2004-04-26 Orjan Friberg <orjanf@axis.com>
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h" /* for write_pc */
42 #include "filenames.h" /* for DOSish file names */
43 #include "gdb-stabs.h"
44 #include "gdb_obstack.h"
45 #include "completer.h"
46 #include "bcache.h"
47 #include "hashtab.h"
48 #include "readline/readline.h"
49 #include "gdb_assert.h"
50 #include "block.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include <time.h>
58
59 #ifndef O_BINARY
60 #define O_BINARY 0
61 #endif
62
63 #ifdef HPUXHPPA
64
65 /* Some HP-UX related globals to clear when a new "main"
66 symbol file is loaded. HP-specific. */
67
68 extern int hp_cxx_exception_support_initialized;
69 #define RESET_HP_UX_GLOBALS() do {\
70 deprecated_hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
71 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
72 } while (0)
73 #endif
74
75 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
76 void (*deprecated_show_load_progress) (const char *section,
77 unsigned long section_sent,
78 unsigned long section_size,
79 unsigned long total_sent,
80 unsigned long total_size);
81 void (*pre_add_symbol_hook) (const char *);
82 void (*post_add_symbol_hook) (void);
83 void (*deprecated_target_new_objfile_hook) (struct objfile *);
84
85 static void clear_symtab_users_cleanup (void *ignore);
86
87 /* Global variables owned by this file */
88 int readnow_symbol_files; /* Read full symbols immediately */
89
90 /* External variables and functions referenced. */
91
92 extern void report_transfer_performance (unsigned long, time_t, time_t);
93
94 /* Functions this file defines */
95
96 #if 0
97 static int simple_read_overlay_region_table (void);
98 static void simple_free_overlay_region_table (void);
99 #endif
100
101 static void set_initial_language (void);
102
103 static void load_command (char *, int);
104
105 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
106
107 static void add_symbol_file_command (char *, int);
108
109 static void add_shared_symbol_files_command (char *, int);
110
111 static void reread_separate_symbols (struct objfile *objfile);
112
113 static void cashier_psymtab (struct partial_symtab *);
114
115 bfd *symfile_bfd_open (char *);
116
117 int get_section_index (struct objfile *, char *);
118
119 static void find_sym_fns (struct objfile *);
120
121 static void decrement_reading_symtab (void *);
122
123 static void overlay_invalidate_all (void);
124
125 static int overlay_is_mapped (struct obj_section *);
126
127 void list_overlays_command (char *, int);
128
129 void map_overlay_command (char *, int);
130
131 void unmap_overlay_command (char *, int);
132
133 static void overlay_auto_command (char *, int);
134
135 static void overlay_manual_command (char *, int);
136
137 static void overlay_off_command (char *, int);
138
139 static void overlay_load_command (char *, int);
140
141 static void overlay_command (char *, int);
142
143 static void simple_free_overlay_table (void);
144
145 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
146
147 static int simple_read_overlay_table (void);
148
149 static int simple_overlay_update_1 (struct obj_section *);
150
151 static void add_filename_language (char *ext, enum language lang);
152
153 static void set_ext_lang_command (char *args, int from_tty);
154
155 static void info_ext_lang_command (char *args, int from_tty);
156
157 static char *find_separate_debug_file (struct objfile *objfile);
158
159 static void init_filename_language_table (void);
160
161 void _initialize_symfile (void);
162
163 /* List of all available sym_fns. On gdb startup, each object file reader
164 calls add_symtab_fns() to register information on each format it is
165 prepared to read. */
166
167 static struct sym_fns *symtab_fns = NULL;
168
169 /* Flag for whether user will be reloading symbols multiple times.
170 Defaults to ON for VxWorks, otherwise OFF. */
171
172 #ifdef SYMBOL_RELOADING_DEFAULT
173 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
174 #else
175 int symbol_reloading = 0;
176 #endif
177
178 /* If non-zero, shared library symbols will be added automatically
179 when the inferior is created, new libraries are loaded, or when
180 attaching to the inferior. This is almost always what users will
181 want to have happen; but for very large programs, the startup time
182 will be excessive, and so if this is a problem, the user can clear
183 this flag and then add the shared library symbols as needed. Note
184 that there is a potential for confusion, since if the shared
185 library symbols are not loaded, commands like "info fun" will *not*
186 report all the functions that are actually present. */
187
188 int auto_solib_add = 1;
189
190 /* For systems that support it, a threshold size in megabytes. If
191 automatically adding a new library's symbol table to those already
192 known to the debugger would cause the total shared library symbol
193 size to exceed this threshhold, then the shlib's symbols are not
194 added. The threshold is ignored if the user explicitly asks for a
195 shlib to be added, such as when using the "sharedlibrary"
196 command. */
197
198 int auto_solib_limit;
199 \f
200
201 /* This compares two partial symbols by names, using strcmp_iw_ordered
202 for the comparison. */
203
204 static int
205 compare_psymbols (const void *s1p, const void *s2p)
206 {
207 struct partial_symbol *const *s1 = s1p;
208 struct partial_symbol *const *s2 = s2p;
209
210 return strcmp_iw_ordered (SYMBOL_NATURAL_NAME (*s1),
211 SYMBOL_NATURAL_NAME (*s2));
212 }
213
214 void
215 sort_pst_symbols (struct partial_symtab *pst)
216 {
217 /* Sort the global list; don't sort the static list */
218
219 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
220 pst->n_global_syms, sizeof (struct partial_symbol *),
221 compare_psymbols);
222 }
223
224 /* Make a null terminated copy of the string at PTR with SIZE characters in
225 the obstack pointed to by OBSTACKP . Returns the address of the copy.
226 Note that the string at PTR does not have to be null terminated, I.E. it
227 may be part of a larger string and we are only saving a substring. */
228
229 char *
230 obsavestring (const char *ptr, int size, struct obstack *obstackp)
231 {
232 char *p = (char *) obstack_alloc (obstackp, size + 1);
233 /* Open-coded memcpy--saves function call time. These strings are usually
234 short. FIXME: Is this really still true with a compiler that can
235 inline memcpy? */
236 {
237 const char *p1 = ptr;
238 char *p2 = p;
239 const char *end = ptr + size;
240 while (p1 != end)
241 *p2++ = *p1++;
242 }
243 p[size] = 0;
244 return p;
245 }
246
247 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
248 in the obstack pointed to by OBSTACKP. */
249
250 char *
251 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
252 const char *s3)
253 {
254 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
255 char *val = (char *) obstack_alloc (obstackp, len);
256 strcpy (val, s1);
257 strcat (val, s2);
258 strcat (val, s3);
259 return val;
260 }
261
262 /* True if we are nested inside psymtab_to_symtab. */
263
264 int currently_reading_symtab = 0;
265
266 static void
267 decrement_reading_symtab (void *dummy)
268 {
269 currently_reading_symtab--;
270 }
271
272 /* Get the symbol table that corresponds to a partial_symtab.
273 This is fast after the first time you do it. In fact, there
274 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
275 case inline. */
276
277 struct symtab *
278 psymtab_to_symtab (struct partial_symtab *pst)
279 {
280 /* If it's been looked up before, return it. */
281 if (pst->symtab)
282 return pst->symtab;
283
284 /* If it has not yet been read in, read it. */
285 if (!pst->readin)
286 {
287 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
288 currently_reading_symtab++;
289 (*pst->read_symtab) (pst);
290 do_cleanups (back_to);
291 }
292
293 return pst->symtab;
294 }
295
296 /* Remember the lowest-addressed loadable section we've seen.
297 This function is called via bfd_map_over_sections.
298
299 In case of equal vmas, the section with the largest size becomes the
300 lowest-addressed loadable section.
301
302 If the vmas and sizes are equal, the last section is considered the
303 lowest-addressed loadable section. */
304
305 void
306 find_lowest_section (bfd *abfd, asection *sect, void *obj)
307 {
308 asection **lowest = (asection **) obj;
309
310 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
311 return;
312 if (!*lowest)
313 *lowest = sect; /* First loadable section */
314 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
315 *lowest = sect; /* A lower loadable section */
316 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
317 && (bfd_section_size (abfd, (*lowest))
318 <= bfd_section_size (abfd, sect)))
319 *lowest = sect;
320 }
321
322 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
323
324 struct section_addr_info *
325 alloc_section_addr_info (size_t num_sections)
326 {
327 struct section_addr_info *sap;
328 size_t size;
329
330 size = (sizeof (struct section_addr_info)
331 + sizeof (struct other_sections) * (num_sections - 1));
332 sap = (struct section_addr_info *) xmalloc (size);
333 memset (sap, 0, size);
334 sap->num_sections = num_sections;
335
336 return sap;
337 }
338
339 /* Build (allocate and populate) a section_addr_info struct from
340 an existing section table. */
341
342 extern struct section_addr_info *
343 build_section_addr_info_from_section_table (const struct section_table *start,
344 const struct section_table *end)
345 {
346 struct section_addr_info *sap;
347 const struct section_table *stp;
348 int oidx;
349
350 sap = alloc_section_addr_info (end - start);
351
352 for (stp = start, oidx = 0; stp != end; stp++)
353 {
354 if (bfd_get_section_flags (stp->bfd,
355 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
356 && oidx < end - start)
357 {
358 sap->other[oidx].addr = stp->addr;
359 sap->other[oidx].name
360 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
361 sap->other[oidx].sectindex = stp->the_bfd_section->index;
362 oidx++;
363 }
364 }
365
366 return sap;
367 }
368
369
370 /* Free all memory allocated by build_section_addr_info_from_section_table. */
371
372 extern void
373 free_section_addr_info (struct section_addr_info *sap)
374 {
375 int idx;
376
377 for (idx = 0; idx < sap->num_sections; idx++)
378 if (sap->other[idx].name)
379 xfree (sap->other[idx].name);
380 xfree (sap);
381 }
382
383
384 /* Initialize OBJFILE's sect_index_* members. */
385 static void
386 init_objfile_sect_indices (struct objfile *objfile)
387 {
388 asection *sect;
389 int i;
390
391 sect = bfd_get_section_by_name (objfile->obfd, ".text");
392 if (sect)
393 objfile->sect_index_text = sect->index;
394
395 sect = bfd_get_section_by_name (objfile->obfd, ".data");
396 if (sect)
397 objfile->sect_index_data = sect->index;
398
399 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
400 if (sect)
401 objfile->sect_index_bss = sect->index;
402
403 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
404 if (sect)
405 objfile->sect_index_rodata = sect->index;
406
407 /* This is where things get really weird... We MUST have valid
408 indices for the various sect_index_* members or gdb will abort.
409 So if for example, there is no ".text" section, we have to
410 accomodate that. Except when explicitly adding symbol files at
411 some address, section_offsets contains nothing but zeros, so it
412 doesn't matter which slot in section_offsets the individual
413 sect_index_* members index into. So if they are all zero, it is
414 safe to just point all the currently uninitialized indices to the
415 first slot. */
416
417 for (i = 0; i < objfile->num_sections; i++)
418 {
419 if (ANOFFSET (objfile->section_offsets, i) != 0)
420 {
421 break;
422 }
423 }
424 if (i == objfile->num_sections)
425 {
426 if (objfile->sect_index_text == -1)
427 objfile->sect_index_text = 0;
428 if (objfile->sect_index_data == -1)
429 objfile->sect_index_data = 0;
430 if (objfile->sect_index_bss == -1)
431 objfile->sect_index_bss = 0;
432 if (objfile->sect_index_rodata == -1)
433 objfile->sect_index_rodata = 0;
434 }
435 }
436
437
438 /* Parse the user's idea of an offset for dynamic linking, into our idea
439 of how to represent it for fast symbol reading. This is the default
440 version of the sym_fns.sym_offsets function for symbol readers that
441 don't need to do anything special. It allocates a section_offsets table
442 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
443
444 void
445 default_symfile_offsets (struct objfile *objfile,
446 struct section_addr_info *addrs)
447 {
448 int i;
449
450 objfile->num_sections = bfd_count_sections (objfile->obfd);
451 objfile->section_offsets = (struct section_offsets *)
452 obstack_alloc (&objfile->objfile_obstack,
453 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
454 memset (objfile->section_offsets, 0,
455 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
456
457 /* Now calculate offsets for section that were specified by the
458 caller. */
459 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
460 {
461 struct other_sections *osp ;
462
463 osp = &addrs->other[i] ;
464 if (osp->addr == 0)
465 continue;
466
467 /* Record all sections in offsets */
468 /* The section_offsets in the objfile are here filled in using
469 the BFD index. */
470 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
471 }
472
473 /* Remember the bfd indexes for the .text, .data, .bss and
474 .rodata sections. */
475 init_objfile_sect_indices (objfile);
476 }
477
478
479 /* Process a symbol file, as either the main file or as a dynamically
480 loaded file.
481
482 OBJFILE is where the symbols are to be read from.
483
484 ADDRS is the list of section load addresses. If the user has given
485 an 'add-symbol-file' command, then this is the list of offsets and
486 addresses he or she provided as arguments to the command; or, if
487 we're handling a shared library, these are the actual addresses the
488 sections are loaded at, according to the inferior's dynamic linker
489 (as gleaned by GDB's shared library code). We convert each address
490 into an offset from the section VMA's as it appears in the object
491 file, and then call the file's sym_offsets function to convert this
492 into a format-specific offset table --- a `struct section_offsets'.
493 If ADDRS is non-zero, OFFSETS must be zero.
494
495 OFFSETS is a table of section offsets already in the right
496 format-specific representation. NUM_OFFSETS is the number of
497 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
498 assume this is the proper table the call to sym_offsets described
499 above would produce. Instead of calling sym_offsets, we just dump
500 it right into objfile->section_offsets. (When we're re-reading
501 symbols from an objfile, we don't have the original load address
502 list any more; all we have is the section offset table.) If
503 OFFSETS is non-zero, ADDRS must be zero.
504
505 MAINLINE is nonzero if this is the main symbol file, or zero if
506 it's an extra symbol file such as dynamically loaded code.
