gdb/
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h"
42 #include "regcache.h"
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54 #include "parser-defs.h"
55 #include "varobj.h"
56 #include "elf-bfd.h"
57 #include "solib.h"
58 #include "remote.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68
69 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
70 void (*deprecated_show_load_progress) (const char *section,
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
74 unsigned long total_size);
75 void (*deprecated_pre_add_symbol_hook) (const char *);
76 void (*deprecated_post_add_symbol_hook) (void);
77
78 static void clear_symtab_users_cleanup (void *ignore);
79
80 /* Global variables owned by this file */
81 int readnow_symbol_files; /* Read full symbols immediately */
82
83 /* External variables and functions referenced. */
84
85 extern void report_transfer_performance (unsigned long, time_t, time_t);
86
87 /* Functions this file defines */
88
89 #if 0
90 static int simple_read_overlay_region_table (void);
91 static void simple_free_overlay_region_table (void);
92 #endif
93
94 static void load_command (char *, int);
95
96 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
97
98 static void add_symbol_file_command (char *, int);
99
100 static void reread_separate_symbols (struct objfile *objfile);
101
102 static void cashier_psymtab (struct partial_symtab *);
103
104 bfd *symfile_bfd_open (char *);
105
106 int get_section_index (struct objfile *, char *);
107
108 static struct sym_fns *find_sym_fns (bfd *);
109
110 static void decrement_reading_symtab (void *);
111
112 static void overlay_invalidate_all (void);
113
114 void list_overlays_command (char *, int);
115
116 void map_overlay_command (char *, int);
117
118 void unmap_overlay_command (char *, int);
119
120 static void overlay_auto_command (char *, int);
121
122 static void overlay_manual_command (char *, int);
123
124 static void overlay_off_command (char *, int);
125
126 static void overlay_load_command (char *, int);
127
128 static void overlay_command (char *, int);
129
130 static void simple_free_overlay_table (void);
131
132 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
133 enum bfd_endian);
134
135 static int simple_read_overlay_table (void);
136
137 static int simple_overlay_update_1 (struct obj_section *);
138
139 static void add_filename_language (char *ext, enum language lang);
140
141 static void info_ext_lang_command (char *args, int from_tty);
142
143 static char *find_separate_debug_file (struct objfile *objfile);
144
145 static void init_filename_language_table (void);
146
147 static void symfile_find_segment_sections (struct objfile *objfile);
148
149 void _initialize_symfile (void);
150
151 /* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155 static struct sym_fns *symtab_fns = NULL;
156
157 /* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160 #ifdef SYMBOL_RELOADING_DEFAULT
161 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162 #else
163 int symbol_reloading = 0;
164 #endif
165 static void
166 show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 fprintf_filtered (file, _("\
170 Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172 }
173
174 /* If non-zero, shared library symbols will be added automatically
175 when the inferior is created, new libraries are loaded, or when
176 attaching to the inferior. This is almost always what users will
177 want to have happen; but for very large programs, the startup time
178 will be excessive, and so if this is a problem, the user can clear
179 this flag and then add the shared library symbols as needed. Note
180 that there is a potential for confusion, since if the shared
181 library symbols are not loaded, commands like "info fun" will *not*
182 report all the functions that are actually present. */
183
184 int auto_solib_add = 1;
185
186 /* For systems that support it, a threshold size in megabytes. If
187 automatically adding a new library's symbol table to those already
188 known to the debugger would cause the total shared library symbol
189 size to exceed this threshhold, then the shlib's symbols are not
190 added. The threshold is ignored if the user explicitly asks for a
191 shlib to be added, such as when using the "sharedlibrary"
192 command. */
193
194 int auto_solib_limit;
195 \f
196
197 /* This compares two partial symbols by names, using strcmp_iw_ordered
198 for the comparison. */
199
200 static int
201 compare_psymbols (const void *s1p, const void *s2p)
202 {
203 struct partial_symbol *const *s1 = s1p;
204 struct partial_symbol *const *s2 = s2p;
205
206 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
207 SYMBOL_SEARCH_NAME (*s2));
208 }
209
210 void
211 sort_pst_symbols (struct partial_symtab *pst)
212 {
213 /* Sort the global list; don't sort the static list */
214
215 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
216 pst->n_global_syms, sizeof (struct partial_symbol *),
217 compare_psymbols);
218 }
219
220 /* Make a null terminated copy of the string at PTR with SIZE characters in
221 the obstack pointed to by OBSTACKP . Returns the address of the copy.
222 Note that the string at PTR does not have to be null terminated, I.E. it
223 may be part of a larger string and we are only saving a substring. */
224
225 char *
226 obsavestring (const char *ptr, int size, struct obstack *obstackp)
227 {
228 char *p = (char *) obstack_alloc (obstackp, size + 1);
229 /* Open-coded memcpy--saves function call time. These strings are usually
230 short. FIXME: Is this really still true with a compiler that can
231 inline memcpy? */
232 {
233 const char *p1 = ptr;
234 char *p2 = p;
235 const char *end = ptr + size;
236 while (p1 != end)
237 *p2++ = *p1++;
238 }
239 p[size] = 0;
240 return p;
241 }
242
243 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
244 in the obstack pointed to by OBSTACKP. */
245
246 char *
247 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
248 const char *s3)
249 {
250 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
251 char *val = (char *) obstack_alloc (obstackp, len);
252 strcpy (val, s1);
253 strcat (val, s2);
254 strcat (val, s3);
255 return val;
256 }
257
258 /* True if we are nested inside psymtab_to_symtab. */
259
260 int currently_reading_symtab = 0;
261
262 static void
263 decrement_reading_symtab (void *dummy)
264 {
265 currently_reading_symtab--;
266 }
267
268 /* Get the symbol table that corresponds to a partial_symtab.
269 This is fast after the first time you do it. In fact, there
270 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
271 case inline. */
272
273 struct symtab *
274 psymtab_to_symtab (struct partial_symtab *pst)
275 {
276 /* If it's been looked up before, return it. */
277 if (pst->symtab)
278 return pst->symtab;
279
280 /* If it has not yet been read in, read it. */
281 if (!pst->readin)
282 {
283 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
284 currently_reading_symtab++;
285 (*pst->read_symtab) (pst);
286 do_cleanups (back_to);
287 }
288
289 return pst->symtab;
290 }
291
292 /* Remember the lowest-addressed loadable section we've seen.
293 This function is called via bfd_map_over_sections.
294
295 In case of equal vmas, the section with the largest size becomes the
296 lowest-addressed loadable section.
297
298 If the vmas and sizes are equal, the last section is considered the
299 lowest-addressed loadable section. */
300
301 void
302 find_lowest_section (bfd *abfd, asection *sect, void *obj)
303 {
304 asection **lowest = (asection **) obj;
305
306 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
307 return;
308 if (!*lowest)
309 *lowest = sect; /* First loadable section */
310 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
311 *lowest = sect; /* A lower loadable section */
312 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
313 && (bfd_section_size (abfd, (*lowest))
314 <= bfd_section_size (abfd, sect)))
315 *lowest = sect;
316 }
317
318 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
319
320 struct section_addr_info *
321 alloc_section_addr_info (size_t num_sections)
322 {
323 struct section_addr_info *sap;
324 size_t size;
325
326 size = (sizeof (struct section_addr_info)
327 + sizeof (struct other_sections) * (num_sections - 1));
328 sap = (struct section_addr_info *) xmalloc (size);
329 memset (sap, 0, size);
330 sap->num_sections = num_sections;
331
332 return sap;
333 }
334
335
336 /* Return a freshly allocated copy of ADDRS. The section names, if
337 any, are also freshly allocated copies of those in ADDRS. */
338 struct section_addr_info *
339 copy_section_addr_info (struct section_addr_info *addrs)
340 {
341 struct section_addr_info *copy
342 = alloc_section_addr_info (addrs->num_sections);
343 int i;
344
345 copy->num_sections = addrs->num_sections;
346 for (i = 0; i < addrs->num_sections; i++)
347 {
348 copy->other[i].addr = addrs->other[i].addr;
349 if (addrs->other[i].name)
350 copy->other[i].name = xstrdup (addrs->other[i].name);
351 else
352 copy->other[i].name = NULL;
353 copy->other[i].sectindex = addrs->other[i].sectindex;
354 }
355
356 return copy;
357 }
358
359
360
361 /* Build (allocate and populate) a section_addr_info struct from
362 an existing section table. */
363
364 extern struct section_addr_info *
365 build_section_addr_info_from_section_table (const struct target_section *start,
366 const struct target_section *end)
367 {
368 struct section_addr_info *sap;
369 const struct target_section *stp;
370 int oidx;
371
372 sap = alloc_section_addr_info (end - start);
373
374 for (stp = start, oidx = 0; stp != end; stp++)
375 {
376 if (bfd_get_section_flags (stp->bfd,
377 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
378 && oidx < end - start)
379 {
380 sap->other[oidx].addr = stp->addr;
381 sap->other[oidx].name
382 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
383 sap->other[oidx].sectindex = stp->the_bfd_section->index;
384 oidx++;
385 }
386 }
387
388 return sap;
389 }
390
391
392 /* Free all memory allocated by build_section_addr_info_from_section_table. */
393
394 extern void
395 free_section_addr_info (struct section_addr_info *sap)
396 {
397 int idx;
398
399 for (idx = 0; idx < sap->num_sections; idx++)
400 if (sap->other[idx].name)
401 xfree (sap->other[idx].name);
402 xfree (sap);
403 }
404
405
406 /* Initialize OBJFILE's sect_index_* members. */
407 static void
408 init_objfile_sect_indices (struct objfile *objfile)
409 {
410 asection *sect;
411 int i;
412
413 sect = bfd_get_section_by_name (objfile->obfd, ".text");
414 if (sect)
415 objfile->sect_index_text = sect->index;
416
417 sect = bfd_get_section_by_name (objfile->obfd, ".data");
418 if (sect)
419 objfile->sect_index_data = sect->index;
420
421 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
422 if (sect)
423 objfile->sect_index_bss = sect->index;
424
425 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
426 if (sect)
427 objfile->sect_index_rodata = sect->index;
428
429 /* This is where things get really weird... We MUST have valid
430 indices for the various sect_index_* members or gdb will abort.
431 So if for example, there is no ".text" section, we have to
432 accomodate that. First, check for a file with the standard
433 one or two segments. */
434
435 symfile_find_segment_sections (objfile);
436
437 /* Except when explicitly adding symbol files at some address,
438 section_offsets contains nothing but zeros, so it doesn't matter
439 which slot in section_offsets the individual sect_index_* members
440 index into. So if they are all zero, it is safe to just point
441 all the currently uninitialized indices to the first slot. But
442 beware: if this is the main executable, it may be relocated
443 later, e.g. by the remote qOffsets packet, and then this will
444 be wrong! That's why we try segments first. */
445
446 for (i = 0; i < objfile->num_sections; i++)
447 {
448 if (ANOFFSET (objfile->section_offsets, i) != 0)
449 {
450 break;
451 }
452 }
453 if (i == objfile->num_sections)
454 {
455 if (objfile->sect_index_text == -1)
456 objfile->sect_index_text = 0;
457 if (objfile->sect_index_data == -1)
458 objfile->sect_index_data = 0;
459 if (objfile->sect_index_bss == -1)
460 objfile->sect_index_bss = 0;
461 if (objfile->sect_index_rodata == -1)
462 objfile->sect_index_rodata = 0;
463 }
464 }
465
466 /* The arguments to place_section. */
467
468 struct place_section_arg
469 {
470 struct section_offsets *offsets;
471 CORE_ADDR lowest;
472 };
473
474 /* Find a unique offset to use for loadable section SECT if
475 the user did not provide an offset. */
476
477 static void
478 place_section (bfd *abfd, asection *sect, void *obj)
479 {
480 struct place_section_arg *arg = obj;
481 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
482 int done;
483 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
484
485 /* We are only interested in allocated sections. */
486 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
487 return;
488
489 /* If the user specified an offset, honor it. */
490 if (offsets[sect->index] != 0)
491 return;
492
493 /* Otherwise, let's try to find a place for the section. */
494 start_addr = (arg->lowest + align - 1) & -align;
495
496 do {
497 asection *cur_sec;
498
499 done = 1;
500
501 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
502 {
503 int indx = cur_sec->index;
504 CORE_ADDR cur_offset;
505
506 /* We don't need to compare against ourself. */
507 if (cur_sec == sect)
508 continue;
509
510 /* We can only conflict with allocated sections. */
511 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
512 continue;
513
514 /* If the section offset is 0, either the section has not been placed
515 yet, or it was the lowest section placed (in which case LOWEST
516 will be past its end). */
517 if (offsets[indx] == 0)
518 continue;
519
520 /* If this section would overlap us, then we must move up. */
521 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
522 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
523 {
524 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
525 start_addr = (start_addr + align - 1) & -align;
526 done = 0;
527 break;
528 }
529
530 /* Otherwise, we appear to be OK. So far. */
531 }
532 }
533 while (!done);
534
535 offsets[sect->index] = start_addr;
536 arg->lowest = start_addr + bfd_get_section_size (sect);
537 }
538
539 /* Parse the user's idea of an offset for dynamic linking, into our idea
540 of how to represent it for fast symbol reading. This is the default
541 version of the sym_fns.sym_offsets function for symbol readers that
542 don't need to do anything special. It allocates a section_offsets table
543 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
544
545 void
546 default_symfile_offsets (struct objfile *objfile,
547 struct section_addr_info *addrs)
548 {
549 int i;
550
551 objfile->num_sections = bfd_count_sections (objfile->obfd);
552 objfile->section_offsets = (struct section_offsets *)
553 obstack_alloc (&objfile->objfile_obstack,
554 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
555 memset (objfile->section_offsets, 0,
556 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
557
558 /* Now calculate offsets for section that were specified by the
559 caller. */
560 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
561 {
562 struct other_sections *osp ;
563
564 osp = &addrs->other[i] ;
565 if (osp->addr == 0)
566 continue;
567
568 /* Record all sections in offsets */
569 /* The section_offsets in the objfile are here filled in using
570 the BFD index. */
571 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
572 }
573
574 /* For relocatable files, all loadable sections will start at zero.
575 The zero is meaningless, so try to pick arbitrary addresses such
576 that no loadable sections overlap. This algorithm is quadratic,
577 but the number of sections in a single object file is generally
578 small. */
579 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
580 {
581 struct place_section_arg arg;
582 bfd *abfd = objfile->obfd;
583 asection *cur_sec;
584 CORE_ADDR lowest = 0;
585
586 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
587 /* We do not expect this to happen; just skip this step if the
588 relocatable file has a section with an assigned VMA. */
589 if (bfd_section_vma (abfd, cur_sec) != 0)
590 break;
591
592 if (cur_sec == NULL)
593 {
594 CORE_ADDR *offsets = objfile->section_offsets->offsets;
595
596 /* Pick non-overlapping offsets for sections the user did not
597 place explicitly. */
598 arg.offsets = objfile->section_offsets;
599 arg.lowest = 0;
600 bfd_map_over_sections (objfile->obfd, place_section, &arg);
601
602 /* Correctly filling in the section offsets is not quite
603 enough. Relocatable files have two properties that
604 (most) shared objects do not:
605
606 - Their debug information will contain relocations. Some
607 shared libraries do also, but many do not, so this can not
608 be assumed.
609
610 - If there are multiple code sections they will be loaded
611 at different relative addresses in memory than they are
612 in the objfile, since all sections in the file will start
613 at address zero.
614
615 Because GDB has very limited ability to map from an
616 address in debug info to the correct code section,
617 it relies on adding SECT_OFF_TEXT to things which might be
618 code. If we clear all the section offsets, and set the
619 section VMAs instead, then symfile_relocate_debug_section
620 will return meaningful debug information pointing at the
621 correct sections.
622
623 GDB has too many different data structures for section
624 addresses - a bfd, objfile, and so_list all have section
625 tables, as does exec_ops. Some of these could probably
626 be eliminated. */
627
628 for (cur_sec = abfd->sections; cur_sec != NULL;
629 cur_sec = cur_sec->next)
630 {
631 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
632 continue;
633
634 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
635 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
636 offsets[cur_sec->index]);
637 offsets[cur_sec->index] = 0;
638 }
639 }
640 }
641
642 /* Remember the bfd indexes for the .text, .data, .bss and
643 .rodata sections. */
644 init_objfile_sect_indices (objfile);
645 }
646
647
648 /* Divide the file into segments, which are individual relocatable units.
