PR22374 testcase, function pointer references in .data
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observer.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "common/byte-vector.h"
60 #include "selftest.h"
61
62 #include <sys/types.h>
63 #include <fcntl.h>
64 #include <sys/stat.h>
65 #include <ctype.h>
66 #include <chrono>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
72 void (*deprecated_show_load_progress) (const char *section,
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
76 unsigned long total_size);
77 void (*deprecated_pre_add_symbol_hook) (const char *);
78 void (*deprecated_post_add_symbol_hook) (void);
79
80 static void clear_symtab_users_cleanup (void *ignore);
81
82 /* Global variables owned by this file. */
83 int readnow_symbol_files; /* Read full symbols immediately. */
84
85 /* Functions this file defines. */
86
87 static void load_command (char *, int);
88
89 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
90 objfile_flags flags);
91
92 static const struct sym_fns *find_sym_fns (bfd *);
93
94 static void overlay_invalidate_all (void);
95
96 static void simple_free_overlay_table (void);
97
98 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
99 enum bfd_endian);
100
101 static int simple_read_overlay_table (void);
102
103 static int simple_overlay_update_1 (struct obj_section *);
104
105 static void info_ext_lang_command (char *args, int from_tty);
106
107 static void symfile_find_segment_sections (struct objfile *objfile);
108
109 /* List of all available sym_fns. On gdb startup, each object file reader
110 calls add_symtab_fns() to register information on each format it is
111 prepared to read. */
112
113 struct registered_sym_fns
114 {
115 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
116 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
117 {}
118
119 /* BFD flavour that we handle. */
120 enum bfd_flavour sym_flavour;
121
122 /* The "vtable" of symbol functions. */
123 const struct sym_fns *sym_fns;
124 };
125
126 static std::vector<registered_sym_fns> symtab_fns;
127
128 /* Values for "set print symbol-loading". */
129
130 const char print_symbol_loading_off[] = "off";
131 const char print_symbol_loading_brief[] = "brief";
132 const char print_symbol_loading_full[] = "full";
133 static const char *print_symbol_loading_enums[] =
134 {
135 print_symbol_loading_off,
136 print_symbol_loading_brief,
137 print_symbol_loading_full,
138 NULL
139 };
140 static const char *print_symbol_loading = print_symbol_loading_full;
141
142 /* If non-zero, shared library symbols will be added automatically
143 when the inferior is created, new libraries are loaded, or when
144 attaching to the inferior. This is almost always what users will
145 want to have happen; but for very large programs, the startup time
146 will be excessive, and so if this is a problem, the user can clear
147 this flag and then add the shared library symbols as needed. Note
148 that there is a potential for confusion, since if the shared
149 library symbols are not loaded, commands like "info fun" will *not*
150 report all the functions that are actually present. */
151
152 int auto_solib_add = 1;
153 \f
154
155 /* Return non-zero if symbol-loading messages should be printed.
156 FROM_TTY is the standard from_tty argument to gdb commands.
157 If EXEC is non-zero the messages are for the executable.
158 Otherwise, messages are for shared libraries.
159 If FULL is non-zero then the caller is printing a detailed message.
160 E.g., the message includes the shared library name.
161 Otherwise, the caller is printing a brief "summary" message. */
162
163 int
164 print_symbol_loading_p (int from_tty, int exec, int full)
165 {
166 if (!from_tty && !info_verbose)
167 return 0;
168
169 if (exec)
170 {
171 /* We don't check FULL for executables, there are few such
172 messages, therefore brief == full. */
173 return print_symbol_loading != print_symbol_loading_off;
174 }
175 if (full)
176 return print_symbol_loading == print_symbol_loading_full;
177 return print_symbol_loading == print_symbol_loading_brief;
178 }
179
180 /* True if we are reading a symbol table. */
181
182 int currently_reading_symtab = 0;
183
184 /* Increment currently_reading_symtab and return a cleanup that can be
185 used to decrement it. */
186
187 scoped_restore_tmpl<int>
188 increment_reading_symtab (void)
189 {
190 gdb_assert (currently_reading_symtab >= 0);
191 return make_scoped_restore (&currently_reading_symtab,
192 currently_reading_symtab + 1);
193 }
194
195 /* Remember the lowest-addressed loadable section we've seen.
196 This function is called via bfd_map_over_sections.
197
198 In case of equal vmas, the section with the largest size becomes the
199 lowest-addressed loadable section.
200
201 If the vmas and sizes are equal, the last section is considered the
202 lowest-addressed loadable section. */
203
204 void
205 find_lowest_section (bfd *abfd, asection *sect, void *obj)
206 {
207 asection **lowest = (asection **) obj;
208
209 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
210 return;
211 if (!*lowest)
212 *lowest = sect; /* First loadable section */
213 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
214 *lowest = sect; /* A lower loadable section */
215 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
216 && (bfd_section_size (abfd, (*lowest))
217 <= bfd_section_size (abfd, sect)))
218 *lowest = sect;
219 }
220
221 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
222 new object's 'num_sections' field is set to 0; it must be updated
223 by the caller. */
224
225 struct section_addr_info *
226 alloc_section_addr_info (size_t num_sections)
227 {
228 struct section_addr_info *sap;
229 size_t size;
230
231 size = (sizeof (struct section_addr_info)
232 + sizeof (struct other_sections) * (num_sections - 1));
233 sap = (struct section_addr_info *) xmalloc (size);
234 memset (sap, 0, size);
235
236 return sap;
237 }
238
239 /* Build (allocate and populate) a section_addr_info struct from
240 an existing section table. */
241
242 extern struct section_addr_info *
243 build_section_addr_info_from_section_table (const struct target_section *start,
244 const struct target_section *end)
245 {
246 struct section_addr_info *sap;
247 const struct target_section *stp;
248 int oidx;
249
250 sap = alloc_section_addr_info (end - start);
251
252 for (stp = start, oidx = 0; stp != end; stp++)
253 {
254 struct bfd_section *asect = stp->the_bfd_section;
255 bfd *abfd = asect->owner;
256
257 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
258 && oidx < end - start)
259 {
260 sap->other[oidx].addr = stp->addr;
261 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
262 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
263 oidx++;
264 }
265 }
266
267 sap->num_sections = oidx;
268
269 return sap;
270 }
271
272 /* Create a section_addr_info from section offsets in ABFD. */
273
274 static struct section_addr_info *
275 build_section_addr_info_from_bfd (bfd *abfd)
276 {
277 struct section_addr_info *sap;
278 int i;
279 struct bfd_section *sec;
280
281 sap = alloc_section_addr_info (bfd_count_sections (abfd));
282 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
283 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
284 {
285 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
286 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
287 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
288 i++;
289 }
290
291 sap->num_sections = i;
292
293 return sap;
294 }
295
296 /* Create a section_addr_info from section offsets in OBJFILE. */
297
298 struct section_addr_info *
299 build_section_addr_info_from_objfile (const struct objfile *objfile)
300 {
301 struct section_addr_info *sap;
302 int i;
303
304 /* Before reread_symbols gets rewritten it is not safe to call:
305 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
306 */
307 sap = build_section_addr_info_from_bfd (objfile->obfd);
308 for (i = 0; i < sap->num_sections; i++)
309 {
310 int sectindex = sap->other[i].sectindex;
311
312 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
313 }
314 return sap;
315 }
316
317 /* Free all memory allocated by build_section_addr_info_from_section_table. */
318
319 extern void
320 free_section_addr_info (struct section_addr_info *sap)
321 {
322 int idx;
323
324 for (idx = 0; idx < sap->num_sections; idx++)
325 xfree (sap->other[idx].name);
326 xfree (sap);
327 }
328
329 /* Initialize OBJFILE's sect_index_* members. */
330
331 static void
332 init_objfile_sect_indices (struct objfile *objfile)
333 {
334 asection *sect;
335 int i;
336
337 sect = bfd_get_section_by_name (objfile->obfd, ".text");
338 if (sect)
339 objfile->sect_index_text = sect->index;
340
341 sect = bfd_get_section_by_name (objfile->obfd, ".data");
342 if (sect)
343 objfile->sect_index_data = sect->index;
344
345 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
346 if (sect)
347 objfile->sect_index_bss = sect->index;
348
349 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
350 if (sect)
351 objfile->sect_index_rodata = sect->index;
352
353 /* This is where things get really weird... We MUST have valid
354 indices for the various sect_index_* members or gdb will abort.
355 So if for example, there is no ".text" section, we have to
356 accomodate that. First, check for a file with the standard
357 one or two segments. */
358
359 symfile_find_segment_sections (objfile);
360
361 /* Except when explicitly adding symbol files at some address,
362 section_offsets contains nothing but zeros, so it doesn't matter
363 which slot in section_offsets the individual sect_index_* members
364 index into. So if they are all zero, it is safe to just point
365 all the currently uninitialized indices to the first slot. But
366 beware: if this is the main executable, it may be relocated
367 later, e.g. by the remote qOffsets packet, and then this will
368 be wrong! That's why we try segments first. */
369
370 for (i = 0; i < objfile->num_sections; i++)
371 {
372 if (ANOFFSET (objfile->section_offsets, i) != 0)
373 {
374 break;
375 }
376 }
377 if (i == objfile->num_sections)
378 {
379 if (objfile->sect_index_text == -1)
380 objfile->sect_index_text = 0;
381 if (objfile->sect_index_data == -1)
382 objfile->sect_index_data = 0;
383 if (objfile->sect_index_bss == -1)
384 objfile->sect_index_bss = 0;
385 if (objfile->sect_index_rodata == -1)
386 objfile->sect_index_rodata = 0;
387 }
388 }
389
390 /* The arguments to place_section. */
391
392 struct place_section_arg
393 {
394 struct section_offsets *offsets;
395 CORE_ADDR lowest;
396 };
397
398 /* Find a unique offset to use for loadable section SECT if
399 the user did not provide an offset. */
400
401 static void
402 place_section (bfd *abfd, asection *sect, void *obj)
403 {
404 struct place_section_arg *arg = (struct place_section_arg *) obj;
405 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
406 int done;
407 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
408
409 /* We are only interested in allocated sections. */
410 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
411 return;
412
413 /* If the user specified an offset, honor it. */
414 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
415 return;
416
417 /* Otherwise, let's try to find a place for the section. */
418 start_addr = (arg->lowest + align - 1) & -align;
419
420 do {
421 asection *cur_sec;
422
423 done = 1;
424
425 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
426 {
427 int indx = cur_sec->index;
428
429 /* We don't need to compare against ourself. */
430 if (cur_sec == sect)
431 continue;
432
433 /* We can only conflict with allocated sections. */
434 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
435 continue;
436
437 /* If the section offset is 0, either the section has not been placed
438 yet, or it was the lowest section placed (in which case LOWEST
439 will be past its end). */
440 if (offsets[indx] == 0)
441 continue;
442
443 /* If this section would overlap us, then we must move up. */
444 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
445 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
446 {
447 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
448 start_addr = (start_addr + align - 1) & -align;
449 done = 0;
450 break;
451 }
452
453 /* Otherwise, we appear to be OK. So far. */
454 }
455 }
456 while (!done);
457
458 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
459 arg->lowest = start_addr + bfd_get_section_size (sect);
460 }
461
462 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
463 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
464 entries. */
465
466 void
467 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
468 int num_sections,
469 const struct section_addr_info *addrs)
470 {
471 int i;
472
473 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
474
475 /* Now calculate offsets for section that were specified by the caller. */
476 for (i = 0; i < addrs->num_sections; i++)
477 {
478 const struct other_sections *osp;
479
480 osp = &addrs->other[i];
481 if (osp->sectindex == -1)
482 continue;
483
484 /* Record all sections in offsets. */
485 /* The section_offsets in the objfile are here filled in using
486 the BFD index. */
487 section_offsets->offsets[osp->sectindex] = osp->addr;
488 }
489 }
490
491 /* Transform section name S for a name comparison. prelink can split section
492 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
493 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
494 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
495 (`.sbss') section has invalid (increased) virtual address. */
496
497 static const char *
498 addr_section_name (const char *s)
499 {
500 if (strcmp (s, ".dynbss") == 0)
501 return ".bss";
502 if (strcmp (s, ".sdynbss") == 0)
503 return ".sbss";
504
505 return s;
506 }
507
508 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
509 their (name, sectindex) pair. sectindex makes the sort by name stable. */
510
511 static int
512 addrs_section_compar (const void *ap, const void *bp)
513 {
514 const struct other_sections *a = *((struct other_sections **) ap);
515 const struct other_sections *b = *((struct other_sections **) bp);
516 int retval;
517
518 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
519 if (retval)
520 return retval;
521
522 return a->sectindex - b->sectindex;
523 }
524
525 /* Provide sorted array of pointers to sections of ADDRS. The array is
526 terminated by NULL. Caller is responsible to call xfree for it. */
527
528 static struct other_sections **
529 addrs_section_sort (struct section_addr_info *addrs)
530 {
531 struct other_sections **array;
532 int i;
533
534 /* `+ 1' for the NULL terminator. */
535 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
536 for (i = 0; i < addrs->num_sections; i++)
537 array[i] = &addrs->other[i];
538 array[i] = NULL;
539
540 qsort (array, i, sizeof (*array), addrs_section_compar);
541
542 return array;
543 }
544
545 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
546 also SECTINDEXes specific to ABFD there. This function can be used to
547 rebase ADDRS to start referencing different BFD than before. */
548
549 void
550 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
551 {
552 asection *lower_sect;
553 CORE_ADDR lower_offset;
554 int i;
555 struct cleanup *my_cleanup;
556 struct section_addr_info *abfd_addrs;
557 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
558 struct other_sections **addrs_to_abfd_addrs;
559
560 /* Find lowest loadable section to be used as starting point for
561 continguous sections. */
562 lower_sect = NULL;
563 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
564 if (lower_sect == NULL)
565 {
566 warning (_("no loadable sections found in added symbol-file %s"),
567 bfd_get_filename (abfd));
568 lower_offset = 0;
569 }
570 else
571 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
572
573 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
574 in ABFD. Section names are not unique - there can be multiple sections of
575 the same name. Also the sections of the same name do not have to be
576 adjacent to each other. Some sections may be present only in one of the
577 files. Even sections present in both files do not have to be in the same
578 order.
579
580 Use stable sort by name for the sections in both files. Then linearly
581 scan both lists matching as most of the entries as possible. */
582
583 addrs_sorted = addrs_section_sort (addrs);
584 my_cleanup = make_cleanup (xfree, addrs_sorted);
585
586 abfd_addrs = build_section_addr_info_from_bfd (abfd);
587 make_cleanup_free_section_addr_info (abfd_addrs);
588 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
589 make_cleanup (xfree, abfd_addrs_sorted);
590
591 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
592 ABFD_ADDRS_SORTED. */
593
594 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
595 make_cleanup (xfree, addrs_to_abfd_addrs);
596
597 while (*addrs_sorted)
598 {
599 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
600
601 while (*abfd_addrs_sorted
602 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
603 sect_name) < 0)
604 abfd_addrs_sorted++;
605
606 if (*abfd_addrs_sorted
607 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
608 sect_name) == 0)
609 {
610 int index_in_addrs;
611
612 /* Make the found item directly addressable from ADDRS. */
613 index_in_addrs = *addrs_sorted - addrs->other;
614 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
615 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
616
617 /* Never use the same ABFD entry twice. */
618 abfd_addrs_sorted++;
619 }
620
621 addrs_sorted++;
622 }
623
624 /* Calculate offsets for the loadable sections.