507
508 VERBO is nonzero if the caller has printed a verbose message about
509 the symbol reading (and complaints can be more terse about it). */
510
511 void
512 syms_from_objfile (struct objfile *objfile,
513 struct section_addr_info *addrs,
514 struct section_offsets *offsets,
515 int num_offsets,
516 int mainline,
517 int verbo)
518 {
519 struct section_addr_info *local_addr = NULL;
520 struct cleanup *old_chain;
521
522 gdb_assert (! (addrs && offsets));
523
524 init_entry_point_info (objfile);
525 find_sym_fns (objfile);
526
527 if (objfile->sf == NULL)
528 return; /* No symbols. */
529
530 /* Make sure that partially constructed symbol tables will be cleaned up
531 if an error occurs during symbol reading. */
532 old_chain = make_cleanup_free_objfile (objfile);
533
534 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
535 list. We now establish the convention that an addr of zero means
536 no load address was specified. */
537 if (! addrs && ! offsets)
538 {
539 local_addr
540 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
541 make_cleanup (xfree, local_addr);
542 addrs = local_addr;
543 }
544
545 /* Now either addrs or offsets is non-zero. */
546
547 if (mainline)
548 {
549 /* We will modify the main symbol table, make sure that all its users
550 will be cleaned up if an error occurs during symbol reading. */
551 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
552
553 /* Since no error yet, throw away the old symbol table. */
554
555 if (symfile_objfile != NULL)
556 {
557 free_objfile (symfile_objfile);
558 symfile_objfile = NULL;
559 }
560
561 /* Currently we keep symbols from the add-symbol-file command.
562 If the user wants to get rid of them, they should do "symbol-file"
563 without arguments first. Not sure this is the best behavior
564 (PR 2207). */
565
566 (*objfile->sf->sym_new_init) (objfile);
567 }
568
569 /* Convert addr into an offset rather than an absolute address.
570 We find the lowest address of a loaded segment in the objfile,
571 and assume that <addr> is where that got loaded.
572
573 We no longer warn if the lowest section is not a text segment (as
574 happens for the PA64 port. */
575 if (!mainline && addrs && addrs->other[0].name)
576 {
577 asection *lower_sect;
578 asection *sect;
579 CORE_ADDR lower_offset;
580 int i;
581
582 /* Find lowest loadable section to be used as starting point for
583 continguous sections. FIXME!! won't work without call to find
584 .text first, but this assumes text is lowest section. */
585 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
586 if (lower_sect == NULL)
587 bfd_map_over_sections (objfile->obfd, find_lowest_section,
588 &lower_sect);
589 if (lower_sect == NULL)
590 warning ("no loadable sections found in added symbol-file %s",
591 objfile->name);
592 else
593 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
594 warning ("Lowest section in %s is %s at %s",
595 objfile->name,
596 bfd_section_name (objfile->obfd, lower_sect),
597 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
598 if (lower_sect != NULL)
599 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
600 else
601 lower_offset = 0;
602
603 /* Calculate offsets for the loadable sections.
604 FIXME! Sections must be in order of increasing loadable section
605 so that contiguous sections can use the lower-offset!!!
606
607 Adjust offsets if the segments are not contiguous.
608 If the section is contiguous, its offset should be set to
609 the offset of the highest loadable section lower than it
610 (the loadable section directly below it in memory).
611 this_offset = lower_offset = lower_addr - lower_orig_addr */
612
613 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
614 {
615 if (addrs->other[i].addr != 0)
616 {
617 sect = bfd_get_section_by_name (objfile->obfd,
618 addrs->other[i].name);
619 if (sect)
620 {
621 addrs->other[i].addr
622 -= bfd_section_vma (objfile->obfd, sect);
623 lower_offset = addrs->other[i].addr;
624 /* This is the index used by BFD. */
625 addrs->other[i].sectindex = sect->index ;
626 }
627 else
628 {
629 warning ("section %s not found in %s",
630 addrs->other[i].name,
631 objfile->name);
632 addrs->other[i].addr = 0;
633 }
634 }
635 else
636 addrs->other[i].addr = lower_offset;
637 }
638 }
639
640 /* Initialize symbol reading routines for this objfile, allow complaints to
641 appear for this new file, and record how verbose to be, then do the
642 initial symbol reading for this file. */
643
644 (*objfile->sf->sym_init) (objfile);
645 clear_complaints (&symfile_complaints, 1, verbo);
646
647 if (addrs)
648 (*objfile->sf->sym_offsets) (objfile, addrs);
649 else
650 {
651 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
652
653 /* Just copy in the offset table directly as given to us. */
654 objfile->num_sections = num_offsets;
655 objfile->section_offsets
656 = ((struct section_offsets *)
657 obstack_alloc (&objfile->objfile_obstack, size));
658 memcpy (objfile->section_offsets, offsets, size);
659
660 init_objfile_sect_indices (objfile);
661 }
662
663 #ifndef DEPRECATED_IBM6000_TARGET
664 /* This is a SVR4/SunOS specific hack, I think. In any event, it
665 screws RS/6000. sym_offsets should be doing this sort of thing,
666 because it knows the mapping between bfd sections and
667 section_offsets. */
668 /* This is a hack. As far as I can tell, section offsets are not
669 target dependent. They are all set to addr with a couple of
670 exceptions. The exceptions are sysvr4 shared libraries, whose
671 offsets are kept in solib structures anyway and rs6000 xcoff
672 which handles shared libraries in a completely unique way.
673
674 Section offsets are built similarly, except that they are built
675 by adding addr in all cases because there is no clear mapping
676 from section_offsets into actual sections. Note that solib.c
677 has a different algorithm for finding section offsets.
678
679 These should probably all be collapsed into some target
680 independent form of shared library support. FIXME. */
681
682 if (addrs)
683 {
684 struct obj_section *s;
685
686 /* Map section offsets in "addr" back to the object's
687 sections by comparing the section names with bfd's
688 section names. Then adjust the section address by
689 the offset. */ /* for gdb/13815 */
690
691 ALL_OBJFILE_OSECTIONS (objfile, s)
692 {
693 CORE_ADDR s_addr = 0;
694 int i;
695
696 for (i = 0;
697 !s_addr && i < addrs->num_sections && addrs->other[i].name;
698 i++)
699 if (strcmp (bfd_section_name (s->objfile->obfd,
700 s->the_bfd_section),
701 addrs->other[i].name) == 0)
702 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
703
704 s->addr -= s->offset;
705 s->addr += s_addr;
706 s->endaddr -= s->offset;
707 s->endaddr += s_addr;
708 s->offset += s_addr;
709 }
710 }
711 #endif /* not DEPRECATED_IBM6000_TARGET */
712
713 (*objfile->sf->sym_read) (objfile, mainline);
714
715 /* Don't allow char * to have a typename (else would get caddr_t).
716 Ditto void *. FIXME: Check whether this is now done by all the
717 symbol readers themselves (many of them now do), and if so remove
718 it from here. */
719
720 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
721 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
722
723 /* Mark the objfile has having had initial symbol read attempted. Note
724 that this does not mean we found any symbols... */
725
726 objfile->flags |= OBJF_SYMS;
727
728 /* Discard cleanups as symbol reading was successful. */
729
730 discard_cleanups (old_chain);
731 }
732
733 /* Perform required actions after either reading in the initial
734 symbols for a new objfile, or mapping in the symbols from a reusable
735 objfile. */
736
737 void
738 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
739 {
740
741 /* If this is the main symbol file we have to clean up all users of the
742 old main symbol file. Otherwise it is sufficient to fixup all the
743 breakpoints that may have been redefined by this symbol file. */
744 if (mainline)
745 {
746 /* OK, make it the "real" symbol file. */
747 symfile_objfile = objfile;
748
749 clear_symtab_users ();
750 }
751 else
752 {
753 breakpoint_re_set ();
754 }
755
756 /* We're done reading the symbol file; finish off complaints. */
757 clear_complaints (&symfile_complaints, 0, verbo);
758 }
759
760 /* Process a symbol file, as either the main file or as a dynamically
761 loaded file.
762
763 ABFD is a BFD already open on the file, as from symfile_bfd_open.
764 This BFD will be closed on error, and is always consumed by this function.
765
766 FROM_TTY says how verbose to be.
767
768 MAINLINE specifies whether this is the main symbol file, or whether
769 it's an extra symbol file such as dynamically loaded code.
770
771 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
772 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
773 non-zero.
774
775 Upon success, returns a pointer to the objfile that was added.
776 Upon failure, jumps back to command level (never returns). */
777 static struct objfile *
778 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
779 struct section_addr_info *addrs,
780 struct section_offsets *offsets,
781 int num_offsets,
782 int mainline, int flags)
783 {
784 struct objfile *objfile;
785 struct partial_symtab *psymtab;
786 char *debugfile;
787 struct section_addr_info *orig_addrs;
788 struct cleanup *my_cleanups;
789 const char *name = bfd_get_filename (abfd);
790
791 my_cleanups = make_cleanup_bfd_close (abfd);
792
793 /* Give user a chance to burp if we'd be
794 interactively wiping out any existing symbols. */
795
796 if ((have_full_symbols () || have_partial_symbols ())
797 && mainline
798 && from_tty
799 && !query ("Load new symbol table from \"%s\"? ", name))
800 error ("Not confirmed.");
801
802 objfile = allocate_objfile (abfd, flags);
803 discard_cleanups (my_cleanups);
804
805 orig_addrs = alloc_section_addr_info (bfd_count_sections (abfd));
806 my_cleanups = make_cleanup (xfree, orig_addrs);
807 if (addrs)
808 {
809 int i;
810 orig_addrs->num_sections = addrs->num_sections;
811 for (i = 0; i < addrs->num_sections; i++)
812 orig_addrs->other[i] = addrs->other[i];
813 }
814
815 /* We either created a new mapped symbol table, mapped an existing
816 symbol table file which has not had initial symbol reading
817 performed, or need to read an unmapped symbol table. */
818 if (from_tty || info_verbose)
819 {
820 if (pre_add_symbol_hook)
821 pre_add_symbol_hook (name);
822 else
823 {
824 printf_unfiltered ("Reading symbols from %s...", name);
825 wrap_here ("");
826 gdb_flush (gdb_stdout);
827 }
828 }
829 syms_from_objfile (objfile, addrs, offsets, num_offsets,
830 mainline, from_tty);
831
832 /* We now have at least a partial symbol table. Check to see if the
833 user requested that all symbols be read on initial access via either
834 the gdb startup command line or on a per symbol file basis. Expand
835 all partial symbol tables for this objfile if so. */
836
837 if ((flags & OBJF_READNOW) || readnow_symbol_files)
838 {
839 if (from_tty || info_verbose)
840 {
841 printf_unfiltered ("expanding to full symbols...");
842 wrap_here ("");
843 gdb_flush (gdb_stdout);
844 }
845
846 for (psymtab = objfile->psymtabs;
847 psymtab != NULL;
848 psymtab = psymtab->next)
849 {
850 psymtab_to_symtab (psymtab);
851 }
852 }
853
854 debugfile = find_separate_debug_file (objfile);
855 if (debugfile)
856 {
857 if (addrs != NULL)
858 {
859 objfile->separate_debug_objfile
860 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
861 }
862 else
863 {
864 objfile->separate_debug_objfile
865 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
866 }
867 objfile->separate_debug_objfile->separate_debug_objfile_backlink
868 = objfile;
869
870 /* Put the separate debug object before the normal one, this is so that
871 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
872 put_objfile_before (objfile->separate_debug_objfile, objfile);
873
874 xfree (debugfile);
875 }
876
877 if (!have_partial_symbols () && !have_full_symbols ())
878 {
879 wrap_here ("");
880 printf_unfiltered ("(no debugging symbols found)...");
881 wrap_here ("");
882 }
883
884 if (from_tty || info_verbose)
885 {
886 if (post_add_symbol_hook)
887 post_add_symbol_hook ();
888 else
889 {
890 printf_unfiltered ("done.\n");
891 }
892 }
893
894 /* We print some messages regardless of whether 'from_tty ||
895 info_verbose' is true, so make sure they go out at the right
896 time. */
897 gdb_flush (gdb_stdout);
898
899 do_cleanups (my_cleanups);
900
901 if (objfile->sf == NULL)
902 return objfile; /* No symbols. */
903
904 new_symfile_objfile (objfile, mainline, from_tty);
905
906 if (deprecated_target_new_objfile_hook)
907 deprecated_target_new_objfile_hook (objfile);
908
909 return (objfile);
910 }
911
912
913 /* Process a symbol file, as either the main file or as a dynamically
914 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
915 for details. */
916 struct objfile *
917 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
918 int mainline, int flags)
919 {
920 return symbol_file_add_with_addrs_or_offsets (symfile_bfd_open (name),
921 from_tty, addrs, 0, 0,
922 mainline, flags);
923 }
924
925
926 /* Call symbol_file_add() with default values and update whatever is
927 affected by the loading of a new main().
928 Used when the file is supplied in the gdb command line
929 and by some targets with special loading requirements.
930 The auxiliary function, symbol_file_add_main_1(), has the flags
931 argument for the switches that can only be specified in the symbol_file
932 command itself. */
933
934 void
935 symbol_file_add_main (char *args, int from_tty)
936 {
937 symbol_file_add_main_1 (args, from_tty, 0);
938 }
939
940 static void
941 symbol_file_add_main_1 (char *args, int from_tty, int flags)
942 {
943 symbol_file_add (args, from_tty, NULL, 1, flags);
944
945 #ifdef HPUXHPPA
946 RESET_HP_UX_GLOBALS ();
947 #endif
948
949 /* Getting new symbols may change our opinion about
950 what is frameless. */
951 reinit_frame_cache ();
952
953 set_initial_language ();
954 }
955
956 void
957 symbol_file_clear (int from_tty)
958 {
959 if ((have_full_symbols () || have_partial_symbols ())
960 && from_tty
961 && !query ("Discard symbol table from `%s'? ",
962 symfile_objfile->name))
963 error ("Not confirmed.");
964 free_all_objfiles ();
965
966 /* solib descriptors may have handles to objfiles. Since their
967 storage has just been released, we'd better wipe the solib
968 descriptors as well.
