* scripttempl/elf.sc: Discard sections with .gnu.lto_ prefix.
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h"
42 #include "regcache.h"
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54 #include "parser-defs.h"
55 #include "varobj.h"
56 #include "elf-bfd.h"
57 #include "solib.h"
58 #include "remote.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68
69 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
70 void (*deprecated_show_load_progress) (const char *section,
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
74 unsigned long total_size);
75 void (*deprecated_pre_add_symbol_hook) (const char *);
76 void (*deprecated_post_add_symbol_hook) (void);
77
78 static void clear_symtab_users_cleanup (void *ignore);
79
80 /* Global variables owned by this file */
81 int readnow_symbol_files; /* Read full symbols immediately */
82
83 /* External variables and functions referenced. */
84
85 extern void report_transfer_performance (unsigned long, time_t, time_t);
86
87 /* Functions this file defines */
88
89 #if 0
90 static int simple_read_overlay_region_table (void);
91 static void simple_free_overlay_region_table (void);
92 #endif
93
94 static void load_command (char *, int);
95
96 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
97
98 static void add_symbol_file_command (char *, int);
99
100 static void reread_separate_symbols (struct objfile *objfile);
101
102 static void cashier_psymtab (struct partial_symtab *);
103
104 bfd *symfile_bfd_open (char *);
105
106 int get_section_index (struct objfile *, char *);
107
108 static struct sym_fns *find_sym_fns (bfd *);
109
110 static void decrement_reading_symtab (void *);
111
112 static void overlay_invalidate_all (void);
113
114 void list_overlays_command (char *, int);
115
116 void map_overlay_command (char *, int);
117
118 void unmap_overlay_command (char *, int);
119
120 static void overlay_auto_command (char *, int);
121
122 static void overlay_manual_command (char *, int);
123
124 static void overlay_off_command (char *, int);
125
126 static void overlay_load_command (char *, int);
127
128 static void overlay_command (char *, int);
129
130 static void simple_free_overlay_table (void);
131
132 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
133 enum bfd_endian);
134
135 static int simple_read_overlay_table (void);
136
137 static int simple_overlay_update_1 (struct obj_section *);
138
139 static void add_filename_language (char *ext, enum language lang);
140
141 static void info_ext_lang_command (char *args, int from_tty);
142
143 static char *find_separate_debug_file (struct objfile *objfile);
144
145 static void init_filename_language_table (void);
146
147 static void symfile_find_segment_sections (struct objfile *objfile);
148
149 void _initialize_symfile (void);
150
151 /* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155 static struct sym_fns *symtab_fns = NULL;
156
157 /* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160 #ifdef SYMBOL_RELOADING_DEFAULT
161 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162 #else
163 int symbol_reloading = 0;
164 #endif
165 static void
166 show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 fprintf_filtered (file, _("\
170 Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172 }
173
174 /* If non-zero, gdb will notify the user when it is loading symbols
175 from a file. This is almost always what users will want to have happen;
176 but for programs with lots of dynamically linked libraries, the output
177 can be more noise than signal. */
178
179 int print_symbol_loading = 1;
180
181 /* If non-zero, shared library symbols will be added automatically
182 when the inferior is created, new libraries are loaded, or when
183 attaching to the inferior. This is almost always what users will
184 want to have happen; but for very large programs, the startup time
185 will be excessive, and so if this is a problem, the user can clear
186 this flag and then add the shared library symbols as needed. Note
187 that there is a potential for confusion, since if the shared
188 library symbols are not loaded, commands like "info fun" will *not*
189 report all the functions that are actually present. */
190
191 int auto_solib_add = 1;
192
193 /* For systems that support it, a threshold size in megabytes. If
194 automatically adding a new library's symbol table to those already
195 known to the debugger would cause the total shared library symbol
196 size to exceed this threshhold, then the shlib's symbols are not
197 added. The threshold is ignored if the user explicitly asks for a
198 shlib to be added, such as when using the "sharedlibrary"
199 command. */
200
201 int auto_solib_limit;
202 \f
203
204 /* This compares two partial symbols by names, using strcmp_iw_ordered
205 for the comparison. */
206
207 static int
208 compare_psymbols (const void *s1p, const void *s2p)
209 {
210 struct partial_symbol *const *s1 = s1p;
211 struct partial_symbol *const *s2 = s2p;
212
213 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
214 SYMBOL_SEARCH_NAME (*s2));
215 }
216
217 void
218 sort_pst_symbols (struct partial_symtab *pst)
219 {
220 /* Sort the global list; don't sort the static list */
221
222 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
223 pst->n_global_syms, sizeof (struct partial_symbol *),
224 compare_psymbols);
225 }
226
227 /* Make a null terminated copy of the string at PTR with SIZE characters in
228 the obstack pointed to by OBSTACKP . Returns the address of the copy.
229 Note that the string at PTR does not have to be null terminated, I.E. it
230 may be part of a larger string and we are only saving a substring. */
231
232 char *
233 obsavestring (const char *ptr, int size, struct obstack *obstackp)
234 {
235 char *p = (char *) obstack_alloc (obstackp, size + 1);
236 /* Open-coded memcpy--saves function call time. These strings are usually
237 short. FIXME: Is this really still true with a compiler that can
238 inline memcpy? */
239 {
240 const char *p1 = ptr;
241 char *p2 = p;
242 const char *end = ptr + size;
243 while (p1 != end)
244 *p2++ = *p1++;
245 }
246 p[size] = 0;
247 return p;
248 }
249
250 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
251 in the obstack pointed to by OBSTACKP. */
252
253 char *
254 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
255 const char *s3)
256 {
257 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
258 char *val = (char *) obstack_alloc (obstackp, len);
259 strcpy (val, s1);
260 strcat (val, s2);
261 strcat (val, s3);
262 return val;
263 }
264
265 /* True if we are nested inside psymtab_to_symtab. */
266
267 int currently_reading_symtab = 0;
268
269 static void
270 decrement_reading_symtab (void *dummy)
271 {
272 currently_reading_symtab--;
273 }
274
275 /* Get the symbol table that corresponds to a partial_symtab.
276 This is fast after the first time you do it. In fact, there
277 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
278 case inline. */
279
280 struct symtab *
281 psymtab_to_symtab (struct partial_symtab *pst)
282 {
283 /* If it's been looked up before, return it. */
284 if (pst->symtab)
285 return pst->symtab;
286
287 /* If it has not yet been read in, read it. */
288 if (!pst->readin)
289 {
290 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
291 currently_reading_symtab++;
292 (*pst->read_symtab) (pst);
293 do_cleanups (back_to);
294 }
295
296 return pst->symtab;
297 }
298
299 /* Remember the lowest-addressed loadable section we've seen.
300 This function is called via bfd_map_over_sections.
301
302 In case of equal vmas, the section with the largest size becomes the
303 lowest-addressed loadable section.
304
305 If the vmas and sizes are equal, the last section is considered the
306 lowest-addressed loadable section. */
307
308 void
309 find_lowest_section (bfd *abfd, asection *sect, void *obj)
310 {
311 asection **lowest = (asection **) obj;
312
313 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
314 return;
315 if (!*lowest)
316 *lowest = sect; /* First loadable section */
317 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
318 *lowest = sect; /* A lower loadable section */
319 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
320 && (bfd_section_size (abfd, (*lowest))
321 <= bfd_section_size (abfd, sect)))
322 *lowest = sect;
323 }
324
325 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
326
327 struct section_addr_info *
328 alloc_section_addr_info (size_t num_sections)
329 {
330 struct section_addr_info *sap;
331 size_t size;
332
333 size = (sizeof (struct section_addr_info)
334 + sizeof (struct other_sections) * (num_sections - 1));
335 sap = (struct section_addr_info *) xmalloc (size);
336 memset (sap, 0, size);
337 sap->num_sections = num_sections;
338
339 return sap;
340 }
341
342
343 /* Return a freshly allocated copy of ADDRS. The section names, if
344 any, are also freshly allocated copies of those in ADDRS. */
345 struct section_addr_info *
346 copy_section_addr_info (struct section_addr_info *addrs)
347 {
348 struct section_addr_info *copy
349 = alloc_section_addr_info (addrs->num_sections);
350 int i;
351
352 copy->num_sections = addrs->num_sections;
353 for (i = 0; i < addrs->num_sections; i++)
354 {
355 copy->other[i].addr = addrs->other[i].addr;
356 if (addrs->other[i].name)
357 copy->other[i].name = xstrdup (addrs->other[i].name);
358 else
359 copy->other[i].name = NULL;
360 copy->other[i].sectindex = addrs->other[i].sectindex;
361 }
362
363 return copy;
364 }
365
366
367
368 /* Build (allocate and populate) a section_addr_info struct from
369 an existing section table. */
370
371 extern struct section_addr_info *
372 build_section_addr_info_from_section_table (const struct target_section *start,
373 const struct target_section *end)
374 {
375 struct section_addr_info *sap;
376 const struct target_section *stp;
377 int oidx;
378
379 sap = alloc_section_addr_info (end - start);
380
381 for (stp = start, oidx = 0; stp != end; stp++)
382 {
383 if (bfd_get_section_flags (stp->bfd,
384 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
385 && oidx < end - start)
386 {
387 sap->other[oidx].addr = stp->addr;
388 sap->other[oidx].name
389 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
390 sap->other[oidx].sectindex = stp->the_bfd_section->index;
391 oidx++;
392 }
393 }
394
395 return sap;
396 }
397
398
399 /* Free all memory allocated by build_section_addr_info_from_section_table. */
400
401 extern void
402 free_section_addr_info (struct section_addr_info *sap)
403 {
404 int idx;
405
406 for (idx = 0; idx < sap->num_sections; idx++)
407 if (sap->other[idx].name)
408 xfree (sap->other[idx].name);
409 xfree (sap);
410 }
411
412
413 /* Initialize OBJFILE's sect_index_* members. */
414 static void
415 init_objfile_sect_indices (struct objfile *objfile)
416 {
417 asection *sect;
418 int i;
419
420 sect = bfd_get_section_by_name (objfile->obfd, ".text");
421 if (sect)
422 objfile->sect_index_text = sect->index;
423
424 sect = bfd_get_section_by_name (objfile->obfd, ".data");
425 if (sect)
426 objfile->sect_index_data = sect->index;
427
428 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
429 if (sect)
430 objfile->sect_index_bss = sect->index;
431
432 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
433 if (sect)
434 objfile->sect_index_rodata = sect->index;
435
436 /* This is where things get really weird... We MUST have valid
437 indices for the various sect_index_* members or gdb will abort.
438 So if for example, there is no ".text" section, we have to
439 accomodate that. First, check for a file with the standard
440 one or two segments. */
441
442 symfile_find_segment_sections (objfile);
443
444 /* Except when explicitly adding symbol files at some address,
445 section_offsets contains nothing but zeros, so it doesn't matter
446 which slot in section_offsets the individual sect_index_* members
447 index into. So if they are all zero, it is safe to just point
448 all the currently uninitialized indices to the first slot. But
449 beware: if this is the main executable, it may be relocated
450 later, e.g. by the remote qOffsets packet, and then this will
451 be wrong! That's why we try segments first. */
452
453 for (i = 0; i < objfile->num_sections; i++)
454 {
455 if (ANOFFSET (objfile->section_offsets, i) != 0)
456 {
457 break;
458 }
459 }
460 if (i == objfile->num_sections)
461 {
462 if (objfile->sect_index_text == -1)
463 objfile->sect_index_text = 0;
464 if (objfile->sect_index_data == -1)
465 objfile->sect_index_data = 0;
466 if (objfile->sect_index_bss == -1)
467 objfile->sect_index_bss = 0;
468 if (objfile->sect_index_rodata == -1)
469 objfile->sect_index_rodata = 0;
470 }
471 }
472
473 /* The arguments to place_section. */
474
475 struct place_section_arg
476 {
477 struct section_offsets *offsets;
478 CORE_ADDR lowest;
479 };
480
481 /* Find a unique offset to use for loadable section SECT if
482 the user did not provide an offset. */
483
484 static void
485 place_section (bfd *abfd, asection *sect, void *obj)
486 {
487 struct place_section_arg *arg = obj;
488 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
489 int done;
490 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
491
492 /* We are only interested in allocated sections. */
493 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
494 return;
495
496 /* If the user specified an offset, honor it. */
497 if (offsets[sect->index] != 0)
498 return;
499
500 /* Otherwise, let's try to find a place for the section. */
501 start_addr = (arg->lowest + align - 1) & -align;
502
503 do {
504 asection *cur_sec;
505
506 done = 1;
507
508 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
509 {
510 int indx = cur_sec->index;
511 CORE_ADDR cur_offset;
512
513 /* We don't need to compare against ourself. */
514 if (cur_sec == sect)
515 continue;
516
517 /* We can only conflict with allocated sections. */
518 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
519 continue;
520
521 /* If the section offset is 0, either the section has not been placed
522 yet, or it was the lowest section placed (in which case LOWEST
523 will be past its end). */
524 if (offsets[indx] == 0)
525 continue;
526
527 /* If this section would overlap us, then we must move up. */
528 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
529 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
530 {
531 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
532 start_addr = (start_addr + align - 1) & -align;
533 done = 0;
534 break;
535 }
536
537 /* Otherwise, we appear to be OK. So far. */
538 }
539 }
540 while (!done);
541
542 offsets[sect->index] = start_addr;
543 arg->lowest = start_addr + bfd_get_section_size (sect);
544 }
545
546 /* Parse the user's idea of an offset for dynamic linking, into our idea
547 of how to represent it for fast symbol reading. This is the default
548 version of the sym_fns.sym_offsets function for symbol readers that
549 don't need to do anything special. It allocates a section_offsets table
550 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
551
552 void
553 default_symfile_offsets (struct objfile *objfile,
554 struct section_addr_info *addrs)
555 {
556 int i;
557
558 objfile->num_sections = bfd_count_sections (objfile->obfd);
559 objfile->section_offsets = (struct section_offsets *)
560 obstack_alloc (&objfile->objfile_obstack,
561 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
562 memset (objfile->section_offsets, 0,
563 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
564
565 /* Now calculate offsets for section that were specified by the
566 caller. */
567 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
568 {
569 struct other_sections *osp ;
570
571 osp = &addrs->other[i] ;
572 if (osp->addr == 0)
573 continue;
574
575 /* Record all sections in offsets */
576 /* The section_offsets in the objfile are here filled in using
577 the BFD index. */
578 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
579 }
580
581 /* For relocatable files, all loadable sections will start at zero.
582 The zero is meaningless, so try to pick arbitrary addresses such
583 that no loadable sections overlap. This algorithm is quadratic,
584 but the number of sections in a single object file is generally
585 small. */
586 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
587 {
588 struct place_section_arg arg;
589 bfd *abfd = objfile->obfd;
590 asection *cur_sec;
591 CORE_ADDR lowest = 0;
592
593 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
594 /* We do not expect this to happen; just skip this step if the
595 relocatable file has a section with an assigned VMA. */
596 if (bfd_section_vma (abfd, cur_sec) != 0)
597 break;
598
599 if (cur_sec == NULL)
600 {
601 CORE_ADDR *offsets = objfile->section_offsets->offsets;
602
603 /* Pick non-overlapping offsets for sections the user did not
604 place explicitly. */
605 arg.offsets = objfile->section_offsets;
606 arg.lowest = 0;
607 bfd_map_over_sections (objfile->obfd, place_section, &arg);
608
609 /* Correctly filling in the section offsets is not quite
610 enough. Relocatable files have two properties that
611 (most) shared objects do not:
612
613 - Their debug information will contain relocations. Some
614 shared libraries do also, but many do not, so this can not
615 be assumed.
616
617 - If there are multiple code sections they will be loaded
618 at different relative addresses in memory than they are
619 in the objfile, since all sections in the file will start
620 at address zero.
621
622 Because GDB has very limited ability to map from an
623 address in debug info to the correct code section,
624 it relies on adding SECT_OFF_TEXT to things which might be
625 code. If we clear all the section offsets, and set the
626 section VMAs instead, then symfile_relocate_debug_section
627 will return meaningful debug information pointing at the
628 correct sections.
