gdb/
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h"
42 #include "regcache.h"
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54 #include "parser-defs.h"
55 #include "varobj.h"
56 #include "elf-bfd.h"
57 #include "solib.h"
58 #include "remote.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
72 void (*deprecated_show_load_progress) (const char *section,
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
76 unsigned long total_size);
77 void (*deprecated_pre_add_symbol_hook) (const char *);
78 void (*deprecated_post_add_symbol_hook) (void);
79
80 static void clear_symtab_users_cleanup (void *ignore);
81
82 /* Global variables owned by this file. */
83 int readnow_symbol_files; /* Read full symbols immediately. */
84
85 /* External variables and functions referenced. */
86
87 extern void report_transfer_performance (unsigned long, time_t, time_t);
88
89 /* Functions this file defines. */
90
91 static void load_command (char *, int);
92
93 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94
95 static void add_symbol_file_command (char *, int);
96
97 bfd *symfile_bfd_open (char *);
98
99 int get_section_index (struct objfile *, char *);
100
101 static const struct sym_fns *find_sym_fns (bfd *);
102
103 static void decrement_reading_symtab (void *);
104
105 static void overlay_invalidate_all (void);
106
107 void list_overlays_command (char *, int);
108
109 void map_overlay_command (char *, int);
110
111 void unmap_overlay_command (char *, int);
112
113 static void overlay_auto_command (char *, int);
114
115 static void overlay_manual_command (char *, int);
116
117 static void overlay_off_command (char *, int);
118
119 static void overlay_load_command (char *, int);
120
121 static void overlay_command (char *, int);
122
123 static void simple_free_overlay_table (void);
124
125 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
126 enum bfd_endian);
127
128 static int simple_read_overlay_table (void);
129
130 static int simple_overlay_update_1 (struct obj_section *);
131
132 static void add_filename_language (char *ext, enum language lang);
133
134 static void info_ext_lang_command (char *args, int from_tty);
135
136 static void init_filename_language_table (void);
137
138 static void symfile_find_segment_sections (struct objfile *objfile);
139
140 void _initialize_symfile (void);
141
142 /* List of all available sym_fns. On gdb startup, each object file reader
143 calls add_symtab_fns() to register information on each format it is
144 prepared to read. */
145
146 typedef const struct sym_fns *sym_fns_ptr;
147 DEF_VEC_P (sym_fns_ptr);
148
149 static VEC (sym_fns_ptr) *symtab_fns = NULL;
150
151 /* Flag for whether user will be reloading symbols multiple times.
152 Defaults to ON for VxWorks, otherwise OFF. */
153
154 #ifdef SYMBOL_RELOADING_DEFAULT
155 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
156 #else
157 int symbol_reloading = 0;
158 #endif
159 static void
160 show_symbol_reloading (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162 {
163 fprintf_filtered (file, _("Dynamic symbol table reloading "
164 "multiple times in one run is %s.\n"),
165 value);
166 }
167
168 /* If non-zero, shared library symbols will be added automatically
169 when the inferior is created, new libraries are loaded, or when
170 attaching to the inferior. This is almost always what users will
171 want to have happen; but for very large programs, the startup time
172 will be excessive, and so if this is a problem, the user can clear
173 this flag and then add the shared library symbols as needed. Note
174 that there is a potential for confusion, since if the shared
175 library symbols are not loaded, commands like "info fun" will *not*
176 report all the functions that are actually present. */
177
178 int auto_solib_add = 1;
179 \f
180
181 /* Make a null terminated copy of the string at PTR with SIZE characters in
182 the obstack pointed to by OBSTACKP . Returns the address of the copy.
183 Note that the string at PTR does not have to be null terminated, I.e. it
184 may be part of a larger string and we are only saving a substring. */
185
186 char *
187 obsavestring (const char *ptr, int size, struct obstack *obstackp)
188 {
189 char *p = (char *) obstack_alloc (obstackp, size + 1);
190 /* Open-coded memcpy--saves function call time. These strings are usually
191 short. FIXME: Is this really still true with a compiler that can
192 inline memcpy? */
193 {
194 const char *p1 = ptr;
195 char *p2 = p;
196 const char *end = ptr + size;
197
198 while (p1 != end)
199 *p2++ = *p1++;
200 }
201 p[size] = 0;
202 return p;
203 }
204
205 /* Concatenate NULL terminated variable argument list of `const char *'
206 strings; return the new string. Space is found in the OBSTACKP.
207 Argument list must be terminated by a sentinel expression `(char *)
208 NULL'. */
209
210 char *
211 obconcat (struct obstack *obstackp, ...)
212 {
213 va_list ap;
214
215 va_start (ap, obstackp);
216 for (;;)
217 {
218 const char *s = va_arg (ap, const char *);
219
220 if (s == NULL)
221 break;
222
223 obstack_grow_str (obstackp, s);
224 }
225 va_end (ap);
226 obstack_1grow (obstackp, 0);
227
228 return obstack_finish (obstackp);
229 }
230
231 /* True if we are reading a symbol table. */
232
233 int currently_reading_symtab = 0;
234
235 static void
236 decrement_reading_symtab (void *dummy)
237 {
238 currently_reading_symtab--;
239 }
240
241 /* Increment currently_reading_symtab and return a cleanup that can be
242 used to decrement it. */
243 struct cleanup *
244 increment_reading_symtab (void)
245 {
246 ++currently_reading_symtab;
247 return make_cleanup (decrement_reading_symtab, NULL);
248 }
249
250 /* Remember the lowest-addressed loadable section we've seen.
251 This function is called via bfd_map_over_sections.
252
253 In case of equal vmas, the section with the largest size becomes the
254 lowest-addressed loadable section.
255
256 If the vmas and sizes are equal, the last section is considered the
257 lowest-addressed loadable section. */
258
259 void
260 find_lowest_section (bfd *abfd, asection *sect, void *obj)
261 {
262 asection **lowest = (asection **) obj;
263
264 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
265 return;
266 if (!*lowest)
267 *lowest = sect; /* First loadable section */
268 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
269 *lowest = sect; /* A lower loadable section */
270 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
271 && (bfd_section_size (abfd, (*lowest))
272 <= bfd_section_size (abfd, sect)))
273 *lowest = sect;
274 }
275
276 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
277
278 struct section_addr_info *
279 alloc_section_addr_info (size_t num_sections)
280 {
281 struct section_addr_info *sap;
282 size_t size;
283
284 size = (sizeof (struct section_addr_info)
285 + sizeof (struct other_sections) * (num_sections - 1));
286 sap = (struct section_addr_info *) xmalloc (size);
287 memset (sap, 0, size);
288 sap->num_sections = num_sections;
289
290 return sap;
291 }
292
293 /* Build (allocate and populate) a section_addr_info struct from
294 an existing section table. */
295
296 extern struct section_addr_info *
297 build_section_addr_info_from_section_table (const struct target_section *start,
298 const struct target_section *end)
299 {
300 struct section_addr_info *sap;
301 const struct target_section *stp;
302 int oidx;
303
304 sap = alloc_section_addr_info (end - start);
305
306 for (stp = start, oidx = 0; stp != end; stp++)
307 {
308 if (bfd_get_section_flags (stp->bfd,
309 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
310 && oidx < end - start)
311 {
312 sap->other[oidx].addr = stp->addr;
313 sap->other[oidx].name
314 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
315 sap->other[oidx].sectindex = stp->the_bfd_section->index;
316 oidx++;
317 }
318 }
319
320 return sap;
321 }
322
323 /* Create a section_addr_info from section offsets in ABFD. */
324
325 static struct section_addr_info *
326 build_section_addr_info_from_bfd (bfd *abfd)
327 {
328 struct section_addr_info *sap;
329 int i;
330 struct bfd_section *sec;
331
332 sap = alloc_section_addr_info (bfd_count_sections (abfd));
333 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
334 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
335 {
336 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
337 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
338 sap->other[i].sectindex = sec->index;
339 i++;
340 }
341 return sap;
342 }
343
344 /* Create a section_addr_info from section offsets in OBJFILE. */
345
346 struct section_addr_info *
347 build_section_addr_info_from_objfile (const struct objfile *objfile)
348 {
349 struct section_addr_info *sap;
350 int i;
351
352 /* Before reread_symbols gets rewritten it is not safe to call:
353 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
354 */
355 sap = build_section_addr_info_from_bfd (objfile->obfd);
356 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
357 {
358 int sectindex = sap->other[i].sectindex;
359
360 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
361 }
362 return sap;
363 }
364
365 /* Free all memory allocated by build_section_addr_info_from_section_table. */
366
367 extern void
368 free_section_addr_info (struct section_addr_info *sap)
369 {
370 int idx;
371
372 for (idx = 0; idx < sap->num_sections; idx++)
373 if (sap->other[idx].name)
374 xfree (sap->other[idx].name);
375 xfree (sap);
376 }
377
378
379 /* Initialize OBJFILE's sect_index_* members. */
380 static void
381 init_objfile_sect_indices (struct objfile *objfile)
382 {
383 asection *sect;
384 int i;
385
386 sect = bfd_get_section_by_name (objfile->obfd, ".text");
387 if (sect)
388 objfile->sect_index_text = sect->index;
389
390 sect = bfd_get_section_by_name (objfile->obfd, ".data");
391 if (sect)
392 objfile->sect_index_data = sect->index;
393
394 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
395 if (sect)
396 objfile->sect_index_bss = sect->index;
397
398 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
399 if (sect)
400 objfile->sect_index_rodata = sect->index;
401
402 /* This is where things get really weird... We MUST have valid
403 indices for the various sect_index_* members or gdb will abort.
404 So if for example, there is no ".text" section, we have to
405 accomodate that. First, check for a file with the standard
406 one or two segments. */
407
408 symfile_find_segment_sections (objfile);
409
410 /* Except when explicitly adding symbol files at some address,
411 section_offsets contains nothing but zeros, so it doesn't matter
412 which slot in section_offsets the individual sect_index_* members
413 index into. So if they are all zero, it is safe to just point
414 all the currently uninitialized indices to the first slot. But
415 beware: if this is the main executable, it may be relocated
416 later, e.g. by the remote qOffsets packet, and then this will
417 be wrong! That's why we try segments first. */
418
419 for (i = 0; i < objfile->num_sections; i++)
420 {
421 if (ANOFFSET (objfile->section_offsets, i) != 0)
422 {
423 break;
424 }
425 }
426 if (i == objfile->num_sections)
427 {
428 if (objfile->sect_index_text == -1)
429 objfile->sect_index_text = 0;
430 if (objfile->sect_index_data == -1)
431 objfile->sect_index_data = 0;
432 if (objfile->sect_index_bss == -1)
433 objfile->sect_index_bss = 0;
434 if (objfile->sect_index_rodata == -1)
435 objfile->sect_index_rodata = 0;
436 }
437 }
438
439 /* The arguments to place_section. */
440
441 struct place_section_arg
442 {
443 struct section_offsets *offsets;
444 CORE_ADDR lowest;
445 };
446
447 /* Find a unique offset to use for loadable section SECT if
448 the user did not provide an offset. */
449
450 static void
451 place_section (bfd *abfd, asection *sect, void *obj)
452 {
453 struct place_section_arg *arg = obj;
454 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
455 int done;
456 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
457
458 /* We are only interested in allocated sections. */
459 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
460 return;
461
462 /* If the user specified an offset, honor it. */
463 if (offsets[sect->index] != 0)
464 return;
465
466 /* Otherwise, let's try to find a place for the section. */
467 start_addr = (arg->lowest + align - 1) & -align;
468
469 do {
470 asection *cur_sec;
471
472 done = 1;
473
474 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
475 {
476 int indx = cur_sec->index;
477
478 /* We don't need to compare against ourself. */
479 if (cur_sec == sect)
480 continue;
481
482 /* We can only conflict with allocated sections. */
483 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
484 continue;
485
486 /* If the section offset is 0, either the section has not been placed
487 yet, or it was the lowest section placed (in which case LOWEST
488 will be past its end). */
489 if (offsets[indx] == 0)
490 continue;
491
492 /* If this section would overlap us, then we must move up. */
493 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
494 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
495 {
496 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
497 start_addr = (start_addr + align - 1) & -align;
498 done = 0;
499 break;
500 }
501
502 /* Otherwise, we appear to be OK. So far. */
503 }
504 }
505 while (!done);
506
507 offsets[sect->index] = start_addr;
508 arg->lowest = start_addr + bfd_get_section_size (sect);
509 }
510
511 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
512 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
513 entries. */
514
515 void
516 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
517 int num_sections,
518 struct section_addr_info *addrs)
519 {
520 int i;
521
522 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
523
524 /* Now calculate offsets for section that were specified by the caller. */
525 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
526 {
527 struct other_sections *osp;
528
529 osp = &addrs->other[i];
530 if (osp->addr == 0)
531 continue;
532
533 /* Record all sections in offsets. */
534 /* The section_offsets in the objfile are here filled in using
535 the BFD index. */
536 section_offsets->offsets[osp->sectindex] = osp->addr;
537 }
538 }
539
540 /* Transform section name S for a name comparison. prelink can split section
541 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
542 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
543 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
544 (`.sbss') section has invalid (increased) virtual address. */
545
546 static const char *
547 addr_section_name (const char *s)
548 {
549 if (strcmp (s, ".dynbss") == 0)
550 return ".bss";
551 if (strcmp (s, ".sdynbss") == 0)
552 return ".sbss";
553
554 return s;
555 }
556
557 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
558 their (name, sectindex) pair. sectindex makes the sort by name stable. */
559
560 static int
561 addrs_section_compar (const void *ap, const void *bp)
562 {
563 const struct other_sections *a = *((struct other_sections **) ap);
564 const struct other_sections *b = *((struct other_sections **) bp);
565 int retval, a_idx, b_idx;
566
567 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
568 if (retval)
569 return retval;
570
571 /* SECTINDEX is undefined iff ADDR is zero. */
572 a_idx = a->addr == 0 ? 0 : a->sectindex;
573 b_idx = b->addr == 0 ? 0 : b->sectindex;
574 return a_idx - b_idx;
575 }
576
577 /* Provide sorted array of pointers to sections of ADDRS. The array is
578 terminated by NULL. Caller is responsible to call xfree for it. */
579
580 static struct other_sections **
581 addrs_section_sort (struct section_addr_info *addrs)
582 {
583 struct other_sections **array;
584 int i;
585
586 /* `+ 1' for the NULL terminator. */
587 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
588 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
589 array[i] = &addrs->other[i];
590 array[i] = NULL;
591
592 qsort (array, i, sizeof (*array), addrs_section_compar);
593
594 return array;
595 }
596
597 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
598 also SECTINDEXes specific to ABFD there. This function can be used to
599 rebase ADDRS to start referencing different BFD than before. */
600
601 void
602 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
603 {
604 asection *lower_sect;
605 CORE_ADDR lower_offset;
606 int i;
607 struct cleanup *my_cleanup;
608 struct section_addr_info *abfd_addrs;
609 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
610 struct other_sections **addrs_to_abfd_addrs;
611
612 /* Find lowest loadable section to be used as starting point for
613 continguous sections. */
614 lower_sect = NULL;
615 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
616 if (lower_sect == NULL)
617 {
618 warning (_("no loadable sections found in added symbol-file %s"),
619 bfd_get_filename (abfd));
620 lower_offset = 0;
621 }
622 else
623 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
624
625 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
626 in ABFD. Section names are not unique - there can be multiple sections of
627 the same name. Also the sections of the same name do not have to be
628 adjacent to each other. Some sections may be present only in one of the
629 files. Even sections present in both files do not have to be in the same
630 order.
