63bf3295d7fd6d2c2780d9b9c0d2fa369c0b9ba8
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57 #include "stack.h"
58 #include "gdb_bfd.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
72 void (*deprecated_show_load_progress) (const char *section,
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
76 unsigned long total_size);
77 void (*deprecated_pre_add_symbol_hook) (const char *);
78 void (*deprecated_post_add_symbol_hook) (void);
79
80 static void clear_symtab_users_cleanup (void *ignore);
81
82 /* Global variables owned by this file. */
83 int readnow_symbol_files; /* Read full symbols immediately. */
84
85 /* Functions this file defines. */
86
87 static void load_command (char *, int);
88
89 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
90
91 static void add_symbol_file_command (char *, int);
92
93 bfd *symfile_bfd_open (char *);
94
95 int get_section_index (struct objfile *, char *);
96
97 static const struct sym_fns *find_sym_fns (bfd *);
98
99 static void decrement_reading_symtab (void *);
100
101 static void overlay_invalidate_all (void);
102
103 static void overlay_auto_command (char *, int);
104
105 static void overlay_manual_command (char *, int);
106
107 static void overlay_off_command (char *, int);
108
109 static void overlay_load_command (char *, int);
110
111 static void overlay_command (char *, int);
112
113 static void simple_free_overlay_table (void);
114
115 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
116 enum bfd_endian);
117
118 static int simple_read_overlay_table (void);
119
120 static int simple_overlay_update_1 (struct obj_section *);
121
122 static void add_filename_language (char *ext, enum language lang);
123
124 static void info_ext_lang_command (char *args, int from_tty);
125
126 static void init_filename_language_table (void);
127
128 static void symfile_find_segment_sections (struct objfile *objfile);
129
130 void _initialize_symfile (void);
131
132 /* List of all available sym_fns. On gdb startup, each object file reader
133 calls add_symtab_fns() to register information on each format it is
134 prepared to read. */
135
136 typedef const struct sym_fns *sym_fns_ptr;
137 DEF_VEC_P (sym_fns_ptr);
138
139 static VEC (sym_fns_ptr) *symtab_fns = NULL;
140
141 /* If non-zero, shared library symbols will be added automatically
142 when the inferior is created, new libraries are loaded, or when
143 attaching to the inferior. This is almost always what users will
144 want to have happen; but for very large programs, the startup time
145 will be excessive, and so if this is a problem, the user can clear
146 this flag and then add the shared library symbols as needed. Note
147 that there is a potential for confusion, since if the shared
148 library symbols are not loaded, commands like "info fun" will *not*
149 report all the functions that are actually present. */
150
151 int auto_solib_add = 1;
152 \f
153
154 /* True if we are reading a symbol table. */
155
156 int currently_reading_symtab = 0;
157
158 static void
159 decrement_reading_symtab (void *dummy)
160 {
161 currently_reading_symtab--;
162 }
163
164 /* Increment currently_reading_symtab and return a cleanup that can be
165 used to decrement it. */
166 struct cleanup *
167 increment_reading_symtab (void)
168 {
169 ++currently_reading_symtab;
170 return make_cleanup (decrement_reading_symtab, NULL);
171 }
172
173 /* Remember the lowest-addressed loadable section we've seen.
174 This function is called via bfd_map_over_sections.
175
176 In case of equal vmas, the section with the largest size becomes the
177 lowest-addressed loadable section.
178
179 If the vmas and sizes are equal, the last section is considered the
180 lowest-addressed loadable section. */
181
182 void
183 find_lowest_section (bfd *abfd, asection *sect, void *obj)
184 {
185 asection **lowest = (asection **) obj;
186
187 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
188 return;
189 if (!*lowest)
190 *lowest = sect; /* First loadable section */
191 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
192 *lowest = sect; /* A lower loadable section */
193 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
194 && (bfd_section_size (abfd, (*lowest))
195 <= bfd_section_size (abfd, sect)))
196 *lowest = sect;
197 }
198
199 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
200
201 struct section_addr_info *
202 alloc_section_addr_info (size_t num_sections)
203 {
204 struct section_addr_info *sap;
205 size_t size;
206
207 size = (sizeof (struct section_addr_info)
208 + sizeof (struct other_sections) * (num_sections - 1));
209 sap = (struct section_addr_info *) xmalloc (size);
210 memset (sap, 0, size);
211 sap->num_sections = num_sections;
212
213 return sap;
214 }
215
216 /* Build (allocate and populate) a section_addr_info struct from
217 an existing section table. */
218
219 extern struct section_addr_info *
220 build_section_addr_info_from_section_table (const struct target_section *start,
221 const struct target_section *end)
222 {
223 struct section_addr_info *sap;
224 const struct target_section *stp;
225 int oidx;
226
227 sap = alloc_section_addr_info (end - start);
228
229 for (stp = start, oidx = 0; stp != end; stp++)
230 {
231 if (bfd_get_section_flags (stp->bfd,
232 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
233 && oidx < end - start)
234 {
235 sap->other[oidx].addr = stp->addr;
236 sap->other[oidx].name
237 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
238 sap->other[oidx].sectindex = stp->the_bfd_section->index;
239 oidx++;
240 }
241 }
242
243 return sap;
244 }
245
246 /* Create a section_addr_info from section offsets in ABFD. */
247
248 static struct section_addr_info *
249 build_section_addr_info_from_bfd (bfd *abfd)
250 {
251 struct section_addr_info *sap;
252 int i;
253 struct bfd_section *sec;
254
255 sap = alloc_section_addr_info (bfd_count_sections (abfd));
256 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
257 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
258 {
259 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
260 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
261 sap->other[i].sectindex = sec->index;
262 i++;
263 }
264 return sap;
265 }
266
267 /* Create a section_addr_info from section offsets in OBJFILE. */
268
269 struct section_addr_info *
270 build_section_addr_info_from_objfile (const struct objfile *objfile)
271 {
272 struct section_addr_info *sap;
273 int i;
274
275 /* Before reread_symbols gets rewritten it is not safe to call:
276 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
277 */
278 sap = build_section_addr_info_from_bfd (objfile->obfd);
279 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
280 {
281 int sectindex = sap->other[i].sectindex;
282
283 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
284 }
285 return sap;
286 }
287
288 /* Free all memory allocated by build_section_addr_info_from_section_table. */
289
290 extern void
291 free_section_addr_info (struct section_addr_info *sap)
292 {
293 int idx;
294
295 for (idx = 0; idx < sap->num_sections; idx++)
296 if (sap->other[idx].name)
297 xfree (sap->other[idx].name);
298 xfree (sap);
299 }
300
301
302 /* Initialize OBJFILE's sect_index_* members. */
303 static void
304 init_objfile_sect_indices (struct objfile *objfile)
305 {
306 asection *sect;
307 int i;
308
309 sect = bfd_get_section_by_name (objfile->obfd, ".text");
310 if (sect)
311 objfile->sect_index_text = sect->index;
312
313 sect = bfd_get_section_by_name (objfile->obfd, ".data");
314 if (sect)
315 objfile->sect_index_data = sect->index;
316
317 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
318 if (sect)
319 objfile->sect_index_bss = sect->index;
320
321 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
322 if (sect)
323 objfile->sect_index_rodata = sect->index;
324
325 /* This is where things get really weird... We MUST have valid
326 indices for the various sect_index_* members or gdb will abort.
327 So if for example, there is no ".text" section, we have to
328 accomodate that. First, check for a file with the standard
329 one or two segments. */
330
331 symfile_find_segment_sections (objfile);
332
333 /* Except when explicitly adding symbol files at some address,
334 section_offsets contains nothing but zeros, so it doesn't matter
335 which slot in section_offsets the individual sect_index_* members
336 index into. So if they are all zero, it is safe to just point
337 all the currently uninitialized indices to the first slot. But
338 beware: if this is the main executable, it may be relocated
339 later, e.g. by the remote qOffsets packet, and then this will
340 be wrong! That's why we try segments first. */
341
342 for (i = 0; i < objfile->num_sections; i++)
343 {
344 if (ANOFFSET (objfile->section_offsets, i) != 0)
345 {
346 break;
347 }
348 }
349 if (i == objfile->num_sections)
350 {
351 if (objfile->sect_index_text == -1)
352 objfile->sect_index_text = 0;
353 if (objfile->sect_index_data == -1)
354 objfile->sect_index_data = 0;
355 if (objfile->sect_index_bss == -1)
356 objfile->sect_index_bss = 0;
357 if (objfile->sect_index_rodata == -1)
358 objfile->sect_index_rodata = 0;
359 }
360 }
361
362 /* The arguments to place_section. */
363
364 struct place_section_arg
365 {
366 struct section_offsets *offsets;
367 CORE_ADDR lowest;
368 };
369
370 /* Find a unique offset to use for loadable section SECT if
371 the user did not provide an offset. */
372
373 static void
374 place_section (bfd *abfd, asection *sect, void *obj)
375 {
376 struct place_section_arg *arg = obj;
377 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
378 int done;
379 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
380
381 /* We are only interested in allocated sections. */
382 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
383 return;
384
385 /* If the user specified an offset, honor it. */
386 if (offsets[sect->index] != 0)
387 return;
388
389 /* Otherwise, let's try to find a place for the section. */
390 start_addr = (arg->lowest + align - 1) & -align;
391
392 do {
393 asection *cur_sec;
394
395 done = 1;
396
397 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
398 {
399 int indx = cur_sec->index;
400
401 /* We don't need to compare against ourself. */
402 if (cur_sec == sect)
403 continue;
404
405 /* We can only conflict with allocated sections. */
406 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
407 continue;
408
409 /* If the section offset is 0, either the section has not been placed
410 yet, or it was the lowest section placed (in which case LOWEST
411 will be past its end). */
412 if (offsets[indx] == 0)
413 continue;
414
415 /* If this section would overlap us, then we must move up. */
416 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
417 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
418 {
419 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
420 start_addr = (start_addr + align - 1) & -align;
421 done = 0;
422 break;
423 }
424
425 /* Otherwise, we appear to be OK. So far. */
426 }
427 }
428 while (!done);
429
430 offsets[sect->index] = start_addr;
431 arg->lowest = start_addr + bfd_get_section_size (sect);
432 }
433
434 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
435 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
436 entries. */
437
438 void
439 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
440 int num_sections,
441 struct section_addr_info *addrs)
442 {
443 int i;
444
445 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
446
447 /* Now calculate offsets for section that were specified by the caller. */
448 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
449 {
450 struct other_sections *osp;
451
452 osp = &addrs->other[i];
453 if (osp->sectindex == -1)
454 continue;
455
456 /* Record all sections in offsets. */
457 /* The section_offsets in the objfile are here filled in using
458 the BFD index. */
459 section_offsets->offsets[osp->sectindex] = osp->addr;
460 }
461 }
462
463 /* Transform section name S for a name comparison. prelink can split section
464 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
465 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
466 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
467 (`.sbss') section has invalid (increased) virtual address. */
468
469 static const char *
470 addr_section_name (const char *s)
471 {
472 if (strcmp (s, ".dynbss") == 0)
473 return ".bss";
474 if (strcmp (s, ".sdynbss") == 0)
475 return ".sbss";
476
477 return s;
478 }
479
480 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
481 their (name, sectindex) pair. sectindex makes the sort by name stable. */
482
483 static int
484 addrs_section_compar (const void *ap, const void *bp)
485 {
486 const struct other_sections *a = *((struct other_sections **) ap);
487 const struct other_sections *b = *((struct other_sections **) bp);
488 int retval;
489
490 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
491 if (retval)
492 return retval;
493
494 return a->sectindex - b->sectindex;
495 }
496
497 /* Provide sorted array of pointers to sections of ADDRS. The array is
498 terminated by NULL. Caller is responsible to call xfree for it. */
499
500 static struct other_sections **
501 addrs_section_sort (struct section_addr_info *addrs)
502 {
503 struct other_sections **array;
504 int i;
505
506 /* `+ 1' for the NULL terminator. */
507 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
508 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
509 array[i] = &addrs->other[i];
510 array[i] = NULL;
511
512 qsort (array, i, sizeof (*array), addrs_section_compar);
513
514 return array;
515 }
516
517 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
518 also SECTINDEXes specific to ABFD there. This function can be used to
519 rebase ADDRS to start referencing different BFD than before. */
520
521 void
522 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
523 {
524 asection *lower_sect;
525 CORE_ADDR lower_offset;
526 int i;
527 struct cleanup *my_cleanup;
528 struct section_addr_info *abfd_addrs;
529 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
530 struct other_sections **addrs_to_abfd_addrs;
531
532 /* Find lowest loadable section to be used as starting point for
533 continguous sections. */
534 lower_sect = NULL;
535 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
536 if (lower_sect == NULL)
537 {
538 warning (_("no loadable sections found in added symbol-file %s"),
539 bfd_get_filename (abfd));
540 lower_offset = 0;
541 }
542 else
543 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
544
545 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
546 in ABFD. Section names are not unique - there can be multiple sections of
547 the same name. Also the sections of the same name do not have to be
548 adjacent to each other. Some sections may be present only in one of the
549 files. Even sections present in both files do not have to be in the same
550 order.
551
552 Use stable sort by name for the sections in both files. Then linearly
553 scan both lists matching as most of the entries as possible. */
554
555 addrs_sorted = addrs_section_sort (addrs);
556 my_cleanup = make_cleanup (xfree, addrs_sorted);
557
558 abfd_addrs = build_section_addr_info_from_bfd (abfd);
559 make_cleanup_free_section_addr_info (abfd_addrs);
560 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
561 make_cleanup (xfree, abfd_addrs_sorted);
562
563 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
564 ABFD_ADDRS_SORTED. */
565
566 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
567 * addrs->num_sections);
568 make_cleanup (xfree, addrs_to_abfd_addrs);
569
570 while (*addrs_sorted)
571 {
572 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
573
574 while (*abfd_addrs_sorted
575 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
576 sect_name) < 0)
577 abfd_addrs_sorted++;
578
579 if (*abfd_addrs_sorted
580 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
581 sect_name) == 0)
582 {
583 int index_in_addrs;
584
585 /* Make the found item directly addressable from ADDRS. */
586 index_in_addrs = *addrs_sorted - addrs->other;
587 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
588 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
589
590 /* Never use the same ABFD entry twice. */
591 abfd_addrs_sorted++;
592 }
593
594 addrs_sorted++;
595 }
596
597 /* Calculate offsets for the loadable sections.
598 FIXME! Sections must be in order of increasing loadable section
599 so that contiguous sections can use the lower-offset!!!
600
601 Adjust offsets if the segments are not contiguous.
602 If the section is contiguous, its offset should be set to
603 the offset of the highest loadable section lower than it
604 (the loadable section directly below it in memory).