649 This is the default version of the sym_fns.sym_segments function for
650 symbol readers that do not have an explicit representation of segments.
651 It assumes that object files do not have segments, and fully linked
652 files have a single segment. */
653
654 struct symfile_segment_data *
655 default_symfile_segments (bfd *abfd)
656 {
657 int num_sections, i;
658 asection *sect;
659 struct symfile_segment_data *data;
660 CORE_ADDR low, high;
661
662 /* Relocatable files contain enough information to position each
663 loadable section independently; they should not be relocated
664 in segments. */
665 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
666 return NULL;
667
668 /* Make sure there is at least one loadable section in the file. */
669 for (sect = abfd->sections; sect != NULL; sect = sect->next)
670 {
671 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
672 continue;
673
674 break;
675 }
676 if (sect == NULL)
677 return NULL;
678
679 low = bfd_get_section_vma (abfd, sect);
680 high = low + bfd_get_section_size (sect);
681
682 data = XZALLOC (struct symfile_segment_data);
683 data->num_segments = 1;
684 data->segment_bases = XCALLOC (1, CORE_ADDR);
685 data->segment_sizes = XCALLOC (1, CORE_ADDR);
686
687 num_sections = bfd_count_sections (abfd);
688 data->segment_info = XCALLOC (num_sections, int);
689
690 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
691 {
692 CORE_ADDR vma;
693
694 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
695 continue;
696
697 vma = bfd_get_section_vma (abfd, sect);
698 if (vma < low)
699 low = vma;
700 if (vma + bfd_get_section_size (sect) > high)
701 high = vma + bfd_get_section_size (sect);
702
703 data->segment_info[i] = 1;
704 }
705
706 data->segment_bases[0] = low;
707 data->segment_sizes[0] = high - low;
708
709 return data;
710 }
711
712 /* Process a symbol file, as either the main file or as a dynamically
713 loaded file.
714
715 OBJFILE is where the symbols are to be read from.
716
717 ADDRS is the list of section load addresses. If the user has given
718 an 'add-symbol-file' command, then this is the list of offsets and
719 addresses he or she provided as arguments to the command; or, if
720 we're handling a shared library, these are the actual addresses the
721 sections are loaded at, according to the inferior's dynamic linker
722 (as gleaned by GDB's shared library code). We convert each address
723 into an offset from the section VMA's as it appears in the object
724 file, and then call the file's sym_offsets function to convert this
725 into a format-specific offset table --- a `struct section_offsets'.
726 If ADDRS is non-zero, OFFSETS must be zero.
727
728 OFFSETS is a table of section offsets already in the right
729 format-specific representation. NUM_OFFSETS is the number of
730 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
731 assume this is the proper table the call to sym_offsets described
732 above would produce. Instead of calling sym_offsets, we just dump
733 it right into objfile->section_offsets. (When we're re-reading
734 symbols from an objfile, we don't have the original load address
735 list any more; all we have is the section offset table.) If
736 OFFSETS is non-zero, ADDRS must be zero.
737
738 ADD_FLAGS encodes verbosity level, whether this is main symbol or
739 an extra symbol file such as dynamically loaded code, and wether
740 breakpoint reset should be deferred. */
741
742 void
743 syms_from_objfile (struct objfile *objfile,
744 struct section_addr_info *addrs,
745 struct section_offsets *offsets,
746 int num_offsets,
747 int add_flags)
748 {
749 struct section_addr_info *local_addr = NULL;
750 struct cleanup *old_chain;
751 const int mainline = add_flags & SYMFILE_MAINLINE;
752
753 gdb_assert (! (addrs && offsets));
754
755 init_entry_point_info (objfile);
756 objfile->sf = find_sym_fns (objfile->obfd);
757
758 if (objfile->sf == NULL)
759 return; /* No symbols. */
760
761 /* Make sure that partially constructed symbol tables will be cleaned up
762 if an error occurs during symbol reading. */
763 old_chain = make_cleanup_free_objfile (objfile);
764
765 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
766 list. We now establish the convention that an addr of zero means
767 no load address was specified. */
768 if (! addrs && ! offsets)
769 {
770 local_addr
771 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
772 make_cleanup (xfree, local_addr);
773 addrs = local_addr;
774 }
775
776 /* Now either addrs or offsets is non-zero. */
777
778 if (mainline)
779 {
780 /* We will modify the main symbol table, make sure that all its users
781 will be cleaned up if an error occurs during symbol reading. */
782 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
783
784 /* Since no error yet, throw away the old symbol table. */
785
786 if (symfile_objfile != NULL)
787 {
788 free_objfile (symfile_objfile);
789 gdb_assert (symfile_objfile == NULL);
790 }
791
792 /* Currently we keep symbols from the add-symbol-file command.
793 If the user wants to get rid of them, they should do "symbol-file"
794 without arguments first. Not sure this is the best behavior
795 (PR 2207). */
796
797 (*objfile->sf->sym_new_init) (objfile);
798 }
799
800 /* Convert addr into an offset rather than an absolute address.
801 We find the lowest address of a loaded segment in the objfile,
802 and assume that <addr> is where that got loaded.
803
804 We no longer warn if the lowest section is not a text segment (as
805 happens for the PA64 port. */
806 if (!mainline && addrs && addrs->other[0].name)
807 {
808 asection *lower_sect;
809 asection *sect;
810 CORE_ADDR lower_offset;
811 int i;
812
813 /* Find lowest loadable section to be used as starting point for
814 continguous sections. FIXME!! won't work without call to find
815 .text first, but this assumes text is lowest section. */
816 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
817 if (lower_sect == NULL)
818 bfd_map_over_sections (objfile->obfd, find_lowest_section,
819 &lower_sect);
820 if (lower_sect == NULL)
821 {
822 warning (_("no loadable sections found in added symbol-file %s"),
823 objfile->name);
824 lower_offset = 0;
825 }
826 else
827 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
828
829 /* Calculate offsets for the loadable sections.
830 FIXME! Sections must be in order of increasing loadable section
831 so that contiguous sections can use the lower-offset!!!
832
833 Adjust offsets if the segments are not contiguous.
834 If the section is contiguous, its offset should be set to
835 the offset of the highest loadable section lower than it
836 (the loadable section directly below it in memory).
837 this_offset = lower_offset = lower_addr - lower_orig_addr */
838
839 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
840 {
841 if (addrs->other[i].addr != 0)
842 {
843 sect = bfd_get_section_by_name (objfile->obfd,
844 addrs->other[i].name);
845 if (sect)
846 {
847 addrs->other[i].addr
848 -= bfd_section_vma (objfile->obfd, sect);
849 lower_offset = addrs->other[i].addr;
850 /* This is the index used by BFD. */
851 addrs->other[i].sectindex = sect->index ;
852 }
853 else
854 {
855 warning (_("section %s not found in %s"),
856 addrs->other[i].name,
857 objfile->name);
858 addrs->other[i].addr = 0;
859 }
860 }
861 else
862 addrs->other[i].addr = lower_offset;
863 }
864 }
865
866 /* Initialize symbol reading routines for this objfile, allow complaints to
867 appear for this new file, and record how verbose to be, then do the
868 initial symbol reading for this file. */
869
870 (*objfile->sf->sym_init) (objfile);
871 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
872
873 if (addrs)
874 (*objfile->sf->sym_offsets) (objfile, addrs);
875 else
876 {
877 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
878
879 /* Just copy in the offset table directly as given to us. */
880 objfile->num_sections = num_offsets;
881 objfile->section_offsets
882 = ((struct section_offsets *)
883 obstack_alloc (&objfile->objfile_obstack, size));
884 memcpy (objfile->section_offsets, offsets, size);
885
886 init_objfile_sect_indices (objfile);
887 }
888
889 (*objfile->sf->sym_read) (objfile, mainline);
890
891 /* Discard cleanups as symbol reading was successful. */
892
893 discard_cleanups (old_chain);
894 xfree (local_addr);
895 }
896
897 /* Perform required actions after either reading in the initial
898 symbols for a new objfile, or mapping in the symbols from a reusable
899 objfile. */
900
901 void
902 new_symfile_objfile (struct objfile *objfile, int add_flags)
903 {
904
905 /* If this is the main symbol file we have to clean up all users of the
906 old main symbol file. Otherwise it is sufficient to fixup all the
907 breakpoints that may have been redefined by this symbol file. */
908 if (add_flags & SYMFILE_MAINLINE)
909 {
910 /* OK, make it the "real" symbol file. */
911 symfile_objfile = objfile;
912
913 clear_symtab_users ();
914 }
915 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
916 {
917 breakpoint_re_set ();
918 }
919
920 /* We're done reading the symbol file; finish off complaints. */
921 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
922 }
923
924 /* Process a symbol file, as either the main file or as a dynamically
925 loaded file.
926
927 ABFD is a BFD already open on the file, as from symfile_bfd_open.
928 This BFD will be closed on error, and is always consumed by this function.
929
930 ADD_FLAGS encodes verbosity, whether this is main symbol file or
931 extra, such as dynamically loaded code, and what to do with breakpoins.
932
933 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
934 syms_from_objfile, above.
935 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
936
937 Upon success, returns a pointer to the objfile that was added.
938 Upon failure, jumps back to command level (never returns). */
939
940 static struct objfile *
941 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
942 int add_flags,
943 struct section_addr_info *addrs,
944 struct section_offsets *offsets,
945 int num_offsets,
946 int flags)
947 {
948 struct objfile *objfile;
949 struct partial_symtab *psymtab;
950 char *debugfile = NULL;
951 struct section_addr_info *orig_addrs = NULL;
952 struct cleanup *my_cleanups;
953 const char *name = bfd_get_filename (abfd);
954 const int from_tty = add_flags & SYMFILE_VERBOSE;
955
956 my_cleanups = make_cleanup_bfd_close (abfd);
957
958 /* Give user a chance to burp if we'd be
959 interactively wiping out any existing symbols. */
960
961 if ((have_full_symbols () || have_partial_symbols ())
962 && (add_flags & SYMFILE_MAINLINE)
963 && from_tty
964 && !query (_("Load new symbol table from \"%s\"? "), name))
965 error (_("Not confirmed."));
966
967 objfile = allocate_objfile (abfd, flags);
968 discard_cleanups (my_cleanups);
969
970 if (addrs)
971 {
972 orig_addrs = copy_section_addr_info (addrs);
973 make_cleanup_free_section_addr_info (orig_addrs);
974 }
975
976 /* We either created a new mapped symbol table, mapped an existing
977 symbol table file which has not had initial symbol reading
978 performed, or need to read an unmapped symbol table. */
979 if (from_tty || info_verbose)
980 {
981 if (deprecated_pre_add_symbol_hook)
982 deprecated_pre_add_symbol_hook (name);
983 else
984 {
985 printf_unfiltered (_("Reading symbols from %s..."), name);
986 wrap_here ("");
987 gdb_flush (gdb_stdout);
988 }
989 }
990 syms_from_objfile (objfile, addrs, offsets, num_offsets,
991 add_flags);
992
993 /* We now have at least a partial symbol table. Check to see if the
994 user requested that all symbols be read on initial access via either
995 the gdb startup command line or on a per symbol file basis. Expand
996 all partial symbol tables for this objfile if so. */
997
998 if ((flags & OBJF_READNOW) || readnow_symbol_files)
999 {
1000 if (from_tty || info_verbose)
1001 {
1002 printf_unfiltered (_("expanding to full symbols..."));
1003 wrap_here ("");
1004 gdb_flush (gdb_stdout);
1005 }
1006
1007 for (psymtab = objfile->psymtabs;
1008 psymtab != NULL;
1009 psymtab = psymtab->next)
1010 {
1011 psymtab_to_symtab (psymtab);
1012 }
1013 }
1014
1015 /* If the file has its own symbol tables it has no separate debug info.
1016 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1017 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1018 if (objfile->psymtabs == NULL)
1019 debugfile = find_separate_debug_file (objfile);
1020 if (debugfile)
1021 {
1022 if (addrs != NULL)
1023 {
1024 objfile->separate_debug_objfile
1025 = symbol_file_add (debugfile, add_flags, orig_addrs, flags);
1026 }
1027 else
1028 {
1029 objfile->separate_debug_objfile
1030 = symbol_file_add (debugfile, add_flags, NULL, flags);
1031 }
1032 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1033 = objfile;
1034
1035 /* Put the separate debug object before the normal one, this is so that
1036 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1037 put_objfile_before (objfile->separate_debug_objfile, objfile);
1038
1039 xfree (debugfile);
1040 }
1041
1042 if ((from_tty || info_verbose)
1043 && !objfile_has_symbols (objfile))
1044 {
1045 wrap_here ("");
1046 printf_unfiltered (_("(no debugging symbols found)..."));
1047 wrap_here ("");
1048 }
1049
1050 if (from_tty || info_verbose)
1051 {
1052 if (deprecated_post_add_symbol_hook)
1053 deprecated_post_add_symbol_hook ();
1054 else
1055 printf_unfiltered (_("done.\n"));
1056 }
1057
1058 /* We print some messages regardless of whether 'from_tty ||
1059 info_verbose' is true, so make sure they go out at the right
1060 time. */
1061 gdb_flush (gdb_stdout);
1062
1063 do_cleanups (my_cleanups);
1064
1065 if (objfile->sf == NULL)
1066 {
1067 observer_notify_new_objfile (objfile);
1068 return objfile; /* No symbols. */
1069 }
1070
1071 new_symfile_objfile (objfile, add_flags);
1072
1073 observer_notify_new_objfile (objfile);
1074
1075 bfd_cache_close_all ();
1076 return (objfile);
1077 }
1078
1079
1080 /* Process the symbol file ABFD, as either the main file or as a
1081 dynamically loaded file.
1082
1083 See symbol_file_add_with_addrs_or_offsets's comments for
1084 details. */
1085 struct objfile *
1086 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1087 struct section_addr_info *addrs,
1088 int flags)
1089 {
1090 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1091 flags);
1092 }
1093
1094
1095 /* Process a symbol file, as either the main file or as a dynamically
1096 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1097 for details. */
1098 struct objfile *
1099 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1100 int flags)
1101 {
1102 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1103 flags);
1104 }
1105
1106
1107 /* Call symbol_file_add() with default values and update whatever is
1108 affected by the loading of a new main().
1109 Used when the file is supplied in the gdb command line
1110 and by some targets with special loading requirements.