631
632 Use stable sort by name for the sections in both files. Then linearly
633 scan both lists matching as most of the entries as possible. */
634
635 addrs_sorted = addrs_section_sort (addrs);
636 my_cleanup = make_cleanup (xfree, addrs_sorted);
637
638 abfd_addrs = build_section_addr_info_from_bfd (abfd);
639 make_cleanup_free_section_addr_info (abfd_addrs);
640 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
641 make_cleanup (xfree, abfd_addrs_sorted);
642
643 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
644 ABFD_ADDRS_SORTED. */
645
646 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
647 * addrs->num_sections);
648 make_cleanup (xfree, addrs_to_abfd_addrs);
649
650 while (*addrs_sorted)
651 {
652 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
653
654 while (*abfd_addrs_sorted
655 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
656 sect_name) < 0)
657 abfd_addrs_sorted++;
658
659 if (*abfd_addrs_sorted
660 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
661 sect_name) == 0)
662 {
663 int index_in_addrs;
664
665 /* Make the found item directly addressable from ADDRS. */
666 index_in_addrs = *addrs_sorted - addrs->other;
667 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
668 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
669
670 /* Never use the same ABFD entry twice. */
671 abfd_addrs_sorted++;
672 }
673
674 addrs_sorted++;
675 }
676
677 /* Calculate offsets for the loadable sections.
678 FIXME! Sections must be in order of increasing loadable section
679 so that contiguous sections can use the lower-offset!!!
680
681 Adjust offsets if the segments are not contiguous.
682 If the section is contiguous, its offset should be set to
683 the offset of the highest loadable section lower than it
684 (the loadable section directly below it in memory).
685 this_offset = lower_offset = lower_addr - lower_orig_addr */
686
687 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
688 {
689 struct other_sections *sect = addrs_to_abfd_addrs[i];
690
691 if (sect)
692 {
693 /* This is the index used by BFD. */
694 addrs->other[i].sectindex = sect->sectindex;
695
696 if (addrs->other[i].addr != 0)
697 {
698 addrs->other[i].addr -= sect->addr;
699 lower_offset = addrs->other[i].addr;
700 }
701 else
702 addrs->other[i].addr = lower_offset;
703 }
704 else
705 {
706 /* addr_section_name transformation is not used for SECT_NAME. */
707 const char *sect_name = addrs->other[i].name;
708
709 /* This section does not exist in ABFD, which is normally
710 unexpected and we want to issue a warning.
711
712 However, the ELF prelinker does create a few sections which are
713 marked in the main executable as loadable (they are loaded in
714 memory from the DYNAMIC segment) and yet are not present in
715 separate debug info files. This is fine, and should not cause
716 a warning. Shared libraries contain just the section
717 ".gnu.liblist" but it is not marked as loadable there. There is
718 no other way to identify them than by their name as the sections
719 created by prelink have no special flags.
720
721 For the sections `.bss' and `.sbss' see addr_section_name. */
722
723 if (!(strcmp (sect_name, ".gnu.liblist") == 0
724 || strcmp (sect_name, ".gnu.conflict") == 0
725 || (strcmp (sect_name, ".bss") == 0
726 && i > 0
727 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
728 && addrs_to_abfd_addrs[i - 1] != NULL)
729 || (strcmp (sect_name, ".sbss") == 0
730 && i > 0
731 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
732 && addrs_to_abfd_addrs[i - 1] != NULL)))
733 warning (_("section %s not found in %s"), sect_name,
734 bfd_get_filename (abfd));
735
736 addrs->other[i].addr = 0;
737
738 /* SECTINDEX is invalid if ADDR is zero. */
739 }
740 }
741
742 do_cleanups (my_cleanup);
743 }
744
745 /* Parse the user's idea of an offset for dynamic linking, into our idea
746 of how to represent it for fast symbol reading. This is the default
747 version of the sym_fns.sym_offsets function for symbol readers that
748 don't need to do anything special. It allocates a section_offsets table
749 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
750
751 void
752 default_symfile_offsets (struct objfile *objfile,
753 struct section_addr_info *addrs)
754 {
755 objfile->num_sections = bfd_count_sections (objfile->obfd);
756 objfile->section_offsets = (struct section_offsets *)
757 obstack_alloc (&objfile->objfile_obstack,
758 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
759 relative_addr_info_to_section_offsets (objfile->section_offsets,
760 objfile->num_sections, addrs);
761
762 /* For relocatable files, all loadable sections will start at zero.
763 The zero is meaningless, so try to pick arbitrary addresses such
764 that no loadable sections overlap. This algorithm is quadratic,
765 but the number of sections in a single object file is generally
766 small. */
767 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
768 {
769 struct place_section_arg arg;
770 bfd *abfd = objfile->obfd;
771 asection *cur_sec;
772
773 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
774 /* We do not expect this to happen; just skip this step if the
775 relocatable file has a section with an assigned VMA. */
776 if (bfd_section_vma (abfd, cur_sec) != 0)
777 break;
778
779 if (cur_sec == NULL)
780 {
781 CORE_ADDR *offsets = objfile->section_offsets->offsets;
782
783 /* Pick non-overlapping offsets for sections the user did not
784 place explicitly. */
785 arg.offsets = objfile->section_offsets;
786 arg.lowest = 0;
787 bfd_map_over_sections (objfile->obfd, place_section, &arg);
788
789 /* Correctly filling in the section offsets is not quite
790 enough. Relocatable files have two properties that
791 (most) shared objects do not:
792
793 - Their debug information will contain relocations. Some
794 shared libraries do also, but many do not, so this can not
795 be assumed.
796
797 - If there are multiple code sections they will be loaded
798 at different relative addresses in memory than they are
799 in the objfile, since all sections in the file will start
800 at address zero.
801
802 Because GDB has very limited ability to map from an
803 address in debug info to the correct code section,
804 it relies on adding SECT_OFF_TEXT to things which might be
805 code. If we clear all the section offsets, and set the
806 section VMAs instead, then symfile_relocate_debug_section
807 will return meaningful debug information pointing at the
808 correct sections.
809
810 GDB has too many different data structures for section
811 addresses - a bfd, objfile, and so_list all have section
812 tables, as does exec_ops. Some of these could probably
813 be eliminated. */
814
815 for (cur_sec = abfd->sections; cur_sec != NULL;
816 cur_sec = cur_sec->next)
817 {
818 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
819 continue;
820
821 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
822 exec_set_section_address (bfd_get_filename (abfd),
823 cur_sec->index,
824 offsets[cur_sec->index]);
825 offsets[cur_sec->index] = 0;
826 }
827 }
828 }
829
830 /* Remember the bfd indexes for the .text, .data, .bss and
831 .rodata sections. */
832 init_objfile_sect_indices (objfile);
833 }
834
835
836 /* Divide the file into segments, which are individual relocatable units.
837 This is the default version of the sym_fns.sym_segments function for
838 symbol readers that do not have an explicit representation of segments.
839 It assumes that object files do not have segments, and fully linked
840 files have a single segment. */
841
842 struct symfile_segment_data *
843 default_symfile_segments (bfd *abfd)
844 {
845 int num_sections, i;
846 asection *sect;
847 struct symfile_segment_data *data;
848 CORE_ADDR low, high;
849
850 /* Relocatable files contain enough information to position each
851 loadable section independently; they should not be relocated
852 in segments. */
853 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
854 return NULL;
855
856 /* Make sure there is at least one loadable section in the file. */
857 for (sect = abfd->sections; sect != NULL; sect = sect->next)
858 {
859 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
860 continue;
861
862 break;
863 }
864 if (sect == NULL)
865 return NULL;
866
867 low = bfd_get_section_vma (abfd, sect);
868 high = low + bfd_get_section_size (sect);
869
870 data = XZALLOC (struct symfile_segment_data);
871 data->num_segments = 1;
872 data->segment_bases = XCALLOC (1, CORE_ADDR);
873 data->segment_sizes = XCALLOC (1, CORE_ADDR);
874
875 num_sections = bfd_count_sections (abfd);
876 data->segment_info = XCALLOC (num_sections, int);
877
878 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
879 {
880 CORE_ADDR vma;
881
882 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
883 continue;
884
885 vma = bfd_get_section_vma (abfd, sect);
886 if (vma < low)
887 low = vma;
888 if (vma + bfd_get_section_size (sect) > high)
889 high = vma + bfd_get_section_size (sect);
890
891 data->segment_info[i] = 1;
892 }
893
894 data->segment_bases[0] = low;
895 data->segment_sizes[0] = high - low;
896
897 return data;
898 }
899
900 /* Process a symbol file, as either the main file or as a dynamically
901 loaded file.
902
903 OBJFILE is where the symbols are to be read from.
904
905 ADDRS is the list of section load addresses. If the user has given
906 an 'add-symbol-file' command, then this is the list of offsets and
907 addresses he or she provided as arguments to the command; or, if
908 we're handling a shared library, these are the actual addresses the
909 sections are loaded at, according to the inferior's dynamic linker
910 (as gleaned by GDB's shared library code). We convert each address
911 into an offset from the section VMA's as it appears in the object
912 file, and then call the file's sym_offsets function to convert this
913 into a format-specific offset table --- a `struct section_offsets'.
914 If ADDRS is non-zero, OFFSETS must be zero.
915
916 OFFSETS is a table of section offsets already in the right
917 format-specific representation. NUM_OFFSETS is the number of
918 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
919 assume this is the proper table the call to sym_offsets described
920 above would produce. Instead of calling sym_offsets, we just dump
921 it right into objfile->section_offsets. (When we're re-reading
922 symbols from an objfile, we don't have the original load address
923 list any more; all we have is the section offset table.) If
924 OFFSETS is non-zero, ADDRS must be zero.
925
926 ADD_FLAGS encodes verbosity level, whether this is main symbol or
927 an extra symbol file such as dynamically loaded code, and wether
928 breakpoint reset should be deferred. */
929
930 void
931 syms_from_objfile (struct objfile *objfile,
932 struct section_addr_info *addrs,
933 struct section_offsets *offsets,
934 int num_offsets,
935 int add_flags)
936 {
937 struct section_addr_info *local_addr = NULL;
938 struct cleanup *old_chain;
939 const int mainline = add_flags & SYMFILE_MAINLINE;
940
941 gdb_assert (! (addrs && offsets));
942
943 init_entry_point_info (objfile);
944 objfile->sf = find_sym_fns (objfile->obfd);
945
946 if (objfile->sf == NULL)
947 return; /* No symbols. */
948
949 /* Make sure that partially constructed symbol tables will be cleaned up
950 if an error occurs during symbol reading. */
951 old_chain = make_cleanup_free_objfile (objfile);
952
953 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
954 list. We now establish the convention that an addr of zero means
955 no load address was specified. */
956 if (! addrs && ! offsets)
957 {
958 local_addr
959 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
960 make_cleanup (xfree, local_addr);
961 addrs = local_addr;
962 }
963
964 /* Now either addrs or offsets is non-zero. */
965
966 if (mainline)
967 {
968 /* We will modify the main symbol table, make sure that all its users
969 will be cleaned up if an error occurs during symbol reading. */
970 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
971
972 /* Since no error yet, throw away the old symbol table. */
973
974 if (symfile_objfile != NULL)
975 {
976 free_objfile (symfile_objfile);
977 gdb_assert (symfile_objfile == NULL);
978 }
979
980 /* Currently we keep symbols from the add-symbol-file command.
981 If the user wants to get rid of them, they should do "symbol-file"
982 without arguments first. Not sure this is the best behavior
983 (PR 2207). */
984
985 (*objfile->sf->sym_new_init) (objfile);
986 }
987
988 /* Convert addr into an offset rather than an absolute address.
989 We find the lowest address of a loaded segment in the objfile,
990 and assume that <addr> is where that got loaded.
991
992 We no longer warn if the lowest section is not a text segment (as
993 happens for the PA64 port. */
994 if (addrs && addrs->other[0].name)
995 addr_info_make_relative (addrs, objfile->obfd);
996
997 /* Initialize symbol reading routines for this objfile, allow complaints to
998 appear for this new file, and record how verbose to be, then do the
999 initial symbol reading for this file. */
1000
1001 (*objfile->sf->sym_init) (objfile);
1002 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1003
1004 if (addrs)
1005 (*objfile->sf->sym_offsets) (objfile, addrs);
1006 else
1007 {
1008 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1009
1010 /* Just copy in the offset table directly as given to us. */
1011 objfile->num_sections = num_offsets;
1012 objfile->section_offsets
1013 = ((struct section_offsets *)
1014 obstack_alloc (&objfile->objfile_obstack, size));
1015 memcpy (objfile->section_offsets, offsets, size);
1016
1017 init_objfile_sect_indices (objfile);
1018 }
1019
1020 (*objfile->sf->sym_read) (objfile, add_flags);
1021
1022 if ((add_flags & SYMFILE_NO_READ) == 0)
1023 require_partial_symbols (objfile, 0);
1024
1025 /* Discard cleanups as symbol reading was successful. */
1026
1027 discard_cleanups (old_chain);
1028 xfree (local_addr);
1029 }
1030
1031 /* Perform required actions after either reading in the initial
1032 symbols for a new objfile, or mapping in the symbols from a reusable
1033 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1034
1035 void
1036 new_symfile_objfile (struct objfile *objfile, int add_flags)
1037 {
1038 /* If this is the main symbol file we have to clean up all users of the
1039 old main symbol file. Otherwise it is sufficient to fixup all the
1040 breakpoints that may have been redefined by this symbol file. */
1041 if (add_flags & SYMFILE_MAINLINE)
1042 {
1043 /* OK, make it the "real" symbol file. */
1044 symfile_objfile = objfile;
1045
1046 clear_symtab_users (add_flags);
1047 }
1048 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1049 {
1050 breakpoint_re_set ();
1051 }
1052
1053 /* We're done reading the symbol file; finish off complaints. */
1054 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1055 }
1056
1057 /* Process a symbol file, as either the main file or as a dynamically
1058 loaded file.