629
630 GDB has too many different data structures for section
631 addresses - a bfd, objfile, and so_list all have section
632 tables, as does exec_ops. Some of these could probably
633 be eliminated. */
634
635 for (cur_sec = abfd->sections; cur_sec != NULL;
636 cur_sec = cur_sec->next)
637 {
638 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
639 continue;
640
641 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
642 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
643 offsets[cur_sec->index]);
644 offsets[cur_sec->index] = 0;
645 }
646 }
647 }
648
649 /* Remember the bfd indexes for the .text, .data, .bss and
650 .rodata sections. */
651 init_objfile_sect_indices (objfile);
652 }
653
654
655 /* Divide the file into segments, which are individual relocatable units.
656 This is the default version of the sym_fns.sym_segments function for
657 symbol readers that do not have an explicit representation of segments.
658 It assumes that object files do not have segments, and fully linked
659 files have a single segment. */
660
661 struct symfile_segment_data *
662 default_symfile_segments (bfd *abfd)
663 {
664 int num_sections, i;
665 asection *sect;
666 struct symfile_segment_data *data;
667 CORE_ADDR low, high;
668
669 /* Relocatable files contain enough information to position each
670 loadable section independently; they should not be relocated
671 in segments. */
672 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
673 return NULL;
674
675 /* Make sure there is at least one loadable section in the file. */
676 for (sect = abfd->sections; sect != NULL; sect = sect->next)
677 {
678 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
679 continue;
680
681 break;
682 }
683 if (sect == NULL)
684 return NULL;
685
686 low = bfd_get_section_vma (abfd, sect);
687 high = low + bfd_get_section_size (sect);
688
689 data = XZALLOC (struct symfile_segment_data);
690 data->num_segments = 1;
691 data->segment_bases = XCALLOC (1, CORE_ADDR);
692 data->segment_sizes = XCALLOC (1, CORE_ADDR);
693
694 num_sections = bfd_count_sections (abfd);
695 data->segment_info = XCALLOC (num_sections, int);
696
697 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
698 {
699 CORE_ADDR vma;
700
701 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
702 continue;
703
704 vma = bfd_get_section_vma (abfd, sect);
705 if (vma < low)
706 low = vma;
707 if (vma + bfd_get_section_size (sect) > high)
708 high = vma + bfd_get_section_size (sect);
709
710 data->segment_info[i] = 1;
711 }
712
713 data->segment_bases[0] = low;
714 data->segment_sizes[0] = high - low;
715
716 return data;
717 }
718
719 /* Process a symbol file, as either the main file or as a dynamically
720 loaded file.
721
722 OBJFILE is where the symbols are to be read from.
723
724 ADDRS is the list of section load addresses. If the user has given
725 an 'add-symbol-file' command, then this is the list of offsets and
726 addresses he or she provided as arguments to the command; or, if
727 we're handling a shared library, these are the actual addresses the
728 sections are loaded at, according to the inferior's dynamic linker
729 (as gleaned by GDB's shared library code). We convert each address
730 into an offset from the section VMA's as it appears in the object
731 file, and then call the file's sym_offsets function to convert this
732 into a format-specific offset table --- a `struct section_offsets'.
733 If ADDRS is non-zero, OFFSETS must be zero.
734
735 OFFSETS is a table of section offsets already in the right
736 format-specific representation. NUM_OFFSETS is the number of
737 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
738 assume this is the proper table the call to sym_offsets described
739 above would produce. Instead of calling sym_offsets, we just dump
740 it right into objfile->section_offsets. (When we're re-reading
741 symbols from an objfile, we don't have the original load address
742 list any more; all we have is the section offset table.) If
743 OFFSETS is non-zero, ADDRS must be zero.
744
745 ADD_FLAGS encodes verbosity level, whether this is main symbol or
746 an extra symbol file such as dynamically loaded code, and wether
747 breakpoint reset should be deferred. */
748
749 void
750 syms_from_objfile (struct objfile *objfile,
751 struct section_addr_info *addrs,
752 struct section_offsets *offsets,
753 int num_offsets,
754 int add_flags)
755 {
756 struct section_addr_info *local_addr = NULL;
757 struct cleanup *old_chain;
758 const int mainline = add_flags & SYMFILE_MAINLINE;
759
760 gdb_assert (! (addrs && offsets));
761
762 init_entry_point_info (objfile);
763 objfile->sf = find_sym_fns (objfile->obfd);
764
765 if (objfile->sf == NULL)
766 return; /* No symbols. */
767
768 /* Make sure that partially constructed symbol tables will be cleaned up
769 if an error occurs during symbol reading. */
770 old_chain = make_cleanup_free_objfile (objfile);
771
772 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
773 list. We now establish the convention that an addr of zero means
774 no load address was specified. */
775 if (! addrs && ! offsets)
776 {
777 local_addr
778 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
779 make_cleanup (xfree, local_addr);
780 addrs = local_addr;
781 }
782
783 /* Now either addrs or offsets is non-zero. */
784
785 if (mainline)
786 {
787 /* We will modify the main symbol table, make sure that all its users
788 will be cleaned up if an error occurs during symbol reading. */
789 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
790
791 /* Since no error yet, throw away the old symbol table. */
792
793 if (symfile_objfile != NULL)
794 {
795 free_objfile (symfile_objfile);
796 symfile_objfile = NULL;
797 }
798
799 /* Currently we keep symbols from the add-symbol-file command.
800 If the user wants to get rid of them, they should do "symbol-file"
801 without arguments first. Not sure this is the best behavior
802 (PR 2207). */
803
804 (*objfile->sf->sym_new_init) (objfile);
805 }
806
807 /* Convert addr into an offset rather than an absolute address.
808 We find the lowest address of a loaded segment in the objfile,
809 and assume that <addr> is where that got loaded.
810
811 We no longer warn if the lowest section is not a text segment (as
812 happens for the PA64 port. */
813 if (!mainline && addrs && addrs->other[0].name)
814 {
815 asection *lower_sect;
816 asection *sect;
817 CORE_ADDR lower_offset;
818 int i;
819
820 /* Find lowest loadable section to be used as starting point for
821 continguous sections. FIXME!! won't work without call to find
822 .text first, but this assumes text is lowest section. */
823 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
824 if (lower_sect == NULL)
825 bfd_map_over_sections (objfile->obfd, find_lowest_section,
826 &lower_sect);
827 if (lower_sect == NULL)
828 {
829 warning (_("no loadable sections found in added symbol-file %s"),
830 objfile->name);
831 lower_offset = 0;
832 }
833 else
834 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
835
836 /* Calculate offsets for the loadable sections.
837 FIXME! Sections must be in order of increasing loadable section
838 so that contiguous sections can use the lower-offset!!!
839
840 Adjust offsets if the segments are not contiguous.
841 If the section is contiguous, its offset should be set to
842 the offset of the highest loadable section lower than it
843 (the loadable section directly below it in memory).
844 this_offset = lower_offset = lower_addr - lower_orig_addr */
845
846 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
847 {
848 if (addrs->other[i].addr != 0)
849 {
850 sect = bfd_get_section_by_name (objfile->obfd,
851 addrs->other[i].name);
852 if (sect)
853 {
854 addrs->other[i].addr
855 -= bfd_section_vma (objfile->obfd, sect);
856 lower_offset = addrs->other[i].addr;
857 /* This is the index used by BFD. */
858 addrs->other[i].sectindex = sect->index ;
859 }
860 else
861 {
862 warning (_("section %s not found in %s"),
863 addrs->other[i].name,
864 objfile->name);
865 addrs->other[i].addr = 0;
866 }
867 }
868 else
869 addrs->other[i].addr = lower_offset;
870 }
871 }
872
873 /* Initialize symbol reading routines for this objfile, allow complaints to
874 appear for this new file, and record how verbose to be, then do the
875 initial symbol reading for this file. */
876
877 (*objfile->sf->sym_init) (objfile);
878 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
879
880 if (addrs)
881 (*objfile->sf->sym_offsets) (objfile, addrs);
882 else
883 {
884 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
885
886 /* Just copy in the offset table directly as given to us. */
887 objfile->num_sections = num_offsets;
888 objfile->section_offsets
889 = ((struct section_offsets *)
890 obstack_alloc (&objfile->objfile_obstack, size));
891 memcpy (objfile->section_offsets, offsets, size);
892
893 init_objfile_sect_indices (objfile);
894 }
895
896 (*objfile->sf->sym_read) (objfile, mainline);
897
898 /* Discard cleanups as symbol reading was successful. */
899
900 discard_cleanups (old_chain);
901 xfree (local_addr);
902 }
903
904 /* Perform required actions after either reading in the initial
905 symbols for a new objfile, or mapping in the symbols from a reusable
906 objfile. */
907
908 void
909 new_symfile_objfile (struct objfile *objfile, int add_flags)
910 {
911
912 /* If this is the main symbol file we have to clean up all users of the
913 old main symbol file. Otherwise it is sufficient to fixup all the
914 breakpoints that may have been redefined by this symbol file. */
915 if (add_flags & SYMFILE_MAINLINE)
916 {
917 /* OK, make it the "real" symbol file. */
918 symfile_objfile = objfile;
919
920 clear_symtab_users ();
921 }
922 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
923 {
924 breakpoint_re_set ();
925 }
926
927 /* We're done reading the symbol file; finish off complaints. */
928 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
929 }
930
931 /* Process a symbol file, as either the main file or as a dynamically
932 loaded file.
933
934 ABFD is a BFD already open on the file, as from symfile_bfd_open.
935 This BFD will be closed on error, and is always consumed by this function.
936
937 ADD_FLAGS encodes verbosity, whether this is main symbol file or
938 extra, such as dynamically loaded code, and what to do with breakpoins.
939
940 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
941 syms_from_objfile, above.
942 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
943
944 Upon success, returns a pointer to the objfile that was added.
945 Upon failure, jumps back to command level (never returns). */
946
947 static struct objfile *
948 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
949 int add_flags,
950 struct section_addr_info *addrs,
951 struct section_offsets *offsets,
952 int num_offsets,
953 int flags)
954 {
955 struct objfile *objfile;
956 struct partial_symtab *psymtab;
957 char *debugfile = NULL;
958 struct section_addr_info *orig_addrs = NULL;
959 struct cleanup *my_cleanups;
960 const char *name = bfd_get_filename (abfd);
961 const int from_tty = add_flags & SYMFILE_VERBOSE;
962
963 my_cleanups = make_cleanup_bfd_close (abfd);
964
965 /* Give user a chance to burp if we'd be
966 interactively wiping out any existing symbols. */
967
968 if ((have_full_symbols () || have_partial_symbols ())
969 && (add_flags & SYMFILE_MAINLINE)
970 && from_tty
971 && !query (_("Load new symbol table from \"%s\"? "), name))
972 error (_("Not confirmed."));
973
974 objfile = allocate_objfile (abfd, flags);
975 discard_cleanups (my_cleanups);
976
977 if (addrs)
978 {
979 orig_addrs = copy_section_addr_info (addrs);
980 make_cleanup_free_section_addr_info (orig_addrs);
981 }
982
983 /* We either created a new mapped symbol table, mapped an existing
984 symbol table file which has not had initial symbol reading
985 performed, or need to read an unmapped symbol table. */
986 if (from_tty || info_verbose)
987 {
988 if (deprecated_pre_add_symbol_hook)
989 deprecated_pre_add_symbol_hook (name);
990 else
991 {
992 if (print_symbol_loading)
993 {
994 printf_unfiltered (_("Reading symbols from %s..."), name);
995 wrap_here ("");
996 gdb_flush (gdb_stdout);
997 }
998 }
999 }
1000 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1001 add_flags);
1002
1003 /* We now have at least a partial symbol table. Check to see if the
1004 user requested that all symbols be read on initial access via either
1005 the gdb startup command line or on a per symbol file basis. Expand
1006 all partial symbol tables for this objfile if so. */
1007
1008 if ((flags & OBJF_READNOW) || readnow_symbol_files)
1009 {
1010 if ((from_tty || info_verbose) && print_symbol_loading)
1011 {
1012 printf_unfiltered (_("expanding to full symbols..."));
1013 wrap_here ("");
1014 gdb_flush (gdb_stdout);
1015 }
1016
1017 for (psymtab = objfile->psymtabs;
1018 psymtab != NULL;
1019 psymtab = psymtab->next)
1020 {
1021 psymtab_to_symtab (psymtab);
1022 }
1023 }
1024
1025 /* If the file has its own symbol tables it has no separate debug info.
1026 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1027 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1028 if (objfile->psymtabs == NULL)
1029 debugfile = find_separate_debug_file (objfile);
1030 if (debugfile)
1031 {
1032 if (addrs != NULL)
1033 {
1034 objfile->separate_debug_objfile
1035 = symbol_file_add (debugfile, add_flags, orig_addrs, flags);
1036 }
1037 else
1038 {
1039 objfile->separate_debug_objfile
1040 = symbol_file_add (debugfile, add_flags, NULL, flags);
1041 }
1042 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1043 = objfile;
1044
1045 /* Put the separate debug object before the normal one, this is so that
1046 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1047 put_objfile_before (objfile->separate_debug_objfile, objfile);
1048
1049 xfree (debugfile);
1050 }
1051
1052 if (!have_partial_symbols () && !have_full_symbols ()
1053 && print_symbol_loading)
1054 {
1055 wrap_here ("");
1056 printf_unfiltered (_("(no debugging symbols found)"));
1057 if (from_tty || info_verbose)
1058 printf_unfiltered ("...");
1059 else
1060 printf_unfiltered ("\n");
1061 wrap_here ("");
1062 }
1063
1064 if (from_tty || info_verbose)
1065 {
1066 if (deprecated_post_add_symbol_hook)
1067 deprecated_post_add_symbol_hook ();
1068 else
1069 {
1070 if (print_symbol_loading)
1071 printf_unfiltered (_("done.\n"));
1072 }
1073 }
1074
1075 /* We print some messages regardless of whether 'from_tty ||
1076 info_verbose' is true, so make sure they go out at the right
1077 time. */
1078 gdb_flush (gdb_stdout);
1079
1080 do_cleanups (my_cleanups);
1081
1082 if (objfile->sf == NULL)
1083 {
1084 observer_notify_new_objfile (objfile);
1085 return objfile; /* No symbols. */
1086 }
1087
1088 new_symfile_objfile (objfile, add_flags);
1089
1090 observer_notify_new_objfile (objfile);
1091
1092 bfd_cache_close_all ();
1093 return (objfile);
1094 }
1095
1096
1097 /* Process the symbol file ABFD, as either the main file or as a
1098 dynamically loaded file.
1099
1100 See symbol_file_add_with_addrs_or_offsets's comments for
1101 details. */
1102 struct objfile *
1103 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1104 struct section_addr_info *addrs,
1105 int flags)
1106 {
1107 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1108 flags);
1109 }
1110
1111
1112 /* Process a symbol file, as either the main file or as a dynamically
1113 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1114 for details. */
1115 struct objfile *
1116 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1117 int flags)
1118 {
1119 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1120 flags);
1121 }
1122
1123
1124 /* Call symbol_file_add() with default values and update whatever is
1125 affected by the loading of a new main().
1126 Used when the file is supplied in the gdb command line
1127 and by some targets with special loading requirements.