605 this_offset = lower_offset = lower_addr - lower_orig_addr */
606
607 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
608 {
609 struct other_sections *sect = addrs_to_abfd_addrs[i];
610
611 if (sect)
612 {
613 /* This is the index used by BFD. */
614 addrs->other[i].sectindex = sect->sectindex;
615
616 if (addrs->other[i].addr != 0)
617 {
618 addrs->other[i].addr -= sect->addr;
619 lower_offset = addrs->other[i].addr;
620 }
621 else
622 addrs->other[i].addr = lower_offset;
623 }
624 else
625 {
626 /* addr_section_name transformation is not used for SECT_NAME. */
627 const char *sect_name = addrs->other[i].name;
628
629 /* This section does not exist in ABFD, which is normally
630 unexpected and we want to issue a warning.
631
632 However, the ELF prelinker does create a few sections which are
633 marked in the main executable as loadable (they are loaded in
634 memory from the DYNAMIC segment) and yet are not present in
635 separate debug info files. This is fine, and should not cause
636 a warning. Shared libraries contain just the section
637 ".gnu.liblist" but it is not marked as loadable there. There is
638 no other way to identify them than by their name as the sections
639 created by prelink have no special flags.
640
641 For the sections `.bss' and `.sbss' see addr_section_name. */
642
643 if (!(strcmp (sect_name, ".gnu.liblist") == 0
644 || strcmp (sect_name, ".gnu.conflict") == 0
645 || (strcmp (sect_name, ".bss") == 0
646 && i > 0
647 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
648 && addrs_to_abfd_addrs[i - 1] != NULL)
649 || (strcmp (sect_name, ".sbss") == 0
650 && i > 0
651 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
652 && addrs_to_abfd_addrs[i - 1] != NULL)))
653 warning (_("section %s not found in %s"), sect_name,
654 bfd_get_filename (abfd));
655
656 addrs->other[i].addr = 0;
657 addrs->other[i].sectindex = -1;
658 }
659 }
660
661 do_cleanups (my_cleanup);
662 }
663
664 /* Parse the user's idea of an offset for dynamic linking, into our idea
665 of how to represent it for fast symbol reading. This is the default
666 version of the sym_fns.sym_offsets function for symbol readers that
667 don't need to do anything special. It allocates a section_offsets table
668 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
669
670 void
671 default_symfile_offsets (struct objfile *objfile,
672 struct section_addr_info *addrs)
673 {
674 objfile->num_sections = bfd_count_sections (objfile->obfd);
675 objfile->section_offsets = (struct section_offsets *)
676 obstack_alloc (&objfile->objfile_obstack,
677 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
678 relative_addr_info_to_section_offsets (objfile->section_offsets,
679 objfile->num_sections, addrs);
680
681 /* For relocatable files, all loadable sections will start at zero.
682 The zero is meaningless, so try to pick arbitrary addresses such
683 that no loadable sections overlap. This algorithm is quadratic,
684 but the number of sections in a single object file is generally
685 small. */
686 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
687 {
688 struct place_section_arg arg;
689 bfd *abfd = objfile->obfd;
690 asection *cur_sec;
691
692 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
693 /* We do not expect this to happen; just skip this step if the
694 relocatable file has a section with an assigned VMA. */
695 if (bfd_section_vma (abfd, cur_sec) != 0)
696 break;
697
698 if (cur_sec == NULL)
699 {
700 CORE_ADDR *offsets = objfile->section_offsets->offsets;
701
702 /* Pick non-overlapping offsets for sections the user did not
703 place explicitly. */
704 arg.offsets = objfile->section_offsets;
705 arg.lowest = 0;
706 bfd_map_over_sections (objfile->obfd, place_section, &arg);
707
708 /* Correctly filling in the section offsets is not quite
709 enough. Relocatable files have two properties that
710 (most) shared objects do not:
711
712 - Their debug information will contain relocations. Some
713 shared libraries do also, but many do not, so this can not
714 be assumed.
715
716 - If there are multiple code sections they will be loaded
717 at different relative addresses in memory than they are
718 in the objfile, since all sections in the file will start
719 at address zero.
720
721 Because GDB has very limited ability to map from an
722 address in debug info to the correct code section,
723 it relies on adding SECT_OFF_TEXT to things which might be
724 code. If we clear all the section offsets, and set the
725 section VMAs instead, then symfile_relocate_debug_section
726 will return meaningful debug information pointing at the
727 correct sections.
728
729 GDB has too many different data structures for section
730 addresses - a bfd, objfile, and so_list all have section
731 tables, as does exec_ops. Some of these could probably
732 be eliminated. */
733
734 for (cur_sec = abfd->sections; cur_sec != NULL;
735 cur_sec = cur_sec->next)
736 {
737 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
738 continue;
739
740 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
741 exec_set_section_address (bfd_get_filename (abfd),
742 cur_sec->index,
743 offsets[cur_sec->index]);
744 offsets[cur_sec->index] = 0;
745 }
746 }
747 }
748
749 /* Remember the bfd indexes for the .text, .data, .bss and
750 .rodata sections. */
751 init_objfile_sect_indices (objfile);
752 }
753
754
755 /* Divide the file into segments, which are individual relocatable units.
756 This is the default version of the sym_fns.sym_segments function for
757 symbol readers that do not have an explicit representation of segments.
758 It assumes that object files do not have segments, and fully linked
759 files have a single segment. */
760
761 struct symfile_segment_data *
762 default_symfile_segments (bfd *abfd)
763 {
764 int num_sections, i;
765 asection *sect;
766 struct symfile_segment_data *data;
767 CORE_ADDR low, high;
768
769 /* Relocatable files contain enough information to position each
770 loadable section independently; they should not be relocated
771 in segments. */
772 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
773 return NULL;
774
775 /* Make sure there is at least one loadable section in the file. */
776 for (sect = abfd->sections; sect != NULL; sect = sect->next)
777 {
778 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
779 continue;
780
781 break;
782 }
783 if (sect == NULL)
784 return NULL;
785
786 low = bfd_get_section_vma (abfd, sect);
787 high = low + bfd_get_section_size (sect);
788
789 data = XZALLOC (struct symfile_segment_data);
790 data->num_segments = 1;
791 data->segment_bases = XCALLOC (1, CORE_ADDR);
792 data->segment_sizes = XCALLOC (1, CORE_ADDR);
793
794 num_sections = bfd_count_sections (abfd);
795 data->segment_info = XCALLOC (num_sections, int);
796
797 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
798 {
799 CORE_ADDR vma;
800
801 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
802 continue;
803
804 vma = bfd_get_section_vma (abfd, sect);
805 if (vma < low)
806 low = vma;
807 if (vma + bfd_get_section_size (sect) > high)
808 high = vma + bfd_get_section_size (sect);
809
810 data->segment_info[i] = 1;
811 }
812
813 data->segment_bases[0] = low;
814 data->segment_sizes[0] = high - low;
815
816 return data;
817 }
818
819 /* This is a convenience function to call sym_read for OBJFILE and
820 possibly force the partial symbols to be read. */
821
822 static void
823 read_symbols (struct objfile *objfile, int add_flags)
824 {
825 (*objfile->sf->sym_read) (objfile, add_flags);
826 if (!objfile_has_partial_symbols (objfile))
827 {
828 bfd *abfd = find_separate_debug_file_in_section (objfile);
829 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
830
831 if (abfd != NULL)
832 symbol_file_add_separate (abfd, add_flags, objfile);
833
834 do_cleanups (cleanup);
835 }
836 if ((add_flags & SYMFILE_NO_READ) == 0)
837 require_partial_symbols (objfile, 0);
838 }
839
840 /* Initialize entry point information for this objfile. */
841
842 static void
843 init_entry_point_info (struct objfile *objfile)
844 {
845 /* Save startup file's range of PC addresses to help blockframe.c
846 decide where the bottom of the stack is. */
847
848 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
849 {
850 /* Executable file -- record its entry point so we'll recognize
851 the startup file because it contains the entry point. */
852 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
853 objfile->ei.entry_point_p = 1;
854 }
855 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
856 && bfd_get_start_address (objfile->obfd) != 0)
857 {
858 /* Some shared libraries may have entry points set and be
859 runnable. There's no clear way to indicate this, so just check
860 for values other than zero. */
861 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
862 objfile->ei.entry_point_p = 1;
863 }
864 else
865 {
866 /* Examination of non-executable.o files. Short-circuit this stuff. */
867 objfile->ei.entry_point_p = 0;
868 }
869
870 if (objfile->ei.entry_point_p)
871 {
872 CORE_ADDR entry_point = objfile->ei.entry_point;
873
874 /* Make certain that the address points at real code, and not a
875 function descriptor. */
876 entry_point
877 = gdbarch_convert_from_func_ptr_addr (objfile->gdbarch,
878 entry_point,
879 &current_target);
880
881 /* Remove any ISA markers, so that this matches entries in the
882 symbol table. */
883 objfile->ei.entry_point
884 = gdbarch_addr_bits_remove (objfile->gdbarch, entry_point);
885 }
886 }
887
888 /* Process a symbol file, as either the main file or as a dynamically
889 loaded file.
890
891 This function does not set the OBJFILE's entry-point info.
892
893 OBJFILE is where the symbols are to be read from.
894
895 ADDRS is the list of section load addresses. If the user has given
896 an 'add-symbol-file' command, then this is the list of offsets and
897 addresses he or she provided as arguments to the command; or, if
898 we're handling a shared library, these are the actual addresses the
899 sections are loaded at, according to the inferior's dynamic linker
900 (as gleaned by GDB's shared library code). We convert each address
901 into an offset from the section VMA's as it appears in the object
902 file, and then call the file's sym_offsets function to convert this
903 into a format-specific offset table --- a `struct section_offsets'.
904 If ADDRS is non-zero, OFFSETS must be zero.
905
906 OFFSETS is a table of section offsets already in the right
907 format-specific representation. NUM_OFFSETS is the number of
908 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
909 assume this is the proper table the call to sym_offsets described
910 above would produce. Instead of calling sym_offsets, we just dump
911 it right into objfile->section_offsets. (When we're re-reading
912 symbols from an objfile, we don't have the original load address
913 list any more; all we have is the section offset table.) If
914 OFFSETS is non-zero, ADDRS must be zero.
915
916 ADD_FLAGS encodes verbosity level, whether this is main symbol or
917 an extra symbol file such as dynamically loaded code, and wether
918 breakpoint reset should be deferred. */
919
920 static void
921 syms_from_objfile_1 (struct objfile *objfile,
922 struct section_addr_info *addrs,
923 struct section_offsets *offsets,
924 int num_offsets,
925 int add_flags)
926 {
927 struct section_addr_info *local_addr = NULL;
928 struct cleanup *old_chain;
929 const int mainline = add_flags & SYMFILE_MAINLINE;
930
931 gdb_assert (! (addrs && offsets));
932
933 objfile->sf = find_sym_fns (objfile->obfd);
934
935 if (objfile->sf == NULL)
936 {
937 /* No symbols to load, but we still need to make sure
938 that the section_offsets table is allocated. */
939 int num_sections = bfd_count_sections (objfile->obfd);
940 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
941
942 objfile->num_sections = num_sections;
943 objfile->section_offsets
944 = obstack_alloc (&objfile->objfile_obstack, size);
945 memset (objfile->section_offsets, 0, size);
946 return;
947 }
948
949 /* Make sure that partially constructed symbol tables will be cleaned up
950 if an error occurs during symbol reading. */
951 old_chain = make_cleanup_free_objfile (objfile);
952
953 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
954 list. We now establish the convention that an addr of zero means
955 no load address was specified. */
956 if (! addrs && ! offsets)
957 {
958 local_addr
959 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
960 make_cleanup (xfree, local_addr);
961 addrs = local_addr;
962 }
963
964 /* Now either addrs or offsets is non-zero. */
965
966 if (mainline)
967 {
968 /* We will modify the main symbol table, make sure that all its users
969 will be cleaned up if an error occurs during symbol reading. */
970 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
971
972 /* Since no error yet, throw away the old symbol table. */
973
974 if (symfile_objfile != NULL)
975 {
976 free_objfile (symfile_objfile);
977 gdb_assert (symfile_objfile == NULL);
978 }
979
980 /* Currently we keep symbols from the add-symbol-file command.
981 If the user wants to get rid of them, they should do "symbol-file"
982 without arguments first. Not sure this is the best behavior
983 (PR 2207). */
984
985 (*objfile->sf->sym_new_init) (objfile);
986 }
987
988 /* Convert addr into an offset rather than an absolute address.
989 We find the lowest address of a loaded segment in the objfile,
990 and assume that <addr> is where that got loaded.
991
992 We no longer warn if the lowest section is not a text segment (as
993 happens for the PA64 port. */
994 if (addrs && addrs->other[0].name)
995 addr_info_make_relative (addrs, objfile->obfd);
996
997 /* Initialize symbol reading routines for this objfile, allow complaints to
998 appear for this new file, and record how verbose to be, then do the
999 initial symbol reading for this file. */
1000
1001 (*objfile->sf->sym_init) (objfile);
1002 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1003
1004 if (addrs)
1005 (*objfile->sf->sym_offsets) (objfile, addrs);
1006 else
1007 {
1008 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1009
1010 /* Just copy in the offset table directly as given to us. */
1011 objfile->num_sections = num_offsets;
1012 objfile->section_offsets
1013 = ((struct section_offsets *)
1014 obstack_alloc (&objfile->objfile_obstack, size));
1015 memcpy (objfile->section_offsets, offsets, size);
1016
1017 init_objfile_sect_indices (objfile);
1018 }
1019
1020 read_symbols (objfile, add_flags);
1021
1022 /* Discard cleanups as symbol reading was successful. */
1023
1024 discard_cleanups (old_chain);
1025 xfree (local_addr);
1026 }
1027
1028 /* Same as syms_from_objfile_1, but also initializes the objfile
1029 entry-point info. */
1030
1031 void
1032 syms_from_objfile (struct objfile *objfile,
1033 struct section_addr_info *addrs,
1034 struct section_offsets *offsets,
1035 int num_offsets,
1036 int add_flags)
1037 {
1038 syms_from_objfile_1 (objfile, addrs, offsets, num_offsets, add_flags);
1039 init_entry_point_info (objfile);
1040 }
1041
1042 /* Perform required actions after either reading in the initial
1043 symbols for a new objfile, or mapping in the symbols from a reusable
1044 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1045
1046 void
1047 new_symfile_objfile (struct objfile *objfile, int add_flags)
1048 {
1049 /* If this is the main symbol file we have to clean up all users of the
1050 old main symbol file. Otherwise it is sufficient to fixup all the
1051 breakpoints that may have been redefined by this symbol file. */
1052 if (add_flags & SYMFILE_MAINLINE)
1053 {
1054 /* OK, make it the "real" symbol file. */
1055 symfile_objfile = objfile;
1056
1057 clear_symtab_users (add_flags);
1058 }
1059 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1060 {
1061 breakpoint_re_set ();
1062 }
1063
1064 /* We're done reading the symbol file; finish off complaints. */
1065 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1066 }
1067
1068 /* Process a symbol file, as either the main file or as a dynamically
1069 loaded file.
1070
1071 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1072 A new reference is acquired by this function.
1073
1074 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1075 extra, such as dynamically loaded code, and what to do with breakpoins.
1076
1077 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1078 syms_from_objfile, above.