1059
1060 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1061 This BFD will be closed on error, and is always consumed by this function.
1062
1063 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1064 extra, such as dynamically loaded code, and what to do with breakpoins.
1065
1066 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1067 syms_from_objfile, above.
1068 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1069
1070 Upon success, returns a pointer to the objfile that was added.
1071 Upon failure, jumps back to command level (never returns). */
1072
1073 static struct objfile *
1074 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1075 int add_flags,
1076 struct section_addr_info *addrs,
1077 struct section_offsets *offsets,
1078 int num_offsets,
1079 int flags)
1080 {
1081 struct objfile *objfile;
1082 struct cleanup *my_cleanups;
1083 const char *name = bfd_get_filename (abfd);
1084 const int from_tty = add_flags & SYMFILE_VERBOSE;
1085 const int should_print = ((from_tty || info_verbose)
1086 && (readnow_symbol_files
1087 || (add_flags & SYMFILE_NO_READ) == 0));
1088
1089 if (readnow_symbol_files)
1090 {
1091 flags |= OBJF_READNOW;
1092 add_flags &= ~SYMFILE_NO_READ;
1093 }
1094
1095 my_cleanups = make_cleanup_bfd_close (abfd);
1096
1097 /* Give user a chance to burp if we'd be
1098 interactively wiping out any existing symbols. */
1099
1100 if ((have_full_symbols () || have_partial_symbols ())
1101 && (add_flags & SYMFILE_MAINLINE)
1102 && from_tty
1103 && !query (_("Load new symbol table from \"%s\"? "), name))
1104 error (_("Not confirmed."));
1105
1106 objfile = allocate_objfile (abfd, flags);
1107 discard_cleanups (my_cleanups);
1108
1109 /* We either created a new mapped symbol table, mapped an existing
1110 symbol table file which has not had initial symbol reading
1111 performed, or need to read an unmapped symbol table. */
1112 if (should_print)
1113 {
1114 if (deprecated_pre_add_symbol_hook)
1115 deprecated_pre_add_symbol_hook (name);
1116 else
1117 {
1118 printf_unfiltered (_("Reading symbols from %s..."), name);
1119 wrap_here ("");
1120 gdb_flush (gdb_stdout);
1121 }
1122 }
1123 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1124 add_flags);
1125
1126 /* We now have at least a partial symbol table. Check to see if the
1127 user requested that all symbols be read on initial access via either
1128 the gdb startup command line or on a per symbol file basis. Expand
1129 all partial symbol tables for this objfile if so. */
1130
1131 if ((flags & OBJF_READNOW))
1132 {
1133 if (should_print)
1134 {
1135 printf_unfiltered (_("expanding to full symbols..."));
1136 wrap_here ("");
1137 gdb_flush (gdb_stdout);
1138 }
1139
1140 if (objfile->sf)
1141 objfile->sf->qf->expand_all_symtabs (objfile);
1142 }
1143
1144 if (should_print && !objfile_has_symbols (objfile))
1145 {
1146 wrap_here ("");
1147 printf_unfiltered (_("(no debugging symbols found)..."));
1148 wrap_here ("");
1149 }
1150
1151 if (should_print)
1152 {
1153 if (deprecated_post_add_symbol_hook)
1154 deprecated_post_add_symbol_hook ();
1155 else
1156 printf_unfiltered (_("done.\n"));
1157 }
1158
1159 /* We print some messages regardless of whether 'from_tty ||
1160 info_verbose' is true, so make sure they go out at the right
1161 time. */
1162 gdb_flush (gdb_stdout);
1163
1164 do_cleanups (my_cleanups);
1165
1166 if (objfile->sf == NULL)
1167 {
1168 observer_notify_new_objfile (objfile);
1169 return objfile; /* No symbols. */
1170 }
1171
1172 new_symfile_objfile (objfile, add_flags);
1173
1174 observer_notify_new_objfile (objfile);
1175
1176 bfd_cache_close_all ();
1177 return (objfile);
1178 }
1179
1180 /* Add BFD as a separate debug file for OBJFILE. */
1181
1182 void
1183 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1184 {
1185 struct objfile *new_objfile;
1186 struct section_addr_info *sap;
1187 struct cleanup *my_cleanup;
1188
1189 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1190 because sections of BFD may not match sections of OBJFILE and because
1191 vma may have been modified by tools such as prelink. */
1192 sap = build_section_addr_info_from_objfile (objfile);
1193 my_cleanup = make_cleanup_free_section_addr_info (sap);
1194
1195 new_objfile = symbol_file_add_with_addrs_or_offsets
1196 (bfd, symfile_flags,
1197 sap, NULL, 0,
1198 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1199 | OBJF_USERLOADED));
1200
1201 do_cleanups (my_cleanup);
1202
1203 add_separate_debug_objfile (new_objfile, objfile);
1204 }
1205
1206 /* Process the symbol file ABFD, as either the main file or as a
1207 dynamically loaded file.
1208
1209 See symbol_file_add_with_addrs_or_offsets's comments for
1210 details. */
1211 struct objfile *
1212 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1213 struct section_addr_info *addrs,
1214 int flags)
1215 {
1216 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1217 flags);
1218 }
1219
1220
1221 /* Process a symbol file, as either the main file or as a dynamically
1222 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1223 for details. */
1224 struct objfile *
1225 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1226 int flags)
1227 {
1228 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1229 flags);
1230 }
1231
1232
1233 /* Call symbol_file_add() with default values and update whatever is
1234 affected by the loading of a new main().
1235 Used when the file is supplied in the gdb command line
1236 and by some targets with special loading requirements.
1237 The auxiliary function, symbol_file_add_main_1(), has the flags
1238 argument for the switches that can only be specified in the symbol_file
1239 command itself. */
1240
1241 void
1242 symbol_file_add_main (char *args, int from_tty)
1243 {
1244 symbol_file_add_main_1 (args, from_tty, 0);
1245 }
1246
1247 static void
1248 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1249 {
1250 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1251 symbol_file_add (args, add_flags, NULL, flags);
1252
1253 /* Getting new symbols may change our opinion about
1254 what is frameless. */
1255 reinit_frame_cache ();
1256
1257 set_initial_language ();
1258 }
1259
1260 void
1261 symbol_file_clear (int from_tty)
1262 {
1263 if ((have_full_symbols () || have_partial_symbols ())
1264 && from_tty
1265 && (symfile_objfile
1266 ? !query (_("Discard symbol table from `%s'? "),
1267 symfile_objfile->name)
1268 : !query (_("Discard symbol table? "))))
1269 error (_("Not confirmed."));
1270
1271 /* solib descriptors may have handles to objfiles. Wipe them before their
1272 objfiles get stale by free_all_objfiles. */
1273 no_shared_libraries (NULL, from_tty);
1274
1275 free_all_objfiles ();
1276
1277 gdb_assert (symfile_objfile == NULL);
1278 if (from_tty)
1279 printf_unfiltered (_("No symbol file now.\n"));
1280 }
1281
1282 static char *
1283 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1284 {
1285 asection *sect;
1286 bfd_size_type debuglink_size;
1287 unsigned long crc32;
1288 char *contents;
1289 int crc_offset;
1290
1291 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1292
1293 if (sect == NULL)
1294 return NULL;
1295
1296 debuglink_size = bfd_section_size (objfile->obfd, sect);
1297
1298 contents = xmalloc (debuglink_size);
1299 bfd_get_section_contents (objfile->obfd, sect, contents,
1300 (file_ptr)0, (bfd_size_type)debuglink_size);
1301
1302 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1303 crc_offset = strlen (contents) + 1;
1304 crc_offset = (crc_offset + 3) & ~3;
1305
1306 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1307
1308 *crc32_out = crc32;
1309 return contents;
1310 }
1311
1312 static int
1313 separate_debug_file_exists (const char *name, unsigned long crc,
1314 struct objfile *parent_objfile)
1315 {
1316 unsigned long file_crc = 0;
1317 bfd *abfd;
1318 gdb_byte buffer[8*1024];
1319 int count;
1320 struct stat parent_stat, abfd_stat;
1321
1322 /* Find a separate debug info file as if symbols would be present in
1323 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1324 section can contain just the basename of PARENT_OBJFILE without any
1325 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1326 the separate debug infos with the same basename can exist. */
1327
1328 if (filename_cmp (name, parent_objfile->name) == 0)
1329 return 0;
1330
1331 abfd = bfd_open_maybe_remote (name);
1332
1333 if (!abfd)
1334 return 0;
1335
1336 /* Verify symlinks were not the cause of filename_cmp name difference above.
1337
1338 Some operating systems, e.g. Windows, do not provide a meaningful
1339 st_ino; they always set it to zero. (Windows does provide a
1340 meaningful st_dev.) Do not indicate a duplicate library in that
1341 case. While there is no guarantee that a system that provides
1342 meaningful inode numbers will never set st_ino to zero, this is
1343 merely an optimization, so we do not need to worry about false
1344 negatives. */
1345
1346 if (bfd_stat (abfd, &abfd_stat) == 0
1347 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0
1348 && abfd_stat.st_dev == parent_stat.st_dev
1349 && abfd_stat.st_ino == parent_stat.st_ino
1350 && abfd_stat.st_ino != 0)
1351 {
1352 bfd_close (abfd);
1353 return 0;
1354 }
1355
1356 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1357 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1358
1359 bfd_close (abfd);
1360
1361 if (crc != file_crc)
1362 {
1363 warning (_("the debug information found in \"%s\""
1364 " does not match \"%s\" (CRC mismatch).\n"),
1365 name, parent_objfile->name);
1366 return 0;
1367 }
1368
1369 return 1;
1370 }
1371
1372 char *debug_file_directory = NULL;
1373 static void
1374 show_debug_file_directory (struct ui_file *file, int from_tty,
1375 struct cmd_list_element *c, const char *value)
1376 {
1377 fprintf_filtered (file,
1378 _("The directory where separate debug "
1379 "symbols are searched for is \"%s\".\n"),
1380 value);
1381 }
1382
1383 #if ! defined (DEBUG_SUBDIRECTORY)
1384 #define DEBUG_SUBDIRECTORY ".debug"
1385 #endif
1386
1387 char *
1388 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1389 {
1390 char *basename, *debugdir;
1391 char *dir = NULL;
1392 char *debugfile = NULL;
1393 char *canon_name = NULL;
1394 unsigned long crc32;
1395 int i;
1396
1397 basename = get_debug_link_info (objfile, &crc32);
1398
1399 if (basename == NULL)
1400 /* There's no separate debug info, hence there's no way we could
1401 load it => no warning. */
1402 goto cleanup_return_debugfile;
1403
1404 dir = xstrdup (objfile->name);
1405
1406 /* Strip off the final filename part, leaving the directory name,
1407 followed by a slash. The directory can be relative or absolute. */
1408 for (i = strlen(dir) - 1; i >= 0; i--)
1409 {
1410 if (IS_DIR_SEPARATOR (dir[i]))
1411 break;
1412 }
1413 /* If I is -1 then no directory is present there and DIR will be "". */
1414 dir[i+1] = '\0';
1415
1416 /* Set I to max (strlen (canon_name), strlen (dir)). */
1417 canon_name = lrealpath (dir);
1418 i = strlen (dir);
1419 if (canon_name && strlen (canon_name) > i)
1420 i = strlen (canon_name);
1421
1422 debugfile = xmalloc (strlen (debug_file_directory) + 1
1423 + i
1424 + strlen (DEBUG_SUBDIRECTORY)
1425 + strlen ("/")
1426 + strlen (basename)
1427 + 1);
1428
1429 /* First try in the same directory as the original file. */
1430 strcpy (debugfile, dir);
1431 strcat (debugfile, basename);
1432
1433 if (separate_debug_file_exists (debugfile, crc32, objfile))
1434 goto cleanup_return_debugfile;
1435
1436 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1437 strcpy (debugfile, dir);
1438 strcat (debugfile, DEBUG_SUBDIRECTORY);
1439 strcat (debugfile, "/");
1440 strcat (debugfile, basename);
1441
1442 if (separate_debug_file_exists (debugfile, crc32, objfile))
1443 goto cleanup_return_debugfile;
1444
1445 /* Then try in the global debugfile directories.
1446
1447 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1448 cause "/..." lookups. */
1449
1450 debugdir = debug_file_directory;
1451 do
1452 {
1453 char *debugdir_end;
1454
1455 while (*debugdir == DIRNAME_SEPARATOR)
1456 debugdir++;
1457
1458 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1459 if (debugdir_end == NULL)
1460 debugdir_end = &debugdir[strlen (debugdir)];
1461
1462 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1463 debugfile[debugdir_end - debugdir] = 0;
1464 strcat (debugfile, "/");
1465 strcat (debugfile, dir);
1466 strcat (debugfile, basename);
1467
1468 if (separate_debug_file_exists (debugfile, crc32, objfile))
1469 goto cleanup_return_debugfile;
1470
1471 /* If the file is in the sysroot, try using its base path in the
1472 global debugfile directory. */
1473 if (canon_name
1474 && filename_ncmp (canon_name, gdb_sysroot,
1475 strlen (gdb_sysroot)) == 0
1476 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1477 {
1478 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1479 debugfile[debugdir_end - debugdir] = 0;
1480 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1481 strcat (debugfile, "/");
1482 strcat (debugfile, basename);
1483
1484 if (separate_debug_file_exists (debugfile, crc32, objfile))
1485 goto cleanup_return_debugfile;
1486 }
1487
1488 debugdir = debugdir_end;
1489 }
1490 while (*debugdir != 0);
1491
1492 xfree (debugfile);
1493 debugfile = NULL;
1494
1495 cleanup_return_debugfile:
1496 xfree (canon_name);
1497 xfree (basename);
1498 xfree (dir);
1499 return debugfile;
1500 }
1501
1502
1503 /* This is the symbol-file command. Read the file, analyze its
1504 symbols, and add a struct symtab to a symtab list. The syntax of
1505 the command is rather bizarre:
1506
1507 1. The function buildargv implements various quoting conventions
1508 which are undocumented and have little or nothing in common with
1509 the way things are quoted (or not quoted) elsewhere in GDB.