1128 The auxiliary function, symbol_file_add_main_1(), has the flags
1129 argument for the switches that can only be specified in the symbol_file
1130 command itself. */
1131
1132 void
1133 symbol_file_add_main (char *args, int from_tty)
1134 {
1135 symbol_file_add_main_1 (args, from_tty, 0);
1136 }
1137
1138 static void
1139 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1140 {
1141 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1142 symbol_file_add (args, add_flags, NULL, flags);
1143
1144 /* Getting new symbols may change our opinion about
1145 what is frameless. */
1146 reinit_frame_cache ();
1147
1148 set_initial_language ();
1149 }
1150
1151 void
1152 symbol_file_clear (int from_tty)
1153 {
1154 if ((have_full_symbols () || have_partial_symbols ())
1155 && from_tty
1156 && (symfile_objfile
1157 ? !query (_("Discard symbol table from `%s'? "),
1158 symfile_objfile->name)
1159 : !query (_("Discard symbol table? "))))
1160 error (_("Not confirmed."));
1161
1162 free_all_objfiles ();
1163
1164 /* solib descriptors may have handles to objfiles. Since their
1165 storage has just been released, we'd better wipe the solib
1166 descriptors as well. */
1167 no_shared_libraries (NULL, from_tty);
1168
1169 symfile_objfile = NULL;
1170 if (from_tty)
1171 printf_unfiltered (_("No symbol file now.\n"));
1172 }
1173
1174 struct build_id
1175 {
1176 size_t size;
1177 gdb_byte data[1];
1178 };
1179
1180 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1181
1182 static struct build_id *
1183 build_id_bfd_get (bfd *abfd)
1184 {
1185 struct build_id *retval;
1186
1187 if (!bfd_check_format (abfd, bfd_object)
1188 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1189 || elf_tdata (abfd)->build_id == NULL)
1190 return NULL;
1191
1192 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1193 retval->size = elf_tdata (abfd)->build_id_size;
1194 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1195
1196 return retval;
1197 }
1198
1199 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1200
1201 static int
1202 build_id_verify (const char *filename, struct build_id *check)
1203 {
1204 bfd *abfd;
1205 struct build_id *found = NULL;
1206 int retval = 0;
1207
1208 /* We expect to be silent on the non-existing files. */
1209 if (remote_filename_p (filename))
1210 abfd = remote_bfd_open (filename, gnutarget);
1211 else
1212 abfd = bfd_openr (filename, gnutarget);
1213 if (abfd == NULL)
1214 return 0;
1215
1216 found = build_id_bfd_get (abfd);
1217
1218 if (found == NULL)
1219 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1220 else if (found->size != check->size
1221 || memcmp (found->data, check->data, found->size) != 0)
1222 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1223 else
1224 retval = 1;
1225
1226 if (!bfd_close (abfd))
1227 warning (_("cannot close \"%s\": %s"), filename,
1228 bfd_errmsg (bfd_get_error ()));
1229
1230 xfree (found);
1231
1232 return retval;
1233 }
1234
1235 static char *
1236 build_id_to_debug_filename (struct build_id *build_id)
1237 {
1238 char *link, *s, *retval = NULL;
1239 gdb_byte *data = build_id->data;
1240 size_t size = build_id->size;
1241
1242 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1243 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1244 + 2 * size + (sizeof ".debug" - 1) + 1);
1245 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1246 if (size > 0)
1247 {
1248 size--;
1249 s += sprintf (s, "%02x", (unsigned) *data++);
1250 }
1251 if (size > 0)
1252 *s++ = '/';
1253 while (size-- > 0)
1254 s += sprintf (s, "%02x", (unsigned) *data++);
1255 strcpy (s, ".debug");
1256
1257 /* lrealpath() is expensive even for the usually non-existent files. */
1258 if (access (link, F_OK) == 0)
1259 retval = lrealpath (link);
1260 xfree (link);
1261
1262 if (retval != NULL && !build_id_verify (retval, build_id))
1263 {
1264 xfree (retval);
1265 retval = NULL;
1266 }
1267
1268 return retval;
1269 }
1270
1271 static char *
1272 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1273 {
1274 asection *sect;
1275 bfd_size_type debuglink_size;
1276 unsigned long crc32;
1277 char *contents;
1278 int crc_offset;
1279 unsigned char *p;
1280
1281 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1282
1283 if (sect == NULL)
1284 return NULL;
1285
1286 debuglink_size = bfd_section_size (objfile->obfd, sect);
1287
1288 contents = xmalloc (debuglink_size);
1289 bfd_get_section_contents (objfile->obfd, sect, contents,
1290 (file_ptr)0, (bfd_size_type)debuglink_size);
1291
1292 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1293 crc_offset = strlen (contents) + 1;
1294 crc_offset = (crc_offset + 3) & ~3;
1295
1296 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1297
1298 *crc32_out = crc32;
1299 return contents;
1300 }
1301
1302 static int
1303 separate_debug_file_exists (const char *name, unsigned long crc)
1304 {
1305 unsigned long file_crc = 0;
1306 bfd *abfd;
1307 gdb_byte buffer[8*1024];
1308 int count;
1309
1310 if (remote_filename_p (name))
1311 abfd = remote_bfd_open (name, gnutarget);
1312 else
1313 abfd = bfd_openr (name, gnutarget);
1314
1315 if (!abfd)
1316 return 0;
1317
1318 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1319 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1320
1321 bfd_close (abfd);
1322
1323 return crc == file_crc;
1324 }
1325
1326 char *debug_file_directory = NULL;
1327 static void
1328 show_debug_file_directory (struct ui_file *file, int from_tty,
1329 struct cmd_list_element *c, const char *value)
1330 {
1331 fprintf_filtered (file, _("\
1332 The directory where separate debug symbols are searched for is \"%s\".\n"),
1333 value);
1334 }
1335
1336 #if ! defined (DEBUG_SUBDIRECTORY)
1337 #define DEBUG_SUBDIRECTORY ".debug"
1338 #endif
1339
1340 static char *
1341 find_separate_debug_file (struct objfile *objfile)
1342 {
1343 asection *sect;
1344 char *basename;
1345 char *dir;
1346 char *debugfile;
1347 char *name_copy;
1348 char *canon_name;
1349 bfd_size_type debuglink_size;
1350 unsigned long crc32;
1351 int i;
1352 struct build_id *build_id;
1353
1354 build_id = build_id_bfd_get (objfile->obfd);
1355 if (build_id != NULL)
1356 {
1357 char *build_id_name;
1358
1359 build_id_name = build_id_to_debug_filename (build_id);
1360 xfree (build_id);
1361 /* Prevent looping on a stripped .debug file. */
1362 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1363 {
1364 warning (_("\"%s\": separate debug info file has no debug info"),
1365 build_id_name);
1366 xfree (build_id_name);
1367 }
1368 else if (build_id_name != NULL)
1369 return build_id_name;
1370 }
1371
1372 basename = get_debug_link_info (objfile, &crc32);
1373
1374 if (basename == NULL)
1375 return NULL;
1376
1377 dir = xstrdup (objfile->name);
1378
1379 /* Strip off the final filename part, leaving the directory name,
1380 followed by a slash. Objfile names should always be absolute and
1381 tilde-expanded, so there should always be a slash in there
1382 somewhere. */
1383 for (i = strlen(dir) - 1; i >= 0; i--)
1384 {
1385 if (IS_DIR_SEPARATOR (dir[i]))
1386 break;
1387 }
1388 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1389 dir[i+1] = '\0';
1390
1391 /* Set I to max (strlen (canon_name), strlen (dir)). */
1392 canon_name = lrealpath (dir);
1393 i = strlen (dir);
1394 if (canon_name && strlen (canon_name) > i)
1395 i = strlen (canon_name);
1396
1397 debugfile = alloca (strlen (debug_file_directory) + 1
1398 + i
1399 + strlen (DEBUG_SUBDIRECTORY)
1400 + strlen ("/")
1401 + strlen (basename)
1402 + 1);
1403
1404 /* First try in the same directory as the original file. */
1405 strcpy (debugfile, dir);
1406 strcat (debugfile, basename);
1407
1408 if (separate_debug_file_exists (debugfile, crc32))
1409 {
1410 xfree (basename);
1411 xfree (dir);
1412 xfree (canon_name);
1413 return xstrdup (debugfile);
1414 }
1415
1416 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1417 strcpy (debugfile, dir);
1418 strcat (debugfile, DEBUG_SUBDIRECTORY);
1419 strcat (debugfile, "/");
1420 strcat (debugfile, basename);
1421
1422 if (separate_debug_file_exists (debugfile, crc32))
1423 {
1424 xfree (basename);
1425 xfree (dir);
1426 xfree (canon_name);
1427 return xstrdup (debugfile);
1428 }
1429
1430 /* Then try in the global debugfile directory. */
1431 strcpy (debugfile, debug_file_directory);
1432 strcat (debugfile, "/");
1433 strcat (debugfile, dir);
1434 strcat (debugfile, basename);
1435
1436 if (separate_debug_file_exists (debugfile, crc32))
1437 {
1438 xfree (basename);
1439 xfree (dir);
1440 xfree (canon_name);
1441 return xstrdup (debugfile);
1442 }
1443
1444 /* If the file is in the sysroot, try using its base path in the
1445 global debugfile directory. */
1446 if (canon_name
1447 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1448 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1449 {
1450 strcpy (debugfile, debug_file_directory);
1451 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1452 strcat (debugfile, "/");
1453 strcat (debugfile, basename);
1454
1455 if (separate_debug_file_exists (debugfile, crc32))
1456 {
1457 xfree (canon_name);
1458 xfree (basename);
1459 xfree (dir);
1460 return xstrdup (debugfile);
1461 }
1462 }
1463
1464 if (canon_name)
1465 xfree (canon_name);
1466
1467 xfree (basename);
1468 xfree (dir);
1469 return NULL;
1470 }
1471
1472
1473 /* This is the symbol-file command. Read the file, analyze its
1474 symbols, and add a struct symtab to a symtab list. The syntax of
1475 the command is rather bizarre:
1476
1477 1. The function buildargv implements various quoting conventions
1478 which are undocumented and have little or nothing in common with
1479 the way things are quoted (or not quoted) elsewhere in GDB.
1480
1481 2. Options are used, which are not generally used in GDB (perhaps
1482 "set mapped on", "set readnow on" would be better)
1483
1484 3. The order of options matters, which is contrary to GNU
1485 conventions (because it is confusing and inconvenient). */
1486
1487 void
1488 symbol_file_command (char *args, int from_tty)
1489 {
1490 dont_repeat ();
1491
1492 if (args == NULL)
1493 {
1494 symbol_file_clear (from_tty);
1495 }
1496 else
1497 {
1498 char **argv = gdb_buildargv (args);
1499 int flags = OBJF_USERLOADED;
1500 struct cleanup *cleanups;
1501 char *name = NULL;
1502
1503 cleanups = make_cleanup_freeargv (argv);
1504 while (*argv != NULL)
1505 {
1506 if (strcmp (*argv, "-readnow") == 0)
1507 flags |= OBJF_READNOW;
1508 else if (**argv == '-')
1509 error (_("unknown option `%s'"), *argv);
1510 else
1511 {
1512 symbol_file_add_main_1 (*argv, from_tty, flags);
1513 name = *argv;
1514 }
1515
1516 argv++;
1517 }
1518
1519 if (name == NULL)
1520 error (_("no symbol file name was specified"));
1521
1522 do_cleanups (cleanups);
1523 }
1524 }
1525
1526 /* Set the initial language.
1527
1528 FIXME: A better solution would be to record the language in the
1529 psymtab when reading partial symbols, and then use it (if known) to
1530 set the language. This would be a win for formats that encode the
1531 language in an easily discoverable place, such as DWARF. For
1532 stabs, we can jump through hoops looking for specially named
1533 symbols or try to intuit the language from the specific type of
1534 stabs we find, but we can't do that until later when we read in
1535 full symbols. */
1536
1537 void
1538 set_initial_language (void)
1539 {
1540 struct partial_symtab *pst;
1541 enum language lang = language_unknown;
1542
1543 pst = find_main_psymtab ();
1544 if (pst != NULL)
1545 {
1546 if (pst->filename != NULL)
1547 lang = deduce_language_from_filename (pst->filename);
1548
1549 if (lang == language_unknown)
1550 {
1551 /* Make C the default language */
1552 lang = language_c;
1553 }
1554
1555 set_language (lang);
1556 expected_language = current_language; /* Don't warn the user. */
1557 }
1558 }
1559
1560 /* Open the file specified by NAME and hand it off to BFD for
1561 preliminary analysis. Return a newly initialized bfd *, which
1562 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1563 absolute). In case of trouble, error() is called. */
1564
1565 bfd *
1566 symfile_bfd_open (char *name)
1567 {
1568 bfd *sym_bfd;
1569 int desc;
1570 char *absolute_name;
1571
1572 if (remote_filename_p (name))
1573 {
1574 name = xstrdup (name);
1575 sym_bfd = remote_bfd_open (name, gnutarget);
1576 if (!sym_bfd)
1577 {
1578 make_cleanup (xfree, name);
1579 error (_("`%s': can't open to read symbols: %s."), name,
1580 bfd_errmsg (bfd_get_error ()));
1581 }
1582
1583 if (!bfd_check_format (sym_bfd, bfd_object))
1584 {
1585 bfd_close (sym_bfd);
1586 make_cleanup (xfree, name);
1587 error (_("`%s': can't read symbols: %s."), name,
1588 bfd_errmsg (bfd_get_error ()));
1589 }
1590
1591 return sym_bfd;
1592 }
1593
1594 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1595
1596 /* Look down path for it, allocate 2nd new malloc'd copy. */
1597 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1598 O_RDONLY | O_BINARY, &absolute_name);
1599 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1600 if (desc < 0)
1601 {
1602 char *exename = alloca (strlen (name) + 5);
1603 strcat (strcpy (exename, name), ".exe");
1604 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1605 O_RDONLY | O_BINARY, &absolute_name);
1606 }
1607 #endif
1608 if (desc < 0)
1609 {
1610 make_cleanup (xfree, name);
1611 perror_with_name (name);
1612 }
1613
1614 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1615 bfd. It'll be freed in free_objfile(). */
1616 xfree (name);
1617 name = absolute_name;
1618
1619 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1620 if (!sym_bfd)
1621 {
1622 close (desc);
1623 make_cleanup (xfree, name);
1624 error (_("`%s': can't open to read symbols: %s."), name,
1625 bfd_errmsg (bfd_get_error ()));
1626 }
1627 bfd_set_cacheable (sym_bfd, 1);
1628
1629 if (!bfd_check_format (sym_bfd, bfd_object))
1630 {
1631 /* FIXME: should be checking for errors from bfd_close (for one
1632 thing, on error it does not free all the storage associated
1633 with the bfd). */
1634 bfd_close (sym_bfd); /* This also closes desc. */
1635 make_cleanup (xfree, name);
1636 error (_("`%s': can't read symbols: %s."), name,
1637 bfd_errmsg (bfd_get_error ()));
1638 }
1639
1640 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1641 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1642
1643 return sym_bfd;
1644 }
1645
1646 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1647 the section was not found. */
1648
1649 int
1650 get_section_index (struct objfile *objfile, char *section_name)
1651 {
1652 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1653
1654 if (sect)
1655 return sect->index;
1656 else
1657 return -1;
1658 }
1659
1660 /* Link SF into the global symtab_fns list. Called on startup by the
1661 _initialize routine in each object file format reader, to register
1662 information about each format the the reader is prepared to
1663 handle. */
1664
1665 void
1666 add_symtab_fns (struct sym_fns *sf)
1667 {
1668 sf->next = symtab_fns;
1669 symtab_fns = sf;
1670 }
1671
1672 /* Initialize OBJFILE to read symbols from its associated BFD. It
1673 either returns or calls error(). The result is an initialized
1674 struct sym_fns in the objfile structure, that contains cached
1675 information about the symbol file. */
1676
1677 static struct sym_fns *
1678 find_sym_fns (bfd *abfd)
1679 {
1680 struct sym_fns *sf;
1681 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1682
1683 if (our_flavour == bfd_target_srec_flavour
1684 || our_flavour == bfd_target_ihex_flavour
1685 || our_flavour == bfd_target_tekhex_flavour)
1686 return NULL; /* No symbols. */
1687
1688 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1689 if (our_flavour == sf->sym_flavour)
1690 return sf;
1691
1692 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1693 bfd_get_target (abfd));
1694 }
1695 \f
1696
1697 /* This function runs the load command of our current target. */
1698
1699 static void
1700 load_command (char *arg, int from_tty)
1701 {
1702 /* The user might be reloading because the binary has changed. Take
1703 this opportunity to check. */
1704 reopen_exec_file ();
1705 reread_symbols ();
1706
1707 if (arg == NULL)
1708 {
1709 char *parg;
1710 int count = 0;
1711
1712 parg = arg = get_exec_file (1);
1713
1714 /* Count how many \ " ' tab space there are in the name. */
1715 while ((parg = strpbrk (parg, "\\\"'\t ")))
1716 {
1717 parg++;
1718 count++;
1719 }
1720
1721 if (count)
1722 {
1723 /* We need to quote this string so buildargv can pull it apart. */
1724 char *temp = xmalloc (strlen (arg) + count + 1 );
1725 char *ptemp = temp;
1726 char *prev;
1727
1728 make_cleanup (xfree, temp);
1729
1730 prev = parg = arg;
1731 while ((parg = strpbrk (parg, "\\\"'\t ")))
1732 {
1733 strncpy (ptemp, prev, parg - prev);
1734 ptemp += parg - prev;
1735 prev = parg++;
1736 *ptemp++ = '\\';
1737 }
1738 strcpy (ptemp, prev);
1739
1740 arg = temp;
1741 }
1742 }
1743
1744 target_load (arg, from_tty);
1745
1746 /* After re-loading the executable, we don't really know which
1747 overlays are mapped any more. */
1748 overlay_cache_invalid = 1;
1749 }
1750
1751 /* This version of "load" should be usable for any target. Currently
1752 it is just used for remote targets, not inftarg.c or core files,
1753 on the theory that only in that case is it useful.