1079 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1080
1081 PARENT is the original objfile if ABFD is a separate debug info file.
1082 Otherwise PARENT is NULL.
1083
1084 Upon success, returns a pointer to the objfile that was added.
1085 Upon failure, jumps back to command level (never returns). */
1086
1087 static struct objfile *
1088 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1089 int add_flags,
1090 struct section_addr_info *addrs,
1091 struct section_offsets *offsets,
1092 int num_offsets,
1093 int flags, struct objfile *parent)
1094 {
1095 struct objfile *objfile;
1096 const char *name = bfd_get_filename (abfd);
1097 const int from_tty = add_flags & SYMFILE_VERBOSE;
1098 const int mainline = add_flags & SYMFILE_MAINLINE;
1099 const int should_print = ((from_tty || info_verbose)
1100 && (readnow_symbol_files
1101 || (add_flags & SYMFILE_NO_READ) == 0));
1102
1103 if (readnow_symbol_files)
1104 {
1105 flags |= OBJF_READNOW;
1106 add_flags &= ~SYMFILE_NO_READ;
1107 }
1108
1109 /* Give user a chance to burp if we'd be
1110 interactively wiping out any existing symbols. */
1111
1112 if ((have_full_symbols () || have_partial_symbols ())
1113 && mainline
1114 && from_tty
1115 && !query (_("Load new symbol table from \"%s\"? "), name))
1116 error (_("Not confirmed."));
1117
1118 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
1119
1120 if (parent)
1121 add_separate_debug_objfile (objfile, parent);
1122
1123 /* We either created a new mapped symbol table, mapped an existing
1124 symbol table file which has not had initial symbol reading
1125 performed, or need to read an unmapped symbol table. */
1126 if (should_print)
1127 {
1128 if (deprecated_pre_add_symbol_hook)
1129 deprecated_pre_add_symbol_hook (name);
1130 else
1131 {
1132 printf_unfiltered (_("Reading symbols from %s..."), name);
1133 wrap_here ("");
1134 gdb_flush (gdb_stdout);
1135 }
1136 }
1137 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1138 add_flags);
1139
1140 /* We now have at least a partial symbol table. Check to see if the
1141 user requested that all symbols be read on initial access via either
1142 the gdb startup command line or on a per symbol file basis. Expand
1143 all partial symbol tables for this objfile if so. */
1144
1145 if ((flags & OBJF_READNOW))
1146 {
1147 if (should_print)
1148 {
1149 printf_unfiltered (_("expanding to full symbols..."));
1150 wrap_here ("");
1151 gdb_flush (gdb_stdout);
1152 }
1153
1154 if (objfile->sf)
1155 objfile->sf->qf->expand_all_symtabs (objfile);
1156 }
1157
1158 if (should_print && !objfile_has_symbols (objfile))
1159 {
1160 wrap_here ("");
1161 printf_unfiltered (_("(no debugging symbols found)..."));
1162 wrap_here ("");
1163 }
1164
1165 if (should_print)
1166 {
1167 if (deprecated_post_add_symbol_hook)
1168 deprecated_post_add_symbol_hook ();
1169 else
1170 printf_unfiltered (_("done.\n"));
1171 }
1172
1173 /* We print some messages regardless of whether 'from_tty ||
1174 info_verbose' is true, so make sure they go out at the right
1175 time. */
1176 gdb_flush (gdb_stdout);
1177
1178 if (objfile->sf == NULL)
1179 {
1180 observer_notify_new_objfile (objfile);
1181 return objfile; /* No symbols. */
1182 }
1183
1184 new_symfile_objfile (objfile, add_flags);
1185
1186 observer_notify_new_objfile (objfile);
1187
1188 bfd_cache_close_all ();
1189 return (objfile);
1190 }
1191
1192 /* Add BFD as a separate debug file for OBJFILE. */
1193
1194 void
1195 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1196 {
1197 struct objfile *new_objfile;
1198 struct section_addr_info *sap;
1199 struct cleanup *my_cleanup;
1200
1201 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1202 because sections of BFD may not match sections of OBJFILE and because
1203 vma may have been modified by tools such as prelink. */
1204 sap = build_section_addr_info_from_objfile (objfile);
1205 my_cleanup = make_cleanup_free_section_addr_info (sap);
1206
1207 new_objfile = symbol_file_add_with_addrs_or_offsets
1208 (bfd, symfile_flags,
1209 sap, NULL, 0,
1210 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1211 | OBJF_USERLOADED),
1212 objfile);
1213
1214 do_cleanups (my_cleanup);
1215 }
1216
1217 /* Process the symbol file ABFD, as either the main file or as a
1218 dynamically loaded file.
1219
1220 See symbol_file_add_with_addrs_or_offsets's comments for
1221 details. */
1222 struct objfile *
1223 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1224 struct section_addr_info *addrs,
1225 int flags, struct objfile *parent)
1226 {
1227 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1228 flags, parent);
1229 }
1230
1231
1232 /* Process a symbol file, as either the main file or as a dynamically
1233 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1234 for details. */
1235 struct objfile *
1236 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1237 int flags)
1238 {
1239 bfd *bfd = symfile_bfd_open (name);
1240 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1241 struct objfile *objf;
1242
1243 objf = symbol_file_add_from_bfd (bfd, add_flags, addrs, flags, NULL);
1244 do_cleanups (cleanup);
1245 return objf;
1246 }
1247
1248
1249 /* Call symbol_file_add() with default values and update whatever is
1250 affected by the loading of a new main().
1251 Used when the file is supplied in the gdb command line
1252 and by some targets with special loading requirements.
1253 The auxiliary function, symbol_file_add_main_1(), has the flags
1254 argument for the switches that can only be specified in the symbol_file
1255 command itself. */
1256
1257 void
1258 symbol_file_add_main (char *args, int from_tty)
1259 {
1260 symbol_file_add_main_1 (args, from_tty, 0);
1261 }
1262
1263 static void
1264 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1265 {
1266 const int add_flags = (current_inferior ()->symfile_flags
1267 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1268
1269 symbol_file_add (args, add_flags, NULL, flags);
1270
1271 /* Getting new symbols may change our opinion about
1272 what is frameless. */
1273 reinit_frame_cache ();
1274
1275 if ((flags & SYMFILE_NO_READ) == 0)
1276 set_initial_language ();
1277 }
1278
1279 void
1280 symbol_file_clear (int from_tty)
1281 {
1282 if ((have_full_symbols () || have_partial_symbols ())
1283 && from_tty
1284 && (symfile_objfile
1285 ? !query (_("Discard symbol table from `%s'? "),
1286 symfile_objfile->name)
1287 : !query (_("Discard symbol table? "))))
1288 error (_("Not confirmed."));
1289
1290 /* solib descriptors may have handles to objfiles. Wipe them before their
1291 objfiles get stale by free_all_objfiles. */
1292 no_shared_libraries (NULL, from_tty);
1293
1294 free_all_objfiles ();
1295
1296 gdb_assert (symfile_objfile == NULL);
1297 if (from_tty)
1298 printf_unfiltered (_("No symbol file now.\n"));
1299 }
1300
1301 static char *
1302 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1303 {
1304 asection *sect;
1305 bfd_size_type debuglink_size;
1306 unsigned long crc32;
1307 char *contents;
1308 int crc_offset;
1309
1310 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1311
1312 if (sect == NULL)
1313 return NULL;
1314
1315 debuglink_size = bfd_section_size (objfile->obfd, sect);
1316
1317 contents = xmalloc (debuglink_size);
1318 bfd_get_section_contents (objfile->obfd, sect, contents,
1319 (file_ptr)0, (bfd_size_type)debuglink_size);
1320
1321 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1322 crc_offset = strlen (contents) + 1;
1323 crc_offset = (crc_offset + 3) & ~3;
1324
1325 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1326
1327 *crc32_out = crc32;
1328 return contents;
1329 }
1330
1331 /* Return 32-bit CRC for ABFD. If successful store it to *FILE_CRC_RETURN and
1332 return 1. Otherwise print a warning and return 0. ABFD seek position is
1333 not preserved. */
1334
1335 static int
1336 get_file_crc (bfd *abfd, unsigned long *file_crc_return)
1337 {
1338 unsigned long file_crc = 0;
1339
1340 if (bfd_seek (abfd, 0, SEEK_SET) != 0)
1341 {
1342 warning (_("Problem reading \"%s\" for CRC: %s"),
1343 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1344 return 0;
1345 }
1346
1347 for (;;)
1348 {
1349 gdb_byte buffer[8 * 1024];
1350 bfd_size_type count;
1351
1352 count = bfd_bread (buffer, sizeof (buffer), abfd);
1353 if (count == (bfd_size_type) -1)
1354 {
1355 warning (_("Problem reading \"%s\" for CRC: %s"),
1356 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1357 return 0;
1358 }
1359 if (count == 0)
1360 break;
1361 file_crc = bfd_calc_gnu_debuglink_crc32 (file_crc, buffer, count);
1362 }
1363
1364 *file_crc_return = file_crc;
1365 return 1;
1366 }
1367
1368 static int
1369 separate_debug_file_exists (const char *name, unsigned long crc,
1370 struct objfile *parent_objfile)
1371 {
1372 unsigned long file_crc;
1373 int file_crc_p;
1374 bfd *abfd;
1375 struct stat parent_stat, abfd_stat;
1376 int verified_as_different;
1377
1378 /* Find a separate debug info file as if symbols would be present in
1379 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1380 section can contain just the basename of PARENT_OBJFILE without any
1381 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1382 the separate debug infos with the same basename can exist. */
1383
1384 if (filename_cmp (name, parent_objfile->name) == 0)
1385 return 0;
1386
1387 abfd = gdb_bfd_open_maybe_remote (name);
1388
1389 if (!abfd)
1390 return 0;
1391
1392 /* Verify symlinks were not the cause of filename_cmp name difference above.
1393
1394 Some operating systems, e.g. Windows, do not provide a meaningful
1395 st_ino; they always set it to zero. (Windows does provide a
1396 meaningful st_dev.) Do not indicate a duplicate library in that
1397 case. While there is no guarantee that a system that provides
1398 meaningful inode numbers will never set st_ino to zero, this is
1399 merely an optimization, so we do not need to worry about false
1400 negatives. */
1401
1402 if (bfd_stat (abfd, &abfd_stat) == 0
1403 && abfd_stat.st_ino != 0
1404 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1405 {
1406 if (abfd_stat.st_dev == parent_stat.st_dev
1407 && abfd_stat.st_ino == parent_stat.st_ino)
1408 {
1409 gdb_bfd_unref (abfd);
1410 return 0;
1411 }
1412 verified_as_different = 1;
1413 }
1414 else
1415 verified_as_different = 0;
1416
1417 file_crc_p = get_file_crc (abfd, &file_crc);
1418
1419 gdb_bfd_unref (abfd);
1420
1421 if (!file_crc_p)
1422 return 0;
1423
1424 if (crc != file_crc)
1425 {
1426 /* If one (or both) the files are accessed for example the via "remote:"
1427 gdbserver way it does not support the bfd_stat operation. Verify
1428 whether those two files are not the same manually. */
1429
1430 if (!verified_as_different && !parent_objfile->crc32_p)
1431 {
1432 parent_objfile->crc32_p = get_file_crc (parent_objfile->obfd,
1433 &parent_objfile->crc32);
1434 if (!parent_objfile->crc32_p)
1435 return 0;
1436 }
1437
1438 if (verified_as_different || parent_objfile->crc32 != file_crc)
1439 warning (_("the debug information found in \"%s\""
1440 " does not match \"%s\" (CRC mismatch).\n"),
1441 name, parent_objfile->name);
1442
1443 return 0;
1444 }
1445
1446 return 1;
1447 }
1448
1449 char *debug_file_directory = NULL;
1450 static void
1451 show_debug_file_directory (struct ui_file *file, int from_tty,
1452 struct cmd_list_element *c, const char *value)
1453 {
1454 fprintf_filtered (file,
1455 _("The directory where separate debug "
1456 "symbols are searched for is \"%s\".\n"),
1457 value);
1458 }
1459
1460 #if ! defined (DEBUG_SUBDIRECTORY)
1461 #define DEBUG_SUBDIRECTORY ".debug"
1462 #endif
1463
1464 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1465 where the original file resides (may not be the same as
1466 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1467 looking for. Returns the name of the debuginfo, of NULL. */
1468
1469 static char *
1470 find_separate_debug_file (const char *dir,
1471 const char *canon_dir,
1472 const char *debuglink,
1473 unsigned long crc32, struct objfile *objfile)
1474 {
1475 char *debugdir;
1476 char *debugfile;
1477 int i;
1478 VEC (char_ptr) *debugdir_vec;
1479 struct cleanup *back_to;
1480 int ix;
1481
1482 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1483 i = strlen (dir);
1484 if (canon_dir != NULL && strlen (canon_dir) > i)
1485 i = strlen (canon_dir);
1486
1487 debugfile = xmalloc (strlen (debug_file_directory) + 1
1488 + i
1489 + strlen (DEBUG_SUBDIRECTORY)
1490 + strlen ("/")
1491 + strlen (debuglink)
1492 + 1);
1493
1494 /* First try in the same directory as the original file. */
1495 strcpy (debugfile, dir);
1496 strcat (debugfile, debuglink);
1497
1498 if (separate_debug_file_exists (debugfile, crc32, objfile))
1499 return debugfile;
1500
1501 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1502 strcpy (debugfile, dir);
1503 strcat (debugfile, DEBUG_SUBDIRECTORY);
1504 strcat (debugfile, "/");
1505 strcat (debugfile, debuglink);
1506
1507 if (separate_debug_file_exists (debugfile, crc32, objfile))
1508 return debugfile;
1509
1510 /* Then try in the global debugfile directories.
1511
1512 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1513 cause "/..." lookups. */
1514
1515 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1516 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1517
1518 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1519 {
1520 strcpy (debugfile, debugdir);
1521 strcat (debugfile, "/");
1522 strcat (debugfile, dir);
1523 strcat (debugfile, debuglink);
1524
1525 if (separate_debug_file_exists (debugfile, crc32, objfile))
1526 return debugfile;
1527
1528 /* If the file is in the sysroot, try using its base path in the
1529 global debugfile directory. */
1530 if (canon_dir != NULL
1531 && filename_ncmp (canon_dir, gdb_sysroot,
1532 strlen (gdb_sysroot)) == 0
1533 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1534 {
1535 strcpy (debugfile, debugdir);
1536 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1537 strcat (debugfile, "/");
1538 strcat (debugfile, debuglink);
1539
1540 if (separate_debug_file_exists (debugfile, crc32, objfile))
1541 return debugfile;
1542 }
1543 }
1544
1545 do_cleanups (back_to);
1546 xfree (debugfile);
1547 return NULL;
1548 }
1549
1550 /* Modify PATH to contain only "directory/" part of PATH.