625 FIXME! Sections must be in order of increasing loadable section
626 so that contiguous sections can use the lower-offset!!!
627
628 Adjust offsets if the segments are not contiguous.
629 If the section is contiguous, its offset should be set to
630 the offset of the highest loadable section lower than it
631 (the loadable section directly below it in memory).
632 this_offset = lower_offset = lower_addr - lower_orig_addr */
633
634 for (i = 0; i < addrs->num_sections; i++)
635 {
636 struct other_sections *sect = addrs_to_abfd_addrs[i];
637
638 if (sect)
639 {
640 /* This is the index used by BFD. */
641 addrs->other[i].sectindex = sect->sectindex;
642
643 if (addrs->other[i].addr != 0)
644 {
645 addrs->other[i].addr -= sect->addr;
646 lower_offset = addrs->other[i].addr;
647 }
648 else
649 addrs->other[i].addr = lower_offset;
650 }
651 else
652 {
653 /* addr_section_name transformation is not used for SECT_NAME. */
654 const char *sect_name = addrs->other[i].name;
655
656 /* This section does not exist in ABFD, which is normally
657 unexpected and we want to issue a warning.
658
659 However, the ELF prelinker does create a few sections which are
660 marked in the main executable as loadable (they are loaded in
661 memory from the DYNAMIC segment) and yet are not present in
662 separate debug info files. This is fine, and should not cause
663 a warning. Shared libraries contain just the section
664 ".gnu.liblist" but it is not marked as loadable there. There is
665 no other way to identify them than by their name as the sections
666 created by prelink have no special flags.
667
668 For the sections `.bss' and `.sbss' see addr_section_name. */
669
670 if (!(strcmp (sect_name, ".gnu.liblist") == 0
671 || strcmp (sect_name, ".gnu.conflict") == 0
672 || (strcmp (sect_name, ".bss") == 0
673 && i > 0
674 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
675 && addrs_to_abfd_addrs[i - 1] != NULL)
676 || (strcmp (sect_name, ".sbss") == 0
677 && i > 0
678 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
679 && addrs_to_abfd_addrs[i - 1] != NULL)))
680 warning (_("section %s not found in %s"), sect_name,
681 bfd_get_filename (abfd));
682
683 addrs->other[i].addr = 0;
684 addrs->other[i].sectindex = -1;
685 }
686 }
687
688 do_cleanups (my_cleanup);
689 }
690
691 /* Parse the user's idea of an offset for dynamic linking, into our idea
692 of how to represent it for fast symbol reading. This is the default
693 version of the sym_fns.sym_offsets function for symbol readers that
694 don't need to do anything special. It allocates a section_offsets table
695 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
696
697 void
698 default_symfile_offsets (struct objfile *objfile,
699 const struct section_addr_info *addrs)
700 {
701 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
702 objfile->section_offsets = (struct section_offsets *)
703 obstack_alloc (&objfile->objfile_obstack,
704 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
705 relative_addr_info_to_section_offsets (objfile->section_offsets,
706 objfile->num_sections, addrs);
707
708 /* For relocatable files, all loadable sections will start at zero.
709 The zero is meaningless, so try to pick arbitrary addresses such
710 that no loadable sections overlap. This algorithm is quadratic,
711 but the number of sections in a single object file is generally
712 small. */
713 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
714 {
715 struct place_section_arg arg;
716 bfd *abfd = objfile->obfd;
717 asection *cur_sec;
718
719 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
720 /* We do not expect this to happen; just skip this step if the
721 relocatable file has a section with an assigned VMA. */
722 if (bfd_section_vma (abfd, cur_sec) != 0)
723 break;
724
725 if (cur_sec == NULL)
726 {
727 CORE_ADDR *offsets = objfile->section_offsets->offsets;
728
729 /* Pick non-overlapping offsets for sections the user did not
730 place explicitly. */
731 arg.offsets = objfile->section_offsets;
732 arg.lowest = 0;
733 bfd_map_over_sections (objfile->obfd, place_section, &arg);
734
735 /* Correctly filling in the section offsets is not quite
736 enough. Relocatable files have two properties that
737 (most) shared objects do not:
738
739 - Their debug information will contain relocations. Some
740 shared libraries do also, but many do not, so this can not
741 be assumed.
742
743 - If there are multiple code sections they will be loaded
744 at different relative addresses in memory than they are
745 in the objfile, since all sections in the file will start
746 at address zero.
747
748 Because GDB has very limited ability to map from an
749 address in debug info to the correct code section,
750 it relies on adding SECT_OFF_TEXT to things which might be
751 code. If we clear all the section offsets, and set the
752 section VMAs instead, then symfile_relocate_debug_section
753 will return meaningful debug information pointing at the
754 correct sections.
755
756 GDB has too many different data structures for section
757 addresses - a bfd, objfile, and so_list all have section
758 tables, as does exec_ops. Some of these could probably
759 be eliminated. */
760
761 for (cur_sec = abfd->sections; cur_sec != NULL;
762 cur_sec = cur_sec->next)
763 {
764 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
765 continue;
766
767 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
768 exec_set_section_address (bfd_get_filename (abfd),
769 cur_sec->index,
770 offsets[cur_sec->index]);
771 offsets[cur_sec->index] = 0;
772 }
773 }
774 }
775
776 /* Remember the bfd indexes for the .text, .data, .bss and
777 .rodata sections. */
778 init_objfile_sect_indices (objfile);
779 }
780
781 /* Divide the file into segments, which are individual relocatable units.
782 This is the default version of the sym_fns.sym_segments function for
783 symbol readers that do not have an explicit representation of segments.
784 It assumes that object files do not have segments, and fully linked
785 files have a single segment. */
786
787 struct symfile_segment_data *
788 default_symfile_segments (bfd *abfd)
789 {
790 int num_sections, i;
791 asection *sect;
792 struct symfile_segment_data *data;
793 CORE_ADDR low, high;
794
795 /* Relocatable files contain enough information to position each
796 loadable section independently; they should not be relocated
797 in segments. */
798 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
799 return NULL;
800
801 /* Make sure there is at least one loadable section in the file. */
802 for (sect = abfd->sections; sect != NULL; sect = sect->next)
803 {
804 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
805 continue;
806
807 break;
808 }
809 if (sect == NULL)
810 return NULL;
811
812 low = bfd_get_section_vma (abfd, sect);
813 high = low + bfd_get_section_size (sect);
814
815 data = XCNEW (struct symfile_segment_data);
816 data->num_segments = 1;
817 data->segment_bases = XCNEW (CORE_ADDR);
818 data->segment_sizes = XCNEW (CORE_ADDR);
819
820 num_sections = bfd_count_sections (abfd);
821 data->segment_info = XCNEWVEC (int, num_sections);
822
823 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
824 {
825 CORE_ADDR vma;
826
827 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
828 continue;
829
830 vma = bfd_get_section_vma (abfd, sect);
831 if (vma < low)
832 low = vma;
833 if (vma + bfd_get_section_size (sect) > high)
834 high = vma + bfd_get_section_size (sect);
835
836 data->segment_info[i] = 1;
837 }
838
839 data->segment_bases[0] = low;
840 data->segment_sizes[0] = high - low;
841
842 return data;
843 }
844
845 /* This is a convenience function to call sym_read for OBJFILE and
846 possibly force the partial symbols to be read. */
847
848 static void
849 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
850 {
851 (*objfile->sf->sym_read) (objfile, add_flags);
852 objfile->per_bfd->minsyms_read = true;
853
854 /* find_separate_debug_file_in_section should be called only if there is
855 single binary with no existing separate debug info file. */
856 if (!objfile_has_partial_symbols (objfile)
857 && objfile->separate_debug_objfile == NULL
858 && objfile->separate_debug_objfile_backlink == NULL)
859 {
860 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
861
862 if (abfd != NULL)
863 {
864 /* find_separate_debug_file_in_section uses the same filename for the
865 virtual section-as-bfd like the bfd filename containing the
866 section. Therefore use also non-canonical name form for the same
867 file containing the section. */
868 symbol_file_add_separate (abfd.get (), objfile->original_name,
869 add_flags, objfile);
870 }
871 }
872 if ((add_flags & SYMFILE_NO_READ) == 0)
873 require_partial_symbols (objfile, 0);
874 }
875
876 /* Initialize entry point information for this objfile. */
877
878 static void
879 init_entry_point_info (struct objfile *objfile)
880 {
881 struct entry_info *ei = &objfile->per_bfd->ei;
882
883 if (ei->initialized)
884 return;
885 ei->initialized = 1;
886
887 /* Save startup file's range of PC addresses to help blockframe.c
888 decide where the bottom of the stack is. */
889
890 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
891 {
892 /* Executable file -- record its entry point so we'll recognize
893 the startup file because it contains the entry point. */
894 ei->entry_point = bfd_get_start_address (objfile->obfd);
895 ei->entry_point_p = 1;
896 }
897 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
898 && bfd_get_start_address (objfile->obfd) != 0)
899 {
900 /* Some shared libraries may have entry points set and be
901 runnable. There's no clear way to indicate this, so just check
902 for values other than zero. */
903 ei->entry_point = bfd_get_start_address (objfile->obfd);
904 ei->entry_point_p = 1;
905 }
906 else
907 {
908 /* Examination of non-executable.o files. Short-circuit this stuff. */
909 ei->entry_point_p = 0;
910 }
911
912 if (ei->entry_point_p)
913 {
914 struct obj_section *osect;
915 CORE_ADDR entry_point = ei->entry_point;
916 int found;
917
918 /* Make certain that the address points at real code, and not a
919 function descriptor. */
920 entry_point
921 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
922 entry_point,
923 &current_target);
924
925 /* Remove any ISA markers, so that this matches entries in the
926 symbol table. */
927 ei->entry_point
928 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
929
930 found = 0;
931 ALL_OBJFILE_OSECTIONS (objfile, osect)
932 {
933 struct bfd_section *sect = osect->the_bfd_section;
934
935 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
936 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
937 + bfd_get_section_size (sect)))
938 {
939 ei->the_bfd_section_index
940 = gdb_bfd_section_index (objfile->obfd, sect);
941 found = 1;
942 break;
943 }
944 }
945
946 if (!found)
947 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
948 }
949 }
950
951 /* Process a symbol file, as either the main file or as a dynamically
952 loaded file.
953
954 This function does not set the OBJFILE's entry-point info.
955
956 OBJFILE is where the symbols are to be read from.
957
958 ADDRS is the list of section load addresses. If the user has given
959 an 'add-symbol-file' command, then this is the list of offsets and
960 addresses he or she provided as arguments to the command; or, if
961 we're handling a shared library, these are the actual addresses the
962 sections are loaded at, according to the inferior's dynamic linker
963 (as gleaned by GDB's shared library code). We convert each address
964 into an offset from the section VMA's as it appears in the object
965 file, and then call the file's sym_offsets function to convert this
966 into a format-specific offset table --- a `struct section_offsets'.
967
968 ADD_FLAGS encodes verbosity level, whether this is main symbol or
969 an extra symbol file such as dynamically loaded code, and wether
970 breakpoint reset should be deferred. */
971
972 static void
973 syms_from_objfile_1 (struct objfile *objfile,
974 struct section_addr_info *addrs,
975 symfile_add_flags add_flags)
976 {
977 struct section_addr_info *local_addr = NULL;
978 struct cleanup *old_chain;
979 const int mainline = add_flags & SYMFILE_MAINLINE;
980
981 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
982
983 if (objfile->sf == NULL)
984 {
985 /* No symbols to load, but we still need to make sure
986 that the section_offsets table is allocated. */
987 int num_sections = gdb_bfd_count_sections (objfile->obfd);
988 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
989
990 objfile->num_sections = num_sections;
991 objfile->section_offsets
992 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
993 size);
994 memset (objfile->section_offsets, 0, size);
995 return;
996 }
997
998 /* Make sure that partially constructed symbol tables will be cleaned up
999 if an error occurs during symbol reading. */
1000 old_chain = make_cleanup_free_objfile (objfile);
1001
1002 /* If ADDRS is NULL, put together a dummy address list.
1003 We now establish the convention that an addr of zero means
1004 no load address was specified. */
1005 if (! addrs)
1006 {
1007 local_addr = alloc_section_addr_info (1);
1008 make_cleanup (xfree, local_addr);
1009 addrs = local_addr;
1010 }
1011
1012 if (mainline)
1013 {
1014 /* We will modify the main symbol table, make sure that all its users
1015 will be cleaned up if an error occurs during symbol reading. */
1016 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1017
1018 /* Since no error yet, throw away the old symbol table. */
1019
1020 if (symfile_objfile != NULL)
1021 {
1022 delete symfile_objfile;
1023 gdb_assert (symfile_objfile == NULL);
1024 }
1025
1026 /* Currently we keep symbols from the add-symbol-file command.
1027 If the user wants to get rid of them, they should do "symbol-file"
1028 without arguments first. Not sure this is the best behavior
1029 (PR 2207). */
1030
1031 (*objfile->sf->sym_new_init) (objfile);
1032 }
1033
1034 /* Convert addr into an offset rather than an absolute address.
1035 We find the lowest address of a loaded segment in the objfile,
1036 and assume that <addr> is where that got loaded.
1037
1038 We no longer warn if the lowest section is not a text segment (as
1039 happens for the PA64 port. */
1040 if (addrs->num_sections > 0)
1041 addr_info_make_relative (addrs, objfile->obfd);
1042
1043 /* Initialize symbol reading routines for this objfile, allow complaints to
1044 appear for this new file, and record how verbose to be, then do the
1045 initial symbol reading for this file. */
1046
1047 (*objfile->sf->sym_init) (objfile);
1048 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1049
1050 (*objfile->sf->sym_offsets) (objfile, addrs);
1051
1052 read_symbols (objfile, add_flags);
1053
1054 /* Discard cleanups as symbol reading was successful. */
1055
1056 discard_cleanups (old_chain);
1057 xfree (local_addr);
1058 }
1059
1060 /* Same as syms_from_objfile_1, but also initializes the objfile
1061 entry-point info. */
1062
1063 static void
1064 syms_from_objfile (struct objfile *objfile,
1065 struct section_addr_info *addrs,
1066 symfile_add_flags add_flags)
1067 {
1068 syms_from_objfile_1 (objfile, addrs, add_flags);
1069 init_entry_point_info (objfile);
1070 }
1071
1072 /* Perform required actions after either reading in the initial
1073 symbols for a new objfile, or mapping in the symbols from a reusable
1074 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1075
1076 static void
1077 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1078 {
1079 /* If this is the main symbol file we have to clean up all users of the
1080 old main symbol file. Otherwise it is sufficient to fixup all the
1081 breakpoints that may have been redefined by this symbol file. */
1082 if (add_flags & SYMFILE_MAINLINE)
1083 {
1084 /* OK, make it the "real" symbol file. */
1085 symfile_objfile = objfile;
1086
1087 clear_symtab_users (add_flags);
1088 }
1089 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1090 {
1091 breakpoint_re_set ();
1092 }
1093
1094 /* We're done reading the symbol file; finish off complaints. */
1095 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1096 }
1097
1098 /* Process a symbol file, as either the main file or as a dynamically
1099 loaded file.