1510
1511 2. Options are used, which are not generally used in GDB (perhaps
1512 "set mapped on", "set readnow on" would be better)
1513
1514 3. The order of options matters, which is contrary to GNU
1515 conventions (because it is confusing and inconvenient). */
1516
1517 void
1518 symbol_file_command (char *args, int from_tty)
1519 {
1520 dont_repeat ();
1521
1522 if (args == NULL)
1523 {
1524 symbol_file_clear (from_tty);
1525 }
1526 else
1527 {
1528 char **argv = gdb_buildargv (args);
1529 int flags = OBJF_USERLOADED;
1530 struct cleanup *cleanups;
1531 char *name = NULL;
1532
1533 cleanups = make_cleanup_freeargv (argv);
1534 while (*argv != NULL)
1535 {
1536 if (strcmp (*argv, "-readnow") == 0)
1537 flags |= OBJF_READNOW;
1538 else if (**argv == '-')
1539 error (_("unknown option `%s'"), *argv);
1540 else
1541 {
1542 symbol_file_add_main_1 (*argv, from_tty, flags);
1543 name = *argv;
1544 }
1545
1546 argv++;
1547 }
1548
1549 if (name == NULL)
1550 error (_("no symbol file name was specified"));
1551
1552 do_cleanups (cleanups);
1553 }
1554 }
1555
1556 /* Set the initial language.
1557
1558 FIXME: A better solution would be to record the language in the
1559 psymtab when reading partial symbols, and then use it (if known) to
1560 set the language. This would be a win for formats that encode the
1561 language in an easily discoverable place, such as DWARF. For
1562 stabs, we can jump through hoops looking for specially named
1563 symbols or try to intuit the language from the specific type of
1564 stabs we find, but we can't do that until later when we read in
1565 full symbols. */
1566
1567 void
1568 set_initial_language (void)
1569 {
1570 enum language lang = language_unknown;
1571
1572 if (language_of_main != language_unknown)
1573 lang = language_of_main;
1574 else
1575 {
1576 const char *filename;
1577
1578 filename = find_main_filename ();
1579 if (filename != NULL)
1580 lang = deduce_language_from_filename (filename);
1581 }
1582
1583 if (lang == language_unknown)
1584 {
1585 /* Make C the default language */
1586 lang = language_c;
1587 }
1588
1589 set_language (lang);
1590 expected_language = current_language; /* Don't warn the user. */
1591 }
1592
1593 /* If NAME is a remote name open the file using remote protocol, otherwise
1594 open it normally. */
1595
1596 bfd *
1597 bfd_open_maybe_remote (const char *name)
1598 {
1599 if (remote_filename_p (name))
1600 return remote_bfd_open (name, gnutarget);
1601 else
1602 return bfd_openr (name, gnutarget);
1603 }
1604
1605
1606 /* Open the file specified by NAME and hand it off to BFD for
1607 preliminary analysis. Return a newly initialized bfd *, which
1608 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1609 absolute). In case of trouble, error() is called. */
1610
1611 bfd *
1612 symfile_bfd_open (char *name)
1613 {
1614 bfd *sym_bfd;
1615 int desc;
1616 char *absolute_name;
1617
1618 if (remote_filename_p (name))
1619 {
1620 name = xstrdup (name);
1621 sym_bfd = remote_bfd_open (name, gnutarget);
1622 if (!sym_bfd)
1623 {
1624 make_cleanup (xfree, name);
1625 error (_("`%s': can't open to read symbols: %s."), name,
1626 bfd_errmsg (bfd_get_error ()));
1627 }
1628
1629 if (!bfd_check_format (sym_bfd, bfd_object))
1630 {
1631 bfd_close (sym_bfd);
1632 make_cleanup (xfree, name);
1633 error (_("`%s': can't read symbols: %s."), name,
1634 bfd_errmsg (bfd_get_error ()));
1635 }
1636
1637 return sym_bfd;
1638 }
1639
1640 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1641
1642 /* Look down path for it, allocate 2nd new malloc'd copy. */
1643 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1644 O_RDONLY | O_BINARY, &absolute_name);
1645 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1646 if (desc < 0)
1647 {
1648 char *exename = alloca (strlen (name) + 5);
1649
1650 strcat (strcpy (exename, name), ".exe");
1651 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1652 O_RDONLY | O_BINARY, &absolute_name);
1653 }
1654 #endif
1655 if (desc < 0)
1656 {
1657 make_cleanup (xfree, name);
1658 perror_with_name (name);
1659 }
1660
1661 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1662 bfd. It'll be freed in free_objfile(). */
1663 xfree (name);
1664 name = absolute_name;
1665
1666 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1667 if (!sym_bfd)
1668 {
1669 close (desc);
1670 make_cleanup (xfree, name);
1671 error (_("`%s': can't open to read symbols: %s."), name,
1672 bfd_errmsg (bfd_get_error ()));
1673 }
1674 bfd_set_cacheable (sym_bfd, 1);
1675
1676 if (!bfd_check_format (sym_bfd, bfd_object))
1677 {
1678 /* FIXME: should be checking for errors from bfd_close (for one
1679 thing, on error it does not free all the storage associated
1680 with the bfd). */
1681 bfd_close (sym_bfd); /* This also closes desc. */
1682 make_cleanup (xfree, name);
1683 error (_("`%s': can't read symbols: %s."), name,
1684 bfd_errmsg (bfd_get_error ()));
1685 }
1686
1687 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1688 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1689
1690 return sym_bfd;
1691 }
1692
1693 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1694 the section was not found. */
1695
1696 int
1697 get_section_index (struct objfile *objfile, char *section_name)
1698 {
1699 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1700
1701 if (sect)
1702 return sect->index;
1703 else
1704 return -1;
1705 }
1706
1707 /* Link SF into the global symtab_fns list. Called on startup by the
1708 _initialize routine in each object file format reader, to register
1709 information about each format the reader is prepared to handle. */
1710
1711 void
1712 add_symtab_fns (const struct sym_fns *sf)
1713 {
1714 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1715 }
1716
1717 /* Initialize OBJFILE to read symbols from its associated BFD. It
1718 either returns or calls error(). The result is an initialized
1719 struct sym_fns in the objfile structure, that contains cached
1720 information about the symbol file. */
1721
1722 static const struct sym_fns *
1723 find_sym_fns (bfd *abfd)
1724 {
1725 const struct sym_fns *sf;
1726 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1727 int i;
1728
1729 if (our_flavour == bfd_target_srec_flavour
1730 || our_flavour == bfd_target_ihex_flavour
1731 || our_flavour == bfd_target_tekhex_flavour)
1732 return NULL; /* No symbols. */
1733
1734 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1735 if (our_flavour == sf->sym_flavour)
1736 return sf;
1737
1738 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1739 bfd_get_target (abfd));
1740 }
1741 \f
1742
1743 /* This function runs the load command of our current target. */
1744
1745 static void
1746 load_command (char *arg, int from_tty)
1747 {
1748 dont_repeat ();
1749
1750 /* The user might be reloading because the binary has changed. Take
1751 this opportunity to check. */
1752 reopen_exec_file ();
1753 reread_symbols ();
1754
1755 if (arg == NULL)
1756 {
1757 char *parg;
1758 int count = 0;
1759
1760 parg = arg = get_exec_file (1);
1761
1762 /* Count how many \ " ' tab space there are in the name. */
1763 while ((parg = strpbrk (parg, "\\\"'\t ")))
1764 {
1765 parg++;
1766 count++;
1767 }
1768
1769 if (count)
1770 {
1771 /* We need to quote this string so buildargv can pull it apart. */
1772 char *temp = xmalloc (strlen (arg) + count + 1 );
1773 char *ptemp = temp;
1774 char *prev;
1775
1776 make_cleanup (xfree, temp);
1777
1778 prev = parg = arg;
1779 while ((parg = strpbrk (parg, "\\\"'\t ")))
1780 {
1781 strncpy (ptemp, prev, parg - prev);
1782 ptemp += parg - prev;
1783 prev = parg++;
1784 *ptemp++ = '\\';
1785 }
1786 strcpy (ptemp, prev);
1787
1788 arg = temp;
1789 }
1790 }
1791
1792 target_load (arg, from_tty);
1793
1794 /* After re-loading the executable, we don't really know which
1795 overlays are mapped any more. */
1796 overlay_cache_invalid = 1;
1797 }
1798
1799 /* This version of "load" should be usable for any target. Currently
1800 it is just used for remote targets, not inftarg.c or core files,
1801 on the theory that only in that case is it useful.
1802
1803 Avoiding xmodem and the like seems like a win (a) because we don't have
1804 to worry about finding it, and (b) On VMS, fork() is very slow and so
1805 we don't want to run a subprocess. On the other hand, I'm not sure how
1806 performance compares. */
1807
1808 static int validate_download = 0;
1809
1810 /* Callback service function for generic_load (bfd_map_over_sections). */
1811
1812 static void
1813 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1814 {
1815 bfd_size_type *sum = data;
1816
1817 *sum += bfd_get_section_size (asec);
1818 }
1819
1820 /* Opaque data for load_section_callback. */
1821 struct load_section_data {
1822 unsigned long load_offset;
1823 struct load_progress_data *progress_data;
1824 VEC(memory_write_request_s) *requests;
1825 };
1826
1827 /* Opaque data for load_progress. */
1828 struct load_progress_data {
1829 /* Cumulative data. */
1830 unsigned long write_count;
1831 unsigned long data_count;
1832 bfd_size_type total_size;
1833 };
1834
1835 /* Opaque data for load_progress for a single section. */
1836 struct load_progress_section_data {
1837 struct load_progress_data *cumulative;
1838
1839 /* Per-section data. */
1840 const char *section_name;
1841 ULONGEST section_sent;
1842 ULONGEST section_size;
1843 CORE_ADDR lma;
1844 gdb_byte *buffer;
1845 };
1846
1847 /* Target write callback routine for progress reporting. */
1848
1849 static void
1850 load_progress (ULONGEST bytes, void *untyped_arg)
1851 {
1852 struct load_progress_section_data *args = untyped_arg;
1853 struct load_progress_data *totals;
1854
1855 if (args == NULL)
1856 /* Writing padding data. No easy way to get at the cumulative
1857 stats, so just ignore this. */
1858 return;
1859
1860 totals = args->cumulative;
1861
1862 if (bytes == 0 && args->section_sent == 0)
1863 {
1864 /* The write is just starting. Let the user know we've started
1865 this section. */
1866 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1867 args->section_name, hex_string (args->section_size),
1868 paddress (target_gdbarch, args->lma));
1869 return;
1870 }
1871
1872 if (validate_download)
1873 {
1874 /* Broken memories and broken monitors manifest themselves here
1875 when bring new computers to life. This doubles already slow
1876 downloads. */
1877 /* NOTE: cagney/1999-10-18: A more efficient implementation
1878 might add a verify_memory() method to the target vector and
1879 then use that. remote.c could implement that method using
1880 the ``qCRC'' packet. */
1881 gdb_byte *check = xmalloc (bytes);
1882 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1883
1884 if (target_read_memory (args->lma, check, bytes) != 0)
1885 error (_("Download verify read failed at %s"),
1886 paddress (target_gdbarch, args->lma));
1887 if (memcmp (args->buffer, check, bytes) != 0)
1888 error (_("Download verify compare failed at %s"),
1889 paddress (target_gdbarch, args->lma));
1890 do_cleanups (verify_cleanups);
1891 }
1892 totals->data_count += bytes;
1893 args->lma += bytes;
1894 args->buffer += bytes;
1895 totals->write_count += 1;
1896 args->section_sent += bytes;
1897 if (quit_flag
1898 || (deprecated_ui_load_progress_hook != NULL
1899 && deprecated_ui_load_progress_hook (args->section_name,
1900 args->section_sent)))
1901 error (_("Canceled the download"));
1902
1903 if (deprecated_show_load_progress != NULL)
1904 deprecated_show_load_progress (args->section_name,
1905 args->section_sent,
1906 args->section_size,
1907 totals->data_count,
1908 totals->total_size);
1909 }
1910
1911 /* Callback service function for generic_load (bfd_map_over_sections). */
1912
1913 static void
1914 load_section_callback (bfd *abfd, asection *asec, void *data)
1915 {
1916 struct memory_write_request *new_request;
1917 struct load_section_data *args = data;
1918 struct load_progress_section_data *section_data;
1919 bfd_size_type size = bfd_get_section_size (asec);
1920 gdb_byte *buffer;
1921 const char *sect_name = bfd_get_section_name (abfd, asec);
1922
1923 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1924 return;
1925
1926 if (size == 0)
1927 return;
1928
1929 new_request = VEC_safe_push (memory_write_request_s,
1930 args->requests, NULL);
1931 memset (new_request, 0, sizeof (struct memory_write_request));
1932 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1933 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1934 new_request->end = new_request->begin + size; /* FIXME Should size
1935 be in instead? */
1936 new_request->data = xmalloc (size);
1937 new_request->baton = section_data;
1938
1939 buffer = new_request->data;
1940
1941 section_data->cumulative = args->progress_data;
1942 section_data->section_name = sect_name;
1943 section_data->section_size = size;
1944 section_data->lma = new_request->begin;
1945 section_data->buffer = buffer;
1946
1947 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1948 }
1949
1950 /* Clean up an entire memory request vector, including load
1951 data and progress records. */
1952
1953 static void
1954 clear_memory_write_data (void *arg)
1955 {
1956 VEC(memory_write_request_s) **vec_p = arg;
1957 VEC(memory_write_request_s) *vec = *vec_p;
1958 int i;
1959 struct memory_write_request *mr;
1960
1961 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1962 {
1963 xfree (mr->data);
1964 xfree (mr->baton);
1965 }
1966 VEC_free (memory_write_request_s, vec);
1967 }
1968
1969 void
1970 generic_load (char *args, int from_tty)
1971 {
1972 bfd *loadfile_bfd;
1973 struct timeval start_time, end_time;
1974 char *filename;
1975 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1976 struct load_section_data cbdata;
1977 struct load_progress_data total_progress;
1978
1979 CORE_ADDR entry;
1980 char **argv;
1981
1982 memset (&cbdata, 0, sizeof (cbdata));
1983 memset (&total_progress, 0, sizeof (total_progress));
1984 cbdata.progress_data = &total_progress;
1985
1986 make_cleanup (clear_memory_write_data, &cbdata.requests);
1987
1988 if (args == NULL)