1551 If there were no directory separators in PATH, PATH will be empty
1552 string on return. */
1553
1554 static void
1555 terminate_after_last_dir_separator (char *path)
1556 {
1557 int i;
1558
1559 /* Strip off the final filename part, leaving the directory name,
1560 followed by a slash. The directory can be relative or absolute. */
1561 for (i = strlen(path) - 1; i >= 0; i--)
1562 if (IS_DIR_SEPARATOR (path[i]))
1563 break;
1564
1565 /* If I is -1 then no directory is present there and DIR will be "". */
1566 path[i + 1] = '\0';
1567 }
1568
1569 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1570 Returns pathname, or NULL. */
1571
1572 char *
1573 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1574 {
1575 char *debuglink;
1576 char *dir, *canon_dir;
1577 char *debugfile;
1578 unsigned long crc32;
1579 struct cleanup *cleanups;
1580
1581 debuglink = get_debug_link_info (objfile, &crc32);
1582
1583 if (debuglink == NULL)
1584 {
1585 /* There's no separate debug info, hence there's no way we could
1586 load it => no warning. */
1587 return NULL;
1588 }
1589
1590 cleanups = make_cleanup (xfree, debuglink);
1591 dir = xstrdup (objfile->name);
1592 make_cleanup (xfree, dir);
1593 terminate_after_last_dir_separator (dir);
1594 canon_dir = lrealpath (dir);
1595
1596 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1597 crc32, objfile);
1598 xfree (canon_dir);
1599
1600 if (debugfile == NULL)
1601 {
1602 #ifdef HAVE_LSTAT
1603 /* For PR gdb/9538, try again with realpath (if different from the
1604 original). */
1605
1606 struct stat st_buf;
1607
1608 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1609 {
1610 char *symlink_dir;
1611
1612 symlink_dir = lrealpath (objfile->name);
1613 if (symlink_dir != NULL)
1614 {
1615 make_cleanup (xfree, symlink_dir);
1616 terminate_after_last_dir_separator (symlink_dir);
1617 if (strcmp (dir, symlink_dir) != 0)
1618 {
1619 /* Different directory, so try using it. */
1620 debugfile = find_separate_debug_file (symlink_dir,
1621 symlink_dir,
1622 debuglink,
1623 crc32,
1624 objfile);
1625 }
1626 }
1627 }
1628 #endif /* HAVE_LSTAT */
1629 }
1630
1631 do_cleanups (cleanups);
1632 return debugfile;
1633 }
1634
1635
1636 /* This is the symbol-file command. Read the file, analyze its
1637 symbols, and add a struct symtab to a symtab list. The syntax of
1638 the command is rather bizarre:
1639
1640 1. The function buildargv implements various quoting conventions
1641 which are undocumented and have little or nothing in common with
1642 the way things are quoted (or not quoted) elsewhere in GDB.
1643
1644 2. Options are used, which are not generally used in GDB (perhaps
1645 "set mapped on", "set readnow on" would be better)
1646
1647 3. The order of options matters, which is contrary to GNU
1648 conventions (because it is confusing and inconvenient). */
1649
1650 void
1651 symbol_file_command (char *args, int from_tty)
1652 {
1653 dont_repeat ();
1654
1655 if (args == NULL)
1656 {
1657 symbol_file_clear (from_tty);
1658 }
1659 else
1660 {
1661 char **argv = gdb_buildargv (args);
1662 int flags = OBJF_USERLOADED;
1663 struct cleanup *cleanups;
1664 char *name = NULL;
1665
1666 cleanups = make_cleanup_freeargv (argv);
1667 while (*argv != NULL)
1668 {
1669 if (strcmp (*argv, "-readnow") == 0)
1670 flags |= OBJF_READNOW;
1671 else if (**argv == '-')
1672 error (_("unknown option `%s'"), *argv);
1673 else
1674 {
1675 symbol_file_add_main_1 (*argv, from_tty, flags);
1676 name = *argv;
1677 }
1678
1679 argv++;
1680 }
1681
1682 if (name == NULL)
1683 error (_("no symbol file name was specified"));
1684
1685 do_cleanups (cleanups);
1686 }
1687 }
1688
1689 /* Set the initial language.
1690
1691 FIXME: A better solution would be to record the language in the
1692 psymtab when reading partial symbols, and then use it (if known) to
1693 set the language. This would be a win for formats that encode the
1694 language in an easily discoverable place, such as DWARF. For
1695 stabs, we can jump through hoops looking for specially named
1696 symbols or try to intuit the language from the specific type of
1697 stabs we find, but we can't do that until later when we read in
1698 full symbols. */
1699
1700 void
1701 set_initial_language (void)
1702 {
1703 enum language lang = language_unknown;
1704
1705 if (language_of_main != language_unknown)
1706 lang = language_of_main;
1707 else
1708 {
1709 const char *filename;
1710
1711 filename = find_main_filename ();
1712 if (filename != NULL)
1713 lang = deduce_language_from_filename (filename);
1714 }
1715
1716 if (lang == language_unknown)
1717 {
1718 /* Make C the default language */
1719 lang = language_c;
1720 }
1721
1722 set_language (lang);
1723 expected_language = current_language; /* Don't warn the user. */
1724 }
1725
1726 /* If NAME is a remote name open the file using remote protocol, otherwise
1727 open it normally. Returns a new reference to the BFD. On error,
1728 returns NULL with the BFD error set. */
1729
1730 bfd *
1731 gdb_bfd_open_maybe_remote (const char *name)
1732 {
1733 bfd *result;
1734
1735 if (remote_filename_p (name))
1736 result = remote_bfd_open (name, gnutarget);
1737 else
1738 result = gdb_bfd_open (name, gnutarget, -1);
1739
1740 return result;
1741 }
1742
1743
1744 /* Open the file specified by NAME and hand it off to BFD for
1745 preliminary analysis. Return a newly initialized bfd *, which
1746 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1747 absolute). In case of trouble, error() is called. */
1748
1749 bfd *
1750 symfile_bfd_open (char *name)
1751 {
1752 bfd *sym_bfd;
1753 int desc;
1754 char *absolute_name;
1755
1756 if (remote_filename_p (name))
1757 {
1758 sym_bfd = remote_bfd_open (name, gnutarget);
1759 if (!sym_bfd)
1760 error (_("`%s': can't open to read symbols: %s."), name,
1761 bfd_errmsg (bfd_get_error ()));
1762
1763 if (!bfd_check_format (sym_bfd, bfd_object))
1764 {
1765 make_cleanup_bfd_unref (sym_bfd);
1766 error (_("`%s': can't read symbols: %s."), name,
1767 bfd_errmsg (bfd_get_error ()));
1768 }
1769
1770 return sym_bfd;
1771 }
1772
1773 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1774
1775 /* Look down path for it, allocate 2nd new malloc'd copy. */
1776 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1777 O_RDONLY | O_BINARY, &absolute_name);
1778 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1779 if (desc < 0)
1780 {
1781 char *exename = alloca (strlen (name) + 5);
1782
1783 strcat (strcpy (exename, name), ".exe");
1784 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1785 O_RDONLY | O_BINARY, &absolute_name);
1786 }
1787 #endif
1788 if (desc < 0)
1789 {
1790 make_cleanup (xfree, name);
1791 perror_with_name (name);
1792 }
1793
1794 xfree (name);
1795 name = absolute_name;
1796 make_cleanup (xfree, name);
1797
1798 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1799 if (!sym_bfd)
1800 {
1801 make_cleanup (xfree, name);
1802 error (_("`%s': can't open to read symbols: %s."), name,
1803 bfd_errmsg (bfd_get_error ()));
1804 }
1805 bfd_set_cacheable (sym_bfd, 1);
1806
1807 if (!bfd_check_format (sym_bfd, bfd_object))
1808 {
1809 make_cleanup_bfd_unref (sym_bfd);
1810 error (_("`%s': can't read symbols: %s."), name,
1811 bfd_errmsg (bfd_get_error ()));
1812 }
1813
1814 return sym_bfd;
1815 }
1816
1817 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1818 the section was not found. */
1819
1820 int
1821 get_section_index (struct objfile *objfile, char *section_name)
1822 {
1823 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1824
1825 if (sect)
1826 return sect->index;
1827 else
1828 return -1;
1829 }
1830
1831 /* Link SF into the global symtab_fns list. Called on startup by the
1832 _initialize routine in each object file format reader, to register
1833 information about each format the reader is prepared to handle. */
1834
1835 void
1836 add_symtab_fns (const struct sym_fns *sf)
1837 {
1838 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1839 }
1840
1841 /* Initialize OBJFILE to read symbols from its associated BFD. It
1842 either returns or calls error(). The result is an initialized
1843 struct sym_fns in the objfile structure, that contains cached
1844 information about the symbol file. */
1845
1846 static const struct sym_fns *
1847 find_sym_fns (bfd *abfd)
1848 {
1849 const struct sym_fns *sf;
1850 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1851 int i;
1852
1853 if (our_flavour == bfd_target_srec_flavour
1854 || our_flavour == bfd_target_ihex_flavour
1855 || our_flavour == bfd_target_tekhex_flavour)
1856 return NULL; /* No symbols. */
1857
1858 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1859 if (our_flavour == sf->sym_flavour)
1860 return sf;
1861
1862 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1863 bfd_get_target (abfd));
1864 }
1865 \f
1866
1867 /* This function runs the load command of our current target. */
1868
1869 static void
1870 load_command (char *arg, int from_tty)
1871 {
1872 dont_repeat ();
1873
1874 /* The user might be reloading because the binary has changed. Take
1875 this opportunity to check. */
1876 reopen_exec_file ();
1877 reread_symbols ();
1878
1879 if (arg == NULL)
1880 {
1881 char *parg;
1882 int count = 0;
1883
1884 parg = arg = get_exec_file (1);
1885
1886 /* Count how many \ " ' tab space there are in the name. */
1887 while ((parg = strpbrk (parg, "\\\"'\t ")))
1888 {
1889 parg++;
1890 count++;
1891 }
1892
1893 if (count)
1894 {
1895 /* We need to quote this string so buildargv can pull it apart. */
1896 char *temp = xmalloc (strlen (arg) + count + 1 );
1897 char *ptemp = temp;
1898 char *prev;
1899
1900 make_cleanup (xfree, temp);
1901
1902 prev = parg = arg;
1903 while ((parg = strpbrk (parg, "\\\"'\t ")))
1904 {
1905 strncpy (ptemp, prev, parg - prev);
1906 ptemp += parg - prev;
1907 prev = parg++;
1908 *ptemp++ = '\\';
1909 }
1910 strcpy (ptemp, prev);
1911
1912 arg = temp;
1913 }
1914 }
1915
1916 target_load (arg, from_tty);
1917
1918 /* After re-loading the executable, we don't really know which
1919 overlays are mapped any more. */
1920 overlay_cache_invalid = 1;
1921 }
1922
1923 /* This version of "load" should be usable for any target. Currently
1924 it is just used for remote targets, not inftarg.c or core files,
1925 on the theory that only in that case is it useful.