1100
1101 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1102 A new reference is acquired by this function.
1103
1104 For NAME description see the objfile constructor.
1105
1106 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1107 extra, such as dynamically loaded code, and what to do with breakpoins.
1108
1109 ADDRS is as described for syms_from_objfile_1, above.
1110 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1111
1112 PARENT is the original objfile if ABFD is a separate debug info file.
1113 Otherwise PARENT is NULL.
1114
1115 Upon success, returns a pointer to the objfile that was added.
1116 Upon failure, jumps back to command level (never returns). */
1117
1118 static struct objfile *
1119 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1120 symfile_add_flags add_flags,
1121 struct section_addr_info *addrs,
1122 objfile_flags flags, struct objfile *parent)
1123 {
1124 struct objfile *objfile;
1125 const int from_tty = add_flags & SYMFILE_VERBOSE;
1126 const int mainline = add_flags & SYMFILE_MAINLINE;
1127 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1128 && (readnow_symbol_files
1129 || (add_flags & SYMFILE_NO_READ) == 0));
1130
1131 if (readnow_symbol_files)
1132 {
1133 flags |= OBJF_READNOW;
1134 add_flags &= ~SYMFILE_NO_READ;
1135 }
1136
1137 /* Give user a chance to burp if we'd be
1138 interactively wiping out any existing symbols. */
1139
1140 if ((have_full_symbols () || have_partial_symbols ())
1141 && mainline
1142 && from_tty
1143 && !query (_("Load new symbol table from \"%s\"? "), name))
1144 error (_("Not confirmed."));
1145
1146 if (mainline)
1147 flags |= OBJF_MAINLINE;
1148 objfile = new struct objfile (abfd, name, flags);
1149
1150 if (parent)
1151 add_separate_debug_objfile (objfile, parent);
1152
1153 /* We either created a new mapped symbol table, mapped an existing
1154 symbol table file which has not had initial symbol reading
1155 performed, or need to read an unmapped symbol table. */
1156 if (should_print)
1157 {
1158 if (deprecated_pre_add_symbol_hook)
1159 deprecated_pre_add_symbol_hook (name);
1160 else
1161 {
1162 printf_unfiltered (_("Reading symbols from %s..."), name);
1163 wrap_here ("");
1164 gdb_flush (gdb_stdout);
1165 }
1166 }
1167 syms_from_objfile (objfile, addrs, add_flags);
1168
1169 /* We now have at least a partial symbol table. Check to see if the
1170 user requested that all symbols be read on initial access via either
1171 the gdb startup command line or on a per symbol file basis. Expand
1172 all partial symbol tables for this objfile if so. */
1173
1174 if ((flags & OBJF_READNOW))
1175 {
1176 if (should_print)
1177 {
1178 printf_unfiltered (_("expanding to full symbols..."));
1179 wrap_here ("");
1180 gdb_flush (gdb_stdout);
1181 }
1182
1183 if (objfile->sf)
1184 objfile->sf->qf->expand_all_symtabs (objfile);
1185 }
1186
1187 if (should_print && !objfile_has_symbols (objfile))
1188 {
1189 wrap_here ("");
1190 printf_unfiltered (_("(no debugging symbols found)..."));
1191 wrap_here ("");
1192 }
1193
1194 if (should_print)
1195 {
1196 if (deprecated_post_add_symbol_hook)
1197 deprecated_post_add_symbol_hook ();
1198 else
1199 printf_unfiltered (_("done.\n"));
1200 }
1201
1202 /* We print some messages regardless of whether 'from_tty ||
1203 info_verbose' is true, so make sure they go out at the right
1204 time. */
1205 gdb_flush (gdb_stdout);
1206
1207 if (objfile->sf == NULL)
1208 {
1209 observer_notify_new_objfile (objfile);
1210 return objfile; /* No symbols. */
1211 }
1212
1213 finish_new_objfile (objfile, add_flags);
1214
1215 observer_notify_new_objfile (objfile);
1216
1217 bfd_cache_close_all ();
1218 return (objfile);
1219 }
1220
1221 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1222 see the objfile constructor. */
1223
1224 void
1225 symbol_file_add_separate (bfd *bfd, const char *name,
1226 symfile_add_flags symfile_flags,
1227 struct objfile *objfile)
1228 {
1229 struct section_addr_info *sap;
1230 struct cleanup *my_cleanup;
1231
1232 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1233 because sections of BFD may not match sections of OBJFILE and because
1234 vma may have been modified by tools such as prelink. */
1235 sap = build_section_addr_info_from_objfile (objfile);
1236 my_cleanup = make_cleanup_free_section_addr_info (sap);
1237
1238 symbol_file_add_with_addrs
1239 (bfd, name, symfile_flags, sap,
1240 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1241 | OBJF_USERLOADED),
1242 objfile);
1243
1244 do_cleanups (my_cleanup);
1245 }
1246
1247 /* Process the symbol file ABFD, as either the main file or as a
1248 dynamically loaded file.
1249 See symbol_file_add_with_addrs's comments for details. */
1250
1251 struct objfile *
1252 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1253 symfile_add_flags add_flags,
1254 struct section_addr_info *addrs,
1255 objfile_flags flags, struct objfile *parent)
1256 {
1257 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1258 parent);
1259 }
1260
1261 /* Process a symbol file, as either the main file or as a dynamically
1262 loaded file. See symbol_file_add_with_addrs's comments for details. */
1263
1264 struct objfile *
1265 symbol_file_add (const char *name, symfile_add_flags add_flags,
1266 struct section_addr_info *addrs, objfile_flags flags)
1267 {
1268 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1269
1270 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1271 flags, NULL);
1272 }
1273
1274 /* Call symbol_file_add() with default values and update whatever is
1275 affected by the loading of a new main().
1276 Used when the file is supplied in the gdb command line
1277 and by some targets with special loading requirements.
1278 The auxiliary function, symbol_file_add_main_1(), has the flags
1279 argument for the switches that can only be specified in the symbol_file
1280 command itself. */
1281
1282 void
1283 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1284 {
1285 symbol_file_add_main_1 (args, add_flags, 0);
1286 }
1287
1288 static void
1289 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1290 objfile_flags flags)
1291 {
1292 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1293
1294 symbol_file_add (args, add_flags, NULL, flags);
1295
1296 /* Getting new symbols may change our opinion about
1297 what is frameless. */
1298 reinit_frame_cache ();
1299
1300 if ((add_flags & SYMFILE_NO_READ) == 0)
1301 set_initial_language ();
1302 }
1303
1304 void
1305 symbol_file_clear (int from_tty)
1306 {
1307 if ((have_full_symbols () || have_partial_symbols ())
1308 && from_tty
1309 && (symfile_objfile
1310 ? !query (_("Discard symbol table from `%s'? "),
1311 objfile_name (symfile_objfile))
1312 : !query (_("Discard symbol table? "))))
1313 error (_("Not confirmed."));
1314
1315 /* solib descriptors may have handles to objfiles. Wipe them before their
1316 objfiles get stale by free_all_objfiles. */
1317 no_shared_libraries (NULL, from_tty);
1318
1319 free_all_objfiles ();
1320
1321 gdb_assert (symfile_objfile == NULL);
1322 if (from_tty)
1323 printf_unfiltered (_("No symbol file now.\n"));
1324 }
1325
1326 /* See symfile.h. */
1327
1328 int separate_debug_file_debug = 0;
1329
1330 static int
1331 separate_debug_file_exists (const char *name, unsigned long crc,
1332 struct objfile *parent_objfile)
1333 {
1334 unsigned long file_crc;
1335 int file_crc_p;
1336 struct stat parent_stat, abfd_stat;
1337 int verified_as_different;
1338
1339 /* Find a separate debug info file as if symbols would be present in
1340 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1341 section can contain just the basename of PARENT_OBJFILE without any
1342 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1343 the separate debug infos with the same basename can exist. */
1344
1345 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1346 return 0;
1347
1348 if (separate_debug_file_debug)
1349 printf_unfiltered (_(" Trying %s\n"), name);
1350
1351 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name, gnutarget, -1));
1352
1353 if (abfd == NULL)
1354 return 0;
1355
1356 /* Verify symlinks were not the cause of filename_cmp name difference above.
1357
1358 Some operating systems, e.g. Windows, do not provide a meaningful
1359 st_ino; they always set it to zero. (Windows does provide a
1360 meaningful st_dev.) Files accessed from gdbservers that do not
1361 support the vFile:fstat packet will also have st_ino set to zero.
1362 Do not indicate a duplicate library in either case. While there
1363 is no guarantee that a system that provides meaningful inode
1364 numbers will never set st_ino to zero, this is merely an
1365 optimization, so we do not need to worry about false negatives. */
1366
1367 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1368 && abfd_stat.st_ino != 0
1369 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1370 {
1371 if (abfd_stat.st_dev == parent_stat.st_dev
1372 && abfd_stat.st_ino == parent_stat.st_ino)
1373 return 0;
1374 verified_as_different = 1;
1375 }
1376 else
1377 verified_as_different = 0;
1378
1379 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1380
1381 if (!file_crc_p)
1382 return 0;
1383
1384 if (crc != file_crc)
1385 {
1386 unsigned long parent_crc;
1387
1388 /* If the files could not be verified as different with
1389 bfd_stat then we need to calculate the parent's CRC
1390 to verify whether the files are different or not. */
1391
1392 if (!verified_as_different)
1393 {
1394 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1395 return 0;
1396 }
1397
1398 if (verified_as_different || parent_crc != file_crc)
1399 warning (_("the debug information found in \"%s\""
1400 " does not match \"%s\" (CRC mismatch).\n"),
1401 name, objfile_name (parent_objfile));
1402
1403 return 0;
1404 }
1405
1406 return 1;
1407 }
1408
1409 char *debug_file_directory = NULL;
1410 static void
1411 show_debug_file_directory (struct ui_file *file, int from_tty,
1412 struct cmd_list_element *c, const char *value)
1413 {
1414 fprintf_filtered (file,
1415 _("The directory where separate debug "
1416 "symbols are searched for is \"%s\".\n"),
1417 value);
1418 }
1419
1420 #if ! defined (DEBUG_SUBDIRECTORY)
1421 #define DEBUG_SUBDIRECTORY ".debug"
1422 #endif
1423
1424 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1425 where the original file resides (may not be the same as
1426 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1427 looking for. CANON_DIR is the "realpath" form of DIR.
1428 DIR must contain a trailing '/'.
1429 Returns the path of the file with separate debug info, of NULL. */
1430
1431 static char *
1432 find_separate_debug_file (const char *dir,
1433 const char *canon_dir,
1434 const char *debuglink,
1435 unsigned long crc32, struct objfile *objfile)
1436 {
1437 char *debugdir;
1438 char *debugfile;
1439 int i;
1440 VEC (char_ptr) *debugdir_vec;
1441 struct cleanup *back_to;
1442 int ix;
1443
1444 if (separate_debug_file_debug)
1445 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1446 "%s\n"), objfile_name (objfile));
1447
1448 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1449 i = strlen (dir);
1450 if (canon_dir != NULL && strlen (canon_dir) > i)
1451 i = strlen (canon_dir);
1452
1453 debugfile
1454 = (char *) xmalloc (strlen (debug_file_directory) + 1
1455 + i
1456 + strlen (DEBUG_SUBDIRECTORY)
1457 + strlen ("/")
1458 + strlen (debuglink)
1459 + 1);
1460
1461 /* First try in the same directory as the original file. */
1462 strcpy (debugfile, dir);
1463 strcat (debugfile, debuglink);
1464
1465 if (separate_debug_file_exists (debugfile, crc32, objfile))
1466 return debugfile;
1467
1468 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1469 strcpy (debugfile, dir);
1470 strcat (debugfile, DEBUG_SUBDIRECTORY);
1471 strcat (debugfile, "/");
1472 strcat (debugfile, debuglink);
1473
1474 if (separate_debug_file_exists (debugfile, crc32, objfile))
1475 return debugfile;
1476
1477 /* Then try in the global debugfile directories.
1478
1479 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1480 cause "/..." lookups. */
1481
1482 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1483 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1484
1485 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1486 {
1487 strcpy (debugfile, debugdir);
1488 strcat (debugfile, "/");
1489 strcat (debugfile, dir);
1490 strcat (debugfile, debuglink);
1491
1492 if (separate_debug_file_exists (debugfile, crc32, objfile))
1493 {
1494 do_cleanups (back_to);
1495 return debugfile;
1496 }
1497
1498 /* If the file is in the sysroot, try using its base path in the
1499 global debugfile directory. */
1500 if (canon_dir != NULL
1501 && filename_ncmp (canon_dir, gdb_sysroot,
1502 strlen (gdb_sysroot)) == 0
1503 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1504 {
1505 strcpy (debugfile, debugdir);
1506 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1507 strcat (debugfile, "/");
1508 strcat (debugfile, debuglink);
1509
1510 if (separate_debug_file_exists (debugfile, crc32, objfile))
1511 {
1512 do_cleanups (back_to);
1513 return debugfile;
1514 }
1515 }
1516 }
1517
1518 do_cleanups (back_to);
1519 xfree (debugfile);
1520 return NULL;
1521 }
1522
1523 /* Modify PATH to contain only "[/]directory/" part of PATH.
1524 If there were no directory separators in PATH, PATH will be empty
1525 string on return. */
1526
1527 static void
1528 terminate_after_last_dir_separator (char *path)
1529 {
1530 int i;
1531
1532 /* Strip off the final filename part, leaving the directory name,
1533 followed by a slash. The directory can be relative or absolute. */
1534 for (i = strlen(path) - 1; i >= 0; i--)
1535 if (IS_DIR_SEPARATOR (path[i]))
1536 break;
1537
1538 /* If I is -1 then no directory is present there and DIR will be "". */
1539 path[i + 1] = '\0';
1540 }
1541
1542 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1543 Returns pathname, or NULL. */
1544
1545 char *
1546 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1547 {
1548 char *debuglink;
1549 char *dir, *canon_dir;
1550 char *debugfile;
1551 unsigned long crc32;
1552 struct cleanup *cleanups;
1553
1554 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1555
1556 if (debuglink == NULL)
1557 {
1558 /* There's no separate debug info, hence there's no way we could
1559 load it => no warning. */
1560 return NULL;
1561 }
1562
1563 cleanups = make_cleanup (xfree, debuglink);
1564 dir = xstrdup (objfile_name (objfile));
1565 make_cleanup (xfree, dir);
1566 terminate_after_last_dir_separator (dir);
1567 canon_dir = lrealpath (dir);
1568
1569 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1570 crc32, objfile);
1571 xfree (canon_dir);
1572
1573 if (debugfile == NULL)
1574 {
1575 /* For PR gdb/9538, try again with realpath (if different from the
1576 original). */
1577
1578 struct stat st_buf;
1579
1580 if (lstat (objfile_name (objfile), &st_buf) == 0
1581 && S_ISLNK (st_buf.st_mode))
1582 {
1583 char *symlink_dir;
1584
1585 symlink_dir = lrealpath (objfile_name (objfile));
1586 if (symlink_dir != NULL)
1587 {
1588 make_cleanup (xfree, symlink_dir);
1589 terminate_after_last_dir_separator (symlink_dir);
1590 if (strcmp (dir, symlink_dir) != 0)
1591 {
1592 /* Different directory, so try using it. */
1593 debugfile = find_separate_debug_file (symlink_dir,
1594 symlink_dir,
1595 debuglink,
1596 crc32,
1597 objfile);
1598 }
1599 }
1600 }
1601 }
1602
1603 do_cleanups (cleanups);
1604 return debugfile;
1605 }
1606
1607 /* This is the symbol-file command. Read the file, analyze its
1608 symbols, and add a struct symtab to a symtab list. The syntax of
1609 the command is rather bizarre:
1610
1611 1. The function buildargv implements various quoting conventions
1612 which are undocumented and have little or nothing in common with
1613 the way things are quoted (or not quoted) elsewhere in GDB.