1989 error_no_arg (_("file to load"));
1990
1991 argv = gdb_buildargv (args);
1992 make_cleanup_freeargv (argv);
1993
1994 filename = tilde_expand (argv[0]);
1995 make_cleanup (xfree, filename);
1996
1997 if (argv[1] != NULL)
1998 {
1999 char *endptr;
2000
2001 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2002
2003 /* If the last word was not a valid number then
2004 treat it as a file name with spaces in. */
2005 if (argv[1] == endptr)
2006 error (_("Invalid download offset:%s."), argv[1]);
2007
2008 if (argv[2] != NULL)
2009 error (_("Too many parameters."));
2010 }
2011
2012 /* Open the file for loading. */
2013 loadfile_bfd = bfd_openr (filename, gnutarget);
2014 if (loadfile_bfd == NULL)
2015 {
2016 perror_with_name (filename);
2017 return;
2018 }
2019
2020 /* FIXME: should be checking for errors from bfd_close (for one thing,
2021 on error it does not free all the storage associated with the
2022 bfd). */
2023 make_cleanup_bfd_close (loadfile_bfd);
2024
2025 if (!bfd_check_format (loadfile_bfd, bfd_object))
2026 {
2027 error (_("\"%s\" is not an object file: %s"), filename,
2028 bfd_errmsg (bfd_get_error ()));
2029 }
2030
2031 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2032 (void *) &total_progress.total_size);
2033
2034 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2035
2036 gettimeofday (&start_time, NULL);
2037
2038 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2039 load_progress) != 0)
2040 error (_("Load failed"));
2041
2042 gettimeofday (&end_time, NULL);
2043
2044 entry = bfd_get_start_address (loadfile_bfd);
2045 ui_out_text (uiout, "Start address ");
2046 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
2047 ui_out_text (uiout, ", load size ");
2048 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2049 ui_out_text (uiout, "\n");
2050 /* We were doing this in remote-mips.c, I suspect it is right
2051 for other targets too. */
2052 regcache_write_pc (get_current_regcache (), entry);
2053
2054 /* Reset breakpoints, now that we have changed the load image. For
2055 instance, breakpoints may have been set (or reset, by
2056 post_create_inferior) while connected to the target but before we
2057 loaded the program. In that case, the prologue analyzer could
2058 have read instructions from the target to find the right
2059 breakpoint locations. Loading has changed the contents of that
2060 memory. */
2061
2062 breakpoint_re_set ();
2063
2064 /* FIXME: are we supposed to call symbol_file_add or not? According
2065 to a comment from remote-mips.c (where a call to symbol_file_add
2066 was commented out), making the call confuses GDB if more than one
2067 file is loaded in. Some targets do (e.g., remote-vx.c) but
2068 others don't (or didn't - perhaps they have all been deleted). */
2069
2070 print_transfer_performance (gdb_stdout, total_progress.data_count,
2071 total_progress.write_count,
2072 &start_time, &end_time);
2073
2074 do_cleanups (old_cleanups);
2075 }
2076
2077 /* Report how fast the transfer went. */
2078
2079 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2080 replaced by print_transfer_performance (with a very different
2081 function signature). */
2082
2083 void
2084 report_transfer_performance (unsigned long data_count, time_t start_time,
2085 time_t end_time)
2086 {
2087 struct timeval start, end;
2088
2089 start.tv_sec = start_time;
2090 start.tv_usec = 0;
2091 end.tv_sec = end_time;
2092 end.tv_usec = 0;
2093
2094 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2095 }
2096
2097 void
2098 print_transfer_performance (struct ui_file *stream,
2099 unsigned long data_count,
2100 unsigned long write_count,
2101 const struct timeval *start_time,
2102 const struct timeval *end_time)
2103 {
2104 ULONGEST time_count;
2105
2106 /* Compute the elapsed time in milliseconds, as a tradeoff between
2107 accuracy and overflow. */
2108 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2109 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2110
2111 ui_out_text (uiout, "Transfer rate: ");
2112 if (time_count > 0)
2113 {
2114 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2115
2116 if (ui_out_is_mi_like_p (uiout))
2117 {
2118 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2119 ui_out_text (uiout, " bits/sec");
2120 }
2121 else if (rate < 1024)
2122 {
2123 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2124 ui_out_text (uiout, " bytes/sec");
2125 }
2126 else
2127 {
2128 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2129 ui_out_text (uiout, " KB/sec");
2130 }
2131 }
2132 else
2133 {
2134 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2135 ui_out_text (uiout, " bits in <1 sec");
2136 }
2137 if (write_count > 0)
2138 {
2139 ui_out_text (uiout, ", ");
2140 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2141 ui_out_text (uiout, " bytes/write");
2142 }
2143 ui_out_text (uiout, ".\n");
2144 }
2145
2146 /* This function allows the addition of incrementally linked object files.
2147 It does not modify any state in the target, only in the debugger. */
2148 /* Note: ezannoni 2000-04-13 This function/command used to have a
2149 special case syntax for the rombug target (Rombug is the boot
2150 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2151 rombug case, the user doesn't need to supply a text address,
2152 instead a call to target_link() (in target.c) would supply the
2153 value to use. We are now discontinuing this type of ad hoc syntax. */
2154
2155 static void
2156 add_symbol_file_command (char *args, int from_tty)
2157 {
2158 struct gdbarch *gdbarch = get_current_arch ();
2159 char *filename = NULL;
2160 int flags = OBJF_USERLOADED;
2161 char *arg;
2162 int section_index = 0;
2163 int argcnt = 0;
2164 int sec_num = 0;
2165 int i;
2166 int expecting_sec_name = 0;
2167 int expecting_sec_addr = 0;
2168 char **argv;
2169
2170 struct sect_opt
2171 {
2172 char *name;
2173 char *value;
2174 };
2175
2176 struct section_addr_info *section_addrs;
2177 struct sect_opt *sect_opts = NULL;
2178 size_t num_sect_opts = 0;
2179 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2180
2181 num_sect_opts = 16;
2182 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2183 * sizeof (struct sect_opt));
2184
2185 dont_repeat ();
2186
2187 if (args == NULL)
2188 error (_("add-symbol-file takes a file name and an address"));
2189
2190 argv = gdb_buildargv (args);
2191 make_cleanup_freeargv (argv);
2192
2193 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2194 {
2195 /* Process the argument. */
2196 if (argcnt == 0)
2197 {
2198 /* The first argument is the file name. */
2199 filename = tilde_expand (arg);
2200 make_cleanup (xfree, filename);
2201 }
2202 else
2203 if (argcnt == 1)
2204 {
2205 /* The second argument is always the text address at which
2206 to load the program. */
2207 sect_opts[section_index].name = ".text";
2208 sect_opts[section_index].value = arg;
2209 if (++section_index >= num_sect_opts)
2210 {
2211 num_sect_opts *= 2;
2212 sect_opts = ((struct sect_opt *)
2213 xrealloc (sect_opts,
2214 num_sect_opts
2215 * sizeof (struct sect_opt)));
2216 }
2217 }
2218 else
2219 {
2220 /* It's an option (starting with '-') or it's an argument
2221 to an option. */
2222
2223 if (*arg == '-')
2224 {
2225 if (strcmp (arg, "-readnow") == 0)
2226 flags |= OBJF_READNOW;
2227 else if (strcmp (arg, "-s") == 0)
2228 {
2229 expecting_sec_name = 1;
2230 expecting_sec_addr = 1;
2231 }
2232 }
2233 else
2234 {
2235 if (expecting_sec_name)
2236 {
2237 sect_opts[section_index].name = arg;
2238 expecting_sec_name = 0;
2239 }
2240 else
2241 if (expecting_sec_addr)
2242 {
2243 sect_opts[section_index].value = arg;
2244 expecting_sec_addr = 0;
2245 if (++section_index >= num_sect_opts)
2246 {
2247 num_sect_opts *= 2;
2248 sect_opts = ((struct sect_opt *)
2249 xrealloc (sect_opts,
2250 num_sect_opts
2251 * sizeof (struct sect_opt)));
2252 }
2253 }
2254 else
2255 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2256 " [-mapped] [-readnow] [-s <secname> <addr>]*"));
2257 }
2258 }
2259 }
2260
2261 /* This command takes at least two arguments. The first one is a
2262 filename, and the second is the address where this file has been
2263 loaded. Abort now if this address hasn't been provided by the
2264 user. */
2265 if (section_index < 1)
2266 error (_("The address where %s has been loaded is missing"), filename);
2267
2268 /* Print the prompt for the query below. And save the arguments into
2269 a sect_addr_info structure to be passed around to other
2270 functions. We have to split this up into separate print
2271 statements because hex_string returns a local static
2272 string. */
2273
2274 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2275 section_addrs = alloc_section_addr_info (section_index);
2276 make_cleanup (xfree, section_addrs);
2277 for (i = 0; i < section_index; i++)
2278 {
2279 CORE_ADDR addr;
2280 char *val = sect_opts[i].value;
2281 char *sec = sect_opts[i].name;
2282
2283 addr = parse_and_eval_address (val);
2284
2285 /* Here we store the section offsets in the order they were
2286 entered on the command line. */
2287 section_addrs->other[sec_num].name = sec;
2288 section_addrs->other[sec_num].addr = addr;
2289 printf_unfiltered ("\t%s_addr = %s\n", sec,
2290 paddress (gdbarch, addr));
2291 sec_num++;
2292
2293 /* The object's sections are initialized when a
2294 call is made to build_objfile_section_table (objfile).
2295 This happens in reread_symbols.
2296 At this point, we don't know what file type this is,
2297 so we can't determine what section names are valid. */
2298 }
2299
2300 if (from_tty && (!query ("%s", "")))
2301 error (_("Not confirmed."));
2302
2303 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2304 section_addrs, flags);
2305
2306 /* Getting new symbols may change our opinion about what is
2307 frameless. */
2308 reinit_frame_cache ();
2309 do_cleanups (my_cleanups);
2310 }
2311 \f
2312
2313 /* Re-read symbols if a symbol-file has changed. */
2314 void
2315 reread_symbols (void)
2316 {
2317 struct objfile *objfile;
2318 long new_modtime;
2319 int reread_one = 0;
2320 struct stat new_statbuf;
2321 int res;
2322
2323 /* With the addition of shared libraries, this should be modified,
2324 the load time should be saved in the partial symbol tables, since
2325 different tables may come from different source files. FIXME.
2326 This routine should then walk down each partial symbol table
2327 and see if the symbol table that it originates from has been changed. */
2328
2329 for (objfile = object_files; objfile; objfile = objfile->next)
2330 {
2331 /* solib-sunos.c creates one objfile with obfd. */
2332 if (objfile->obfd == NULL)
2333 continue;
2334
2335 /* Separate debug objfiles are handled in the main objfile. */
2336 if (objfile->separate_debug_objfile_backlink)
2337 continue;
2338
2339 /* If this object is from an archive (what you usually create with
2340 `ar', often called a `static library' on most systems, though
2341 a `shared library' on AIX is also an archive), then you should
2342 stat on the archive name, not member name. */
2343 if (objfile->obfd->my_archive)
2344 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2345 else
2346 res = stat (objfile->name, &new_statbuf);
2347 if (res != 0)
2348 {
2349 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2350 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2351 objfile->name);
2352 continue;
2353 }
2354 new_modtime = new_statbuf.st_mtime;
2355 if (new_modtime != objfile->mtime)
2356 {
2357 struct cleanup *old_cleanups;
2358 struct section_offsets *offsets;
2359 int num_offsets;
2360 char *obfd_filename;
2361
2362 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2363 objfile->name);
2364
2365 /* There are various functions like symbol_file_add,
2366 symfile_bfd_open, syms_from_objfile, etc., which might
2367 appear to do what we want. But they have various other
2368 effects which we *don't* want. So we just do stuff
2369 ourselves. We don't worry about mapped files (for one thing,
2370 any mapped file will be out of date). */
2371
2372 /* If we get an error, blow away this objfile (not sure if
2373 that is the correct response for things like shared
2374 libraries). */
2375 old_cleanups = make_cleanup_free_objfile (objfile);
2376 /* We need to do this whenever any symbols go away. */
2377 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2378
2379 if (exec_bfd != NULL
2380 && filename_cmp (bfd_get_filename (objfile->obfd),
2381 bfd_get_filename (exec_bfd)) == 0)
2382 {
2383 /* Reload EXEC_BFD without asking anything. */
2384
2385 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2386 }
2387
2388 /* Clean up any state BFD has sitting around. We don't need
2389 to close the descriptor but BFD lacks a way of closing the
2390 BFD without closing the descriptor. */
2391 obfd_filename = bfd_get_filename (objfile->obfd);
2392 if (!bfd_close (objfile->obfd))
2393 error (_("Can't close BFD for %s: %s"), objfile->name,
2394 bfd_errmsg (bfd_get_error ()));
2395 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
2396 if (objfile->obfd == NULL)
2397 error (_("Can't open %s to read symbols."), objfile->name);
2398 else
2399 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2400 /* bfd_openr sets cacheable to true, which is what we want. */
2401 if (!bfd_check_format (objfile->obfd, bfd_object))
2402 error (_("Can't read symbols from %s: %s."), objfile->name,
2403 bfd_errmsg (bfd_get_error ()));
2404
2405 /* Save the offsets, we will nuke them with the rest of the
2406 objfile_obstack. */
2407 num_offsets = objfile->num_sections;
2408 offsets = ((struct section_offsets *)
2409 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2410 memcpy (offsets, objfile->section_offsets,
2411 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2412
2413 /* Remove any references to this objfile in the global
2414 value lists. */
2415 preserve_values (objfile);
2416
2417 /* Nuke all the state that we will re-read. Much of the following
2418 code which sets things to NULL really is necessary to tell
2419 other parts of GDB that there is nothing currently there.