1926
1927 Avoiding xmodem and the like seems like a win (a) because we don't have
1928 to worry about finding it, and (b) On VMS, fork() is very slow and so
1929 we don't want to run a subprocess. On the other hand, I'm not sure how
1930 performance compares. */
1931
1932 static int validate_download = 0;
1933
1934 /* Callback service function for generic_load (bfd_map_over_sections). */
1935
1936 static void
1937 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1938 {
1939 bfd_size_type *sum = data;
1940
1941 *sum += bfd_get_section_size (asec);
1942 }
1943
1944 /* Opaque data for load_section_callback. */
1945 struct load_section_data {
1946 unsigned long load_offset;
1947 struct load_progress_data *progress_data;
1948 VEC(memory_write_request_s) *requests;
1949 };
1950
1951 /* Opaque data for load_progress. */
1952 struct load_progress_data {
1953 /* Cumulative data. */
1954 unsigned long write_count;
1955 unsigned long data_count;
1956 bfd_size_type total_size;
1957 };
1958
1959 /* Opaque data for load_progress for a single section. */
1960 struct load_progress_section_data {
1961 struct load_progress_data *cumulative;
1962
1963 /* Per-section data. */
1964 const char *section_name;
1965 ULONGEST section_sent;
1966 ULONGEST section_size;
1967 CORE_ADDR lma;
1968 gdb_byte *buffer;
1969 };
1970
1971 /* Target write callback routine for progress reporting. */
1972
1973 static void
1974 load_progress (ULONGEST bytes, void *untyped_arg)
1975 {
1976 struct load_progress_section_data *args = untyped_arg;
1977 struct load_progress_data *totals;
1978
1979 if (args == NULL)
1980 /* Writing padding data. No easy way to get at the cumulative
1981 stats, so just ignore this. */
1982 return;
1983
1984 totals = args->cumulative;
1985
1986 if (bytes == 0 && args->section_sent == 0)
1987 {
1988 /* The write is just starting. Let the user know we've started
1989 this section. */
1990 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1991 args->section_name, hex_string (args->section_size),
1992 paddress (target_gdbarch (), args->lma));
1993 return;
1994 }
1995
1996 if (validate_download)
1997 {
1998 /* Broken memories and broken monitors manifest themselves here
1999 when bring new computers to life. This doubles already slow
2000 downloads. */
2001 /* NOTE: cagney/1999-10-18: A more efficient implementation
2002 might add a verify_memory() method to the target vector and
2003 then use that. remote.c could implement that method using
2004 the ``qCRC'' packet. */
2005 gdb_byte *check = xmalloc (bytes);
2006 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
2007
2008 if (target_read_memory (args->lma, check, bytes) != 0)
2009 error (_("Download verify read failed at %s"),
2010 paddress (target_gdbarch (), args->lma));
2011 if (memcmp (args->buffer, check, bytes) != 0)
2012 error (_("Download verify compare failed at %s"),
2013 paddress (target_gdbarch (), args->lma));
2014 do_cleanups (verify_cleanups);
2015 }
2016 totals->data_count += bytes;
2017 args->lma += bytes;
2018 args->buffer += bytes;
2019 totals->write_count += 1;
2020 args->section_sent += bytes;
2021 if (check_quit_flag ()
2022 || (deprecated_ui_load_progress_hook != NULL
2023 && deprecated_ui_load_progress_hook (args->section_name,
2024 args->section_sent)))
2025 error (_("Canceled the download"));
2026
2027 if (deprecated_show_load_progress != NULL)
2028 deprecated_show_load_progress (args->section_name,
2029 args->section_sent,
2030 args->section_size,
2031 totals->data_count,
2032 totals->total_size);
2033 }
2034
2035 /* Callback service function for generic_load (bfd_map_over_sections). */
2036
2037 static void
2038 load_section_callback (bfd *abfd, asection *asec, void *data)
2039 {
2040 struct memory_write_request *new_request;
2041 struct load_section_data *args = data;
2042 struct load_progress_section_data *section_data;
2043 bfd_size_type size = bfd_get_section_size (asec);
2044 gdb_byte *buffer;
2045 const char *sect_name = bfd_get_section_name (abfd, asec);
2046
2047 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2048 return;
2049
2050 if (size == 0)
2051 return;
2052
2053 new_request = VEC_safe_push (memory_write_request_s,
2054 args->requests, NULL);
2055 memset (new_request, 0, sizeof (struct memory_write_request));
2056 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2057 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2058 new_request->end = new_request->begin + size; /* FIXME Should size
2059 be in instead? */
2060 new_request->data = xmalloc (size);
2061 new_request->baton = section_data;
2062
2063 buffer = new_request->data;
2064
2065 section_data->cumulative = args->progress_data;
2066 section_data->section_name = sect_name;
2067 section_data->section_size = size;
2068 section_data->lma = new_request->begin;
2069 section_data->buffer = buffer;
2070
2071 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2072 }
2073
2074 /* Clean up an entire memory request vector, including load
2075 data and progress records. */
2076
2077 static void
2078 clear_memory_write_data (void *arg)
2079 {
2080 VEC(memory_write_request_s) **vec_p = arg;
2081 VEC(memory_write_request_s) *vec = *vec_p;
2082 int i;
2083 struct memory_write_request *mr;
2084
2085 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2086 {
2087 xfree (mr->data);
2088 xfree (mr->baton);
2089 }
2090 VEC_free (memory_write_request_s, vec);
2091 }
2092
2093 void
2094 generic_load (char *args, int from_tty)
2095 {
2096 bfd *loadfile_bfd;
2097 struct timeval start_time, end_time;
2098 char *filename;
2099 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2100 struct load_section_data cbdata;
2101 struct load_progress_data total_progress;
2102 struct ui_out *uiout = current_uiout;
2103
2104 CORE_ADDR entry;
2105 char **argv;
2106
2107 memset (&cbdata, 0, sizeof (cbdata));
2108 memset (&total_progress, 0, sizeof (total_progress));
2109 cbdata.progress_data = &total_progress;
2110
2111 make_cleanup (clear_memory_write_data, &cbdata.requests);
2112
2113 if (args == NULL)
2114 error_no_arg (_("file to load"));
2115
2116 argv = gdb_buildargv (args);
2117 make_cleanup_freeargv (argv);
2118
2119 filename = tilde_expand (argv[0]);
2120 make_cleanup (xfree, filename);
2121
2122 if (argv[1] != NULL)
2123 {
2124 char *endptr;
2125
2126 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2127
2128 /* If the last word was not a valid number then
2129 treat it as a file name with spaces in. */
2130 if (argv[1] == endptr)
2131 error (_("Invalid download offset:%s."), argv[1]);
2132
2133 if (argv[2] != NULL)
2134 error (_("Too many parameters."));
2135 }
2136
2137 /* Open the file for loading. */
2138 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2139 if (loadfile_bfd == NULL)
2140 {
2141 perror_with_name (filename);
2142 return;
2143 }
2144
2145 make_cleanup_bfd_unref (loadfile_bfd);
2146
2147 if (!bfd_check_format (loadfile_bfd, bfd_object))
2148 {
2149 error (_("\"%s\" is not an object file: %s"), filename,
2150 bfd_errmsg (bfd_get_error ()));
2151 }
2152
2153 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2154 (void *) &total_progress.total_size);
2155
2156 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2157
2158 gettimeofday (&start_time, NULL);
2159
2160 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2161 load_progress) != 0)
2162 error (_("Load failed"));
2163
2164 gettimeofday (&end_time, NULL);
2165
2166 entry = bfd_get_start_address (loadfile_bfd);
2167 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2168 ui_out_text (uiout, "Start address ");
2169 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2170 ui_out_text (uiout, ", load size ");
2171 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2172 ui_out_text (uiout, "\n");
2173 /* We were doing this in remote-mips.c, I suspect it is right
2174 for other targets too. */
2175 regcache_write_pc (get_current_regcache (), entry);
2176
2177 /* Reset breakpoints, now that we have changed the load image. For
2178 instance, breakpoints may have been set (or reset, by
2179 post_create_inferior) while connected to the target but before we
2180 loaded the program. In that case, the prologue analyzer could
2181 have read instructions from the target to find the right
2182 breakpoint locations. Loading has changed the contents of that
2183 memory. */
2184
2185 breakpoint_re_set ();
2186
2187 /* FIXME: are we supposed to call symbol_file_add or not? According
2188 to a comment from remote-mips.c (where a call to symbol_file_add
2189 was commented out), making the call confuses GDB if more than one
2190 file is loaded in. Some targets do (e.g., remote-vx.c) but
2191 others don't (or didn't - perhaps they have all been deleted). */
2192
2193 print_transfer_performance (gdb_stdout, total_progress.data_count,
2194 total_progress.write_count,
2195 &start_time, &end_time);
2196
2197 do_cleanups (old_cleanups);
2198 }
2199
2200 /* Report how fast the transfer went. */
2201
2202 void
2203 print_transfer_performance (struct ui_file *stream,
2204 unsigned long data_count,
2205 unsigned long write_count,
2206 const struct timeval *start_time,
2207 const struct timeval *end_time)
2208 {
2209 ULONGEST time_count;
2210 struct ui_out *uiout = current_uiout;
2211
2212 /* Compute the elapsed time in milliseconds, as a tradeoff between
2213 accuracy and overflow. */
2214 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2215 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2216
2217 ui_out_text (uiout, "Transfer rate: ");
2218 if (time_count > 0)
2219 {
2220 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2221
2222 if (ui_out_is_mi_like_p (uiout))
2223 {
2224 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2225 ui_out_text (uiout, " bits/sec");
2226 }
2227 else if (rate < 1024)
2228 {
2229 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2230 ui_out_text (uiout, " bytes/sec");
2231 }
2232 else
2233 {
2234 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2235 ui_out_text (uiout, " KB/sec");
2236 }
2237 }
2238 else
2239 {
2240 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2241 ui_out_text (uiout, " bits in <1 sec");
2242 }
2243 if (write_count > 0)
2244 {
2245 ui_out_text (uiout, ", ");
2246 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2247 ui_out_text (uiout, " bytes/write");
2248 }
2249 ui_out_text (uiout, ".\n");
2250 }
2251
2252 /* This function allows the addition of incrementally linked object files.
2253 It does not modify any state in the target, only in the debugger. */
2254 /* Note: ezannoni 2000-04-13 This function/command used to have a
2255 special case syntax for the rombug target (Rombug is the boot
2256 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2257 rombug case, the user doesn't need to supply a text address,
2258 instead a call to target_link() (in target.c) would supply the
2259 value to use. We are now discontinuing this type of ad hoc syntax. */
2260
2261 static void
2262 add_symbol_file_command (char *args, int from_tty)
2263 {
2264 struct gdbarch *gdbarch = get_current_arch ();
2265 char *filename = NULL;
2266 int flags = OBJF_USERLOADED;
2267 char *arg;
2268 int section_index = 0;
2269 int argcnt = 0;
2270 int sec_num = 0;
2271 int i;
2272 int expecting_sec_name = 0;
2273 int expecting_sec_addr = 0;
2274 char **argv;
2275
2276 struct sect_opt
2277 {
2278 char *name;
2279 char *value;
2280 };
2281
2282 struct section_addr_info *section_addrs;
2283 struct sect_opt *sect_opts = NULL;
2284 size_t num_sect_opts = 0;
2285 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2286
2287 num_sect_opts = 16;
2288 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2289 * sizeof (struct sect_opt));
2290
2291 dont_repeat ();
2292
2293 if (args == NULL)
2294 error (_("add-symbol-file takes a file name and an address"));
2295
2296 argv = gdb_buildargv (args);
2297 make_cleanup_freeargv (argv);
2298
2299 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2300 {
2301 /* Process the argument. */
2302 if (argcnt == 0)
2303 {
2304 /* The first argument is the file name. */
2305 filename = tilde_expand (arg);
2306 make_cleanup (xfree, filename);
2307 }
2308 else
2309 if (argcnt == 1)
2310 {
2311 /* The second argument is always the text address at which
2312 to load the program. */
2313 sect_opts[section_index].name = ".text";
2314 sect_opts[section_index].value = arg;
2315 if (++section_index >= num_sect_opts)
2316 {
2317 num_sect_opts *= 2;
2318 sect_opts = ((struct sect_opt *)
2319 xrealloc (sect_opts,
2320 num_sect_opts
2321 * sizeof (struct sect_opt)));
2322 }
2323 }
2324 else
2325 {
2326 /* It's an option (starting with '-') or it's an argument
2327 to an option. */
2328
2329 if (*arg == '-')
2330 {
2331 if (strcmp (arg, "-readnow") == 0)
2332 flags |= OBJF_READNOW;
2333 else if (strcmp (arg, "-s") == 0)
2334 {
2335 expecting_sec_name = 1;
2336 expecting_sec_addr = 1;
2337 }
2338 }
2339 else
2340 {
2341 if (expecting_sec_name)
2342 {
2343 sect_opts[section_index].name = arg;
2344 expecting_sec_name = 0;
2345 }
2346 else
2347 if (expecting_sec_addr)
2348 {
2349 sect_opts[section_index].value = arg;
2350 expecting_sec_addr = 0;
2351 if (++section_index >= num_sect_opts)
2352 {
2353 num_sect_opts *= 2;
2354 sect_opts = ((struct sect_opt *)
2355 xrealloc (sect_opts,
2356 num_sect_opts
2357 * sizeof (struct sect_opt)));
2358 }
2359 }
2360 else
2361 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2362 " [-readnow] [-s <secname> <addr>]*"));
2363 }
2364 }
2365 }
2366
2367 /* This command takes at least two arguments. The first one is a
2368 filename, and the second is the address where this file has been
2369 loaded. Abort now if this address hasn't been provided by the
2370 user. */
2371 if (section_index < 1)
2372 error (_("The address where %s has been loaded is missing"), filename);
2373
2374 /* Print the prompt for the query below. And save the arguments into
2375 a sect_addr_info structure to be passed around to other
2376 functions. We have to split this up into separate print
2377 statements because hex_string returns a local static
2378 string. */
2379
2380 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2381 section_addrs = alloc_section_addr_info (section_index);
2382 make_cleanup (xfree, section_addrs);
2383 for (i = 0; i < section_index; i++)
2384 {
2385 CORE_ADDR addr;
2386 char *val = sect_opts[i].value;
2387 char *sec = sect_opts[i].name;
2388
2389 addr = parse_and_eval_address (val);
2390
2391 /* Here we store the section offsets in the order they were
2392 entered on the command line. */
2393 section_addrs->other[sec_num].name = sec;
2394 section_addrs->other[sec_num].addr = addr;
2395 printf_unfiltered ("\t%s_addr = %s\n", sec,
2396 paddress (gdbarch, addr));
2397 sec_num++;
2398
2399 /* The object's sections are initialized when a
2400 call is made to build_objfile_section_table (objfile).
2401 This happens in reread_symbols.
2402 At this point, we don't know what file type this is,
2403 so we can't determine what section names are valid. */
2404 }
2405
2406 if (from_tty && (!query ("%s", "")))
2407 error (_("Not confirmed."));
2408
2409 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2410 section_addrs, flags);
2411
2412 /* Getting new symbols may change our opinion about what is
2413 frameless. */
2414 reinit_frame_cache ();
2415 do_cleanups (my_cleanups);
2416 }
2417 \f
2418
2419 typedef struct objfile *objfilep;
2420
2421 DEF_VEC_P (objfilep);
2422
2423 /* Re-read symbols if a symbol-file has changed. */
2424 void
2425 reread_symbols (void)
2426 {
2427 struct objfile *objfile;
2428 long new_modtime;
2429 struct stat new_statbuf;
2430 int res;
2431 VEC (objfilep) *new_objfiles = NULL;
2432 struct cleanup *all_cleanups;
2433
2434 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2435
2436 /* With the addition of shared libraries, this should be modified,
2437 the load time should be saved in the partial symbol tables, since
2438 different tables may come from different source files. FIXME.
2439 This routine should then walk down each partial symbol table
2440 and see if the symbol table that it originates from has been changed. */
2441
2442 for (objfile = object_files; objfile; objfile = objfile->next)
2443 {
2444 /* solib-sunos.c creates one objfile with obfd. */
2445 if (objfile->obfd == NULL)
2446 continue;
2447
2448 /* Separate debug objfiles are handled in the main objfile. */
2449 if (objfile->separate_debug_objfile_backlink)
2450 continue;
2451
2452 /* If this object is from an archive (what you usually create with
2453 `ar', often called a `static library' on most systems, though
2454 a `shared library' on AIX is also an archive), then you should
2455 stat on the archive name, not member name. */
2456 if (objfile->obfd->my_archive)
2457 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2458 else
2459 res = stat (objfile->name, &new_statbuf);
2460 if (res != 0)
2461 {
2462 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2463 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2464 objfile->name);
2465 continue;
2466 }
2467 new_modtime = new_statbuf.st_mtime;
2468 if (new_modtime != objfile->mtime)
2469 {
2470 struct cleanup *old_cleanups;
2471 struct section_offsets *offsets;
2472 int num_offsets;
2473 char *obfd_filename;
2474
2475 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2476 objfile->name);
2477
2478 /* There are various functions like symbol_file_add,
2479 symfile_bfd_open, syms_from_objfile, etc., which might
2480 appear to do what we want. But they have various other
2481 effects which we *don't* want. So we just do stuff
2482 ourselves. We don't worry about mapped files (for one thing,
2483 any mapped file will be out of date). */
2484
2485 /* If we get an error, blow away this objfile (not sure if
2486 that is the correct response for things like shared
2487 libraries). */
2488 old_cleanups = make_cleanup_free_objfile (objfile);
2489 /* We need to do this whenever any symbols go away. */
2490 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2491
2492 if (exec_bfd != NULL
2493 && filename_cmp (bfd_get_filename (objfile->obfd),
2494 bfd_get_filename (exec_bfd)) == 0)
2495 {
2496 /* Reload EXEC_BFD without asking anything. */
2497
2498 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2499 }
2500
2501 /* Keep the calls order approx. the same as in free_objfile. */
2502
2503 /* Free the separate debug objfiles. It will be
2504 automatically recreated by sym_read. */
2505 free_objfile_separate_debug (objfile);
2506
2507 /* Remove any references to this objfile in the global
2508 value lists. */
2509 preserve_values (objfile);
2510
2511 /* Nuke all the state that we will re-read. Much of the following
2512 code which sets things to NULL really is necessary to tell
2513 other parts of GDB that there is nothing currently there.