1614
1615 2. Options are used, which are not generally used in GDB (perhaps
1616 "set mapped on", "set readnow on" would be better)
1617
1618 3. The order of options matters, which is contrary to GNU
1619 conventions (because it is confusing and inconvenient). */
1620
1621 void
1622 symbol_file_command (const char *args, int from_tty)
1623 {
1624 dont_repeat ();
1625
1626 if (args == NULL)
1627 {
1628 symbol_file_clear (from_tty);
1629 }
1630 else
1631 {
1632 objfile_flags flags = OBJF_USERLOADED;
1633 symfile_add_flags add_flags = 0;
1634 char *name = NULL;
1635
1636 if (from_tty)
1637 add_flags |= SYMFILE_VERBOSE;
1638
1639 gdb_argv built_argv (args);
1640 for (char *arg : built_argv)
1641 {
1642 if (strcmp (arg, "-readnow") == 0)
1643 flags |= OBJF_READNOW;
1644 else if (*arg == '-')
1645 error (_("unknown option `%s'"), arg);
1646 else
1647 {
1648 symbol_file_add_main_1 (arg, add_flags, flags);
1649 name = arg;
1650 }
1651 }
1652
1653 if (name == NULL)
1654 error (_("no symbol file name was specified"));
1655 }
1656 }
1657
1658 /* Set the initial language.
1659
1660 FIXME: A better solution would be to record the language in the
1661 psymtab when reading partial symbols, and then use it (if known) to
1662 set the language. This would be a win for formats that encode the
1663 language in an easily discoverable place, such as DWARF. For
1664 stabs, we can jump through hoops looking for specially named
1665 symbols or try to intuit the language from the specific type of
1666 stabs we find, but we can't do that until later when we read in
1667 full symbols. */
1668
1669 void
1670 set_initial_language (void)
1671 {
1672 enum language lang = main_language ();
1673
1674 if (lang == language_unknown)
1675 {
1676 char *name = main_name ();
1677 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1678
1679 if (sym != NULL)
1680 lang = SYMBOL_LANGUAGE (sym);
1681 }
1682
1683 if (lang == language_unknown)
1684 {
1685 /* Make C the default language */
1686 lang = language_c;
1687 }
1688
1689 set_language (lang);
1690 expected_language = current_language; /* Don't warn the user. */
1691 }
1692
1693 /* Open the file specified by NAME and hand it off to BFD for
1694 preliminary analysis. Return a newly initialized bfd *, which
1695 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1696 absolute). In case of trouble, error() is called. */
1697
1698 gdb_bfd_ref_ptr
1699 symfile_bfd_open (const char *name)
1700 {
1701 int desc = -1;
1702 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1703
1704 if (!is_target_filename (name))
1705 {
1706 char *absolute_name;
1707
1708 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1709
1710 /* Look down path for it, allocate 2nd new malloc'd copy. */
1711 desc = openp (getenv ("PATH"),
1712 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1713 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1714 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1715 if (desc < 0)
1716 {
1717 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1718
1719 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1720 desc = openp (getenv ("PATH"),
1721 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1722 exename, O_RDONLY | O_BINARY, &absolute_name);
1723 }
1724 #endif
1725 if (desc < 0)
1726 perror_with_name (expanded_name.get ());
1727
1728 make_cleanup (xfree, absolute_name);
1729 name = absolute_name;
1730 }
1731
1732 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1733 if (sym_bfd == NULL)
1734 error (_("`%s': can't open to read symbols: %s."), name,
1735 bfd_errmsg (bfd_get_error ()));
1736
1737 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1738 bfd_set_cacheable (sym_bfd.get (), 1);
1739
1740 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1741 error (_("`%s': can't read symbols: %s."), name,
1742 bfd_errmsg (bfd_get_error ()));
1743
1744 do_cleanups (back_to);
1745
1746 return sym_bfd;
1747 }
1748
1749 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1750 the section was not found. */
1751
1752 int
1753 get_section_index (struct objfile *objfile, const char *section_name)
1754 {
1755 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1756
1757 if (sect)
1758 return sect->index;
1759 else
1760 return -1;
1761 }
1762
1763 /* Link SF into the global symtab_fns list.
1764 FLAVOUR is the file format that SF handles.
1765 Called on startup by the _initialize routine in each object file format
1766 reader, to register information about each format the reader is prepared
1767 to handle. */
1768
1769 void
1770 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1771 {
1772 symtab_fns.emplace_back (flavour, sf);
1773 }
1774
1775 /* Initialize OBJFILE to read symbols from its associated BFD. It
1776 either returns or calls error(). The result is an initialized
1777 struct sym_fns in the objfile structure, that contains cached
1778 information about the symbol file. */
1779
1780 static const struct sym_fns *
1781 find_sym_fns (bfd *abfd)
1782 {
1783 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1784
1785 if (our_flavour == bfd_target_srec_flavour
1786 || our_flavour == bfd_target_ihex_flavour
1787 || our_flavour == bfd_target_tekhex_flavour)
1788 return NULL; /* No symbols. */
1789
1790 for (const registered_sym_fns &rsf : symtab_fns)
1791 if (our_flavour == rsf.sym_flavour)
1792 return rsf.sym_fns;
1793
1794 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1795 bfd_get_target (abfd));
1796 }
1797 \f
1798
1799 /* This function runs the load command of our current target. */
1800
1801 static void
1802 load_command (char *arg, int from_tty)
1803 {
1804 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1805
1806 dont_repeat ();
1807
1808 /* The user might be reloading because the binary has changed. Take
1809 this opportunity to check. */
1810 reopen_exec_file ();
1811 reread_symbols ();
1812
1813 if (arg == NULL)
1814 {
1815 char *parg;
1816 int count = 0;
1817
1818 parg = arg = get_exec_file (1);
1819
1820 /* Count how many \ " ' tab space there are in the name. */
1821 while ((parg = strpbrk (parg, "\\\"'\t ")))
1822 {
1823 parg++;
1824 count++;
1825 }
1826
1827 if (count)
1828 {
1829 /* We need to quote this string so buildargv can pull it apart. */
1830 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1831 char *ptemp = temp;
1832 char *prev;
1833
1834 make_cleanup (xfree, temp);
1835
1836 prev = parg = arg;
1837 while ((parg = strpbrk (parg, "\\\"'\t ")))
1838 {
1839 strncpy (ptemp, prev, parg - prev);
1840 ptemp += parg - prev;
1841 prev = parg++;
1842 *ptemp++ = '\\';
1843 }
1844 strcpy (ptemp, prev);
1845
1846 arg = temp;
1847 }
1848 }
1849
1850 target_load (arg, from_tty);
1851
1852 /* After re-loading the executable, we don't really know which
1853 overlays are mapped any more. */
1854 overlay_cache_invalid = 1;
1855
1856 do_cleanups (cleanup);
1857 }
1858
1859 /* This version of "load" should be usable for any target. Currently
1860 it is just used for remote targets, not inftarg.c or core files,
1861 on the theory that only in that case is it useful.
1862
1863 Avoiding xmodem and the like seems like a win (a) because we don't have
1864 to worry about finding it, and (b) On VMS, fork() is very slow and so
1865 we don't want to run a subprocess. On the other hand, I'm not sure how
1866 performance compares. */
1867
1868 static int validate_download = 0;
1869
1870 /* Callback service function for generic_load (bfd_map_over_sections). */
1871
1872 static void
1873 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1874 {
1875 bfd_size_type *sum = (bfd_size_type *) data;
1876
1877 *sum += bfd_get_section_size (asec);
1878 }
1879
1880 /* Opaque data for load_section_callback. */
1881 struct load_section_data {
1882 CORE_ADDR load_offset;
1883 struct load_progress_data *progress_data;
1884 VEC(memory_write_request_s) *requests;
1885 };
1886
1887 /* Opaque data for load_progress. */
1888 struct load_progress_data {
1889 /* Cumulative data. */
1890 unsigned long write_count;
1891 unsigned long data_count;
1892 bfd_size_type total_size;
1893 };
1894
1895 /* Opaque data for load_progress for a single section. */
1896 struct load_progress_section_data {
1897 struct load_progress_data *cumulative;
1898
1899 /* Per-section data. */
1900 const char *section_name;
1901 ULONGEST section_sent;
1902 ULONGEST section_size;
1903 CORE_ADDR lma;
1904 gdb_byte *buffer;
1905 };
1906
1907 /* Target write callback routine for progress reporting. */
1908
1909 static void
1910 load_progress (ULONGEST bytes, void *untyped_arg)
1911 {
1912 struct load_progress_section_data *args
1913 = (struct load_progress_section_data *) untyped_arg;
1914 struct load_progress_data *totals;
1915
1916 if (args == NULL)
1917 /* Writing padding data. No easy way to get at the cumulative
1918 stats, so just ignore this. */
1919 return;
1920
1921 totals = args->cumulative;
1922
1923 if (bytes == 0 && args->section_sent == 0)
1924 {
1925 /* The write is just starting. Let the user know we've started
1926 this section. */
1927 current_uiout->message ("Loading section %s, size %s lma %s\n",
1928 args->section_name,
1929 hex_string (args->section_size),
1930 paddress (target_gdbarch (), args->lma));
1931 return;
1932 }
1933
1934 if (validate_download)
1935 {
1936 /* Broken memories and broken monitors manifest themselves here
1937 when bring new computers to life. This doubles already slow
1938 downloads. */
1939 /* NOTE: cagney/1999-10-18: A more efficient implementation
1940 might add a verify_memory() method to the target vector and
1941 then use that. remote.c could implement that method using
1942 the ``qCRC'' packet. */
1943 gdb::byte_vector check (bytes);
1944
1945 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1946 error (_("Download verify read failed at %s"),
1947 paddress (target_gdbarch (), args->lma));
1948 if (memcmp (args->buffer, check.data (), bytes) != 0)
1949 error (_("Download verify compare failed at %s"),
1950 paddress (target_gdbarch (), args->lma));
1951 }
1952 totals->data_count += bytes;
1953 args->lma += bytes;
1954 args->buffer += bytes;
1955 totals->write_count += 1;
1956 args->section_sent += bytes;
1957 if (check_quit_flag ()
1958 || (deprecated_ui_load_progress_hook != NULL
1959 && deprecated_ui_load_progress_hook (args->section_name,
1960 args->section_sent)))
1961 error (_("Canceled the download"));
1962
1963 if (deprecated_show_load_progress != NULL)
1964 deprecated_show_load_progress (args->section_name,
1965 args->section_sent,
1966 args->section_size,
1967 totals->data_count,
1968 totals->total_size);
1969 }
1970
1971 /* Callback service function for generic_load (bfd_map_over_sections). */
1972
1973 static void
1974 load_section_callback (bfd *abfd, asection *asec, void *data)
1975 {
1976 struct memory_write_request *new_request;
1977 struct load_section_data *args = (struct load_section_data *) data;
1978 struct load_progress_section_data *section_data;
1979 bfd_size_type size = bfd_get_section_size (asec);
1980 gdb_byte *buffer;
1981 const char *sect_name = bfd_get_section_name (abfd, asec);
1982
1983 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1984 return;
1985
1986 if (size == 0)
1987 return;
1988
1989 new_request = VEC_safe_push (memory_write_request_s,
1990 args->requests, NULL);
1991 memset (new_request, 0, sizeof (struct memory_write_request));
1992 section_data = XCNEW (struct load_progress_section_data);
1993 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1994 new_request->end = new_request->begin + size; /* FIXME Should size
1995 be in instead? */
1996 new_request->data = (gdb_byte *) xmalloc (size);
1997 new_request->baton = section_data;
1998
1999 buffer = new_request->data;
2000
2001 section_data->cumulative = args->progress_data;
2002 section_data->section_name = sect_name;
2003 section_data->section_size = size;
2004 section_data->lma = new_request->begin;
2005 section_data->buffer = buffer;
2006
2007 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2008 }
2009
2010 /* Clean up an entire memory request vector, including load
2011 data and progress records. */
2012
2013 static void
2014 clear_memory_write_data (void *arg)
2015 {
2016 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
2017 VEC(memory_write_request_s) *vec = *vec_p;
2018 int i;
2019 struct memory_write_request *mr;
2020
2021 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2022 {
2023 xfree (mr->data);
2024 xfree (mr->baton);
2025 }
2026 VEC_free (memory_write_request_s, vec);
2027 }
2028
2029 static void print_transfer_performance (struct ui_file *stream,
2030 unsigned long data_count,
2031 unsigned long write_count,
2032 std::chrono::steady_clock::duration d);
2033
2034 void
2035 generic_load (const char *args, int from_tty)
2036 {
2037 struct cleanup *old_cleanups;
2038 struct load_section_data cbdata;
2039 struct load_progress_data total_progress;
2040 struct ui_out *uiout = current_uiout;
2041
2042 CORE_ADDR entry;
2043
2044 memset (&cbdata, 0, sizeof (cbdata));
2045 memset (&total_progress, 0, sizeof (total_progress));
2046 cbdata.progress_data = &total_progress;
2047
2048 old_cleanups = make_cleanup (clear_memory_write_data, &cbdata.requests);
2049
2050 if (args == NULL)
2051 error_no_arg (_("file to load"));
2052
2053 gdb_argv argv (args);
2054
2055 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2056
2057 if (argv[1] != NULL)
2058 {
2059 const char *endptr;
2060
2061 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2062
2063 /* If the last word was not a valid number then
2064 treat it as a file name with spaces in. */
2065 if (argv[1] == endptr)
2066 error (_("Invalid download offset:%s."), argv[1]);
2067
2068 if (argv[2] != NULL)
2069 error (_("Too many parameters."));
2070 }
2071
2072 /* Open the file for loading. */
2073 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
2074 if (loadfile_bfd == NULL)
2075 perror_with_name (filename.get ());
2076
2077 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2078 {
2079 error (_("\"%s\" is not an object file: %s"), filename.get (),
2080 bfd_errmsg (bfd_get_error ()));
2081 }
2082
2083 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2084 (void *) &total_progress.total_size);
2085
2086 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2087
2088 using namespace std::chrono;
2089
2090 steady_clock::time_point start_time = steady_clock::now ();
2091
2092 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2093 load_progress) != 0)
2094 error (_("Load failed"));
2095
2096 steady_clock::time_point end_time = steady_clock::now ();
2097
2098 entry = bfd_get_start_address (loadfile_bfd.get ());
2099 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2100 uiout->text ("Start address ");
2101 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2102 uiout->text (", load size ");
2103 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2104 uiout->text ("\n");
2105 regcache_write_pc (get_current_regcache (), entry);
2106
2107 /* Reset breakpoints, now that we have changed the load image. For
2108 instance, breakpoints may have been set (or reset, by
2109 post_create_inferior) while connected to the target but before we
2110 loaded the program. In that case, the prologue analyzer could
2111 have read instructions from the target to find the right
2112 breakpoint locations. Loading has changed the contents of that
2113 memory. */
2114
2115 breakpoint_re_set ();
2116
2117 print_transfer_performance (gdb_stdout, total_progress.data_count,
2118 total_progress.write_count,
2119 end_time - start_time);
2120
2121 do_cleanups (old_cleanups);
2122 }
2123
2124 /* Report on STREAM the performance of a memory transfer operation,
2125 such as 'load'. DATA_COUNT is the number of bytes transferred.
