bfd_get (objfile->obfd);
1351 if (build_id != NULL)
1352 {
1353 char *build_id_name;
1354
1355 build_id_name = build_id_to_debug_filename (build_id);
1356 xfree (build_id);
1357 /* Prevent looping on a stripped .debug file. */
1358 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1359 {
1360 warning (_("\"%s\": separate debug info file has no debug info"),
1361 build_id_name);
1362 xfree (build_id_name);
1363 }
1364 else if (build_id_name != NULL)
1365 return build_id_name;
1366 }
1367
1368 basename = get_debug_link_info (objfile, &crc32);
1369
1370 if (basename == NULL)
1371 return NULL;
1372
1373 dir = xstrdup (objfile->name);
1374
1375 /* Strip off the final filename part, leaving the directory name,
1376 followed by a slash. Objfile names should always be absolute and
1377 tilde-expanded, so there should always be a slash in there
1378 somewhere. */
1379 for (i = strlen(dir) - 1; i >= 0; i--)
1380 {
1381 if (IS_DIR_SEPARATOR (dir[i]))
1382 break;
1383 }
1384 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1385 dir[i+1] = '\0';
1386
1387 debugfile = alloca (strlen (debug_file_directory) + 1
1388 + strlen (dir)
1389 + strlen (DEBUG_SUBDIRECTORY)
1390 + strlen ("/")
1391 + strlen (basename)
1392 + 1);
1393
1394 /* First try in the same directory as the original file. */
1395 strcpy (debugfile, dir);
1396 strcat (debugfile, basename);
1397
1398 if (separate_debug_file_exists (debugfile, crc32))
1399 {
1400 xfree (basename);
1401 xfree (dir);
1402 return xstrdup (debugfile);
1403 }
1404
1405 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1406 strcpy (debugfile, dir);
1407 strcat (debugfile, DEBUG_SUBDIRECTORY);
1408 strcat (debugfile, "/");
1409 strcat (debugfile, basename);
1410
1411 if (separate_debug_file_exists (debugfile, crc32))
1412 {
1413 xfree (basename);
1414 xfree (dir);
1415 return xstrdup (debugfile);
1416 }
1417
1418 /* Then try in the global debugfile directory. */
1419 strcpy (debugfile, debug_file_directory);
1420 strcat (debugfile, "/");
1421 strcat (debugfile, dir);
1422 strcat (debugfile, basename);
1423
1424 if (separate_debug_file_exists (debugfile, crc32))
1425 {
1426 xfree (basename);
1427 xfree (dir);
1428 return xstrdup (debugfile);
1429 }
1430
1431 /* If the file is in the sysroot, try using its base path in the
1432 global debugfile directory. */
1433 canon_name = lrealpath (dir);
1434 if (canon_name
1435 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1436 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1437 {
1438 strcpy (debugfile, debug_file_directory);
1439 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1440 strcat (debugfile, "/");
1441 strcat (debugfile, basename);
1442
1443 if (separate_debug_file_exists (debugfile, crc32))
1444 {
1445 xfree (canon_name);
1446 xfree (basename);
1447 xfree (dir);
1448 return xstrdup (debugfile);
1449 }
1450 }
1451
1452 if (canon_name)
1453 xfree (canon_name);
1454
1455 xfree (basename);
1456 xfree (dir);
1457 return NULL;
1458 }
1459
1460
1461 /* This is the symbol-file command. Read the file, analyze its
1462 symbols, and add a struct symtab to a symtab list. The syntax of
1463 the command is rather bizarre:
1464
1465 1. The function buildargv implements various quoting conventions
1466 which are undocumented and have little or nothing in common with
1467 the way things are quoted (or not quoted) elsewhere in GDB.
1468
1469 2. Options are used, which are not generally used in GDB (perhaps
1470 "set mapped on", "set readnow on" would be better)
1471
1472 3. The order of options matters, which is contrary to GNU
1473 conventions (because it is confusing and inconvenient). */
1474
1475 void
1476 symbol_file_command (char *args, int from_tty)
1477 {
1478 dont_repeat ();
1479
1480 if (args == NULL)
1481 {
1482 symbol_file_clear (from_tty);
1483 }
1484 else
1485 {
1486 char **argv = gdb_buildargv (args);
1487 int flags = OBJF_USERLOADED;
1488 struct cleanup *cleanups;
1489 char *name = NULL;
1490
1491 cleanups = make_cleanup_freeargv (argv);
1492 while (*argv != NULL)
1493 {
1494 if (strcmp (*argv, "-readnow") == 0)
1495 flags |= OBJF_READNOW;
1496 else if (**argv == '-')
1497 error (_("unknown option `%s'"), *argv);
1498 else
1499 {
1500 symbol_file_add_main_1 (*argv, from_tty, flags);
1501 name = *argv;
1502 }
1503
1504 argv++;
1505 }
1506
1507 if (name == NULL)
1508 error (_("no symbol file name was specified"));
1509
1510 do_cleanups (cleanups);
1511 }
1512 }
1513
1514 /* Set the initial language.
1515
1516 FIXME: A better solution would be to record the language in the
1517 psymtab when reading partial symbols, and then use it (if known) to
1518 set the language. This would be a win for formats that encode the
1519 language in an easily discoverable place, such as DWARF. For
1520 stabs, we can jump through hoops looking for specially named
1521 symbols or try to intuit the language from the specific type of
1522 stabs we find, but we can't do that until later when we read in
1523 full symbols. */
1524
1525 void
1526 set_initial_language (void)
1527 {
1528 struct partial_symtab *pst;
1529 enum language lang = language_unknown;
1530
1531 pst = find_main_psymtab ();
1532 if (pst != NULL)
1533 {
1534 if (pst->filename != NULL)
1535 lang = deduce_language_from_filename (pst->filename);
1536
1537 if (lang == language_unknown)
1538 {
1539 /* Make C the default language */
1540 lang = language_c;
1541 }
1542
1543 set_language (lang);
1544 expected_language = current_language; /* Don't warn the user. */
1545 }
1546 }
1547
1548 /* Open the file specified by NAME and hand it off to BFD for
1549 preliminary analysis. Return a newly initialized bfd *, which
1550 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1551 absolute). In case of trouble, error() is called. */
1552
1553 bfd *
1554 symfile_bfd_open (char *name)
1555 {
1556 bfd *sym_bfd;
1557 int desc;
1558 char *absolute_name;
1559
1560 if (remote_filename_p (name))
1561 {
1562 name = xstrdup (name);
1563 sym_bfd = remote_bfd_open (name, gnutarget);
1564 if (!sym_bfd)
1565 {
1566 make_cleanup (xfree, name);
1567 error (_("`%s': can't open to read symbols: %s."), name,
1568 bfd_errmsg (bfd_get_error ()));
1569 }
1570
1571 if (!bfd_check_format (sym_bfd, bfd_object))
1572 {
1573 bfd_close (sym_bfd);
1574 make_cleanup (xfree, name);
1575 error (_("`%s': can't read symbols: %s."), name,
1576 bfd_errmsg (bfd_get_error ()));
1577 }
1578
1579 return sym_bfd;
1580 }
1581
1582 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1583
1584 /* Look down path for it, allocate 2nd new malloc'd copy. */
1585 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1586 O_RDONLY | O_BINARY, &absolute_name);
1587 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1588 if (desc < 0)
1589 {
1590 char *exename = alloca (strlen (name) + 5);
1591 strcat (strcpy (exename, name), ".exe");
1592 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1593 O_RDONLY | O_BINARY, &absolute_name);
1594 }
1595 #endif
1596 if (desc < 0)
1597 {
1598 make_cleanup (xfree, name);
1599 perror_with_name (name);
1600 }
1601
1602 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1603 bfd. It'll be freed in free_objfile(). */
1604 xfree (name);
1605 name = absolute_name;
1606
1607 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1608 if (!sym_bfd)
1609 {
1610 close (desc);
1611 make_cleanup (xfree, name);
1612 error (_("`%s': can't open to read symbols: %s."), name,
1613 bfd_errmsg (bfd_get_error ()));
1614 }
1615 bfd_set_cacheable (sym_bfd, 1);
1616
1617 if (!bfd_check_format (sym_bfd, bfd_object))
1618 {
1619 /* FIXME: should be checking for errors from bfd_close (for one
1620 thing, on error it does not free all the storage associated
1621 with the bfd). */
1622 bfd_close (sym_bfd); /* This also closes desc. */
1623 make_cleanup (xfree, name);
1624 error (_("`%s': can't read symbols: %s."), name,
1625 bfd_errmsg (bfd_get_error ()));
1626 }
1627
1628 return sym_bfd;
1629 }
1630
1631 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1632 the section was not found. */
1633
1634 int
1635 get_section_index (struct objfile *objfile, char *section_name)
1636 {
1637 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1638
1639 if (sect)
1640 return sect->index;
1641 else
1642 return -1;
1643 }
1644
1645 /* Link SF into the global symtab_fns list. Called on startup by the
1646 _initialize routine in each object file format reader, to register
1647 information about each format the the reader is prepared to
1648 handle. */
1649
1650 void
1651 add_symtab_fns (struct sym_fns *sf)
1652 {
1653 sf->next = symtab_fns;
1654 symtab_fns = sf;
1655 }
1656
1657 /* Initialize OBJFILE to read symbols from its associated BFD. It
1658 either returns or calls error(). The result is an initialized
1659 struct sym_fns in the objfile structure, that contains cached
1660 information about the symbol file. */
1661
1662 static struct sym_fns *
1663 find_sym_fns (bfd *abfd)
1664 {
1665 struct sym_fns *sf;
1666 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1667
1668 if (our_flavour == bfd_target_srec_flavour
1669 || our_flavour == bfd_target_ihex_flavour
1670 || our_flavour == bfd_target_tekhex_flavour)
1671 return NULL; /* No symbols. */
1672
1673 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1674 if (our_flavour == sf->sym_flavour)
1675 return sf;
1676
1677 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1678 bfd_get_target (abfd));
1679 }
1680 \f
1681
1682 /* This function runs the load command of our current target. */
1683
1684 static void
1685 load_command (char *arg, int from_tty)
1686 {
1687 /* The user might be reloading because the binary has changed. Take
1688 this opportunity to check. */
1689 reopen_exec_file ();
1690 reread_symbols ();
1691
1692 if (arg == NULL)
1693 {
1694 char *parg;
1695 int count = 0;
1696
1697 parg = arg = get_exec_file (1);
1698
1699 /* Count how many \ " ' tab space there are in the name. */
1700 while ((parg = strpbrk (parg, "\\\"'\t ")))
1701 {
1702 parg++;
1703 count++;
1704 }
1705
1706 if (count)
1707 {
1708 /* We need to quote this string so buildargv can pull it apart. */
1709 char *temp = xmalloc (strlen (arg) + count + 1 );
1710 char *ptemp = temp;
1711 char *prev;
1712
1713 make_cleanup (xfree, temp);
1714
1715 prev = parg = arg;
1716 while ((parg = strpbrk (parg, "\\\"'\t ")))
1717 {
1718 strncpy (ptemp, prev, parg - prev);
1719 ptemp += parg - prev;
1720 prev = parg++;
1721 *ptemp++ = '\\';
1722 }
1723 strcpy (ptemp, prev);
1724
1725 arg = temp;
1726 }
1727 }
1728
1729 target_load (arg, from_tty);
1730
1731 /* After re-loading the executable, we don't really know which
1732 overlays are mapped any more. */
1733 overlay_cache_invalid = 1;
1734 }
1735
1736 /* This version of "load" should be usable for any target. Currently
1737 it is just used for remote targets, not inftarg.c or core files,
1738 on the theory that only in that case is it useful.