1754
1755 Avoiding xmodem and the like seems like a win (a) because we don't have
1756 to worry about finding it, and (b) On VMS, fork() is very slow and so
1757 we don't want to run a subprocess. On the other hand, I'm not sure how
1758 performance compares. */
1759
1760 static int validate_download = 0;
1761
1762 /* Callback service function for generic_load (bfd_map_over_sections). */
1763
1764 static void
1765 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1766 {
1767 bfd_size_type *sum = data;
1768
1769 *sum += bfd_get_section_size (asec);
1770 }
1771
1772 /* Opaque data for load_section_callback. */
1773 struct load_section_data {
1774 unsigned long load_offset;
1775 struct load_progress_data *progress_data;
1776 VEC(memory_write_request_s) *requests;
1777 };
1778
1779 /* Opaque data for load_progress. */
1780 struct load_progress_data {
1781 /* Cumulative data. */
1782 unsigned long write_count;
1783 unsigned long data_count;
1784 bfd_size_type total_size;
1785 };
1786
1787 /* Opaque data for load_progress for a single section. */
1788 struct load_progress_section_data {
1789 struct load_progress_data *cumulative;
1790
1791 /* Per-section data. */
1792 const char *section_name;
1793 ULONGEST section_sent;
1794 ULONGEST section_size;
1795 CORE_ADDR lma;
1796 gdb_byte *buffer;
1797 };
1798
1799 /* Target write callback routine for progress reporting. */
1800
1801 static void
1802 load_progress (ULONGEST bytes, void *untyped_arg)
1803 {
1804 struct load_progress_section_data *args = untyped_arg;
1805 struct load_progress_data *totals;
1806
1807 if (args == NULL)
1808 /* Writing padding data. No easy way to get at the cumulative
1809 stats, so just ignore this. */
1810 return;
1811
1812 totals = args->cumulative;
1813
1814 if (bytes == 0 && args->section_sent == 0)
1815 {
1816 /* The write is just starting. Let the user know we've started
1817 this section. */
1818 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1819 args->section_name, hex_string (args->section_size),
1820 paddress (target_gdbarch, args->lma));
1821 return;
1822 }
1823
1824 if (validate_download)
1825 {
1826 /* Broken memories and broken monitors manifest themselves here
1827 when bring new computers to life. This doubles already slow
1828 downloads. */
1829 /* NOTE: cagney/1999-10-18: A more efficient implementation
1830 might add a verify_memory() method to the target vector and
1831 then use that. remote.c could implement that method using
1832 the ``qCRC'' packet. */
1833 gdb_byte *check = xmalloc (bytes);
1834 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1835
1836 if (target_read_memory (args->lma, check, bytes) != 0)
1837 error (_("Download verify read failed at %s"),
1838 paddress (target_gdbarch, args->lma));
1839 if (memcmp (args->buffer, check, bytes) != 0)
1840 error (_("Download verify compare failed at %s"),
1841 paddress (target_gdbarch, args->lma));
1842 do_cleanups (verify_cleanups);
1843 }
1844 totals->data_count += bytes;
1845 args->lma += bytes;
1846 args->buffer += bytes;
1847 totals->write_count += 1;
1848 args->section_sent += bytes;
1849 if (quit_flag
1850 || (deprecated_ui_load_progress_hook != NULL
1851 && deprecated_ui_load_progress_hook (args->section_name,
1852 args->section_sent)))
1853 error (_("Canceled the download"));
1854
1855 if (deprecated_show_load_progress != NULL)
1856 deprecated_show_load_progress (args->section_name,
1857 args->section_sent,
1858 args->section_size,
1859 totals->data_count,
1860 totals->total_size);
1861 }
1862
1863 /* Callback service function for generic_load (bfd_map_over_sections). */
1864
1865 static void
1866 load_section_callback (bfd *abfd, asection *asec, void *data)
1867 {
1868 struct memory_write_request *new_request;
1869 struct load_section_data *args = data;
1870 struct load_progress_section_data *section_data;
1871 bfd_size_type size = bfd_get_section_size (asec);
1872 gdb_byte *buffer;
1873 const char *sect_name = bfd_get_section_name (abfd, asec);
1874
1875 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1876 return;
1877
1878 if (size == 0)
1879 return;
1880
1881 new_request = VEC_safe_push (memory_write_request_s,
1882 args->requests, NULL);
1883 memset (new_request, 0, sizeof (struct memory_write_request));
1884 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1885 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1886 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1887 new_request->data = xmalloc (size);
1888 new_request->baton = section_data;
1889
1890 buffer = new_request->data;
1891
1892 section_data->cumulative = args->progress_data;
1893 section_data->section_name = sect_name;
1894 section_data->section_size = size;
1895 section_data->lma = new_request->begin;
1896 section_data->buffer = buffer;
1897
1898 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1899 }
1900
1901 /* Clean up an entire memory request vector, including load
1902 data and progress records. */
1903
1904 static void
1905 clear_memory_write_data (void *arg)
1906 {
1907 VEC(memory_write_request_s) **vec_p = arg;
1908 VEC(memory_write_request_s) *vec = *vec_p;
1909 int i;
1910 struct memory_write_request *mr;
1911
1912 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1913 {
1914 xfree (mr->data);
1915 xfree (mr->baton);
1916 }
1917 VEC_free (memory_write_request_s, vec);
1918 }
1919
1920 void
1921 generic_load (char *args, int from_tty)
1922 {
1923 bfd *loadfile_bfd;
1924 struct timeval start_time, end_time;
1925 char *filename;
1926 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1927 struct load_section_data cbdata;
1928 struct load_progress_data total_progress;
1929
1930 CORE_ADDR entry;
1931 char **argv;
1932
1933 memset (&cbdata, 0, sizeof (cbdata));
1934 memset (&total_progress, 0, sizeof (total_progress));
1935 cbdata.progress_data = &total_progress;
1936
1937 make_cleanup (clear_memory_write_data, &cbdata.requests);
1938
1939 if (args == NULL)
1940 error_no_arg (_("file to load"));
1941
1942 argv = gdb_buildargv (args);
1943 make_cleanup_freeargv (argv);
1944
1945 filename = tilde_expand (argv[0]);
1946 make_cleanup (xfree, filename);
1947
1948 if (argv[1] != NULL)
1949 {
1950 char *endptr;
1951
1952 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1953
1954 /* If the last word was not a valid number then
1955 treat it as a file name with spaces in. */
1956 if (argv[1] == endptr)
1957 error (_("Invalid download offset:%s."), argv[1]);
1958
1959 if (argv[2] != NULL)
1960 error (_("Too many parameters."));
1961 }
1962
1963 /* Open the file for loading. */
1964 loadfile_bfd = bfd_openr (filename, gnutarget);
1965 if (loadfile_bfd == NULL)
1966 {
1967 perror_with_name (filename);
1968 return;
1969 }
1970
1971 /* FIXME: should be checking for errors from bfd_close (for one thing,
1972 on error it does not free all the storage associated with the
1973 bfd). */
1974 make_cleanup_bfd_close (loadfile_bfd);
1975
1976 if (!bfd_check_format (loadfile_bfd, bfd_object))
1977 {
1978 error (_("\"%s\" is not an object file: %s"), filename,
1979 bfd_errmsg (bfd_get_error ()));
1980 }
1981
1982 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1983 (void *) &total_progress.total_size);
1984
1985 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1986
1987 gettimeofday (&start_time, NULL);
1988
1989 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1990 load_progress) != 0)
1991 error (_("Load failed"));
1992
1993 gettimeofday (&end_time, NULL);
1994
1995 entry = bfd_get_start_address (loadfile_bfd);
1996 ui_out_text (uiout, "Start address ");
1997 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
1998 ui_out_text (uiout, ", load size ");
1999 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2000 ui_out_text (uiout, "\n");
2001 /* We were doing this in remote-mips.c, I suspect it is right
2002 for other targets too. */
2003 regcache_write_pc (get_current_regcache (), entry);
2004
2005 /* FIXME: are we supposed to call symbol_file_add or not? According
2006 to a comment from remote-mips.c (where a call to symbol_file_add
2007 was commented out), making the call confuses GDB if more than one
2008 file is loaded in. Some targets do (e.g., remote-vx.c) but
2009 others don't (or didn't - perhaps they have all been deleted). */
2010
2011 print_transfer_performance (gdb_stdout, total_progress.data_count,
2012 total_progress.write_count,
2013 &start_time, &end_time);
2014
2015 do_cleanups (old_cleanups);
2016 }
2017
2018 /* Report how fast the transfer went. */
2019
2020 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2021 replaced by print_transfer_performance (with a very different
2022 function signature). */
2023
2024 void
2025 report_transfer_performance (unsigned long data_count, time_t start_time,
2026 time_t end_time)
2027 {
2028 struct timeval start, end;
2029
2030 start.tv_sec = start_time;
2031 start.tv_usec = 0;
2032 end.tv_sec = end_time;
2033 end.tv_usec = 0;
2034
2035 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2036 }
2037
2038 void
2039 print_transfer_performance (struct ui_file *stream,
2040 unsigned long data_count,
2041 unsigned long write_count,
2042 const struct timeval *start_time,
2043 const struct timeval *end_time)
2044 {
2045 ULONGEST time_count;
2046
2047 /* Compute the elapsed time in milliseconds, as a tradeoff between
2048 accuracy and overflow. */
2049 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2050 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2051
2052 ui_out_text (uiout, "Transfer rate: ");
2053 if (time_count > 0)
2054 {
2055 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2056
2057 if (ui_out_is_mi_like_p (uiout))
2058 {
2059 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2060 ui_out_text (uiout, " bits/sec");
2061 }
2062 else if (rate < 1024)
2063 {
2064 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2065 ui_out_text (uiout, " bytes/sec");
2066 }
2067 else
2068 {
2069 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2070 ui_out_text (uiout, " KB/sec");
2071 }
2072 }
2073 else
2074 {
2075 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2076 ui_out_text (uiout, " bits in <1 sec");
2077 }
2078 if (write_count > 0)
2079 {
2080 ui_out_text (uiout, ", ");
2081 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2082 ui_out_text (uiout, " bytes/write");
2083 }
2084 ui_out_text (uiout, ".\n");
2085 }
2086
2087 /* This function allows the addition of incrementally linked object files.
2088 It does not modify any state in the target, only in the debugger. */
2089 /* Note: ezannoni 2000-04-13 This function/command used to have a
2090 special case syntax for the rombug target (Rombug is the boot
2091 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2092 rombug case, the user doesn't need to supply a text address,
2093 instead a call to target_link() (in target.c) would supply the
2094 value to use. We are now discontinuing this type of ad hoc syntax. */
2095
2096 static void
2097 add_symbol_file_command (char *args, int from_tty)
2098 {
2099 struct gdbarch *gdbarch = get_current_arch ();
2100 char *filename = NULL;
2101 int flags = OBJF_USERLOADED;
2102 char *arg;
2103 int expecting_option = 0;
2104 int section_index = 0;
2105 int argcnt = 0;
2106 int sec_num = 0;
2107 int i;
2108 int expecting_sec_name = 0;
2109 int expecting_sec_addr = 0;
2110 char **argv;
2111
2112 struct sect_opt
2113 {
2114 char *name;
2115 char *value;
2116 };
2117
2118 struct section_addr_info *section_addrs;
2119 struct sect_opt *sect_opts = NULL;
2120 size_t num_sect_opts = 0;
2121 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2122
2123 num_sect_opts = 16;
2124 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2125 * sizeof (struct sect_opt));
2126
2127 dont_repeat ();
2128
2129 if (args == NULL)
2130 error (_("add-symbol-file takes a file name and an address"));
2131
2132 argv = gdb_buildargv (args);
2133 make_cleanup_freeargv (argv);
2134
2135 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2136 {
2137 /* Process the argument. */
2138 if (argcnt == 0)
2139 {
2140 /* The first argument is the file name. */
2141 filename = tilde_expand (arg);
2142 make_cleanup (xfree, filename);
2143 }
2144 else
2145 if (argcnt == 1)
2146 {
2147 /* The second argument is always the text address at which
2148 to load the program. */
2149 sect_opts[section_index].name = ".text";
2150 sect_opts[section_index].value = arg;
2151 if (++section_index >= num_sect_opts)
2152 {
2153 num_sect_opts *= 2;
2154 sect_opts = ((struct sect_opt *)
2155 xrealloc (sect_opts,
2156 num_sect_opts
2157 * sizeof (struct sect_opt)));
2158 }
2159 }
2160 else
2161 {
2162 /* It's an option (starting with '-') or it's an argument
2163 to an option */
2164
2165 if (*arg == '-')
2166 {
2167 if (strcmp (arg, "-readnow") == 0)
2168 flags |= OBJF_READNOW;
2169 else if (strcmp (arg, "-s") == 0)
2170 {
2171 expecting_sec_name = 1;
2172 expecting_sec_addr = 1;
2173 }
2174 }
2175 else
2176 {
2177 if (expecting_sec_name)
2178 {
2179 sect_opts[section_index].name = arg;
2180 expecting_sec_name = 0;
2181 }
2182 else
2183 if (expecting_sec_addr)
2184 {
2185 sect_opts[section_index].value = arg;
2186 expecting_sec_addr = 0;
2187 if (++section_index >= num_sect_opts)
2188 {
2189 num_sect_opts *= 2;
2190 sect_opts = ((struct sect_opt *)
2191 xrealloc (sect_opts,
2192 num_sect_opts
2193 * sizeof (struct sect_opt)));
2194 }
2195 }
2196 else
2197 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2198 }
2199 }
2200 }
2201
2202 /* This command takes at least two arguments. The first one is a
2203 filename, and the second is the address where this file has been
2204 loaded. Abort now if this address hasn't been provided by the
2205 user. */
2206 if (section_index < 1)
2207 error (_("The address where %s has been loaded is missing"), filename);
2208
2209 /* Print the prompt for the query below. And save the arguments into
2210 a sect_addr_info structure to be passed around to other
2211 functions. We have to split this up into separate print
2212 statements because hex_string returns a local static
2213 string. */
2214
2215 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2216 section_addrs = alloc_section_addr_info (section_index);
2217 make_cleanup (xfree, section_addrs);
2218 for (i = 0; i < section_index; i++)
2219 {
2220 CORE_ADDR addr;
2221 char *val = sect_opts[i].value;
2222 char *sec = sect_opts[i].name;
2223
2224 addr = parse_and_eval_address (val);
2225
2226 /* Here we store the section offsets in the order they were
2227 entered on the command line. */
2228 section_addrs->other[sec_num].name = sec;
2229 section_addrs->other[sec_num].addr = addr;
2230 printf_unfiltered ("\t%s_addr = %s\n", sec,
2231 paddress (gdbarch, addr));
2232 sec_num++;
2233
2234 /* The object's sections are initialized when a
2235 call is made to build_objfile_section_table (objfile).
2236 This happens in reread_symbols.
2237 At this point, we don't know what file type this is,
2238 so we can't determine what section names are valid. */
2239 }
2240
2241 if (from_tty && (!query ("%s", "")))
2242 error (_("Not confirmed."));
2243
2244 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2245 section_addrs, flags);
2246
2247 /* Getting new symbols may change our opinion about what is
2248 frameless. */
2249 reinit_frame_cache ();
2250 do_cleanups (my_cleanups);
2251 }
2252 \f
2253
2254 /* Re-read symbols if a symbol-file has changed. */
2255 void
2256 reread_symbols (void)
2257 {
2258 struct objfile *objfile;
2259 long new_modtime;
2260 int reread_one = 0;
2261 struct stat new_statbuf;
2262 int res;
2263
2264 /* With the addition of shared libraries, this should be modified,
2265 the load time should be saved in the partial symbol tables, since
2266 different tables may come from different source files. FIXME.