2126 WRITE_COUNT is the number of separate write operations, or 0, if
2127 that information is not available. TIME is how long the operation
2128 lasted. */
2129
2130 static void
2131 print_transfer_performance (struct ui_file *stream,
2132 unsigned long data_count,
2133 unsigned long write_count,
2134 std::chrono::steady_clock::duration time)
2135 {
2136 using namespace std::chrono;
2137 struct ui_out *uiout = current_uiout;
2138
2139 milliseconds ms = duration_cast<milliseconds> (time);
2140
2141 uiout->text ("Transfer rate: ");
2142 if (ms.count () > 0)
2143 {
2144 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2145
2146 if (uiout->is_mi_like_p ())
2147 {
2148 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2149 uiout->text (" bits/sec");
2150 }
2151 else if (rate < 1024)
2152 {
2153 uiout->field_fmt ("transfer-rate", "%lu", rate);
2154 uiout->text (" bytes/sec");
2155 }
2156 else
2157 {
2158 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2159 uiout->text (" KB/sec");
2160 }
2161 }
2162 else
2163 {
2164 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2165 uiout->text (" bits in <1 sec");
2166 }
2167 if (write_count > 0)
2168 {
2169 uiout->text (", ");
2170 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2171 uiout->text (" bytes/write");
2172 }
2173 uiout->text (".\n");
2174 }
2175
2176 /* This function allows the addition of incrementally linked object files.
2177 It does not modify any state in the target, only in the debugger. */
2178 /* Note: ezannoni 2000-04-13 This function/command used to have a
2179 special case syntax for the rombug target (Rombug is the boot
2180 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2181 rombug case, the user doesn't need to supply a text address,
2182 instead a call to target_link() (in target.c) would supply the
2183 value to use. We are now discontinuing this type of ad hoc syntax. */
2184
2185 static void
2186 add_symbol_file_command (const char *args, int from_tty)
2187 {
2188 struct gdbarch *gdbarch = get_current_arch ();
2189 gdb::unique_xmalloc_ptr<char> filename;
2190 char *arg;
2191 int argcnt = 0;
2192 int sec_num = 0;
2193 int expecting_sec_name = 0;
2194 int expecting_sec_addr = 0;
2195 struct objfile *objf;
2196 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2197 symfile_add_flags add_flags = 0;
2198
2199 if (from_tty)
2200 add_flags |= SYMFILE_VERBOSE;
2201
2202 struct sect_opt
2203 {
2204 const char *name;
2205 const char *value;
2206 };
2207
2208 struct section_addr_info *section_addrs;
2209 std::vector<sect_opt> sect_opts;
2210 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2211
2212 dont_repeat ();
2213
2214 if (args == NULL)
2215 error (_("add-symbol-file takes a file name and an address"));
2216
2217 gdb_argv argv (args);
2218
2219 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2220 {
2221 /* Process the argument. */
2222 if (argcnt == 0)
2223 {
2224 /* The first argument is the file name. */
2225 filename.reset (tilde_expand (arg));
2226 }
2227 else if (argcnt == 1)
2228 {
2229 /* The second argument is always the text address at which
2230 to load the program. */
2231 sect_opt sect = { ".text", arg };
2232 sect_opts.push_back (sect);
2233 }
2234 else
2235 {
2236 /* It's an option (starting with '-') or it's an argument
2237 to an option. */
2238 if (expecting_sec_name)
2239 {
2240 sect_opt sect = { arg, NULL };
2241 sect_opts.push_back (sect);
2242 expecting_sec_name = 0;
2243 }
2244 else if (expecting_sec_addr)
2245 {
2246 sect_opts.back ().value = arg;
2247 expecting_sec_addr = 0;
2248 }
2249 else if (strcmp (arg, "-readnow") == 0)
2250 flags |= OBJF_READNOW;
2251 else if (strcmp (arg, "-s") == 0)
2252 {
2253 expecting_sec_name = 1;
2254 expecting_sec_addr = 1;
2255 }
2256 else
2257 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2258 " [-readnow] [-s <secname> <addr>]*"));
2259 }
2260 }
2261
2262 /* This command takes at least two arguments. The first one is a
2263 filename, and the second is the address where this file has been
2264 loaded. Abort now if this address hasn't been provided by the
2265 user. */
2266 if (sect_opts.empty ())
2267 error (_("The address where %s has been loaded is missing"),
2268 filename.get ());
2269
2270 /* Print the prompt for the query below. And save the arguments into
2271 a sect_addr_info structure to be passed around to other
2272 functions. We have to split this up into separate print
2273 statements because hex_string returns a local static
2274 string. */
2275
2276 printf_unfiltered (_("add symbol table from file \"%s\" at\n"),
2277 filename.get ());
2278 section_addrs = alloc_section_addr_info (sect_opts.size ());
2279 make_cleanup (xfree, section_addrs);
2280 for (sect_opt &sect : sect_opts)
2281 {
2282 CORE_ADDR addr;
2283 const char *val = sect.value;
2284 const char *sec = sect.name;
2285
2286 addr = parse_and_eval_address (val);
2287
2288 /* Here we store the section offsets in the order they were
2289 entered on the command line. */
2290 section_addrs->other[sec_num].name = (char *) sec;
2291 section_addrs->other[sec_num].addr = addr;
2292 printf_unfiltered ("\t%s_addr = %s\n", sec,
2293 paddress (gdbarch, addr));
2294 sec_num++;
2295
2296 /* The object's sections are initialized when a
2297 call is made to build_objfile_section_table (objfile).
2298 This happens in reread_symbols.
2299 At this point, we don't know what file type this is,
2300 so we can't determine what section names are valid. */
2301 }
2302 section_addrs->num_sections = sec_num;
2303
2304 if (from_tty && (!query ("%s", "")))
2305 error (_("Not confirmed."));
2306
2307 objf = symbol_file_add (filename.get (), add_flags, section_addrs, flags);
2308
2309 add_target_sections_of_objfile (objf);
2310
2311 /* Getting new symbols may change our opinion about what is
2312 frameless. */
2313 reinit_frame_cache ();
2314 do_cleanups (my_cleanups);
2315 }
2316 \f
2317
2318 /* This function removes a symbol file that was added via add-symbol-file. */
2319
2320 static void
2321 remove_symbol_file_command (const char *args, int from_tty)
2322 {
2323 struct objfile *objf = NULL;
2324 struct program_space *pspace = current_program_space;
2325
2326 dont_repeat ();
2327
2328 if (args == NULL)
2329 error (_("remove-symbol-file: no symbol file provided"));
2330
2331 gdb_argv argv (args);
2332
2333 if (strcmp (argv[0], "-a") == 0)
2334 {
2335 /* Interpret the next argument as an address. */
2336 CORE_ADDR addr;
2337
2338 if (argv[1] == NULL)
2339 error (_("Missing address argument"));
2340
2341 if (argv[2] != NULL)
2342 error (_("Junk after %s"), argv[1]);
2343
2344 addr = parse_and_eval_address (argv[1]);
2345
2346 ALL_OBJFILES (objf)
2347 {
2348 if ((objf->flags & OBJF_USERLOADED) != 0
2349 && (objf->flags & OBJF_SHARED) != 0
2350 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2351 break;
2352 }
2353 }
2354 else if (argv[0] != NULL)
2355 {
2356 /* Interpret the current argument as a file name. */
2357
2358 if (argv[1] != NULL)
2359 error (_("Junk after %s"), argv[0]);
2360
2361 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2362
2363 ALL_OBJFILES (objf)
2364 {
2365 if ((objf->flags & OBJF_USERLOADED) != 0
2366 && (objf->flags & OBJF_SHARED) != 0
2367 && objf->pspace == pspace
2368 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
2369 break;
2370 }
2371 }
2372
2373 if (objf == NULL)
2374 error (_("No symbol file found"));
2375
2376 if (from_tty
2377 && !query (_("Remove symbol table from file \"%s\"? "),
2378 objfile_name (objf)))
2379 error (_("Not confirmed."));
2380
2381 delete objf;
2382 clear_symtab_users (0);
2383 }
2384
2385 /* Re-read symbols if a symbol-file has changed. */
2386
2387 void
2388 reread_symbols (void)
2389 {
2390 struct objfile *objfile;
2391 long new_modtime;
2392 struct stat new_statbuf;
2393 int res;
2394 std::vector<struct objfile *> new_objfiles;
2395
2396 /* With the addition of shared libraries, this should be modified,
2397 the load time should be saved in the partial symbol tables, since
2398 different tables may come from different source files. FIXME.
2399 This routine should then walk down each partial symbol table
2400 and see if the symbol table that it originates from has been changed. */
2401
2402 for (objfile = object_files; objfile; objfile = objfile->next)
2403 {
2404 if (objfile->obfd == NULL)
2405 continue;
2406
2407 /* Separate debug objfiles are handled in the main objfile. */
2408 if (objfile->separate_debug_objfile_backlink)
2409 continue;
2410
2411 /* If this object is from an archive (what you usually create with
2412 `ar', often called a `static library' on most systems, though
2413 a `shared library' on AIX is also an archive), then you should
2414 stat on the archive name, not member name. */
2415 if (objfile->obfd->my_archive)
2416 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2417 else
2418 res = stat (objfile_name (objfile), &new_statbuf);
2419 if (res != 0)
2420 {
2421 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2422 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2423 objfile_name (objfile));
2424 continue;
2425 }
2426 new_modtime = new_statbuf.st_mtime;
2427 if (new_modtime != objfile->mtime)
2428 {
2429 struct cleanup *old_cleanups;
2430 struct section_offsets *offsets;
2431 int num_offsets;
2432 char *original_name;
2433
2434 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2435 objfile_name (objfile));
2436
2437 /* There are various functions like symbol_file_add,
2438 symfile_bfd_open, syms_from_objfile, etc., which might
2439 appear to do what we want. But they have various other
2440 effects which we *don't* want. So we just do stuff
2441 ourselves. We don't worry about mapped files (for one thing,
2442 any mapped file will be out of date). */
2443
2444 /* If we get an error, blow away this objfile (not sure if
2445 that is the correct response for things like shared
2446 libraries). */
2447 old_cleanups = make_cleanup_free_objfile (objfile);
2448 /* We need to do this whenever any symbols go away. */
2449 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2450
2451 if (exec_bfd != NULL
2452 && filename_cmp (bfd_get_filename (objfile->obfd),
2453 bfd_get_filename (exec_bfd)) == 0)
2454 {
2455 /* Reload EXEC_BFD without asking anything. */
2456
2457 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2458 }
2459
2460 /* Keep the calls order approx. the same as in free_objfile. */
2461
2462 /* Free the separate debug objfiles. It will be
2463 automatically recreated by sym_read. */
2464 free_objfile_separate_debug (objfile);
2465
2466 /* Remove any references to this objfile in the global
2467 value lists. */
2468 preserve_values (objfile);
2469
2470 /* Nuke all the state that we will re-read. Much of the following
2471 code which sets things to NULL really is necessary to tell
2472 other parts of GDB that there is nothing currently there.
2473
2474 Try to keep the freeing order compatible with free_objfile. */
2475
2476 if (objfile->sf != NULL)
2477 {
2478 (*objfile->sf->sym_finish) (objfile);
2479 }
2480
2481 clear_objfile_data (objfile);
2482
2483 /* Clean up any state BFD has sitting around. */
2484 {
2485 gdb_bfd_ref_ptr obfd (objfile->obfd);
2486 char *obfd_filename;
2487
2488 obfd_filename = bfd_get_filename (objfile->obfd);
2489 /* Open the new BFD before freeing the old one, so that
2490 the filename remains live. */
2491 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2492 objfile->obfd = temp.release ();
2493 if (objfile->obfd == NULL)
2494 error (_("Can't open %s to read symbols."), obfd_filename);
2495 }
2496
2497 original_name = xstrdup (objfile->original_name);
2498 make_cleanup (xfree, original_name);
2499
2500 /* bfd_openr sets cacheable to true, which is what we want. */
2501 if (!bfd_check_format (objfile->obfd, bfd_object))
2502 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2503 bfd_errmsg (bfd_get_error ()));
2504
2505 /* Save the offsets, we will nuke them with the rest of the
2506 objfile_obstack. */
2507 num_offsets = objfile->num_sections;
2508 offsets = ((struct section_offsets *)
2509 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2510 memcpy (offsets, objfile->section_offsets,
2511 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2512
2513 /* FIXME: Do we have to free a whole linked list, or is this
2514 enough? */
2515 objfile->global_psymbols.clear ();
2516 objfile->static_psymbols.clear ();
2517
2518 /* Free the obstacks for non-reusable objfiles. */
2519 psymbol_bcache_free (objfile->psymbol_cache);
2520 objfile->psymbol_cache = psymbol_bcache_init ();
2521
2522 /* NB: after this call to obstack_free, objfiles_changed
2523 will need to be called (see discussion below). */
2524 obstack_free (&objfile->objfile_obstack, 0);
2525 objfile->sections = NULL;
2526 objfile->compunit_symtabs = NULL;
2527 objfile->psymtabs = NULL;
2528 objfile->psymtabs_addrmap = NULL;
2529 objfile->free_psymtabs = NULL;
2530 objfile->template_symbols = NULL;
2531
2532 /* obstack_init also initializes the obstack so it is
2533 empty. We could use obstack_specify_allocation but
2534 gdb_obstack.h specifies the alloc/dealloc functions. */
2535 obstack_init (&objfile->objfile_obstack);
2536
2537 /* set_objfile_per_bfd potentially allocates the per-bfd
2538 data on the objfile's obstack (if sharing data across
2539 multiple users is not possible), so it's important to
2540 do it *after* the obstack has been initialized. */
2541 set_objfile_per_bfd (objfile);
2542
2543 objfile->original_name
2544 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2545 strlen (original_name));
2546
2547 /* Reset the sym_fns pointer. The ELF reader can change it
2548 based on whether .gdb_index is present, and we need it to
2549 start over. PR symtab/15885 */
2550 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2551
2552 build_objfile_section_table (objfile);
2553 terminate_minimal_symbol_table (objfile);
2554
2555 /* We use the same section offsets as from last time. I'm not
2556 sure whether that is always correct for shared libraries. */
2557 objfile->section_offsets = (struct section_offsets *)
2558 obstack_alloc (&objfile->objfile_obstack,
2559 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2560 memcpy (objfile->section_offsets, offsets,
2561 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2562 objfile->num_sections = num_offsets;
2563
2564 /* What the hell is sym_new_init for, anyway? The concept of
2565 distinguishing between the main file and additional files
2566 in this way seems rather dubious. */
2567 if (objfile == symfile_objfile)
2568 {
2569 (*objfile->sf->sym_new_init) (objfile);
2570 }
2571
2572 (*objfile->sf->sym_init) (objfile);
2573 clear_complaints (&symfile_complaints, 1, 1);
2574
2575 objfile->flags &= ~OBJF_PSYMTABS_READ;
2576
2577 /* We are about to read new symbols and potentially also
2578 DWARF information. Some targets may want to pass addresses
2579 read from DWARF DIE's through an adjustment function before
2580 saving them, like MIPS, which may call into
2581 "find_pc_section". When called, that function will make
2582 use of per-objfile program space data.