1739
1740 Avoiding xmodem and the like seems like a win (a) because we don't have
1741 to worry about finding it, and (b) On VMS, fork() is very slow and so
1742 we don't want to run a subprocess. On the other hand, I'm not sure how
1743 performance compares. */
1744
1745 static int validate_download = 0;
1746
1747 /* Callback service function for generic_load (bfd_map_over_sections). */
1748
1749 static void
1750 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1751 {
1752 bfd_size_type *sum = data;
1753
1754 *sum += bfd_get_section_size (asec);
1755 }
1756
1757 /* Opaque data for load_section_callback. */
1758 struct load_section_data {
1759 unsigned long load_offset;
1760 struct load_progress_data *progress_data;
1761 VEC(memory_write_request_s) *requests;
1762 };
1763
1764 /* Opaque data for load_progress. */
1765 struct load_progress_data {
1766 /* Cumulative data. */
1767 unsigned long write_count;
1768 unsigned long data_count;
1769 bfd_size_type total_size;
1770 };
1771
1772 /* Opaque data for load_progress for a single section. */
1773 struct load_progress_section_data {
1774 struct load_progress_data *cumulative;
1775
1776 /* Per-section data. */
1777 const char *section_name;
1778 ULONGEST section_sent;
1779 ULONGEST section_size;
1780 CORE_ADDR lma;
1781 gdb_byte *buffer;
1782 };
1783
1784 /* Target write callback routine for progress reporting. */
1785
1786 static void
1787 load_progress (ULONGEST bytes, void *untyped_arg)
1788 {
1789 struct load_progress_section_data *args = untyped_arg;
1790 struct load_progress_data *totals;
1791
1792 if (args == NULL)
1793 /* Writing padding data. No easy way to get at the cumulative
1794 stats, so just ignore this. */
1795 return;
1796
1797 totals = args->cumulative;
1798
1799 if (bytes == 0 && args->section_sent == 0)
1800 {
1801 /* The write is just starting. Let the user know we've started
1802 this section. */
1803 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1804 args->section_name, paddr_nz (args->section_size),
1805 paddr_nz (args->lma));
1806 return;
1807 }
1808
1809 if (validate_download)
1810 {
1811 /* Broken memories and broken monitors manifest themselves here
1812 when bring new computers to life. This doubles already slow
1813 downloads. */
1814 /* NOTE: cagney/1999-10-18: A more efficient implementation
1815 might add a verify_memory() method to the target vector and
1816 then use that. remote.c could implement that method using
1817 the ``qCRC'' packet. */
1818 gdb_byte *check = xmalloc (bytes);
1819 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1820
1821 if (target_read_memory (args->lma, check, bytes) != 0)
1822 error (_("Download verify read failed at 0x%s"),
1823 paddr (args->lma));
1824 if (memcmp (args->buffer, check, bytes) != 0)
1825 error (_("Download verify compare failed at 0x%s"),
1826 paddr (args->lma));
1827 do_cleanups (verify_cleanups);
1828 }
1829 totals->data_count += bytes;
1830 args->lma += bytes;
1831 args->buffer += bytes;
1832 totals->write_count += 1;
1833 args->section_sent += bytes;
1834 if (quit_flag
1835 || (deprecated_ui_load_progress_hook != NULL
1836 && deprecated_ui_load_progress_hook (args->section_name,
1837 args->section_sent)))
1838 error (_("Canceled the download"));
1839
1840 if (deprecated_show_load_progress != NULL)
1841 deprecated_show_load_progress (args->section_name,
1842 args->section_sent,
1843 args->section_size,
1844 totals->data_count,
1845 totals->total_size);
1846 }
1847
1848 /* Callback service function for generic_load (bfd_map_over_sections). */
1849
1850 static void
1851 load_section_callback (bfd *abfd, asection *asec, void *data)
1852 {
1853 struct memory_write_request *new_request;
1854 struct load_section_data *args = data;
1855 struct load_progress_section_data *section_data;
1856 bfd_size_type size = bfd_get_section_size (asec);
1857 gdb_byte *buffer;
1858 const char *sect_name = bfd_get_section_name (abfd, asec);
1859
1860 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1861 return;
1862
1863 if (size == 0)
1864 return;
1865
1866 new_request = VEC_safe_push (memory_write_request_s,
1867 args->requests, NULL);
1868 memset (new_request, 0, sizeof (struct memory_write_request));
1869 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1870 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1871 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1872 new_request->data = xmalloc (size);
1873 new_request->baton = section_data;
1874
1875 buffer = new_request->data;
1876
1877 section_data->cumulative = args->progress_data;
1878 section_data->section_name = sect_name;
1879 section_data->section_size = size;
1880 section_data->lma = new_request->begin;
1881 section_data->buffer = buffer;
1882
1883 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1884 }
1885
1886 /* Clean up an entire memory request vector, including load
1887 data and progress records. */
1888
1889 static void
1890 clear_memory_write_data (void *arg)
1891 {
1892 VEC(memory_write_request_s) **vec_p = arg;
1893 VEC(memory_write_request_s) *vec = *vec_p;
1894 int i;
1895 struct memory_write_request *mr;
1896
1897 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1898 {
1899 xfree (mr->data);
1900 xfree (mr->baton);
1901 }
1902 VEC_free (memory_write_request_s, vec);
1903 }
1904
1905 void
1906 generic_load (char *args, int from_tty)
1907 {
1908 bfd *loadfile_bfd;
1909 struct timeval start_time, end_time;
1910 char *filename;
1911 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1912 struct load_section_data cbdata;
1913 struct load_progress_data total_progress;
1914
1915 CORE_ADDR entry;
1916 char **argv;
1917
1918 memset (&cbdata, 0, sizeof (cbdata));
1919 memset (&total_progress, 0, sizeof (total_progress));
1920 cbdata.progress_data = &total_progress;
1921
1922 make_cleanup (clear_memory_write_data, &cbdata.requests);
1923
1924 if (args == NULL)
1925 error_no_arg (_("file to load"));
1926
1927 argv = gdb_buildargv (args);
1928 make_cleanup_freeargv (argv);
1929
1930 filename = tilde_expand (argv[0]);
1931 make_cleanup (xfree, filename);
1932
1933 if (argv[1] != NULL)
1934 {
1935 char *endptr;
1936
1937 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1938
1939 /* If the last word was not a valid number then
1940 treat it as a file name with spaces in. */
1941 if (argv[1] == endptr)
1942 error (_("Invalid download offset:%s."), argv[1]);
1943
1944 if (argv[2] != NULL)
1945 error (_("Too many parameters."));
1946 }
1947
1948 /* Open the file for loading. */
1949 loadfile_bfd = bfd_openr (filename, gnutarget);
1950 if (loadfile_bfd == NULL)
1951 {
1952 perror_with_name (filename);
1953 return;
1954 }
1955
1956 /* FIXME: should be checking for errors from bfd_close (for one thing,
1957 on error it does not free all the storage associated with the
1958 bfd). */
1959 make_cleanup_bfd_close (loadfile_bfd);
1960
1961 if (!bfd_check_format (loadfile_bfd, bfd_object))
1962 {
1963 error (_("\"%s\" is not an object file: %s"), filename,
1964 bfd_errmsg (bfd_get_error ()));
1965 }
1966
1967 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1968 (void *) &total_progress.total_size);
1969
1970 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1971
1972 gettimeofday (&start_time, NULL);
1973
1974 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1975 load_progress) != 0)
1976 error (_("Load failed"));
1977
1978 gettimeofday (&end_time, NULL);
1979
1980 entry = bfd_get_start_address (loadfile_bfd);
1981 ui_out_text (uiout, "Start address ");
1982 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1983 ui_out_text (uiout, ", load size ");
1984 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
1985 ui_out_text (uiout, "\n");
1986 /* We were doing this in remote-mips.c, I suspect it is right
1987 for other targets too. */
1988 regcache_write_pc (get_current_regcache (), entry);
1989
1990 /* FIXME: are we supposed to call symbol_file_add or not? According
1991 to a comment from remote-mips.c (where a call to symbol_file_add
1992 was commented out), making the call confuses GDB if more than one
1993 file is loaded in. Some targets do (e.g., remote-vx.c) but
1994 others don't (or didn't - perhaps they have all been deleted). */
1995
1996 print_transfer_performance (gdb_stdout, total_progress.data_count,
1997 total_progress.write_count,
1998 &start_time, &end_time);
1999
2000 do_cleanups (old_cleanups);
2001 }
2002
2003 /* Report how fast the transfer went. */
2004
2005 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2006 replaced by print_transfer_performance (with a very different
2007 function signature). */
2008
2009 void
2010 report_transfer_performance (unsigned long data_count, time_t start_time,
2011 time_t end_time)
2012 {
2013 struct timeval start, end;
2014
2015 start.tv_sec = start_time;
2016 start.tv_usec = 0;
2017 end.tv_sec = end_time;
2018 end.tv_usec = 0;
2019
2020 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2021 }
2022
2023 void
2024 print_transfer_performance (struct ui_file *stream,
2025 unsigned long data_count,
2026 unsigned long write_count,
2027 const struct timeval *start_time,
2028 const struct timeval *end_time)
2029 {
2030 ULONGEST time_count;
2031
2032 /* Compute the elapsed time in milliseconds, as a tradeoff between
2033 accuracy and overflow. */
2034 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2035 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2036
2037 ui_out_text (uiout, "Transfer rate: ");
2038 if (time_count > 0)
2039 {
2040 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2041
2042 if (ui_out_is_mi_like_p (uiout))
2043 {
2044 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2045 ui_out_text (uiout, " bits/sec");
2046 }
2047 else if (rate < 1024)
2048 {
2049 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2050 ui_out_text (uiout, " bytes/sec");
2051 }
2052 else
2053 {
2054 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2055 ui_out_text (uiout, " KB/sec");
2056 }
2057 }
2058 else
2059 {
2060 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2061 ui_out_text (uiout, " bits in <1 sec");
2062 }
2063 if (write_count > 0)
2064 {
2065 ui_out_text (uiout, ", ");
2066 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2067 ui_out_text (uiout, " bytes/write");
2068 }
2069 ui_out_text (uiout, ".\n");
2070 }
2071
2072 /* This function allows the addition of incrementally linked object files.