969 */
970 #if defined(SOLIB_RESTART)
971 SOLIB_RESTART ();
972 #endif
973
974 symfile_objfile = NULL;
975 if (from_tty)
976 printf_unfiltered ("No symbol file now.\n");
977 #ifdef HPUXHPPA
978 RESET_HP_UX_GLOBALS ();
979 #endif
980 }
981
982 static char *
983 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
984 {
985 asection *sect;
986 bfd_size_type debuglink_size;
987 unsigned long crc32;
988 char *contents;
989 int crc_offset;
990 unsigned char *p;
991
992 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
993
994 if (sect == NULL)
995 return NULL;
996
997 debuglink_size = bfd_section_size (objfile->obfd, sect);
998
999 contents = xmalloc (debuglink_size);
1000 bfd_get_section_contents (objfile->obfd, sect, contents,
1001 (file_ptr)0, (bfd_size_type)debuglink_size);
1002
1003 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1004 crc_offset = strlen (contents) + 1;
1005 crc_offset = (crc_offset + 3) & ~3;
1006
1007 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1008
1009 *crc32_out = crc32;
1010 return contents;
1011 }
1012
1013 static int
1014 separate_debug_file_exists (const char *name, unsigned long crc)
1015 {
1016 unsigned long file_crc = 0;
1017 int fd;
1018 char buffer[8*1024];
1019 int count;
1020
1021 fd = open (name, O_RDONLY | O_BINARY);
1022 if (fd < 0)
1023 return 0;
1024
1025 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1026 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1027
1028 close (fd);
1029
1030 return crc == file_crc;
1031 }
1032
1033 static char *debug_file_directory = NULL;
1034
1035 #if ! defined (DEBUG_SUBDIRECTORY)
1036 #define DEBUG_SUBDIRECTORY ".debug"
1037 #endif
1038
1039 static char *
1040 find_separate_debug_file (struct objfile *objfile)
1041 {
1042 asection *sect;
1043 char *basename;
1044 char *dir;
1045 char *debugfile;
1046 char *name_copy;
1047 bfd_size_type debuglink_size;
1048 unsigned long crc32;
1049 int i;
1050
1051 basename = get_debug_link_info (objfile, &crc32);
1052
1053 if (basename == NULL)
1054 return NULL;
1055
1056 dir = xstrdup (objfile->name);
1057
1058 /* Strip off the final filename part, leaving the directory name,
1059 followed by a slash. Objfile names should always be absolute and
1060 tilde-expanded, so there should always be a slash in there
1061 somewhere. */
1062 for (i = strlen(dir) - 1; i >= 0; i--)
1063 {
1064 if (IS_DIR_SEPARATOR (dir[i]))
1065 break;
1066 }
1067 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1068 dir[i+1] = '\0';
1069
1070 debugfile = alloca (strlen (debug_file_directory) + 1
1071 + strlen (dir)
1072 + strlen (DEBUG_SUBDIRECTORY)
1073 + strlen ("/")
1074 + strlen (basename)
1075 + 1);
1076
1077 /* First try in the same directory as the original file. */
1078 strcpy (debugfile, dir);
1079 strcat (debugfile, basename);
1080
1081 if (separate_debug_file_exists (debugfile, crc32))
1082 {
1083 xfree (basename);
1084 xfree (dir);
1085 return xstrdup (debugfile);
1086 }
1087
1088 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1089 strcpy (debugfile, dir);
1090 strcat (debugfile, DEBUG_SUBDIRECTORY);
1091 strcat (debugfile, "/");
1092 strcat (debugfile, basename);
1093
1094 if (separate_debug_file_exists (debugfile, crc32))
1095 {
1096 xfree (basename);
1097 xfree (dir);
1098 return xstrdup (debugfile);
1099 }
1100
1101 /* Then try in the global debugfile directory. */
1102 strcpy (debugfile, debug_file_directory);
1103 strcat (debugfile, "/");
1104 strcat (debugfile, dir);
1105 strcat (debugfile, basename);
1106
1107 if (separate_debug_file_exists (debugfile, crc32))
1108 {
1109 xfree (basename);
1110 xfree (dir);
1111 return xstrdup (debugfile);
1112 }
1113
1114 xfree (basename);
1115 xfree (dir);
1116 return NULL;
1117 }
1118
1119
1120 /* This is the symbol-file command. Read the file, analyze its
1121 symbols, and add a struct symtab to a symtab list. The syntax of
1122 the command is rather bizarre--(1) buildargv implements various
1123 quoting conventions which are undocumented and have little or
1124 nothing in common with the way things are quoted (or not quoted)
1125 elsewhere in GDB, (2) options are used, which are not generally
1126 used in GDB (perhaps "set mapped on", "set readnow on" would be
1127 better), (3) the order of options matters, which is contrary to GNU
1128 conventions (because it is confusing and inconvenient). */
1129 /* Note: ezannoni 2000-04-17. This function used to have support for
1130 rombug (see remote-os9k.c). It consisted of a call to target_link()
1131 (target.c) to get the address of the text segment from the target,
1132 and pass that to symbol_file_add(). This is no longer supported. */
1133
1134 void
1135 symbol_file_command (char *args, int from_tty)
1136 {
1137 char **argv;
1138 char *name = NULL;
1139 struct cleanup *cleanups;
1140 int flags = OBJF_USERLOADED;
1141
1142 dont_repeat ();
1143
1144 if (args == NULL)
1145 {
1146 symbol_file_clear (from_tty);
1147 }
1148 else
1149 {
1150 if ((argv = buildargv (args)) == NULL)
1151 {
1152 nomem (0);
1153 }
1154 cleanups = make_cleanup_freeargv (argv);
1155 while (*argv != NULL)
1156 {
1157 if (strcmp (*argv, "-readnow") == 0)
1158 flags |= OBJF_READNOW;
1159 else if (**argv == '-')
1160 error ("unknown option `%s'", *argv);
1161 else
1162 {
1163 name = *argv;
1164
1165 symbol_file_add_main_1 (name, from_tty, flags);
1166 }
1167 argv++;
1168 }
1169
1170 if (name == NULL)
1171 {
1172 error ("no symbol file name was specified");
1173 }
1174 do_cleanups (cleanups);
1175 }
1176 }
1177
1178 /* Set the initial language.
1179
1180 A better solution would be to record the language in the psymtab when reading
1181 partial symbols, and then use it (if known) to set the language. This would
1182 be a win for formats that encode the language in an easily discoverable place,
1183 such as DWARF. For stabs, we can jump through hoops looking for specially
1184 named symbols or try to intuit the language from the specific type of stabs
1185 we find, but we can't do that until later when we read in full symbols.
1186 FIXME. */
1187
1188 static void
1189 set_initial_language (void)
1190 {
1191 struct partial_symtab *pst;
1192 enum language lang = language_unknown;
1193
1194 pst = find_main_psymtab ();
1195 if (pst != NULL)
1196 {
1197 if (pst->filename != NULL)
1198 {
1199 lang = deduce_language_from_filename (pst->filename);
1200 }
1201 if (lang == language_unknown)
1202 {
1203 /* Make C the default language */
1204 lang = language_c;
1205 }
1206 set_language (lang);
1207 expected_language = current_language; /* Don't warn the user */
1208 }
1209 }
1210
1211 /* Open file specified by NAME and hand it off to BFD for preliminary
1212 analysis. Result is a newly initialized bfd *, which includes a newly
1213 malloc'd` copy of NAME (tilde-expanded and made absolute).
1214 In case of trouble, error() is called. */
1215
1216 bfd *
1217 symfile_bfd_open (char *name)
1218 {
1219 bfd *sym_bfd;
1220 int desc;
1221 char *absolute_name;
1222
1223
1224
1225 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1226
1227 /* Look down path for it, allocate 2nd new malloc'd copy. */
1228 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1229 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1230 if (desc < 0)
1231 {
1232 char *exename = alloca (strlen (name) + 5);
1233 strcat (strcpy (exename, name), ".exe");
1234 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1235 0, &absolute_name);
1236 }
1237 #endif
1238 if (desc < 0)
1239 {
1240 make_cleanup (xfree, name);
1241 perror_with_name (name);
1242 }
1243 xfree (name); /* Free 1st new malloc'd copy */
1244 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1245 /* It'll be freed in free_objfile(). */
1246
1247 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1248 if (!sym_bfd)
1249 {
1250 close (desc);
1251 make_cleanup (xfree, name);
1252 error ("\"%s\": can't open to read symbols: %s.", name,
1253 bfd_errmsg (bfd_get_error ()));
1254 }
1255 bfd_set_cacheable (sym_bfd, 1);
1256
1257 if (!bfd_check_format (sym_bfd, bfd_object))
1258 {
1259 /* FIXME: should be checking for errors from bfd_close (for one thing,
1260 on error it does not free all the storage associated with the
1261 bfd). */
1262 bfd_close (sym_bfd); /* This also closes desc */
1263 make_cleanup (xfree, name);
1264 error ("\"%s\": can't read symbols: %s.", name,
1265 bfd_errmsg (bfd_get_error ()));
1266 }
1267 return (sym_bfd);
1268 }
1269
1270 /* Return the section index for the given section name. Return -1 if
1271 the section was not found. */
1272 int
1273 get_section_index (struct objfile *objfile, char *section_name)
1274 {
1275 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1276 if (sect)
1277 return sect->index;
1278 else
1279 return -1;
1280 }
1281
1282 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1283 startup by the _initialize routine in each object file format reader,
1284 to register information about each format the the reader is prepared
1285 to handle. */
1286
1287 void
1288 add_symtab_fns (struct sym_fns *sf)
1289 {
1290 sf->next = symtab_fns;
1291 symtab_fns = sf;
1292 }
1293
1294
1295 /* Initialize to read symbols from the symbol file sym_bfd. It either
1296 returns or calls error(). The result is an initialized struct sym_fns
1297 in the objfile structure, that contains cached information about the
1298 symbol file. */
1299
1300 static void
1301 find_sym_fns (struct objfile *objfile)
1302 {
1303 struct sym_fns *sf;
1304 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1305 char *our_target = bfd_get_target (objfile->obfd);
1306
1307 if (our_flavour == bfd_target_srec_flavour
1308 || our_flavour == bfd_target_ihex_flavour
1309 || our_flavour == bfd_target_tekhex_flavour)
1310 return; /* No symbols. */
1311
1312 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1313 {
1314 if (our_flavour == sf->sym_flavour)
1315 {
1316 objfile->sf = sf;
1317 return;
1318 }
1319 }
1320 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1321 bfd_get_target (objfile->obfd));
1322 }
1323 \f
1324 /* This function runs the load command of our current target. */
1325
1326 static void
1327 load_command (char *arg, int from_tty)
1328 {
1329 if (arg == NULL)
1330 arg = get_exec_file (1);
1331 target_load (arg, from_tty);
1332
1333 /* After re-loading the executable, we don't really know which
1334 overlays are mapped any more. */
1335 overlay_cache_invalid = 1;
1336 }
1337
1338 /* This version of "load" should be usable for any target. Currently
1339 it is just used for remote targets, not inftarg.c or core files,
1340 on the theory that only in that case is it useful.
1341
1342 Avoiding xmodem and the like seems like a win (a) because we don't have
1343 to worry about finding it, and (b) On VMS, fork() is very slow and so
1344 we don't want to run a subprocess. On the other hand, I'm not sure how
1345 performance compares. */
1346
1347 static int download_write_size = 512;
1348 static int validate_download = 0;
1349
1350 /* Callback service function for generic_load (bfd_map_over_sections). */
1351
1352 static void
1353 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1354 {
1355 bfd_size_type *sum = data;
1356
1357 *sum += bfd_get_section_size_before_reloc (asec);
1358 }
1359
1360 /* Opaque data for load_section_callback. */
1361 struct load_section_data {
1362 unsigned long load_offset;
1363 unsigned long write_count;
1364 unsigned long data_count;
1365 bfd_size_type total_size;
1366 };
1367
1368 /* Callback service function for generic_load (bfd_map_over_sections). */
1369
1370 static void
1371 load_section_callback (bfd *abfd, asection *asec, void *data)
1372 {
1373 struct load_section_data *args = data;
1374
1375 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1376 {
1377 bfd_size_type size = bfd_get_section_size_before_reloc (asec);
1378 if (size > 0)
1379 {
1380 char *buffer;
1381 struct cleanup *old_chain;
1382 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1383 bfd_size_type block_size;
1384 int err;
1385 const char *sect_name = bfd_get_section_name (abfd, asec);
1386 bfd_size_type sent;
1387
1388 if (download_write_size > 0 && size > download_write_size)
1389 block_size = download_write_size;
1390 else
1391 block_size = size;
1392
1393 buffer = xmalloc (size);
1394 old_chain = make_cleanup (xfree, buffer);
1395
1396 /* Is this really necessary? I guess it gives the user something
1397 to look at during a long download. */
1398 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1399 sect_name, paddr_nz (size), paddr_nz (lma));
1400
1401 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1402
1403 sent = 0;
1404 do
1405 {
1406 int len;
1407 bfd_size_type this_transfer = size - sent;
1408
1409 if (this_transfer >= block_size)
1410 this_transfer = block_size;
1411 len = target_write_memory_partial (lma, buffer,
1412 this_transfer, &err);
1413 if (err)
1414 break;
1415 if (validate_download)
1416 {
1417 /* Broken memories and broken monitors manifest
1418 themselves here when bring new computers to
1419 life. This doubles already slow downloads. */
1420 /* NOTE: cagney/1999-10-18: A more efficient
1421 implementation might add a verify_memory()
1422 method to the target vector and then use
1423 that. remote.c could implement that method
1424 using the ``qCRC'' packet. */
1425 char *check = xmalloc (len);
1426 struct cleanup *verify_cleanups =
1427 make_cleanup (xfree, check);
1428
1429 if (target_read_memory (lma, check, len) != 0)
1430 error ("Download verify read failed at 0x%s",
1431 paddr (lma));
1432 if (memcmp (buffer, check, len) != 0)
1433 error ("Download verify compare failed at 0x%s",
1434 paddr (lma));
1435 do_cleanups (verify_cleanups);
1436 }
1437 args->data_count += len;
1438 lma += len;
1439 buffer += len;
1440 args->write_count += 1;
1441 sent += len;
1442 if (quit_flag
1443 || (deprecated_ui_load_progress_hook != NULL
1444 && deprecated_ui_load_progress_hook (sect_name, sent)))
1445 error ("Canceled the download");
1446
1447 if (deprecated_show_load_progress != NULL)
1448 deprecated_show_load_progress (sect_name, sent, size,
1449 args->data_count,
1450 args->total_size);
1451 }
1452 while (sent < size);
1453
1454 if (err != 0)
1455 error ("Memory access error while loading section %s.", sect_name);
1456
1457 do_cleanups (old_chain);
1458 }
1459 }
1460 }
1461
1462 void
1463 generic_load (char *args, int from_tty)
1464 {
1465 asection *s;
1466 bfd *loadfile_bfd;
1467 time_t start_time, end_time; /* Start and end times of download */
1468 char *filename;
1469 struct cleanup *old_cleanups;
1470 char *offptr;
1471 struct load_section_data cbdata;
1472 CORE_ADDR entry;
1473
1474 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1475 cbdata.write_count = 0; /* Number of writes needed. */
1476 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1477 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1478
1479 /* Parse the input argument - the user can specify a load offset as
1480 a second argument. */
1481 filename = xmalloc (strlen (args) + 1);
1482 old_cleanups = make_cleanup (xfree, filename);
1483 strcpy (filename, args);
1484 offptr = strchr (filename, ' ');
1485 if (offptr != NULL)
1486 {
1487 char *endptr;
1488
1489 cbdata.load_offset = strtoul (offptr, &endptr, 0);
1490 if (offptr == endptr)
1491 error ("Invalid download offset:%s\n", offptr);
1492 *offptr = '\0';
1493 }
1494 else
1495 cbdata.load_offset = 0;
1496
1497 /* Open the file for loading. */
1498 loadfile_bfd = bfd_openr (filename, gnutarget);
1499 if (loadfile_bfd == NULL)
1500 {
1501 perror_with_name (filename);
1502 return;
1503 }
1504
1505 /* FIXME: should be checking for errors from bfd_close (for one thing,
1506 on error it does not free all the storage associated with the
1507 bfd). */
1508 make_cleanup_bfd_close (loadfile_bfd);
1509
1510 if (!bfd_check_format (loadfile_bfd, bfd_object))
1511 {
1512 error ("\"%s\" is not an object file: %s", filename,
1513 bfd_errmsg (bfd_get_error ()));
1514 }
1515
1516 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1517 (void *) &cbdata.total_size);
1518
1519 start_time = time (NULL);
1520
1521 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1522
1523 end_time = time (NULL);
1524
1525 entry = bfd_get_start_address (loadfile_bfd);
1526 ui_out_text (uiout, "Start address ");
1527 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1528 ui_out_text (uiout, ", load size ");
1529 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1530 ui_out_text (uiout, "\n");
1531 /* We were doing this in remote-mips.c, I suspect it is right
1532 for other targets too. */
1533 write_pc (entry);
1534
1535 /* FIXME: are we supposed to call symbol_file_add or not? According
1536 to a comment from remote-mips.c (where a call to symbol_file_add
1537 was commented out), making the call confuses GDB if more than one
1538 file is loaded in. Some targets do (e.g., remote-vx.c) but
1539 others don't (or didn't - perhaphs they have all been deleted). */
1540
1541 print_transfer_performance (gdb_stdout, cbdata.data_count,
1542 cbdata.write_count, end_time - start_time);
1543
1544 do_cleanups (old_cleanups);
1545 }
1546
1547 /* Report how fast the transfer went. */
1548
1549 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1550 replaced by print_transfer_performance (with a very different
1551 function signature). */
1552
1553 void
1554 report_transfer_performance (unsigned long data_count, time_t start_time,
1555 time_t end_time)
1556 {
1557 print_transfer_performance (gdb_stdout, data_count,
1558 end_time - start_time, 0);
1559 }
1560
1561 void
1562 print_transfer_performance (struct ui_file *stream,
1563 unsigned long data_count,
1564 unsigned long write_count,
1565 unsigned long time_count)
1566 {
1567 ui_out_text (uiout, "Transfer rate: ");
1568 if (time_count > 0)
1569 {
1570 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1571 (data_count * 8) / time_count);
1572 ui_out_text (uiout, " bits/sec");
1573 }
1574 else
1575 {
1576 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1577 ui_out_text (uiout, " bits in <1 sec");
1578 }
1579 if (write_count > 0)
1580 {
1581 ui_out_text (uiout, ", ");
1582 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1583 ui_out_text (uiout, " bytes/write");
1584 }
1585 ui_out_text (uiout, ".\n");
1586 }
1587
1588 /* This function allows the addition of incrementally linked object files.