2420
2421 Try to keep the freeing order compatible with free_objfile. */
2422
2423 if (objfile->sf != NULL)
2424 {
2425 (*objfile->sf->sym_finish) (objfile);
2426 }
2427
2428 clear_objfile_data (objfile);
2429
2430 /* Free the separate debug objfiles. It will be
2431 automatically recreated by sym_read. */
2432 free_objfile_separate_debug (objfile);
2433
2434 /* FIXME: Do we have to free a whole linked list, or is this
2435 enough? */
2436 if (objfile->global_psymbols.list)
2437 xfree (objfile->global_psymbols.list);
2438 memset (&objfile->global_psymbols, 0,
2439 sizeof (objfile->global_psymbols));
2440 if (objfile->static_psymbols.list)
2441 xfree (objfile->static_psymbols.list);
2442 memset (&objfile->static_psymbols, 0,
2443 sizeof (objfile->static_psymbols));
2444
2445 /* Free the obstacks for non-reusable objfiles. */
2446 psymbol_bcache_free (objfile->psymbol_cache);
2447 objfile->psymbol_cache = psymbol_bcache_init ();
2448 bcache_xfree (objfile->macro_cache);
2449 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2450 bcache_xfree (objfile->filename_cache);
2451 objfile->filename_cache = bcache_xmalloc (NULL,NULL);
2452 if (objfile->demangled_names_hash != NULL)
2453 {
2454 htab_delete (objfile->demangled_names_hash);
2455 objfile->demangled_names_hash = NULL;
2456 }
2457 obstack_free (&objfile->objfile_obstack, 0);
2458 objfile->sections = NULL;
2459 objfile->symtabs = NULL;
2460 objfile->psymtabs = NULL;
2461 objfile->psymtabs_addrmap = NULL;
2462 objfile->free_psymtabs = NULL;
2463 objfile->template_symbols = NULL;
2464 objfile->msymbols = NULL;
2465 objfile->deprecated_sym_private = NULL;
2466 objfile->minimal_symbol_count = 0;
2467 memset (&objfile->msymbol_hash, 0,
2468 sizeof (objfile->msymbol_hash));
2469 memset (&objfile->msymbol_demangled_hash, 0,
2470 sizeof (objfile->msymbol_demangled_hash));
2471
2472 objfile->psymbol_cache = psymbol_bcache_init ();
2473 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2474 objfile->filename_cache = bcache_xmalloc (NULL, NULL);
2475 /* obstack_init also initializes the obstack so it is
2476 empty. We could use obstack_specify_allocation but
2477 gdb_obstack.h specifies the alloc/dealloc
2478 functions. */
2479 obstack_init (&objfile->objfile_obstack);
2480 if (build_objfile_section_table (objfile))
2481 {
2482 error (_("Can't find the file sections in `%s': %s"),
2483 objfile->name, bfd_errmsg (bfd_get_error ()));
2484 }
2485 terminate_minimal_symbol_table (objfile);
2486
2487 /* We use the same section offsets as from last time. I'm not
2488 sure whether that is always correct for shared libraries. */
2489 objfile->section_offsets = (struct section_offsets *)
2490 obstack_alloc (&objfile->objfile_obstack,
2491 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2492 memcpy (objfile->section_offsets, offsets,
2493 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2494 objfile->num_sections = num_offsets;
2495
2496 /* What the hell is sym_new_init for, anyway? The concept of
2497 distinguishing between the main file and additional files
2498 in this way seems rather dubious. */
2499 if (objfile == symfile_objfile)
2500 {
2501 (*objfile->sf->sym_new_init) (objfile);
2502 }
2503
2504 (*objfile->sf->sym_init) (objfile);
2505 clear_complaints (&symfile_complaints, 1, 1);
2506 /* Do not set flags as this is safe and we don't want to be
2507 verbose. */
2508 (*objfile->sf->sym_read) (objfile, 0);
2509 if ((objfile->flags & OBJF_PSYMTABS_READ) != 0)
2510 {
2511 objfile->flags &= ~OBJF_PSYMTABS_READ;
2512 require_partial_symbols (objfile, 0);
2513 }
2514
2515 if (!objfile_has_symbols (objfile))
2516 {
2517 wrap_here ("");
2518 printf_unfiltered (_("(no debugging symbols found)\n"));
2519 wrap_here ("");
2520 }
2521
2522 /* We're done reading the symbol file; finish off complaints. */
2523 clear_complaints (&symfile_complaints, 0, 1);
2524
2525 /* Getting new symbols may change our opinion about what is
2526 frameless. */
2527
2528 reinit_frame_cache ();
2529
2530 /* Discard cleanups as symbol reading was successful. */
2531 discard_cleanups (old_cleanups);
2532
2533 /* If the mtime has changed between the time we set new_modtime
2534 and now, we *want* this to be out of date, so don't call stat
2535 again now. */
2536 objfile->mtime = new_modtime;
2537 reread_one = 1;
2538 init_entry_point_info (objfile);
2539 }
2540 }
2541
2542 if (reread_one)
2543 {
2544 /* Notify objfiles that we've modified objfile sections. */
2545 objfiles_changed ();
2546
2547 clear_symtab_users (0);
2548 /* At least one objfile has changed, so we can consider that
2549 the executable we're debugging has changed too. */
2550 observer_notify_executable_changed ();
2551 }
2552 }
2553 \f
2554
2555
2556 typedef struct
2557 {
2558 char *ext;
2559 enum language lang;
2560 }
2561 filename_language;
2562
2563 static filename_language *filename_language_table;
2564 static int fl_table_size, fl_table_next;
2565
2566 static void
2567 add_filename_language (char *ext, enum language lang)
2568 {
2569 if (fl_table_next >= fl_table_size)
2570 {
2571 fl_table_size += 10;
2572 filename_language_table =
2573 xrealloc (filename_language_table,
2574 fl_table_size * sizeof (*filename_language_table));
2575 }
2576
2577 filename_language_table[fl_table_next].ext = xstrdup (ext);
2578 filename_language_table[fl_table_next].lang = lang;
2579 fl_table_next++;
2580 }
2581
2582 static char *ext_args;
2583 static void
2584 show_ext_args (struct ui_file *file, int from_tty,
2585 struct cmd_list_element *c, const char *value)
2586 {
2587 fprintf_filtered (file,
2588 _("Mapping between filename extension "
2589 "and source language is \"%s\".\n"),
2590 value);
2591 }
2592
2593 static void
2594 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2595 {
2596 int i;
2597 char *cp = ext_args;
2598 enum language lang;
2599
2600 /* First arg is filename extension, starting with '.' */
2601 if (*cp != '.')
2602 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2603
2604 /* Find end of first arg. */
2605 while (*cp && !isspace (*cp))
2606 cp++;
2607
2608 if (*cp == '\0')
2609 error (_("'%s': two arguments required -- "
2610 "filename extension and language"),
2611 ext_args);
2612
2613 /* Null-terminate first arg. */
2614 *cp++ = '\0';
2615
2616 /* Find beginning of second arg, which should be a source language. */
2617 while (*cp && isspace (*cp))
2618 cp++;
2619
2620 if (*cp == '\0')
2621 error (_("'%s': two arguments required -- "
2622 "filename extension and language"),
2623 ext_args);
2624
2625 /* Lookup the language from among those we know. */
2626 lang = language_enum (cp);
2627
2628 /* Now lookup the filename extension: do we already know it? */
2629 for (i = 0; i < fl_table_next; i++)
2630 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2631 break;
2632
2633 if (i >= fl_table_next)
2634 {
2635 /* New file extension. */
2636 add_filename_language (ext_args, lang);
2637 }
2638 else
2639 {
2640 /* Redefining a previously known filename extension. */
2641
2642 /* if (from_tty) */
2643 /* query ("Really make files of type %s '%s'?", */
2644 /* ext_args, language_str (lang)); */
2645
2646 xfree (filename_language_table[i].ext);
2647 filename_language_table[i].ext = xstrdup (ext_args);
2648 filename_language_table[i].lang = lang;
2649 }
2650 }
2651
2652 static void
2653 info_ext_lang_command (char *args, int from_tty)
2654 {
2655 int i;
2656
2657 printf_filtered (_("Filename extensions and the languages they represent:"));
2658 printf_filtered ("\n\n");
2659 for (i = 0; i < fl_table_next; i++)
2660 printf_filtered ("\t%s\t- %s\n",
2661 filename_language_table[i].ext,
2662 language_str (filename_language_table[i].lang));
2663 }
2664
2665 static void
2666 init_filename_language_table (void)
2667 {
2668 if (fl_table_size == 0) /* Protect against repetition. */
2669 {
2670 fl_table_size = 20;
2671 fl_table_next = 0;
2672 filename_language_table =
2673 xmalloc (fl_table_size * sizeof (*filename_language_table));
2674 add_filename_language (".c", language_c);
2675 add_filename_language (".d", language_d);
2676 add_filename_language (".C", language_cplus);
2677 add_filename_language (".cc", language_cplus);
2678 add_filename_language (".cp", language_cplus);
2679 add_filename_language (".cpp", language_cplus);
2680 add_filename_language (".cxx", language_cplus);
2681 add_filename_language (".c++", language_cplus);
2682 add_filename_language (".java", language_java);
2683 add_filename_language (".class", language_java);
2684 add_filename_language (".m", language_objc);
2685 add_filename_language (".f", language_fortran);
2686 add_filename_language (".F", language_fortran);
2687 add_filename_language (".for", language_fortran);
2688 add_filename_language (".FOR", language_fortran);
2689 add_filename_language (".ftn", language_fortran);
2690 add_filename_language (".FTN", language_fortran);
2691 add_filename_language (".fpp", language_fortran);
2692 add_filename_language (".FPP", language_fortran);
2693 add_filename_language (".f90", language_fortran);
2694 add_filename_language (".F90", language_fortran);
2695 add_filename_language (".f95", language_fortran);
2696 add_filename_language (".F95", language_fortran);
2697 add_filename_language (".f03", language_fortran);
2698 add_filename_language (".F03", language_fortran);
2699 add_filename_language (".f08", language_fortran);
2700 add_filename_language (".F08", language_fortran);
2701 add_filename_language (".s", language_asm);
2702 add_filename_language (".sx", language_asm);
2703 add_filename_language (".S", language_asm);
2704 add_filename_language (".pas", language_pascal);
2705 add_filename_language (".p", language_pascal);
2706 add_filename_language (".pp", language_pascal);
2707 add_filename_language (".adb", language_ada);
2708 add_filename_language (".ads", language_ada);
2709 add_filename_language (".a", language_ada);
2710 add_filename_language (".ada", language_ada);
2711 add_filename_language (".dg", language_ada);
2712 }
2713 }
2714
2715 enum language
2716 deduce_language_from_filename (const char *filename)
2717 {
2718 int i;
2719 char *cp;
2720
2721 if (filename != NULL)
2722 if ((cp = strrchr (filename, '.')) != NULL)
2723 for (i = 0; i < fl_table_next; i++)
2724 if (strcmp (cp, filename_language_table[i].ext) == 0)
2725 return filename_language_table[i].lang;
2726
2727 return language_unknown;
2728 }
2729 \f
2730 /* allocate_symtab:
2731
2732 Allocate and partly initialize a new symbol table. Return a pointer
2733 to it. error() if no space.
2734
2735 Caller must set these fields:
2736 LINETABLE(symtab)
2737 symtab->blockvector
2738 symtab->dirname
2739 symtab->free_code
2740 symtab->free_ptr
2741 */
2742
2743 struct symtab *
2744 allocate_symtab (const char *filename, struct objfile *objfile)
2745 {
2746 struct symtab *symtab;
2747
2748 symtab = (struct symtab *)
2749 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2750 memset (symtab, 0, sizeof (*symtab));
2751 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2752 objfile->filename_cache);
2753 symtab->fullname = NULL;
2754 symtab->language = deduce_language_from_filename (filename);
2755 symtab->debugformat = "unknown";
2756
2757 /* Hook it to the objfile it comes from. */
2758
2759 symtab->objfile = objfile;
2760 symtab->next = objfile->symtabs;
2761 objfile->symtabs = symtab;
2762
2763 return (symtab);
2764 }
2765 \f
2766
2767 /* Reset all data structures in gdb which may contain references to symbol
2768 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2769
2770 void
2771 clear_symtab_users (int add_flags)
2772 {
2773 /* Someday, we should do better than this, by only blowing away
2774 the things that really need to be blown. */
2775
2776 /* Clear the "current" symtab first, because it is no longer valid.
2777 breakpoint_re_set may try to access the current symtab. */
2778 clear_current_source_symtab_and_line ();
2779
2780 clear_displays ();
2781 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2782 breakpoint_re_set ();
2783 set_default_breakpoint (0, NULL, 0, 0, 0);
2784 clear_pc_function_cache ();
2785 observer_notify_new_objfile (NULL);
2786
2787 /* Clear globals which might have pointed into a removed objfile.
2788 FIXME: It's not clear which of these are supposed to persist
2789 between expressions and which ought to be reset each time. */
2790 expression_context_block = NULL;
2791 innermost_block = NULL;
2792
2793 /* Varobj may refer to old symbols, perform a cleanup. */
2794 varobj_invalidate ();
2795
2796 }
2797
2798 static void
2799 clear_symtab_users_cleanup (void *ignore)
2800 {
2801 clear_symtab_users (0);
2802 }
2803 \f
2804 /* OVERLAYS:
2805 The following code implements an abstraction for debugging overlay sections.
2806
2807 The target model is as follows:
2808 1) The gnu linker will permit multiple sections to be mapped into the
2809 same VMA, each with its own unique LMA (or load address).
2810 2) It is assumed that some runtime mechanism exists for mapping the
2811 sections, one by one, from the load address into the VMA address.
2812 3) This code provides a mechanism for gdb to keep track of which
2813 sections should be considered to be mapped from the VMA to the LMA.
2814 This information is used for symbol lookup, and memory read/write.
2815 For instance, if a section has been mapped then its contents
2816 should be read from the VMA, otherwise from the LMA.
2817
2818 Two levels of debugger support for overlays are available. One is
2819 "manual", in which the debugger relies on the user to tell it which
2820 overlays are currently mapped. This level of support is
2821 implemented entirely in the core debugger, and the information about
2822 whether a section is mapped is kept in the objfile->obj_section table.
2823
2824 The second level of support is "automatic", and is only available if
2825 the target-specific code provides functionality to read the target's
2826 overlay mapping table, and translate its contents for the debugger
2827 (by updating the mapped state information in the obj_section tables).
2828
2829 The interface is as follows:
2830 User commands:
2831 overlay map <name> -- tell gdb to consider this section mapped
2832 overlay unmap <name> -- tell gdb to consider this section unmapped
2833 overlay list -- list the sections that GDB thinks are mapped
2834 overlay read-target -- get the target's state of what's mapped
2835 overlay off/manual/auto -- set overlay debugging state
2836 Functional interface:
2837 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2838 section, return that section.