2073 It does not modify any state in the target, only in the debugger. */
2074 /* Note: ezannoni 2000-04-13 This function/command used to have a
2075 special case syntax for the rombug target (Rombug is the boot
2076 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2077 rombug case, the user doesn't need to supply a text address,
2078 instead a call to target_link() (in target.c) would supply the
2079 value to use. We are now discontinuing this type of ad hoc syntax. */
2080
2081 static void
2082 add_symbol_file_command (char *args, int from_tty)
2083 {
2084 char *filename = NULL;
2085 int flags = OBJF_USERLOADED;
2086 char *arg;
2087 int expecting_option = 0;
2088 int section_index = 0;
2089 int argcnt = 0;
2090 int sec_num = 0;
2091 int i;
2092 int expecting_sec_name = 0;
2093 int expecting_sec_addr = 0;
2094 char **argv;
2095
2096 struct sect_opt
2097 {
2098 char *name;
2099 char *value;
2100 };
2101
2102 struct section_addr_info *section_addrs;
2103 struct sect_opt *sect_opts = NULL;
2104 size_t num_sect_opts = 0;
2105 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2106
2107 num_sect_opts = 16;
2108 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2109 * sizeof (struct sect_opt));
2110
2111 dont_repeat ();
2112
2113 if (args == NULL)
2114 error (_("add-symbol-file takes a file name and an address"));
2115
2116 argv = gdb_buildargv (args);
2117 make_cleanup_freeargv (argv);
2118
2119 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2120 {
2121 /* Process the argument. */
2122 if (argcnt == 0)
2123 {
2124 /* The first argument is the file name. */
2125 filename = tilde_expand (arg);
2126 make_cleanup (xfree, filename);
2127 }
2128 else
2129 if (argcnt == 1)
2130 {
2131 /* The second argument is always the text address at which
2132 to load the program. */
2133 sect_opts[section_index].name = ".text";
2134 sect_opts[section_index].value = arg;
2135 if (++section_index >= num_sect_opts)
2136 {
2137 num_sect_opts *= 2;
2138 sect_opts = ((struct sect_opt *)
2139 xrealloc (sect_opts,
2140 num_sect_opts
2141 * sizeof (struct sect_opt)));
2142 }
2143 }
2144 else
2145 {
2146 /* It's an option (starting with '-') or it's an argument
2147 to an option */
2148
2149 if (*arg == '-')
2150 {
2151 if (strcmp (arg, "-readnow") == 0)
2152 flags |= OBJF_READNOW;
2153 else if (strcmp (arg, "-s") == 0)
2154 {
2155 expecting_sec_name = 1;
2156 expecting_sec_addr = 1;
2157 }
2158 }
2159 else
2160 {
2161 if (expecting_sec_name)
2162 {
2163 sect_opts[section_index].name = arg;
2164 expecting_sec_name = 0;
2165 }
2166 else
2167 if (expecting_sec_addr)
2168 {
2169 sect_opts[section_index].value = arg;
2170 expecting_sec_addr = 0;
2171 if (++section_index >= num_sect_opts)
2172 {
2173 num_sect_opts *= 2;
2174 sect_opts = ((struct sect_opt *)
2175 xrealloc (sect_opts,
2176 num_sect_opts
2177 * sizeof (struct sect_opt)));
2178 }
2179 }
2180 else
2181 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2182 }
2183 }
2184 }
2185
2186 /* This command takes at least two arguments. The first one is a
2187 filename, and the second is the address where this file has been
2188 loaded. Abort now if this address hasn't been provided by the
2189 user. */
2190 if (section_index < 1)
2191 error (_("The address where %s has been loaded is missing"), filename);
2192
2193 /* Print the prompt for the query below. And save the arguments into
2194 a sect_addr_info structure to be passed around to other
2195 functions. We have to split this up into separate print
2196 statements because hex_string returns a local static
2197 string. */
2198
2199 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2200 section_addrs = alloc_section_addr_info (section_index);
2201 make_cleanup (xfree, section_addrs);
2202 for (i = 0; i < section_index; i++)
2203 {
2204 CORE_ADDR addr;
2205 char *val = sect_opts[i].value;
2206 char *sec = sect_opts[i].name;
2207
2208 addr = parse_and_eval_address (val);
2209
2210 /* Here we store the section offsets in the order they were
2211 entered on the command line. */
2212 section_addrs->other[sec_num].name = sec;
2213 section_addrs->other[sec_num].addr = addr;
2214 printf_unfiltered ("\t%s_addr = %s\n", sec, paddress (addr));
2215 sec_num++;
2216
2217 /* The object's sections are initialized when a
2218 call is made to build_objfile_section_table (objfile).
2219 This happens in reread_symbols.
2220 At this point, we don't know what file type this is,
2221 so we can't determine what section names are valid. */
2222 }
2223
2224 if (from_tty && (!query ("%s", "")))
2225 error (_("Not confirmed."));
2226
2227 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
2228
2229 /* Getting new symbols may change our opinion about what is
2230 frameless. */
2231 reinit_frame_cache ();
2232 do_cleanups (my_cleanups);
2233 }
2234 \f
2235
2236 /* Re-read symbols if a symbol-file has changed. */
2237 void
2238 reread_symbols (void)
2239 {
2240 struct objfile *objfile;
2241 long new_modtime;
2242 int reread_one = 0;
2243 struct stat new_statbuf;
2244 int res;
2245
2246 /* With the addition of shared libraries, this should be modified,
2247 the load time should be saved in the partial symbol tables, since
2248 different tables may come from different source files. FIXME.
2249 This routine should then walk down each partial symbol table
2250 and see if the symbol table that it originates from has been changed */
2251
2252 for (objfile = object_files; objfile; objfile = objfile->next)
2253 {
2254 if (objfile->obfd)
2255 {
2256 #ifdef DEPRECATED_IBM6000_TARGET
2257 /* If this object is from a shared library, then you should
2258 stat on the library name, not member name. */
2259
2260 if (objfile->obfd->my_archive)
2261 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2262 else
2263 #endif
2264 res = stat (objfile->name, &new_statbuf);
2265 if (res != 0)
2266 {
2267 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2268 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2269 objfile->name);
2270 continue;
2271 }
2272 new_modtime = new_statbuf.st_mtime;
2273 if (new_modtime != objfile->mtime)
2274 {
2275 struct cleanup *old_cleanups;
2276 struct section_offsets *offsets;
2277 int num_offsets;
2278 char *obfd_filename;
2279
2280 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2281 objfile->name);
2282
2283 /* There are various functions like symbol_file_add,
2284 symfile_bfd_open, syms_from_objfile, etc., which might
2285 appear to do what we want. But they have various other
2286 effects which we *don't* want. So we just do stuff
2287 ourselves. We don't worry about mapped files (for one thing,
2288 any mapped file will be out of date). */
2289
2290 /* If we get an error, blow away this objfile (not sure if
2291 that is the correct response for things like shared
2292 libraries). */
2293 old_cleanups = make_cleanup_free_objfile (objfile);
2294 /* We need to do this whenever any symbols go away. */
2295 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2296
2297 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2298 bfd_get_filename (exec_bfd)) == 0)
2299 {
2300 /* Reload EXEC_BFD without asking anything. */
2301
2302 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2303 }
2304
2305 /* Clean up any state BFD has sitting around. We don't need
2306 to close the descriptor but BFD lacks a way of closing the
2307 BFD without closing the descriptor. */
2308 obfd_filename = bfd_get_filename (objfile->obfd);
2309 if (!bfd_close (objfile->obfd))
2310 error (_("Can't close BFD for %s: %s"), objfile->name,
2311 bfd_errmsg (bfd_get_error ()));
2312 if (remote_filename_p (obfd_filename))
2313 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2314 else
2315 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2316 if (objfile->obfd == NULL)
2317 error (_("Can't open %s to read symbols."), objfile->name);
2318 /* bfd_openr sets cacheable to true, which is what we want. */
2319 if (!bfd_check_format (objfile->obfd, bfd_object))
2320 error (_("Can't read symbols from %s: %s."), objfile->name,
2321 bfd_errmsg (bfd_get_error ()));
2322
2323 /* Save the offsets, we will nuke them with the rest of the
2324 objfile_obstack. */
2325 num_offsets = objfile->num_sections;
2326 offsets = ((struct section_offsets *)
2327 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2328 memcpy (offsets, objfile->section_offsets,
2329 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2330
2331 /* Remove any references to this objfile in the global
2332 value lists. */
2333 preserve_values (objfile);
2334
2335 /* Nuke all the state that we will re-read. Much of the following
2336 code which sets things to NULL really is necessary to tell
2337 other parts of GDB that there is nothing currently there. */
2338
2339 /* FIXME: Do we have to free a whole linked list, or is this
2340 enough? */
2341 if (objfile->global_psymbols.list)
2342 xfree (objfile->global_psymbols.list);
2343 memset (&objfile->global_psymbols, 0,
2344 sizeof (objfile->global_psymbols));
2345 if (objfile->static_psymbols.list)
2346 xfree (objfile->static_psymbols.list);
2347 memset (&objfile->static_psymbols, 0,
2348 sizeof (objfile->static_psymbols));
2349
2350 /* Free the obstacks for non-reusable objfiles */
2351 bcache_xfree (objfile->psymbol_cache);
2352 objfile->psymbol_cache = bcache_xmalloc ();
2353 bcache_xfree (objfile->macro_cache);
2354 objfile->macro_cache = bcache_xmalloc ();
2355 if (objfile->demangled_names_hash != NULL)
2356 {
2357 htab_delete (objfile->demangled_names_hash);
2358 objfile->demangled_names_hash = NULL;
2359 }
2360 obstack_free (&objfile->objfile_obstack, 0);
2361 objfile->sections = NULL;
2362 objfile->symtabs = NULL;
2363 objfile->psymtabs = NULL;
2364 objfile->free_psymtabs = NULL;
2365 objfile->cp_namespace_symtab = NULL;
2366 objfile->msymbols = NULL;
2367 objfile->deprecated_sym_private = NULL;
2368 objfile->minimal_symbol_count = 0;
2369 memset (&objfile->msymbol_hash, 0,
2370 sizeof (objfile->msymbol_hash));
2371 memset (&objfile->msymbol_demangled_hash, 0,
2372 sizeof (objfile->msymbol_demangled_hash));
2373 clear_objfile_data (objfile);
2374 if (objfile->sf != NULL)
2375 {
2376 (*objfile->sf->sym_finish) (objfile);
2377 }
2378
2379 objfile->psymbol_cache = bcache_xmalloc ();
2380 objfile->macro_cache = bcache_xmalloc ();
2381 /* obstack_init also initializes the obstack so it is
2382 empty. We could use obstack_specify_allocation but
2383 gdb_obstack.h specifies the alloc/dealloc
2384 functions. */
2385 obstack_init (&objfile->objfile_obstack);
2386 if (build_objfile_section_table (objfile))
2387 {
2388 error (_("Can't find the file sections in `%s': %s"),
2389 objfile->name, bfd_errmsg (bfd_get_error ()));
2390 }
2391 terminate_minimal_symbol_table (objfile);
2392
2393 /* We use the same section offsets as from last time. I'm not
2394 sure whether that is always correct for shared libraries. */
2395 objfile->section_offsets = (struct section_offsets *)
2396 obstack_alloc (&objfile->objfile_obstack,
2397 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2398 memcpy (objfile->section_offsets, offsets,
2399 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2400 objfile->num_sections = num_offsets;
2401
2402 /* What the hell is sym_new_init for, anyway? The concept of
2403 distinguishing between the main file and additional files
2404 in this way seems rather dubious. */
2405 if (objfile == symfile_objfile)
2406 {
2407 (*objfile->sf->sym_new_init) (objfile);
2408 }
2409
2410 (*objfile->sf->sym_init) (objfile);
2411 clear_complaints (&symfile_complaints, 1, 1);
2412 /* The "mainline" parameter is a hideous hack; I think leaving it
2413 zero is OK since dbxread.c also does what it needs to do if
2414 objfile->global_psymbols.size is 0. */
2415 (*objfile->sf->sym_read) (objfile, 0);
2416 if (!have_partial_symbols () && !have_full_symbols ())
2417 {
2418 wrap_here ("");
2419 printf_unfiltered (_("(no debugging symbols found)\n"));
2420 wrap_here ("");
2421 }
2422
2423 /* We're done reading the symbol file; finish off complaints. */
2424 clear_complaints (&symfile_complaints, 0, 1);
2425
2426 /* Getting new symbols may change our opinion about what is
2427 frameless. */
2428
2429 reinit_frame_cache ();
2430
2431 /* Discard cleanups as symbol reading was successful. */
2432 discard_cleanups (old_cleanups);
2433
2434 /* If the mtime has changed between the time we set new_modtime
2435 and now, we *want* this to be out of date, so don't call stat
2436 again now. */
2437 objfile->mtime = new_modtime;
2438 reread_one = 1;
2439 reread_separate_symbols (objfile);
2440 init_entry_point_info (objfile);
2441 }
2442 }
2443 }
2444
2445 if (reread_one)
2446 {
2447 clear_symtab_users ();
2448 /* At least one objfile has changed, so we can consider that
2449 the executable we're debugging has changed too. */
2450 observer_notify_executable_changed ();
2451 }
2452
2453 }
2454
2455
2456 /* Handle separate debug info for OBJFILE, which has just been
2457 re-read:
2458 - If we had separate debug info before, but now we don't, get rid
2459 of the separated objfile.