1589 It does not modify any state in the target, only in the debugger. */
1590 /* Note: ezannoni 2000-04-13 This function/command used to have a
1591 special case syntax for the rombug target (Rombug is the boot
1592 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1593 rombug case, the user doesn't need to supply a text address,
1594 instead a call to target_link() (in target.c) would supply the
1595 value to use. We are now discontinuing this type of ad hoc syntax. */
1596
1597 static void
1598 add_symbol_file_command (char *args, int from_tty)
1599 {
1600 char *filename = NULL;
1601 int flags = OBJF_USERLOADED;
1602 char *arg;
1603 int expecting_option = 0;
1604 int section_index = 0;
1605 int argcnt = 0;
1606 int sec_num = 0;
1607 int i;
1608 int expecting_sec_name = 0;
1609 int expecting_sec_addr = 0;
1610
1611 struct sect_opt
1612 {
1613 char *name;
1614 char *value;
1615 };
1616
1617 struct section_addr_info *section_addrs;
1618 struct sect_opt *sect_opts = NULL;
1619 size_t num_sect_opts = 0;
1620 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1621
1622 num_sect_opts = 16;
1623 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1624 * sizeof (struct sect_opt));
1625
1626 dont_repeat ();
1627
1628 if (args == NULL)
1629 error ("add-symbol-file takes a file name and an address");
1630
1631 /* Make a copy of the string that we can safely write into. */
1632 args = xstrdup (args);
1633
1634 while (*args != '\000')
1635 {
1636 /* Any leading spaces? */
1637 while (isspace (*args))
1638 args++;
1639
1640 /* Point arg to the beginning of the argument. */
1641 arg = args;
1642
1643 /* Move args pointer over the argument. */
1644 while ((*args != '\000') && !isspace (*args))
1645 args++;
1646
1647 /* If there are more arguments, terminate arg and
1648 proceed past it. */
1649 if (*args != '\000')
1650 *args++ = '\000';
1651
1652 /* Now process the argument. */
1653 if (argcnt == 0)
1654 {
1655 /* The first argument is the file name. */
1656 filename = tilde_expand (arg);
1657 make_cleanup (xfree, filename);
1658 }
1659 else
1660 if (argcnt == 1)
1661 {
1662 /* The second argument is always the text address at which
1663 to load the program. */
1664 sect_opts[section_index].name = ".text";
1665 sect_opts[section_index].value = arg;
1666 if (++section_index > num_sect_opts)
1667 {
1668 num_sect_opts *= 2;
1669 sect_opts = ((struct sect_opt *)
1670 xrealloc (sect_opts,
1671 num_sect_opts
1672 * sizeof (struct sect_opt)));
1673 }
1674 }
1675 else
1676 {
1677 /* It's an option (starting with '-') or it's an argument
1678 to an option */
1679
1680 if (*arg == '-')
1681 {
1682 if (strcmp (arg, "-readnow") == 0)
1683 flags |= OBJF_READNOW;
1684 else if (strcmp (arg, "-s") == 0)
1685 {
1686 expecting_sec_name = 1;
1687 expecting_sec_addr = 1;
1688 }
1689 }
1690 else
1691 {
1692 if (expecting_sec_name)
1693 {
1694 sect_opts[section_index].name = arg;
1695 expecting_sec_name = 0;
1696 }
1697 else
1698 if (expecting_sec_addr)
1699 {
1700 sect_opts[section_index].value = arg;
1701 expecting_sec_addr = 0;
1702 if (++section_index > num_sect_opts)
1703 {
1704 num_sect_opts *= 2;
1705 sect_opts = ((struct sect_opt *)
1706 xrealloc (sect_opts,
1707 num_sect_opts
1708 * sizeof (struct sect_opt)));
1709 }
1710 }
1711 else
1712 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1713 }
1714 }
1715 argcnt++;
1716 }
1717
1718 /* Print the prompt for the query below. And save the arguments into
1719 a sect_addr_info structure to be passed around to other
1720 functions. We have to split this up into separate print
1721 statements because local_hex_string returns a local static
1722 string. */
1723
1724 printf_unfiltered ("add symbol table from file \"%s\" at\n", filename);
1725 section_addrs = alloc_section_addr_info (section_index);
1726 make_cleanup (xfree, section_addrs);
1727 for (i = 0; i < section_index; i++)
1728 {
1729 CORE_ADDR addr;
1730 char *val = sect_opts[i].value;
1731 char *sec = sect_opts[i].name;
1732
1733 addr = parse_and_eval_address (val);
1734
1735 /* Here we store the section offsets in the order they were
1736 entered on the command line. */
1737 section_addrs->other[sec_num].name = sec;
1738 section_addrs->other[sec_num].addr = addr;
1739 printf_unfiltered ("\t%s_addr = %s\n",
1740 sec,
1741 local_hex_string ((unsigned long)addr));
1742 sec_num++;
1743
1744 /* The object's sections are initialized when a
1745 call is made to build_objfile_section_table (objfile).
1746 This happens in reread_symbols.
1747 At this point, we don't know what file type this is,
1748 so we can't determine what section names are valid. */
1749 }
1750
1751 if (from_tty && (!query ("%s", "")))
1752 error ("Not confirmed.");
1753
1754 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
1755
1756 /* Getting new symbols may change our opinion about what is
1757 frameless. */
1758 reinit_frame_cache ();
1759 do_cleanups (my_cleanups);
1760 }
1761 \f
1762 static void
1763 add_shared_symbol_files_command (char *args, int from_tty)
1764 {
1765 #ifdef ADD_SHARED_SYMBOL_FILES
1766 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1767 #else
1768 error ("This command is not available in this configuration of GDB.");
1769 #endif
1770 }
1771 \f
1772 #if 0
1773 /* Read inferior memory at ADDR to find the header of a loaded object file
1774 and read its in-core symbols out of inferior memory. TEMPL is a bfd
1775 representing the target's format. */
1776 struct objfile *
1777 symbol_file_add_from_memory (bfd *templ, CORE_ADDR addr, int from_tty)
1778 {
1779 struct objfile *objf;
1780 bfd *nbfd;
1781 asection *sec;
1782 bfd_vma loadbase;
1783 struct section_addr_info *sai;
1784 unsigned int i;
1785
1786 if (bfd_get_flavour (templ) != bfd_target_elf_flavour)
1787 error ("add-symbol-file-from-memory not supported for this target");
1788
1789 nbfd = bfd_elf_bfd_from_remote_memory (templ, addr, &loadbase,
1790 target_read_memory);
1791 if (nbfd == NULL)
1792 {
1793 error ("Failed to read a valid object file image from memory.");
1794 return NULL;
1795 }
1796
1797 nbfd->filename = xstrdup ("shared object read from target memory");
1798
1799 if (!bfd_check_format (nbfd, bfd_object))
1800 {
1801 /* FIXME: should be checking for errors from bfd_close (for one thing,
1802 on error it does not free all the storage associated with the
1803 bfd). */
1804 bfd_close (nbfd);
1805 error ("Got object file from memory but can't read symbols: %s.",
1806 bfd_errmsg (bfd_get_error ()));
1807 return NULL;
1808 }
1809
1810 sai = alloc_section_addr_info (bfd_count_sections (nbfd));
1811 make_cleanup (xfree, sai);
1812 i = 0;
1813 for (sec = nbfd->sections; sec != NULL; sec = sec->next)
1814 if ((bfd_get_section_flags (nbfd, sec) & (SEC_ALLOC|SEC_LOAD)) != 0)
1815 {
1816 sai->other[i].addr = bfd_get_section_vma (nbfd, sec) + loadbase;
1817 sai->other[i].name = (char *) bfd_get_section_name (nbfd, sec);
1818 sai->other[i].sectindex = sec->index;
1819 ++i;
1820 }
1821
1822 objf = symbol_file_add_with_addrs_or_offsets (nbfd, from_tty,
1823 sai, NULL, 0, 0, OBJF_SHARED);
1824
1825 /* This might change our ideas about frames already looked at. */
1826 reinit_frame_cache ();
1827
1828 return objf;
1829 }
1830 #endif
1831
1832 static void
1833 add_symbol_file_from_memory_command (char *args, int from_tty)
1834 {
1835 #if 0
1836 CORE_ADDR addr;
1837 bfd *templ;
1838
1839 if (args == NULL)
1840 error ("add-symbol-file-from-memory requires an expression argument");
1841
1842 addr = parse_and_eval_address (args);
1843
1844 /* We need some representative bfd to know the target we are looking at. */
1845 if (symfile_objfile != NULL)
1846 templ = symfile_objfile->obfd;
1847 else
1848 templ = exec_bfd;
1849 if (templ == NULL)
1850 error ("\
1851 Must use symbol-file or exec-file before add-symbol-file-from-memory.");
1852
1853 symbol_file_add_from_memory (templ, addr, from_tty);
1854 #else
1855 error ("add-symbol-file-from-memory not implemented");
1856 #endif
1857 }
1858 \f
1859 /* Re-read symbols if a symbol-file has changed. */
1860 void
1861 reread_symbols (void)
1862 {
1863 struct objfile *objfile;
1864 long new_modtime;
1865 int reread_one = 0;
1866 struct stat new_statbuf;
1867 int res;
1868
1869 /* With the addition of shared libraries, this should be modified,
1870 the load time should be saved in the partial symbol tables, since
1871 different tables may come from different source files. FIXME.