2514
2515 Try to keep the freeing order compatible with free_objfile. */
2516
2517 if (objfile->sf != NULL)
2518 {
2519 (*objfile->sf->sym_finish) (objfile);
2520 }
2521
2522 clear_objfile_data (objfile);
2523
2524 /* Clean up any state BFD has sitting around. */
2525 {
2526 struct bfd *obfd = objfile->obfd;
2527
2528 obfd_filename = bfd_get_filename (objfile->obfd);
2529 /* Open the new BFD before freeing the old one, so that
2530 the filename remains live. */
2531 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
2532 if (objfile->obfd == NULL)
2533 {
2534 /* We have to make a cleanup and error here, rather
2535 than erroring later, because once we unref OBFD,
2536 OBFD_FILENAME will be freed. */
2537 make_cleanup_bfd_unref (obfd);
2538 error (_("Can't open %s to read symbols."), obfd_filename);
2539 }
2540 gdb_bfd_unref (obfd);
2541 }
2542
2543 objfile->name = bfd_get_filename (objfile->obfd);
2544 /* bfd_openr sets cacheable to true, which is what we want. */
2545 if (!bfd_check_format (objfile->obfd, bfd_object))
2546 error (_("Can't read symbols from %s: %s."), objfile->name,
2547 bfd_errmsg (bfd_get_error ()));
2548
2549 /* Save the offsets, we will nuke them with the rest of the
2550 objfile_obstack. */
2551 num_offsets = objfile->num_sections;
2552 offsets = ((struct section_offsets *)
2553 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2554 memcpy (offsets, objfile->section_offsets,
2555 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2556
2557 /* FIXME: Do we have to free a whole linked list, or is this
2558 enough? */
2559 if (objfile->global_psymbols.list)
2560 xfree (objfile->global_psymbols.list);
2561 memset (&objfile->global_psymbols, 0,
2562 sizeof (objfile->global_psymbols));
2563 if (objfile->static_psymbols.list)
2564 xfree (objfile->static_psymbols.list);
2565 memset (&objfile->static_psymbols, 0,
2566 sizeof (objfile->static_psymbols));
2567
2568 /* Free the obstacks for non-reusable objfiles. */
2569 psymbol_bcache_free (objfile->psymbol_cache);
2570 objfile->psymbol_cache = psymbol_bcache_init ();
2571 if (objfile->demangled_names_hash != NULL)
2572 {
2573 htab_delete (objfile->demangled_names_hash);
2574 objfile->demangled_names_hash = NULL;
2575 }
2576 obstack_free (&objfile->objfile_obstack, 0);
2577 objfile->sections = NULL;
2578 objfile->symtabs = NULL;
2579 objfile->psymtabs = NULL;
2580 objfile->psymtabs_addrmap = NULL;
2581 objfile->free_psymtabs = NULL;
2582 objfile->template_symbols = NULL;
2583 objfile->msymbols = NULL;
2584 objfile->minimal_symbol_count = 0;
2585 memset (&objfile->msymbol_hash, 0,
2586 sizeof (objfile->msymbol_hash));
2587 memset (&objfile->msymbol_demangled_hash, 0,
2588 sizeof (objfile->msymbol_demangled_hash));
2589
2590 set_objfile_per_bfd (objfile);
2591
2592 /* obstack_init also initializes the obstack so it is
2593 empty. We could use obstack_specify_allocation but
2594 gdb_obstack.h specifies the alloc/dealloc functions. */
2595 obstack_init (&objfile->objfile_obstack);
2596 build_objfile_section_table (objfile);
2597 terminate_minimal_symbol_table (objfile);
2598
2599 /* We use the same section offsets as from last time. I'm not
2600 sure whether that is always correct for shared libraries. */
2601 objfile->section_offsets = (struct section_offsets *)
2602 obstack_alloc (&objfile->objfile_obstack,
2603 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2604 memcpy (objfile->section_offsets, offsets,
2605 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2606 objfile->num_sections = num_offsets;
2607
2608 /* What the hell is sym_new_init for, anyway? The concept of
2609 distinguishing between the main file and additional files
2610 in this way seems rather dubious. */
2611 if (objfile == symfile_objfile)
2612 {
2613 (*objfile->sf->sym_new_init) (objfile);
2614 }
2615
2616 (*objfile->sf->sym_init) (objfile);
2617 clear_complaints (&symfile_complaints, 1, 1);
2618
2619 objfile->flags &= ~OBJF_PSYMTABS_READ;
2620 read_symbols (objfile, 0);
2621
2622 if (!objfile_has_symbols (objfile))
2623 {
2624 wrap_here ("");
2625 printf_unfiltered (_("(no debugging symbols found)\n"));
2626 wrap_here ("");
2627 }
2628
2629 /* We're done reading the symbol file; finish off complaints. */
2630 clear_complaints (&symfile_complaints, 0, 1);
2631
2632 /* Getting new symbols may change our opinion about what is
2633 frameless. */
2634
2635 reinit_frame_cache ();
2636
2637 /* Discard cleanups as symbol reading was successful. */
2638 discard_cleanups (old_cleanups);
2639
2640 /* If the mtime has changed between the time we set new_modtime
2641 and now, we *want* this to be out of date, so don't call stat
2642 again now. */
2643 objfile->mtime = new_modtime;
2644 init_entry_point_info (objfile);
2645
2646 VEC_safe_push (objfilep, new_objfiles, objfile);
2647 }
2648 }
2649
2650 if (new_objfiles)
2651 {
2652 int ix;
2653
2654 /* Notify objfiles that we've modified objfile sections. */
2655 objfiles_changed ();
2656
2657 clear_symtab_users (0);
2658
2659 /* clear_objfile_data for each objfile was called before freeing it and
2660 observer_notify_new_objfile (NULL) has been called by
2661 clear_symtab_users above. Notify the new files now. */
2662 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2663 observer_notify_new_objfile (objfile);
2664
2665 /* At least one objfile has changed, so we can consider that
2666 the executable we're debugging has changed too. */
2667 observer_notify_executable_changed ();
2668 }
2669
2670 do_cleanups (all_cleanups);
2671 }
2672 \f
2673
2674
2675 typedef struct
2676 {
2677 char *ext;
2678 enum language lang;
2679 }
2680 filename_language;
2681
2682 static filename_language *filename_language_table;
2683 static int fl_table_size, fl_table_next;
2684
2685 static void
2686 add_filename_language (char *ext, enum language lang)
2687 {
2688 if (fl_table_next >= fl_table_size)
2689 {
2690 fl_table_size += 10;
2691 filename_language_table =
2692 xrealloc (filename_language_table,
2693 fl_table_size * sizeof (*filename_language_table));
2694 }
2695
2696 filename_language_table[fl_table_next].ext = xstrdup (ext);
2697 filename_language_table[fl_table_next].lang = lang;
2698 fl_table_next++;
2699 }
2700
2701 static char *ext_args;
2702 static void
2703 show_ext_args (struct ui_file *file, int from_tty,
2704 struct cmd_list_element *c, const char *value)
2705 {
2706 fprintf_filtered (file,
2707 _("Mapping between filename extension "
2708 "and source language is \"%s\".\n"),
2709 value);
2710 }
2711
2712 static void
2713 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2714 {
2715 int i;
2716 char *cp = ext_args;
2717 enum language lang;
2718
2719 /* First arg is filename extension, starting with '.' */
2720 if (*cp != '.')
2721 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2722
2723 /* Find end of first arg. */
2724 while (*cp && !isspace (*cp))
2725 cp++;
2726
2727 if (*cp == '\0')
2728 error (_("'%s': two arguments required -- "
2729 "filename extension and language"),
2730 ext_args);
2731
2732 /* Null-terminate first arg. */
2733 *cp++ = '\0';
2734
2735 /* Find beginning of second arg, which should be a source language. */
2736 while (*cp && isspace (*cp))
2737 cp++;
2738
2739 if (*cp == '\0')
2740 error (_("'%s': two arguments required -- "
2741 "filename extension and language"),
2742 ext_args);
2743
2744 /* Lookup the language from among those we know. */
2745 lang = language_enum (cp);
2746
2747 /* Now lookup the filename extension: do we already know it? */
2748 for (i = 0; i < fl_table_next; i++)
2749 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2750 break;
2751
2752 if (i >= fl_table_next)
2753 {
2754 /* New file extension. */
2755 add_filename_language (ext_args, lang);
2756 }
2757 else
2758 {
2759 /* Redefining a previously known filename extension. */
2760
2761 /* if (from_tty) */
2762 /* query ("Really make files of type %s '%s'?", */
2763 /* ext_args, language_str (lang)); */
2764
2765 xfree (filename_language_table[i].ext);
2766 filename_language_table[i].ext = xstrdup (ext_args);
2767 filename_language_table[i].lang = lang;
2768 }
2769 }
2770
2771 static void
2772 info_ext_lang_command (char *args, int from_tty)
2773 {
2774 int i;
2775
2776 printf_filtered (_("Filename extensions and the languages they represent:"));
2777 printf_filtered ("\n\n");
2778 for (i = 0; i < fl_table_next; i++)
2779 printf_filtered ("\t%s\t- %s\n",
2780 filename_language_table[i].ext,
2781 language_str (filename_language_table[i].lang));
2782 }
2783
2784 static void
2785 init_filename_language_table (void)
2786 {
2787 if (fl_table_size == 0) /* Protect against repetition. */
2788 {
2789 fl_table_size = 20;
2790 fl_table_next = 0;
2791 filename_language_table =
2792 xmalloc (fl_table_size * sizeof (*filename_language_table));
2793 add_filename_language (".c", language_c);
2794 add_filename_language (".d", language_d);
2795 add_filename_language (".C", language_cplus);
2796 add_filename_language (".cc", language_cplus);
2797 add_filename_language (".cp", language_cplus);
2798 add_filename_language (".cpp", language_cplus);
2799 add_filename_language (".cxx", language_cplus);
2800 add_filename_language (".c++", language_cplus);
2801 add_filename_language (".java", language_java);
2802 add_filename_language (".class", language_java);
2803 add_filename_language (".m", language_objc);
2804 add_filename_language (".f", language_fortran);
2805 add_filename_language (".F", language_fortran);
2806 add_filename_language (".for", language_fortran);
2807 add_filename_language (".FOR", language_fortran);
2808 add_filename_language (".ftn", language_fortran);
2809 add_filename_language (".FTN", language_fortran);
2810 add_filename_language (".fpp", language_fortran);
2811 add_filename_language (".FPP", language_fortran);
2812 add_filename_language (".f90", language_fortran);
2813 add_filename_language (".F90", language_fortran);
2814 add_filename_language (".f95", language_fortran);
2815 add_filename_language (".F95", language_fortran);
2816 add_filename_language (".f03", language_fortran);
2817 add_filename_language (".F03", language_fortran);
2818 add_filename_language (".f08", language_fortran);
2819 add_filename_language (".F08", language_fortran);
2820 add_filename_language (".s", language_asm);
2821 add_filename_language (".sx", language_asm);
2822 add_filename_language (".S", language_asm);
2823 add_filename_language (".pas", language_pascal);
2824 add_filename_language (".p", language_pascal);
2825 add_filename_language (".pp", language_pascal);
2826 add_filename_language (".adb", language_ada);
2827 add_filename_language (".ads", language_ada);
2828 add_filename_language (".a", language_ada);
2829 add_filename_language (".ada", language_ada);
2830 add_filename_language (".dg", language_ada);
2831 }
2832 }
2833
2834 enum language
2835 deduce_language_from_filename (const char *filename)
2836 {
2837 int i;
2838 char *cp;
2839
2840 if (filename != NULL)
2841 if ((cp = strrchr (filename, '.')) != NULL)
2842 for (i = 0; i < fl_table_next; i++)
2843 if (strcmp (cp, filename_language_table[i].ext) == 0)
2844 return filename_language_table[i].lang;
2845
2846 return language_unknown;
2847 }
2848 \f
2849 /* allocate_symtab:
2850
2851 Allocate and partly initialize a new symbol table. Return a pointer
2852 to it. error() if no space.
2853
2854 Caller must set these fields:
2855 LINETABLE(symtab)
2856 symtab->blockvector
2857 symtab->dirname
2858 symtab->free_code
2859 symtab->free_ptr
2860 */
2861
2862 struct symtab *
2863 allocate_symtab (const char *filename, struct objfile *objfile)
2864 {
2865 struct symtab *symtab;
2866
2867 symtab = (struct symtab *)
2868 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2869 memset (symtab, 0, sizeof (*symtab));
2870 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2871 objfile->per_bfd->filename_cache);
2872 symtab->fullname = NULL;
2873 symtab->language = deduce_language_from_filename (filename);
2874 symtab->debugformat = "unknown";
2875
2876 /* Hook it to the objfile it comes from. */
2877
2878 symtab->objfile = objfile;
2879 symtab->next = objfile->symtabs;
2880 objfile->symtabs = symtab;
2881
2882 if (symtab_create_debug)
2883 {
2884 /* Be a bit clever with debugging messages, and don't print objfile
2885 every time, only when it changes. */
2886 static char *last_objfile_name = NULL;
2887
2888 if (last_objfile_name == NULL
2889 || strcmp (last_objfile_name, objfile->name) != 0)
2890 {
2891 xfree (last_objfile_name);
2892 last_objfile_name = xstrdup (objfile->name);
2893 fprintf_unfiltered (gdb_stdlog,
2894 "Creating one or more symtabs for objfile %s ...\n",
2895 last_objfile_name);
2896 }
2897 fprintf_unfiltered (gdb_stdlog,
2898 "Created symtab %s for module %s.\n",
2899 host_address_to_string (symtab), filename);
2900 }
2901
2902 return (symtab);
2903 }
2904 \f
2905
2906 /* Reset all data structures in gdb which may contain references to symbol
2907 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2908
2909 void
2910 clear_symtab_users (int add_flags)
2911 {
2912 /* Someday, we should do better than this, by only blowing away
2913 the things that really need to be blown. */
2914
2915 /* Clear the "current" symtab first, because it is no longer valid.
2916 breakpoint_re_set may try to access the current symtab. */
2917 clear_current_source_symtab_and_line ();
2918
2919 clear_displays ();
2920 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2921 breakpoint_re_set ();
2922 clear_last_displayed_sal ();
2923 clear_pc_function_cache ();
2924 observer_notify_new_objfile (NULL);
2925
2926 /* Clear globals which might have pointed into a removed objfile.
2927 FIXME: It's not clear which of these are supposed to persist
2928 between expressions and which ought to be reset each time. */
2929 expression_context_block = NULL;
2930 innermost_block = NULL;
2931
2932 /* Varobj may refer to old symbols, perform a cleanup. */
2933 varobj_invalidate ();
2934
2935 }
2936
2937 static void
2938 clear_symtab_users_cleanup (void *ignore)
2939 {
2940 clear_symtab_users (0);
2941 }
2942 \f
2943 /* OVERLAYS:
2944 The following code implements an abstraction for debugging overlay sections.
2945
2946 The target model is as follows:
2947 1) The gnu linker will permit multiple sections to be mapped into the
2948 same VMA, each with its own unique LMA (or load address).
2949 2) It is assumed that some runtime mechanism exists for mapping the
2950 sections, one by one, from the load address into the VMA address.
2951 3) This code provides a mechanism for gdb to keep track of which
2952 sections should be considered to be mapped from the VMA to the LMA.
2953 This information is used for symbol lookup, and memory read/write.
2954 For instance, if a section has been mapped then its contents
2955 should be read from the VMA, otherwise from the LMA.
2956
2957 Two levels of debugger support for overlays are available. One is
2958 "manual", in which the debugger relies on the user to tell it which
2959 overlays are currently mapped. This level of support is
2960 implemented entirely in the core debugger, and the information about
2961 whether a section is mapped is kept in the objfile->obj_section table.
2962
2963 The second level of support is "automatic", and is only available if
2964 the target-specific code provides functionality to read the target's
2965 overlay mapping table, and translate its contents for the debugger
2966 (by updating the mapped state information in the obj_section tables).