2460 - If we didn't have separated debug info before, but now we do,
2461 read in the new separated debug info file.
2462 - If the debug link points to a different file, toss the old one
2463 and read the new one.
2464 This function does *not* handle the case where objfile is still
2465 using the same separate debug info file, but that file's timestamp
2466 has changed. That case should be handled by the loop in
2467 reread_symbols already. */
2468 static void
2469 reread_separate_symbols (struct objfile *objfile)
2470 {
2471 char *debug_file;
2472 unsigned long crc32;
2473
2474 /* Does the updated objfile's debug info live in a
2475 separate file? */
2476 debug_file = find_separate_debug_file (objfile);
2477
2478 if (objfile->separate_debug_objfile)
2479 {
2480 /* There are two cases where we need to get rid of
2481 the old separated debug info objfile:
2482 - if the new primary objfile doesn't have
2483 separated debug info, or
2484 - if the new primary objfile has separate debug
2485 info, but it's under a different filename.
2486
2487 If the old and new objfiles both have separate
2488 debug info, under the same filename, then we're
2489 okay --- if the separated file's contents have
2490 changed, we will have caught that when we
2491 visited it in this function's outermost
2492 loop. */
2493 if (! debug_file
2494 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2495 free_objfile (objfile->separate_debug_objfile);
2496 }
2497
2498 /* If the new objfile has separate debug info, and we
2499 haven't loaded it already, do so now. */
2500 if (debug_file
2501 && ! objfile->separate_debug_objfile)
2502 {
2503 /* Use the same section offset table as objfile itself.
2504 Preserve the flags from objfile that make sense. */
2505 objfile->separate_debug_objfile
2506 = (symbol_file_add_with_addrs_or_offsets
2507 (symfile_bfd_open (debug_file),
2508 info_verbose, /* from_tty: Don't override the default. */
2509 0, /* No addr table. */
2510 objfile->section_offsets, objfile->num_sections,
2511 0, /* Not mainline. See comments about this above. */
2512 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2513 | OBJF_USERLOADED)));
2514 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2515 = objfile;
2516 }
2517 if (debug_file)
2518 xfree (debug_file);
2519 }
2520
2521
2522 \f
2523
2524
2525 typedef struct
2526 {
2527 char *ext;
2528 enum language lang;
2529 }
2530 filename_language;
2531
2532 static filename_language *filename_language_table;
2533 static int fl_table_size, fl_table_next;
2534
2535 static void
2536 add_filename_language (char *ext, enum language lang)
2537 {
2538 if (fl_table_next >= fl_table_size)
2539 {
2540 fl_table_size += 10;
2541 filename_language_table =
2542 xrealloc (filename_language_table,
2543 fl_table_size * sizeof (*filename_language_table));
2544 }
2545
2546 filename_language_table[fl_table_next].ext = xstrdup (ext);
2547 filename_language_table[fl_table_next].lang = lang;
2548 fl_table_next++;
2549 }
2550
2551 static char *ext_args;
2552 static void
2553 show_ext_args (struct ui_file *file, int from_tty,
2554 struct cmd_list_element *c, const char *value)
2555 {
2556 fprintf_filtered (file, _("\
2557 Mapping between filename extension and source language is \"%s\".\n"),
2558 value);
2559 }
2560
2561 static void
2562 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2563 {
2564 int i;
2565 char *cp = ext_args;
2566 enum language lang;
2567
2568 /* First arg is filename extension, starting with '.' */
2569 if (*cp != '.')
2570 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2571
2572 /* Find end of first arg. */
2573 while (*cp && !isspace (*cp))
2574 cp++;
2575
2576 if (*cp == '\0')
2577 error (_("'%s': two arguments required -- filename extension and language"),
2578 ext_args);
2579
2580 /* Null-terminate first arg */
2581 *cp++ = '\0';
2582
2583 /* Find beginning of second arg, which should be a source language. */
2584 while (*cp && isspace (*cp))
2585 cp++;
2586
2587 if (*cp == '\0')
2588 error (_("'%s': two arguments required -- filename extension and language"),
2589 ext_args);
2590
2591 /* Lookup the language from among those we know. */
2592 lang = language_enum (cp);
2593
2594 /* Now lookup the filename extension: do we already know it? */
2595 for (i = 0; i < fl_table_next; i++)
2596 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2597 break;
2598
2599 if (i >= fl_table_next)
2600 {
2601 /* new file extension */
2602 add_filename_language (ext_args, lang);
2603 }
2604 else
2605 {
2606 /* redefining a previously known filename extension */
2607
2608 /* if (from_tty) */
2609 /* query ("Really make files of type %s '%s'?", */
2610 /* ext_args, language_str (lang)); */
2611
2612 xfree (filename_language_table[i].ext);
2613 filename_language_table[i].ext = xstrdup (ext_args);
2614 filename_language_table[i].lang = lang;
2615 }
2616 }
2617
2618 static void
2619 info_ext_lang_command (char *args, int from_tty)
2620 {
2621 int i;
2622
2623 printf_filtered (_("Filename extensions and the languages they represent:"));
2624 printf_filtered ("\n\n");
2625 for (i = 0; i < fl_table_next; i++)
2626 printf_filtered ("\t%s\t- %s\n",
2627 filename_language_table[i].ext,
2628 language_str (filename_language_table[i].lang));
2629 }
2630
2631 static void
2632 init_filename_language_table (void)
2633 {
2634 if (fl_table_size == 0) /* protect against repetition */
2635 {
2636 fl_table_size = 20;
2637 fl_table_next = 0;
2638 filename_language_table =
2639 xmalloc (fl_table_size * sizeof (*filename_language_table));
2640 add_filename_language (".c", language_c);
2641 add_filename_language (".C", language_cplus);
2642 add_filename_language (".cc", language_cplus);
2643 add_filename_language (".cp", language_cplus);
2644 add_filename_language (".cpp", language_cplus);
2645 add_filename_language (".cxx", language_cplus);
2646 add_filename_language (".c++", language_cplus);
2647 add_filename_language (".java", language_java);
2648 add_filename_language (".class", language_java);
2649 add_filename_language (".m", language_objc);
2650 add_filename_language (".f", language_fortran);
2651 add_filename_language (".F", language_fortran);
2652 add_filename_language (".s", language_asm);
2653 add_filename_language (".sx", language_asm);
2654 add_filename_language (".S", language_asm);
2655 add_filename_language (".pas", language_pascal);
2656 add_filename_language (".p", language_pascal);
2657 add_filename_language (".pp", language_pascal);
2658 add_filename_language (".adb", language_ada);
2659 add_filename_language (".ads", language_ada);
2660 add_filename_language (".a", language_ada);
2661 add_filename_language (".ada", language_ada);
2662 }
2663 }
2664
2665 enum language
2666 deduce_language_from_filename (char *filename)
2667 {
2668 int i;
2669 char *cp;
2670
2671 if (filename != NULL)
2672 if ((cp = strrchr (filename, '.')) != NULL)
2673 for (i = 0; i < fl_table_next; i++)
2674 if (strcmp (cp, filename_language_table[i].ext) == 0)
2675 return filename_language_table[i].lang;
2676
2677 return language_unknown;
2678 }
2679 \f
2680 /* allocate_symtab:
2681
2682 Allocate and partly initialize a new symbol table. Return a pointer
2683 to it. error() if no space.
2684
2685 Caller must set these fields:
2686 LINETABLE(symtab)
2687 symtab->blockvector
2688 symtab->dirname
2689 symtab->free_code
2690 symtab->free_ptr
2691 possibly free_named_symtabs (symtab->filename);
2692 */
2693
2694 struct symtab *
2695 allocate_symtab (char *filename, struct objfile *objfile)
2696 {
2697 struct symtab *symtab;
2698
2699 symtab = (struct symtab *)
2700 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2701 memset (symtab, 0, sizeof (*symtab));
2702 symtab->filename = obsavestring (filename, strlen (filename),
2703 &objfile->objfile_obstack);
2704 symtab->fullname = NULL;
2705 symtab->language = deduce_language_from_filename (filename);
2706 symtab->debugformat = obsavestring ("unknown", 7,
2707 &objfile->objfile_obstack);
2708
2709 /* Hook it to the objfile it comes from */
2710
2711 symtab->objfile = objfile;
2712 symtab->next = objfile->symtabs;
2713 objfile->symtabs = symtab;
2714
2715 return (symtab);
2716 }
2717
2718 struct partial_symtab *
2719 allocate_psymtab (char *filename, struct objfile *objfile)
2720 {
2721 struct partial_symtab *psymtab;
2722
2723 if (objfile->free_psymtabs)
2724 {
2725 psymtab = objfile->free_psymtabs;
2726 objfile->free_psymtabs = psymtab->next;
2727 }
2728 else
2729 psymtab = (struct partial_symtab *)
2730 obstack_alloc (&objfile->objfile_obstack,
2731 sizeof (struct partial_symtab));
2732
2733 memset (psymtab, 0, sizeof (struct partial_symtab));
2734 psymtab->filename = obsavestring (filename, strlen (filename),
2735 &objfile->objfile_obstack);
2736 psymtab->symtab = NULL;
2737
2738 /* Prepend it to the psymtab list for the objfile it belongs to.
2739 Psymtabs are searched in most recent inserted -> least recent
2740 inserted order. */
2741
2742 psymtab->objfile = objfile;
2743 psymtab->next = objfile->psymtabs;
2744 objfile->psymtabs = psymtab;
2745 #if 0
2746 {
2747 struct partial_symtab **prev_pst;
2748 psymtab->objfile = objfile;
2749 psymtab->next = NULL;
2750 prev_pst = &(objfile->psymtabs);
2751 while ((*prev_pst) != NULL)
2752 prev_pst = &((*prev_pst)->next);
2753 (*prev_pst) = psymtab;
2754 }
2755 #endif
2756
2757 return (psymtab);
2758 }
2759
2760 void
2761 discard_psymtab (struct partial_symtab *pst)
2762 {
2763 struct partial_symtab **prev_pst;
2764
2765 /* From dbxread.c:
2766 Empty psymtabs happen as a result of header files which don't
2767 have any symbols in them. There can be a lot of them. But this
2768 check is wrong, in that a psymtab with N_SLINE entries but
2769 nothing else is not empty, but we don't realize that. Fixing
2770 that without slowing things down might be tricky. */
2771
2772 /* First, snip it out of the psymtab chain */
2773
2774 prev_pst = &(pst->objfile->psymtabs);
2775 while ((*prev_pst) != pst)
2776 prev_pst = &((*prev_pst)->next);
2777 (*prev_pst) = pst->next;
2778
2779 /* Next, put it on a free list for recycling */
2780
2781 pst->next = pst->objfile->free_psymtabs;
2782 pst->objfile->free_psymtabs = pst;
2783 }
2784 \f
2785
2786 /* Reset all data structures in gdb which may contain references to symbol
2787 table data. */
2788
2789 void
2790 clear_symtab_users (void)
2791 {
2792 /* Someday, we should do better than this, by only blowing away
2793 the things that really need to be blown. */
2794
2795 /* Clear the "current" symtab first, because it is no longer valid.