2267 This routine should then walk down each partial symbol table
2268 and see if the symbol table that it originates from has been changed */
2269
2270 for (objfile = object_files; objfile; objfile = objfile->next)
2271 {
2272 if (objfile->obfd)
2273 {
2274 #ifdef DEPRECATED_IBM6000_TARGET
2275 /* If this object is from a shared library, then you should
2276 stat on the library name, not member name. */
2277
2278 if (objfile->obfd->my_archive)
2279 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2280 else
2281 #endif
2282 res = stat (objfile->name, &new_statbuf);
2283 if (res != 0)
2284 {
2285 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2286 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2287 objfile->name);
2288 continue;
2289 }
2290 new_modtime = new_statbuf.st_mtime;
2291 if (new_modtime != objfile->mtime)
2292 {
2293 struct cleanup *old_cleanups;
2294 struct section_offsets *offsets;
2295 int num_offsets;
2296 char *obfd_filename;
2297
2298 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2299 objfile->name);
2300
2301 /* There are various functions like symbol_file_add,
2302 symfile_bfd_open, syms_from_objfile, etc., which might
2303 appear to do what we want. But they have various other
2304 effects which we *don't* want. So we just do stuff
2305 ourselves. We don't worry about mapped files (for one thing,
2306 any mapped file will be out of date). */
2307
2308 /* If we get an error, blow away this objfile (not sure if
2309 that is the correct response for things like shared
2310 libraries). */
2311 old_cleanups = make_cleanup_free_objfile (objfile);
2312 /* We need to do this whenever any symbols go away. */
2313 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2314
2315 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2316 bfd_get_filename (exec_bfd)) == 0)
2317 {
2318 /* Reload EXEC_BFD without asking anything. */
2319
2320 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2321 }
2322
2323 /* Clean up any state BFD has sitting around. We don't need
2324 to close the descriptor but BFD lacks a way of closing the
2325 BFD without closing the descriptor. */
2326 obfd_filename = bfd_get_filename (objfile->obfd);
2327 if (!bfd_close (objfile->obfd))
2328 error (_("Can't close BFD for %s: %s"), objfile->name,
2329 bfd_errmsg (bfd_get_error ()));
2330 if (remote_filename_p (obfd_filename))
2331 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2332 else
2333 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2334 if (objfile->obfd == NULL)
2335 error (_("Can't open %s to read symbols."), objfile->name);
2336 /* bfd_openr sets cacheable to true, which is what we want. */
2337 if (!bfd_check_format (objfile->obfd, bfd_object))
2338 error (_("Can't read symbols from %s: %s."), objfile->name,
2339 bfd_errmsg (bfd_get_error ()));
2340
2341 /* Save the offsets, we will nuke them with the rest of the
2342 objfile_obstack. */
2343 num_offsets = objfile->num_sections;
2344 offsets = ((struct section_offsets *)
2345 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2346 memcpy (offsets, objfile->section_offsets,
2347 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2348
2349 /* Remove any references to this objfile in the global
2350 value lists. */
2351 preserve_values (objfile);
2352
2353 /* Nuke all the state that we will re-read. Much of the following
2354 code which sets things to NULL really is necessary to tell
2355 other parts of GDB that there is nothing currently there.
2356
2357 Try to keep the freeing order compatible with free_objfile. */
2358
2359 if (objfile->sf != NULL)
2360 {
2361 (*objfile->sf->sym_finish) (objfile);
2362 }
2363
2364 clear_objfile_data (objfile);
2365
2366 /* FIXME: Do we have to free a whole linked list, or is this
2367 enough? */
2368 if (objfile->global_psymbols.list)
2369 xfree (objfile->global_psymbols.list);
2370 memset (&objfile->global_psymbols, 0,
2371 sizeof (objfile->global_psymbols));
2372 if (objfile->static_psymbols.list)
2373 xfree (objfile->static_psymbols.list);
2374 memset (&objfile->static_psymbols, 0,
2375 sizeof (objfile->static_psymbols));
2376
2377 /* Free the obstacks for non-reusable objfiles */
2378 bcache_xfree (objfile->psymbol_cache);
2379 objfile->psymbol_cache = bcache_xmalloc ();
2380 bcache_xfree (objfile->macro_cache);
2381 objfile->macro_cache = bcache_xmalloc ();
2382 if (objfile->demangled_names_hash != NULL)
2383 {
2384 htab_delete (objfile->demangled_names_hash);
2385 objfile->demangled_names_hash = NULL;
2386 }
2387 obstack_free (&objfile->objfile_obstack, 0);
2388 objfile->sections = NULL;
2389 objfile->symtabs = NULL;
2390 objfile->psymtabs = NULL;
2391 objfile->psymtabs_addrmap = NULL;
2392 objfile->free_psymtabs = NULL;
2393 objfile->cp_namespace_symtab = NULL;
2394 objfile->msymbols = NULL;
2395 objfile->deprecated_sym_private = NULL;
2396 objfile->minimal_symbol_count = 0;
2397 memset (&objfile->msymbol_hash, 0,
2398 sizeof (objfile->msymbol_hash));
2399 memset (&objfile->msymbol_demangled_hash, 0,
2400 sizeof (objfile->msymbol_demangled_hash));
2401
2402 objfile->psymbol_cache = bcache_xmalloc ();
2403 objfile->macro_cache = bcache_xmalloc ();
2404 /* obstack_init also initializes the obstack so it is
2405 empty. We could use obstack_specify_allocation but
2406 gdb_obstack.h specifies the alloc/dealloc
2407 functions. */
2408 obstack_init (&objfile->objfile_obstack);
2409 if (build_objfile_section_table (objfile))
2410 {
2411 error (_("Can't find the file sections in `%s': %s"),
2412 objfile->name, bfd_errmsg (bfd_get_error ()));
2413 }
2414 terminate_minimal_symbol_table (objfile);
2415
2416 /* We use the same section offsets as from last time. I'm not
2417 sure whether that is always correct for shared libraries. */
2418 objfile->section_offsets = (struct section_offsets *)
2419 obstack_alloc (&objfile->objfile_obstack,
2420 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2421 memcpy (objfile->section_offsets, offsets,
2422 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2423 objfile->num_sections = num_offsets;
2424
2425 /* What the hell is sym_new_init for, anyway? The concept of
2426 distinguishing between the main file and additional files
2427 in this way seems rather dubious. */
2428 if (objfile == symfile_objfile)
2429 {
2430 (*objfile->sf->sym_new_init) (objfile);
2431 }
2432
2433 (*objfile->sf->sym_init) (objfile);
2434 clear_complaints (&symfile_complaints, 1, 1);
2435 /* The "mainline" parameter is a hideous hack; I think leaving it
2436 zero is OK since dbxread.c also does what it needs to do if
2437 objfile->global_psymbols.size is 0. */
2438 (*objfile->sf->sym_read) (objfile, 0);
2439 if (!have_partial_symbols () && !have_full_symbols ())
2440 {
2441 wrap_here ("");
2442 printf_unfiltered (_("(no debugging symbols found)\n"));
2443 wrap_here ("");
2444 }
2445
2446 /* We're done reading the symbol file; finish off complaints. */
2447 clear_complaints (&symfile_complaints, 0, 1);
2448
2449 /* Getting new symbols may change our opinion about what is
2450 frameless. */
2451
2452 reinit_frame_cache ();
2453
2454 /* Discard cleanups as symbol reading was successful. */
2455 discard_cleanups (old_cleanups);
2456
2457 /* If the mtime has changed between the time we set new_modtime
2458 and now, we *want* this to be out of date, so don't call stat
2459 again now. */
2460 objfile->mtime = new_modtime;
2461 reread_one = 1;
2462 reread_separate_symbols (objfile);
2463 init_entry_point_info (objfile);
2464 }
2465 }
2466 }
2467
2468 if (reread_one)
2469 {
2470 /* Notify objfiles that we've modified objfile sections. */
2471 objfiles_changed ();
2472
2473 clear_symtab_users ();
2474 /* At least one objfile has changed, so we can consider that
2475 the executable we're debugging has changed too. */
2476 observer_notify_executable_changed ();
2477 }
2478 }
2479
2480
2481 /* Handle separate debug info for OBJFILE, which has just been
2482 re-read:
2483 - If we had separate debug info before, but now we don't, get rid
2484 of the separated objfile.
2485 - If we didn't have separated debug info before, but now we do,
2486 read in the new separated debug info file.
2487 - If the debug link points to a different file, toss the old one
2488 and read the new one.
2489 This function does *not* handle the case where objfile is still
2490 using the same separate debug info file, but that file's timestamp
2491 has changed. That case should be handled by the loop in
2492 reread_symbols already. */
2493 static void
2494 reread_separate_symbols (struct objfile *objfile)
2495 {
2496 char *debug_file;
2497 unsigned long crc32;
2498
2499 /* Does the updated objfile's debug info live in a
2500 separate file? */
2501 debug_file = find_separate_debug_file (objfile);
2502
2503 if (objfile->separate_debug_objfile)
2504 {
2505 /* There are two cases where we need to get rid of
2506 the old separated debug info objfile:
2507 - if the new primary objfile doesn't have
2508 separated debug info, or
2509 - if the new primary objfile has separate debug
2510 info, but it's under a different filename.
2511
2512 If the old and new objfiles both have separate
2513 debug info, under the same filename, then we're
2514 okay --- if the separated file's contents have
2515 changed, we will have caught that when we
2516 visited it in this function's outermost
2517 loop. */
2518 if (! debug_file
2519 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2520 free_objfile (objfile->separate_debug_objfile);
2521 }
2522
2523 /* If the new objfile has separate debug info, and we
2524 haven't loaded it already, do so now. */
2525 if (debug_file
2526 && ! objfile->separate_debug_objfile)
2527 {
2528 /* Use the same section offset table as objfile itself.
2529 Preserve the flags from objfile that make sense. */
2530 objfile->separate_debug_objfile
2531 = (symbol_file_add_with_addrs_or_offsets
2532 (symfile_bfd_open (debug_file),
2533 info_verbose ? SYMFILE_VERBOSE : 0,
2534 0, /* No addr table. */
2535 objfile->section_offsets, objfile->num_sections,
2536 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2537 | OBJF_USERLOADED)));
2538 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2539 = objfile;
2540 }
2541 if (debug_file)
2542 xfree (debug_file);
2543 }
2544
2545
2546 \f
2547
2548
2549 typedef struct
2550 {
2551 char *ext;
2552 enum language lang;
2553 }
2554 filename_language;
2555
2556 static filename_language *filename_language_table;
2557 static int fl_table_size, fl_table_next;
2558
2559 static void
2560 add_filename_language (char *ext, enum language lang)
2561 {
2562 if (fl_table_next >= fl_table_size)
2563 {
2564 fl_table_size += 10;
2565 filename_language_table =
2566 xrealloc (filename_language_table,
2567 fl_table_size * sizeof (*filename_language_table));
2568 }
2569
2570 filename_language_table[fl_table_next].ext = xstrdup (ext);
2571 filename_language_table[fl_table_next].lang = lang;
2572 fl_table_next++;
2573 }
2574
2575 static char *ext_args;
2576 static void
2577 show_ext_args (struct ui_file *file, int from_tty,
2578 struct cmd_list_element *c, const char *value)
2579 {
2580 fprintf_filtered (file, _("\
2581 Mapping between filename extension and source language is \"%s\".\n"),
2582 value);
2583 }
2584
2585 static void
2586 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2587 {
2588 int i;
2589 char *cp = ext_args;
2590 enum language lang;
2591
2592 /* First arg is filename extension, starting with '.' */
2593 if (*cp != '.')
2594 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2595
2596 /* Find end of first arg. */
2597 while (*cp && !isspace (*cp))
2598 cp++;
2599
2600 if (*cp == '\0')
2601 error (_("'%s': two arguments required -- filename extension and language"),
2602 ext_args);
2603
2604 /* Null-terminate first arg */
2605 *cp++ = '\0';
2606
2607 /* Find beginning of second arg, which should be a source language. */
2608 while (*cp && isspace (*cp))
2609 cp++;
2610
2611 if (*cp == '\0')
2612 error (_("'%s': two arguments required -- filename extension and language"),
2613 ext_args);
2614
2615 /* Lookup the language from among those we know. */
2616 lang = language_enum (cp);
2617
2618 /* Now lookup the filename extension: do we already know it? */
2619 for (i = 0; i < fl_table_next; i++)
2620 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2621 break;
2622
2623 if (i >= fl_table_next)
2624 {
2625 /* new file extension */
2626 add_filename_language (ext_args, lang);
2627 }
2628 else
2629 {
2630 /* redefining a previously known filename extension */
2631
2632 /* if (from_tty) */
2633 /* query ("Really make files of type %s '%s'?", */
2634 /* ext_args, language_str (lang)); */
2635
2636 xfree (filename_language_table[i].ext);
2637 filename_language_table[i].ext = xstrdup (ext_args);
2638 filename_language_table[i].lang = lang;
2639 }
2640 }
2641
2642 static void
2643 info_ext_lang_command (char *args, int from_tty)
2644 {
2645 int i;
2646
2647 printf_filtered (_("Filename extensions and the languages they represent:"));
2648 printf_filtered ("\n\n");
2649 for (i = 0; i < fl_table_next; i++)
2650 printf_filtered ("\t%s\t- %s\n",
2651 filename_language_table[i].ext,
2652 language_str (filename_language_table[i].lang));
2653 }
2654
2655 static void
2656 init_filename_language_table (void)
2657 {
2658 if (fl_table_size == 0) /* protect against repetition */
2659 {
2660 fl_table_size = 20;
2661 fl_table_next = 0;
2662 filename_language_table =
2663 xmalloc (fl_table_size * sizeof (*filename_language_table));
2664 add_filename_language (".c", language_c);
2665 add_filename_language (".C", language_cplus);
2666 add_filename_language (".cc", language_cplus);
2667 add_filename_language (".cp", language_cplus);
2668 add_filename_language (".cpp", language_cplus);
2669 add_filename_language (".cxx", language_cplus);
2670 add_filename_language (".c++", language_cplus);
2671 add_filename_language (".java", language_java);
2672 add_filename_language (".class", language_java);
2673 add_filename_language (".m", language_objc);
2674 add_filename_language (".f", language_fortran);
2675 add_filename_language (".F", language_fortran);
2676 add_filename_language (".s", language_asm);
2677 add_filename_language (".sx", language_asm);
2678 add_filename_language (".S", language_asm);
2679 add_filename_language (".pas", language_pascal);
2680 add_filename_language (".p", language_pascal);
2681 add_filename_language (".pp", language_pascal);
2682 add_filename_language (".adb", language_ada);
2683 add_filename_language (".ads", language_ada);
2684 add_filename_language (".a", language_ada);
2685 add_filename_language (".ada", language_ada);
2686 }
2687 }
2688
2689 enum language
2690 deduce_language_from_filename (char *filename)
2691 {
2692 int i;
2693 char *cp;
2694
2695 if (filename != NULL)
2696 if ((cp = strrchr (filename, '.')) != NULL)
2697 for (i = 0; i < fl_table_next; i++)
2698 if (strcmp (cp, filename_language_table[i].ext) == 0)
2699 return filename_language_table[i].lang;
2700
2701 return language_unknown;
2702 }
2703 \f
2704 /* allocate_symtab:
2705
2706 Allocate and partly initialize a new symbol table. Return a pointer
2707 to it. error() if no space.