1111 The auxiliary function, symbol_file_add_main_1(), has the flags
1112 argument for the switches that can only be specified in the symbol_file
1113 command itself. */
1114
1115 void
1116 symbol_file_add_main (char *args, int from_tty)
1117 {
1118 symbol_file_add_main_1 (args, from_tty, 0);
1119 }
1120
1121 static void
1122 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1123 {
1124 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1125 symbol_file_add (args, add_flags, NULL, flags);
1126
1127 /* Getting new symbols may change our opinion about
1128 what is frameless. */
1129 reinit_frame_cache ();
1130
1131 set_initial_language ();
1132 }
1133
1134 void
1135 symbol_file_clear (int from_tty)
1136 {
1137 if ((have_full_symbols () || have_partial_symbols ())
1138 && from_tty
1139 && (symfile_objfile
1140 ? !query (_("Discard symbol table from `%s'? "),
1141 symfile_objfile->name)
1142 : !query (_("Discard symbol table? "))))
1143 error (_("Not confirmed."));
1144
1145 free_all_objfiles ();
1146
1147 /* solib descriptors may have handles to objfiles. Since their
1148 storage has just been released, we'd better wipe the solib
1149 descriptors as well. */
1150 no_shared_libraries (NULL, from_tty);
1151
1152 gdb_assert (symfile_objfile == NULL);
1153 if (from_tty)
1154 printf_unfiltered (_("No symbol file now.\n"));
1155 }
1156
1157 struct build_id
1158 {
1159 size_t size;
1160 gdb_byte data[1];
1161 };
1162
1163 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1164
1165 static struct build_id *
1166 build_id_bfd_get (bfd *abfd)
1167 {
1168 struct build_id *retval;
1169
1170 if (!bfd_check_format (abfd, bfd_object)
1171 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1172 || elf_tdata (abfd)->build_id == NULL)
1173 return NULL;
1174
1175 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1176 retval->size = elf_tdata (abfd)->build_id_size;
1177 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1178
1179 return retval;
1180 }
1181
1182 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1183
1184 static int
1185 build_id_verify (const char *filename, struct build_id *check)
1186 {
1187 bfd *abfd;
1188 struct build_id *found = NULL;
1189 int retval = 0;
1190
1191 /* We expect to be silent on the non-existing files. */
1192 if (remote_filename_p (filename))
1193 abfd = remote_bfd_open (filename, gnutarget);
1194 else
1195 abfd = bfd_openr (filename, gnutarget);
1196 if (abfd == NULL)
1197 return 0;
1198
1199 found = build_id_bfd_get (abfd);
1200
1201 if (found == NULL)
1202 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1203 else if (found->size != check->size
1204 || memcmp (found->data, check->data, found->size) != 0)
1205 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1206 else
1207 retval = 1;
1208
1209 if (!bfd_close (abfd))
1210 warning (_("cannot close \"%s\": %s"), filename,
1211 bfd_errmsg (bfd_get_error ()));
1212
1213 xfree (found);
1214
1215 return retval;
1216 }
1217
1218 static char *
1219 build_id_to_debug_filename (struct build_id *build_id)
1220 {
1221 char *link, *s, *retval = NULL;
1222 gdb_byte *data = build_id->data;
1223 size_t size = build_id->size;
1224
1225 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1226 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1227 + 2 * size + (sizeof ".debug" - 1) + 1);
1228 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1229 if (size > 0)
1230 {
1231 size--;
1232 s += sprintf (s, "%02x", (unsigned) *data++);
1233 }
1234 if (size > 0)
1235 *s++ = '/';
1236 while (size-- > 0)
1237 s += sprintf (s, "%02x", (unsigned) *data++);
1238 strcpy (s, ".debug");
1239
1240 /* lrealpath() is expensive even for the usually non-existent files. */
1241 if (access (link, F_OK) == 0)
1242 retval = lrealpath (link);
1243 xfree (link);
1244
1245 if (retval != NULL && !build_id_verify (retval, build_id))
1246 {
1247 xfree (retval);
1248 retval = NULL;
1249 }
1250
1251 return retval;
1252 }
1253
1254 static char *
1255 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1256 {
1257 asection *sect;
1258 bfd_size_type debuglink_size;
1259 unsigned long crc32;
1260 char *contents;
1261 int crc_offset;
1262 unsigned char *p;
1263
1264 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1265
1266 if (sect == NULL)
1267 return NULL;
1268
1269 debuglink_size = bfd_section_size (objfile->obfd, sect);
1270
1271 contents = xmalloc (debuglink_size);
1272 bfd_get_section_contents (objfile->obfd, sect, contents,
1273 (file_ptr)0, (bfd_size_type)debuglink_size);
1274
1275 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1276 crc_offset = strlen (contents) + 1;
1277 crc_offset = (crc_offset + 3) & ~3;
1278
1279 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1280
1281 *crc32_out = crc32;
1282 return contents;
1283 }
1284
1285 static int
1286 separate_debug_file_exists (const char *name, unsigned long crc,
1287 const char *parent_name)
1288 {
1289 unsigned long file_crc = 0;
1290 bfd *abfd;
1291 gdb_byte buffer[8*1024];
1292 int count;
1293
1294 if (remote_filename_p (name))
1295 abfd = remote_bfd_open (name, gnutarget);
1296 else
1297 abfd = bfd_openr (name, gnutarget);
1298
1299 if (!abfd)
1300 return 0;
1301
1302 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1303 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1304
1305 bfd_close (abfd);
1306
1307 if (crc != file_crc)
1308 {
1309 warning (_("the debug information found in \"%s\""
1310 " does not match \"%s\" (CRC mismatch).\n"),
1311 name, parent_name);
1312 return 0;
1313 }
1314
1315 return 1;
1316 }
1317
1318 char *debug_file_directory = NULL;
1319 static void
1320 show_debug_file_directory (struct ui_file *file, int from_tty,
1321 struct cmd_list_element *c, const char *value)
1322 {
1323 fprintf_filtered (file, _("\
1324 The directory where separate debug symbols are searched for is \"%s\".\n"),
1325 value);
1326 }
1327
1328 #if ! defined (DEBUG_SUBDIRECTORY)
1329 #define DEBUG_SUBDIRECTORY ".debug"
1330 #endif
1331
1332 static char *
1333 find_separate_debug_file (struct objfile *objfile)
1334 {
1335 asection *sect;
1336 char *basename;
1337 char *dir;
1338 char *debugfile;
1339 char *name_copy;
1340 char *canon_name;
1341 bfd_size_type debuglink_size;
1342 unsigned long crc32;
1343 int i;
1344 struct build_id *build_id;
1345
1346 build_id = build_id_bfd_get (objfile->obfd);
1347 if (build_id != NULL)
1348 {
1349 char *build_id_name;
1350
1351 build_id_name = build_id_to_debug_filename (build_id);
1352 xfree (build_id);
1353 /* Prevent looping on a stripped .debug file. */
1354 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1355 {
1356 warning (_("\"%s\": separate debug info file has no debug info"),
1357 build_id_name);
1358 xfree (build_id_name);
1359 }
1360 else if (build_id_name != NULL)
1361 return build_id_name;
1362 }
1363
1364 basename = get_debug_link_info (objfile, &crc32);
1365
1366 if (basename == NULL)
1367 /* There's no separate debug info, hence there's no way we could
1368 load it => no warning. */
1369 return NULL;
1370
1371 dir = xstrdup (objfile->name);
1372
1373 /* Strip off the final filename part, leaving the directory name,
1374 followed by a slash. Objfile names should always be absolute and
1375 tilde-expanded, so there should always be a slash in there
1376 somewhere. */
1377 for (i = strlen(dir) - 1; i >= 0; i--)
1378 {
1379 if (IS_DIR_SEPARATOR (dir[i]))
1380 break;
1381 }
1382 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1383 dir[i+1] = '\0';
1384
1385 /* Set I to max (strlen (canon_name), strlen (dir)). */
1386 canon_name = lrealpath (dir);
1387 i = strlen (dir);
1388 if (canon_name && strlen (canon_name) > i)
1389 i = strlen (canon_name);
1390
1391 debugfile = alloca (strlen (debug_file_directory) + 1
1392 + i
1393 + strlen (DEBUG_SUBDIRECTORY)
1394 + strlen ("/")
1395 + strlen (basename)
1396 + 1);
1397
1398 /* First try in the same directory as the original file. */
1399 strcpy (debugfile, dir);
1400 strcat (debugfile, basename);
1401
1402 if (separate_debug_file_exists (debugfile, crc32, objfile->name))
1403 {
1404 xfree (basename);
1405 xfree (dir);
1406 xfree (canon_name);
1407 return xstrdup (debugfile);
1408 }
1409
1410 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1411 strcpy (debugfile, dir);
1412 strcat (debugfile, DEBUG_SUBDIRECTORY);
1413 strcat (debugfile, "/");
1414 strcat (debugfile, basename);
1415
1416 if (separate_debug_file_exists (debugfile, crc32, objfile->name))
1417 {
1418 xfree (basename);
1419 xfree (dir);
1420 xfree (canon_name);
1421 return xstrdup (debugfile);
1422 }
1423
1424 /* Then try in the global debugfile directory. */
1425 strcpy (debugfile, debug_file_directory);
1426 strcat (debugfile, "/");
1427 strcat (debugfile, dir);
1428 strcat (debugfile, basename);
1429
1430 if (separate_debug_file_exists (debugfile, crc32, objfile->name))
1431 {
1432 xfree (basename);
1433 xfree (dir);
1434 xfree (canon_name);
1435 return xstrdup (debugfile);
1436 }
1437
1438 /* If the file is in the sysroot, try using its base path in the
1439 global debugfile directory. */
1440 if (canon_name
1441 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1442 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1443 {
1444 strcpy (debugfile, debug_file_directory);
1445 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1446 strcat (debugfile, "/");
1447 strcat (debugfile, basename);
1448
1449 if (separate_debug_file_exists (debugfile, crc32, objfile->name))
1450 {
1451 xfree (canon_name);
1452 xfree (basename);
1453 xfree (dir);
1454 return xstrdup (debugfile);
1455 }
1456 }
1457
1458 if (canon_name)
1459 xfree (canon_name);
1460
1461 xfree (basename);
1462 xfree (dir);
1463 return NULL;
1464 }
1465
1466
1467 /* This is the symbol-file command. Read the file, analyze its
1468 symbols, and add a struct symtab to a symtab list. The syntax of
1469 the command is rather bizarre:
1470
1471 1. The function buildargv implements various quoting conventions
1472 which are undocumented and have little or nothing in common with
1473 the way things are quoted (or not quoted) elsewhere in GDB.
1474
1475 2. Options are used, which are not generally used in GDB (perhaps
1476 "set mapped on", "set readnow on" would be better)
1477
1478 3. The order of options matters, which is contrary to GNU
1479 conventions (because it is confusing and inconvenient). */
1480
1481 void
1482 symbol_file_command (char *args, int from_tty)
1483 {
1484 dont_repeat ();
1485
1486 if (args == NULL)
1487 {
1488 symbol_file_clear (from_tty);
1489 }
1490 else
1491 {
1492 char **argv = gdb_buildargv (args);
1493 int flags = OBJF_USERLOADED;
1494 struct cleanup *cleanups;
1495 char *name = NULL;
1496
1497 cleanups = make_cleanup_freeargv (argv);
1498 while (*argv != NULL)
1499 {
1500 if (strcmp (*argv, "-readnow") == 0)
1501 flags |= OBJF_READNOW;
1502 else if (**argv == '-')
1503 error (_("unknown option `%s'"), *argv);
1504 else
1505 {
1506 symbol_file_add_main_1 (*argv, from_tty, flags);
1507 name = *argv;
1508 }
1509
1510 argv++;
1511 }
1512
1513 if (name == NULL)
1514 error (_("no symbol file name was specified"));
1515
1516 do_cleanups (cleanups);
1517 }
1518 }
1519
1520 /* Set the initial language.
1521
1522 FIXME: A better solution would be to record the language in the
1523 psymtab when reading partial symbols, and then use it (if known) to
1524 set the language. This would be a win for formats that encode the
1525 language in an easily discoverable place, such as DWARF. For
1526 stabs, we can jump through hoops looking for specially named
1527 symbols or try to intuit the language from the specific type of
1528 stabs we find, but we can't do that until later when we read in
1529 full symbols. */
1530
1531 void
1532 set_initial_language (void)
1533 {
1534 struct partial_symtab *pst;
1535 enum language lang = language_unknown;
1536
1537 pst = find_main_psymtab ();
1538 if (pst != NULL)
1539 {
1540 if (pst->filename != NULL)
1541 lang = deduce_language_from_filename (pst->filename);
1542
1543 if (lang == language_unknown)
1544 {
1545 /* Make C the default language */
1546 lang = language_c;
1547 }
1548
1549 set_language (lang);
1550 expected_language = current_language; /* Don't warn the user. */
1551 }
1552 }
1553
1554 /* Open the file specified by NAME and hand it off to BFD for
1555 preliminary analysis. Return a newly initialized bfd *, which
1556 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1557 absolute). In case of trouble, error() is called. */
1558
1559 bfd *
1560 symfile_bfd_open (char *name)
1561 {
1562 bfd *sym_bfd;
1563 int desc;
1564 char *absolute_name;
1565
1566 if (remote_filename_p (name))
1567 {
1568 name = xstrdup (name);
1569 sym_bfd = remote_bfd_open (name, gnutarget);
1570 if (!sym_bfd)
1571 {
1572 make_cleanup (xfree, name);
1573 error (_("`%s': can't open to read symbols: %s."), name,
1574 bfd_errmsg (bfd_get_error ()));
1575 }
1576
1577 if (!bfd_check_format (sym_bfd, bfd_object))
1578 {
1579 bfd_close (sym_bfd);
1580 make_cleanup (xfree, name);
1581 error (_("`%s': can't read symbols: %s."), name,
1582 bfd_errmsg (bfd_get_error ()));
1583 }
1584
1585 return sym_bfd;
1586 }
1587
1588 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1589
1590 /* Look down path for it, allocate 2nd new malloc'd copy. */
1591 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1592 O_RDONLY | O_BINARY, &absolute_name);
1593 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1594 if (desc < 0)
1595 {
1596 char *exename = alloca (strlen (name) + 5);
1597 strcat (strcpy (exename, name), ".exe");
1598 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1599 O_RDONLY | O_BINARY, &absolute_name);
1600 }
1601 #endif
1602 if (desc < 0)
1603 {
1604 make_cleanup (xfree, name);
1605 perror_with_name (name);
1606 }
1607
1608 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1609 bfd. It'll be freed in free_objfile(). */
1610 xfree (name);
1611 name = absolute_name;
1612
1613 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1614 if (!sym_bfd)
1615 {
1616 close (desc);
1617 make_cleanup (xfree, name);
1618 error (_("`%s': can't open to read symbols: %s."), name,
1619 bfd_errmsg (bfd_get_error ()));
1620 }
1621 bfd_set_cacheable (sym_bfd, 1);
1622
1623 if (!bfd_check_format (sym_bfd, bfd_object))
1624 {
1625 /* FIXME: should be checking for errors from bfd_close (for one
1626 thing, on error it does not free all the storage associated
1627 with the bfd). */
1628 bfd_close (sym_bfd); /* This also closes desc. */
1629 make_cleanup (xfree, name);
1630 error (_("`%s': can't read symbols: %s."), name,
1631 bfd_errmsg (bfd_get_error ()));
1632 }
1633
1634 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1635 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1636
1637 return sym_bfd;
1638 }
1639
1640 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1641 the section was not found. */
1642
1643 int
1644 get_section_index (struct objfile *objfile, char *section_name)
1645 {
1646 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1647
1648 if (sect)
1649 return sect->index;
1650 else
1651 return -1;
1652 }
1653
1654 /* Link SF into the global symtab_fns list. Called on startup by the
1655 _initialize routine in each object file format reader, to register
1656 information about each format the the reader is prepared to
1657 handle. */
1658
1659 void
1660 add_symtab_fns (struct sym_fns *sf)
1661 {
1662 sf->next = symtab_fns;
1663 symtab_fns = sf;
1664 }
1665
1666 /* Initialize OBJFILE to read symbols from its associated BFD. It
1667 either returns or calls error(). The result is an initialized
1668 struct sym_fns in the objfile structure, that contains cached
1669 information about the symbol file. */
1670
1671 static struct sym_fns *
1672 find_sym_fns (bfd *abfd)
1673 {
1674 struct sym_fns *sf;
1675 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1676
1677 if (our_flavour == bfd_target_srec_flavour
1678 || our_flavour == bfd_target_ihex_flavour
1679 || our_flavour == bfd_target_tekhex_flavour)
1680 return NULL; /* No symbols. */
1681
1682 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1683 if (our_flavour == sf->sym_flavour)
1684 return sf;
1685
1686 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1687 bfd_get_target (abfd));
1688 }
1689 \f
1690
1691 /* This function runs the load command of our current target. */
1692
1693 static void
1694 load_command (char *arg, int from_tty)
1695 {
1696 /* The user might be reloading because the binary has changed. Take
1697 this opportunity to check. */
1698 reopen_exec_file ();
1699 reread_symbols ();
1700
1701 if (arg == NULL)
1702 {
1703 char *parg;
1704 int count = 0;
1705
1706 parg = arg = get_exec_file (1);
1707
1708 /* Count how many \ " ' tab space there are in the name. */
1709 while ((parg = strpbrk (parg, "\\\"'\t ")))
1710 {
1711 parg++;
1712 count++;
1713 }
1714
1715 if (count)
1716 {
1717 /* We need to quote this string so buildargv can pull it apart. */
1718 char *temp = xmalloc (strlen (arg) + count + 1 );
1719 char *ptemp = temp;
1720 char *prev;
1721
1722 make_cleanup (xfree, temp);
1723
1724 prev = parg = arg;
1725 while ((parg = strpbrk (parg, "\\\"'\t ")))
1726 {
1727 strncpy (ptemp, prev, parg - prev);
1728 ptemp += parg - prev;
1729 prev = parg++;
1730 *ptemp++ = '\\';
1731 }
1732 strcpy (ptemp, prev);
1733
1734 arg = temp;
1735 }
1736 }
1737
1738 target_load (arg, from_tty);
1739
1740 /* After re-loading the executable, we don't really know which
1741 overlays are mapped any more. */
1742 overlay_cache_invalid = 1;
1743 }
1744
1745 /* This version of "load" should be usable for any target. Currently
1746 it is just used for remote targets, not inftarg.c or core files,
1747 on the theory that only in that case is it useful.