2796 breakpoint_re_set may try to access the current symtab. */
2797 clear_current_source_symtab_and_line ();
2798
2799 clear_displays ();
2800 breakpoint_re_set ();
2801 set_default_breakpoint (0, 0, 0, 0);
2802 clear_pc_function_cache ();
2803 observer_notify_new_objfile (NULL);
2804
2805 /* Clear globals which might have pointed into a removed objfile.
2806 FIXME: It's not clear which of these are supposed to persist
2807 between expressions and which ought to be reset each time. */
2808 expression_context_block = NULL;
2809 innermost_block = NULL;
2810
2811 /* Varobj may refer to old symbols, perform a cleanup. */
2812 varobj_invalidate ();
2813
2814 }
2815
2816 static void
2817 clear_symtab_users_cleanup (void *ignore)
2818 {
2819 clear_symtab_users ();
2820 }
2821
2822 /* clear_symtab_users_once:
2823
2824 This function is run after symbol reading, or from a cleanup.
2825 If an old symbol table was obsoleted, the old symbol table
2826 has been blown away, but the other GDB data structures that may
2827 reference it have not yet been cleared or re-directed. (The old
2828 symtab was zapped, and the cleanup queued, in free_named_symtab()
2829 below.)
2830
2831 This function can be queued N times as a cleanup, or called
2832 directly; it will do all the work the first time, and then will be a
2833 no-op until the next time it is queued. This works by bumping a
2834 counter at queueing time. Much later when the cleanup is run, or at
2835 the end of symbol processing (in case the cleanup is discarded), if
2836 the queued count is greater than the "done-count", we do the work
2837 and set the done-count to the queued count. If the queued count is
2838 less than or equal to the done-count, we just ignore the call. This
2839 is needed because reading a single .o file will often replace many
2840 symtabs (one per .h file, for example), and we don't want to reset
2841 the breakpoints N times in the user's face.
2842
2843 The reason we both queue a cleanup, and call it directly after symbol
2844 reading, is because the cleanup protects us in case of errors, but is
2845 discarded if symbol reading is successful. */
2846
2847 #if 0
2848 /* FIXME: As free_named_symtabs is currently a big noop this function
2849 is no longer needed. */
2850 static void clear_symtab_users_once (void);
2851
2852 static int clear_symtab_users_queued;
2853 static int clear_symtab_users_done;
2854
2855 static void
2856 clear_symtab_users_once (void)
2857 {
2858 /* Enforce once-per-`do_cleanups'-semantics */
2859 if (clear_symtab_users_queued <= clear_symtab_users_done)
2860 return;
2861 clear_symtab_users_done = clear_symtab_users_queued;
2862
2863 clear_symtab_users ();
2864 }
2865 #endif
2866
2867 /* Delete the specified psymtab, and any others that reference it. */
2868
2869 static void
2870 cashier_psymtab (struct partial_symtab *pst)
2871 {
2872 struct partial_symtab *ps, *pprev = NULL;
2873 int i;
2874
2875 /* Find its previous psymtab in the chain */
2876 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2877 {
2878 if (ps == pst)
2879 break;
2880 pprev = ps;
2881 }
2882
2883 if (ps)
2884 {
2885 /* Unhook it from the chain. */
2886 if (ps == pst->objfile->psymtabs)
2887 pst->objfile->psymtabs = ps->next;
2888 else
2889 pprev->next = ps->next;
2890
2891 /* FIXME, we can't conveniently deallocate the entries in the
2892 partial_symbol lists (global_psymbols/static_psymbols) that
2893 this psymtab points to. These just take up space until all
2894 the psymtabs are reclaimed. Ditto the dependencies list and
2895 filename, which are all in the objfile_obstack. */
2896
2897 /* We need to cashier any psymtab that has this one as a dependency... */
2898 again:
2899 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2900 {
2901 for (i = 0; i < ps->number_of_dependencies; i++)
2902 {
2903 if (ps->dependencies[i] == pst)
2904 {
2905 cashier_psymtab (ps);
2906 goto again; /* Must restart, chain has been munged. */
2907 }
2908 }
2909 }
2910 }
2911 }
2912
2913 /* If a symtab or psymtab for filename NAME is found, free it along
2914 with any dependent breakpoints, displays, etc.
2915 Used when loading new versions of object modules with the "add-file"
2916 command. This is only called on the top-level symtab or psymtab's name;
2917 it is not called for subsidiary files such as .h files.
2918
2919 Return value is 1 if we blew away the environment, 0 if not.
2920 FIXME. The return value appears to never be used.
2921
2922 FIXME. I think this is not the best way to do this. We should
2923 work on being gentler to the environment while still cleaning up
2924 all stray pointers into the freed symtab. */
2925
2926 int
2927 free_named_symtabs (char *name)
2928 {
2929 #if 0
2930 /* FIXME: With the new method of each objfile having it's own
2931 psymtab list, this function needs serious rethinking. In particular,
2932 why was it ever necessary to toss psymtabs with specific compilation
2933 unit filenames, as opposed to all psymtabs from a particular symbol
2934 file? -- fnf
2935 Well, the answer is that some systems permit reloading of particular
2936 compilation units. We want to blow away any old info about these
2937 compilation units, regardless of which objfiles they arrived in. --gnu. */
2938
2939 struct symtab *s;
2940 struct symtab *prev;
2941 struct partial_symtab *ps;
2942 struct blockvector *bv;
2943 int blewit = 0;
2944
2945 /* We only wack things if the symbol-reload switch is set. */
2946 if (!symbol_reloading)
2947 return 0;
2948
2949 /* Some symbol formats have trouble providing file names... */
2950 if (name == 0 || *name == '\0')
2951 return 0;
2952
2953 /* Look for a psymtab with the specified name. */
2954
2955 again2:
2956 for (ps = partial_symtab_list; ps; ps = ps->next)
2957 {
2958 if (strcmp (name, ps->filename) == 0)
2959 {
2960 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2961 goto again2; /* Must restart, chain has been munged */
2962 }
2963 }
2964
2965 /* Look for a symtab with the specified name. */
2966
2967 for (s = symtab_list; s; s = s->next)
2968 {
2969 if (strcmp (name, s->filename) == 0)
2970 break;
2971 prev = s;
2972 }
2973
2974 if (s)
2975 {
2976 if (s == symtab_list)
2977 symtab_list = s->next;
2978 else
2979 prev->next = s->next;
2980
2981 /* For now, queue a delete for all breakpoints, displays, etc., whether
2982 or not they depend on the symtab being freed. This should be
2983 changed so that only those data structures affected are deleted. */
2984
2985 /* But don't delete anything if the symtab is empty.
2986 This test is necessary due to a bug in "dbxread.c" that
2987 causes empty symtabs to be created for N_SO symbols that
2988 contain the pathname of the object file. (This problem
2989 has been fixed in GDB 3.9x). */
2990
2991 bv = BLOCKVECTOR (s);
2992 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2993 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2994 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2995 {
2996 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
2997 name);
2998 clear_symtab_users_queued++;
2999 make_cleanup (clear_symtab_users_once, 0);
3000 blewit = 1;
3001 }
3002 else
3003 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3004 name);
3005
3006 free_symtab (s);
3007 }
3008 else
3009 {
3010 /* It is still possible that some breakpoints will be affected
3011 even though no symtab was found, since the file might have
3012 been compiled without debugging, and hence not be associated
3013 with a symtab. In order to handle this correctly, we would need
3014 to keep a list of text address ranges for undebuggable files.
3015 For now, we do nothing, since this is a fairly obscure case. */
3016 ;
3017 }
3018
3019 /* FIXME, what about the minimal symbol table? */
3020 return blewit;
3021 #else
3022 return (0);
3023 #endif
3024 }
3025 \f
3026 /* Allocate and partially fill a partial symtab. It will be
3027 completely filled at the end of the symbol list.
3028
3029 FILENAME is the name of the symbol-file we are reading from. */
3030
3031 struct partial_symtab *
3032 start_psymtab_common (struct objfile *objfile,
3033 struct section_offsets *section_offsets, char *filename,
3034 CORE_ADDR textlow, struct partial_symbol **global_syms,
3035 struct partial_symbol **static_syms)
3036 {
3037 struct partial_symtab *psymtab;
3038
3039 psymtab = allocate_psymtab (filename, objfile);
3040 psymtab->section_offsets = section_offsets;
3041 psymtab->textlow = textlow;
3042 psymtab->texthigh = psymtab->textlow; /* default */
3043 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3044 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
3045 return (psymtab);
3046 }
3047 \f
3048 /* Helper function, initialises partial symbol structure and stashes
3049 it into objfile's bcache. Note that our caching mechanism will
3050 use all fields of struct partial_symbol to determine hash value of the
3051 structure. In other words, having two symbols with the same name but
3052 different domain (or address) is possible and correct. */
3053
3054 static const struct partial_symbol *
3055 add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3056 enum address_class class,
3057 long val, /* Value as a long */
3058 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3059 enum language language, struct objfile *objfile,
3060 int *added)
3061 {
3062 char *buf = name;
3063 /* psymbol is static so that there will be no uninitialized gaps in the
3064 structure which might contain random data, causing cache misses in
3065 bcache. */
3066 static struct partial_symbol psymbol;
3067
3068 if (name[namelength] != '\0')
3069 {
3070 buf = alloca (namelength + 1);
3071 /* Create local copy of the partial symbol */
3072 memcpy (buf, name, namelength);
3073 buf[namelength] = '\0';
3074 }
3075 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3076 if (val != 0)
3077 {
3078 SYMBOL_VALUE (&psymbol) = val;
3079 }
3080 else
3081 {
3082 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3083 }
3084 SYMBOL_SECTION (&psymbol) = 0;
3085 SYMBOL_LANGUAGE (&psymbol) = language;
3086 PSYMBOL_DOMAIN (&psymbol) = domain;
3087 PSYMBOL_CLASS (&psymbol) = class;
3088
3089 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3090
3091 /* Stash the partial symbol away in the cache */
3092 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3093 objfile->psymbol_cache, added);
3094 }
3095
3096 /* Helper function, adds partial symbol to the given partial symbol
3097 list. */
3098
3099 static void
3100 append_psymbol_to_list (struct psymbol_allocation_list *list,
3101 const struct partial_symbol *psym,
3102 struct objfile *objfile)
3103 {
3104 if (list->next >= list->list + list->size)
3105 extend_psymbol_list (list, objfile);
3106 *list->next++ = (struct partial_symbol *) psym;
3107 OBJSTAT (objfile, n_psyms++);
3108 }
3109
3110 /* Add a symbol with a long value to a psymtab.
3111 Since one arg is a struct, we pass in a ptr and deref it (sigh).
3112 Return the partial symbol that has been added. */
3113
3114 /* NOTE: carlton/2003-09-11: The reason why we return the partial
3115 symbol is so that callers can get access to the symbol's demangled
3116 name, which they don't have any cheap way to determine otherwise.
3117 (Currenly, dwarf2read.c is the only file who uses that information,
3118 though it's possible that other readers might in the future.)