2967
2968 The interface is as follows:
2969 User commands:
2970 overlay map <name> -- tell gdb to consider this section mapped
2971 overlay unmap <name> -- tell gdb to consider this section unmapped
2972 overlay list -- list the sections that GDB thinks are mapped
2973 overlay read-target -- get the target's state of what's mapped
2974 overlay off/manual/auto -- set overlay debugging state
2975 Functional interface:
2976 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2977 section, return that section.
2978 find_pc_overlay(pc): find any overlay section that contains
2979 the pc, either in its VMA or its LMA
2980 section_is_mapped(sect): true if overlay is marked as mapped
2981 section_is_overlay(sect): true if section's VMA != LMA
2982 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2983 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2984 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2985 overlay_mapped_address(...): map an address from section's LMA to VMA
2986 overlay_unmapped_address(...): map an address from section's VMA to LMA
2987 symbol_overlayed_address(...): Return a "current" address for symbol:
2988 either in VMA or LMA depending on whether
2989 the symbol's section is currently mapped. */
2990
2991 /* Overlay debugging state: */
2992
2993 enum overlay_debugging_state overlay_debugging = ovly_off;
2994 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2995
2996 /* Function: section_is_overlay (SECTION)
2997 Returns true if SECTION has VMA not equal to LMA, ie.
2998 SECTION is loaded at an address different from where it will "run". */
2999
3000 int
3001 section_is_overlay (struct obj_section *section)
3002 {
3003 if (overlay_debugging && section)
3004 {
3005 bfd *abfd = section->objfile->obfd;
3006 asection *bfd_section = section->the_bfd_section;
3007
3008 if (bfd_section_lma (abfd, bfd_section) != 0
3009 && bfd_section_lma (abfd, bfd_section)
3010 != bfd_section_vma (abfd, bfd_section))
3011 return 1;
3012 }
3013
3014 return 0;
3015 }
3016
3017 /* Function: overlay_invalidate_all (void)
3018 Invalidate the mapped state of all overlay sections (mark it as stale). */
3019
3020 static void
3021 overlay_invalidate_all (void)
3022 {
3023 struct objfile *objfile;
3024 struct obj_section *sect;
3025
3026 ALL_OBJSECTIONS (objfile, sect)
3027 if (section_is_overlay (sect))
3028 sect->ovly_mapped = -1;
3029 }
3030
3031 /* Function: section_is_mapped (SECTION)
3032 Returns true if section is an overlay, and is currently mapped.
3033
3034 Access to the ovly_mapped flag is restricted to this function, so
3035 that we can do automatic update. If the global flag
3036 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3037 overlay_invalidate_all. If the mapped state of the particular
3038 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3039
3040 int
3041 section_is_mapped (struct obj_section *osect)
3042 {
3043 struct gdbarch *gdbarch;
3044
3045 if (osect == 0 || !section_is_overlay (osect))
3046 return 0;
3047
3048 switch (overlay_debugging)
3049 {
3050 default:
3051 case ovly_off:
3052 return 0; /* overlay debugging off */
3053 case ovly_auto: /* overlay debugging automatic */
3054 /* Unles there is a gdbarch_overlay_update function,
3055 there's really nothing useful to do here (can't really go auto). */
3056 gdbarch = get_objfile_arch (osect->objfile);
3057 if (gdbarch_overlay_update_p (gdbarch))
3058 {
3059 if (overlay_cache_invalid)
3060 {
3061 overlay_invalidate_all ();
3062 overlay_cache_invalid = 0;
3063 }
3064 if (osect->ovly_mapped == -1)
3065 gdbarch_overlay_update (gdbarch, osect);
3066 }
3067 /* fall thru to manual case */
3068 case ovly_on: /* overlay debugging manual */
3069 return osect->ovly_mapped == 1;
3070 }
3071 }
3072
3073 /* Function: pc_in_unmapped_range
3074 If PC falls into the lma range of SECTION, return true, else false. */
3075
3076 CORE_ADDR
3077 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3078 {
3079 if (section_is_overlay (section))
3080 {
3081 bfd *abfd = section->objfile->obfd;
3082 asection *bfd_section = section->the_bfd_section;
3083
3084 /* We assume the LMA is relocated by the same offset as the VMA. */
3085 bfd_vma size = bfd_get_section_size (bfd_section);
3086 CORE_ADDR offset = obj_section_offset (section);
3087
3088 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3089 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3090 return 1;
3091 }
3092
3093 return 0;
3094 }
3095
3096 /* Function: pc_in_mapped_range
3097 If PC falls into the vma range of SECTION, return true, else false. */
3098
3099 CORE_ADDR
3100 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3101 {
3102 if (section_is_overlay (section))
3103 {
3104 if (obj_section_addr (section) <= pc
3105 && pc < obj_section_endaddr (section))
3106 return 1;
3107 }
3108
3109 return 0;
3110 }
3111
3112
3113 /* Return true if the mapped ranges of sections A and B overlap, false
3114 otherwise. */
3115 static int
3116 sections_overlap (struct obj_section *a, struct obj_section *b)
3117 {
3118 CORE_ADDR a_start = obj_section_addr (a);
3119 CORE_ADDR a_end = obj_section_endaddr (a);
3120 CORE_ADDR b_start = obj_section_addr (b);
3121 CORE_ADDR b_end = obj_section_endaddr (b);
3122
3123 return (a_start < b_end && b_start < a_end);
3124 }
3125
3126 /* Function: overlay_unmapped_address (PC, SECTION)
3127 Returns the address corresponding to PC in the unmapped (load) range.
3128 May be the same as PC. */
3129
3130 CORE_ADDR
3131 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3132 {
3133 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3134 {
3135 bfd *abfd = section->objfile->obfd;
3136 asection *bfd_section = section->the_bfd_section;
3137
3138 return pc + bfd_section_lma (abfd, bfd_section)
3139 - bfd_section_vma (abfd, bfd_section);
3140 }
3141
3142 return pc;
3143 }
3144
3145 /* Function: overlay_mapped_address (PC, SECTION)
3146 Returns the address corresponding to PC in the mapped (runtime) range.
3147 May be the same as PC. */
3148
3149 CORE_ADDR
3150 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3151 {
3152 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3153 {
3154 bfd *abfd = section->objfile->obfd;
3155 asection *bfd_section = section->the_bfd_section;
3156
3157 return pc + bfd_section_vma (abfd, bfd_section)
3158 - bfd_section_lma (abfd, bfd_section);
3159 }
3160
3161 return pc;
3162 }
3163
3164
3165 /* Function: symbol_overlayed_address
3166 Return one of two addresses (relative to the VMA or to the LMA),
3167 depending on whether the section is mapped or not. */
3168
3169 CORE_ADDR
3170 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3171 {
3172 if (overlay_debugging)
3173 {
3174 /* If the symbol has no section, just return its regular address. */
3175 if (section == 0)
3176 return address;
3177 /* If the symbol's section is not an overlay, just return its
3178 address. */
3179 if (!section_is_overlay (section))
3180 return address;
3181 /* If the symbol's section is mapped, just return its address. */
3182 if (section_is_mapped (section))
3183 return address;
3184 /*
3185 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3186 * then return its LOADED address rather than its vma address!!
3187 */
3188 return overlay_unmapped_address (address, section);
3189 }
3190 return address;
3191 }
3192
3193 /* Function: find_pc_overlay (PC)
3194 Return the best-match overlay section for PC:
3195 If PC matches a mapped overlay section's VMA, return that section.
3196 Else if PC matches an unmapped section's VMA, return that section.
3197 Else if PC matches an unmapped section's LMA, return that section. */
3198
3199 struct obj_section *
3200 find_pc_overlay (CORE_ADDR pc)
3201 {
3202 struct objfile *objfile;
3203 struct obj_section *osect, *best_match = NULL;
3204
3205 if (overlay_debugging)
3206 ALL_OBJSECTIONS (objfile, osect)
3207 if (section_is_overlay (osect))
3208 {
3209 if (pc_in_mapped_range (pc, osect))
3210 {
3211 if (section_is_mapped (osect))
3212 return osect;
3213 else
3214 best_match = osect;
3215 }
3216 else if (pc_in_unmapped_range (pc, osect))
3217 best_match = osect;
3218 }
3219 return best_match;
3220 }
3221
3222 /* Function: find_pc_mapped_section (PC)
3223 If PC falls into the VMA address range of an overlay section that is
3224 currently marked as MAPPED, return that section. Else return NULL. */
3225
3226 struct obj_section *
3227 find_pc_mapped_section (CORE_ADDR pc)
3228 {
3229 struct objfile *objfile;
3230 struct obj_section *osect;
3231
3232 if (overlay_debugging)
3233 ALL_OBJSECTIONS (objfile, osect)
3234 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3235 return osect;
3236
3237 return NULL;
3238 }
3239
3240 /* Function: list_overlays_command
3241 Print a list of mapped sections and their PC ranges. */
3242
3243 static void
3244 list_overlays_command (char *args, int from_tty)
3245 {
3246 int nmapped = 0;
3247 struct objfile *objfile;
3248 struct obj_section *osect;
3249
3250 if (overlay_debugging)
3251 ALL_OBJSECTIONS (objfile, osect)
3252 if (section_is_mapped (osect))
3253 {
3254 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3255 const char *name;
3256 bfd_vma lma, vma;
3257 int size;
3258
3259 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3260 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3261 size = bfd_get_section_size (osect->the_bfd_section);
3262 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3263
3264 printf_filtered ("Section %s, loaded at ", name);
3265 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3266 puts_filtered (" - ");
3267 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3268 printf_filtered (", mapped at ");
3269 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3270 puts_filtered (" - ");
3271 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3272 puts_filtered ("\n");
3273
3274 nmapped++;
3275 }
3276 if (nmapped == 0)
3277 printf_filtered (_("No sections are mapped.\n"));
3278 }
3279
3280 /* Function: map_overlay_command
3281 Mark the named section as mapped (ie. residing at its VMA address). */
3282
3283 static void
3284 map_overlay_command (char *args, int from_tty)
3285 {
3286 struct objfile *objfile, *objfile2;
3287 struct obj_section *sec, *sec2;
3288
3289 if (!overlay_debugging)
3290 error (_("Overlay debugging not enabled. Use "
3291 "either the 'overlay auto' or\n"
3292 "the 'overlay manual' command."));
3293
3294 if (args == 0 || *args == 0)
3295 error (_("Argument required: name of an overlay section"));
3296
3297 /* First, find a section matching the user supplied argument. */
3298 ALL_OBJSECTIONS (objfile, sec)
3299 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3300 {
3301 /* Now, check to see if the section is an overlay. */
3302 if (!section_is_overlay (sec))
3303 continue; /* not an overlay section */
3304
3305 /* Mark the overlay as "mapped". */
3306 sec->ovly_mapped = 1;
3307
3308 /* Next, make a pass and unmap any sections that are
3309 overlapped by this new section: */
3310 ALL_OBJSECTIONS (objfile2, sec2)
3311 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3312 {
3313 if (info_verbose)
3314 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3315 bfd_section_name (objfile->obfd,
3316 sec2->the_bfd_section));
3317 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3318 }
3319 return;
3320 }
3321 error (_("No overlay section called %s"), args);
3322 }
3323
3324 /* Function: unmap_overlay_command
3325 Mark the overlay section as unmapped
3326 (ie. resident in its LMA address range, rather than the VMA range). */
3327
3328 static void
3329 unmap_overlay_command (char *args, int from_tty)
3330 {
3331 struct objfile *objfile;
3332 struct obj_section *sec;
3333
3334 if (!overlay_debugging)
3335 error (_("Overlay debugging not enabled. "
3336 "Use either the 'overlay auto' or\n"
3337 "the 'overlay manual' command."));
3338
3339 if (args == 0 || *args == 0)
3340 error (_("Argument required: name of an overlay section"));
3341
3342 /* First, find a section matching the user supplied argument. */
3343 ALL_OBJSECTIONS (objfile, sec)
3344 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3345 {
3346 if (!sec->ovly_mapped)
3347 error (_("Section %s is not mapped"), args);
3348 sec->ovly_mapped = 0;
3349 return;
3350 }
3351 error (_("No overlay section called %s"), args);
3352 }
3353
3354 /* Function: overlay_auto_command
3355 A utility command to turn on overlay debugging.
3356 Possibly this should be done via a set/show command. */
3357
3358 static void
3359 overlay_auto_command (char *args, int from_tty)
3360 {
3361 overlay_debugging = ovly_auto;
3362 enable_overlay_breakpoints ();
3363 if (info_verbose)
3364 printf_unfiltered (_("Automatic overlay debugging enabled."));
3365 }
3366
3367 /* Function: overlay_manual_command
3368 A utility command to turn on overlay debugging.
3369 Possibly this should be done via a set/show command. */
3370
3371 static void
3372 overlay_manual_command (char *args, int from_tty)
3373 {
3374 overlay_debugging = ovly_on;
3375 disable_overlay_breakpoints ();
3376 if (info_verbose)
3377 printf_unfiltered (_("Overlay debugging enabled."));
3378 }
3379
3380 /* Function: overlay_off_command
3381 A utility command to turn on overlay debugging.
3382 Possibly this should be done via a set/show command. */
3383
3384 static void
3385 overlay_off_command (char *args, int from_tty)
3386 {
3387 overlay_debugging = ovly_off;
3388 disable_overlay_breakpoints ();
3389 if (info_verbose)
3390 printf_unfiltered (_("Overlay debugging disabled."));
3391 }
3392
3393 static void
3394 overlay_load_command (char *args, int from_tty)
3395 {
3396 struct gdbarch *gdbarch = get_current_arch ();
3397
3398 if (gdbarch_overlay_update_p (gdbarch))
3399 gdbarch_overlay_update (gdbarch, NULL);
3400 else
3401 error (_("This target does not know how to read its overlay state."));
3402 }
3403
3404 /* Function: overlay_command
3405 A place-holder for a mis-typed command. */
3406
3407 /* Command list chain containing all defined "overlay" subcommands. */
3408 static struct cmd_list_element *overlaylist;
3409
3410 static void
3411 overlay_command (char *args, int from_tty)
3412 {
3413 printf_unfiltered
3414 ("\"overlay\" must be followed by the name of an overlay command.\n");
3415 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3416 }
3417
3418
3419 /* Target Overlays for the "Simplest" overlay manager:
3420
3421 This is GDB's default target overlay layer. It works with the
3422 minimal overlay manager supplied as an example by Cygnus. The
3423 entry point is via a function pointer "gdbarch_overlay_update",
3424 so targets that use a different runtime overlay manager can
3425 substitute their own overlay_update function and take over the
3426 function pointer.
3427
3428 The overlay_update function pokes around in the target's data structures
3429 to see what overlays are mapped, and updates GDB's overlay mapping with
3430 this information.