1748
1749 Avoiding xmodem and the like seems like a win (a) because we don't have
1750 to worry about finding it, and (b) On VMS, fork() is very slow and so
1751 we don't want to run a subprocess. On the other hand, I'm not sure how
1752 performance compares. */
1753
1754 static int validate_download = 0;
1755
1756 /* Callback service function for generic_load (bfd_map_over_sections). */
1757
1758 static void
1759 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1760 {
1761 bfd_size_type *sum = data;
1762
1763 *sum += bfd_get_section_size (asec);
1764 }
1765
1766 /* Opaque data for load_section_callback. */
1767 struct load_section_data {
1768 unsigned long load_offset;
1769 struct load_progress_data *progress_data;
1770 VEC(memory_write_request_s) *requests;
1771 };
1772
1773 /* Opaque data for load_progress. */
1774 struct load_progress_data {
1775 /* Cumulative data. */
1776 unsigned long write_count;
1777 unsigned long data_count;
1778 bfd_size_type total_size;
1779 };
1780
1781 /* Opaque data for load_progress for a single section. */
1782 struct load_progress_section_data {
1783 struct load_progress_data *cumulative;
1784
1785 /* Per-section data. */
1786 const char *section_name;
1787 ULONGEST section_sent;
1788 ULONGEST section_size;
1789 CORE_ADDR lma;
1790 gdb_byte *buffer;
1791 };
1792
1793 /* Target write callback routine for progress reporting. */
1794
1795 static void
1796 load_progress (ULONGEST bytes, void *untyped_arg)
1797 {
1798 struct load_progress_section_data *args = untyped_arg;
1799 struct load_progress_data *totals;
1800
1801 if (args == NULL)
1802 /* Writing padding data. No easy way to get at the cumulative
1803 stats, so just ignore this. */
1804 return;
1805
1806 totals = args->cumulative;
1807
1808 if (bytes == 0 && args->section_sent == 0)
1809 {
1810 /* The write is just starting. Let the user know we've started
1811 this section. */
1812 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1813 args->section_name, hex_string (args->section_size),
1814 paddress (target_gdbarch, args->lma));
1815 return;
1816 }
1817
1818 if (validate_download)
1819 {
1820 /* Broken memories and broken monitors manifest themselves here
1821 when bring new computers to life. This doubles already slow
1822 downloads. */
1823 /* NOTE: cagney/1999-10-18: A more efficient implementation
1824 might add a verify_memory() method to the target vector and
1825 then use that. remote.c could implement that method using
1826 the ``qCRC'' packet. */
1827 gdb_byte *check = xmalloc (bytes);
1828 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1829
1830 if (target_read_memory (args->lma, check, bytes) != 0)
1831 error (_("Download verify read failed at %s"),
1832 paddress (target_gdbarch, args->lma));
1833 if (memcmp (args->buffer, check, bytes) != 0)
1834 error (_("Download verify compare failed at %s"),
1835 paddress (target_gdbarch, args->lma));
1836 do_cleanups (verify_cleanups);
1837 }
1838 totals->data_count += bytes;
1839 args->lma += bytes;
1840 args->buffer += bytes;
1841 totals->write_count += 1;
1842 args->section_sent += bytes;
1843 if (quit_flag
1844 || (deprecated_ui_load_progress_hook != NULL
1845 && deprecated_ui_load_progress_hook (args->section_name,
1846 args->section_sent)))
1847 error (_("Canceled the download"));
1848
1849 if (deprecated_show_load_progress != NULL)
1850 deprecated_show_load_progress (args->section_name,
1851 args->section_sent,
1852 args->section_size,
1853 totals->data_count,
1854 totals->total_size);
1855 }
1856
1857 /* Callback service function for generic_load (bfd_map_over_sections). */
1858
1859 static void
1860 load_section_callback (bfd *abfd, asection *asec, void *data)
1861 {
1862 struct memory_write_request *new_request;
1863 struct load_section_data *args = data;
1864 struct load_progress_section_data *section_data;
1865 bfd_size_type size = bfd_get_section_size (asec);
1866 gdb_byte *buffer;
1867 const char *sect_name = bfd_get_section_name (abfd, asec);
1868
1869 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1870 return;
1871
1872 if (size == 0)
1873 return;
1874
1875 new_request = VEC_safe_push (memory_write_request_s,
1876 args->requests, NULL);
1877 memset (new_request, 0, sizeof (struct memory_write_request));
1878 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1879 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1880 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1881 new_request->data = xmalloc (size);
1882 new_request->baton = section_data;
1883
1884 buffer = new_request->data;
1885
1886 section_data->cumulative = args->progress_data;
1887 section_data->section_name = sect_name;
1888 section_data->section_size = size;
1889 section_data->lma = new_request->begin;
1890 section_data->buffer = buffer;
1891
1892 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1893 }
1894
1895 /* Clean up an entire memory request vector, including load
1896 data and progress records. */
1897
1898 static void
1899 clear_memory_write_data (void *arg)
1900 {
1901 VEC(memory_write_request_s) **vec_p = arg;
1902 VEC(memory_write_request_s) *vec = *vec_p;
1903 int i;
1904 struct memory_write_request *mr;
1905
1906 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1907 {
1908 xfree (mr->data);
1909 xfree (mr->baton);
1910 }
1911 VEC_free (memory_write_request_s, vec);
1912 }
1913
1914 void
1915 generic_load (char *args, int from_tty)
1916 {
1917 bfd *loadfile_bfd;
1918 struct timeval start_time, end_time;
1919 char *filename;
1920 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1921 struct load_section_data cbdata;
1922 struct load_progress_data total_progress;
1923
1924 CORE_ADDR entry;
1925 char **argv;
1926
1927 memset (&cbdata, 0, sizeof (cbdata));
1928 memset (&total_progress, 0, sizeof (total_progress));
1929 cbdata.progress_data = &total_progress;
1930
1931 make_cleanup (clear_memory_write_data, &cbdata.requests);
1932
1933 if (args == NULL)
1934 error_no_arg (_("file to load"));
1935
1936 argv = gdb_buildargv (args);
1937 make_cleanup_freeargv (argv);
1938
1939 filename = tilde_expand (argv[0]);
1940 make_cleanup (xfree, filename);
1941
1942 if (argv[1] != NULL)
1943 {
1944 char *endptr;
1945
1946 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1947
1948 /* If the last word was not a valid number then
1949 treat it as a file name with spaces in. */
1950 if (argv[1] == endptr)
1951 error (_("Invalid download offset:%s."), argv[1]);
1952
1953 if (argv[2] != NULL)
1954 error (_("Too many parameters."));
1955 }
1956
1957 /* Open the file for loading. */
1958 loadfile_bfd = bfd_openr (filename, gnutarget);
1959 if (loadfile_bfd == NULL)
1960 {
1961 perror_with_name (filename);
1962 return;
1963 }
1964
1965 /* FIXME: should be checking for errors from bfd_close (for one thing,
1966 on error it does not free all the storage associated with the
1967 bfd). */
1968 make_cleanup_bfd_close (loadfile_bfd);
1969
1970 if (!bfd_check_format (loadfile_bfd, bfd_object))
1971 {
1972 error (_("\"%s\" is not an object file: %s"), filename,
1973 bfd_errmsg (bfd_get_error ()));
1974 }
1975
1976 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1977 (void *) &total_progress.total_size);
1978
1979 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1980
1981 gettimeofday (&start_time, NULL);
1982
1983 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1984 load_progress) != 0)
1985 error (_("Load failed"));
1986
1987 gettimeofday (&end_time, NULL);
1988
1989 entry = bfd_get_start_address (loadfile_bfd);
1990 ui_out_text (uiout, "Start address ");
1991 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
1992 ui_out_text (uiout, ", load size ");
1993 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
1994 ui_out_text (uiout, "\n");
1995 /* We were doing this in remote-mips.c, I suspect it is right
1996 for other targets too. */
1997 regcache_write_pc (get_current_regcache (), entry);
1998
1999 /* FIXME: are we supposed to call symbol_file_add or not? According
2000 to a comment from remote-mips.c (where a call to symbol_file_add
2001 was commented out), making the call confuses GDB if more than one
2002 file is loaded in. Some targets do (e.g., remote-vx.c) but
2003 others don't (or didn't - perhaps they have all been deleted). */
2004
2005 print_transfer_performance (gdb_stdout, total_progress.data_count,
2006 total_progress.write_count,
2007 &start_time, &end_time);
2008
2009 do_cleanups (old_cleanups);
2010 }
2011
2012 /* Report how fast the transfer went. */
2013
2014 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2015 replaced by print_transfer_performance (with a very different
2016 function signature). */
2017
2018 void
2019 report_transfer_performance (unsigned long data_count, time_t start_time,
2020 time_t end_time)
2021 {
2022 struct timeval start, end;
2023
2024 start.tv_sec = start_time;
2025 start.tv_usec = 0;
2026 end.tv_sec = end_time;
2027 end.tv_usec = 0;
2028
2029 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2030 }
2031
2032 void
2033 print_transfer_performance (struct ui_file *stream,
2034 unsigned long data_count,
2035 unsigned long write_count,
2036 const struct timeval *start_time,
2037 const struct timeval *end_time)
2038 {
2039 ULONGEST time_count;
2040
2041 /* Compute the elapsed time in milliseconds, as a tradeoff between
2042 accuracy and overflow. */
2043 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2044 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2045
2046 ui_out_text (uiout, "Transfer rate: ");
2047 if (time_count > 0)
2048 {
2049 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2050
2051 if (ui_out_is_mi_like_p (uiout))
2052 {
2053 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2054 ui_out_text (uiout, " bits/sec");
2055 }
2056 else if (rate < 1024)
2057 {
2058 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2059 ui_out_text (uiout, " bytes/sec");
2060 }
2061 else
2062 {
2063 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2064 ui_out_text (uiout, " KB/sec");
2065 }
2066 }
2067 else
2068 {
2069 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2070 ui_out_text (uiout, " bits in <1 sec");
2071 }
2072 if (write_count > 0)
2073 {
2074 ui_out_text (uiout, ", ");
2075 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2076 ui_out_text (uiout, " bytes/write");
2077 }
2078 ui_out_text (uiout, ".\n");
2079 }
2080
2081 /* This function allows the addition of incrementally linked object files.
2082 It does not modify any state in the target, only in the debugger. */
2083 /* Note: ezannoni 2000-04-13 This function/command used to have a
2084 special case syntax for the rombug target (Rombug is the boot
2085 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2086 rombug case, the user doesn't need to supply a text address,
2087 instead a call to target_link() (in target.c) would supply the
2088 value to use. We are now discontinuing this type of ad hoc syntax. */
2089
2090 static void
2091 add_symbol_file_command (char *args, int from_tty)
2092 {
2093 struct gdbarch *gdbarch = get_current_arch ();
2094 char *filename = NULL;
2095 int flags = OBJF_USERLOADED;
2096 char *arg;
2097 int expecting_option = 0;
2098 int section_index = 0;
2099 int argcnt = 0;
2100 int sec_num = 0;
2101 int i;
2102 int expecting_sec_name = 0;
2103 int expecting_sec_addr = 0;
2104 char **argv;
2105
2106 struct sect_opt
2107 {
2108 char *name;
2109 char *value;
2110 };
2111
2112 struct section_addr_info *section_addrs;
2113 struct sect_opt *sect_opts = NULL;
2114 size_t num_sect_opts = 0;
2115 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2116
2117 num_sect_opts = 16;
2118 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2119 * sizeof (struct sect_opt));
2120
2121 dont_repeat ();
2122
2123 if (args == NULL)
2124 error (_("add-symbol-file takes a file name and an address"));
2125
2126 argv = gdb_buildargv (args);
2127 make_cleanup_freeargv (argv);
2128
2129 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2130 {
2131 /* Process the argument. */
2132 if (argcnt == 0)
2133 {
2134 /* The first argument is the file name. */
2135 filename = tilde_expand (arg);
2136 make_cleanup (xfree, filename);
2137 }
2138 else
2139 if (argcnt == 1)
2140 {
2141 /* The second argument is always the text address at which
2142 to load the program. */
2143 sect_opts[section_index].name = ".text";
2144 sect_opts[section_index].value = arg;
2145 if (++section_index >= num_sect_opts)
2146 {
2147 num_sect_opts *= 2;
2148 sect_opts = ((struct sect_opt *)
2149 xrealloc (sect_opts,
2150 num_sect_opts
2151 * sizeof (struct sect_opt)));
2152 }
2153 }
2154 else
2155 {
2156 /* It's an option (starting with '-') or it's an argument
2157 to an option */
2158
2159 if (*arg == '-')
2160 {
2161 if (strcmp (arg, "-readnow") == 0)
2162 flags |= OBJF_READNOW;
2163 else if (strcmp (arg, "-s") == 0)
2164 {
2165 expecting_sec_name = 1;
2166 expecting_sec_addr = 1;
2167 }
2168 }
2169 else
2170 {
2171 if (expecting_sec_name)
2172 {
2173 sect_opts[section_index].name = arg;
2174 expecting_sec_name = 0;
2175 }
2176 else
2177 if (expecting_sec_addr)
2178 {
2179 sect_opts[section_index].value = arg;
2180 expecting_sec_addr = 0;
2181 if (++section_index >= num_sect_opts)
2182 {
2183 num_sect_opts *= 2;
2184 sect_opts = ((struct sect_opt *)
2185 xrealloc (sect_opts,
2186 num_sect_opts
2187 * sizeof (struct sect_opt)));
2188 }
2189 }
2190 else
2191 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2192 }
2193 }
2194 }
2195
2196 /* This command takes at least two arguments. The first one is a
2197 filename, and the second is the address where this file has been
2198 loaded. Abort now if this address hasn't been provided by the
2199 user. */
2200 if (section_index < 1)
2201 error (_("The address where %s has been loaded is missing"), filename);
2202
2203 /* Print the prompt for the query below. And save the arguments into
2204 a sect_addr_info structure to be passed around to other
2205 functions. We have to split this up into separate print
2206 statements because hex_string returns a local static
2207 string. */
2208
2209 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2210 section_addrs = alloc_section_addr_info (section_index);
2211 make_cleanup (xfree, section_addrs);
2212 for (i = 0; i < section_index; i++)
2213 {
2214 CORE_ADDR addr;
2215 char *val = sect_opts[i].value;
2216 char *sec = sect_opts[i].name;
2217
2218 addr = parse_and_eval_address (val);
2219
2220 /* Here we store the section offsets in the order they were
2221 entered on the command line. */
2222 section_addrs->other[sec_num].name = sec;
2223 section_addrs->other[sec_num].addr = addr;
2224 printf_unfiltered ("\t%s_addr = %s\n", sec,
2225 paddress (gdbarch, addr));
2226 sec_num++;
2227
2228 /* The object's sections are initialized when a
2229 call is made to build_objfile_section_table (objfile).
2230 This happens in reread_symbols.
2231 At this point, we don't know what file type this is,
2232 so we can't determine what section names are valid. */
2233 }
2234
2235 if (from_tty && (!query ("%s", "")))
2236 error (_("Not confirmed."));
2237
2238 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2239 section_addrs, flags);
2240
2241 /* Getting new symbols may change our opinion about what is
2242 frameless. */
2243 reinit_frame_cache ();
2244 do_cleanups (my_cleanups);
2245 }
2246 \f
2247
2248 /* Re-read symbols if a symbol-file has changed. */
2249 void
2250 reread_symbols (void)
2251 {
2252 struct objfile *objfile;
2253 long new_modtime;
2254 int reread_one = 0;
2255 struct stat new_statbuf;
2256 int res;
2257
2258 /* With the addition of shared libraries, this should be modified,
2259 the load time should be saved in the partial symbol tables, since
2260 different tables may come from different source files. FIXME.