2839 find_pc_overlay(pc): find any overlay section that contains
2840 the pc, either in its VMA or its LMA
2841 section_is_mapped(sect): true if overlay is marked as mapped
2842 section_is_overlay(sect): true if section's VMA != LMA
2843 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2844 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2845 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2846 overlay_mapped_address(...): map an address from section's LMA to VMA
2847 overlay_unmapped_address(...): map an address from section's VMA to LMA
2848 symbol_overlayed_address(...): Return a "current" address for symbol:
2849 either in VMA or LMA depending on whether
2850 the symbol's section is currently mapped. */
2851
2852 /* Overlay debugging state: */
2853
2854 enum overlay_debugging_state overlay_debugging = ovly_off;
2855 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2856
2857 /* Function: section_is_overlay (SECTION)
2858 Returns true if SECTION has VMA not equal to LMA, ie.
2859 SECTION is loaded at an address different from where it will "run". */
2860
2861 int
2862 section_is_overlay (struct obj_section *section)
2863 {
2864 if (overlay_debugging && section)
2865 {
2866 bfd *abfd = section->objfile->obfd;
2867 asection *bfd_section = section->the_bfd_section;
2868
2869 if (bfd_section_lma (abfd, bfd_section) != 0
2870 && bfd_section_lma (abfd, bfd_section)
2871 != bfd_section_vma (abfd, bfd_section))
2872 return 1;
2873 }
2874
2875 return 0;
2876 }
2877
2878 /* Function: overlay_invalidate_all (void)
2879 Invalidate the mapped state of all overlay sections (mark it as stale). */
2880
2881 static void
2882 overlay_invalidate_all (void)
2883 {
2884 struct objfile *objfile;
2885 struct obj_section *sect;
2886
2887 ALL_OBJSECTIONS (objfile, sect)
2888 if (section_is_overlay (sect))
2889 sect->ovly_mapped = -1;
2890 }
2891
2892 /* Function: section_is_mapped (SECTION)
2893 Returns true if section is an overlay, and is currently mapped.
2894
2895 Access to the ovly_mapped flag is restricted to this function, so
2896 that we can do automatic update. If the global flag
2897 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2898 overlay_invalidate_all. If the mapped state of the particular
2899 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2900
2901 int
2902 section_is_mapped (struct obj_section *osect)
2903 {
2904 struct gdbarch *gdbarch;
2905
2906 if (osect == 0 || !section_is_overlay (osect))
2907 return 0;
2908
2909 switch (overlay_debugging)
2910 {
2911 default:
2912 case ovly_off:
2913 return 0; /* overlay debugging off */
2914 case ovly_auto: /* overlay debugging automatic */
2915 /* Unles there is a gdbarch_overlay_update function,
2916 there's really nothing useful to do here (can't really go auto). */
2917 gdbarch = get_objfile_arch (osect->objfile);
2918 if (gdbarch_overlay_update_p (gdbarch))
2919 {
2920 if (overlay_cache_invalid)
2921 {
2922 overlay_invalidate_all ();
2923 overlay_cache_invalid = 0;
2924 }
2925 if (osect->ovly_mapped == -1)
2926 gdbarch_overlay_update (gdbarch, osect);
2927 }
2928 /* fall thru to manual case */
2929 case ovly_on: /* overlay debugging manual */
2930 return osect->ovly_mapped == 1;
2931 }
2932 }
2933
2934 /* Function: pc_in_unmapped_range
2935 If PC falls into the lma range of SECTION, return true, else false. */
2936
2937 CORE_ADDR
2938 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
2939 {
2940 if (section_is_overlay (section))
2941 {
2942 bfd *abfd = section->objfile->obfd;
2943 asection *bfd_section = section->the_bfd_section;
2944
2945 /* We assume the LMA is relocated by the same offset as the VMA. */
2946 bfd_vma size = bfd_get_section_size (bfd_section);
2947 CORE_ADDR offset = obj_section_offset (section);
2948
2949 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2950 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2951 return 1;
2952 }
2953
2954 return 0;
2955 }
2956
2957 /* Function: pc_in_mapped_range
2958 If PC falls into the vma range of SECTION, return true, else false. */
2959
2960 CORE_ADDR
2961 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
2962 {
2963 if (section_is_overlay (section))
2964 {
2965 if (obj_section_addr (section) <= pc
2966 && pc < obj_section_endaddr (section))
2967 return 1;
2968 }
2969
2970 return 0;
2971 }
2972
2973
2974 /* Return true if the mapped ranges of sections A and B overlap, false
2975 otherwise. */
2976 static int
2977 sections_overlap (struct obj_section *a, struct obj_section *b)
2978 {
2979 CORE_ADDR a_start = obj_section_addr (a);
2980 CORE_ADDR a_end = obj_section_endaddr (a);
2981 CORE_ADDR b_start = obj_section_addr (b);
2982 CORE_ADDR b_end = obj_section_endaddr (b);
2983
2984 return (a_start < b_end && b_start < a_end);
2985 }
2986
2987 /* Function: overlay_unmapped_address (PC, SECTION)
2988 Returns the address corresponding to PC in the unmapped (load) range.
2989 May be the same as PC. */
2990
2991 CORE_ADDR
2992 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
2993 {
2994 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
2995 {
2996 bfd *abfd = section->objfile->obfd;
2997 asection *bfd_section = section->the_bfd_section;
2998
2999 return pc + bfd_section_lma (abfd, bfd_section)
3000 - bfd_section_vma (abfd, bfd_section);
3001 }
3002
3003 return pc;
3004 }
3005
3006 /* Function: overlay_mapped_address (PC, SECTION)
3007 Returns the address corresponding to PC in the mapped (runtime) range.
3008 May be the same as PC. */
3009
3010 CORE_ADDR
3011 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3012 {
3013 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3014 {
3015 bfd *abfd = section->objfile->obfd;
3016 asection *bfd_section = section->the_bfd_section;
3017
3018 return pc + bfd_section_vma (abfd, bfd_section)
3019 - bfd_section_lma (abfd, bfd_section);
3020 }
3021
3022 return pc;
3023 }
3024
3025
3026 /* Function: symbol_overlayed_address
3027 Return one of two addresses (relative to the VMA or to the LMA),
3028 depending on whether the section is mapped or not. */
3029
3030 CORE_ADDR
3031 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3032 {
3033 if (overlay_debugging)
3034 {
3035 /* If the symbol has no section, just return its regular address. */
3036 if (section == 0)
3037 return address;
3038 /* If the symbol's section is not an overlay, just return its
3039 address. */
3040 if (!section_is_overlay (section))
3041 return address;
3042 /* If the symbol's section is mapped, just return its address. */
3043 if (section_is_mapped (section))
3044 return address;
3045 /*
3046 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3047 * then return its LOADED address rather than its vma address!!
3048 */
3049 return overlay_unmapped_address (address, section);
3050 }
3051 return address;
3052 }
3053
3054 /* Function: find_pc_overlay (PC)
3055 Return the best-match overlay section for PC:
3056 If PC matches a mapped overlay section's VMA, return that section.
3057 Else if PC matches an unmapped section's VMA, return that section.
3058 Else if PC matches an unmapped section's LMA, return that section. */
3059
3060 struct obj_section *
3061 find_pc_overlay (CORE_ADDR pc)
3062 {
3063 struct objfile *objfile;
3064 struct obj_section *osect, *best_match = NULL;
3065
3066 if (overlay_debugging)
3067 ALL_OBJSECTIONS (objfile, osect)
3068 if (section_is_overlay (osect))
3069 {
3070 if (pc_in_mapped_range (pc, osect))
3071 {
3072 if (section_is_mapped (osect))
3073 return osect;
3074 else
3075 best_match = osect;
3076 }
3077 else if (pc_in_unmapped_range (pc, osect))
3078 best_match = osect;
3079 }
3080 return best_match;
3081 }
3082
3083 /* Function: find_pc_mapped_section (PC)
3084 If PC falls into the VMA address range of an overlay section that is
3085 currently marked as MAPPED, return that section. Else return NULL. */
3086
3087 struct obj_section *
3088 find_pc_mapped_section (CORE_ADDR pc)
3089 {
3090 struct objfile *objfile;
3091 struct obj_section *osect;
3092
3093 if (overlay_debugging)
3094 ALL_OBJSECTIONS (objfile, osect)
3095 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3096 return osect;
3097
3098 return NULL;
3099 }
3100
3101 /* Function: list_overlays_command
3102 Print a list of mapped sections and their PC ranges. */
3103
3104 void
3105 list_overlays_command (char *args, int from_tty)
3106 {
3107 int nmapped = 0;
3108 struct objfile *objfile;
3109 struct obj_section *osect;
3110
3111 if (overlay_debugging)
3112 ALL_OBJSECTIONS (objfile, osect)
3113 if (section_is_mapped (osect))
3114 {
3115 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3116 const char *name;
3117 bfd_vma lma, vma;
3118 int size;
3119
3120 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3121 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3122 size = bfd_get_section_size (osect->the_bfd_section);
3123 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3124
3125 printf_filtered ("Section %s, loaded at ", name);
3126 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3127 puts_filtered (" - ");
3128 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3129 printf_filtered (", mapped at ");
3130 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3131 puts_filtered (" - ");
3132 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3133 puts_filtered ("\n");
3134
3135 nmapped++;
3136 }
3137 if (nmapped == 0)
3138 printf_filtered (_("No sections are mapped.\n"));
3139 }
3140
3141 /* Function: map_overlay_command
3142 Mark the named section as mapped (ie. residing at its VMA address). */
3143
3144 void
3145 map_overlay_command (char *args, int from_tty)
3146 {
3147 struct objfile *objfile, *objfile2;
3148 struct obj_section *sec, *sec2;
3149
3150 if (!overlay_debugging)
3151 error (_("Overlay debugging not enabled. Use "
3152 "either the 'overlay auto' or\n"
3153 "the 'overlay manual' command."));
3154
3155 if (args == 0 || *args == 0)
3156 error (_("Argument required: name of an overlay section"));
3157
3158 /* First, find a section matching the user supplied argument. */
3159 ALL_OBJSECTIONS (objfile, sec)
3160 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3161 {
3162 /* Now, check to see if the section is an overlay. */
3163 if (!section_is_overlay (sec))
3164 continue; /* not an overlay section */
3165
3166 /* Mark the overlay as "mapped". */
3167 sec->ovly_mapped = 1;
3168
3169 /* Next, make a pass and unmap any sections that are
3170 overlapped by this new section: */
3171 ALL_OBJSECTIONS (objfile2, sec2)
3172 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3173 {
3174 if (info_verbose)
3175 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3176 bfd_section_name (objfile->obfd,
3177 sec2->the_bfd_section));
3178 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3179 }
3180 return;
3181 }
3182 error (_("No overlay section called %s"), args);
3183 }
3184
3185 /* Function: unmap_overlay_command
3186 Mark the overlay section as unmapped
3187 (ie. resident in its LMA address range, rather than the VMA range). */
3188
3189 void
3190 unmap_overlay_command (char *args, int from_tty)
3191 {
3192 struct objfile *objfile;
3193 struct obj_section *sec;
3194
3195 if (!overlay_debugging)
3196 error (_("Overlay debugging not enabled. "
3197 "Use either the 'overlay auto' or\n"
3198 "the 'overlay manual' command."));
3199
3200 if (args == 0 || *args == 0)
3201 error (_("Argument required: name of an overlay section"));
3202
3203 /* First, find a section matching the user supplied argument. */
3204 ALL_OBJSECTIONS (objfile, sec)
3205 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3206 {
3207 if (!sec->ovly_mapped)
3208 error (_("Section %s is not mapped"), args);
3209 sec->ovly_mapped = 0;
3210 return;
3211 }
3212 error (_("No overlay section called %s"), args);
3213 }
3214
3215 /* Function: overlay_auto_command
3216 A utility command to turn on overlay debugging.
3217 Possibly this should be done via a set/show command. */
3218
3219 static void
3220 overlay_auto_command (char *args, int from_tty)
3221 {
3222 overlay_debugging = ovly_auto;
3223 enable_overlay_breakpoints ();
3224 if (info_verbose)
3225 printf_unfiltered (_("Automatic overlay debugging enabled."));
3226 }
3227
3228 /* Function: overlay_manual_command
3229 A utility command to turn on overlay debugging.
3230 Possibly this should be done via a set/show command. */
3231
3232 static void
3233 overlay_manual_command (char *args, int from_tty)
3234 {
3235 overlay_debugging = ovly_on;
3236 disable_overlay_breakpoints ();
3237 if (info_verbose)
3238 printf_unfiltered (_("Overlay debugging enabled."));
3239 }
3240
3241 /* Function: overlay_off_command
3242 A utility command to turn on overlay debugging.
3243 Possibly this should be done via a set/show command. */
3244
3245 static void
3246 overlay_off_command (char *args, int from_tty)
3247 {
3248 overlay_debugging = ovly_off;
3249 disable_overlay_breakpoints ();
3250 if (info_verbose)
3251 printf_unfiltered (_("Overlay debugging disabled."));
3252 }
3253
3254 static void
3255 overlay_load_command (char *args, int from_tty)
3256 {
3257 struct gdbarch *gdbarch = get_current_arch ();
3258
3259 if (gdbarch_overlay_update_p (gdbarch))
3260 gdbarch_overlay_update (gdbarch, NULL);
3261 else
3262 error (_("This target does not know how to read its overlay state."));
3263 }
3264
3265 /* Function: overlay_command
3266 A place-holder for a mis-typed command. */
3267
3268 /* Command list chain containing all defined "overlay" subcommands. */
3269 struct cmd_list_element *overlaylist;
3270
3271 static void
3272 overlay_command (char *args, int from_tty)
3273 {
3274 printf_unfiltered
3275 ("\"overlay\" must be followed by the name of an overlay command.\n");
3276 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3277 }
3278
3279
3280 /* Target Overlays for the "Simplest" overlay manager:
3281
3282 This is GDB's default target overlay layer. It works with the
3283 minimal overlay manager supplied as an example by Cygnus. The
3284 entry point is via a function pointer "gdbarch_overlay_update",
3285 so targets that use a different runtime overlay manager can
3286 substitute their own overlay_update function and take over the
3287 function pointer.
3288
3289 The overlay_update function pokes around in the target's data structures
3290 to see what overlays are mapped, and updates GDB's overlay mapping with
3291 this information.
3292
3293 In this simple implementation, the target data structures are as follows:
3294 unsigned _novlys; /# number of overlay sections #/
3295 unsigned _ovly_table[_novlys][4] = {
3296 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3297 {..., ..., ..., ...},
3298 }
3299 unsigned _novly_regions; /# number of overlay regions #/
3300 unsigned _ovly_region_table[_novly_regions][3] = {
3301 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3302 {..., ..., ...},
3303 }
3304 These functions will attempt to update GDB's mappedness state in the
3305 symbol section table, based on the target's mappedness state.