1872 This routine should then walk down each partial symbol table
1873 and see if the symbol table that it originates from has been changed */
1874
1875 for (objfile = object_files; objfile; objfile = objfile->next)
1876 {
1877 if (objfile->obfd)
1878 {
1879 #ifdef DEPRECATED_IBM6000_TARGET
1880 /* If this object is from a shared library, then you should
1881 stat on the library name, not member name. */
1882
1883 if (objfile->obfd->my_archive)
1884 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1885 else
1886 #endif
1887 res = stat (objfile->name, &new_statbuf);
1888 if (res != 0)
1889 {
1890 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1891 printf_unfiltered ("`%s' has disappeared; keeping its symbols.\n",
1892 objfile->name);
1893 continue;
1894 }
1895 new_modtime = new_statbuf.st_mtime;
1896 if (new_modtime != objfile->mtime)
1897 {
1898 struct cleanup *old_cleanups;
1899 struct section_offsets *offsets;
1900 int num_offsets;
1901 char *obfd_filename;
1902
1903 printf_unfiltered ("`%s' has changed; re-reading symbols.\n",
1904 objfile->name);
1905
1906 /* There are various functions like symbol_file_add,
1907 symfile_bfd_open, syms_from_objfile, etc., which might
1908 appear to do what we want. But they have various other
1909 effects which we *don't* want. So we just do stuff
1910 ourselves. We don't worry about mapped files (for one thing,
1911 any mapped file will be out of date). */
1912
1913 /* If we get an error, blow away this objfile (not sure if
1914 that is the correct response for things like shared
1915 libraries). */
1916 old_cleanups = make_cleanup_free_objfile (objfile);
1917 /* We need to do this whenever any symbols go away. */
1918 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1919
1920 /* Clean up any state BFD has sitting around. We don't need
1921 to close the descriptor but BFD lacks a way of closing the
1922 BFD without closing the descriptor. */
1923 obfd_filename = bfd_get_filename (objfile->obfd);
1924 if (!bfd_close (objfile->obfd))
1925 error ("Can't close BFD for %s: %s", objfile->name,
1926 bfd_errmsg (bfd_get_error ()));
1927 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1928 if (objfile->obfd == NULL)
1929 error ("Can't open %s to read symbols.", objfile->name);
1930 /* bfd_openr sets cacheable to true, which is what we want. */
1931 if (!bfd_check_format (objfile->obfd, bfd_object))
1932 error ("Can't read symbols from %s: %s.", objfile->name,
1933 bfd_errmsg (bfd_get_error ()));
1934
1935 /* Save the offsets, we will nuke them with the rest of the
1936 objfile_obstack. */
1937 num_offsets = objfile->num_sections;
1938 offsets = ((struct section_offsets *)
1939 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
1940 memcpy (offsets, objfile->section_offsets,
1941 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1942
1943 /* Nuke all the state that we will re-read. Much of the following
1944 code which sets things to NULL really is necessary to tell
1945 other parts of GDB that there is nothing currently there. */
1946
1947 /* FIXME: Do we have to free a whole linked list, or is this
1948 enough? */
1949 if (objfile->global_psymbols.list)
1950 xmfree (objfile->md, objfile->global_psymbols.list);
1951 memset (&objfile->global_psymbols, 0,
1952 sizeof (objfile->global_psymbols));
1953 if (objfile->static_psymbols.list)
1954 xmfree (objfile->md, objfile->static_psymbols.list);
1955 memset (&objfile->static_psymbols, 0,
1956 sizeof (objfile->static_psymbols));
1957
1958 /* Free the obstacks for non-reusable objfiles */
1959 bcache_xfree (objfile->psymbol_cache);
1960 objfile->psymbol_cache = bcache_xmalloc ();
1961 bcache_xfree (objfile->macro_cache);
1962 objfile->macro_cache = bcache_xmalloc ();
1963 if (objfile->demangled_names_hash != NULL)
1964 {
1965 htab_delete (objfile->demangled_names_hash);
1966 objfile->demangled_names_hash = NULL;
1967 }
1968 obstack_free (&objfile->objfile_obstack, 0);
1969 objfile->sections = NULL;
1970 objfile->symtabs = NULL;
1971 objfile->psymtabs = NULL;
1972 objfile->free_psymtabs = NULL;
1973 objfile->cp_namespace_symtab = NULL;
1974 objfile->msymbols = NULL;
1975 objfile->sym_private = NULL;
1976 objfile->minimal_symbol_count = 0;
1977 memset (&objfile->msymbol_hash, 0,
1978 sizeof (objfile->msymbol_hash));
1979 memset (&objfile->msymbol_demangled_hash, 0,
1980 sizeof (objfile->msymbol_demangled_hash));
1981 objfile->fundamental_types = NULL;
1982 clear_objfile_data (objfile);
1983 if (objfile->sf != NULL)
1984 {
1985 (*objfile->sf->sym_finish) (objfile);
1986 }
1987
1988 /* We never make this a mapped file. */
1989 objfile->md = NULL;
1990 objfile->psymbol_cache = bcache_xmalloc ();
1991 objfile->macro_cache = bcache_xmalloc ();
1992 /* obstack_init also initializes the obstack so it is
1993 empty. We could use obstack_specify_allocation but
1994 gdb_obstack.h specifies the alloc/dealloc
1995 functions. */
1996 obstack_init (&objfile->objfile_obstack);
1997 if (build_objfile_section_table (objfile))
1998 {
1999 error ("Can't find the file sections in `%s': %s",
2000 objfile->name, bfd_errmsg (bfd_get_error ()));
2001 }
2002 terminate_minimal_symbol_table (objfile);
2003
2004 /* We use the same section offsets as from last time. I'm not
2005 sure whether that is always correct for shared libraries. */
2006 objfile->section_offsets = (struct section_offsets *)
2007 obstack_alloc (&objfile->objfile_obstack,
2008 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2009 memcpy (objfile->section_offsets, offsets,
2010 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2011 objfile->num_sections = num_offsets;
2012
2013 /* What the hell is sym_new_init for, anyway? The concept of
2014 distinguishing between the main file and additional files
2015 in this way seems rather dubious. */
2016 if (objfile == symfile_objfile)
2017 {
2018 (*objfile->sf->sym_new_init) (objfile);
2019 #ifdef HPUXHPPA
2020 RESET_HP_UX_GLOBALS ();
2021 #endif
2022 }
2023
2024 (*objfile->sf->sym_init) (objfile);
2025 clear_complaints (&symfile_complaints, 1, 1);
2026 /* The "mainline" parameter is a hideous hack; I think leaving it
2027 zero is OK since dbxread.c also does what it needs to do if
2028 objfile->global_psymbols.size is 0. */
2029 (*objfile->sf->sym_read) (objfile, 0);
2030 if (!have_partial_symbols () && !have_full_symbols ())
2031 {
2032 wrap_here ("");
2033 printf_unfiltered ("(no debugging symbols found)\n");
2034 wrap_here ("");
2035 }
2036 objfile->flags |= OBJF_SYMS;
2037
2038 /* We're done reading the symbol file; finish off complaints. */
2039 clear_complaints (&symfile_complaints, 0, 1);
2040
2041 /* Getting new symbols may change our opinion about what is
2042 frameless. */
2043
2044 reinit_frame_cache ();
2045
2046 /* Discard cleanups as symbol reading was successful. */
2047 discard_cleanups (old_cleanups);
2048
2049 /* If the mtime has changed between the time we set new_modtime
2050 and now, we *want* this to be out of date, so don't call stat
2051 again now. */
2052 objfile->mtime = new_modtime;
2053 reread_one = 1;
2054 reread_separate_symbols (objfile);
2055 }
2056 }
2057 }
2058
2059 if (reread_one)
2060 clear_symtab_users ();
2061 }
2062
2063
2064 /* Handle separate debug info for OBJFILE, which has just been
2065 re-read:
2066 - If we had separate debug info before, but now we don't, get rid
2067 of the separated objfile.
2068 - If we didn't have separated debug info before, but now we do,
2069 read in the new separated debug info file.
2070 - If the debug link points to a different file, toss the old one
2071 and read the new one.
2072 This function does *not* handle the case where objfile is still
2073 using the same separate debug info file, but that file's timestamp
2074 has changed. That case should be handled by the loop in
2075 reread_symbols already. */
2076 static void
2077 reread_separate_symbols (struct objfile *objfile)
2078 {
2079 char *debug_file;
2080 unsigned long crc32;
2081
2082 /* Does the updated objfile's debug info live in a
2083 separate file? */
2084 debug_file = find_separate_debug_file (objfile);
2085
2086 if (objfile->separate_debug_objfile)
2087 {
2088 /* There are two cases where we need to get rid of
2089 the old separated debug info objfile:
2090 - if the new primary objfile doesn't have
2091 separated debug info, or
2092 - if the new primary objfile has separate debug
2093 info, but it's under a different filename.
2094
2095 If the old and new objfiles both have separate
2096 debug info, under the same filename, then we're
2097 okay --- if the separated file's contents have
2098 changed, we will have caught that when we
2099 visited it in this function's outermost
2100 loop. */
2101 if (! debug_file
2102 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2103 free_objfile (objfile->separate_debug_objfile);
2104 }
2105
2106 /* If the new objfile has separate debug info, and we
2107 haven't loaded it already, do so now. */
2108 if (debug_file
2109 && ! objfile->separate_debug_objfile)
2110 {
2111 /* Use the same section offset table as objfile itself.
2112 Preserve the flags from objfile that make sense. */
2113 objfile->separate_debug_objfile
2114 = (symbol_file_add_with_addrs_or_offsets
2115 (symfile_bfd_open (debug_file),
2116 info_verbose, /* from_tty: Don't override the default. */
2117 0, /* No addr table. */
2118 objfile->section_offsets, objfile->num_sections,
2119 0, /* Not mainline. See comments about this above. */
2120 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2121 | OBJF_USERLOADED)));
2122 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2123 = objfile;
2124 }
2125 }
2126
2127
2128 \f
2129
2130
2131 typedef struct
2132 {
2133 char *ext;
2134 enum language lang;
2135 }
2136 filename_language;
2137
2138 static filename_language *filename_language_table;
2139 static int fl_table_size, fl_table_next;
2140
2141 static void
2142 add_filename_language (char *ext, enum language lang)
2143 {
2144 if (fl_table_next >= fl_table_size)
2145 {
2146 fl_table_size += 10;
2147 filename_language_table =
2148 xrealloc (filename_language_table,
2149 fl_table_size * sizeof (*filename_language_table));
2150 }
2151
2152 filename_language_table[fl_table_next].ext = xstrdup (ext);
2153 filename_language_table[fl_table_next].lang = lang;
2154 fl_table_next++;
2155 }
2156
2157 static char *ext_args;
2158
2159 static void
2160 set_ext_lang_command (char *args, int from_tty)
2161 {
2162 int i;
2163 char *cp = ext_args;
2164 enum language lang;
2165
2166 /* First arg is filename extension, starting with '.' */
2167 if (*cp != '.')
2168 error ("'%s': Filename extension must begin with '.'", ext_args);
2169
2170 /* Find end of first arg. */
2171 while (*cp && !isspace (*cp))
2172 cp++;
2173
2174 if (*cp == '\0')
2175 error ("'%s': two arguments required -- filename extension and language",
2176 ext_args);
2177
2178 /* Null-terminate first arg */
2179 *cp++ = '\0';
2180
2181 /* Find beginning of second arg, which should be a source language. */
2182 while (*cp && isspace (*cp))
2183 cp++;
2184
2185 if (*cp == '\0')
2186 error ("'%s': two arguments required -- filename extension and language",
2187 ext_args);
2188
2189 /* Lookup the language from among those we know. */
2190 lang = language_enum (cp);
2191
2192 /* Now lookup the filename extension: do we already know it? */
2193 for (i = 0; i < fl_table_next; i++)
2194 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2195 break;
2196
2197 if (i >= fl_table_next)
2198 {
2199 /* new file extension */
2200 add_filename_language (ext_args, lang);
2201 }
2202 else
2203 {
2204 /* redefining a previously known filename extension */
2205
2206 /* if (from_tty) */
2207 /* query ("Really make files of type %s '%s'?", */
2208 /* ext_args, language_str (lang)); */
2209
2210 xfree (filename_language_table[i].ext);
2211 filename_language_table[i].ext = xstrdup (ext_args);
2212 filename_language_table[i].lang = lang;
2213 }
2214 }
2215
2216 static void
2217 info_ext_lang_command (char *args, int from_tty)
2218 {
2219 int i;
2220
2221 printf_filtered ("Filename extensions and the languages they represent:");
2222 printf_filtered ("\n\n");
2223 for (i = 0; i < fl_table_next; i++)
2224 printf_filtered ("\t%s\t- %s\n",
2225 filename_language_table[i].ext,
2226 language_str (filename_language_table[i].lang));
2227 }
2228
2229 static void
2230 init_filename_language_table (void)
2231 {
2232 if (fl_table_size == 0) /* protect against repetition */
2233 {
2234 fl_table_size = 20;
2235 fl_table_next = 0;
2236 filename_language_table =
2237 xmalloc (fl_table_size * sizeof (*filename_language_table));
2238 add_filename_language (".c", language_c);
2239 add_filename_language (".C", language_cplus);
2240 add_filename_language (".cc", language_cplus);
2241 add_filename_language (".cp", language_cplus);
2242 add_filename_language (".cpp", language_cplus);
2243 add_filename_language (".cxx", language_cplus);
2244 add_filename_language (".c++", language_cplus);
2245 add_filename_language (".java", language_java);
2246 add_filename_language (".class", language_java);
2247 add_filename_language (".m", language_objc);
2248 add_filename_language (".f", language_fortran);
2249 add_filename_language (".F", language_fortran);
2250 add_filename_language (".s", language_asm);
2251 add_filename_language (".S", language_asm);
2252 add_filename_language (".pas", language_pascal);
2253 add_filename_language (".p", language_pascal);
2254 add_filename_language (".pp", language_pascal);
2255 }
2256 }
2257
2258 enum language
2259 deduce_language_from_filename (char *filename)
2260 {
2261 int i;
2262 char *cp;
2263
2264 if (filename != NULL)
2265 if ((cp = strrchr (filename, '.')) != NULL)
2266 for (i = 0; i < fl_table_next; i++)
2267 if (strcmp (cp, filename_language_table[i].ext) == 0)
2268 return filename_language_table[i].lang;
2269
2270 return language_unknown;
2271 }
2272 \f
2273 /* allocate_symtab:
2274
2275 Allocate and partly initialize a new symbol table. Return a pointer
2276 to it. error() if no space.
2277
2278 Caller must set these fields:
2279 LINETABLE(symtab)
2280 symtab->blockvector
2281 symtab->dirname
2282 symtab->free_code
2283 symtab->free_ptr
2284 possibly free_named_symtabs (symtab->filename);
2285 */
2286
2287 struct symtab *
2288 allocate_symtab (char *filename, struct objfile *objfile)
2289 {
2290 struct symtab *symtab;
2291
2292 symtab = (struct symtab *)
2293 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2294 memset (symtab, 0, sizeof (*symtab));
2295 symtab->filename = obsavestring (filename, strlen (filename),
2296 &objfile->objfile_obstack);
2297 symtab->fullname = NULL;
2298 symtab->language = deduce_language_from_filename (filename);
2299 symtab->debugformat = obsavestring ("unknown", 7,
2300 &objfile->objfile_obstack);
2301
2302 /* Hook it to the objfile it comes from */
2303
2304 symtab->objfile = objfile;
2305 symtab->next = objfile->symtabs;
2306 objfile->symtabs = symtab;
2307
2308 /* FIXME: This should go away. It is only defined for the Z8000,
2309 and the Z8000 definition of this macro doesn't have anything to
2310 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2311 here for convenience. */
2312 #ifdef INIT_EXTRA_SYMTAB_INFO
2313 INIT_EXTRA_SYMTAB_INFO (symtab);
2314 #endif
2315
2316 return (symtab);
2317 }
2318
2319 struct partial_symtab *
2320 allocate_psymtab (char *filename, struct objfile *objfile)
2321 {
2322 struct partial_symtab *psymtab;
2323
2324 if (objfile->free_psymtabs)
2325 {
2326 psymtab = objfile->free_psymtabs;
2327 objfile->free_psymtabs = psymtab->next;
2328 }
2329 else
2330 psymtab = (struct partial_symtab *)
2331 obstack_alloc (&objfile->objfile_obstack,
2332 sizeof (struct partial_symtab));
2333
2334 memset (psymtab, 0, sizeof (struct partial_symtab));
2335 psymtab->filename = obsavestring (filename, strlen (filename),
2336 &objfile->objfile_obstack);
2337 psymtab->symtab = NULL;
2338
2339 /* Prepend it to the psymtab list for the objfile it belongs to.