2261 This routine should then walk down each partial symbol table
2262 and see if the symbol table that it originates from has been changed */
2263
2264 for (objfile = object_files; objfile; objfile = objfile->next)
2265 {
2266 if (objfile->obfd)
2267 {
2268 #ifdef DEPRECATED_IBM6000_TARGET
2269 /* If this object is from a shared library, then you should
2270 stat on the library name, not member name. */
2271
2272 if (objfile->obfd->my_archive)
2273 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2274 else
2275 #endif
2276 res = stat (objfile->name, &new_statbuf);
2277 if (res != 0)
2278 {
2279 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2280 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2281 objfile->name);
2282 continue;
2283 }
2284 new_modtime = new_statbuf.st_mtime;
2285 if (new_modtime != objfile->mtime)
2286 {
2287 struct cleanup *old_cleanups;
2288 struct section_offsets *offsets;
2289 int num_offsets;
2290 char *obfd_filename;
2291
2292 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2293 objfile->name);
2294
2295 /* There are various functions like symbol_file_add,
2296 symfile_bfd_open, syms_from_objfile, etc., which might
2297 appear to do what we want. But they have various other
2298 effects which we *don't* want. So we just do stuff
2299 ourselves. We don't worry about mapped files (for one thing,
2300 any mapped file will be out of date). */
2301
2302 /* If we get an error, blow away this objfile (not sure if
2303 that is the correct response for things like shared
2304 libraries). */
2305 old_cleanups = make_cleanup_free_objfile (objfile);
2306 /* We need to do this whenever any symbols go away. */
2307 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2308
2309 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2310 bfd_get_filename (exec_bfd)) == 0)
2311 {
2312 /* Reload EXEC_BFD without asking anything. */
2313
2314 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2315 }
2316
2317 /* Clean up any state BFD has sitting around. We don't need
2318 to close the descriptor but BFD lacks a way of closing the
2319 BFD without closing the descriptor. */
2320 obfd_filename = bfd_get_filename (objfile->obfd);
2321 if (!bfd_close (objfile->obfd))
2322 error (_("Can't close BFD for %s: %s"), objfile->name,
2323 bfd_errmsg (bfd_get_error ()));
2324 if (remote_filename_p (obfd_filename))
2325 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2326 else
2327 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2328 if (objfile->obfd == NULL)
2329 error (_("Can't open %s to read symbols."), objfile->name);
2330 else
2331 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2332 /* bfd_openr sets cacheable to true, which is what we want. */
2333 if (!bfd_check_format (objfile->obfd, bfd_object))
2334 error (_("Can't read symbols from %s: %s."), objfile->name,
2335 bfd_errmsg (bfd_get_error ()));
2336
2337 /* Save the offsets, we will nuke them with the rest of the
2338 objfile_obstack. */
2339 num_offsets = objfile->num_sections;
2340 offsets = ((struct section_offsets *)
2341 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2342 memcpy (offsets, objfile->section_offsets,
2343 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2344
2345 /* Remove any references to this objfile in the global
2346 value lists. */
2347 preserve_values (objfile);
2348
2349 /* Nuke all the state that we will re-read. Much of the following
2350 code which sets things to NULL really is necessary to tell
2351 other parts of GDB that there is nothing currently there.
2352
2353 Try to keep the freeing order compatible with free_objfile. */
2354
2355 if (objfile->sf != NULL)
2356 {
2357 (*objfile->sf->sym_finish) (objfile);
2358 }
2359
2360 clear_objfile_data (objfile);
2361
2362 /* FIXME: Do we have to free a whole linked list, or is this
2363 enough? */
2364 if (objfile->global_psymbols.list)
2365 xfree (objfile->global_psymbols.list);
2366 memset (&objfile->global_psymbols, 0,
2367 sizeof (objfile->global_psymbols));
2368 if (objfile->static_psymbols.list)
2369 xfree (objfile->static_psymbols.list);
2370 memset (&objfile->static_psymbols, 0,
2371 sizeof (objfile->static_psymbols));
2372
2373 /* Free the obstacks for non-reusable objfiles */
2374 bcache_xfree (objfile->psymbol_cache);
2375 objfile->psymbol_cache = bcache_xmalloc ();
2376 bcache_xfree (objfile->macro_cache);
2377 objfile->macro_cache = bcache_xmalloc ();
2378 if (objfile->demangled_names_hash != NULL)
2379 {
2380 htab_delete (objfile->demangled_names_hash);
2381 objfile->demangled_names_hash = NULL;
2382 }
2383 obstack_free (&objfile->objfile_obstack, 0);
2384 objfile->sections = NULL;
2385 objfile->symtabs = NULL;
2386 objfile->psymtabs = NULL;
2387 objfile->psymtabs_addrmap = NULL;
2388 objfile->free_psymtabs = NULL;
2389 objfile->cp_namespace_symtab = NULL;
2390 objfile->msymbols = NULL;
2391 objfile->deprecated_sym_private = NULL;
2392 objfile->minimal_symbol_count = 0;
2393 memset (&objfile->msymbol_hash, 0,
2394 sizeof (objfile->msymbol_hash));
2395 memset (&objfile->msymbol_demangled_hash, 0,
2396 sizeof (objfile->msymbol_demangled_hash));
2397
2398 objfile->psymbol_cache = bcache_xmalloc ();
2399 objfile->macro_cache = bcache_xmalloc ();
2400 /* obstack_init also initializes the obstack so it is
2401 empty. We could use obstack_specify_allocation but
2402 gdb_obstack.h specifies the alloc/dealloc
2403 functions. */
2404 obstack_init (&objfile->objfile_obstack);
2405 if (build_objfile_section_table (objfile))
2406 {
2407 error (_("Can't find the file sections in `%s': %s"),
2408 objfile->name, bfd_errmsg (bfd_get_error ()));
2409 }
2410 terminate_minimal_symbol_table (objfile);
2411
2412 /* We use the same section offsets as from last time. I'm not
2413 sure whether that is always correct for shared libraries. */
2414 objfile->section_offsets = (struct section_offsets *)
2415 obstack_alloc (&objfile->objfile_obstack,
2416 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2417 memcpy (objfile->section_offsets, offsets,
2418 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2419 objfile->num_sections = num_offsets;
2420
2421 /* What the hell is sym_new_init for, anyway? The concept of
2422 distinguishing between the main file and additional files
2423 in this way seems rather dubious. */
2424 if (objfile == symfile_objfile)
2425 {
2426 (*objfile->sf->sym_new_init) (objfile);
2427 }
2428
2429 (*objfile->sf->sym_init) (objfile);
2430 clear_complaints (&symfile_complaints, 1, 1);
2431 /* The "mainline" parameter is a hideous hack; I think leaving it
2432 zero is OK since dbxread.c also does what it needs to do if
2433 objfile->global_psymbols.size is 0. */
2434 (*objfile->sf->sym_read) (objfile, 0);
2435 if (!objfile_has_symbols (objfile))
2436 {
2437 wrap_here ("");
2438 printf_unfiltered (_("(no debugging symbols found)\n"));
2439 wrap_here ("");
2440 }
2441
2442 /* We're done reading the symbol file; finish off complaints. */
2443 clear_complaints (&symfile_complaints, 0, 1);
2444
2445 /* Getting new symbols may change our opinion about what is
2446 frameless. */
2447
2448 reinit_frame_cache ();
2449
2450 /* Discard cleanups as symbol reading was successful. */
2451 discard_cleanups (old_cleanups);
2452
2453 /* If the mtime has changed between the time we set new_modtime
2454 and now, we *want* this to be out of date, so don't call stat
2455 again now. */
2456 objfile->mtime = new_modtime;
2457 reread_one = 1;
2458 reread_separate_symbols (objfile);
2459 init_entry_point_info (objfile);
2460 }
2461 }
2462 }
2463
2464 if (reread_one)
2465 {
2466 /* Notify objfiles that we've modified objfile sections. */
2467 objfiles_changed ();
2468
2469 clear_symtab_users ();
2470 /* At least one objfile has changed, so we can consider that
2471 the executable we're debugging has changed too. */
2472 observer_notify_executable_changed ();
2473 }
2474 }
2475
2476
2477 /* Handle separate debug info for OBJFILE, which has just been
2478 re-read:
2479 - If we had separate debug info before, but now we don't, get rid
2480 of the separated objfile.
2481 - If we didn't have separated debug info before, but now we do,
2482 read in the new separated debug info file.
2483 - If the debug link points to a different file, toss the old one
2484 and read the new one.
2485 This function does *not* handle the case where objfile is still
2486 using the same separate debug info file, but that file's timestamp
2487 has changed. That case should be handled by the loop in
2488 reread_symbols already. */
2489 static void
2490 reread_separate_symbols (struct objfile *objfile)
2491 {
2492 char *debug_file;
2493 unsigned long crc32;
2494
2495 /* Does the updated objfile's debug info live in a
2496 separate file? */
2497 debug_file = find_separate_debug_file (objfile);
2498
2499 if (objfile->separate_debug_objfile)
2500 {
2501 /* There are two cases where we need to get rid of
2502 the old separated debug info objfile:
2503 - if the new primary objfile doesn't have
2504 separated debug info, or
2505 - if the new primary objfile has separate debug
2506 info, but it's under a different filename.
2507
2508 If the old and new objfiles both have separate
2509 debug info, under the same filename, then we're
2510 okay --- if the separated file's contents have
2511 changed, we will have caught that when we
2512 visited it in this function's outermost
2513 loop. */
2514 if (! debug_file
2515 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2516 free_objfile (objfile->separate_debug_objfile);
2517 }
2518
2519 /* If the new objfile has separate debug info, and we
2520 haven't loaded it already, do so now. */
2521 if (debug_file
2522 && ! objfile->separate_debug_objfile)
2523 {
2524 /* Use the same section offset table as objfile itself.
2525 Preserve the flags from objfile that make sense. */
2526 objfile->separate_debug_objfile
2527 = (symbol_file_add_with_addrs_or_offsets
2528 (symfile_bfd_open (debug_file),
2529 info_verbose ? SYMFILE_VERBOSE : 0,
2530 0, /* No addr table. */
2531 objfile->section_offsets, objfile->num_sections,
2532 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2533 | OBJF_USERLOADED)));
2534 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2535 = objfile;
2536 }
2537 if (debug_file)
2538 xfree (debug_file);
2539 }
2540
2541
2542 \f
2543
2544
2545 typedef struct
2546 {
2547 char *ext;
2548 enum language lang;
2549 }
2550 filename_language;
2551
2552 static filename_language *filename_language_table;
2553 static int fl_table_size, fl_table_next;
2554
2555 static void
2556 add_filename_language (char *ext, enum language lang)
2557 {
2558 if (fl_table_next >= fl_table_size)
2559 {
2560 fl_table_size += 10;
2561 filename_language_table =
2562 xrealloc (filename_language_table,
2563 fl_table_size * sizeof (*filename_language_table));
2564 }
2565
2566 filename_language_table[fl_table_next].ext = xstrdup (ext);
2567 filename_language_table[fl_table_next].lang = lang;
2568 fl_table_next++;
2569 }
2570
2571 static char *ext_args;
2572 static void
2573 show_ext_args (struct ui_file *file, int from_tty,
2574 struct cmd_list_element *c, const char *value)
2575 {
2576 fprintf_filtered (file, _("\
2577 Mapping between filename extension and source language is \"%s\".\n"),
2578 value);
2579 }
2580
2581 static void
2582 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2583 {
2584 int i;
2585 char *cp = ext_args;
2586 enum language lang;
2587
2588 /* First arg is filename extension, starting with '.' */
2589 if (*cp != '.')
2590 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2591
2592 /* Find end of first arg. */
2593 while (*cp && !isspace (*cp))
2594 cp++;
2595
2596 if (*cp == '\0')
2597 error (_("'%s': two arguments required -- filename extension and language"),
2598 ext_args);
2599
2600 /* Null-terminate first arg */
2601 *cp++ = '\0';
2602
2603 /* Find beginning of second arg, which should be a source language. */
2604 while (*cp && isspace (*cp))
2605 cp++;
2606
2607 if (*cp == '\0')
2608 error (_("'%s': two arguments required -- filename extension and language"),
2609 ext_args);
2610
2611 /* Lookup the language from among those we know. */
2612 lang = language_enum (cp);
2613
2614 /* Now lookup the filename extension: do we already know it? */
2615 for (i = 0; i < fl_table_next; i++)
2616 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2617 break;
2618
2619 if (i >= fl_table_next)
2620 {
2621 /* new file extension */
2622 add_filename_language (ext_args, lang);
2623 }
2624 else
2625 {
2626 /* redefining a previously known filename extension */
2627
2628 /* if (from_tty) */
2629 /* query ("Really make files of type %s '%s'?", */
2630 /* ext_args, language_str (lang)); */
2631
2632 xfree (filename_language_table[i].ext);
2633 filename_language_table[i].ext = xstrdup (ext_args);
2634 filename_language_table[i].lang = lang;
2635 }
2636 }
2637
2638 static void
2639 info_ext_lang_command (char *args, int from_tty)
2640 {
2641 int i;
2642
2643 printf_filtered (_("Filename extensions and the languages they represent:"));
2644 printf_filtered ("\n\n");
2645 for (i = 0; i < fl_table_next; i++)
2646 printf_filtered ("\t%s\t- %s\n",
2647 filename_language_table[i].ext,
2648 language_str (filename_language_table[i].lang));
2649 }
2650
2651 static void
2652 init_filename_language_table (void)
2653 {
2654 if (fl_table_size == 0) /* protect against repetition */
2655 {
2656 fl_table_size = 20;
2657 fl_table_next = 0;
2658 filename_language_table =
2659 xmalloc (fl_table_size * sizeof (*filename_language_table));
2660 add_filename_language (".c", language_c);
2661 add_filename_language (".C", language_cplus);
2662 add_filename_language (".cc", language_cplus);
2663 add_filename_language (".cp", language_cplus);
2664 add_filename_language (".cpp", language_cplus);
2665 add_filename_language (".cxx", language_cplus);
2666 add_filename_language (".c++", language_cplus);
2667 add_filename_language (".java", language_java);
2668 add_filename_language (".class", language_java);
2669 add_filename_language (".m", language_objc);
2670 add_filename_language (".f", language_fortran);
2671 add_filename_language (".F", language_fortran);
2672 add_filename_language (".s", language_asm);
2673 add_filename_language (".sx", language_asm);
2674 add_filename_language (".S", language_asm);
2675 add_filename_language (".pas", language_pascal);
2676 add_filename_language (".p", language_pascal);
2677 add_filename_language (".pp", language_pascal);
2678 add_filename_language (".adb", language_ada);
2679 add_filename_language (".ads", language_ada);
2680 add_filename_language (".a", language_ada);
2681 add_filename_language (".ada", language_ada);
2682 }
2683 }
2684
2685 enum language
2686 deduce_language_from_filename (char *filename)
2687 {
2688 int i;
2689 char *cp;
2690
2691 if (filename != NULL)
2692 if ((cp = strrchr (filename, '.')) != NULL)
2693 for (i = 0; i < fl_table_next; i++)
2694 if (strcmp (cp, filename_language_table[i].ext) == 0)
2695 return filename_language_table[i].lang;
2696
2697 return language_unknown;
2698 }
2699 \f
2700 /* allocate_symtab:
2701
2702 Allocate and partly initialize a new symbol table. Return a pointer
2703 to it. error() if no space.