3306
3307 To do this, we keep a cached copy of the target's _ovly_table, and
3308 attempt to detect when the cached copy is invalidated. The main
3309 entry point is "simple_overlay_update(SECT), which looks up SECT in
3310 the cached table and re-reads only the entry for that section from
3311 the target (whenever possible). */
3312
3313 /* Cached, dynamically allocated copies of the target data structures: */
3314 static unsigned (*cache_ovly_table)[4] = 0;
3315 static unsigned cache_novlys = 0;
3316 static CORE_ADDR cache_ovly_table_base = 0;
3317 enum ovly_index
3318 {
3319 VMA, SIZE, LMA, MAPPED
3320 };
3321
3322 /* Throw away the cached copy of _ovly_table. */
3323 static void
3324 simple_free_overlay_table (void)
3325 {
3326 if (cache_ovly_table)
3327 xfree (cache_ovly_table);
3328 cache_novlys = 0;
3329 cache_ovly_table = NULL;
3330 cache_ovly_table_base = 0;
3331 }
3332
3333 /* Read an array of ints of size SIZE from the target into a local buffer.
3334 Convert to host order. int LEN is number of ints. */
3335 static void
3336 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3337 int len, int size, enum bfd_endian byte_order)
3338 {
3339 /* FIXME (alloca): Not safe if array is very large. */
3340 gdb_byte *buf = alloca (len * size);
3341 int i;
3342
3343 read_memory (memaddr, buf, len * size);
3344 for (i = 0; i < len; i++)
3345 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3346 }
3347
3348 /* Find and grab a copy of the target _ovly_table
3349 (and _novlys, which is needed for the table's size). */
3350 static int
3351 simple_read_overlay_table (void)
3352 {
3353 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3354 struct gdbarch *gdbarch;
3355 int word_size;
3356 enum bfd_endian byte_order;
3357
3358 simple_free_overlay_table ();
3359 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3360 if (! novlys_msym)
3361 {
3362 error (_("Error reading inferior's overlay table: "
3363 "couldn't find `_novlys' variable\n"
3364 "in inferior. Use `overlay manual' mode."));
3365 return 0;
3366 }
3367
3368 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3369 if (! ovly_table_msym)
3370 {
3371 error (_("Error reading inferior's overlay table: couldn't find "
3372 "`_ovly_table' array\n"
3373 "in inferior. Use `overlay manual' mode."));
3374 return 0;
3375 }
3376
3377 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3378 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3379 byte_order = gdbarch_byte_order (gdbarch);
3380
3381 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3382 4, byte_order);
3383 cache_ovly_table
3384 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3385 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3386 read_target_long_array (cache_ovly_table_base,
3387 (unsigned int *) cache_ovly_table,
3388 cache_novlys * 4, word_size, byte_order);
3389
3390 return 1; /* SUCCESS */
3391 }
3392
3393 /* Function: simple_overlay_update_1
3394 A helper function for simple_overlay_update. Assuming a cached copy
3395 of _ovly_table exists, look through it to find an entry whose vma,
3396 lma and size match those of OSECT. Re-read the entry and make sure
3397 it still matches OSECT (else the table may no longer be valid).
3398 Set OSECT's mapped state to match the entry. Return: 1 for
3399 success, 0 for failure. */
3400
3401 static int
3402 simple_overlay_update_1 (struct obj_section *osect)
3403 {
3404 int i, size;
3405 bfd *obfd = osect->objfile->obfd;
3406 asection *bsect = osect->the_bfd_section;
3407 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3408 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3409 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3410
3411 size = bfd_get_section_size (osect->the_bfd_section);
3412 for (i = 0; i < cache_novlys; i++)
3413 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3414 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3415 /* && cache_ovly_table[i][SIZE] == size */ )
3416 {
3417 read_target_long_array (cache_ovly_table_base + i * word_size,
3418 (unsigned int *) cache_ovly_table[i],
3419 4, word_size, byte_order);
3420 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3421 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3422 /* && cache_ovly_table[i][SIZE] == size */ )
3423 {
3424 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3425 return 1;
3426 }
3427 else /* Warning! Warning! Target's ovly table has changed! */
3428 return 0;
3429 }
3430 return 0;
3431 }
3432
3433 /* Function: simple_overlay_update
3434 If OSECT is NULL, then update all sections' mapped state
3435 (after re-reading the entire target _ovly_table).
3436 If OSECT is non-NULL, then try to find a matching entry in the
3437 cached ovly_table and update only OSECT's mapped state.
3438 If a cached entry can't be found or the cache isn't valid, then
3439 re-read the entire cache, and go ahead and update all sections. */
3440
3441 void
3442 simple_overlay_update (struct obj_section *osect)
3443 {
3444 struct objfile *objfile;
3445
3446 /* Were we given an osect to look up? NULL means do all of them. */
3447 if (osect)
3448 /* Have we got a cached copy of the target's overlay table? */
3449 if (cache_ovly_table != NULL)
3450 {
3451 /* Does its cached location match what's currently in the
3452 symtab? */
3453 struct minimal_symbol *minsym
3454 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3455
3456 if (minsym == NULL)
3457 error (_("Error reading inferior's overlay table: couldn't "
3458 "find `_ovly_table' array\n"
3459 "in inferior. Use `overlay manual' mode."));
3460
3461 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3462 /* Then go ahead and try to look up this single section in
3463 the cache. */
3464 if (simple_overlay_update_1 (osect))
3465 /* Found it! We're done. */
3466 return;
3467 }
3468
3469 /* Cached table no good: need to read the entire table anew.
3470 Or else we want all the sections, in which case it's actually
3471 more efficient to read the whole table in one block anyway. */
3472
3473 if (! simple_read_overlay_table ())
3474 return;
3475
3476 /* Now may as well update all sections, even if only one was requested. */
3477 ALL_OBJSECTIONS (objfile, osect)
3478 if (section_is_overlay (osect))
3479 {
3480 int i, size;
3481 bfd *obfd = osect->objfile->obfd;
3482 asection *bsect = osect->the_bfd_section;
3483
3484 size = bfd_get_section_size (bsect);
3485 for (i = 0; i < cache_novlys; i++)
3486 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3487 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3488 /* && cache_ovly_table[i][SIZE] == size */ )
3489 { /* obj_section matches i'th entry in ovly_table. */
3490 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3491 break; /* finished with inner for loop: break out. */
3492 }
3493 }
3494 }
3495
3496 /* Set the output sections and output offsets for section SECTP in
3497 ABFD. The relocation code in BFD will read these offsets, so we
3498 need to be sure they're initialized. We map each section to itself,
3499 with no offset; this means that SECTP->vma will be honored. */
3500
3501 static void
3502 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3503 {
3504 sectp->output_section = sectp;
3505 sectp->output_offset = 0;
3506 }
3507
3508 /* Default implementation for sym_relocate. */
3509
3510
3511 bfd_byte *
3512 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3513 bfd_byte *buf)
3514 {
3515 bfd *abfd = objfile->obfd;
3516
3517 /* We're only interested in sections with relocation
3518 information. */
3519 if ((sectp->flags & SEC_RELOC) == 0)
3520 return NULL;
3521
3522 /* We will handle section offsets properly elsewhere, so relocate as if
3523 all sections begin at 0. */
3524 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3525
3526 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3527 }
3528
3529 /* Relocate the contents of a debug section SECTP in ABFD. The
3530 contents are stored in BUF if it is non-NULL, or returned in a
3531 malloc'd buffer otherwise.
3532
3533 For some platforms and debug info formats, shared libraries contain
3534 relocations against the debug sections (particularly for DWARF-2;
3535 one affected platform is PowerPC GNU/Linux, although it depends on
3536 the version of the linker in use). Also, ELF object files naturally
3537 have unresolved relocations for their debug sections. We need to apply
3538 the relocations in order to get the locations of symbols correct.
3539 Another example that may require relocation processing, is the
3540 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3541 debug section. */
3542
3543 bfd_byte *
3544 symfile_relocate_debug_section (struct objfile *objfile,
3545 asection *sectp, bfd_byte *buf)
3546 {
3547 gdb_assert (objfile->sf->sym_relocate);
3548
3549 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3550 }
3551
3552 struct symfile_segment_data *
3553 get_symfile_segment_data (bfd *abfd)
3554 {
3555 const struct sym_fns *sf = find_sym_fns (abfd);
3556
3557 if (sf == NULL)
3558 return NULL;
3559
3560 return sf->sym_segments (abfd);
3561 }
3562
3563 void
3564 free_symfile_segment_data (struct symfile_segment_data *data)
3565 {
3566 xfree (data->segment_bases);
3567 xfree (data->segment_sizes);
3568 xfree (data->segment_info);
3569 xfree (data);
3570 }
3571
3572
3573 /* Given:
3574 - DATA, containing segment addresses from the object file ABFD, and
3575 the mapping from ABFD's sections onto the segments that own them,
3576 and
3577 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3578 segment addresses reported by the target,
3579 store the appropriate offsets for each section in OFFSETS.
3580
3581 If there are fewer entries in SEGMENT_BASES than there are segments
3582 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3583
3584 If there are more entries, then ignore the extra. The target may
3585 not be able to distinguish between an empty data segment and a
3586 missing data segment; a missing text segment is less plausible. */
3587 int
3588 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3589 struct section_offsets *offsets,
3590 int num_segment_bases,
3591 const CORE_ADDR *segment_bases)
3592 {
3593 int i;
3594 asection *sect;
3595
3596 /* It doesn't make sense to call this function unless you have some
3597 segment base addresses. */
3598 gdb_assert (num_segment_bases > 0);
3599
3600 /* If we do not have segment mappings for the object file, we
3601 can not relocate it by segments. */
3602 gdb_assert (data != NULL);
3603 gdb_assert (data->num_segments > 0);
3604
3605 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3606 {
3607 int which = data->segment_info[i];
3608
3609 gdb_assert (0 <= which && which <= data->num_segments);
3610
3611 /* Don't bother computing offsets for sections that aren't
3612 loaded as part of any segment. */
3613 if (! which)
3614 continue;
3615
3616 /* Use the last SEGMENT_BASES entry as the address of any extra
3617 segments mentioned in DATA->segment_info. */
3618 if (which > num_segment_bases)
3619 which = num_segment_bases;
3620
3621 offsets->offsets[i] = (segment_bases[which - 1]
3622 - data->segment_bases[which - 1]);
3623 }
3624
3625 return 1;
3626 }
3627
3628 static void
3629 symfile_find_segment_sections (struct objfile *objfile)
3630 {
3631 bfd *abfd = objfile->obfd;
3632 int i;
3633 asection *sect;
3634 struct symfile_segment_data *data;
3635
3636 data = get_symfile_segment_data (objfile->obfd);
3637 if (data == NULL)
3638 return;
3639
3640 if (data->num_segments != 1 && data->num_segments != 2)
3641 {
3642 free_symfile_segment_data (data);
3643 return;
3644 }
3645
3646 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3647 {
3648 int which = data->segment_info[i];
3649
3650 if (which == 1)
3651 {
3652 if (objfile->sect_index_text == -1)
3653 objfile->sect_index_text = sect->index;
3654
3655 if (objfile->sect_index_rodata == -1)
3656 objfile->sect_index_rodata = sect->index;
3657 }
3658 else if (which == 2)
3659 {
3660 if (objfile->sect_index_data == -1)
3661 objfile->sect_index_data = sect->index;
3662
3663 if (objfile->sect_index_bss == -1)
3664 objfile->sect_index_bss = sect->index;
3665 }
3666 }
3667
3668 free_symfile_segment_data (data);
3669 }
3670
3671 void
3672 _initialize_symfile (void)
3673 {
3674 struct cmd_list_element *c;
3675
3676 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3677 Load symbol table from executable file FILE.\n\
3678 The `file' command can also load symbol tables, as well as setting the file\n\
3679 to execute."), &cmdlist);
3680 set_cmd_completer (c, filename_completer);
3681
3682 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3683 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3684 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3685 ...]\nADDR is the starting address of the file's text.\n\
3686 The optional arguments are section-name section-address pairs and\n\
3687 should be specified if the data and bss segments are not contiguous\n\
3688 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3689 &cmdlist);
3690 set_cmd_completer (c, filename_completer);
3691
3692 c = add_cmd ("load", class_files, load_command, _("\
3693 Dynamically load FILE into the running program, and record its symbols\n\
3694 for access from GDB.\n\
3695 A load OFFSET may also be given."), &cmdlist);
3696 set_cmd_completer (c, filename_completer);
3697
3698 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3699 &symbol_reloading, _("\
3700 Set dynamic symbol table reloading multiple times in one run."), _("\
3701 Show dynamic symbol table reloading multiple times in one run."), NULL,
3702 NULL,
3703 show_symbol_reloading,
3704 &setlist, &showlist);
3705
3706 add_prefix_cmd ("overlay", class_support, overlay_command,
3707 _("Commands for debugging overlays."), &overlaylist,
3708 "overlay ", 0, &cmdlist);
3709
3710 add_com_alias ("ovly", "overlay", class_alias, 1);
3711 add_com_alias ("ov", "overlay", class_alias, 1);
3712
3713 add_cmd ("map-overlay", class_support, map_overlay_command,
3714 _("Assert that an overlay section is mapped."), &overlaylist);
3715
3716 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3717 _("Assert that an overlay section is unmapped."), &overlaylist);
3718
3719 add_cmd ("list-overlays", class_support, list_overlays_command,
3720 _("List mappings of overlay sections."), &overlaylist);
3721
3722 add_cmd ("manual", class_support, overlay_manual_command,
3723 _("Enable overlay debugging."), &overlaylist);
3724 add_cmd ("off", class_support, overlay_off_command,
3725 _("Disable overlay debugging."), &overlaylist);
3726 add_cmd ("auto", class_support, overlay_auto_command,
3727 _("Enable automatic overlay debugging."), &overlaylist);
3728 add_cmd ("load-target", class_support, overlay_load_command,
3729 _("Read the overlay mapping state from the target."), &overlaylist);
3730
3731 /* Filename extension to source language lookup table: */
3732 init_filename_language_table ();
3733 add_setshow_string_noescape_cmd ("extension-language", class_files,
3734 &ext_args, _("\
3735 Set mapping between filename extension and source language."), _("\
3736 Show mapping between filename extension and source language."), _("\
3737 Usage: set extension-language .foo bar"),
3738 set_ext_lang_command,
3739 show_ext_args,
3740 &setlist, &showlist);
3741
3742 add_info ("extensions", info_ext_lang_command,
3743 _("All filename extensions associated with a source language."));
3744
3745 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3746 &debug_file_directory, _("\
3747 Set the directories where separate debug symbols are searched for."), _("\
3748 Show the directories where separate debug symbols are searched for."), _("\
3749 Separate debug symbols are first searched for in the same\n\
3750 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3751 and lastly at the path of the directory of the binary with\n\
3752 each global debug-file-directory component prepended."),
3753 NULL,
3754 show_debug_file_directory,
3755 &setlist, &showlist);
3756 }
This page took 0.104344 seconds and 4 git commands to generate.