3119 Elena wasn't thrilled about that, and I don't blame her, but we
3120 couldn't come up with a better way to get that information. If
3121 it's needed in other situations, we could consider breaking up
3122 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3123 cache. */
3124
3125 const struct partial_symbol *
3126 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
3127 enum address_class class,
3128 struct psymbol_allocation_list *list,
3129 long val, /* Value as a long */
3130 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3131 enum language language, struct objfile *objfile)
3132 {
3133 const struct partial_symbol *psym;
3134
3135 int added;
3136
3137 /* Stash the partial symbol away in the cache */
3138 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3139 val, coreaddr, language, objfile, &added);
3140
3141 /* Do not duplicate global partial symbols. */
3142 if (list == &objfile->global_psymbols
3143 && !added)
3144 return psym;
3145
3146 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3147 append_psymbol_to_list (list, psym, objfile);
3148 return psym;
3149 }
3150
3151 /* Initialize storage for partial symbols. */
3152
3153 void
3154 init_psymbol_list (struct objfile *objfile, int total_symbols)
3155 {
3156 /* Free any previously allocated psymbol lists. */
3157
3158 if (objfile->global_psymbols.list)
3159 {
3160 xfree (objfile->global_psymbols.list);
3161 }
3162 if (objfile->static_psymbols.list)
3163 {
3164 xfree (objfile->static_psymbols.list);
3165 }
3166
3167 /* Current best guess is that approximately a twentieth
3168 of the total symbols (in a debugging file) are global or static
3169 oriented symbols */
3170
3171 objfile->global_psymbols.size = total_symbols / 10;
3172 objfile->static_psymbols.size = total_symbols / 10;
3173
3174 if (objfile->global_psymbols.size > 0)
3175 {
3176 objfile->global_psymbols.next =
3177 objfile->global_psymbols.list = (struct partial_symbol **)
3178 xmalloc ((objfile->global_psymbols.size
3179 * sizeof (struct partial_symbol *)));
3180 }
3181 if (objfile->static_psymbols.size > 0)
3182 {
3183 objfile->static_psymbols.next =
3184 objfile->static_psymbols.list = (struct partial_symbol **)
3185 xmalloc ((objfile->static_psymbols.size
3186 * sizeof (struct partial_symbol *)));
3187 }
3188 }
3189
3190 /* OVERLAYS:
3191 The following code implements an abstraction for debugging overlay sections.
3192
3193 The target model is as follows:
3194 1) The gnu linker will permit multiple sections to be mapped into the
3195 same VMA, each with its own unique LMA (or load address).
3196 2) It is assumed that some runtime mechanism exists for mapping the
3197 sections, one by one, from the load address into the VMA address.
3198 3) This code provides a mechanism for gdb to keep track of which
3199 sections should be considered to be mapped from the VMA to the LMA.
3200 This information is used for symbol lookup, and memory read/write.
3201 For instance, if a section has been mapped then its contents
3202 should be read from the VMA, otherwise from the LMA.
3203
3204 Two levels of debugger support for overlays are available. One is
3205 "manual", in which the debugger relies on the user to tell it which
3206 overlays are currently mapped. This level of support is
3207 implemented entirely in the core debugger, and the information about
3208 whether a section is mapped is kept in the objfile->obj_section table.
3209
3210 The second level of support is "automatic", and is only available if
3211 the target-specific code provides functionality to read the target's
3212 overlay mapping table, and translate its contents for the debugger
3213 (by updating the mapped state information in the obj_section tables).
3214
3215 The interface is as follows:
3216 User commands:
3217 overlay map <name> -- tell gdb to consider this section mapped
3218 overlay unmap <name> -- tell gdb to consider this section unmapped
3219 overlay list -- list the sections that GDB thinks are mapped
3220 overlay read-target -- get the target's state of what's mapped
3221 overlay off/manual/auto -- set overlay debugging state
3222 Functional interface:
3223 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3224 section, return that section.
3225 find_pc_overlay(pc): find any overlay section that contains
3226 the pc, either in its VMA or its LMA
3227 section_is_mapped(sect): true if overlay is marked as mapped
3228 section_is_overlay(sect): true if section's VMA != LMA
3229 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3230 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3231 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3232 overlay_mapped_address(...): map an address from section's LMA to VMA
3233 overlay_unmapped_address(...): map an address from section's VMA to LMA
3234 symbol_overlayed_address(...): Return a "current" address for symbol:
3235 either in VMA or LMA depending on whether
3236 the symbol's section is currently mapped
3237 */
3238
3239 /* Overlay debugging state: */
3240
3241 enum overlay_debugging_state overlay_debugging = ovly_off;
3242 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3243
3244 /* Function: section_is_overlay (SECTION)
3245 Returns true if SECTION has VMA not equal to LMA, ie.
3246 SECTION is loaded at an address different from where it will "run". */
3247
3248 int
3249 section_is_overlay (struct obj_section *section)
3250 {
3251 if (overlay_debugging && section)
3252 {
3253 bfd *abfd = section->objfile->obfd;
3254 asection *bfd_section = section->the_bfd_section;
3255
3256 if (bfd_section_lma (abfd, bfd_section) != 0
3257 && bfd_section_lma (abfd, bfd_section)
3258 != bfd_section_vma (abfd, bfd_section))
3259 return 1;
3260 }
3261
3262 return 0;
3263 }
3264
3265 /* Function: overlay_invalidate_all (void)
3266 Invalidate the mapped state of all overlay sections (mark it as stale). */
3267
3268 static void
3269 overlay_invalidate_all (void)
3270 {
3271 struct objfile *objfile;
3272 struct obj_section *sect;
3273
3274 ALL_OBJSECTIONS (objfile, sect)
3275 if (section_is_overlay (sect))
3276 sect->ovly_mapped = -1;
3277 }
3278
3279 /* Function: section_is_mapped (SECTION)
3280 Returns true if section is an overlay, and is currently mapped.
3281
3282 Access to the ovly_mapped flag is restricted to this function, so
3283 that we can do automatic update. If the global flag
3284 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3285 overlay_invalidate_all. If the mapped state of the particular
3286 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3287
3288 int
3289 section_is_mapped (struct obj_section *osect)
3290 {
3291 if (osect == 0 || !section_is_overlay (osect))
3292 return 0;
3293
3294 switch (overlay_debugging)
3295 {
3296 default:
3297 case ovly_off:
3298 return 0; /* overlay debugging off */
3299 case ovly_auto: /* overlay debugging automatic */
3300 /* Unles there is a gdbarch_overlay_update function,
3301 there's really nothing useful to do here (can't really go auto) */
3302 if (gdbarch_overlay_update_p (current_gdbarch))
3303 {
3304 if (overlay_cache_invalid)
3305 {
3306 overlay_invalidate_all ();
3307 overlay_cache_invalid = 0;
3308 }
3309 if (osect->ovly_mapped == -1)
3310 gdbarch_overlay_update (current_gdbarch, osect);
3311 }
3312 /* fall thru to manual case */
3313 case ovly_on: /* overlay debugging manual */
3314 return osect->ovly_mapped == 1;
3315 }
3316 }
3317
3318 /* Function: pc_in_unmapped_range
3319 If PC falls into the lma range of SECTION, return true, else false. */
3320
3321 CORE_ADDR
3322 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3323 {
3324 if (section_is_overlay (section))
3325 {
3326 bfd *abfd = section->objfile->obfd;
3327 asection *bfd_section = section->the_bfd_section;
3328
3329 /* We assume the LMA is relocated by the same offset as the VMA. */
3330 bfd_vma size = bfd_get_section_size (bfd_section);
3331 CORE_ADDR offset = obj_section_offset (section);
3332
3333 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3334 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3335 return 1;
3336 }
3337
3338 return 0;
3339 }
3340
3341 /* Function: pc_in_mapped_range
3342 If PC falls into the vma range of SECTION, return true, else false. */
3343
3344 CORE_ADDR
3345 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3346 {
3347 if (section_is_overlay (section))
3348 {
3349 if (obj_section_addr (section) <= pc
3350 && pc < obj_section_endaddr (section))
3351 return 1;
3352 }
3353
3354 return 0;
3355 }
3356
3357
3358 /* Return true if the mapped ranges of sections A and B overlap, false
3359 otherwise. */
3360 static int
3361 sections_overlap (struct obj_section *a, struct obj_section *b)
3362 {
3363 CORE_ADDR a_start = obj_section_addr (a);
3364 CORE_ADDR a_end = obj_section_endaddr (a);
3365 CORE_ADDR b_start = obj_section_addr (b);
3366 CORE_ADDR b_end = obj_section_endaddr (b);
3367
3368 return (a_start < b_end && b_start < a_end);
3369 }
3370
3371 /* Function: overlay_unmapped_address (PC, SECTION)
3372 Returns the address corresponding to PC in the unmapped (load) range.
3373 May be the same as PC. */
3374
3375 CORE_ADDR
3376 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3377 {
3378 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3379 {
3380 bfd *abfd = section->objfile->obfd;
3381 asection *bfd_section = section->the_bfd_section;
3382
3383 return pc + bfd_section_lma (abfd, bfd_section)
3384 - bfd_section_vma (abfd, bfd_section);
3385 }
3386
3387 return pc;
3388 }
3389
3390 /* Function: overlay_mapped_address (PC, SECTION)
3391 Returns the address corresponding to PC in the mapped (runtime) range.
3392 May be the same as PC. */
3393
3394 CORE_ADDR
3395 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3396 {
3397 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3398 {
3399 bfd *abfd = section->objfile->obfd;
3400 asection *bfd_section = section->the_bfd_section;
3401
3402 return pc + bfd_section_vma (abfd, bfd_section)
3403 - bfd_section_lma (abfd, bfd_section);
3404 }
3405
3406 return pc;
3407 }
3408
3409
3410 /* Function: symbol_overlayed_address
3411 Return one of two addresses (relative to the VMA or to the LMA),
3412 depending on whether the section is mapped or not. */
3413
3414 CORE_ADDR
3415 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3416 {
3417 if (overlay_debugging)
3418 {
3419 /* If the symbol has no section, just return its regular address. */
3420 if (section == 0)
3421 return address;
3422 /* If the symbol's section is not an overlay, just return its address */
3423 if (!section_is_overlay (section))
3424 return address;
3425 /* If the symbol's section is mapped, just return its address */
3426 if (section_is_mapped (section))
3427 return address;
3428 /*
3429 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3430 * then return its LOADED address rather than its vma address!!