2704
2705 Caller must set these fields:
2706 LINETABLE(symtab)
2707 symtab->blockvector
2708 symtab->dirname
2709 symtab->free_code
2710 symtab->free_ptr
2711 possibly free_named_symtabs (symtab->filename);
2712 */
2713
2714 struct symtab *
2715 allocate_symtab (char *filename, struct objfile *objfile)
2716 {
2717 struct symtab *symtab;
2718
2719 symtab = (struct symtab *)
2720 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2721 memset (symtab, 0, sizeof (*symtab));
2722 symtab->filename = obsavestring (filename, strlen (filename),
2723 &objfile->objfile_obstack);
2724 symtab->fullname = NULL;
2725 symtab->language = deduce_language_from_filename (filename);
2726 symtab->debugformat = obsavestring ("unknown", 7,
2727 &objfile->objfile_obstack);
2728
2729 /* Hook it to the objfile it comes from */
2730
2731 symtab->objfile = objfile;
2732 symtab->next = objfile->symtabs;
2733 objfile->symtabs = symtab;
2734
2735 return (symtab);
2736 }
2737
2738 struct partial_symtab *
2739 allocate_psymtab (char *filename, struct objfile *objfile)
2740 {
2741 struct partial_symtab *psymtab;
2742
2743 if (objfile->free_psymtabs)
2744 {
2745 psymtab = objfile->free_psymtabs;
2746 objfile->free_psymtabs = psymtab->next;
2747 }
2748 else
2749 psymtab = (struct partial_symtab *)
2750 obstack_alloc (&objfile->objfile_obstack,
2751 sizeof (struct partial_symtab));
2752
2753 memset (psymtab, 0, sizeof (struct partial_symtab));
2754 psymtab->filename = obsavestring (filename, strlen (filename),
2755 &objfile->objfile_obstack);
2756 psymtab->symtab = NULL;
2757
2758 /* Prepend it to the psymtab list for the objfile it belongs to.
2759 Psymtabs are searched in most recent inserted -> least recent
2760 inserted order. */
2761
2762 psymtab->objfile = objfile;
2763 psymtab->next = objfile->psymtabs;
2764 objfile->psymtabs = psymtab;
2765 #if 0
2766 {
2767 struct partial_symtab **prev_pst;
2768 psymtab->objfile = objfile;
2769 psymtab->next = NULL;
2770 prev_pst = &(objfile->psymtabs);
2771 while ((*prev_pst) != NULL)
2772 prev_pst = &((*prev_pst)->next);
2773 (*prev_pst) = psymtab;
2774 }
2775 #endif
2776
2777 return (psymtab);
2778 }
2779
2780 void
2781 discard_psymtab (struct partial_symtab *pst)
2782 {
2783 struct partial_symtab **prev_pst;
2784
2785 /* From dbxread.c:
2786 Empty psymtabs happen as a result of header files which don't
2787 have any symbols in them. There can be a lot of them. But this
2788 check is wrong, in that a psymtab with N_SLINE entries but
2789 nothing else is not empty, but we don't realize that. Fixing
2790 that without slowing things down might be tricky. */
2791
2792 /* First, snip it out of the psymtab chain */
2793
2794 prev_pst = &(pst->objfile->psymtabs);
2795 while ((*prev_pst) != pst)
2796 prev_pst = &((*prev_pst)->next);
2797 (*prev_pst) = pst->next;
2798
2799 /* Next, put it on a free list for recycling */
2800
2801 pst->next = pst->objfile->free_psymtabs;
2802 pst->objfile->free_psymtabs = pst;
2803 }
2804 \f
2805
2806 /* Reset all data structures in gdb which may contain references to symbol
2807 table data. */
2808
2809 void
2810 clear_symtab_users (void)
2811 {
2812 /* Someday, we should do better than this, by only blowing away
2813 the things that really need to be blown. */
2814
2815 /* Clear the "current" symtab first, because it is no longer valid.
2816 breakpoint_re_set may try to access the current symtab. */
2817 clear_current_source_symtab_and_line ();
2818
2819 clear_displays ();
2820 breakpoint_re_set ();
2821 set_default_breakpoint (0, NULL, 0, 0, 0);
2822 clear_pc_function_cache ();
2823 observer_notify_new_objfile (NULL);
2824
2825 /* Clear globals which might have pointed into a removed objfile.
2826 FIXME: It's not clear which of these are supposed to persist
2827 between expressions and which ought to be reset each time. */
2828 expression_context_block = NULL;
2829 innermost_block = NULL;
2830
2831 /* Varobj may refer to old symbols, perform a cleanup. */
2832 varobj_invalidate ();
2833
2834 }
2835
2836 static void
2837 clear_symtab_users_cleanup (void *ignore)
2838 {
2839 clear_symtab_users ();
2840 }
2841
2842 /* clear_symtab_users_once:
2843
2844 This function is run after symbol reading, or from a cleanup.
2845 If an old symbol table was obsoleted, the old symbol table
2846 has been blown away, but the other GDB data structures that may
2847 reference it have not yet been cleared or re-directed. (The old
2848 symtab was zapped, and the cleanup queued, in free_named_symtab()
2849 below.)
2850
2851 This function can be queued N times as a cleanup, or called
2852 directly; it will do all the work the first time, and then will be a
2853 no-op until the next time it is queued. This works by bumping a
2854 counter at queueing time. Much later when the cleanup is run, or at
2855 the end of symbol processing (in case the cleanup is discarded), if
2856 the queued count is greater than the "done-count", we do the work
2857 and set the done-count to the queued count. If the queued count is
2858 less than or equal to the done-count, we just ignore the call. This
2859 is needed because reading a single .o file will often replace many
2860 symtabs (one per .h file, for example), and we don't want to reset
2861 the breakpoints N times in the user's face.
2862
2863 The reason we both queue a cleanup, and call it directly after symbol
2864 reading, is because the cleanup protects us in case of errors, but is
2865 discarded if symbol reading is successful. */
2866
2867 #if 0
2868 /* FIXME: As free_named_symtabs is currently a big noop this function
2869 is no longer needed. */
2870 static void clear_symtab_users_once (void);
2871
2872 static int clear_symtab_users_queued;
2873 static int clear_symtab_users_done;
2874
2875 static void
2876 clear_symtab_users_once (void)
2877 {
2878 /* Enforce once-per-`do_cleanups'-semantics */
2879 if (clear_symtab_users_queued <= clear_symtab_users_done)
2880 return;
2881 clear_symtab_users_done = clear_symtab_users_queued;
2882
2883 clear_symtab_users ();
2884 }
2885 #endif
2886
2887 /* Delete the specified psymtab, and any others that reference it. */
2888
2889 static void
2890 cashier_psymtab (struct partial_symtab *pst)
2891 {
2892 struct partial_symtab *ps, *pprev = NULL;
2893 int i;
2894
2895 /* Find its previous psymtab in the chain */
2896 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2897 {
2898 if (ps == pst)
2899 break;
2900 pprev = ps;
2901 }
2902
2903 if (ps)
2904 {
2905 /* Unhook it from the chain. */
2906 if (ps == pst->objfile->psymtabs)
2907 pst->objfile->psymtabs = ps->next;
2908 else
2909 pprev->next = ps->next;
2910
2911 /* FIXME, we can't conveniently deallocate the entries in the
2912 partial_symbol lists (global_psymbols/static_psymbols) that
2913 this psymtab points to. These just take up space until all
2914 the psymtabs are reclaimed. Ditto the dependencies list and
2915 filename, which are all in the objfile_obstack. */
2916
2917 /* We need to cashier any psymtab that has this one as a dependency... */
2918 again:
2919 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2920 {
2921 for (i = 0; i < ps->number_of_dependencies; i++)
2922 {
2923 if (ps->dependencies[i] == pst)
2924 {
2925 cashier_psymtab (ps);
2926 goto again; /* Must restart, chain has been munged. */
2927 }
2928 }
2929 }
2930 }
2931 }
2932
2933 /* If a symtab or psymtab for filename NAME is found, free it along
2934 with any dependent breakpoints, displays, etc.
2935 Used when loading new versions of object modules with the "add-file"
2936 command. This is only called on the top-level symtab or psymtab's name;
2937 it is not called for subsidiary files such as .h files.
2938
2939 Return value is 1 if we blew away the environment, 0 if not.
2940 FIXME. The return value appears to never be used.
2941
2942 FIXME. I think this is not the best way to do this. We should
2943 work on being gentler to the environment while still cleaning up
2944 all stray pointers into the freed symtab. */
2945
2946 int
2947 free_named_symtabs (char *name)
2948 {
2949 #if 0
2950 /* FIXME: With the new method of each objfile having it's own
2951 psymtab list, this function needs serious rethinking. In particular,
2952 why was it ever necessary to toss psymtabs with specific compilation
2953 unit filenames, as opposed to all psymtabs from a particular symbol
2954 file? -- fnf
2955 Well, the answer is that some systems permit reloading of particular
2956 compilation units. We want to blow away any old info about these
2957 compilation units, regardless of which objfiles they arrived in. --gnu. */
2958
2959 struct symtab *s;
2960 struct symtab *prev;
2961 struct partial_symtab *ps;
2962 struct blockvector *bv;
2963 int blewit = 0;
2964
2965 /* We only wack things if the symbol-reload switch is set. */
2966 if (!symbol_reloading)
2967 return 0;
2968
2969 /* Some symbol formats have trouble providing file names... */
2970 if (name == 0 || *name == '\0')
2971 return 0;
2972
2973 /* Look for a psymtab with the specified name. */
2974
2975 again2:
2976 for (ps = partial_symtab_list; ps; ps = ps->next)
2977 {
2978 if (strcmp (name, ps->filename) == 0)
2979 {
2980 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2981 goto again2; /* Must restart, chain has been munged */
2982 }
2983 }
2984
2985 /* Look for a symtab with the specified name. */
2986
2987 for (s = symtab_list; s; s = s->next)
2988 {
2989 if (strcmp (name, s->filename) == 0)
2990 break;
2991 prev = s;
2992 }
2993
2994 if (s)
2995 {
2996 if (s == symtab_list)
2997 symtab_list = s->next;
2998 else
2999 prev->next = s->next;
3000
3001 /* For now, queue a delete for all breakpoints, displays, etc., whether
3002 or not they depend on the symtab being freed. This should be
3003 changed so that only those data structures affected are deleted. */
3004
3005 /* But don't delete anything if the symtab is empty.
3006 This test is necessary due to a bug in "dbxread.c" that
3007 causes empty symtabs to be created for N_SO symbols that
3008 contain the pathname of the object file. (This problem
3009 has been fixed in GDB 3.9x). */
3010
3011 bv = BLOCKVECTOR (s);
3012 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3013 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3014 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3015 {
3016 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
3017 name);
3018 clear_symtab_users_queued++;
3019 make_cleanup (clear_symtab_users_once, 0);
3020 blewit = 1;
3021 }
3022 else
3023 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3024 name);
3025
3026 free_symtab (s);
3027 }
3028 else
3029 {
3030 /* It is still possible that some breakpoints will be affected
3031 even though no symtab was found, since the file might have
3032 been compiled without debugging, and hence not be associated
3033 with a symtab. In order to handle this correctly, we would need
3034 to keep a list of text address ranges for undebuggable files.
3035 For now, we do nothing, since this is a fairly obscure case. */
3036 ;
3037 }
3038
3039 /* FIXME, what about the minimal symbol table? */
3040 return blewit;
3041 #else
3042 return (0);
3043 #endif
3044 }
3045 \f
3046 /* Allocate and partially fill a partial symtab. It will be
3047 completely filled at the end of the symbol list.
3048
3049 FILENAME is the name of the symbol-file we are reading from. */
3050
3051 struct partial_symtab *
3052 start_psymtab_common (struct objfile *objfile,
3053 struct section_offsets *section_offsets, char *filename,
3054 CORE_ADDR textlow, struct partial_symbol **global_syms,
3055 struct partial_symbol **static_syms)
3056 {
3057 struct partial_symtab *psymtab;
3058
3059 psymtab = allocate_psymtab (filename, objfile);
3060 psymtab->section_offsets = section_offsets;
3061 psymtab->textlow = textlow;
3062 psymtab->texthigh = psymtab->textlow; /* default */
3063 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3064 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
3065 return (psymtab);
3066 }
3067 \f
3068 /* Helper function, initialises partial symbol structure and stashes
3069 it into objfile's bcache. Note that our caching mechanism will
3070 use all fields of struct partial_symbol to determine hash value of the
3071 structure. In other words, having two symbols with the same name but
3072 different domain (or address) is possible and correct. */
3073
3074 static const struct partial_symbol *
3075 add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3076 enum address_class class,
3077 long val, /* Value as a long */
3078 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3079 enum language language, struct objfile *objfile,
3080 int *added)
3081 {
3082 char *buf = name;
3083 /* psymbol is static so that there will be no uninitialized gaps in the
3084 structure which might contain random data, causing cache misses in
3085 bcache. */
3086 static struct partial_symbol psymbol;
3087
3088 if (name[namelength] != '\0')
3089 {
3090 buf = alloca (namelength + 1);
3091 /* Create local copy of the partial symbol */
3092 memcpy (buf, name, namelength);
3093 buf[namelength] = '\0';
3094 }
3095 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3096 if (val != 0)
3097 {
3098 SYMBOL_VALUE (&psymbol) = val;
3099 }
3100 else
3101 {
3102 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3103 }
3104 SYMBOL_SECTION (&psymbol) = 0;
3105 SYMBOL_LANGUAGE (&psymbol) = language;
3106 PSYMBOL_DOMAIN (&psymbol) = domain;
3107 PSYMBOL_CLASS (&psymbol) = class;
3108
3109 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3110
3111 /* Stash the partial symbol away in the cache */
3112 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3113 objfile->psymbol_cache, added);
3114 }
3115
3116 /* Helper function, adds partial symbol to the given partial symbol
3117 list. */
3118
3119 static void
3120 append_psymbol_to_list (struct psymbol_allocation_list *list,
3121 const struct partial_symbol *psym,
3122 struct objfile *objfile)
3123 {
3124 if (list->next >= list->list + list->size)
3125 extend_psymbol_list (list, objfile);
3126 *list->next++ = (struct partial_symbol *) psym;
3127 OBJSTAT (objfile, n_psyms++);
3128 }
3129
3130 /* Add a symbol with a long value to a psymtab.
3131 Since one arg is a struct, we pass in a ptr and deref it (sigh).
3132 Return the partial symbol that has been added. */
3133
3134 /* NOTE: carlton/2003-09-11: The reason why we return the partial
3135 symbol is so that callers can get access to the symbol's demangled
3136 name, which they don't have any cheap way to determine otherwise.
3137 (Currenly, dwarf2read.c is the only file who uses that information,
3138 though it's possible that other readers might in the future.)
3139 Elena wasn't thrilled about that, and I don't blame her, but we
3140 couldn't come up with a better way to get that information. If
3141 it's needed in other situations, we could consider breaking up
3142 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3143 cache. */
3144
3145 const struct partial_symbol *
3146 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
3147 enum address_class class,
3148 struct psymbol_allocation_list *list,
3149 long val, /* Value as a long */
3150 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3151 enum language language, struct objfile *objfile)
3152 {
3153 const struct partial_symbol *psym;
3154
3155 int added;
3156
3157 /* Stash the partial symbol away in the cache */
3158 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3159 val, coreaddr, language, objfile, &added);
3160
3161 /* Do not duplicate global partial symbols. */
3162 if (list == &objfile->global_psymbols
3163 && !added)
3164 return psym;
3165
3166 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3167 append_psymbol_to_list (list, psym, objfile);
3168 return psym;
3169 }
3170
3171 /* Initialize storage for partial symbols. */
3172
3173 void
3174 init_psymbol_list (struct objfile *objfile, int total_symbols)
3175 {
3176 /* Free any previously allocated psymbol lists. */
3177
3178 if (objfile->global_psymbols.list)
3179 {
3180 xfree (objfile->global_psymbols.list);
3181 }
3182 if (objfile->static_psymbols.list)
3183 {
3184 xfree (objfile->static_psymbols.list);
3185 }
3186
3187 /* Current best guess is that approximately a twentieth
3188 of the total symbols (in a debugging file) are global or static
3189 oriented symbols */
3190
3191 objfile->global_psymbols.size = total_symbols / 10;
3192 objfile->static_psymbols.size = total_symbols / 10;
3193
3194 if (objfile->global_psymbols.size > 0)
3195 {
3196 objfile->global_psymbols.next =
3197 objfile->global_psymbols.list = (struct partial_symbol **)
3198 xmalloc ((objfile->global_psymbols.size
3199 * sizeof (struct partial_symbol *)));
3200 }
3201 if (objfile->static_psymbols.size > 0)
3202 {
3203 objfile->static_psymbols.next =
3204 objfile->static_psymbols.list = (struct partial_symbol **)
3205 xmalloc ((objfile->static_psymbols.size
3206 * sizeof (struct partial_symbol *)));
3207 }
3208 }
3209
3210 /* OVERLAYS:
3211 The following code implements an abstraction for debugging overlay sections.
3212
3213 The target model is as follows:
3214 1) The gnu linker will permit multiple sections to be mapped into the
3215 same VMA, each with its own unique LMA (or load address).