2708
2709 Caller must set these fields:
2710 LINETABLE(symtab)
2711 symtab->blockvector
2712 symtab->dirname
2713 symtab->free_code
2714 symtab->free_ptr
2715 possibly free_named_symtabs (symtab->filename);
2716 */
2717
2718 struct symtab *
2719 allocate_symtab (char *filename, struct objfile *objfile)
2720 {
2721 struct symtab *symtab;
2722
2723 symtab = (struct symtab *)
2724 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2725 memset (symtab, 0, sizeof (*symtab));
2726 symtab->filename = obsavestring (filename, strlen (filename),
2727 &objfile->objfile_obstack);
2728 symtab->fullname = NULL;
2729 symtab->language = deduce_language_from_filename (filename);
2730 symtab->debugformat = obsavestring ("unknown", 7,
2731 &objfile->objfile_obstack);
2732
2733 /* Hook it to the objfile it comes from */
2734
2735 symtab->objfile = objfile;
2736 symtab->next = objfile->symtabs;
2737 objfile->symtabs = symtab;
2738
2739 return (symtab);
2740 }
2741
2742 struct partial_symtab *
2743 allocate_psymtab (char *filename, struct objfile *objfile)
2744 {
2745 struct partial_symtab *psymtab;
2746
2747 if (objfile->free_psymtabs)
2748 {
2749 psymtab = objfile->free_psymtabs;
2750 objfile->free_psymtabs = psymtab->next;
2751 }
2752 else
2753 psymtab = (struct partial_symtab *)
2754 obstack_alloc (&objfile->objfile_obstack,
2755 sizeof (struct partial_symtab));
2756
2757 memset (psymtab, 0, sizeof (struct partial_symtab));
2758 psymtab->filename = obsavestring (filename, strlen (filename),
2759 &objfile->objfile_obstack);
2760 psymtab->symtab = NULL;
2761
2762 /* Prepend it to the psymtab list for the objfile it belongs to.
2763 Psymtabs are searched in most recent inserted -> least recent
2764 inserted order. */
2765
2766 psymtab->objfile = objfile;
2767 psymtab->next = objfile->psymtabs;
2768 objfile->psymtabs = psymtab;
2769 #if 0
2770 {
2771 struct partial_symtab **prev_pst;
2772 psymtab->objfile = objfile;
2773 psymtab->next = NULL;
2774 prev_pst = &(objfile->psymtabs);
2775 while ((*prev_pst) != NULL)
2776 prev_pst = &((*prev_pst)->next);
2777 (*prev_pst) = psymtab;
2778 }
2779 #endif
2780
2781 return (psymtab);
2782 }
2783
2784 void
2785 discard_psymtab (struct partial_symtab *pst)
2786 {
2787 struct partial_symtab **prev_pst;
2788
2789 /* From dbxread.c:
2790 Empty psymtabs happen as a result of header files which don't
2791 have any symbols in them. There can be a lot of them. But this
2792 check is wrong, in that a psymtab with N_SLINE entries but
2793 nothing else is not empty, but we don't realize that. Fixing
2794 that without slowing things down might be tricky. */
2795
2796 /* First, snip it out of the psymtab chain */
2797
2798 prev_pst = &(pst->objfile->psymtabs);
2799 while ((*prev_pst) != pst)
2800 prev_pst = &((*prev_pst)->next);
2801 (*prev_pst) = pst->next;
2802
2803 /* Next, put it on a free list for recycling */
2804
2805 pst->next = pst->objfile->free_psymtabs;
2806 pst->objfile->free_psymtabs = pst;
2807 }
2808 \f
2809
2810 /* Reset all data structures in gdb which may contain references to symbol
2811 table data. */
2812
2813 void
2814 clear_symtab_users (void)
2815 {
2816 /* Someday, we should do better than this, by only blowing away
2817 the things that really need to be blown. */
2818
2819 /* Clear the "current" symtab first, because it is no longer valid.
2820 breakpoint_re_set may try to access the current symtab. */
2821 clear_current_source_symtab_and_line ();
2822
2823 clear_displays ();
2824 breakpoint_re_set ();
2825 set_default_breakpoint (0, 0, 0, 0);
2826 clear_pc_function_cache ();
2827 observer_notify_new_objfile (NULL);
2828
2829 /* Clear globals which might have pointed into a removed objfile.
2830 FIXME: It's not clear which of these are supposed to persist
2831 between expressions and which ought to be reset each time. */
2832 expression_context_block = NULL;
2833 innermost_block = NULL;
2834
2835 /* Varobj may refer to old symbols, perform a cleanup. */
2836 varobj_invalidate ();
2837
2838 }
2839
2840 static void
2841 clear_symtab_users_cleanup (void *ignore)
2842 {
2843 clear_symtab_users ();
2844 }
2845
2846 /* clear_symtab_users_once:
2847
2848 This function is run after symbol reading, or from a cleanup.
2849 If an old symbol table was obsoleted, the old symbol table
2850 has been blown away, but the other GDB data structures that may
2851 reference it have not yet been cleared or re-directed. (The old
2852 symtab was zapped, and the cleanup queued, in free_named_symtab()
2853 below.)
2854
2855 This function can be queued N times as a cleanup, or called
2856 directly; it will do all the work the first time, and then will be a
2857 no-op until the next time it is queued. This works by bumping a
2858 counter at queueing time. Much later when the cleanup is run, or at
2859 the end of symbol processing (in case the cleanup is discarded), if
2860 the queued count is greater than the "done-count", we do the work
2861 and set the done-count to the queued count. If the queued count is
2862 less than or equal to the done-count, we just ignore the call. This
2863 is needed because reading a single .o file will often replace many
2864 symtabs (one per .h file, for example), and we don't want to reset
2865 the breakpoints N times in the user's face.
2866
2867 The reason we both queue a cleanup, and call it directly after symbol
2868 reading, is because the cleanup protects us in case of errors, but is
2869 discarded if symbol reading is successful. */
2870
2871 #if 0
2872 /* FIXME: As free_named_symtabs is currently a big noop this function
2873 is no longer needed. */
2874 static void clear_symtab_users_once (void);
2875
2876 static int clear_symtab_users_queued;
2877 static int clear_symtab_users_done;
2878
2879 static void
2880 clear_symtab_users_once (void)
2881 {
2882 /* Enforce once-per-`do_cleanups'-semantics */
2883 if (clear_symtab_users_queued <= clear_symtab_users_done)
2884 return;
2885 clear_symtab_users_done = clear_symtab_users_queued;
2886
2887 clear_symtab_users ();
2888 }
2889 #endif
2890
2891 /* Delete the specified psymtab, and any others that reference it. */
2892
2893 static void
2894 cashier_psymtab (struct partial_symtab *pst)
2895 {
2896 struct partial_symtab *ps, *pprev = NULL;
2897 int i;
2898
2899 /* Find its previous psymtab in the chain */
2900 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2901 {
2902 if (ps == pst)
2903 break;
2904 pprev = ps;
2905 }
2906
2907 if (ps)
2908 {
2909 /* Unhook it from the chain. */
2910 if (ps == pst->objfile->psymtabs)
2911 pst->objfile->psymtabs = ps->next;
2912 else
2913 pprev->next = ps->next;
2914
2915 /* FIXME, we can't conveniently deallocate the entries in the
2916 partial_symbol lists (global_psymbols/static_psymbols) that
2917 this psymtab points to. These just take up space until all
2918 the psymtabs are reclaimed. Ditto the dependencies list and
2919 filename, which are all in the objfile_obstack. */
2920
2921 /* We need to cashier any psymtab that has this one as a dependency... */
2922 again:
2923 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2924 {
2925 for (i = 0; i < ps->number_of_dependencies; i++)
2926 {
2927 if (ps->dependencies[i] == pst)
2928 {
2929 cashier_psymtab (ps);
2930 goto again; /* Must restart, chain has been munged. */
2931 }
2932 }
2933 }
2934 }
2935 }
2936
2937 /* If a symtab or psymtab for filename NAME is found, free it along
2938 with any dependent breakpoints, displays, etc.
2939 Used when loading new versions of object modules with the "add-file"
2940 command. This is only called on the top-level symtab or psymtab's name;
2941 it is not called for subsidiary files such as .h files.
2942
2943 Return value is 1 if we blew away the environment, 0 if not.
2944 FIXME. The return value appears to never be used.
2945
2946 FIXME. I think this is not the best way to do this. We should
2947 work on being gentler to the environment while still cleaning up
2948 all stray pointers into the freed symtab. */
2949
2950 int
2951 free_named_symtabs (char *name)
2952 {
2953 #if 0
2954 /* FIXME: With the new method of each objfile having it's own
2955 psymtab list, this function needs serious rethinking. In particular,
2956 why was it ever necessary to toss psymtabs with specific compilation
2957 unit filenames, as opposed to all psymtabs from a particular symbol
2958 file? -- fnf
2959 Well, the answer is that some systems permit reloading of particular
2960 compilation units. We want to blow away any old info about these
2961 compilation units, regardless of which objfiles they arrived in. --gnu. */
2962
2963 struct symtab *s;
2964 struct symtab *prev;
2965 struct partial_symtab *ps;
2966 struct blockvector *bv;
2967 int blewit = 0;
2968
2969 /* We only wack things if the symbol-reload switch is set. */
2970 if (!symbol_reloading)
2971 return 0;
2972
2973 /* Some symbol formats have trouble providing file names... */
2974 if (name == 0 || *name == '\0')
2975 return 0;
2976
2977 /* Look for a psymtab with the specified name. */
2978
2979 again2:
2980 for (ps = partial_symtab_list; ps; ps = ps->next)
2981 {
2982 if (strcmp (name, ps->filename) == 0)
2983 {
2984 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2985 goto again2; /* Must restart, chain has been munged */
2986 }
2987 }
2988
2989 /* Look for a symtab with the specified name. */
2990
2991 for (s = symtab_list; s; s = s->next)
2992 {
2993 if (strcmp (name, s->filename) == 0)
2994 break;
2995 prev = s;
2996 }
2997
2998 if (s)
2999 {
3000 if (s == symtab_list)
3001 symtab_list = s->next;
3002 else
3003 prev->next = s->next;
3004
3005 /* For now, queue a delete for all breakpoints, displays, etc., whether
3006 or not they depend on the symtab being freed. This should be
3007 changed so that only those data structures affected are deleted. */
3008
3009 /* But don't delete anything if the symtab is empty.
3010 This test is necessary due to a bug in "dbxread.c" that
3011 causes empty symtabs to be created for N_SO symbols that
3012 contain the pathname of the object file. (This problem
3013 has been fixed in GDB 3.9x). */
3014
3015 bv = BLOCKVECTOR (s);
3016 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3017 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3018 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3019 {
3020 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
3021 name);
3022 clear_symtab_users_queued++;
3023 make_cleanup (clear_symtab_users_once, 0);
3024 blewit = 1;
3025 }
3026 else
3027 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3028 name);
3029
3030 free_symtab (s);
3031 }
3032 else
3033 {
3034 /* It is still possible that some breakpoints will be affected
3035 even though no symtab was found, since the file might have
3036 been compiled without debugging, and hence not be associated
3037 with a symtab. In order to handle this correctly, we would need
3038 to keep a list of text address ranges for undebuggable files.
3039 For now, we do nothing, since this is a fairly obscure case. */
3040 ;
3041 }
3042
3043 /* FIXME, what about the minimal symbol table? */
3044 return blewit;
3045 #else
3046 return (0);
3047 #endif
3048 }
3049 \f
3050 /* Allocate and partially fill a partial symtab. It will be
3051 completely filled at the end of the symbol list.
3052
3053 FILENAME is the name of the symbol-file we are reading from. */
3054
3055 struct partial_symtab *
3056 start_psymtab_common (struct objfile *objfile,
3057 struct section_offsets *section_offsets, char *filename,
3058 CORE_ADDR textlow, struct partial_symbol **global_syms,
3059 struct partial_symbol **static_syms)
3060 {
3061 struct partial_symtab *psymtab;
3062
3063 psymtab = allocate_psymtab (filename, objfile);
3064 psymtab->section_offsets = section_offsets;
3065 psymtab->textlow = textlow;
3066 psymtab->texthigh = psymtab->textlow; /* default */
3067 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3068 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
3069 return (psymtab);
3070 }
3071 \f
3072 /* Helper function, initialises partial symbol structure and stashes
3073 it into objfile's bcache. Note that our caching mechanism will
3074 use all fields of struct partial_symbol to determine hash value of the
3075 structure. In other words, having two symbols with the same name but
3076 different domain (or address) is possible and correct. */
3077
3078 static const struct partial_symbol *
3079 add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3080 enum address_class class,
3081 long val, /* Value as a long */
3082 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3083 enum language language, struct objfile *objfile,
3084 int *added)
3085 {
3086 char *buf = name;
3087 /* psymbol is static so that there will be no uninitialized gaps in the
3088 structure which might contain random data, causing cache misses in
3089 bcache. */
3090 static struct partial_symbol psymbol;
3091
3092 if (name[namelength] != '\0')
3093 {
3094 buf = alloca (namelength + 1);
3095 /* Create local copy of the partial symbol */
3096 memcpy (buf, name, namelength);
3097 buf[namelength] = '\0';
3098 }
3099 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3100 if (val != 0)
3101 {
3102 SYMBOL_VALUE (&psymbol) = val;
3103 }
3104 else
3105 {
3106 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3107 }
3108 SYMBOL_SECTION (&psymbol) = 0;
3109 SYMBOL_LANGUAGE (&psymbol) = language;
3110 PSYMBOL_DOMAIN (&psymbol) = domain;
3111 PSYMBOL_CLASS (&psymbol) = class;
3112
3113 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3114
3115 /* Stash the partial symbol away in the cache */
3116 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3117 objfile->psymbol_cache, added);
3118 }
3119
3120 /* Helper function, adds partial symbol to the given partial symbol
3121 list. */
3122
3123 static void
3124 append_psymbol_to_list (struct psymbol_allocation_list *list,
3125 const struct partial_symbol *psym,
3126 struct objfile *objfile)
3127 {
3128 if (list->next >= list->list + list->size)
3129 extend_psymbol_list (list, objfile);
3130 *list->next++ = (struct partial_symbol *) psym;
3131 OBJSTAT (objfile, n_psyms++);
3132 }
3133
3134 /* Add a symbol with a long value to a psymtab.
3135 Since one arg is a struct, we pass in a ptr and deref it (sigh).
3136 Return the partial symbol that has been added. */
3137
3138 /* NOTE: carlton/2003-09-11: The reason why we return the partial
3139 symbol is so that callers can get access to the symbol's demangled
3140 name, which they don't have any cheap way to determine otherwise.
3141 (Currenly, dwarf2read.c is the only file who uses that information,
3142 though it's possible that other readers might in the future.)
3143 Elena wasn't thrilled about that, and I don't blame her, but we
3144 couldn't come up with a better way to get that information. If
3145 it's needed in other situations, we could consider breaking up
3146 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3147 cache. */
3148
3149 const struct partial_symbol *
3150 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
3151 enum address_class class,
3152 struct psymbol_allocation_list *list,
3153 long val, /* Value as a long */
3154 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3155 enum language language, struct objfile *objfile)
3156 {
3157 const struct partial_symbol *psym;
3158
3159 int added;
3160
3161 /* Stash the partial symbol away in the cache */
3162 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3163 val, coreaddr, language, objfile, &added);
3164
3165 /* Do not duplicate global partial symbols. */
3166 if (list == &objfile->global_psymbols
3167 && !added)
3168 return psym;
3169
3170 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3171 append_psymbol_to_list (list, psym, objfile);
3172 return psym;
3173 }
3174
3175 /* Initialize storage for partial symbols. */
3176
3177 void
3178 init_psymbol_list (struct objfile *objfile, int total_symbols)
3179 {
3180 /* Free any previously allocated psymbol lists. */
3181
3182 if (objfile->global_psymbols.list)
3183 {
3184 xfree (objfile->global_psymbols.list);
3185 }
3186 if (objfile->static_psymbols.list)
3187 {
3188 xfree (objfile->static_psymbols.list);
3189 }
3190
3191 /* Current best guess is that approximately a twentieth
3192 of the total symbols (in a debugging file) are global or static
3193 oriented symbols */
3194
3195 objfile->global_psymbols.size = total_symbols / 10;
3196 objfile->static_psymbols.size = total_symbols / 10;
3197
3198 if (objfile->global_psymbols.size > 0)
3199 {
3200 objfile->global_psymbols.next =
3201 objfile->global_psymbols.list = (struct partial_symbol **)
3202 xmalloc ((objfile->global_psymbols.size
3203 * sizeof (struct partial_symbol *)));
3204 }
3205 if (objfile->static_psymbols.size > 0)
3206 {
3207 objfile->static_psymbols.next =
3208 objfile->static_psymbols.list = (struct partial_symbol **)
3209 xmalloc ((objfile->static_psymbols.size
3210 * sizeof (struct partial_symbol *)));
3211 }
3212 }
3213
3214 /* OVERLAYS:
3215 The following code implements an abstraction for debugging overlay sections.
3216
3217 The target model is as follows:
3218 1) The gnu linker will permit multiple sections to be mapped into the
3219 same VMA, each with its own unique LMA (or load address).