3431 */
3432 return overlay_unmapped_address (address, section);
3433 }
3434 return address;
3435 }
3436
3437 /* Function: find_pc_overlay (PC)
3438 Return the best-match overlay section for PC:
3439 If PC matches a mapped overlay section's VMA, return that section.
3440 Else if PC matches an unmapped section's VMA, return that section.
3441 Else if PC matches an unmapped section's LMA, return that section. */
3442
3443 struct obj_section *
3444 find_pc_overlay (CORE_ADDR pc)
3445 {
3446 struct objfile *objfile;
3447 struct obj_section *osect, *best_match = NULL;
3448
3449 if (overlay_debugging)
3450 ALL_OBJSECTIONS (objfile, osect)
3451 if (section_is_overlay (osect))
3452 {
3453 if (pc_in_mapped_range (pc, osect))
3454 {
3455 if (section_is_mapped (osect))
3456 return osect;
3457 else
3458 best_match = osect;
3459 }
3460 else if (pc_in_unmapped_range (pc, osect))
3461 best_match = osect;
3462 }
3463 return best_match;
3464 }
3465
3466 /* Function: find_pc_mapped_section (PC)
3467 If PC falls into the VMA address range of an overlay section that is
3468 currently marked as MAPPED, return that section. Else return NULL. */
3469
3470 struct obj_section *
3471 find_pc_mapped_section (CORE_ADDR pc)
3472 {
3473 struct objfile *objfile;
3474 struct obj_section *osect;
3475
3476 if (overlay_debugging)
3477 ALL_OBJSECTIONS (objfile, osect)
3478 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3479 return osect;
3480
3481 return NULL;
3482 }
3483
3484 /* Function: list_overlays_command
3485 Print a list of mapped sections and their PC ranges */
3486
3487 void
3488 list_overlays_command (char *args, int from_tty)
3489 {
3490 int nmapped = 0;
3491 struct objfile *objfile;
3492 struct obj_section *osect;
3493
3494 if (overlay_debugging)
3495 ALL_OBJSECTIONS (objfile, osect)
3496 if (section_is_mapped (osect))
3497 {
3498 const char *name;
3499 bfd_vma lma, vma;
3500 int size;
3501
3502 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3503 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3504 size = bfd_get_section_size (osect->the_bfd_section);
3505 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3506
3507 printf_filtered ("Section %s, loaded at ", name);
3508 fputs_filtered (paddress (lma), gdb_stdout);
3509 puts_filtered (" - ");
3510 fputs_filtered (paddress (lma + size), gdb_stdout);
3511 printf_filtered (", mapped at ");
3512 fputs_filtered (paddress (vma), gdb_stdout);
3513 puts_filtered (" - ");
3514 fputs_filtered (paddress (vma + size), gdb_stdout);
3515 puts_filtered ("\n");
3516
3517 nmapped++;
3518 }
3519 if (nmapped == 0)
3520 printf_filtered (_("No sections are mapped.\n"));
3521 }
3522
3523 /* Function: map_overlay_command
3524 Mark the named section as mapped (ie. residing at its VMA address). */
3525
3526 void
3527 map_overlay_command (char *args, int from_tty)
3528 {
3529 struct objfile *objfile, *objfile2;
3530 struct obj_section *sec, *sec2;
3531
3532 if (!overlay_debugging)
3533 error (_("\
3534 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3535 the 'overlay manual' command."));
3536
3537 if (args == 0 || *args == 0)
3538 error (_("Argument required: name of an overlay section"));
3539
3540 /* First, find a section matching the user supplied argument */
3541 ALL_OBJSECTIONS (objfile, sec)
3542 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3543 {
3544 /* Now, check to see if the section is an overlay. */
3545 if (!section_is_overlay (sec))
3546 continue; /* not an overlay section */
3547
3548 /* Mark the overlay as "mapped" */
3549 sec->ovly_mapped = 1;
3550
3551 /* Next, make a pass and unmap any sections that are
3552 overlapped by this new section: */
3553 ALL_OBJSECTIONS (objfile2, sec2)
3554 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3555 {
3556 if (info_verbose)
3557 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3558 bfd_section_name (objfile->obfd,
3559 sec2->the_bfd_section));
3560 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3561 }
3562 return;
3563 }
3564 error (_("No overlay section called %s"), args);
3565 }
3566
3567 /* Function: unmap_overlay_command
3568 Mark the overlay section as unmapped
3569 (ie. resident in its LMA address range, rather than the VMA range). */
3570
3571 void
3572 unmap_overlay_command (char *args, int from_tty)
3573 {
3574 struct objfile *objfile;
3575 struct obj_section *sec;
3576
3577 if (!overlay_debugging)
3578 error (_("\
3579 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3580 the 'overlay manual' command."));
3581
3582 if (args == 0 || *args == 0)
3583 error (_("Argument required: name of an overlay section"));
3584
3585 /* First, find a section matching the user supplied argument */
3586 ALL_OBJSECTIONS (objfile, sec)
3587 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3588 {
3589 if (!sec->ovly_mapped)
3590 error (_("Section %s is not mapped"), args);
3591 sec->ovly_mapped = 0;
3592 return;
3593 }
3594 error (_("No overlay section called %s"), args);
3595 }
3596
3597 /* Function: overlay_auto_command
3598 A utility command to turn on overlay debugging.
3599 Possibly this should be done via a set/show command. */
3600
3601 static void
3602 overlay_auto_command (char *args, int from_tty)
3603 {
3604 overlay_debugging = ovly_auto;
3605 enable_overlay_breakpoints ();
3606 if (info_verbose)
3607 printf_unfiltered (_("Automatic overlay debugging enabled."));
3608 }
3609
3610 /* Function: overlay_manual_command
3611 A utility command to turn on overlay debugging.
3612 Possibly this should be done via a set/show command. */
3613
3614 static void
3615 overlay_manual_command (char *args, int from_tty)
3616 {
3617 overlay_debugging = ovly_on;
3618 disable_overlay_breakpoints ();
3619 if (info_verbose)
3620 printf_unfiltered (_("Overlay debugging enabled."));
3621 }
3622
3623 /* Function: overlay_off_command
3624 A utility command to turn on overlay debugging.
3625 Possibly this should be done via a set/show command. */
3626
3627 static void
3628 overlay_off_command (char *args, int from_tty)
3629 {
3630 overlay_debugging = ovly_off;
3631 disable_overlay_breakpoints ();
3632 if (info_verbose)
3633 printf_unfiltered (_("Overlay debugging disabled."));
3634 }
3635
3636 static void
3637 overlay_load_command (char *args, int from_tty)
3638 {
3639 if (gdbarch_overlay_update_p (current_gdbarch))
3640 gdbarch_overlay_update (current_gdbarch, NULL);
3641 else
3642 error (_("This target does not know how to read its overlay state."));
3643 }
3644
3645 /* Function: overlay_command
3646 A place-holder for a mis-typed command */
3647
3648 /* Command list chain containing all defined "overlay" subcommands. */
3649 struct cmd_list_element *overlaylist;
3650
3651 static void
3652 overlay_command (char *args, int from_tty)
3653 {
3654 printf_unfiltered
3655 ("\"overlay\" must be followed by the name of an overlay command.\n");
3656 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3657 }
3658
3659
3660 /* Target Overlays for the "Simplest" overlay manager:
3661
3662 This is GDB's default target overlay layer. It works with the
3663 minimal overlay manager supplied as an example by Cygnus. The
3664 entry point is via a function pointer "gdbarch_overlay_update",
3665 so targets that use a different runtime overlay manager can
3666 substitute their own overlay_update function and take over the
3667 function pointer.
3668
3669 The overlay_update function pokes around in the target's data structures
3670 to see what overlays are mapped, and updates GDB's overlay mapping with
3671 this information.
3672
3673 In this simple implementation, the target data structures are as follows:
3674 unsigned _novlys; /# number of overlay sections #/
3675 unsigned _ovly_table[_novlys][4] = {
3676 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3677 {..., ..., ..., ...},
3678 }
3679 unsigned _novly_regions; /# number of overlay regions #/
3680 unsigned _ovly_region_table[_novly_regions][3] = {
3681 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3682 {..., ..., ...},
3683 }
3684 These functions will attempt to update GDB's mappedness state in the
3685 symbol section table, based on the target's mappedness state.
3686
3687 To do this, we keep a cached copy of the target's _ovly_table, and
3688 attempt to detect when the cached copy is invalidated. The main
3689 entry point is "simple_overlay_update(SECT), which looks up SECT in
3690 the cached table and re-reads only the entry for that section from
3691 the target (whenever possible).
3692 */
3693
3694 /* Cached, dynamically allocated copies of the target data structures: */
3695 static unsigned (*cache_ovly_table)[4] = 0;
3696 #if 0
3697 static unsigned (*cache_ovly_region_table)[3] = 0;
3698 #endif
3699 static unsigned cache_novlys = 0;
3700 #if 0
3701 static unsigned cache_novly_regions = 0;
3702 #endif
3703 static CORE_ADDR cache_ovly_table_base = 0;
3704 #if 0
3705 static CORE_ADDR cache_ovly_region_table_base = 0;
3706 #endif
3707 enum ovly_index
3708 {
3709 VMA, SIZE, LMA, MAPPED
3710 };
3711 #define TARGET_LONG_BYTES (gdbarch_long_bit (current_gdbarch) \
3712 / TARGET_CHAR_BIT)
3713
3714 /* Throw away the cached copy of _ovly_table */
3715 static void
3716 simple_free_overlay_table (void)
3717 {
3718 if (cache_ovly_table)
3719 xfree (cache_ovly_table);
3720 cache_novlys = 0;
3721 cache_ovly_table = NULL;
3722 cache_ovly_table_base = 0;
3723 }
3724
3725 #if 0
3726 /* Throw away the cached copy of _ovly_region_table */
3727 static void
3728 simple_free_overlay_region_table (void)
3729 {
3730 if (cache_ovly_region_table)
3731 xfree (cache_ovly_region_table);
3732 cache_novly_regions = 0;
3733 cache_ovly_region_table = NULL;
3734 cache_ovly_region_table_base = 0;
3735 }
3736 #endif
3737
3738 /* Read an array of ints from the target into a local buffer.
3739 Convert to host order. int LEN is number of ints */
3740 static void
3741 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3742 {
3743 /* FIXME (alloca): Not safe if array is very large. */
3744 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3745 int i;
3746
3747 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3748 for (i = 0; i < len; i++)
3749 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3750 TARGET_LONG_BYTES);
3751 }
3752
3753 /* Find and grab a copy of the target _ovly_table
3754 (and _novlys, which is needed for the table's size) */
3755 static int
3756 simple_read_overlay_table (void)
3757 {
3758 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3759
3760 simple_free_overlay_table ();
3761 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3762 if (! novlys_msym)
3763 {
3764 error (_("Error reading inferior's overlay table: "
3765 "couldn't find `_novlys' variable\n"
3766 "in inferior. Use `overlay manual' mode."));
3767 return 0;
3768 }
3769
3770 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3771 if (! ovly_table_msym)
3772 {
3773 error (_("Error reading inferior's overlay table: couldn't find "
3774 "`_ovly_table' array\n"
3775 "in inferior. Use `overlay manual' mode."));
3776 return 0;
3777 }
3778
3779 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3780 cache_ovly_table
3781 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3782 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3783 read_target_long_array (cache_ovly_table_base,
3784 (unsigned int *) cache_ovly_table,
3785 cache_novlys * 4);
3786
3787 return 1; /* SUCCESS */
3788 }
3789
3790 #if 0
3791 /* Find and grab a copy of the target _ovly_region_table
3792 (and _novly_regions, which is needed for the table's size) */
3793 static int
3794 simple_read_overlay_region_table (void)
3795 {
3796 struct minimal_symbol *msym;
3797
3798 simple_free_overlay_region_table ();
3799 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3800 if (msym != NULL)
3801 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3802 else
3803 return 0; /* failure */
3804 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3805 if (cache_ovly_region_table != NULL)
3806 {
3807 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3808 if (msym != NULL)
3809 {
3810 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3811 read_target_long_array (cache_ovly_region_table_base,
3812 (unsigned int *) cache_ovly_region_table,
3813 cache_novly_regions * 3);
3814 }
3815 else
3816 return 0; /* failure */
3817 }
3818 else
3819 return 0; /* failure */
3820 return 1; /* SUCCESS */
3821 }
3822 #endif
3823
3824 /* Function: simple_overlay_update_1
3825 A helper function for simple_overlay_update. Assuming a cached copy
3826 of _ovly_table exists, look through it to find an entry whose vma,
3827 lma and size match those of OSECT. Re-read the entry and make sure
3828 it still matches OSECT (else the table may no longer be valid).