3216 2) It is assumed that some runtime mechanism exists for mapping the
3217 sections, one by one, from the load address into the VMA address.
3218 3) This code provides a mechanism for gdb to keep track of which
3219 sections should be considered to be mapped from the VMA to the LMA.
3220 This information is used for symbol lookup, and memory read/write.
3221 For instance, if a section has been mapped then its contents
3222 should be read from the VMA, otherwise from the LMA.
3223
3224 Two levels of debugger support for overlays are available. One is
3225 "manual", in which the debugger relies on the user to tell it which
3226 overlays are currently mapped. This level of support is
3227 implemented entirely in the core debugger, and the information about
3228 whether a section is mapped is kept in the objfile->obj_section table.
3229
3230 The second level of support is "automatic", and is only available if
3231 the target-specific code provides functionality to read the target's
3232 overlay mapping table, and translate its contents for the debugger
3233 (by updating the mapped state information in the obj_section tables).
3234
3235 The interface is as follows:
3236 User commands:
3237 overlay map <name> -- tell gdb to consider this section mapped
3238 overlay unmap <name> -- tell gdb to consider this section unmapped
3239 overlay list -- list the sections that GDB thinks are mapped
3240 overlay read-target -- get the target's state of what's mapped
3241 overlay off/manual/auto -- set overlay debugging state
3242 Functional interface:
3243 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3244 section, return that section.
3245 find_pc_overlay(pc): find any overlay section that contains
3246 the pc, either in its VMA or its LMA
3247 section_is_mapped(sect): true if overlay is marked as mapped
3248 section_is_overlay(sect): true if section's VMA != LMA
3249 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3250 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3251 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3252 overlay_mapped_address(...): map an address from section's LMA to VMA
3253 overlay_unmapped_address(...): map an address from section's VMA to LMA
3254 symbol_overlayed_address(...): Return a "current" address for symbol:
3255 either in VMA or LMA depending on whether
3256 the symbol's section is currently mapped
3257 */
3258
3259 /* Overlay debugging state: */
3260
3261 enum overlay_debugging_state overlay_debugging = ovly_off;
3262 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3263
3264 /* Function: section_is_overlay (SECTION)
3265 Returns true if SECTION has VMA not equal to LMA, ie.
3266 SECTION is loaded at an address different from where it will "run". */
3267
3268 int
3269 section_is_overlay (struct obj_section *section)
3270 {
3271 if (overlay_debugging && section)
3272 {
3273 bfd *abfd = section->objfile->obfd;
3274 asection *bfd_section = section->the_bfd_section;
3275
3276 if (bfd_section_lma (abfd, bfd_section) != 0
3277 && bfd_section_lma (abfd, bfd_section)
3278 != bfd_section_vma (abfd, bfd_section))
3279 return 1;
3280 }
3281
3282 return 0;
3283 }
3284
3285 /* Function: overlay_invalidate_all (void)
3286 Invalidate the mapped state of all overlay sections (mark it as stale). */
3287
3288 static void
3289 overlay_invalidate_all (void)
3290 {
3291 struct objfile *objfile;
3292 struct obj_section *sect;
3293
3294 ALL_OBJSECTIONS (objfile, sect)
3295 if (section_is_overlay (sect))
3296 sect->ovly_mapped = -1;
3297 }
3298
3299 /* Function: section_is_mapped (SECTION)
3300 Returns true if section is an overlay, and is currently mapped.
3301
3302 Access to the ovly_mapped flag is restricted to this function, so
3303 that we can do automatic update. If the global flag
3304 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3305 overlay_invalidate_all. If the mapped state of the particular
3306 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3307
3308 int
3309 section_is_mapped (struct obj_section *osect)
3310 {
3311 struct gdbarch *gdbarch;
3312
3313 if (osect == 0 || !section_is_overlay (osect))
3314 return 0;
3315
3316 switch (overlay_debugging)
3317 {
3318 default:
3319 case ovly_off:
3320 return 0; /* overlay debugging off */
3321 case ovly_auto: /* overlay debugging automatic */
3322 /* Unles there is a gdbarch_overlay_update function,
3323 there's really nothing useful to do here (can't really go auto) */
3324 gdbarch = get_objfile_arch (osect->objfile);
3325 if (gdbarch_overlay_update_p (gdbarch))
3326 {
3327 if (overlay_cache_invalid)
3328 {
3329 overlay_invalidate_all ();
3330 overlay_cache_invalid = 0;
3331 }
3332 if (osect->ovly_mapped == -1)
3333 gdbarch_overlay_update (gdbarch, osect);
3334 }
3335 /* fall thru to manual case */
3336 case ovly_on: /* overlay debugging manual */
3337 return osect->ovly_mapped == 1;
3338 }
3339 }
3340
3341 /* Function: pc_in_unmapped_range
3342 If PC falls into the lma range of SECTION, return true, else false. */
3343
3344 CORE_ADDR
3345 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3346 {
3347 if (section_is_overlay (section))
3348 {
3349 bfd *abfd = section->objfile->obfd;
3350 asection *bfd_section = section->the_bfd_section;
3351
3352 /* We assume the LMA is relocated by the same offset as the VMA. */
3353 bfd_vma size = bfd_get_section_size (bfd_section);
3354 CORE_ADDR offset = obj_section_offset (section);
3355
3356 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3357 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3358 return 1;
3359 }
3360
3361 return 0;
3362 }
3363
3364 /* Function: pc_in_mapped_range
3365 If PC falls into the vma range of SECTION, return true, else false. */
3366
3367 CORE_ADDR
3368 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3369 {
3370 if (section_is_overlay (section))
3371 {
3372 if (obj_section_addr (section) <= pc
3373 && pc < obj_section_endaddr (section))
3374 return 1;
3375 }
3376
3377 return 0;
3378 }
3379
3380
3381 /* Return true if the mapped ranges of sections A and B overlap, false
3382 otherwise. */
3383 static int
3384 sections_overlap (struct obj_section *a, struct obj_section *b)
3385 {
3386 CORE_ADDR a_start = obj_section_addr (a);
3387 CORE_ADDR a_end = obj_section_endaddr (a);
3388 CORE_ADDR b_start = obj_section_addr (b);
3389 CORE_ADDR b_end = obj_section_endaddr (b);
3390
3391 return (a_start < b_end && b_start < a_end);
3392 }
3393
3394 /* Function: overlay_unmapped_address (PC, SECTION)
3395 Returns the address corresponding to PC in the unmapped (load) range.
3396 May be the same as PC. */
3397
3398 CORE_ADDR
3399 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3400 {
3401 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3402 {
3403 bfd *abfd = section->objfile->obfd;
3404 asection *bfd_section = section->the_bfd_section;
3405
3406 return pc + bfd_section_lma (abfd, bfd_section)
3407 - bfd_section_vma (abfd, bfd_section);
3408 }
3409
3410 return pc;
3411 }
3412
3413 /* Function: overlay_mapped_address (PC, SECTION)
3414 Returns the address corresponding to PC in the mapped (runtime) range.
3415 May be the same as PC. */
3416
3417 CORE_ADDR
3418 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3419 {
3420 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3421 {
3422 bfd *abfd = section->objfile->obfd;
3423 asection *bfd_section = section->the_bfd_section;
3424
3425 return pc + bfd_section_vma (abfd, bfd_section)
3426 - bfd_section_lma (abfd, bfd_section);
3427 }
3428
3429 return pc;
3430 }
3431
3432
3433 /* Function: symbol_overlayed_address
3434 Return one of two addresses (relative to the VMA or to the LMA),
3435 depending on whether the section is mapped or not. */
3436
3437 CORE_ADDR
3438 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3439 {
3440 if (overlay_debugging)
3441 {
3442 /* If the symbol has no section, just return its regular address. */
3443 if (section == 0)
3444 return address;
3445 /* If the symbol's section is not an overlay, just return its address */
3446 if (!section_is_overlay (section))
3447 return address;
3448 /* If the symbol's section is mapped, just return its address */
3449 if (section_is_mapped (section))
3450 return address;
3451 /*
3452 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3453 * then return its LOADED address rather than its vma address!!
3454 */
3455 return overlay_unmapped_address (address, section);
3456 }
3457 return address;
3458 }
3459
3460 /* Function: find_pc_overlay (PC)
3461 Return the best-match overlay section for PC:
3462 If PC matches a mapped overlay section's VMA, return that section.
3463 Else if PC matches an unmapped section's VMA, return that section.
3464 Else if PC matches an unmapped section's LMA, return that section. */
3465
3466 struct obj_section *
3467 find_pc_overlay (CORE_ADDR pc)
3468 {
3469 struct objfile *objfile;
3470 struct obj_section *osect, *best_match = NULL;
3471
3472 if (overlay_debugging)
3473 ALL_OBJSECTIONS (objfile, osect)
3474 if (section_is_overlay (osect))
3475 {
3476 if (pc_in_mapped_range (pc, osect))
3477 {
3478 if (section_is_mapped (osect))
3479 return osect;
3480 else
3481 best_match = osect;
3482 }
3483 else if (pc_in_unmapped_range (pc, osect))
3484 best_match = osect;
3485 }
3486 return best_match;
3487 }
3488
3489 /* Function: find_pc_mapped_section (PC)
3490 If PC falls into the VMA address range of an overlay section that is
3491 currently marked as MAPPED, return that section. Else return NULL. */
3492
3493 struct obj_section *
3494 find_pc_mapped_section (CORE_ADDR pc)
3495 {
3496 struct objfile *objfile;
3497 struct obj_section *osect;
3498
3499 if (overlay_debugging)
3500 ALL_OBJSECTIONS (objfile, osect)
3501 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3502 return osect;
3503
3504 return NULL;
3505 }
3506
3507 /* Function: list_overlays_command
3508 Print a list of mapped sections and their PC ranges */
3509
3510 void
3511 list_overlays_command (char *args, int from_tty)
3512 {
3513 int nmapped = 0;
3514 struct objfile *objfile;
3515 struct obj_section *osect;
3516
3517 if (overlay_debugging)
3518 ALL_OBJSECTIONS (objfile, osect)
3519 if (section_is_mapped (osect))
3520 {
3521 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3522 const char *name;
3523 bfd_vma lma, vma;
3524 int size;
3525
3526 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3527 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3528 size = bfd_get_section_size (osect->the_bfd_section);
3529 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3530
3531 printf_filtered ("Section %s, loaded at ", name);
3532 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3533 puts_filtered (" - ");
3534 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3535 printf_filtered (", mapped at ");
3536 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3537 puts_filtered (" - ");
3538 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3539 puts_filtered ("\n");
3540
3541 nmapped++;
3542 }
3543 if (nmapped == 0)
3544 printf_filtered (_("No sections are mapped.\n"));
3545 }
3546
3547 /* Function: map_overlay_command
3548 Mark the named section as mapped (ie. residing at its VMA address). */
3549
3550 void
3551 map_overlay_command (char *args, int from_tty)
3552 {
3553 struct objfile *objfile, *objfile2;
3554 struct obj_section *sec, *sec2;
3555
3556 if (!overlay_debugging)
3557 error (_("\
3558 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3559 the 'overlay manual' command."));
3560
3561 if (args == 0 || *args == 0)
3562 error (_("Argument required: name of an overlay section"));
3563
3564 /* First, find a section matching the user supplied argument */
3565 ALL_OBJSECTIONS (objfile, sec)
3566 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3567 {
3568 /* Now, check to see if the section is an overlay. */
3569 if (!section_is_overlay (sec))
3570 continue; /* not an overlay section */
3571
3572 /* Mark the overlay as "mapped" */
3573 sec->ovly_mapped = 1;
3574
3575 /* Next, make a pass and unmap any sections that are
3576 overlapped by this new section: */
3577 ALL_OBJSECTIONS (objfile2, sec2)
3578 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3579 {
3580 if (info_verbose)
3581 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3582 bfd_section_name (objfile->obfd,
3583 sec2->the_bfd_section));
3584 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3585 }
3586 return;
3587 }
3588 error (_("No overlay section called %s"), args);
3589 }
3590
3591 /* Function: unmap_overlay_command
3592 Mark the overlay section as unmapped
3593 (ie. resident in its LMA address range, rather than the VMA range). */
3594
3595 void
3596 unmap_overlay_command (char *args, int from_tty)
3597 {
3598 struct objfile *objfile;
3599 struct obj_section *sec;
3600
3601 if (!overlay_debugging)
3602 error (_("\
3603 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3604 the 'overlay manual' command."));
3605
3606 if (args == 0 || *args == 0)
3607 error (_("Argument required: name of an overlay section"));
3608
3609 /* First, find a section matching the user supplied argument */
3610 ALL_OBJSECTIONS (objfile, sec)
3611 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3612 {
3613 if (!sec->ovly_mapped)
3614 error (_("Section %s is not mapped"), args);
3615 sec->ovly_mapped = 0;
3616 return;
3617 }
3618 error (_("No overlay section called %s"), args);
3619 }
3620
3621 /* Function: overlay_auto_command
3622 A utility command to turn on overlay debugging.
3623 Possibly this should be done via a set/show command. */
3624
3625 static void
3626 overlay_auto_command (char *args, int from_tty)
3627 {
3628 overlay_debugging = ovly_auto;
3629 enable_overlay_breakpoints ();
3630 if (info_verbose)
3631 printf_unfiltered (_("Automatic overlay debugging enabled."));
3632 }
3633
3634 /* Function: overlay_manual_command
3635 A utility command to turn on overlay debugging.
3636 Possibly this should be done via a set/show command. */
3637
3638 static void
3639 overlay_manual_command (char *args, int from_tty)
3640 {
3641 overlay_debugging = ovly_on;
3642 disable_overlay_breakpoints ();
3643 if (info_verbose)
3644 printf_unfiltered (_("Overlay debugging enabled."));
3645 }
3646
3647 /* Function: overlay_off_command
3648 A utility command to turn on overlay debugging.
3649 Possibly this should be done via a set/show command. */
3650
3651 static void
3652 overlay_off_command (char *args, int from_tty)
3653 {
3654 overlay_debugging = ovly_off;
3655 disable_overlay_breakpoints ();
3656 if (info_verbose)
3657 printf_unfiltered (_("Overlay debugging disabled."));
3658 }
3659
3660 static void
3661 overlay_load_command (char *args, int from_tty)
3662 {
3663 struct gdbarch *gdbarch = get_current_arch ();
3664
3665 if (gdbarch_overlay_update_p (gdbarch))
3666 gdbarch_overlay_update (gdbarch, NULL);
3667 else
3668 error (_("This target does not know how to read its overlay state."));
3669 }
3670
3671 /* Function: overlay_command
3672 A place-holder for a mis-typed command */
3673
3674 /* Command list chain containing all defined "overlay" subcommands. */
3675 struct cmd_list_element *overlaylist;
3676
3677 static void
3678 overlay_command (char *args, int from_tty)
3679 {
3680 printf_unfiltered
3681 ("\"overlay\" must be followed by the name of an overlay command.\n");
3682 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3683 }
3684
3685
3686 /* Target Overlays for the "Simplest" overlay manager:
3687
3688 This is GDB's default target overlay layer. It works with the
3689 minimal overlay manager supplied as an example by Cygnus. The
3690 entry point is via a function pointer "gdbarch_overlay_update",
3691 so targets that use a different runtime overlay manager can
3692 substitute their own overlay_update function and take over the
3693 function pointer.
3694
3695 The overlay_update function pokes around in the target's data structures
3696 to see what overlays are mapped, and updates GDB's overlay mapping with
3697 this information.
3698
3699 In this simple implementation, the target data structures are as follows:
3700 unsigned _novlys; /# number of overlay sections #/
3701 unsigned _ovly_table[_novlys][4] = {
3702 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3703 {..., ..., ..., ...},
3704 }
3705 unsigned _novly_regions; /# number of overlay regions #/
3706 unsigned _ovly_region_table[_novly_regions][3] = {
3707 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3708 {..., ..., ...},
3709 }
3710 These functions will attempt to update GDB's mappedness state in the
3711 symbol section table, based on the target's mappedness state.