2340 Psymtabs are searched in most recent inserted -> least recent
2341 inserted order. */
2342
2343 psymtab->objfile = objfile;
2344 psymtab->next = objfile->psymtabs;
2345 objfile->psymtabs = psymtab;
2346 #if 0
2347 {
2348 struct partial_symtab **prev_pst;
2349 psymtab->objfile = objfile;
2350 psymtab->next = NULL;
2351 prev_pst = &(objfile->psymtabs);
2352 while ((*prev_pst) != NULL)
2353 prev_pst = &((*prev_pst)->next);
2354 (*prev_pst) = psymtab;
2355 }
2356 #endif
2357
2358 return (psymtab);
2359 }
2360
2361 void
2362 discard_psymtab (struct partial_symtab *pst)
2363 {
2364 struct partial_symtab **prev_pst;
2365
2366 /* From dbxread.c:
2367 Empty psymtabs happen as a result of header files which don't
2368 have any symbols in them. There can be a lot of them. But this
2369 check is wrong, in that a psymtab with N_SLINE entries but
2370 nothing else is not empty, but we don't realize that. Fixing
2371 that without slowing things down might be tricky. */
2372
2373 /* First, snip it out of the psymtab chain */
2374
2375 prev_pst = &(pst->objfile->psymtabs);
2376 while ((*prev_pst) != pst)
2377 prev_pst = &((*prev_pst)->next);
2378 (*prev_pst) = pst->next;
2379
2380 /* Next, put it on a free list for recycling */
2381
2382 pst->next = pst->objfile->free_psymtabs;
2383 pst->objfile->free_psymtabs = pst;
2384 }
2385 \f
2386
2387 /* Reset all data structures in gdb which may contain references to symbol
2388 table data. */
2389
2390 void
2391 clear_symtab_users (void)
2392 {
2393 /* Someday, we should do better than this, by only blowing away
2394 the things that really need to be blown. */
2395 clear_value_history ();
2396 clear_displays ();
2397 clear_internalvars ();
2398 breakpoint_re_set ();
2399 set_default_breakpoint (0, 0, 0, 0);
2400 clear_current_source_symtab_and_line ();
2401 clear_pc_function_cache ();
2402 if (deprecated_target_new_objfile_hook)
2403 deprecated_target_new_objfile_hook (NULL);
2404 }
2405
2406 static void
2407 clear_symtab_users_cleanup (void *ignore)
2408 {
2409 clear_symtab_users ();
2410 }
2411
2412 /* clear_symtab_users_once:
2413
2414 This function is run after symbol reading, or from a cleanup.
2415 If an old symbol table was obsoleted, the old symbol table
2416 has been blown away, but the other GDB data structures that may
2417 reference it have not yet been cleared or re-directed. (The old
2418 symtab was zapped, and the cleanup queued, in free_named_symtab()
2419 below.)
2420
2421 This function can be queued N times as a cleanup, or called
2422 directly; it will do all the work the first time, and then will be a
2423 no-op until the next time it is queued. This works by bumping a
2424 counter at queueing time. Much later when the cleanup is run, or at
2425 the end of symbol processing (in case the cleanup is discarded), if
2426 the queued count is greater than the "done-count", we do the work
2427 and set the done-count to the queued count. If the queued count is
2428 less than or equal to the done-count, we just ignore the call. This
2429 is needed because reading a single .o file will often replace many
2430 symtabs (one per .h file, for example), and we don't want to reset
2431 the breakpoints N times in the user's face.
2432
2433 The reason we both queue a cleanup, and call it directly after symbol
2434 reading, is because the cleanup protects us in case of errors, but is
2435 discarded if symbol reading is successful. */
2436
2437 #if 0
2438 /* FIXME: As free_named_symtabs is currently a big noop this function
2439 is no longer needed. */
2440 static void clear_symtab_users_once (void);
2441
2442 static int clear_symtab_users_queued;
2443 static int clear_symtab_users_done;
2444
2445 static void
2446 clear_symtab_users_once (void)
2447 {
2448 /* Enforce once-per-`do_cleanups'-semantics */
2449 if (clear_symtab_users_queued <= clear_symtab_users_done)
2450 return;
2451 clear_symtab_users_done = clear_symtab_users_queued;
2452
2453 clear_symtab_users ();
2454 }
2455 #endif
2456
2457 /* Delete the specified psymtab, and any others that reference it. */
2458
2459 static void
2460 cashier_psymtab (struct partial_symtab *pst)
2461 {
2462 struct partial_symtab *ps, *pprev = NULL;
2463 int i;
2464
2465 /* Find its previous psymtab in the chain */
2466 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2467 {
2468 if (ps == pst)
2469 break;
2470 pprev = ps;
2471 }
2472
2473 if (ps)
2474 {
2475 /* Unhook it from the chain. */
2476 if (ps == pst->objfile->psymtabs)
2477 pst->objfile->psymtabs = ps->next;
2478 else
2479 pprev->next = ps->next;
2480
2481 /* FIXME, we can't conveniently deallocate the entries in the
2482 partial_symbol lists (global_psymbols/static_psymbols) that
2483 this psymtab points to. These just take up space until all
2484 the psymtabs are reclaimed. Ditto the dependencies list and
2485 filename, which are all in the objfile_obstack. */
2486
2487 /* We need to cashier any psymtab that has this one as a dependency... */
2488 again:
2489 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2490 {
2491 for (i = 0; i < ps->number_of_dependencies; i++)
2492 {
2493 if (ps->dependencies[i] == pst)
2494 {
2495 cashier_psymtab (ps);
2496 goto again; /* Must restart, chain has been munged. */
2497 }
2498 }
2499 }
2500 }
2501 }
2502
2503 /* If a symtab or psymtab for filename NAME is found, free it along
2504 with any dependent breakpoints, displays, etc.
2505 Used when loading new versions of object modules with the "add-file"
2506 command. This is only called on the top-level symtab or psymtab's name;
2507 it is not called for subsidiary files such as .h files.
2508
2509 Return value is 1 if we blew away the environment, 0 if not.
2510 FIXME. The return value appears to never be used.
2511
2512 FIXME. I think this is not the best way to do this. We should
2513 work on being gentler to the environment while still cleaning up
2514 all stray pointers into the freed symtab. */
2515
2516 int
2517 free_named_symtabs (char *name)
2518 {
2519 #if 0
2520 /* FIXME: With the new method of each objfile having it's own
2521 psymtab list, this function needs serious rethinking. In particular,
2522 why was it ever necessary to toss psymtabs with specific compilation
2523 unit filenames, as opposed to all psymtabs from a particular symbol
2524 file? -- fnf
2525 Well, the answer is that some systems permit reloading of particular
2526 compilation units. We want to blow away any old info about these
2527 compilation units, regardless of which objfiles they arrived in. --gnu. */
2528
2529 struct symtab *s;
2530 struct symtab *prev;
2531 struct partial_symtab *ps;
2532 struct blockvector *bv;
2533 int blewit = 0;
2534
2535 /* We only wack things if the symbol-reload switch is set. */
2536 if (!symbol_reloading)
2537 return 0;
2538
2539 /* Some symbol formats have trouble providing file names... */
2540 if (name == 0 || *name == '\0')
2541 return 0;
2542
2543 /* Look for a psymtab with the specified name. */
2544
2545 again2:
2546 for (ps = partial_symtab_list; ps; ps = ps->next)
2547 {
2548 if (strcmp (name, ps->filename) == 0)
2549 {
2550 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2551 goto again2; /* Must restart, chain has been munged */
2552 }
2553 }
2554
2555 /* Look for a symtab with the specified name. */
2556
2557 for (s = symtab_list; s; s = s->next)
2558 {
2559 if (strcmp (name, s->filename) == 0)
2560 break;
2561 prev = s;
2562 }
2563
2564 if (s)
2565 {
2566 if (s == symtab_list)
2567 symtab_list = s->next;
2568 else
2569 prev->next = s->next;
2570
2571 /* For now, queue a delete for all breakpoints, displays, etc., whether
2572 or not they depend on the symtab being freed. This should be
2573 changed so that only those data structures affected are deleted. */
2574
2575 /* But don't delete anything if the symtab is empty.
2576 This test is necessary due to a bug in "dbxread.c" that
2577 causes empty symtabs to be created for N_SO symbols that
2578 contain the pathname of the object file. (This problem
2579 has been fixed in GDB 3.9x). */
2580
2581 bv = BLOCKVECTOR (s);
2582 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2583 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2584 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2585 {
2586 complaint (&symfile_complaints, "Replacing old symbols for `%s'",
2587 name);
2588 clear_symtab_users_queued++;
2589 make_cleanup (clear_symtab_users_once, 0);
2590 blewit = 1;
2591 }
2592 else
2593 {
2594 complaint (&symfile_complaints, "Empty symbol table found for `%s'",
2595 name);
2596 }
2597
2598 free_symtab (s);
2599 }
2600 else
2601 {
2602 /* It is still possible that some breakpoints will be affected
2603 even though no symtab was found, since the file might have
2604 been compiled without debugging, and hence not be associated
2605 with a symtab. In order to handle this correctly, we would need
2606 to keep a list of text address ranges for undebuggable files.
2607 For now, we do nothing, since this is a fairly obscure case. */
2608 ;
2609 }
2610
2611 /* FIXME, what about the minimal symbol table? */
2612 return blewit;
2613 #else
2614 return (0);
2615 #endif
2616 }
2617 \f
2618 /* Allocate and partially fill a partial symtab. It will be
2619 completely filled at the end of the symbol list.
2620
2621 FILENAME is the name of the symbol-file we are reading from. */
2622
2623 struct partial_symtab *
2624 start_psymtab_common (struct objfile *objfile,
2625 struct section_offsets *section_offsets, char *filename,
2626 CORE_ADDR textlow, struct partial_symbol **global_syms,
2627 struct partial_symbol **static_syms)
2628 {
2629 struct partial_symtab *psymtab;
2630
2631 psymtab = allocate_psymtab (filename, objfile);
2632 psymtab->section_offsets = section_offsets;
2633 psymtab->textlow = textlow;
2634 psymtab->texthigh = psymtab->textlow; /* default */
2635 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2636 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2637 return (psymtab);
2638 }
2639 \f
2640 /* Add a symbol with a long value to a psymtab.
2641 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2642 Return the partial symbol that has been added. */
2643
2644 /* NOTE: carlton/2003-09-11: The reason why we return the partial
2645 symbol is so that callers can get access to the symbol's demangled
2646 name, which they don't have any cheap way to determine otherwise.
2647 (Currenly, dwarf2read.c is the only file who uses that information,
2648 though it's possible that other readers might in the future.)
2649 Elena wasn't thrilled about that, and I don't blame her, but we
2650 couldn't come up with a better way to get that information. If
2651 it's needed in other situations, we could consider breaking up
2652 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2653 cache. */
2654
2655 const struct partial_symbol *
2656 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2657 enum address_class class,
2658 struct psymbol_allocation_list *list, long val, /* Value as a long */
2659 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2660 enum language language, struct objfile *objfile)
2661 {
2662 struct partial_symbol *psym;
2663 char *buf = alloca (namelength + 1);
2664 /* psymbol is static so that there will be no uninitialized gaps in the
2665 structure which might contain random data, causing cache misses in
2666 bcache. */
2667 static struct partial_symbol psymbol;
2668
2669 /* Create local copy of the partial symbol */
2670 memcpy (buf, name, namelength);
2671 buf[namelength] = '\0';
2672 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2673 if (val != 0)
2674 {
2675 SYMBOL_VALUE (&psymbol) = val;
2676 }
2677 else
2678 {
2679 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2680 }
2681 SYMBOL_SECTION (&psymbol) = 0;
2682 SYMBOL_LANGUAGE (&psymbol) = language;
2683 PSYMBOL_DOMAIN (&psymbol) = domain;
2684 PSYMBOL_CLASS (&psymbol) = class;
2685
2686 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2687
2688 /* Stash the partial symbol away in the cache */
2689 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2690 objfile->psymbol_cache);
2691
2692 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2693 if (list->next >= list->list + list->size)
2694 {
2695 extend_psymbol_list (list, objfile);
2696 }
2697 *list->next++ = psym;
2698 OBJSTAT (objfile, n_psyms++);
2699
2700 return psym;
2701 }
2702
2703 /* Add a symbol with a long value to a psymtab. This differs from
2704 * add_psymbol_to_list above in taking both a mangled and a demangled
2705 * name. */
2706
2707 void
2708 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2709 int dem_namelength, domain_enum domain,
2710 enum address_class class,
2711 struct psymbol_allocation_list *list, long val, /* Value as a long */
2712 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2713 enum language language,
2714 struct objfile *objfile)
2715 {
2716 struct partial_symbol *psym;
2717 char *buf = alloca (namelength + 1);
2718 /* psymbol is static so that there will be no uninitialized gaps in the
2719 structure which might contain random data, causing cache misses in
2720 bcache. */
2721 static struct partial_symbol psymbol;
2722
2723 /* Create local copy of the partial symbol */
2724
2725 memcpy (buf, name, namelength);
2726 buf[namelength] = '\0';
2727 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2728 objfile->psymbol_cache);
2729
2730 buf = alloca (dem_namelength + 1);
2731 memcpy (buf, dem_name, dem_namelength);
2732 buf[dem_namelength] = '\0';
2733
2734 switch (language)
2735 {
2736 case language_c:
2737 case language_cplus:
2738 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2739 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2740 break;
2741 /* FIXME What should be done for the default case? Ignoring for now. */
2742 }
2743
2744 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2745 if (val != 0)
2746 {
2747 SYMBOL_VALUE (&psymbol) = val;
2748 }
2749 else
2750 {
2751 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2752 }
2753 SYMBOL_SECTION (&psymbol) = 0;
2754 SYMBOL_LANGUAGE (&psymbol) = language;
2755 PSYMBOL_DOMAIN (&psymbol) = domain;
2756 PSYMBOL_CLASS (&psymbol) = class;
2757 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2758
2759 /* Stash the partial symbol away in the cache */
2760 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2761 objfile->psymbol_cache);
2762
2763 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2764 if (list->next >= list->list + list->size)
2765 {
2766 extend_psymbol_list (list, objfile);
2767 }
2768 *list->next++ = psym;
2769 OBJSTAT (objfile, n_psyms++);
2770 }
2771
2772 /* Initialize storage for partial symbols. */
2773
2774 void
2775 init_psymbol_list (struct objfile *objfile, int total_symbols)
2776 {
2777 /* Free any previously allocated psymbol lists. */
2778
2779 if (objfile->global_psymbols.list)
2780 {
2781 xmfree (objfile->md, objfile->global_psymbols.list);
2782 }
2783 if (objfile->static_psymbols.list)
2784 {
2785 xmfree (objfile->md, objfile->static_psymbols.list);
2786 }
2787
2788 /* Current best guess is that approximately a twentieth
2789 of the total symbols (in a debugging file) are global or static
2790 oriented symbols */
2791
2792 objfile->global_psymbols.size = total_symbols / 10;
2793 objfile->static_psymbols.size = total_symbols / 10;
2794
2795 if (objfile->global_psymbols.size > 0)
2796 {
2797 objfile->global_psymbols.next =
2798 objfile->global_psymbols.list = (struct partial_symbol **)
2799 xmmalloc (objfile->md, (objfile->global_psymbols.size
2800 * sizeof (struct partial_symbol *)));
2801 }
2802 if (objfile->static_psymbols.size > 0)
2803 {
2804 objfile->static_psymbols.next =
2805 objfile->static_psymbols.list = (struct partial_symbol **)
2806 xmmalloc (objfile->md, (objfile->static_psymbols.size
2807 * sizeof (struct partial_symbol *)));
2808 }
2809 }
2810
2811 /* OVERLAYS:
2812 The following code implements an abstraction for debugging overlay sections.
2813
2814 The target model is as follows:
2815 1) The gnu linker will permit multiple sections to be mapped into the
2816 same VMA, each with its own unique LMA (or load address).