3220 2) It is assumed that some runtime mechanism exists for mapping the
3221 sections, one by one, from the load address into the VMA address.
3222 3) This code provides a mechanism for gdb to keep track of which
3223 sections should be considered to be mapped from the VMA to the LMA.
3224 This information is used for symbol lookup, and memory read/write.
3225 For instance, if a section has been mapped then its contents
3226 should be read from the VMA, otherwise from the LMA.
3227
3228 Two levels of debugger support for overlays are available. One is
3229 "manual", in which the debugger relies on the user to tell it which
3230 overlays are currently mapped. This level of support is
3231 implemented entirely in the core debugger, and the information about
3232 whether a section is mapped is kept in the objfile->obj_section table.
3233
3234 The second level of support is "automatic", and is only available if
3235 the target-specific code provides functionality to read the target's
3236 overlay mapping table, and translate its contents for the debugger
3237 (by updating the mapped state information in the obj_section tables).
3238
3239 The interface is as follows:
3240 User commands:
3241 overlay map <name> -- tell gdb to consider this section mapped
3242 overlay unmap <name> -- tell gdb to consider this section unmapped
3243 overlay list -- list the sections that GDB thinks are mapped
3244 overlay read-target -- get the target's state of what's mapped
3245 overlay off/manual/auto -- set overlay debugging state
3246 Functional interface:
3247 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3248 section, return that section.
3249 find_pc_overlay(pc): find any overlay section that contains
3250 the pc, either in its VMA or its LMA
3251 section_is_mapped(sect): true if overlay is marked as mapped
3252 section_is_overlay(sect): true if section's VMA != LMA
3253 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3254 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3255 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3256 overlay_mapped_address(...): map an address from section's LMA to VMA
3257 overlay_unmapped_address(...): map an address from section's VMA to LMA
3258 symbol_overlayed_address(...): Return a "current" address for symbol:
3259 either in VMA or LMA depending on whether
3260 the symbol's section is currently mapped
3261 */
3262
3263 /* Overlay debugging state: */
3264
3265 enum overlay_debugging_state overlay_debugging = ovly_off;
3266 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3267
3268 /* Function: section_is_overlay (SECTION)
3269 Returns true if SECTION has VMA not equal to LMA, ie.
3270 SECTION is loaded at an address different from where it will "run". */
3271
3272 int
3273 section_is_overlay (struct obj_section *section)
3274 {
3275 if (overlay_debugging && section)
3276 {
3277 bfd *abfd = section->objfile->obfd;
3278 asection *bfd_section = section->the_bfd_section;
3279
3280 if (bfd_section_lma (abfd, bfd_section) != 0
3281 && bfd_section_lma (abfd, bfd_section)
3282 != bfd_section_vma (abfd, bfd_section))
3283 return 1;
3284 }
3285
3286 return 0;
3287 }
3288
3289 /* Function: overlay_invalidate_all (void)
3290 Invalidate the mapped state of all overlay sections (mark it as stale). */
3291
3292 static void
3293 overlay_invalidate_all (void)
3294 {
3295 struct objfile *objfile;
3296 struct obj_section *sect;
3297
3298 ALL_OBJSECTIONS (objfile, sect)
3299 if (section_is_overlay (sect))
3300 sect->ovly_mapped = -1;
3301 }
3302
3303 /* Function: section_is_mapped (SECTION)
3304 Returns true if section is an overlay, and is currently mapped.
3305
3306 Access to the ovly_mapped flag is restricted to this function, so
3307 that we can do automatic update. If the global flag
3308 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3309 overlay_invalidate_all. If the mapped state of the particular
3310 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3311
3312 int
3313 section_is_mapped (struct obj_section *osect)
3314 {
3315 struct gdbarch *gdbarch;
3316
3317 if (osect == 0 || !section_is_overlay (osect))
3318 return 0;
3319
3320 switch (overlay_debugging)
3321 {
3322 default:
3323 case ovly_off:
3324 return 0; /* overlay debugging off */
3325 case ovly_auto: /* overlay debugging automatic */
3326 /* Unles there is a gdbarch_overlay_update function,
3327 there's really nothing useful to do here (can't really go auto) */
3328 gdbarch = get_objfile_arch (osect->objfile);
3329 if (gdbarch_overlay_update_p (gdbarch))
3330 {
3331 if (overlay_cache_invalid)
3332 {
3333 overlay_invalidate_all ();
3334 overlay_cache_invalid = 0;
3335 }
3336 if (osect->ovly_mapped == -1)
3337 gdbarch_overlay_update (gdbarch, osect);
3338 }
3339 /* fall thru to manual case */
3340 case ovly_on: /* overlay debugging manual */
3341 return osect->ovly_mapped == 1;
3342 }
3343 }
3344
3345 /* Function: pc_in_unmapped_range
3346 If PC falls into the lma range of SECTION, return true, else false. */
3347
3348 CORE_ADDR
3349 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3350 {
3351 if (section_is_overlay (section))
3352 {
3353 bfd *abfd = section->objfile->obfd;
3354 asection *bfd_section = section->the_bfd_section;
3355
3356 /* We assume the LMA is relocated by the same offset as the VMA. */
3357 bfd_vma size = bfd_get_section_size (bfd_section);
3358 CORE_ADDR offset = obj_section_offset (section);
3359
3360 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3361 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3362 return 1;
3363 }
3364
3365 return 0;
3366 }
3367
3368 /* Function: pc_in_mapped_range
3369 If PC falls into the vma range of SECTION, return true, else false. */
3370
3371 CORE_ADDR
3372 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3373 {
3374 if (section_is_overlay (section))
3375 {
3376 if (obj_section_addr (section) <= pc
3377 && pc < obj_section_endaddr (section))
3378 return 1;
3379 }
3380
3381 return 0;
3382 }
3383
3384
3385 /* Return true if the mapped ranges of sections A and B overlap, false
3386 otherwise. */
3387 static int
3388 sections_overlap (struct obj_section *a, struct obj_section *b)
3389 {
3390 CORE_ADDR a_start = obj_section_addr (a);
3391 CORE_ADDR a_end = obj_section_endaddr (a);
3392 CORE_ADDR b_start = obj_section_addr (b);
3393 CORE_ADDR b_end = obj_section_endaddr (b);
3394
3395 return (a_start < b_end && b_start < a_end);
3396 }
3397
3398 /* Function: overlay_unmapped_address (PC, SECTION)
3399 Returns the address corresponding to PC in the unmapped (load) range.
3400 May be the same as PC. */
3401
3402 CORE_ADDR
3403 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3404 {
3405 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3406 {
3407 bfd *abfd = section->objfile->obfd;
3408 asection *bfd_section = section->the_bfd_section;
3409
3410 return pc + bfd_section_lma (abfd, bfd_section)
3411 - bfd_section_vma (abfd, bfd_section);
3412 }
3413
3414 return pc;
3415 }
3416
3417 /* Function: overlay_mapped_address (PC, SECTION)
3418 Returns the address corresponding to PC in the mapped (runtime) range.
3419 May be the same as PC. */
3420
3421 CORE_ADDR
3422 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3423 {
3424 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3425 {
3426 bfd *abfd = section->objfile->obfd;
3427 asection *bfd_section = section->the_bfd_section;
3428
3429 return pc + bfd_section_vma (abfd, bfd_section)
3430 - bfd_section_lma (abfd, bfd_section);
3431 }
3432
3433 return pc;
3434 }
3435
3436
3437 /* Function: symbol_overlayed_address
3438 Return one of two addresses (relative to the VMA or to the LMA),
3439 depending on whether the section is mapped or not. */
3440
3441 CORE_ADDR
3442 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3443 {
3444 if (overlay_debugging)
3445 {
3446 /* If the symbol has no section, just return its regular address. */
3447 if (section == 0)
3448 return address;
3449 /* If the symbol's section is not an overlay, just return its address */
3450 if (!section_is_overlay (section))
3451 return address;
3452 /* If the symbol's section is mapped, just return its address */
3453 if (section_is_mapped (section))
3454 return address;
3455 /*
3456 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3457 * then return its LOADED address rather than its vma address!!
3458 */
3459 return overlay_unmapped_address (address, section);
3460 }
3461 return address;
3462 }
3463
3464 /* Function: find_pc_overlay (PC)
3465 Return the best-match overlay section for PC:
3466 If PC matches a mapped overlay section's VMA, return that section.
3467 Else if PC matches an unmapped section's VMA, return that section.
3468 Else if PC matches an unmapped section's LMA, return that section. */
3469
3470 struct obj_section *
3471 find_pc_overlay (CORE_ADDR pc)
3472 {
3473 struct objfile *objfile;
3474 struct obj_section *osect, *best_match = NULL;
3475
3476 if (overlay_debugging)
3477 ALL_OBJSECTIONS (objfile, osect)
3478 if (section_is_overlay (osect))
3479 {
3480 if (pc_in_mapped_range (pc, osect))
3481 {
3482 if (section_is_mapped (osect))
3483 return osect;
3484 else
3485 best_match = osect;
3486 }
3487 else if (pc_in_unmapped_range (pc, osect))
3488 best_match = osect;
3489 }
3490 return best_match;
3491 }
3492
3493 /* Function: find_pc_mapped_section (PC)
3494 If PC falls into the VMA address range of an overlay section that is
3495 currently marked as MAPPED, return that section. Else return NULL. */
3496
3497 struct obj_section *
3498 find_pc_mapped_section (CORE_ADDR pc)
3499 {
3500 struct objfile *objfile;
3501 struct obj_section *osect;
3502
3503 if (overlay_debugging)
3504 ALL_OBJSECTIONS (objfile, osect)
3505 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3506 return osect;
3507
3508 return NULL;
3509 }
3510
3511 /* Function: list_overlays_command
3512 Print a list of mapped sections and their PC ranges */
3513
3514 void
3515 list_overlays_command (char *args, int from_tty)
3516 {
3517 int nmapped = 0;
3518 struct objfile *objfile;
3519 struct obj_section *osect;
3520
3521 if (overlay_debugging)
3522 ALL_OBJSECTIONS (objfile, osect)
3523 if (section_is_mapped (osect))
3524 {
3525 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3526 const char *name;
3527 bfd_vma lma, vma;
3528 int size;
3529
3530 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3531 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3532 size = bfd_get_section_size (osect->the_bfd_section);
3533 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3534
3535 printf_filtered ("Section %s, loaded at ", name);
3536 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3537 puts_filtered (" - ");
3538 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3539 printf_filtered (", mapped at ");
3540 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3541 puts_filtered (" - ");
3542 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3543 puts_filtered ("\n");
3544
3545 nmapped++;
3546 }
3547 if (nmapped == 0)
3548 printf_filtered (_("No sections are mapped.\n"));
3549 }
3550
3551 /* Function: map_overlay_command
3552 Mark the named section as mapped (ie. residing at its VMA address). */
3553
3554 void
3555 map_overlay_command (char *args, int from_tty)
3556 {
3557 struct objfile *objfile, *objfile2;
3558 struct obj_section *sec, *sec2;
3559
3560 if (!overlay_debugging)
3561 error (_("\
3562 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3563 the 'overlay manual' command."));
3564
3565 if (args == 0 || *args == 0)
3566 error (_("Argument required: name of an overlay section"));
3567
3568 /* First, find a section matching the user supplied argument */
3569 ALL_OBJSECTIONS (objfile, sec)
3570 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3571 {
3572 /* Now, check to see if the section is an overlay. */
3573 if (!section_is_overlay (sec))
3574 continue; /* not an overlay section */
3575
3576 /* Mark the overlay as "mapped" */
3577 sec->ovly_mapped = 1;
3578
3579 /* Next, make a pass and unmap any sections that are
3580 overlapped by this new section: */
3581 ALL_OBJSECTIONS (objfile2, sec2)
3582 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3583 {
3584 if (info_verbose)
3585 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3586 bfd_section_name (objfile->obfd,
3587 sec2->the_bfd_section));
3588 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3589 }
3590 return;
3591 }
3592 error (_("No overlay section called %s"), args);
3593 }
3594
3595 /* Function: unmap_overlay_command
3596 Mark the overlay section as unmapped
3597 (ie. resident in its LMA address range, rather than the VMA range). */
3598
3599 void
3600 unmap_overlay_command (char *args, int from_tty)
3601 {
3602 struct objfile *objfile;
3603 struct obj_section *sec;
3604
3605 if (!overlay_debugging)
3606 error (_("\
3607 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3608 the 'overlay manual' command."));
3609
3610 if (args == 0 || *args == 0)
3611 error (_("Argument required: name of an overlay section"));
3612
3613 /* First, find a section matching the user supplied argument */
3614 ALL_OBJSECTIONS (objfile, sec)
3615 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3616 {
3617 if (!sec->ovly_mapped)
3618 error (_("Section %s is not mapped"), args);
3619 sec->ovly_mapped = 0;
3620 return;
3621 }
3622 error (_("No overlay section called %s"), args);
3623 }
3624
3625 /* Function: overlay_auto_command
3626 A utility command to turn on overlay debugging.
3627 Possibly this should be done via a set/show command. */
3628
3629 static void
3630 overlay_auto_command (char *args, int from_tty)
3631 {
3632 overlay_debugging = ovly_auto;
3633 enable_overlay_breakpoints ();
3634 if (info_verbose)
3635 printf_unfiltered (_("Automatic overlay debugging enabled."));
3636 }
3637
3638 /* Function: overlay_manual_command
3639 A utility command to turn on overlay debugging.
3640 Possibly this should be done via a set/show command. */
3641
3642 static void
3643 overlay_manual_command (char *args, int from_tty)
3644 {
3645 overlay_debugging = ovly_on;
3646 disable_overlay_breakpoints ();
3647 if (info_verbose)
3648 printf_unfiltered (_("Overlay debugging enabled."));
3649 }
3650
3651 /* Function: overlay_off_command
3652 A utility command to turn on overlay debugging.
3653 Possibly this should be done via a set/show command. */
3654
3655 static void
3656 overlay_off_command (char *args, int from_tty)
3657 {
3658 overlay_debugging = ovly_off;
3659 disable_overlay_breakpoints ();
3660 if (info_verbose)
3661 printf_unfiltered (_("Overlay debugging disabled."));
3662 }
3663
3664 static void
3665 overlay_load_command (char *args, int from_tty)
3666 {
3667 struct gdbarch *gdbarch = get_current_arch ();
3668
3669 if (gdbarch_overlay_update_p (gdbarch))
3670 gdbarch_overlay_update (gdbarch, NULL);
3671 else
3672 error (_("This target does not know how to read its overlay state."));
3673 }
3674
3675 /* Function: overlay_command
3676 A place-holder for a mis-typed command */
3677
3678 /* Command list chain containing all defined "overlay" subcommands. */
3679 struct cmd_list_element *overlaylist;
3680
3681 static void
3682 overlay_command (char *args, int from_tty)
3683 {
3684 printf_unfiltered
3685 ("\"overlay\" must be followed by the name of an overlay command.\n");
3686 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3687 }
3688
3689
3690 /* Target Overlays for the "Simplest" overlay manager:
3691
3692 This is GDB's default target overlay layer. It works with the
3693 minimal overlay manager supplied as an example by Cygnus. The
3694 entry point is via a function pointer "gdbarch_overlay_update",
3695 so targets that use a different runtime overlay manager can
3696 substitute their own overlay_update function and take over the
3697 function pointer.
3698
3699 The overlay_update function pokes around in the target's data structures
3700 to see what overlays are mapped, and updates GDB's overlay mapping with
3701 this information.
3702
3703 In this simple implementation, the target data structures are as follows:
3704 unsigned _novlys; /# number of overlay sections #/
3705 unsigned _ovly_table[_novlys][4] = {
3706 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3707 {..., ..., ..., ...},
3708 }
3709 unsigned _novly_regions; /# number of overlay regions #/
3710 unsigned _ovly_region_table[_novly_regions][3] = {
3711 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3712 {..., ..., ...},
3713 }
3714 These functions will attempt to update GDB's mappedness state in the
3715 symbol section table, based on the target's mappedness state.
3716
3717 To do this, we keep a cached copy of the target's _ovly_table, and
3718 attempt to detect when the cached copy is invalidated. The main
3719 entry point is "simple_overlay_update(SECT), which looks up SECT in
3720 the cached table and re-reads only the entry for that section from
3721 the target (whenever possible).