2583
2584 Since we discarded our section information above, we have
2585 dangling pointers in the per-objfile program space data
2586 structure. Force GDB to update the section mapping
2587 information by letting it know the objfile has changed,
2588 making the dangling pointers point to correct data
2589 again. */
2590
2591 objfiles_changed ();
2592
2593 read_symbols (objfile, 0);
2594
2595 if (!objfile_has_symbols (objfile))
2596 {
2597 wrap_here ("");
2598 printf_unfiltered (_("(no debugging symbols found)\n"));
2599 wrap_here ("");
2600 }
2601
2602 /* We're done reading the symbol file; finish off complaints. */
2603 clear_complaints (&symfile_complaints, 0, 1);
2604
2605 /* Getting new symbols may change our opinion about what is
2606 frameless. */
2607
2608 reinit_frame_cache ();
2609
2610 /* Discard cleanups as symbol reading was successful. */
2611 discard_cleanups (old_cleanups);
2612
2613 /* If the mtime has changed between the time we set new_modtime
2614 and now, we *want* this to be out of date, so don't call stat
2615 again now. */
2616 objfile->mtime = new_modtime;
2617 init_entry_point_info (objfile);
2618
2619 new_objfiles.push_back (objfile);
2620 }
2621 }
2622
2623 if (!new_objfiles.empty ())
2624 {
2625 clear_symtab_users (0);
2626
2627 /* clear_objfile_data for each objfile was called before freeing it and
2628 observer_notify_new_objfile (NULL) has been called by
2629 clear_symtab_users above. Notify the new files now. */
2630 for (auto iter : new_objfiles)
2631 observer_notify_new_objfile (iter);
2632
2633 /* At least one objfile has changed, so we can consider that
2634 the executable we're debugging has changed too. */
2635 observer_notify_executable_changed ();
2636 }
2637 }
2638 \f
2639
2640 struct filename_language
2641 {
2642 filename_language (const std::string &ext_, enum language lang_)
2643 : ext (ext_), lang (lang_)
2644 {}
2645
2646 std::string ext;
2647 enum language lang;
2648 };
2649
2650 static std::vector<filename_language> filename_language_table;
2651
2652 /* See symfile.h. */
2653
2654 void
2655 add_filename_language (const char *ext, enum language lang)
2656 {
2657 filename_language_table.emplace_back (ext, lang);
2658 }
2659
2660 static char *ext_args;
2661 static void
2662 show_ext_args (struct ui_file *file, int from_tty,
2663 struct cmd_list_element *c, const char *value)
2664 {
2665 fprintf_filtered (file,
2666 _("Mapping between filename extension "
2667 "and source language is \"%s\".\n"),
2668 value);
2669 }
2670
2671 static void
2672 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2673 {
2674 char *cp = ext_args;
2675 enum language lang;
2676
2677 /* First arg is filename extension, starting with '.' */
2678 if (*cp != '.')
2679 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2680
2681 /* Find end of first arg. */
2682 while (*cp && !isspace (*cp))
2683 cp++;
2684
2685 if (*cp == '\0')
2686 error (_("'%s': two arguments required -- "
2687 "filename extension and language"),
2688 ext_args);
2689
2690 /* Null-terminate first arg. */
2691 *cp++ = '\0';
2692
2693 /* Find beginning of second arg, which should be a source language. */
2694 cp = skip_spaces (cp);
2695
2696 if (*cp == '\0')
2697 error (_("'%s': two arguments required -- "
2698 "filename extension and language"),
2699 ext_args);
2700
2701 /* Lookup the language from among those we know. */
2702 lang = language_enum (cp);
2703
2704 auto it = filename_language_table.begin ();
2705 /* Now lookup the filename extension: do we already know it? */
2706 for (; it != filename_language_table.end (); it++)
2707 {
2708 if (it->ext == ext_args)
2709 break;
2710 }
2711
2712 if (it == filename_language_table.end ())
2713 {
2714 /* New file extension. */
2715 add_filename_language (ext_args, lang);
2716 }
2717 else
2718 {
2719 /* Redefining a previously known filename extension. */
2720
2721 /* if (from_tty) */
2722 /* query ("Really make files of type %s '%s'?", */
2723 /* ext_args, language_str (lang)); */
2724
2725 it->lang = lang;
2726 }
2727 }
2728
2729 static void
2730 info_ext_lang_command (char *args, int from_tty)
2731 {
2732 printf_filtered (_("Filename extensions and the languages they represent:"));
2733 printf_filtered ("\n\n");
2734 for (const filename_language &entry : filename_language_table)
2735 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2736 language_str (entry.lang));
2737 }
2738
2739 enum language
2740 deduce_language_from_filename (const char *filename)
2741 {
2742 const char *cp;
2743
2744 if (filename != NULL)
2745 if ((cp = strrchr (filename, '.')) != NULL)
2746 {
2747 for (const filename_language &entry : filename_language_table)
2748 if (entry.ext == cp)
2749 return entry.lang;
2750 }
2751
2752 return language_unknown;
2753 }
2754 \f
2755 /* Allocate and initialize a new symbol table.
2756 CUST is from the result of allocate_compunit_symtab. */
2757
2758 struct symtab *
2759 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2760 {
2761 struct objfile *objfile = cust->objfile;
2762 struct symtab *symtab
2763 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2764
2765 symtab->filename
2766 = (const char *) bcache (filename, strlen (filename) + 1,
2767 objfile->per_bfd->filename_cache);
2768 symtab->fullname = NULL;
2769 symtab->language = deduce_language_from_filename (filename);
2770
2771 /* This can be very verbose with lots of headers.
2772 Only print at higher debug levels. */
2773 if (symtab_create_debug >= 2)
2774 {
2775 /* Be a bit clever with debugging messages, and don't print objfile
2776 every time, only when it changes. */
2777 static char *last_objfile_name = NULL;
2778
2779 if (last_objfile_name == NULL
2780 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2781 {
2782 xfree (last_objfile_name);
2783 last_objfile_name = xstrdup (objfile_name (objfile));
2784 fprintf_unfiltered (gdb_stdlog,
2785 "Creating one or more symtabs for objfile %s ...\n",
2786 last_objfile_name);
2787 }
2788 fprintf_unfiltered (gdb_stdlog,
2789 "Created symtab %s for module %s.\n",
2790 host_address_to_string (symtab), filename);
2791 }
2792
2793 /* Add it to CUST's list of symtabs. */
2794 if (cust->filetabs == NULL)
2795 {
2796 cust->filetabs = symtab;
2797 cust->last_filetab = symtab;
2798 }
2799 else
2800 {
2801 cust->last_filetab->next = symtab;
2802 cust->last_filetab = symtab;
2803 }
2804
2805 /* Backlink to the containing compunit symtab. */
2806 symtab->compunit_symtab = cust;
2807
2808 return symtab;
2809 }
2810
2811 /* Allocate and initialize a new compunit.
2812 NAME is the name of the main source file, if there is one, or some
2813 descriptive text if there are no source files. */
2814
2815 struct compunit_symtab *
2816 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2817 {
2818 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2819 struct compunit_symtab);
2820 const char *saved_name;
2821
2822 cu->objfile = objfile;
2823
2824 /* The name we record here is only for display/debugging purposes.
2825 Just save the basename to avoid path issues (too long for display,
2826 relative vs absolute, etc.). */
2827 saved_name = lbasename (name);
2828 cu->name
2829 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2830 strlen (saved_name));
2831
2832 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2833
2834 if (symtab_create_debug)
2835 {
2836 fprintf_unfiltered (gdb_stdlog,
2837 "Created compunit symtab %s for %s.\n",
2838 host_address_to_string (cu),
2839 cu->name);
2840 }
2841
2842 return cu;
2843 }
2844
2845 /* Hook CU to the objfile it comes from. */
2846
2847 void
2848 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2849 {
2850 cu->next = cu->objfile->compunit_symtabs;
2851 cu->objfile->compunit_symtabs = cu;
2852 }
2853 \f
2854
2855 /* Reset all data structures in gdb which may contain references to
2856 symbol table data. */
2857
2858 void
2859 clear_symtab_users (symfile_add_flags add_flags)
2860 {
2861 /* Someday, we should do better than this, by only blowing away
2862 the things that really need to be blown. */
2863
2864 /* Clear the "current" symtab first, because it is no longer valid.
2865 breakpoint_re_set may try to access the current symtab. */
2866 clear_current_source_symtab_and_line ();
2867
2868 clear_displays ();
2869 clear_last_displayed_sal ();
2870 clear_pc_function_cache ();
2871 observer_notify_new_objfile (NULL);
2872
2873 /* Clear globals which might have pointed into a removed objfile.
2874 FIXME: It's not clear which of these are supposed to persist
2875 between expressions and which ought to be reset each time. */
2876 expression_context_block = NULL;
2877 innermost_block = NULL;
2878
2879 /* Varobj may refer to old symbols, perform a cleanup. */
2880 varobj_invalidate ();
2881
2882 /* Now that the various caches have been cleared, we can re_set
2883 our breakpoints without risking it using stale data. */
2884 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2885 breakpoint_re_set ();
2886 }
2887
2888 static void
2889 clear_symtab_users_cleanup (void *ignore)
2890 {
2891 clear_symtab_users (0);
2892 }
2893 \f
2894 /* OVERLAYS:
2895 The following code implements an abstraction for debugging overlay sections.
2896
2897 The target model is as follows:
2898 1) The gnu linker will permit multiple sections to be mapped into the
2899 same VMA, each with its own unique LMA (or load address).
2900 2) It is assumed that some runtime mechanism exists for mapping the
2901 sections, one by one, from the load address into the VMA address.
2902 3) This code provides a mechanism for gdb to keep track of which
2903 sections should be considered to be mapped from the VMA to the LMA.
2904 This information is used for symbol lookup, and memory read/write.
2905 For instance, if a section has been mapped then its contents
2906 should be read from the VMA, otherwise from the LMA.
2907
2908 Two levels of debugger support for overlays are available. One is
2909 "manual", in which the debugger relies on the user to tell it which
2910 overlays are currently mapped. This level of support is
2911 implemented entirely in the core debugger, and the information about
2912 whether a section is mapped is kept in the objfile->obj_section table.
2913
2914 The second level of support is "automatic", and is only available if
2915 the target-specific code provides functionality to read the target's
2916 overlay mapping table, and translate its contents for the debugger
2917 (by updating the mapped state information in the obj_section tables).
2918
2919 The interface is as follows:
2920 User commands:
2921 overlay map <name> -- tell gdb to consider this section mapped
2922 overlay unmap <name> -- tell gdb to consider this section unmapped
2923 overlay list -- list the sections that GDB thinks are mapped
2924 overlay read-target -- get the target's state of what's mapped
2925 overlay off/manual/auto -- set overlay debugging state
2926 Functional interface:
2927 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2928 section, return that section.
2929 find_pc_overlay(pc): find any overlay section that contains
2930 the pc, either in its VMA or its LMA
2931 section_is_mapped(sect): true if overlay is marked as mapped
2932 section_is_overlay(sect): true if section's VMA != LMA
2933 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2934 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2935 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2936 overlay_mapped_address(...): map an address from section's LMA to VMA
2937 overlay_unmapped_address(...): map an address from section's VMA to LMA
2938 symbol_overlayed_address(...): Return a "current" address for symbol:
2939 either in VMA or LMA depending on whether
2940 the symbol's section is currently mapped. */
2941
2942 /* Overlay debugging state: */
2943
2944 enum overlay_debugging_state overlay_debugging = ovly_off;
2945 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2946
2947 /* Function: section_is_overlay (SECTION)
2948 Returns true if SECTION has VMA not equal to LMA, ie.
2949 SECTION is loaded at an address different from where it will "run". */
2950
2951 int
2952 section_is_overlay (struct obj_section *section)
2953 {
2954 if (overlay_debugging && section)
2955 {
2956 bfd *abfd = section->objfile->obfd;
2957 asection *bfd_section = section->the_bfd_section;
2958
2959 if (bfd_section_lma (abfd, bfd_section) != 0
2960 && bfd_section_lma (abfd, bfd_section)
2961 != bfd_section_vma (abfd, bfd_section))
2962 return 1;
2963 }
2964
2965 return 0;
2966 }
2967
2968 /* Function: overlay_invalidate_all (void)
2969 Invalidate the mapped state of all overlay sections (mark it as stale). */
2970
2971 static void
2972 overlay_invalidate_all (void)
2973 {
2974 struct objfile *objfile;
2975 struct obj_section *sect;
2976
2977 ALL_OBJSECTIONS (objfile, sect)
2978 if (section_is_overlay (sect))
2979 sect->ovly_mapped = -1;
2980 }
2981
2982 /* Function: section_is_mapped (SECTION)
2983 Returns true if section is an overlay, and is currently mapped.
2984
2985 Access to the ovly_mapped flag is restricted to this function, so
2986 that we can do automatic update. If the global flag
2987 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2988 overlay_invalidate_all. If the mapped state of the particular
2989 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2990
2991 int
2992 section_is_mapped (struct obj_section *osect)
2993 {
2994 struct gdbarch *gdbarch;
2995
2996 if (osect == 0 || !section_is_overlay (osect))
2997 return 0;
2998
2999 switch (overlay_debugging)
3000 {
3001 default:
3002 case ovly_off:
3003 return 0; /* overlay debugging off */
3004 case ovly_auto: /* overlay debugging automatic */
3005 /* Unles there is a gdbarch_overlay_update function,
3006 there's really nothing useful to do here (can't really go auto). */
3007 gdbarch = get_objfile_arch (osect->objfile);
3008 if (gdbarch_overlay_update_p (gdbarch))
3009 {
3010 if (overlay_cache_invalid)
3011 {
3012 overlay_invalidate_all ();
3013 overlay_cache_invalid = 0;
3014 }
3015 if (osect->ovly_mapped == -1)
3016 gdbarch_overlay_update (gdbarch, osect);
3017 }
3018 /* fall thru to manual case */
3019 case ovly_on: /* overlay debugging manual */
3020 return osect->ovly_mapped == 1;
3021 }
3022 }
3023
3024 /* Function: pc_in_unmapped_range
3025 If PC falls into the lma range of SECTION, return true, else false. */
3026
3027 CORE_ADDR
3028 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3029 {
3030 if (section_is_overlay (section))
3031 {
3032 bfd *abfd = section->objfile->obfd;
3033 asection *bfd_section = section->the_bfd_section;
3034
3035 /* We assume the LMA is relocated by the same offset as the VMA. */
3036 bfd_vma size = bfd_get_section_size (bfd_section);
3037 CORE_ADDR offset = obj_section_offset (section);
3038
3039 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3040 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3041 return 1;
3042 }
3043
3044 return 0;
3045 }
3046
3047 /* Function: pc_in_mapped_range
3048 If PC falls into the vma range of SECTION, return true, else false. */
3049
3050 CORE_ADDR
3051 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3052 {
3053 if (section_is_overlay (section))
3054 {
3055 if (obj_section_addr (section) <= pc
3056 && pc < obj_section_endaddr (section))
3057 return 1;
3058 }
3059
3060 return 0;
3061 }
3062
3063 /* Return true if the mapped ranges of sections A and B overlap, false
3064 otherwise. */
3065
3066 static int
3067 sections_overlap (struct obj_section *a, struct obj_section *b)
3068 {
3069 CORE_ADDR a_start = obj_section_addr (a);
3070 CORE_ADDR a_end = obj_section_endaddr (a);
3071 CORE_ADDR b_start = obj_section_addr (b);
3072 CORE_ADDR b_end = obj_section_endaddr (b);
3073
3074 return (a_start < b_end && b_start < a_end);
3075 }
3076
3077 /* Function: overlay_unmapped_address (PC, SECTION)