2817 2) It is assumed that some runtime mechanism exists for mapping the
2818 sections, one by one, from the load address into the VMA address.
2819 3) This code provides a mechanism for gdb to keep track of which
2820 sections should be considered to be mapped from the VMA to the LMA.
2821 This information is used for symbol lookup, and memory read/write.
2822 For instance, if a section has been mapped then its contents
2823 should be read from the VMA, otherwise from the LMA.
2824
2825 Two levels of debugger support for overlays are available. One is
2826 "manual", in which the debugger relies on the user to tell it which
2827 overlays are currently mapped. This level of support is
2828 implemented entirely in the core debugger, and the information about
2829 whether a section is mapped is kept in the objfile->obj_section table.
2830
2831 The second level of support is "automatic", and is only available if
2832 the target-specific code provides functionality to read the target's
2833 overlay mapping table, and translate its contents for the debugger
2834 (by updating the mapped state information in the obj_section tables).
2835
2836 The interface is as follows:
2837 User commands:
2838 overlay map <name> -- tell gdb to consider this section mapped
2839 overlay unmap <name> -- tell gdb to consider this section unmapped
2840 overlay list -- list the sections that GDB thinks are mapped
2841 overlay read-target -- get the target's state of what's mapped
2842 overlay off/manual/auto -- set overlay debugging state
2843 Functional interface:
2844 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2845 section, return that section.
2846 find_pc_overlay(pc): find any overlay section that contains
2847 the pc, either in its VMA or its LMA
2848 overlay_is_mapped(sect): true if overlay is marked as mapped
2849 section_is_overlay(sect): true if section's VMA != LMA
2850 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2851 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2852 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2853 overlay_mapped_address(...): map an address from section's LMA to VMA
2854 overlay_unmapped_address(...): map an address from section's VMA to LMA
2855 symbol_overlayed_address(...): Return a "current" address for symbol:
2856 either in VMA or LMA depending on whether
2857 the symbol's section is currently mapped
2858 */
2859
2860 /* Overlay debugging state: */
2861
2862 enum overlay_debugging_state overlay_debugging = ovly_off;
2863 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2864
2865 /* Target vector for refreshing overlay mapped state */
2866 static void simple_overlay_update (struct obj_section *);
2867 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2868
2869 /* Function: section_is_overlay (SECTION)
2870 Returns true if SECTION has VMA not equal to LMA, ie.
2871 SECTION is loaded at an address different from where it will "run". */
2872
2873 int
2874 section_is_overlay (asection *section)
2875 {
2876 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2877
2878 if (overlay_debugging)
2879 if (section && section->lma != 0 &&
2880 section->vma != section->lma)
2881 return 1;
2882
2883 return 0;
2884 }
2885
2886 /* Function: overlay_invalidate_all (void)
2887 Invalidate the mapped state of all overlay sections (mark it as stale). */
2888
2889 static void
2890 overlay_invalidate_all (void)
2891 {
2892 struct objfile *objfile;
2893 struct obj_section *sect;
2894
2895 ALL_OBJSECTIONS (objfile, sect)
2896 if (section_is_overlay (sect->the_bfd_section))
2897 sect->ovly_mapped = -1;
2898 }
2899
2900 /* Function: overlay_is_mapped (SECTION)
2901 Returns true if section is an overlay, and is currently mapped.
2902 Private: public access is thru function section_is_mapped.
2903
2904 Access to the ovly_mapped flag is restricted to this function, so
2905 that we can do automatic update. If the global flag
2906 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2907 overlay_invalidate_all. If the mapped state of the particular
2908 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2909
2910 static int
2911 overlay_is_mapped (struct obj_section *osect)
2912 {
2913 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2914 return 0;
2915
2916 switch (overlay_debugging)
2917 {
2918 default:
2919 case ovly_off:
2920 return 0; /* overlay debugging off */
2921 case ovly_auto: /* overlay debugging automatic */
2922 /* Unles there is a target_overlay_update function,
2923 there's really nothing useful to do here (can't really go auto) */
2924 if (target_overlay_update)
2925 {
2926 if (overlay_cache_invalid)
2927 {
2928 overlay_invalidate_all ();
2929 overlay_cache_invalid = 0;
2930 }
2931 if (osect->ovly_mapped == -1)
2932 (*target_overlay_update) (osect);
2933 }
2934 /* fall thru to manual case */
2935 case ovly_on: /* overlay debugging manual */
2936 return osect->ovly_mapped == 1;
2937 }
2938 }
2939
2940 /* Function: section_is_mapped
2941 Returns true if section is an overlay, and is currently mapped. */
2942
2943 int
2944 section_is_mapped (asection *section)
2945 {
2946 struct objfile *objfile;
2947 struct obj_section *osect;
2948
2949 if (overlay_debugging)
2950 if (section && section_is_overlay (section))
2951 ALL_OBJSECTIONS (objfile, osect)
2952 if (osect->the_bfd_section == section)
2953 return overlay_is_mapped (osect);
2954
2955 return 0;
2956 }
2957
2958 /* Function: pc_in_unmapped_range
2959 If PC falls into the lma range of SECTION, return true, else false. */
2960
2961 CORE_ADDR
2962 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
2963 {
2964 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2965
2966 int size;
2967
2968 if (overlay_debugging)
2969 if (section && section_is_overlay (section))
2970 {
2971 size = bfd_get_section_size_before_reloc (section);
2972 if (section->lma <= pc && pc < section->lma + size)
2973 return 1;
2974 }
2975 return 0;
2976 }
2977
2978 /* Function: pc_in_mapped_range
2979 If PC falls into the vma range of SECTION, return true, else false. */
2980
2981 CORE_ADDR
2982 pc_in_mapped_range (CORE_ADDR pc, asection *section)
2983 {
2984 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2985
2986 int size;
2987
2988 if (overlay_debugging)
2989 if (section && section_is_overlay (section))
2990 {
2991 size = bfd_get_section_size_before_reloc (section);
2992 if (section->vma <= pc && pc < section->vma + size)
2993 return 1;
2994 }
2995 return 0;
2996 }
2997
2998
2999 /* Return true if the mapped ranges of sections A and B overlap, false
3000 otherwise. */
3001 static int
3002 sections_overlap (asection *a, asection *b)
3003 {
3004 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3005
3006 CORE_ADDR a_start = a->vma;
3007 CORE_ADDR a_end = a->vma + bfd_get_section_size_before_reloc (a);
3008 CORE_ADDR b_start = b->vma;
3009 CORE_ADDR b_end = b->vma + bfd_get_section_size_before_reloc (b);
3010
3011 return (a_start < b_end && b_start < a_end);
3012 }
3013
3014 /* Function: overlay_unmapped_address (PC, SECTION)
3015 Returns the address corresponding to PC in the unmapped (load) range.
3016 May be the same as PC. */
3017
3018 CORE_ADDR
3019 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3020 {
3021 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3022
3023 if (overlay_debugging)
3024 if (section && section_is_overlay (section) &&
3025 pc_in_mapped_range (pc, section))
3026 return pc + section->lma - section->vma;
3027
3028 return pc;
3029 }
3030
3031 /* Function: overlay_mapped_address (PC, SECTION)
3032 Returns the address corresponding to PC in the mapped (runtime) range.
3033 May be the same as PC. */
3034
3035 CORE_ADDR
3036 overlay_mapped_address (CORE_ADDR pc, asection *section)
3037 {
3038 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3039
3040 if (overlay_debugging)
3041 if (section && section_is_overlay (section) &&
3042 pc_in_unmapped_range (pc, section))
3043 return pc + section->vma - section->lma;
3044
3045 return pc;
3046 }
3047
3048
3049 /* Function: symbol_overlayed_address
3050 Return one of two addresses (relative to the VMA or to the LMA),
3051 depending on whether the section is mapped or not. */
3052
3053 CORE_ADDR
3054 symbol_overlayed_address (CORE_ADDR address, asection *section)
3055 {
3056 if (overlay_debugging)
3057 {
3058 /* If the symbol has no section, just return its regular address. */
3059 if (section == 0)
3060 return address;
3061 /* If the symbol's section is not an overlay, just return its address */
3062 if (!section_is_overlay (section))
3063 return address;
3064 /* If the symbol's section is mapped, just return its address */
3065 if (section_is_mapped (section))
3066 return address;
3067 /*
3068 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3069 * then return its LOADED address rather than its vma address!!
3070 */
3071 return overlay_unmapped_address (address, section);
3072 }
3073 return address;
3074 }
3075
3076 /* Function: find_pc_overlay (PC)
3077 Return the best-match overlay section for PC:
3078 If PC matches a mapped overlay section's VMA, return that section.
3079 Else if PC matches an unmapped section's VMA, return that section.
3080 Else if PC matches an unmapped section's LMA, return that section. */
3081
3082 asection *
3083 find_pc_overlay (CORE_ADDR pc)
3084 {
3085 struct objfile *objfile;
3086 struct obj_section *osect, *best_match = NULL;
3087
3088 if (overlay_debugging)
3089 ALL_OBJSECTIONS (objfile, osect)
3090 if (section_is_overlay (osect->the_bfd_section))
3091 {
3092 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3093 {
3094 if (overlay_is_mapped (osect))
3095 return osect->the_bfd_section;
3096 else
3097 best_match = osect;
3098 }
3099 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3100 best_match = osect;
3101 }
3102 return best_match ? best_match->the_bfd_section : NULL;
3103 }
3104
3105 /* Function: find_pc_mapped_section (PC)
3106 If PC falls into the VMA address range of an overlay section that is
3107 currently marked as MAPPED, return that section. Else return NULL. */
3108
3109 asection *
3110 find_pc_mapped_section (CORE_ADDR pc)
3111 {
3112 struct objfile *objfile;
3113 struct obj_section *osect;
3114
3115 if (overlay_debugging)
3116 ALL_OBJSECTIONS (objfile, osect)
3117 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3118 overlay_is_mapped (osect))
3119 return osect->the_bfd_section;
3120
3121 return NULL;
3122 }
3123
3124 /* Function: list_overlays_command
3125 Print a list of mapped sections and their PC ranges */
3126
3127 void
3128 list_overlays_command (char *args, int from_tty)
3129 {
3130 int nmapped = 0;
3131 struct objfile *objfile;
3132 struct obj_section *osect;
3133
3134 if (overlay_debugging)
3135 ALL_OBJSECTIONS (objfile, osect)
3136 if (overlay_is_mapped (osect))
3137 {
3138 const char *name;
3139 bfd_vma lma, vma;
3140 int size;
3141
3142 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3143 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3144 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3145 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3146
3147 printf_filtered ("Section %s, loaded at ", name);
3148 print_address_numeric (lma, 1, gdb_stdout);
3149 puts_filtered (" - ");
3150 print_address_numeric (lma + size, 1, gdb_stdout);
3151 printf_filtered (", mapped at ");
3152 print_address_numeric (vma, 1, gdb_stdout);
3153 puts_filtered (" - ");
3154 print_address_numeric (vma + size, 1, gdb_stdout);
3155 puts_filtered ("\n");
3156
3157 nmapped++;
3158 }
3159 if (nmapped == 0)
3160 printf_filtered ("No sections are mapped.\n");
3161 }
3162
3163 /* Function: map_overlay_command
3164 Mark the named section as mapped (ie. residing at its VMA address). */
3165
3166 void
3167 map_overlay_command (char *args, int from_tty)
3168 {
3169 struct objfile *objfile, *objfile2;
3170 struct obj_section *sec, *sec2;
3171 asection *bfdsec;
3172
3173 if (!overlay_debugging)
3174 error ("\
3175 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3176 the 'overlay manual' command.");
3177
3178 if (args == 0 || *args == 0)
3179 error ("Argument required: name of an overlay section");
3180
3181 /* First, find a section matching the user supplied argument */
3182 ALL_OBJSECTIONS (objfile, sec)
3183 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3184 {
3185 /* Now, check to see if the section is an overlay. */
3186 bfdsec = sec->the_bfd_section;
3187 if (!section_is_overlay (bfdsec))
3188 continue; /* not an overlay section */
3189
3190 /* Mark the overlay as "mapped" */
3191 sec->ovly_mapped = 1;
3192
3193 /* Next, make a pass and unmap any sections that are
3194 overlapped by this new section: */
3195 ALL_OBJSECTIONS (objfile2, sec2)
3196 if (sec2->ovly_mapped
3197 && sec != sec2
3198 && sec->the_bfd_section != sec2->the_bfd_section
3199 && sections_overlap (sec->the_bfd_section,
3200 sec2->the_bfd_section))
3201 {
3202 if (info_verbose)
3203 printf_unfiltered ("Note: section %s unmapped by overlap\n",
3204 bfd_section_name (objfile->obfd,
3205 sec2->the_bfd_section));
3206 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3207 }
3208 return;
3209 }
3210 error ("No overlay section called %s", args);
3211 }
3212
3213 /* Function: unmap_overlay_command
3214 Mark the overlay section as unmapped
3215 (ie. resident in its LMA address range, rather than the VMA range). */
3216
3217 void
3218 unmap_overlay_command (char *args, int from_tty)
3219 {
3220 struct objfile *objfile;
3221 struct obj_section *sec;
3222
3223 if (!overlay_debugging)
3224 error ("\
3225 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3226 the 'overlay manual' command.");
3227
3228 if (args == 0 || *args == 0)
3229 error ("Argument required: name of an overlay section");
3230
3231 /* First, find a section matching the user supplied argument */
3232 ALL_OBJSECTIONS (objfile, sec)
3233 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3234 {
3235 if (!sec->ovly_mapped)
3236 error ("Section %s is not mapped", args);
3237 sec->ovly_mapped = 0;
3238 return;
3239 }
3240 error ("No overlay section called %s", args);