3829 Set OSECT's mapped state to match the entry. Return: 1 for
3830 success, 0 for failure. */
3831
3832 static int
3833 simple_overlay_update_1 (struct obj_section *osect)
3834 {
3835 int i, size;
3836 bfd *obfd = osect->objfile->obfd;
3837 asection *bsect = osect->the_bfd_section;
3838
3839 size = bfd_get_section_size (osect->the_bfd_section);
3840 for (i = 0; i < cache_novlys; i++)
3841 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3842 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3843 /* && cache_ovly_table[i][SIZE] == size */ )
3844 {
3845 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3846 (unsigned int *) cache_ovly_table[i], 4);
3847 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3848 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3849 /* && cache_ovly_table[i][SIZE] == size */ )
3850 {
3851 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3852 return 1;
3853 }
3854 else /* Warning! Warning! Target's ovly table has changed! */
3855 return 0;
3856 }
3857 return 0;
3858 }
3859
3860 /* Function: simple_overlay_update
3861 If OSECT is NULL, then update all sections' mapped state
3862 (after re-reading the entire target _ovly_table).
3863 If OSECT is non-NULL, then try to find a matching entry in the
3864 cached ovly_table and update only OSECT's mapped state.
3865 If a cached entry can't be found or the cache isn't valid, then
3866 re-read the entire cache, and go ahead and update all sections. */
3867
3868 void
3869 simple_overlay_update (struct obj_section *osect)
3870 {
3871 struct objfile *objfile;
3872
3873 /* Were we given an osect to look up? NULL means do all of them. */
3874 if (osect)
3875 /* Have we got a cached copy of the target's overlay table? */
3876 if (cache_ovly_table != NULL)
3877 /* Does its cached location match what's currently in the symtab? */
3878 if (cache_ovly_table_base ==
3879 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3880 /* Then go ahead and try to look up this single section in the cache */
3881 if (simple_overlay_update_1 (osect))
3882 /* Found it! We're done. */
3883 return;
3884
3885 /* Cached table no good: need to read the entire table anew.
3886 Or else we want all the sections, in which case it's actually
3887 more efficient to read the whole table in one block anyway. */
3888
3889 if (! simple_read_overlay_table ())
3890 return;
3891
3892 /* Now may as well update all sections, even if only one was requested. */
3893 ALL_OBJSECTIONS (objfile, osect)
3894 if (section_is_overlay (osect))
3895 {
3896 int i, size;
3897 bfd *obfd = osect->objfile->obfd;
3898 asection *bsect = osect->the_bfd_section;
3899
3900 size = bfd_get_section_size (bsect);
3901 for (i = 0; i < cache_novlys; i++)
3902 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3903 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3904 /* && cache_ovly_table[i][SIZE] == size */ )
3905 { /* obj_section matches i'th entry in ovly_table */
3906 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3907 break; /* finished with inner for loop: break out */
3908 }
3909 }
3910 }
3911
3912 /* Set the output sections and output offsets for section SECTP in
3913 ABFD. The relocation code in BFD will read these offsets, so we
3914 need to be sure they're initialized. We map each section to itself,
3915 with no offset; this means that SECTP->vma will be honored. */
3916
3917 static void
3918 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3919 {
3920 sectp->output_section = sectp;
3921 sectp->output_offset = 0;
3922 }
3923
3924 /* Relocate the contents of a debug section SECTP in ABFD. The
3925 contents are stored in BUF if it is non-NULL, or returned in a
3926 malloc'd buffer otherwise.
3927
3928 For some platforms and debug info formats, shared libraries contain
3929 relocations against the debug sections (particularly for DWARF-2;
3930 one affected platform is PowerPC GNU/Linux, although it depends on
3931 the version of the linker in use). Also, ELF object files naturally
3932 have unresolved relocations for their debug sections. We need to apply
3933 the relocations in order to get the locations of symbols correct.
3934 Another example that may require relocation processing, is the
3935 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3936 debug section. */
3937
3938 bfd_byte *
3939 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3940 {
3941 /* We're only interested in sections with relocation
3942 information. */
3943 if ((sectp->flags & SEC_RELOC) == 0)
3944 return NULL;
3945
3946 /* We will handle section offsets properly elsewhere, so relocate as if
3947 all sections begin at 0. */
3948 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3949
3950 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3951 }
3952
3953 struct symfile_segment_data *
3954 get_symfile_segment_data (bfd *abfd)
3955 {
3956 struct sym_fns *sf = find_sym_fns (abfd);
3957
3958 if (sf == NULL)
3959 return NULL;
3960
3961 return sf->sym_segments (abfd);
3962 }
3963
3964 void
3965 free_symfile_segment_data (struct symfile_segment_data *data)
3966 {
3967 xfree (data->segment_bases);
3968 xfree (data->segment_sizes);
3969 xfree (data->segment_info);
3970 xfree (data);
3971 }
3972
3973
3974 /* Given:
3975 - DATA, containing segment addresses from the object file ABFD, and
3976 the mapping from ABFD's sections onto the segments that own them,
3977 and
3978 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3979 segment addresses reported by the target,
3980 store the appropriate offsets for each section in OFFSETS.
3981
3982 If there are fewer entries in SEGMENT_BASES than there are segments
3983 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3984
3985 If there are more entries, then ignore the extra. The target may
3986 not be able to distinguish between an empty data segment and a
3987 missing data segment; a missing text segment is less plausible. */
3988 int
3989 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3990 struct section_offsets *offsets,
3991 int num_segment_bases,
3992 const CORE_ADDR *segment_bases)
3993 {
3994 int i;
3995 asection *sect;
3996
3997 /* It doesn't make sense to call this function unless you have some
3998 segment base addresses. */
3999 gdb_assert (segment_bases > 0);
4000
4001 /* If we do not have segment mappings for the object file, we
4002 can not relocate it by segments. */
4003 gdb_assert (data != NULL);
4004 gdb_assert (data->num_segments > 0);
4005
4006 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4007 {
4008 int which = data->segment_info[i];
4009
4010 gdb_assert (0 <= which && which <= data->num_segments);
4011
4012 /* Don't bother computing offsets for sections that aren't
4013 loaded as part of any segment. */
4014 if (! which)
4015 continue;
4016
4017 /* Use the last SEGMENT_BASES entry as the address of any extra
4018 segments mentioned in DATA->segment_info. */
4019 if (which > num_segment_bases)
4020 which = num_segment_bases;
4021
4022 offsets->offsets[i] = (segment_bases[which - 1]
4023 - data->segment_bases[which - 1]);
4024 }
4025
4026 return 1;
4027 }
4028
4029 static void
4030 symfile_find_segment_sections (struct objfile *objfile)
4031 {
4032 bfd *abfd = objfile->obfd;
4033 int i;
4034 asection *sect;
4035 struct symfile_segment_data *data;
4036
4037 data = get_symfile_segment_data (objfile->obfd);
4038 if (data == NULL)
4039 return;
4040
4041 if (data->num_segments != 1 && data->num_segments != 2)
4042 {
4043 free_symfile_segment_data (data);
4044 return;
4045 }
4046
4047 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4048 {
4049 CORE_ADDR vma;
4050 int which = data->segment_info[i];
4051
4052 if (which == 1)
4053 {
4054 if (objfile->sect_index_text == -1)
4055 objfile->sect_index_text = sect->index;
4056
4057 if (objfile->sect_index_rodata == -1)
4058 objfile->sect_index_rodata = sect->index;
4059 }
4060 else if (which == 2)
4061 {
4062 if (objfile->sect_index_data == -1)
4063 objfile->sect_index_data = sect->index;
4064
4065 if (objfile->sect_index_bss == -1)
4066 objfile->sect_index_bss = sect->index;
4067 }
4068 }
4069
4070 free_symfile_segment_data (data);
4071 }
4072
4073 void
4074 _initialize_symfile (void)
4075 {
4076 struct cmd_list_element *c;
4077
4078 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4079 Load symbol table from executable file FILE.\n\
4080 The `file' command can also load symbol tables, as well as setting the file\n\
4081 to execute."), &cmdlist);
4082 set_cmd_completer (c, filename_completer);
4083
4084 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
4085 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
4086 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
4087 ADDR is the starting address of the file's text.\n\
4088 The optional arguments are section-name section-address pairs and\n\
4089 should be specified if the data and bss segments are not contiguous\n\
4090 with the text. SECT is a section name to be loaded at SECT_ADDR."),
4091 &cmdlist);
4092 set_cmd_completer (c, filename_completer);
4093
4094 c = add_cmd ("load", class_files, load_command, _("\
4095 Dynamically load FILE into the running program, and record its symbols\n\
4096 for access from GDB.\n\
4097 A load OFFSET may also be given."), &cmdlist);
4098 set_cmd_completer (c, filename_completer);
4099
4100 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4101 &symbol_reloading, _("\
4102 Set dynamic symbol table reloading multiple times in one run."), _("\
4103 Show dynamic symbol table reloading multiple times in one run."), NULL,
4104 NULL,
4105 show_symbol_reloading,
4106 &setlist, &showlist);
4107
4108 add_prefix_cmd ("overlay", class_support, overlay_command,
4109 _("Commands for debugging overlays."), &overlaylist,
4110 "overlay ", 0, &cmdlist);
4111
4112 add_com_alias ("ovly", "overlay", class_alias, 1);
4113 add_com_alias ("ov", "overlay", class_alias, 1);
4114
4115 add_cmd ("map-overlay", class_support, map_overlay_command,
4116 _("Assert that an overlay section is mapped."), &overlaylist);
4117
4118 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4119 _("Assert that an overlay section is unmapped."), &overlaylist);
4120
4121 add_cmd ("list-overlays", class_support, list_overlays_command,
4122 _("List mappings of overlay sections."), &overlaylist);
4123
4124 add_cmd ("manual", class_support, overlay_manual_command,
4125 _("Enable overlay debugging."), &overlaylist);
4126 add_cmd ("off", class_support, overlay_off_command,
4127 _("Disable overlay debugging."), &overlaylist);
4128 add_cmd ("auto", class_support, overlay_auto_command,
4129 _("Enable automatic overlay debugging."), &overlaylist);
4130 add_cmd ("load-target", class_support, overlay_load_command,
4131 _("Read the overlay mapping state from the target."), &overlaylist);
4132
4133 /* Filename extension to source language lookup table: */
4134 init_filename_language_table ();
4135 add_setshow_string_noescape_cmd ("extension-language", class_files,
4136 &ext_args, _("\
4137 Set mapping between filename extension and source language."), _("\
4138 Show mapping between filename extension and source language."), _("\
4139 Usage: set extension-language .foo bar"),
4140 set_ext_lang_command,
4141 show_ext_args,
4142 &setlist, &showlist);
4143
4144 add_info ("extensions", info_ext_lang_command,
4145 _("All filename extensions associated with a source language."));
4146
4147 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4148 &debug_file_directory, _("\
4149 Set the directory where separate debug symbols are searched for."), _("\
4150 Show the directory where separate debug symbols are searched for."), _("\
4151 Separate debug symbols are first searched for in the same\n\
4152 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4153 and lastly at the path of the directory of the binary with\n\
4154 the global debug-file directory prepended."),
4155 NULL,
4156 show_debug_file_directory,
4157 &setlist, &showlist);
4158
4159 add_setshow_boolean_cmd ("symbol-loading", no_class,
4160 &print_symbol_loading, _("\
4161 Set printing of symbol loading messages."), _("\
4162 Show printing of symbol loading messages."), NULL,
4163 NULL,
4164 NULL,
4165 &setprintlist, &showprintlist);
4166 }
This page took 0.202237 seconds and 4 git commands to generate.