3712
3713 To do this, we keep a cached copy of the target's _ovly_table, and
3714 attempt to detect when the cached copy is invalidated. The main
3715 entry point is "simple_overlay_update(SECT), which looks up SECT in
3716 the cached table and re-reads only the entry for that section from
3717 the target (whenever possible).
3718 */
3719
3720 /* Cached, dynamically allocated copies of the target data structures: */
3721 static unsigned (*cache_ovly_table)[4] = 0;
3722 #if 0
3723 static unsigned (*cache_ovly_region_table)[3] = 0;
3724 #endif
3725 static unsigned cache_novlys = 0;
3726 #if 0
3727 static unsigned cache_novly_regions = 0;
3728 #endif
3729 static CORE_ADDR cache_ovly_table_base = 0;
3730 #if 0
3731 static CORE_ADDR cache_ovly_region_table_base = 0;
3732 #endif
3733 enum ovly_index
3734 {
3735 VMA, SIZE, LMA, MAPPED
3736 };
3737
3738 /* Throw away the cached copy of _ovly_table */
3739 static void
3740 simple_free_overlay_table (void)
3741 {
3742 if (cache_ovly_table)
3743 xfree (cache_ovly_table);
3744 cache_novlys = 0;
3745 cache_ovly_table = NULL;
3746 cache_ovly_table_base = 0;
3747 }
3748
3749 #if 0
3750 /* Throw away the cached copy of _ovly_region_table */
3751 static void
3752 simple_free_overlay_region_table (void)
3753 {
3754 if (cache_ovly_region_table)
3755 xfree (cache_ovly_region_table);
3756 cache_novly_regions = 0;
3757 cache_ovly_region_table = NULL;
3758 cache_ovly_region_table_base = 0;
3759 }
3760 #endif
3761
3762 /* Read an array of ints of size SIZE from the target into a local buffer.
3763 Convert to host order. int LEN is number of ints */
3764 static void
3765 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3766 int len, int size, enum bfd_endian byte_order)
3767 {
3768 /* FIXME (alloca): Not safe if array is very large. */
3769 gdb_byte *buf = alloca (len * size);
3770 int i;
3771
3772 read_memory (memaddr, buf, len * size);
3773 for (i = 0; i < len; i++)
3774 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3775 }
3776
3777 /* Find and grab a copy of the target _ovly_table
3778 (and _novlys, which is needed for the table's size) */
3779 static int
3780 simple_read_overlay_table (void)
3781 {
3782 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3783 struct gdbarch *gdbarch;
3784 int word_size;
3785 enum bfd_endian byte_order;
3786
3787 simple_free_overlay_table ();
3788 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3789 if (! novlys_msym)
3790 {
3791 error (_("Error reading inferior's overlay table: "
3792 "couldn't find `_novlys' variable\n"
3793 "in inferior. Use `overlay manual' mode."));
3794 return 0;
3795 }
3796
3797 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3798 if (! ovly_table_msym)
3799 {
3800 error (_("Error reading inferior's overlay table: couldn't find "
3801 "`_ovly_table' array\n"
3802 "in inferior. Use `overlay manual' mode."));
3803 return 0;
3804 }
3805
3806 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3807 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3808 byte_order = gdbarch_byte_order (gdbarch);
3809
3810 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3811 4, byte_order);
3812 cache_ovly_table
3813 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3814 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3815 read_target_long_array (cache_ovly_table_base,
3816 (unsigned int *) cache_ovly_table,
3817 cache_novlys * 4, word_size, byte_order);
3818
3819 return 1; /* SUCCESS */
3820 }
3821
3822 #if 0
3823 /* Find and grab a copy of the target _ovly_region_table
3824 (and _novly_regions, which is needed for the table's size) */
3825 static int
3826 simple_read_overlay_region_table (void)
3827 {
3828 struct minimal_symbol *msym;
3829 struct gdbarch *gdbarch;
3830 int word_size;
3831 enum bfd_endian byte_order;
3832
3833 simple_free_overlay_region_table ();
3834 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3835 if (msym == NULL)
3836 return 0; /* failure */
3837
3838 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3839 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3840 byte_order = gdbarch_byte_order (gdbarch);
3841
3842 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3843 4, byte_order);
3844
3845 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3846 if (cache_ovly_region_table != NULL)
3847 {
3848 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3849 if (msym != NULL)
3850 {
3851 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3852 read_target_long_array (cache_ovly_region_table_base,
3853 (unsigned int *) cache_ovly_region_table,
3854 cache_novly_regions * 3,
3855 word_size, byte_order);
3856 }
3857 else
3858 return 0; /* failure */
3859 }
3860 else
3861 return 0; /* failure */
3862 return 1; /* SUCCESS */
3863 }
3864 #endif
3865
3866 /* Function: simple_overlay_update_1
3867 A helper function for simple_overlay_update. Assuming a cached copy
3868 of _ovly_table exists, look through it to find an entry whose vma,
3869 lma and size match those of OSECT. Re-read the entry and make sure
3870 it still matches OSECT (else the table may no longer be valid).
3871 Set OSECT's mapped state to match the entry. Return: 1 for
3872 success, 0 for failure. */
3873
3874 static int
3875 simple_overlay_update_1 (struct obj_section *osect)
3876 {
3877 int i, size;
3878 bfd *obfd = osect->objfile->obfd;
3879 asection *bsect = osect->the_bfd_section;
3880 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3881 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3882 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3883
3884 size = bfd_get_section_size (osect->the_bfd_section);
3885 for (i = 0; i < cache_novlys; i++)
3886 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3887 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3888 /* && cache_ovly_table[i][SIZE] == size */ )
3889 {
3890 read_target_long_array (cache_ovly_table_base + i * word_size,
3891 (unsigned int *) cache_ovly_table[i],
3892 4, word_size, byte_order);
3893 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3894 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3895 /* && cache_ovly_table[i][SIZE] == size */ )
3896 {
3897 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3898 return 1;
3899 }
3900 else /* Warning! Warning! Target's ovly table has changed! */
3901 return 0;
3902 }
3903 return 0;
3904 }
3905
3906 /* Function: simple_overlay_update
3907 If OSECT is NULL, then update all sections' mapped state
3908 (after re-reading the entire target _ovly_table).
3909 If OSECT is non-NULL, then try to find a matching entry in the
3910 cached ovly_table and update only OSECT's mapped state.
3911 If a cached entry can't be found or the cache isn't valid, then
3912 re-read the entire cache, and go ahead and update all sections. */
3913
3914 void
3915 simple_overlay_update (struct obj_section *osect)
3916 {
3917 struct objfile *objfile;
3918
3919 /* Were we given an osect to look up? NULL means do all of them. */
3920 if (osect)
3921 /* Have we got a cached copy of the target's overlay table? */
3922 if (cache_ovly_table != NULL)
3923 /* Does its cached location match what's currently in the symtab? */
3924 if (cache_ovly_table_base ==
3925 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3926 /* Then go ahead and try to look up this single section in the cache */
3927 if (simple_overlay_update_1 (osect))
3928 /* Found it! We're done. */
3929 return;
3930
3931 /* Cached table no good: need to read the entire table anew.
3932 Or else we want all the sections, in which case it's actually
3933 more efficient to read the whole table in one block anyway. */
3934
3935 if (! simple_read_overlay_table ())
3936 return;
3937
3938 /* Now may as well update all sections, even if only one was requested. */
3939 ALL_OBJSECTIONS (objfile, osect)
3940 if (section_is_overlay (osect))
3941 {
3942 int i, size;
3943 bfd *obfd = osect->objfile->obfd;
3944 asection *bsect = osect->the_bfd_section;
3945
3946 size = bfd_get_section_size (bsect);
3947 for (i = 0; i < cache_novlys; i++)
3948 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3949 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3950 /* && cache_ovly_table[i][SIZE] == size */ )
3951 { /* obj_section matches i'th entry in ovly_table */
3952 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3953 break; /* finished with inner for loop: break out */
3954 }
3955 }
3956 }
3957
3958 /* Set the output sections and output offsets for section SECTP in
3959 ABFD. The relocation code in BFD will read these offsets, so we
3960 need to be sure they're initialized. We map each section to itself,
3961 with no offset; this means that SECTP->vma will be honored. */
3962
3963 static void
3964 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3965 {
3966 sectp->output_section = sectp;
3967 sectp->output_offset = 0;
3968 }
3969
3970 /* Relocate the contents of a debug section SECTP in ABFD. The
3971 contents are stored in BUF if it is non-NULL, or returned in a
3972 malloc'd buffer otherwise.
3973
3974 For some platforms and debug info formats, shared libraries contain
3975 relocations against the debug sections (particularly for DWARF-2;
3976 one affected platform is PowerPC GNU/Linux, although it depends on
3977 the version of the linker in use). Also, ELF object files naturally
3978 have unresolved relocations for their debug sections. We need to apply
3979 the relocations in order to get the locations of symbols correct.
3980 Another example that may require relocation processing, is the
3981 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3982 debug section. */
3983
3984 bfd_byte *
3985 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3986 {
3987 /* We're only interested in sections with relocation
3988 information. */
3989 if ((sectp->flags & SEC_RELOC) == 0)
3990 return NULL;
3991
3992 /* We will handle section offsets properly elsewhere, so relocate as if
3993 all sections begin at 0. */
3994 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3995
3996 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3997 }
3998
3999 struct symfile_segment_data *
4000 get_symfile_segment_data (bfd *abfd)
4001 {
4002 struct sym_fns *sf = find_sym_fns (abfd);
4003
4004 if (sf == NULL)
4005 return NULL;
4006
4007 return sf->sym_segments (abfd);
4008 }
4009
4010 void
4011 free_symfile_segment_data (struct symfile_segment_data *data)
4012 {
4013 xfree (data->segment_bases);
4014 xfree (data->segment_sizes);
4015 xfree (data->segment_info);
4016 xfree (data);
4017 }
4018
4019
4020 /* Given:
4021 - DATA, containing segment addresses from the object file ABFD, and
4022 the mapping from ABFD's sections onto the segments that own them,
4023 and
4024 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
4025 segment addresses reported by the target,
4026 store the appropriate offsets for each section in OFFSETS.
4027
4028 If there are fewer entries in SEGMENT_BASES than there are segments
4029 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4030
4031 If there are more entries, then ignore the extra. The target may
4032 not be able to distinguish between an empty data segment and a
4033 missing data segment; a missing text segment is less plausible. */
4034 int
4035 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4036 struct section_offsets *offsets,
4037 int num_segment_bases,
4038 const CORE_ADDR *segment_bases)
4039 {
4040 int i;
4041 asection *sect;
4042
4043 /* It doesn't make sense to call this function unless you have some
4044 segment base addresses. */
4045 gdb_assert (segment_bases > 0);
4046
4047 /* If we do not have segment mappings for the object file, we
4048 can not relocate it by segments. */
4049 gdb_assert (data != NULL);
4050 gdb_assert (data->num_segments > 0);
4051
4052 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4053 {
4054 int which = data->segment_info[i];
4055
4056 gdb_assert (0 <= which && which <= data->num_segments);
4057
4058 /* Don't bother computing offsets for sections that aren't
4059 loaded as part of any segment. */
4060 if (! which)
4061 continue;
4062
4063 /* Use the last SEGMENT_BASES entry as the address of any extra
4064 segments mentioned in DATA->segment_info. */
4065 if (which > num_segment_bases)
4066 which = num_segment_bases;
4067
4068 offsets->offsets[i] = (segment_bases[which - 1]
4069 - data->segment_bases[which - 1]);
4070 }
4071
4072 return 1;
4073 }
4074
4075 static void
4076 symfile_find_segment_sections (struct objfile *objfile)
4077 {
4078 bfd *abfd = objfile->obfd;
4079 int i;
4080 asection *sect;
4081 struct symfile_segment_data *data;
4082
4083 data = get_symfile_segment_data (objfile->obfd);
4084 if (data == NULL)
4085 return;
4086
4087 if (data->num_segments != 1 && data->num_segments != 2)
4088 {
4089 free_symfile_segment_data (data);
4090 return;
4091 }
4092
4093 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4094 {
4095 CORE_ADDR vma;
4096 int which = data->segment_info[i];
4097
4098 if (which == 1)
4099 {
4100 if (objfile->sect_index_text == -1)
4101 objfile->sect_index_text = sect->index;
4102
4103 if (objfile->sect_index_rodata == -1)
4104 objfile->sect_index_rodata = sect->index;
4105 }
4106 else if (which == 2)
4107 {
4108 if (objfile->sect_index_data == -1)
4109 objfile->sect_index_data = sect->index;
4110
4111 if (objfile->sect_index_bss == -1)
4112 objfile->sect_index_bss = sect->index;
4113 }
4114 }
4115
4116 free_symfile_segment_data (data);
4117 }
4118
4119 void
4120 _initialize_symfile (void)
4121 {
4122 struct cmd_list_element *c;
4123
4124 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4125 Load symbol table from executable file FILE.\n\
4126 The `file' command can also load symbol tables, as well as setting the file\n\
4127 to execute."), &cmdlist);
4128 set_cmd_completer (c, filename_completer);
4129
4130 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
4131 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
4132 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
4133 ADDR is the starting address of the file's text.\n\
4134 The optional arguments are section-name section-address pairs and\n\
4135 should be specified if the data and bss segments are not contiguous\n\
4136 with the text. SECT is a section name to be loaded at SECT_ADDR."),
4137 &cmdlist);
4138 set_cmd_completer (c, filename_completer);
4139
4140 c = add_cmd ("load", class_files, load_command, _("\
4141 Dynamically load FILE into the running program, and record its symbols\n\
4142 for access from GDB.\n\
4143 A load OFFSET may also be given."), &cmdlist);
4144 set_cmd_completer (c, filename_completer);
4145
4146 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4147 &symbol_reloading, _("\
4148 Set dynamic symbol table reloading multiple times in one run."), _("\
4149 Show dynamic symbol table reloading multiple times in one run."), NULL,
4150 NULL,
4151 show_symbol_reloading,
4152 &setlist, &showlist);
4153
4154 add_prefix_cmd ("overlay", class_support, overlay_command,
4155 _("Commands for debugging overlays."), &overlaylist,
4156 "overlay ", 0, &cmdlist);
4157
4158 add_com_alias ("ovly", "overlay", class_alias, 1);
4159 add_com_alias ("ov", "overlay", class_alias, 1);
4160
4161 add_cmd ("map-overlay", class_support, map_overlay_command,
4162 _("Assert that an overlay section is mapped."), &overlaylist);
4163
4164 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4165 _("Assert that an overlay section is unmapped."), &overlaylist);
4166
4167 add_cmd ("list-overlays", class_support, list_overlays_command,
4168 _("List mappings of overlay sections."), &overlaylist);
4169
4170 add_cmd ("manual", class_support, overlay_manual_command,
4171 _("Enable overlay debugging."), &overlaylist);
4172 add_cmd ("off", class_support, overlay_off_command,
4173 _("Disable overlay debugging."), &overlaylist);
4174 add_cmd ("auto", class_support, overlay_auto_command,
4175 _("Enable automatic overlay debugging."), &overlaylist);
4176 add_cmd ("load-target", class_support, overlay_load_command,
4177 _("Read the overlay mapping state from the target."), &overlaylist);
4178
4179 /* Filename extension to source language lookup table: */
4180 init_filename_language_table ();
4181 add_setshow_string_noescape_cmd ("extension-language", class_files,
4182 &ext_args, _("\
4183 Set mapping between filename extension and source language."), _("\
4184 Show mapping between filename extension and source language."), _("\
4185 Usage: set extension-language .foo bar"),
4186 set_ext_lang_command,
4187 show_ext_args,
4188 &setlist, &showlist);
4189
4190 add_info ("extensions", info_ext_lang_command,
4191 _("All filename extensions associated with a source language."));
4192
4193 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4194 &debug_file_directory, _("\
4195 Set the directory where separate debug symbols are searched for."), _("\
4196 Show the directory where separate debug symbols are searched for."), _("\
4197 Separate debug symbols are first searched for in the same\n\
4198 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4199 and lastly at the path of the directory of the binary with\n\
4200 the global debug-file directory prepended."),
4201 NULL,
4202 show_debug_file_directory,
4203 &setlist, &showlist);
4204 }
This page took 0.12502 seconds and 4 git commands to generate.