3722 */
3723
3724 /* Cached, dynamically allocated copies of the target data structures: */
3725 static unsigned (*cache_ovly_table)[4] = 0;
3726 #if 0
3727 static unsigned (*cache_ovly_region_table)[3] = 0;
3728 #endif
3729 static unsigned cache_novlys = 0;
3730 #if 0
3731 static unsigned cache_novly_regions = 0;
3732 #endif
3733 static CORE_ADDR cache_ovly_table_base = 0;
3734 #if 0
3735 static CORE_ADDR cache_ovly_region_table_base = 0;
3736 #endif
3737 enum ovly_index
3738 {
3739 VMA, SIZE, LMA, MAPPED
3740 };
3741
3742 /* Throw away the cached copy of _ovly_table */
3743 static void
3744 simple_free_overlay_table (void)
3745 {
3746 if (cache_ovly_table)
3747 xfree (cache_ovly_table);
3748 cache_novlys = 0;
3749 cache_ovly_table = NULL;
3750 cache_ovly_table_base = 0;
3751 }
3752
3753 #if 0
3754 /* Throw away the cached copy of _ovly_region_table */
3755 static void
3756 simple_free_overlay_region_table (void)
3757 {
3758 if (cache_ovly_region_table)
3759 xfree (cache_ovly_region_table);
3760 cache_novly_regions = 0;
3761 cache_ovly_region_table = NULL;
3762 cache_ovly_region_table_base = 0;
3763 }
3764 #endif
3765
3766 /* Read an array of ints of size SIZE from the target into a local buffer.
3767 Convert to host order. int LEN is number of ints */
3768 static void
3769 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3770 int len, int size, enum bfd_endian byte_order)
3771 {
3772 /* FIXME (alloca): Not safe if array is very large. */
3773 gdb_byte *buf = alloca (len * size);
3774 int i;
3775
3776 read_memory (memaddr, buf, len * size);
3777 for (i = 0; i < len; i++)
3778 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3779 }
3780
3781 /* Find and grab a copy of the target _ovly_table
3782 (and _novlys, which is needed for the table's size) */
3783 static int
3784 simple_read_overlay_table (void)
3785 {
3786 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3787 struct gdbarch *gdbarch;
3788 int word_size;
3789 enum bfd_endian byte_order;
3790
3791 simple_free_overlay_table ();
3792 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3793 if (! novlys_msym)
3794 {
3795 error (_("Error reading inferior's overlay table: "
3796 "couldn't find `_novlys' variable\n"
3797 "in inferior. Use `overlay manual' mode."));
3798 return 0;
3799 }
3800
3801 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3802 if (! ovly_table_msym)
3803 {
3804 error (_("Error reading inferior's overlay table: couldn't find "
3805 "`_ovly_table' array\n"
3806 "in inferior. Use `overlay manual' mode."));
3807 return 0;
3808 }
3809
3810 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3811 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3812 byte_order = gdbarch_byte_order (gdbarch);
3813
3814 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3815 4, byte_order);
3816 cache_ovly_table
3817 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3818 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3819 read_target_long_array (cache_ovly_table_base,
3820 (unsigned int *) cache_ovly_table,
3821 cache_novlys * 4, word_size, byte_order);
3822
3823 return 1; /* SUCCESS */
3824 }
3825
3826 #if 0
3827 /* Find and grab a copy of the target _ovly_region_table
3828 (and _novly_regions, which is needed for the table's size) */
3829 static int
3830 simple_read_overlay_region_table (void)
3831 {
3832 struct minimal_symbol *msym;
3833 struct gdbarch *gdbarch;
3834 int word_size;
3835 enum bfd_endian byte_order;
3836
3837 simple_free_overlay_region_table ();
3838 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3839 if (msym == NULL)
3840 return 0; /* failure */
3841
3842 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3843 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3844 byte_order = gdbarch_byte_order (gdbarch);
3845
3846 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3847 4, byte_order);
3848
3849 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3850 if (cache_ovly_region_table != NULL)
3851 {
3852 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3853 if (msym != NULL)
3854 {
3855 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3856 read_target_long_array (cache_ovly_region_table_base,
3857 (unsigned int *) cache_ovly_region_table,
3858 cache_novly_regions * 3,
3859 word_size, byte_order);
3860 }
3861 else
3862 return 0; /* failure */
3863 }
3864 else
3865 return 0; /* failure */
3866 return 1; /* SUCCESS */
3867 }
3868 #endif
3869
3870 /* Function: simple_overlay_update_1
3871 A helper function for simple_overlay_update. Assuming a cached copy
3872 of _ovly_table exists, look through it to find an entry whose vma,
3873 lma and size match those of OSECT. Re-read the entry and make sure
3874 it still matches OSECT (else the table may no longer be valid).
3875 Set OSECT's mapped state to match the entry. Return: 1 for
3876 success, 0 for failure. */
3877
3878 static int
3879 simple_overlay_update_1 (struct obj_section *osect)
3880 {
3881 int i, size;
3882 bfd *obfd = osect->objfile->obfd;
3883 asection *bsect = osect->the_bfd_section;
3884 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3885 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3886 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3887
3888 size = bfd_get_section_size (osect->the_bfd_section);
3889 for (i = 0; i < cache_novlys; i++)
3890 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3891 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3892 /* && cache_ovly_table[i][SIZE] == size */ )
3893 {
3894 read_target_long_array (cache_ovly_table_base + i * word_size,
3895 (unsigned int *) cache_ovly_table[i],
3896 4, word_size, byte_order);
3897 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3898 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3899 /* && cache_ovly_table[i][SIZE] == size */ )
3900 {
3901 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3902 return 1;
3903 }
3904 else /* Warning! Warning! Target's ovly table has changed! */
3905 return 0;
3906 }
3907 return 0;
3908 }
3909
3910 /* Function: simple_overlay_update
3911 If OSECT is NULL, then update all sections' mapped state
3912 (after re-reading the entire target _ovly_table).
3913 If OSECT is non-NULL, then try to find a matching entry in the
3914 cached ovly_table and update only OSECT's mapped state.
3915 If a cached entry can't be found or the cache isn't valid, then
3916 re-read the entire cache, and go ahead and update all sections. */
3917
3918 void
3919 simple_overlay_update (struct obj_section *osect)
3920 {
3921 struct objfile *objfile;
3922
3923 /* Were we given an osect to look up? NULL means do all of them. */
3924 if (osect)
3925 /* Have we got a cached copy of the target's overlay table? */
3926 if (cache_ovly_table != NULL)
3927 /* Does its cached location match what's currently in the symtab? */
3928 if (cache_ovly_table_base ==
3929 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3930 /* Then go ahead and try to look up this single section in the cache */
3931 if (simple_overlay_update_1 (osect))
3932 /* Found it! We're done. */
3933 return;
3934
3935 /* Cached table no good: need to read the entire table anew.
3936 Or else we want all the sections, in which case it's actually
3937 more efficient to read the whole table in one block anyway. */
3938
3939 if (! simple_read_overlay_table ())
3940 return;
3941
3942 /* Now may as well update all sections, even if only one was requested. */
3943 ALL_OBJSECTIONS (objfile, osect)
3944 if (section_is_overlay (osect))
3945 {
3946 int i, size;
3947 bfd *obfd = osect->objfile->obfd;
3948 asection *bsect = osect->the_bfd_section;
3949
3950 size = bfd_get_section_size (bsect);
3951 for (i = 0; i < cache_novlys; i++)
3952 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3953 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3954 /* && cache_ovly_table[i][SIZE] == size */ )
3955 { /* obj_section matches i'th entry in ovly_table */
3956 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3957 break; /* finished with inner for loop: break out */
3958 }
3959 }
3960 }
3961
3962 /* Set the output sections and output offsets for section SECTP in
3963 ABFD. The relocation code in BFD will read these offsets, so we
3964 need to be sure they're initialized. We map each section to itself,
3965 with no offset; this means that SECTP->vma will be honored. */
3966
3967 static void
3968 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3969 {
3970 sectp->output_section = sectp;
3971 sectp->output_offset = 0;
3972 }
3973
3974 /* Relocate the contents of a debug section SECTP in ABFD. The
3975 contents are stored in BUF if it is non-NULL, or returned in a
3976 malloc'd buffer otherwise.
3977
3978 For some platforms and debug info formats, shared libraries contain
3979 relocations against the debug sections (particularly for DWARF-2;
3980 one affected platform is PowerPC GNU/Linux, although it depends on
3981 the version of the linker in use). Also, ELF object files naturally
3982 have unresolved relocations for their debug sections. We need to apply
3983 the relocations in order to get the locations of symbols correct.
3984 Another example that may require relocation processing, is the
3985 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3986 debug section. */
3987
3988 bfd_byte *
3989 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3990 {
3991 /* We're only interested in sections with relocation
3992 information. */
3993 if ((sectp->flags & SEC_RELOC) == 0)
3994 return NULL;
3995
3996 /* We will handle section offsets properly elsewhere, so relocate as if
3997 all sections begin at 0. */
3998 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3999
4000 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
4001 }
4002
4003 struct symfile_segment_data *
4004 get_symfile_segment_data (bfd *abfd)
4005 {
4006 struct sym_fns *sf = find_sym_fns (abfd);
4007
4008 if (sf == NULL)
4009 return NULL;
4010
4011 return sf->sym_segments (abfd);
4012 }
4013
4014 void
4015 free_symfile_segment_data (struct symfile_segment_data *data)
4016 {
4017 xfree (data->segment_bases);
4018 xfree (data->segment_sizes);
4019 xfree (data->segment_info);
4020 xfree (data);
4021 }
4022
4023
4024 /* Given:
4025 - DATA, containing segment addresses from the object file ABFD, and
4026 the mapping from ABFD's sections onto the segments that own them,
4027 and
4028 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
4029 segment addresses reported by the target,
4030 store the appropriate offsets for each section in OFFSETS.
4031
4032 If there are fewer entries in SEGMENT_BASES than there are segments
4033 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4034
4035 If there are more entries, then ignore the extra. The target may
4036 not be able to distinguish between an empty data segment and a
4037 missing data segment; a missing text segment is less plausible. */
4038 int
4039 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4040 struct section_offsets *offsets,
4041 int num_segment_bases,
4042 const CORE_ADDR *segment_bases)
4043 {
4044 int i;
4045 asection *sect;
4046
4047 /* It doesn't make sense to call this function unless you have some
4048 segment base addresses. */
4049 gdb_assert (segment_bases > 0);
4050
4051 /* If we do not have segment mappings for the object file, we
4052 can not relocate it by segments. */
4053 gdb_assert (data != NULL);
4054 gdb_assert (data->num_segments > 0);
4055
4056 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4057 {
4058 int which = data->segment_info[i];
4059
4060 gdb_assert (0 <= which && which <= data->num_segments);
4061
4062 /* Don't bother computing offsets for sections that aren't
4063 loaded as part of any segment. */
4064 if (! which)
4065 continue;
4066
4067 /* Use the last SEGMENT_BASES entry as the address of any extra
4068 segments mentioned in DATA->segment_info. */
4069 if (which > num_segment_bases)
4070 which = num_segment_bases;
4071
4072 offsets->offsets[i] = (segment_bases[which - 1]
4073 - data->segment_bases[which - 1]);
4074 }
4075
4076 return 1;
4077 }
4078
4079 static void
4080 symfile_find_segment_sections (struct objfile *objfile)
4081 {
4082 bfd *abfd = objfile->obfd;
4083 int i;
4084 asection *sect;
4085 struct symfile_segment_data *data;
4086
4087 data = get_symfile_segment_data (objfile->obfd);
4088 if (data == NULL)
4089 return;
4090
4091 if (data->num_segments != 1 && data->num_segments != 2)
4092 {
4093 free_symfile_segment_data (data);
4094 return;
4095 }
4096
4097 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4098 {
4099 CORE_ADDR vma;
4100 int which = data->segment_info[i];
4101
4102 if (which == 1)
4103 {
4104 if (objfile->sect_index_text == -1)
4105 objfile->sect_index_text = sect->index;
4106
4107 if (objfile->sect_index_rodata == -1)
4108 objfile->sect_index_rodata = sect->index;
4109 }
4110 else if (which == 2)
4111 {
4112 if (objfile->sect_index_data == -1)
4113 objfile->sect_index_data = sect->index;
4114
4115 if (objfile->sect_index_bss == -1)
4116 objfile->sect_index_bss = sect->index;
4117 }
4118 }
4119
4120 free_symfile_segment_data (data);
4121 }
4122
4123 void
4124 _initialize_symfile (void)
4125 {
4126 struct cmd_list_element *c;
4127
4128 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4129 Load symbol table from executable file FILE.\n\
4130 The `file' command can also load symbol tables, as well as setting the file\n\
4131 to execute."), &cmdlist);
4132 set_cmd_completer (c, filename_completer);
4133
4134 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
4135 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
4136 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
4137 ADDR is the starting address of the file's text.\n\
4138 The optional arguments are section-name section-address pairs and\n\
4139 should be specified if the data and bss segments are not contiguous\n\
4140 with the text. SECT is a section name to be loaded at SECT_ADDR."),
4141 &cmdlist);
4142 set_cmd_completer (c, filename_completer);
4143
4144 c = add_cmd ("load", class_files, load_command, _("\
4145 Dynamically load FILE into the running program, and record its symbols\n\
4146 for access from GDB.\n\
4147 A load OFFSET may also be given."), &cmdlist);
4148 set_cmd_completer (c, filename_completer);
4149
4150 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4151 &symbol_reloading, _("\
4152 Set dynamic symbol table reloading multiple times in one run."), _("\
4153 Show dynamic symbol table reloading multiple times in one run."), NULL,
4154 NULL,
4155 show_symbol_reloading,
4156 &setlist, &showlist);
4157
4158 add_prefix_cmd ("overlay", class_support, overlay_command,
4159 _("Commands for debugging overlays."), &overlaylist,
4160 "overlay ", 0, &cmdlist);
4161
4162 add_com_alias ("ovly", "overlay", class_alias, 1);
4163 add_com_alias ("ov", "overlay", class_alias, 1);
4164
4165 add_cmd ("map-overlay", class_support, map_overlay_command,
4166 _("Assert that an overlay section is mapped."), &overlaylist);
4167
4168 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4169 _("Assert that an overlay section is unmapped."), &overlaylist);
4170
4171 add_cmd ("list-overlays", class_support, list_overlays_command,
4172 _("List mappings of overlay sections."), &overlaylist);
4173
4174 add_cmd ("manual", class_support, overlay_manual_command,
4175 _("Enable overlay debugging."), &overlaylist);
4176 add_cmd ("off", class_support, overlay_off_command,
4177 _("Disable overlay debugging."), &overlaylist);
4178 add_cmd ("auto", class_support, overlay_auto_command,
4179 _("Enable automatic overlay debugging."), &overlaylist);
4180 add_cmd ("load-target", class_support, overlay_load_command,
4181 _("Read the overlay mapping state from the target."), &overlaylist);
4182
4183 /* Filename extension to source language lookup table: */
4184 init_filename_language_table ();
4185 add_setshow_string_noescape_cmd ("extension-language", class_files,
4186 &ext_args, _("\
4187 Set mapping between filename extension and source language."), _("\
4188 Show mapping between filename extension and source language."), _("\
4189 Usage: set extension-language .foo bar"),
4190 set_ext_lang_command,
4191 show_ext_args,
4192 &setlist, &showlist);
4193
4194 add_info ("extensions", info_ext_lang_command,
4195 _("All filename extensions associated with a source language."));
4196
4197 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4198 &debug_file_directory, _("\
4199 Set the directory where separate debug symbols are searched for."), _("\
4200 Show the directory where separate debug symbols are searched for."), _("\
4201 Separate debug symbols are first searched for in the same\n\
4202 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4203 and lastly at the path of the directory of the binary with\n\
4204 the global debug-file directory prepended."),
4205 NULL,
4206 show_debug_file_directory,
4207 &setlist, &showlist);
4208
4209 add_setshow_boolean_cmd ("symbol-loading", no_class,
4210 &print_symbol_loading, _("\
4211 Set printing of symbol loading messages."), _("\
4212 Show printing of symbol loading messages."), NULL,
4213 NULL,
4214 NULL,
4215 &setprintlist, &showprintlist);
4216 }
This page took 0.120946 seconds and 4 git commands to generate.