3078 Returns the address corresponding to PC in the unmapped (load) range.
3079 May be the same as PC. */
3080
3081 CORE_ADDR
3082 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3083 {
3084 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3085 {
3086 bfd *abfd = section->objfile->obfd;
3087 asection *bfd_section = section->the_bfd_section;
3088
3089 return pc + bfd_section_lma (abfd, bfd_section)
3090 - bfd_section_vma (abfd, bfd_section);
3091 }
3092
3093 return pc;
3094 }
3095
3096 /* Function: overlay_mapped_address (PC, SECTION)
3097 Returns the address corresponding to PC in the mapped (runtime) range.
3098 May be the same as PC. */
3099
3100 CORE_ADDR
3101 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3102 {
3103 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3104 {
3105 bfd *abfd = section->objfile->obfd;
3106 asection *bfd_section = section->the_bfd_section;
3107
3108 return pc + bfd_section_vma (abfd, bfd_section)
3109 - bfd_section_lma (abfd, bfd_section);
3110 }
3111
3112 return pc;
3113 }
3114
3115 /* Function: symbol_overlayed_address
3116 Return one of two addresses (relative to the VMA or to the LMA),
3117 depending on whether the section is mapped or not. */
3118
3119 CORE_ADDR
3120 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3121 {
3122 if (overlay_debugging)
3123 {
3124 /* If the symbol has no section, just return its regular address. */
3125 if (section == 0)
3126 return address;
3127 /* If the symbol's section is not an overlay, just return its
3128 address. */
3129 if (!section_is_overlay (section))
3130 return address;
3131 /* If the symbol's section is mapped, just return its address. */
3132 if (section_is_mapped (section))
3133 return address;
3134 /*
3135 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3136 * then return its LOADED address rather than its vma address!!
3137 */
3138 return overlay_unmapped_address (address, section);
3139 }
3140 return address;
3141 }
3142
3143 /* Function: find_pc_overlay (PC)
3144 Return the best-match overlay section for PC:
3145 If PC matches a mapped overlay section's VMA, return that section.
3146 Else if PC matches an unmapped section's VMA, return that section.
3147 Else if PC matches an unmapped section's LMA, return that section. */
3148
3149 struct obj_section *
3150 find_pc_overlay (CORE_ADDR pc)
3151 {
3152 struct objfile *objfile;
3153 struct obj_section *osect, *best_match = NULL;
3154
3155 if (overlay_debugging)
3156 {
3157 ALL_OBJSECTIONS (objfile, osect)
3158 if (section_is_overlay (osect))
3159 {
3160 if (pc_in_mapped_range (pc, osect))
3161 {
3162 if (section_is_mapped (osect))
3163 return osect;
3164 else
3165 best_match = osect;
3166 }
3167 else if (pc_in_unmapped_range (pc, osect))
3168 best_match = osect;
3169 }
3170 }
3171 return best_match;
3172 }
3173
3174 /* Function: find_pc_mapped_section (PC)
3175 If PC falls into the VMA address range of an overlay section that is
3176 currently marked as MAPPED, return that section. Else return NULL. */
3177
3178 struct obj_section *
3179 find_pc_mapped_section (CORE_ADDR pc)
3180 {
3181 struct objfile *objfile;
3182 struct obj_section *osect;
3183
3184 if (overlay_debugging)
3185 {
3186 ALL_OBJSECTIONS (objfile, osect)
3187 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3188 return osect;
3189 }
3190
3191 return NULL;
3192 }
3193
3194 /* Function: list_overlays_command
3195 Print a list of mapped sections and their PC ranges. */
3196
3197 static void
3198 list_overlays_command (const char *args, int from_tty)
3199 {
3200 int nmapped = 0;
3201 struct objfile *objfile;
3202 struct obj_section *osect;
3203
3204 if (overlay_debugging)
3205 {
3206 ALL_OBJSECTIONS (objfile, osect)
3207 if (section_is_mapped (osect))
3208 {
3209 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3210 const char *name;
3211 bfd_vma lma, vma;
3212 int size;
3213
3214 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3215 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3216 size = bfd_get_section_size (osect->the_bfd_section);
3217 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3218
3219 printf_filtered ("Section %s, loaded at ", name);
3220 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3221 puts_filtered (" - ");
3222 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3223 printf_filtered (", mapped at ");
3224 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3225 puts_filtered (" - ");
3226 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3227 puts_filtered ("\n");
3228
3229 nmapped++;
3230 }
3231 }
3232 if (nmapped == 0)
3233 printf_filtered (_("No sections are mapped.\n"));
3234 }
3235
3236 /* Function: map_overlay_command
3237 Mark the named section as mapped (ie. residing at its VMA address). */
3238
3239 static void
3240 map_overlay_command (const char *args, int from_tty)
3241 {
3242 struct objfile *objfile, *objfile2;
3243 struct obj_section *sec, *sec2;
3244
3245 if (!overlay_debugging)
3246 error (_("Overlay debugging not enabled. Use "
3247 "either the 'overlay auto' or\n"
3248 "the 'overlay manual' command."));
3249
3250 if (args == 0 || *args == 0)
3251 error (_("Argument required: name of an overlay section"));
3252
3253 /* First, find a section matching the user supplied argument. */
3254 ALL_OBJSECTIONS (objfile, sec)
3255 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3256 {
3257 /* Now, check to see if the section is an overlay. */
3258 if (!section_is_overlay (sec))
3259 continue; /* not an overlay section */
3260
3261 /* Mark the overlay as "mapped". */
3262 sec->ovly_mapped = 1;
3263
3264 /* Next, make a pass and unmap any sections that are
3265 overlapped by this new section: */
3266 ALL_OBJSECTIONS (objfile2, sec2)
3267 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3268 {
3269 if (info_verbose)
3270 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3271 bfd_section_name (objfile->obfd,
3272 sec2->the_bfd_section));
3273 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3274 }
3275 return;
3276 }
3277 error (_("No overlay section called %s"), args);
3278 }
3279
3280 /* Function: unmap_overlay_command
3281 Mark the overlay section as unmapped
3282 (ie. resident in its LMA address range, rather than the VMA range). */
3283
3284 static void
3285 unmap_overlay_command (const char *args, int from_tty)
3286 {
3287 struct objfile *objfile;
3288 struct obj_section *sec = NULL;
3289
3290 if (!overlay_debugging)
3291 error (_("Overlay debugging not enabled. "
3292 "Use either the 'overlay auto' or\n"
3293 "the 'overlay manual' command."));
3294
3295 if (args == 0 || *args == 0)
3296 error (_("Argument required: name of an overlay section"));
3297
3298 /* First, find a section matching the user supplied argument. */
3299 ALL_OBJSECTIONS (objfile, sec)
3300 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3301 {
3302 if (!sec->ovly_mapped)
3303 error (_("Section %s is not mapped"), args);
3304 sec->ovly_mapped = 0;
3305 return;
3306 }
3307 error (_("No overlay section called %s"), args);
3308 }
3309
3310 /* Function: overlay_auto_command
3311 A utility command to turn on overlay debugging.
3312 Possibly this should be done via a set/show command. */
3313
3314 static void
3315 overlay_auto_command (const char *args, int from_tty)
3316 {
3317 overlay_debugging = ovly_auto;
3318 enable_overlay_breakpoints ();
3319 if (info_verbose)
3320 printf_unfiltered (_("Automatic overlay debugging enabled."));
3321 }
3322
3323 /* Function: overlay_manual_command
3324 A utility command to turn on overlay debugging.
3325 Possibly this should be done via a set/show command. */
3326
3327 static void
3328 overlay_manual_command (const char *args, int from_tty)
3329 {
3330 overlay_debugging = ovly_on;
3331 disable_overlay_breakpoints ();
3332 if (info_verbose)
3333 printf_unfiltered (_("Overlay debugging enabled."));
3334 }
3335
3336 /* Function: overlay_off_command
3337 A utility command to turn on overlay debugging.
3338 Possibly this should be done via a set/show command. */
3339
3340 static void
3341 overlay_off_command (const char *args, int from_tty)
3342 {
3343 overlay_debugging = ovly_off;
3344 disable_overlay_breakpoints ();
3345 if (info_verbose)
3346 printf_unfiltered (_("Overlay debugging disabled."));
3347 }
3348
3349 static void
3350 overlay_load_command (const char *args, int from_tty)
3351 {
3352 struct gdbarch *gdbarch = get_current_arch ();
3353
3354 if (gdbarch_overlay_update_p (gdbarch))
3355 gdbarch_overlay_update (gdbarch, NULL);
3356 else
3357 error (_("This target does not know how to read its overlay state."));
3358 }
3359
3360 /* Function: overlay_command
3361 A place-holder for a mis-typed command. */
3362
3363 /* Command list chain containing all defined "overlay" subcommands. */
3364 static struct cmd_list_element *overlaylist;
3365
3366 static void
3367 overlay_command (const char *args, int from_tty)
3368 {
3369 printf_unfiltered
3370 ("\"overlay\" must be followed by the name of an overlay command.\n");
3371 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3372 }
3373
3374 /* Target Overlays for the "Simplest" overlay manager:
3375
3376 This is GDB's default target overlay layer. It works with the
3377 minimal overlay manager supplied as an example by Cygnus. The
3378 entry point is via a function pointer "gdbarch_overlay_update",
3379 so targets that use a different runtime overlay manager can
3380 substitute their own overlay_update function and take over the
3381 function pointer.
3382
3383 The overlay_update function pokes around in the target's data structures
3384 to see what overlays are mapped, and updates GDB's overlay mapping with
3385 this information.
3386
3387 In this simple implementation, the target data structures are as follows:
3388 unsigned _novlys; /# number of overlay sections #/
3389 unsigned _ovly_table[_novlys][4] = {
3390 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3391 {..., ..., ..., ...},
3392 }
3393 unsigned _novly_regions; /# number of overlay regions #/
3394 unsigned _ovly_region_table[_novly_regions][3] = {
3395 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3396 {..., ..., ...},
3397 }
3398 These functions will attempt to update GDB's mappedness state in the
3399 symbol section table, based on the target's mappedness state.
3400
3401 To do this, we keep a cached copy of the target's _ovly_table, and
3402 attempt to detect when the cached copy is invalidated. The main
3403 entry point is "simple_overlay_update(SECT), which looks up SECT in
3404 the cached table and re-reads only the entry for that section from
3405 the target (whenever possible). */
3406
3407 /* Cached, dynamically allocated copies of the target data structures: */
3408 static unsigned (*cache_ovly_table)[4] = 0;
3409 static unsigned cache_novlys = 0;
3410 static CORE_ADDR cache_ovly_table_base = 0;
3411 enum ovly_index
3412 {
3413 VMA, OSIZE, LMA, MAPPED
3414 };
3415
3416 /* Throw away the cached copy of _ovly_table. */
3417
3418 static void
3419 simple_free_overlay_table (void)
3420 {
3421 if (cache_ovly_table)
3422 xfree (cache_ovly_table);
3423 cache_novlys = 0;
3424 cache_ovly_table = NULL;
3425 cache_ovly_table_base = 0;
3426 }
3427
3428 /* Read an array of ints of size SIZE from the target into a local buffer.
3429 Convert to host order. int LEN is number of ints. */
3430
3431 static void
3432 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3433 int len, int size, enum bfd_endian byte_order)
3434 {
3435 /* FIXME (alloca): Not safe if array is very large. */
3436 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3437 int i;
3438
3439 read_memory (memaddr, buf, len * size);
3440 for (i = 0; i < len; i++)
3441 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3442 }
3443
3444 /* Find and grab a copy of the target _ovly_table
3445 (and _novlys, which is needed for the table's size). */
3446
3447 static int
3448 simple_read_overlay_table (void)
3449 {
3450 struct bound_minimal_symbol novlys_msym;
3451 struct bound_minimal_symbol ovly_table_msym;
3452 struct gdbarch *gdbarch;
3453 int word_size;
3454 enum bfd_endian byte_order;
3455
3456 simple_free_overlay_table ();
3457 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3458 if (! novlys_msym.minsym)
3459 {
3460 error (_("Error reading inferior's overlay table: "
3461 "couldn't find `_novlys' variable\n"
3462 "in inferior. Use `overlay manual' mode."));
3463 return 0;
3464 }
3465
3466 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3467 if (! ovly_table_msym.minsym)
3468 {
3469 error (_("Error reading inferior's overlay table: couldn't find "
3470 "`_ovly_table' array\n"
3471 "in inferior. Use `overlay manual' mode."));
3472 return 0;
3473 }
3474
3475 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3476 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3477 byte_order = gdbarch_byte_order (gdbarch);
3478
3479 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3480 4, byte_order);
3481 cache_ovly_table
3482 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3483 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3484 read_target_long_array (cache_ovly_table_base,
3485 (unsigned int *) cache_ovly_table,
3486 cache_novlys * 4, word_size, byte_order);
3487
3488 return 1; /* SUCCESS */
3489 }
3490
3491 /* Function: simple_overlay_update_1
3492 A helper function for simple_overlay_update. Assuming a cached copy
3493 of _ovly_table exists, look through it to find an entry whose vma,
3494 lma and size match those of OSECT. Re-read the entry and make sure
3495 it still matches OSECT (else the table may no longer be valid).
3496 Set OSECT's mapped state to match the entry. Return: 1 for
3497 success, 0 for failure. */
3498
3499 static int
3500 simple_overlay_update_1 (struct obj_section *osect)
3501 {
3502 int i;
3503 bfd *obfd = osect->objfile->obfd;
3504 asection *bsect = osect->the_bfd_section;
3505 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3506 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3507 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3508
3509 for (i = 0; i < cache_novlys; i++)
3510 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3511 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3512 {
3513 read_target_long_array (cache_ovly_table_base + i * word_size,
3514 (unsigned int *) cache_ovly_table[i],
3515 4, word_size, byte_order);
3516 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3517 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3518 {
3519 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3520 return 1;
3521 }
3522 else /* Warning! Warning! Target's ovly table has changed! */
3523 return 0;
3524 }
3525 return 0;
3526 }
3527
3528 /* Function: simple_overlay_update
3529 If OSECT is NULL, then update all sections' mapped state
3530 (after re-reading the entire target _ovly_table).
3531 If OSECT is non-NULL, then try to find a matching entry in the
3532 cached ovly_table and update only OSECT's mapped state.