3431
3432 In this simple implementation, the target data structures are as follows:
3433 unsigned _novlys; /# number of overlay sections #/
3434 unsigned _ovly_table[_novlys][4] = {
3435 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3436 {..., ..., ..., ...},
3437 }
3438 unsigned _novly_regions; /# number of overlay regions #/
3439 unsigned _ovly_region_table[_novly_regions][3] = {
3440 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3441 {..., ..., ...},
3442 }
3443 These functions will attempt to update GDB's mappedness state in the
3444 symbol section table, based on the target's mappedness state.
3445
3446 To do this, we keep a cached copy of the target's _ovly_table, and
3447 attempt to detect when the cached copy is invalidated. The main
3448 entry point is "simple_overlay_update(SECT), which looks up SECT in
3449 the cached table and re-reads only the entry for that section from
3450 the target (whenever possible). */
3451
3452 /* Cached, dynamically allocated copies of the target data structures: */
3453 static unsigned (*cache_ovly_table)[4] = 0;
3454 static unsigned cache_novlys = 0;
3455 static CORE_ADDR cache_ovly_table_base = 0;
3456 enum ovly_index
3457 {
3458 VMA, SIZE, LMA, MAPPED
3459 };
3460
3461 /* Throw away the cached copy of _ovly_table. */
3462 static void
3463 simple_free_overlay_table (void)
3464 {
3465 if (cache_ovly_table)
3466 xfree (cache_ovly_table);
3467 cache_novlys = 0;
3468 cache_ovly_table = NULL;
3469 cache_ovly_table_base = 0;
3470 }
3471
3472 /* Read an array of ints of size SIZE from the target into a local buffer.
3473 Convert to host order. int LEN is number of ints. */
3474 static void
3475 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3476 int len, int size, enum bfd_endian byte_order)
3477 {
3478 /* FIXME (alloca): Not safe if array is very large. */
3479 gdb_byte *buf = alloca (len * size);
3480 int i;
3481
3482 read_memory (memaddr, buf, len * size);
3483 for (i = 0; i < len; i++)
3484 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3485 }
3486
3487 /* Find and grab a copy of the target _ovly_table
3488 (and _novlys, which is needed for the table's size). */
3489 static int
3490 simple_read_overlay_table (void)
3491 {
3492 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3493 struct gdbarch *gdbarch;
3494 int word_size;
3495 enum bfd_endian byte_order;
3496
3497 simple_free_overlay_table ();
3498 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3499 if (! novlys_msym)
3500 {
3501 error (_("Error reading inferior's overlay table: "
3502 "couldn't find `_novlys' variable\n"
3503 "in inferior. Use `overlay manual' mode."));
3504 return 0;
3505 }
3506
3507 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3508 if (! ovly_table_msym)
3509 {
3510 error (_("Error reading inferior's overlay table: couldn't find "
3511 "`_ovly_table' array\n"
3512 "in inferior. Use `overlay manual' mode."));
3513 return 0;
3514 }
3515
3516 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3517 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3518 byte_order = gdbarch_byte_order (gdbarch);
3519
3520 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3521 4, byte_order);
3522 cache_ovly_table
3523 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3524 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3525 read_target_long_array (cache_ovly_table_base,
3526 (unsigned int *) cache_ovly_table,
3527 cache_novlys * 4, word_size, byte_order);
3528
3529 return 1; /* SUCCESS */
3530 }
3531
3532 /* Function: simple_overlay_update_1
3533 A helper function for simple_overlay_update. Assuming a cached copy
3534 of _ovly_table exists, look through it to find an entry whose vma,
3535 lma and size match those of OSECT. Re-read the entry and make sure
3536 it still matches OSECT (else the table may no longer be valid).
3537 Set OSECT's mapped state to match the entry. Return: 1 for
3538 success, 0 for failure. */
3539
3540 static int
3541 simple_overlay_update_1 (struct obj_section *osect)
3542 {
3543 int i, size;
3544 bfd *obfd = osect->objfile->obfd;
3545 asection *bsect = osect->the_bfd_section;
3546 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3547 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3548 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3549
3550 size = bfd_get_section_size (osect->the_bfd_section);
3551 for (i = 0; i < cache_novlys; i++)
3552 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3553 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3554 /* && cache_ovly_table[i][SIZE] == size */ )
3555 {
3556 read_target_long_array (cache_ovly_table_base + i * word_size,
3557 (unsigned int *) cache_ovly_table[i],
3558 4, word_size, byte_order);
3559 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3560 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3561 /* && cache_ovly_table[i][SIZE] == size */ )
3562 {
3563 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3564 return 1;
3565 }
3566 else /* Warning! Warning! Target's ovly table has changed! */
3567 return 0;
3568 }
3569 return 0;
3570 }
3571
3572 /* Function: simple_overlay_update
3573 If OSECT is NULL, then update all sections' mapped state
3574 (after re-reading the entire target _ovly_table).
3575 If OSECT is non-NULL, then try to find a matching entry in the
3576 cached ovly_table and update only OSECT's mapped state.
3577 If a cached entry can't be found or the cache isn't valid, then
3578 re-read the entire cache, and go ahead and update all sections. */
3579
3580 void
3581 simple_overlay_update (struct obj_section *osect)
3582 {
3583 struct objfile *objfile;
3584
3585 /* Were we given an osect to look up? NULL means do all of them. */
3586 if (osect)
3587 /* Have we got a cached copy of the target's overlay table? */
3588 if (cache_ovly_table != NULL)
3589 {
3590 /* Does its cached location match what's currently in the
3591 symtab? */
3592 struct minimal_symbol *minsym
3593 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3594
3595 if (minsym == NULL)
3596 error (_("Error reading inferior's overlay table: couldn't "
3597 "find `_ovly_table' array\n"
3598 "in inferior. Use `overlay manual' mode."));
3599
3600 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3601 /* Then go ahead and try to look up this single section in
3602 the cache. */
3603 if (simple_overlay_update_1 (osect))
3604 /* Found it! We're done. */
3605 return;
3606 }
3607
3608 /* Cached table no good: need to read the entire table anew.
3609 Or else we want all the sections, in which case it's actually
3610 more efficient to read the whole table in one block anyway. */
3611
3612 if (! simple_read_overlay_table ())
3613 return;
3614
3615 /* Now may as well update all sections, even if only one was requested. */
3616 ALL_OBJSECTIONS (objfile, osect)
3617 if (section_is_overlay (osect))
3618 {
3619 int i, size;
3620 bfd *obfd = osect->objfile->obfd;
3621 asection *bsect = osect->the_bfd_section;
3622
3623 size = bfd_get_section_size (bsect);
3624 for (i = 0; i < cache_novlys; i++)
3625 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3626 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3627 /* && cache_ovly_table[i][SIZE] == size */ )
3628 { /* obj_section matches i'th entry in ovly_table. */
3629 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3630 break; /* finished with inner for loop: break out. */
3631 }
3632 }
3633 }
3634
3635 /* Set the output sections and output offsets for section SECTP in
3636 ABFD. The relocation code in BFD will read these offsets, so we
3637 need to be sure they're initialized. We map each section to itself,
3638 with no offset; this means that SECTP->vma will be honored. */
3639
3640 static void
3641 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3642 {
3643 sectp->output_section = sectp;
3644 sectp->output_offset = 0;
3645 }
3646
3647 /* Default implementation for sym_relocate. */
3648
3649
3650 bfd_byte *
3651 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3652 bfd_byte *buf)
3653 {
3654 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3655 DWO file. */
3656 bfd *abfd = sectp->owner;
3657
3658 /* We're only interested in sections with relocation
3659 information. */
3660 if ((sectp->flags & SEC_RELOC) == 0)
3661 return NULL;
3662
3663 /* We will handle section offsets properly elsewhere, so relocate as if
3664 all sections begin at 0. */
3665 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3666
3667 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3668 }
3669
3670 /* Relocate the contents of a debug section SECTP in ABFD. The
3671 contents are stored in BUF if it is non-NULL, or returned in a
3672 malloc'd buffer otherwise.
3673
3674 For some platforms and debug info formats, shared libraries contain
3675 relocations against the debug sections (particularly for DWARF-2;
3676 one affected platform is PowerPC GNU/Linux, although it depends on
3677 the version of the linker in use). Also, ELF object files naturally
3678 have unresolved relocations for their debug sections. We need to apply
3679 the relocations in order to get the locations of symbols correct.
3680 Another example that may require relocation processing, is the
3681 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3682 debug section. */
3683
3684 bfd_byte *
3685 symfile_relocate_debug_section (struct objfile *objfile,
3686 asection *sectp, bfd_byte *buf)
3687 {
3688 gdb_assert (objfile->sf->sym_relocate);
3689
3690 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3691 }
3692
3693 struct symfile_segment_data *
3694 get_symfile_segment_data (bfd *abfd)
3695 {
3696 const struct sym_fns *sf = find_sym_fns (abfd);
3697
3698 if (sf == NULL)
3699 return NULL;
3700
3701 return sf->sym_segments (abfd);
3702 }
3703
3704 void
3705 free_symfile_segment_data (struct symfile_segment_data *data)
3706 {
3707 xfree (data->segment_bases);
3708 xfree (data->segment_sizes);
3709 xfree (data->segment_info);
3710 xfree (data);
3711 }
3712
3713
3714 /* Given:
3715 - DATA, containing segment addresses from the object file ABFD, and
3716 the mapping from ABFD's sections onto the segments that own them,
3717 and
3718 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3719 segment addresses reported by the target,
3720 store the appropriate offsets for each section in OFFSETS.
3721
3722 If there are fewer entries in SEGMENT_BASES than there are segments
3723 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3724
3725 If there are more entries, then ignore the extra. The target may
3726 not be able to distinguish between an empty data segment and a
3727 missing data segment; a missing text segment is less plausible. */
3728 int
3729 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3730 struct section_offsets *offsets,
3731 int num_segment_bases,
3732 const CORE_ADDR *segment_bases)
3733 {
3734 int i;
3735 asection *sect;
3736
3737 /* It doesn't make sense to call this function unless you have some
3738 segment base addresses. */
3739 gdb_assert (num_segment_bases > 0);
3740
3741 /* If we do not have segment mappings for the object file, we
3742 can not relocate it by segments. */
3743 gdb_assert (data != NULL);
3744 gdb_assert (data->num_segments > 0);
3745
3746 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3747 {
3748 int which = data->segment_info[i];
3749
3750 gdb_assert (0 <= which && which <= data->num_segments);
3751
3752 /* Don't bother computing offsets for sections that aren't
3753 loaded as part of any segment. */
3754 if (! which)
3755 continue;
3756
3757 /* Use the last SEGMENT_BASES entry as the address of any extra
3758 segments mentioned in DATA->segment_info. */
3759 if (which > num_segment_bases)
3760 which = num_segment_bases;
3761
3762 offsets->offsets[i] = (segment_bases[which - 1]
3763 - data->segment_bases[which - 1]);
3764 }
3765
3766 return 1;
3767 }
3768
3769 static void
3770 symfile_find_segment_sections (struct objfile *objfile)
3771 {
3772 bfd *abfd = objfile->obfd;
3773 int i;
3774 asection *sect;
3775 struct symfile_segment_data *data;
3776
3777 data = get_symfile_segment_data (objfile->obfd);
3778 if (data == NULL)
3779 return;
3780
3781 if (data->num_segments != 1 && data->num_segments != 2)
3782 {
3783 free_symfile_segment_data (data);
3784 return;
3785 }
3786
3787 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3788 {
3789 int which = data->segment_info[i];
3790
3791 if (which == 1)
3792 {
3793 if (objfile->sect_index_text == -1)
3794 objfile->sect_index_text = sect->index;
3795
3796 if (objfile->sect_index_rodata == -1)
3797 objfile->sect_index_rodata = sect->index;
3798 }
3799 else if (which == 2)
3800 {
3801 if (objfile->sect_index_data == -1)
3802 objfile->sect_index_data = sect->index;
3803
3804 if (objfile->sect_index_bss == -1)
3805 objfile->sect_index_bss = sect->index;
3806 }
3807 }
3808
3809 free_symfile_segment_data (data);
3810 }
3811
3812 void
3813 _initialize_symfile (void)
3814 {
3815 struct cmd_list_element *c;
3816
3817 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3818 Load symbol table from executable file FILE.\n\
3819 The `file' command can also load symbol tables, as well as setting the file\n\
3820 to execute."), &cmdlist);
3821 set_cmd_completer (c, filename_completer);
3822
3823 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3824 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3825 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3826 ...]\nADDR is the starting address of the file's text.\n\
3827 The optional arguments are section-name section-address pairs and\n\
3828 should be specified if the data and bss segments are not contiguous\n\
3829 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3830 &cmdlist);
3831 set_cmd_completer (c, filename_completer);
3832
3833 c = add_cmd ("load", class_files, load_command, _("\
3834 Dynamically load FILE into the running program, and record its symbols\n\
3835 for access from GDB.\n\
3836 A load OFFSET may also be given."), &cmdlist);
3837 set_cmd_completer (c, filename_completer);
3838
3839 add_prefix_cmd ("overlay", class_support, overlay_command,
3840 _("Commands for debugging overlays."), &overlaylist,
3841 "overlay ", 0, &cmdlist);
3842
3843 add_com_alias ("ovly", "overlay", class_alias, 1);
3844 add_com_alias ("ov", "overlay", class_alias, 1);
3845
3846 add_cmd ("map-overlay", class_support, map_overlay_command,
3847 _("Assert that an overlay section is mapped."), &overlaylist);
3848
3849 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3850 _("Assert that an overlay section is unmapped."), &overlaylist);
3851
3852 add_cmd ("list-overlays", class_support, list_overlays_command,
3853 _("List mappings of overlay sections."), &overlaylist);
3854
3855 add_cmd ("manual", class_support, overlay_manual_command,
3856 _("Enable overlay debugging."), &overlaylist);
3857 add_cmd ("off", class_support, overlay_off_command,
3858 _("Disable overlay debugging."), &overlaylist);
3859 add_cmd ("auto", class_support, overlay_auto_command,
3860 _("Enable automatic overlay debugging."), &overlaylist);
3861 add_cmd ("load-target", class_support, overlay_load_command,
3862 _("Read the overlay mapping state from the target."), &overlaylist);
3863
3864 /* Filename extension to source language lookup table: */
3865 init_filename_language_table ();
3866 add_setshow_string_noescape_cmd ("extension-language", class_files,
3867 &ext_args, _("\
3868 Set mapping between filename extension and source language."), _("\
3869 Show mapping between filename extension and source language."), _("\
3870 Usage: set extension-language .foo bar"),
3871 set_ext_lang_command,
3872 show_ext_args,
3873 &setlist, &showlist);
3874
3875 add_info ("extensions", info_ext_lang_command,
3876 _("All filename extensions associated with a source language."));
3877
3878 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3879 &debug_file_directory, _("\
3880 Set the directories where separate debug symbols are searched for."), _("\
3881 Show the directories where separate debug symbols are searched for."), _("\
3882 Separate debug symbols are first searched for in the same\n\
3883 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3884 and lastly at the path of the directory of the binary with\n\
3885 each global debug-file-directory component prepended."),
3886 NULL,
3887 show_debug_file_directory,
3888 &setlist, &showlist);
3889 }
This page took 0.11779 seconds and 4 git commands to generate.