3533 If a cached entry can't be found or the cache isn't valid, then
3534 re-read the entire cache, and go ahead and update all sections. */
3535
3536 void
3537 simple_overlay_update (struct obj_section *osect)
3538 {
3539 struct objfile *objfile;
3540
3541 /* Were we given an osect to look up? NULL means do all of them. */
3542 if (osect)
3543 /* Have we got a cached copy of the target's overlay table? */
3544 if (cache_ovly_table != NULL)
3545 {
3546 /* Does its cached location match what's currently in the
3547 symtab? */
3548 struct bound_minimal_symbol minsym
3549 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3550
3551 if (minsym.minsym == NULL)
3552 error (_("Error reading inferior's overlay table: couldn't "
3553 "find `_ovly_table' array\n"
3554 "in inferior. Use `overlay manual' mode."));
3555
3556 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3557 /* Then go ahead and try to look up this single section in
3558 the cache. */
3559 if (simple_overlay_update_1 (osect))
3560 /* Found it! We're done. */
3561 return;
3562 }
3563
3564 /* Cached table no good: need to read the entire table anew.
3565 Or else we want all the sections, in which case it's actually
3566 more efficient to read the whole table in one block anyway. */
3567
3568 if (! simple_read_overlay_table ())
3569 return;
3570
3571 /* Now may as well update all sections, even if only one was requested. */
3572 ALL_OBJSECTIONS (objfile, osect)
3573 if (section_is_overlay (osect))
3574 {
3575 int i;
3576 bfd *obfd = osect->objfile->obfd;
3577 asection *bsect = osect->the_bfd_section;
3578
3579 for (i = 0; i < cache_novlys; i++)
3580 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3581 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3582 { /* obj_section matches i'th entry in ovly_table. */
3583 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3584 break; /* finished with inner for loop: break out. */
3585 }
3586 }
3587 }
3588
3589 /* Set the output sections and output offsets for section SECTP in
3590 ABFD. The relocation code in BFD will read these offsets, so we
3591 need to be sure they're initialized. We map each section to itself,
3592 with no offset; this means that SECTP->vma will be honored. */
3593
3594 static void
3595 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3596 {
3597 sectp->output_section = sectp;
3598 sectp->output_offset = 0;
3599 }
3600
3601 /* Default implementation for sym_relocate. */
3602
3603 bfd_byte *
3604 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3605 bfd_byte *buf)
3606 {
3607 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3608 DWO file. */
3609 bfd *abfd = sectp->owner;
3610
3611 /* We're only interested in sections with relocation
3612 information. */
3613 if ((sectp->flags & SEC_RELOC) == 0)
3614 return NULL;
3615
3616 /* We will handle section offsets properly elsewhere, so relocate as if
3617 all sections begin at 0. */
3618 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3619
3620 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3621 }
3622
3623 /* Relocate the contents of a debug section SECTP in ABFD. The
3624 contents are stored in BUF if it is non-NULL, or returned in a
3625 malloc'd buffer otherwise.
3626
3627 For some platforms and debug info formats, shared libraries contain
3628 relocations against the debug sections (particularly for DWARF-2;
3629 one affected platform is PowerPC GNU/Linux, although it depends on
3630 the version of the linker in use). Also, ELF object files naturally
3631 have unresolved relocations for their debug sections. We need to apply
3632 the relocations in order to get the locations of symbols correct.
3633 Another example that may require relocation processing, is the
3634 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3635 debug section. */
3636
3637 bfd_byte *
3638 symfile_relocate_debug_section (struct objfile *objfile,
3639 asection *sectp, bfd_byte *buf)
3640 {
3641 gdb_assert (objfile->sf->sym_relocate);
3642
3643 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3644 }
3645
3646 struct symfile_segment_data *
3647 get_symfile_segment_data (bfd *abfd)
3648 {
3649 const struct sym_fns *sf = find_sym_fns (abfd);
3650
3651 if (sf == NULL)
3652 return NULL;
3653
3654 return sf->sym_segments (abfd);
3655 }
3656
3657 void
3658 free_symfile_segment_data (struct symfile_segment_data *data)
3659 {
3660 xfree (data->segment_bases);
3661 xfree (data->segment_sizes);
3662 xfree (data->segment_info);
3663 xfree (data);
3664 }
3665
3666 /* Given:
3667 - DATA, containing segment addresses from the object file ABFD, and
3668 the mapping from ABFD's sections onto the segments that own them,
3669 and
3670 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3671 segment addresses reported by the target,
3672 store the appropriate offsets for each section in OFFSETS.
3673
3674 If there are fewer entries in SEGMENT_BASES than there are segments
3675 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3676
3677 If there are more entries, then ignore the extra. The target may
3678 not be able to distinguish between an empty data segment and a
3679 missing data segment; a missing text segment is less plausible. */
3680
3681 int
3682 symfile_map_offsets_to_segments (bfd *abfd,
3683 const struct symfile_segment_data *data,
3684 struct section_offsets *offsets,
3685 int num_segment_bases,
3686 const CORE_ADDR *segment_bases)
3687 {
3688 int i;
3689 asection *sect;
3690
3691 /* It doesn't make sense to call this function unless you have some
3692 segment base addresses. */
3693 gdb_assert (num_segment_bases > 0);
3694
3695 /* If we do not have segment mappings for the object file, we
3696 can not relocate it by segments. */
3697 gdb_assert (data != NULL);
3698 gdb_assert (data->num_segments > 0);
3699
3700 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3701 {
3702 int which = data->segment_info[i];
3703
3704 gdb_assert (0 <= which && which <= data->num_segments);
3705
3706 /* Don't bother computing offsets for sections that aren't
3707 loaded as part of any segment. */
3708 if (! which)
3709 continue;
3710
3711 /* Use the last SEGMENT_BASES entry as the address of any extra
3712 segments mentioned in DATA->segment_info. */
3713 if (which > num_segment_bases)
3714 which = num_segment_bases;
3715
3716 offsets->offsets[i] = (segment_bases[which - 1]
3717 - data->segment_bases[which - 1]);
3718 }
3719
3720 return 1;
3721 }
3722
3723 static void
3724 symfile_find_segment_sections (struct objfile *objfile)
3725 {
3726 bfd *abfd = objfile->obfd;
3727 int i;
3728 asection *sect;
3729 struct symfile_segment_data *data;
3730
3731 data = get_symfile_segment_data (objfile->obfd);
3732 if (data == NULL)
3733 return;
3734
3735 if (data->num_segments != 1 && data->num_segments != 2)
3736 {
3737 free_symfile_segment_data (data);
3738 return;
3739 }
3740
3741 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3742 {
3743 int which = data->segment_info[i];
3744
3745 if (which == 1)
3746 {
3747 if (objfile->sect_index_text == -1)
3748 objfile->sect_index_text = sect->index;
3749
3750 if (objfile->sect_index_rodata == -1)
3751 objfile->sect_index_rodata = sect->index;
3752 }
3753 else if (which == 2)
3754 {
3755 if (objfile->sect_index_data == -1)
3756 objfile->sect_index_data = sect->index;
3757
3758 if (objfile->sect_index_bss == -1)
3759 objfile->sect_index_bss = sect->index;
3760 }
3761 }
3762
3763 free_symfile_segment_data (data);
3764 }
3765
3766 /* Listen for free_objfile events. */
3767
3768 static void
3769 symfile_free_objfile (struct objfile *objfile)
3770 {
3771 /* Remove the target sections owned by this objfile. */
3772 if (objfile != NULL)
3773 remove_target_sections ((void *) objfile);
3774 }
3775
3776 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3777 Expand all symtabs that match the specified criteria.
3778 See quick_symbol_functions.expand_symtabs_matching for details. */
3779
3780 void
3781 expand_symtabs_matching
3782 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3783 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3784 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3785 enum search_domain kind)
3786 {
3787 struct objfile *objfile;
3788
3789 ALL_OBJFILES (objfile)
3790 {
3791 if (objfile->sf)
3792 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3793 symbol_matcher,
3794 expansion_notify, kind);
3795 }
3796 }
3797
3798 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3799 Map function FUN over every file.
3800 See quick_symbol_functions.map_symbol_filenames for details. */
3801
3802 void
3803 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3804 int need_fullname)
3805 {
3806 struct objfile *objfile;
3807
3808 ALL_OBJFILES (objfile)
3809 {
3810 if (objfile->sf)
3811 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3812 need_fullname);
3813 }
3814 }
3815
3816 #if GDB_SELF_TEST
3817
3818 namespace selftests {
3819 namespace filename_language {
3820
3821 static void test_filename_language ()
3822 {
3823 /* This test messes up the filename_language_table global. */
3824 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3825
3826 /* Test deducing an unknown extension. */
3827 language lang = deduce_language_from_filename ("myfile.blah");
3828 SELF_CHECK (lang == language_unknown);
3829
3830 /* Test deducing a known extension. */
3831 lang = deduce_language_from_filename ("myfile.c");
3832 SELF_CHECK (lang == language_c);
3833
3834 /* Test adding a new extension using the internal API. */
3835 add_filename_language (".blah", language_pascal);
3836 lang = deduce_language_from_filename ("myfile.blah");
3837 SELF_CHECK (lang == language_pascal);
3838 }
3839
3840 static void
3841 test_set_ext_lang_command ()
3842 {
3843 /* This test messes up the filename_language_table global. */
3844 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3845
3846 /* Confirm that the .hello extension is not known. */
3847 language lang = deduce_language_from_filename ("cake.hello");
3848 SELF_CHECK (lang == language_unknown);
3849
3850 /* Test adding a new extension using the CLI command. */
3851 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3852 ext_args = args_holder.get ();
3853 set_ext_lang_command (NULL, 1, NULL);
3854
3855 lang = deduce_language_from_filename ("cake.hello");
3856 SELF_CHECK (lang == language_rust);
3857
3858 /* Test overriding an existing extension using the CLI command. */
3859 int size_before = filename_language_table.size ();
3860 args_holder.reset (xstrdup (".hello pascal"));
3861 ext_args = args_holder.get ();
3862 set_ext_lang_command (NULL, 1, NULL);
3863 int size_after = filename_language_table.size ();
3864
3865 lang = deduce_language_from_filename ("cake.hello");
3866 SELF_CHECK (lang == language_pascal);
3867 SELF_CHECK (size_before == size_after);
3868 }
3869
3870 } /* namespace filename_language */
3871 } /* namespace selftests */
3872
3873 #endif /* GDB_SELF_TEST */
3874
3875 void
3876 _initialize_symfile (void)
3877 {
3878 struct cmd_list_element *c;
3879
3880 observer_attach_free_objfile (symfile_free_objfile);
3881
3882 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3883 Load symbol table from executable file FILE.\n\
3884 The `file' command can also load symbol tables, as well as setting the file\n\
3885 to execute."), &cmdlist);
3886 set_cmd_completer (c, filename_completer);
3887
3888 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3889 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3890 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3891 ...]\nADDR is the starting address of the file's text.\n\
3892 The optional arguments are section-name section-address pairs and\n\
3893 should be specified if the data and bss segments are not contiguous\n\
3894 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3895 &cmdlist);
3896 set_cmd_completer (c, filename_completer);
3897
3898 c = add_cmd ("remove-symbol-file", class_files,
3899 remove_symbol_file_command, _("\
3900 Remove a symbol file added via the add-symbol-file command.\n\
3901 Usage: remove-symbol-file FILENAME\n\
3902 remove-symbol-file -a ADDRESS\n\
3903 The file to remove can be identified by its filename or by an address\n\
3904 that lies within the boundaries of this symbol file in memory."),
3905 &cmdlist);
3906
3907 c = add_cmd ("load", class_files, load_command, _("\
3908 Dynamically load FILE into the running program, and record its symbols\n\
3909 for access from GDB.\n\
3910 An optional load OFFSET may also be given as a literal address.\n\
3911 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3912 on its own.\n\
3913 Usage: load [FILE] [OFFSET]"), &cmdlist);
3914 set_cmd_completer (c, filename_completer);
3915
3916 add_prefix_cmd ("overlay", class_support, overlay_command,
3917 _("Commands for debugging overlays."), &overlaylist,
3918 "overlay ", 0, &cmdlist);
3919
3920 add_com_alias ("ovly", "overlay", class_alias, 1);
3921 add_com_alias ("ov", "overlay", class_alias, 1);
3922
3923 add_cmd ("map-overlay", class_support, map_overlay_command,
3924 _("Assert that an overlay section is mapped."), &overlaylist);
3925
3926 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3927 _("Assert that an overlay section is unmapped."), &overlaylist);
3928
3929 add_cmd ("list-overlays", class_support, list_overlays_command,
3930 _("List mappings of overlay sections."), &overlaylist);
3931
3932 add_cmd ("manual", class_support, overlay_manual_command,
3933 _("Enable overlay debugging."), &overlaylist);
3934 add_cmd ("off", class_support, overlay_off_command,
3935 _("Disable overlay debugging."), &overlaylist);
3936 add_cmd ("auto", class_support, overlay_auto_command,
3937 _("Enable automatic overlay debugging."), &overlaylist);
3938 add_cmd ("load-target", class_support, overlay_load_command,
3939 _("Read the overlay mapping state from the target."), &overlaylist);
3940
3941 /* Filename extension to source language lookup table: */
3942 add_setshow_string_noescape_cmd ("extension-language", class_files,
3943 &ext_args, _("\
3944 Set mapping between filename extension and source language."), _("\
3945 Show mapping between filename extension and source language."), _("\
3946 Usage: set extension-language .foo bar"),
3947 set_ext_lang_command,
3948 show_ext_args,
3949 &setlist, &showlist);
3950
3951 add_info ("extensions", info_ext_lang_command,
3952 _("All filename extensions associated with a source language."));
3953
3954 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3955 &debug_file_directory, _("\
3956 Set the directories where separate debug symbols are searched for."), _("\
3957 Show the directories where separate debug symbols are searched for."), _("\
3958 Separate debug symbols are first searched for in the same\n\
3959 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3960 and lastly at the path of the directory of the binary with\n\
3961 each global debug-file-directory component prepended."),
3962 NULL,
3963 show_debug_file_directory,
3964 &setlist, &showlist);
3965
3966 add_setshow_enum_cmd ("symbol-loading", no_class,
3967 print_symbol_loading_enums, &print_symbol_loading,
3968 _("\
3969 Set printing of symbol loading messages."), _("\
3970 Show printing of symbol loading messages."), _("\
3971 off == turn all messages off\n\
3972 brief == print messages for the executable,\n\
3973 and brief messages for shared libraries\n\
3974 full == print messages for the executable,\n\
3975 and messages for each shared library."),
3976 NULL,
3977 NULL,
3978 &setprintlist, &showprintlist);
3979
3980 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3981 &separate_debug_file_debug, _("\
3982 Set printing of separate debug info file search debug."), _("\
3983 Show printing of separate debug info file search debug."), _("\
3984 When on, GDB prints the searched locations while looking for separate debug \
3985 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3986
3987 #if GDB_SELF_TEST
3988 selftests::register_test
3989 ("filename_language", selftests::filename_language::test_filename_language);
3990 selftests::register_test
3991 ("set_ext_lang_command",
3992 selftests::filename_language::test_set_ext_lang_command);
3993 #endif
3994 }
This page took 0.111704 seconds and 4 git commands to generate.