3241 }
3242
3243 /* Function: overlay_auto_command
3244 A utility command to turn on overlay debugging.
3245 Possibly this should be done via a set/show command. */
3246
3247 static void
3248 overlay_auto_command (char *args, int from_tty)
3249 {
3250 overlay_debugging = ovly_auto;
3251 enable_overlay_breakpoints ();
3252 if (info_verbose)
3253 printf_unfiltered ("Automatic overlay debugging enabled.");
3254 }
3255
3256 /* Function: overlay_manual_command
3257 A utility command to turn on overlay debugging.
3258 Possibly this should be done via a set/show command. */
3259
3260 static void
3261 overlay_manual_command (char *args, int from_tty)
3262 {
3263 overlay_debugging = ovly_on;
3264 disable_overlay_breakpoints ();
3265 if (info_verbose)
3266 printf_unfiltered ("Overlay debugging enabled.");
3267 }
3268
3269 /* Function: overlay_off_command
3270 A utility command to turn on overlay debugging.
3271 Possibly this should be done via a set/show command. */
3272
3273 static void
3274 overlay_off_command (char *args, int from_tty)
3275 {
3276 overlay_debugging = ovly_off;
3277 disable_overlay_breakpoints ();
3278 if (info_verbose)
3279 printf_unfiltered ("Overlay debugging disabled.");
3280 }
3281
3282 static void
3283 overlay_load_command (char *args, int from_tty)
3284 {
3285 if (target_overlay_update)
3286 (*target_overlay_update) (NULL);
3287 else
3288 error ("This target does not know how to read its overlay state.");
3289 }
3290
3291 /* Function: overlay_command
3292 A place-holder for a mis-typed command */
3293
3294 /* Command list chain containing all defined "overlay" subcommands. */
3295 struct cmd_list_element *overlaylist;
3296
3297 static void
3298 overlay_command (char *args, int from_tty)
3299 {
3300 printf_unfiltered
3301 ("\"overlay\" must be followed by the name of an overlay command.\n");
3302 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3303 }
3304
3305
3306 /* Target Overlays for the "Simplest" overlay manager:
3307
3308 This is GDB's default target overlay layer. It works with the
3309 minimal overlay manager supplied as an example by Cygnus. The
3310 entry point is via a function pointer "target_overlay_update",
3311 so targets that use a different runtime overlay manager can
3312 substitute their own overlay_update function and take over the
3313 function pointer.
3314
3315 The overlay_update function pokes around in the target's data structures
3316 to see what overlays are mapped, and updates GDB's overlay mapping with
3317 this information.
3318
3319 In this simple implementation, the target data structures are as follows:
3320 unsigned _novlys; /# number of overlay sections #/
3321 unsigned _ovly_table[_novlys][4] = {
3322 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3323 {..., ..., ..., ...},
3324 }
3325 unsigned _novly_regions; /# number of overlay regions #/
3326 unsigned _ovly_region_table[_novly_regions][3] = {
3327 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3328 {..., ..., ...},
3329 }
3330 These functions will attempt to update GDB's mappedness state in the
3331 symbol section table, based on the target's mappedness state.
3332
3333 To do this, we keep a cached copy of the target's _ovly_table, and
3334 attempt to detect when the cached copy is invalidated. The main
3335 entry point is "simple_overlay_update(SECT), which looks up SECT in
3336 the cached table and re-reads only the entry for that section from
3337 the target (whenever possible).
3338 */
3339
3340 /* Cached, dynamically allocated copies of the target data structures: */
3341 static unsigned (*cache_ovly_table)[4] = 0;
3342 #if 0
3343 static unsigned (*cache_ovly_region_table)[3] = 0;
3344 #endif
3345 static unsigned cache_novlys = 0;
3346 #if 0
3347 static unsigned cache_novly_regions = 0;
3348 #endif
3349 static CORE_ADDR cache_ovly_table_base = 0;
3350 #if 0
3351 static CORE_ADDR cache_ovly_region_table_base = 0;
3352 #endif
3353 enum ovly_index
3354 {
3355 VMA, SIZE, LMA, MAPPED
3356 };
3357 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3358
3359 /* Throw away the cached copy of _ovly_table */
3360 static void
3361 simple_free_overlay_table (void)
3362 {
3363 if (cache_ovly_table)
3364 xfree (cache_ovly_table);
3365 cache_novlys = 0;
3366 cache_ovly_table = NULL;
3367 cache_ovly_table_base = 0;
3368 }
3369
3370 #if 0
3371 /* Throw away the cached copy of _ovly_region_table */
3372 static void
3373 simple_free_overlay_region_table (void)
3374 {
3375 if (cache_ovly_region_table)
3376 xfree (cache_ovly_region_table);
3377 cache_novly_regions = 0;
3378 cache_ovly_region_table = NULL;
3379 cache_ovly_region_table_base = 0;
3380 }
3381 #endif
3382
3383 /* Read an array of ints from the target into a local buffer.
3384 Convert to host order. int LEN is number of ints */
3385 static void
3386 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3387 {
3388 /* FIXME (alloca): Not safe if array is very large. */
3389 char *buf = alloca (len * TARGET_LONG_BYTES);
3390 int i;
3391
3392 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3393 for (i = 0; i < len; i++)
3394 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3395 TARGET_LONG_BYTES);
3396 }
3397
3398 /* Find and grab a copy of the target _ovly_table
3399 (and _novlys, which is needed for the table's size) */
3400 static int
3401 simple_read_overlay_table (void)
3402 {
3403 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3404
3405 simple_free_overlay_table ();
3406 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3407 if (! novlys_msym)
3408 {
3409 error ("Error reading inferior's overlay table: "
3410 "couldn't find `_novlys' variable\n"
3411 "in inferior. Use `overlay manual' mode.");
3412 return 0;
3413 }
3414
3415 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3416 if (! ovly_table_msym)
3417 {
3418 error ("Error reading inferior's overlay table: couldn't find "
3419 "`_ovly_table' array\n"
3420 "in inferior. Use `overlay manual' mode.");
3421 return 0;
3422 }
3423
3424 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3425 cache_ovly_table
3426 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3427 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3428 read_target_long_array (cache_ovly_table_base,
3429 (int *) cache_ovly_table,
3430 cache_novlys * 4);
3431
3432 return 1; /* SUCCESS */
3433 }
3434
3435 #if 0
3436 /* Find and grab a copy of the target _ovly_region_table
3437 (and _novly_regions, which is needed for the table's size) */
3438 static int
3439 simple_read_overlay_region_table (void)
3440 {
3441 struct minimal_symbol *msym;
3442
3443 simple_free_overlay_region_table ();
3444 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3445 if (msym != NULL)
3446 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3447 else
3448 return 0; /* failure */
3449 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3450 if (cache_ovly_region_table != NULL)
3451 {
3452 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3453 if (msym != NULL)
3454 {
3455 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3456 read_target_long_array (cache_ovly_region_table_base,
3457 (int *) cache_ovly_region_table,
3458 cache_novly_regions * 3);
3459 }
3460 else
3461 return 0; /* failure */
3462 }
3463 else
3464 return 0; /* failure */
3465 return 1; /* SUCCESS */
3466 }
3467 #endif
3468
3469 /* Function: simple_overlay_update_1
3470 A helper function for simple_overlay_update. Assuming a cached copy
3471 of _ovly_table exists, look through it to find an entry whose vma,
3472 lma and size match those of OSECT. Re-read the entry and make sure
3473 it still matches OSECT (else the table may no longer be valid).
3474 Set OSECT's mapped state to match the entry. Return: 1 for
3475 success, 0 for failure. */
3476
3477 static int
3478 simple_overlay_update_1 (struct obj_section *osect)
3479 {
3480 int i, size;
3481 bfd *obfd = osect->objfile->obfd;
3482 asection *bsect = osect->the_bfd_section;
3483
3484 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3485 for (i = 0; i < cache_novlys; i++)
3486 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3487 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3488 /* && cache_ovly_table[i][SIZE] == size */ )
3489 {
3490 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3491 (int *) cache_ovly_table[i], 4);
3492 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3493 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3494 /* && cache_ovly_table[i][SIZE] == size */ )
3495 {
3496 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3497 return 1;
3498 }
3499 else /* Warning! Warning! Target's ovly table has changed! */
3500 return 0;
3501 }
3502 return 0;
3503 }
3504
3505 /* Function: simple_overlay_update
3506 If OSECT is NULL, then update all sections' mapped state
3507 (after re-reading the entire target _ovly_table).
3508 If OSECT is non-NULL, then try to find a matching entry in the
3509 cached ovly_table and update only OSECT's mapped state.
3510 If a cached entry can't be found or the cache isn't valid, then
3511 re-read the entire cache, and go ahead and update all sections. */
3512
3513 static void
3514 simple_overlay_update (struct obj_section *osect)
3515 {
3516 struct objfile *objfile;
3517
3518 /* Were we given an osect to look up? NULL means do all of them. */
3519 if (osect)
3520 /* Have we got a cached copy of the target's overlay table? */
3521 if (cache_ovly_table != NULL)
3522 /* Does its cached location match what's currently in the symtab? */
3523 if (cache_ovly_table_base ==
3524 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3525 /* Then go ahead and try to look up this single section in the cache */
3526 if (simple_overlay_update_1 (osect))
3527 /* Found it! We're done. */
3528 return;
3529
3530 /* Cached table no good: need to read the entire table anew.
3531 Or else we want all the sections, in which case it's actually
3532 more efficient to read the whole table in one block anyway. */
3533
3534 if (! simple_read_overlay_table ())
3535 return;
3536
3537 /* Now may as well update all sections, even if only one was requested. */
3538 ALL_OBJSECTIONS (objfile, osect)
3539 if (section_is_overlay (osect->the_bfd_section))
3540 {
3541 int i, size;
3542 bfd *obfd = osect->objfile->obfd;
3543 asection *bsect = osect->the_bfd_section;
3544
3545 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3546 for (i = 0; i < cache_novlys; i++)
3547 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3548 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3549 /* && cache_ovly_table[i][SIZE] == size */ )
3550 { /* obj_section matches i'th entry in ovly_table */
3551 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3552 break; /* finished with inner for loop: break out */
3553 }
3554 }
3555 }
3556
3557 /* Set the output sections and output offsets for section SECTP in
3558 ABFD. The relocation code in BFD will read these offsets, so we
3559 need to be sure they're initialized. We map each section to itself,
3560 with no offset; this means that SECTP->vma will be honored. */
3561
3562 static void
3563 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3564 {
3565 sectp->output_section = sectp;
3566 sectp->output_offset = 0;
3567 }
3568
3569 /* Relocate the contents of a debug section SECTP in ABFD. The
3570 contents are stored in BUF if it is non-NULL, or returned in a
3571 malloc'd buffer otherwise.
3572
3573 For some platforms and debug info formats, shared libraries contain
3574 relocations against the debug sections (particularly for DWARF-2;
3575 one affected platform is PowerPC GNU/Linux, although it depends on
3576 the version of the linker in use). Also, ELF object files naturally
3577 have unresolved relocations for their debug sections. We need to apply
3578 the relocations in order to get the locations of symbols correct. */
3579
3580 bfd_byte *
3581 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3582 {
3583 /* We're only interested in debugging sections with relocation
3584 information. */
3585 if ((sectp->flags & SEC_RELOC) == 0)
3586 return NULL;
3587 if ((sectp->flags & SEC_DEBUGGING) == 0)
3588 return NULL;
3589
3590 /* We will handle section offsets properly elsewhere, so relocate as if
3591 all sections begin at 0. */
3592 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3593
3594 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3595 }
3596
3597 void
3598 _initialize_symfile (void)
3599 {
3600 struct cmd_list_element *c;
3601
3602 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3603 "Load symbol table from executable file FILE.\n\
3604 The `file' command can also load symbol tables, as well as setting the file\n\
3605 to execute.", &cmdlist);
3606 set_cmd_completer (c, filename_completer);
3607
3608 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3609 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3610 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3611 ADDR is the starting address of the file's text.\n\
3612 The optional arguments are section-name section-address pairs and\n\
3613 should be specified if the data and bss segments are not contiguous\n\
3614 with the text. SECT is a section name to be loaded at SECT_ADDR.",
3615 &cmdlist);
3616 set_cmd_completer (c, filename_completer);
3617
3618 c = add_cmd ("add-symbol-file-from-memory", class_files,
3619 add_symbol_file_from_memory_command,
3620 "\
3621 Load the symbols out of memory from a dynamically loaded object file.\n\
3622 Give an expression for the address of the file's shared object file header.",
3623 &cmdlist);
3624
3625 c = add_cmd ("add-shared-symbol-files", class_files,
3626 add_shared_symbol_files_command,
3627 "Load the symbols from shared objects in the dynamic linker's link map.",
3628 &cmdlist);
3629 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3630 &cmdlist);
3631
3632 c = add_cmd ("load", class_files, load_command,
3633 "Dynamically load FILE into the running program, and record its symbols\n\
3634 for access from GDB.", &cmdlist);
3635 set_cmd_completer (c, filename_completer);
3636
3637 add_show_from_set
3638 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3639 (char *) &symbol_reloading,
3640 "Set dynamic symbol table reloading multiple times in one run.",
3641 &setlist),
3642 &showlist);
3643
3644 add_prefix_cmd ("overlay", class_support, overlay_command,
3645 "Commands for debugging overlays.", &overlaylist,
3646 "overlay ", 0, &cmdlist);
3647
3648 add_com_alias ("ovly", "overlay", class_alias, 1);
3649 add_com_alias ("ov", "overlay", class_alias, 1);
3650
3651 add_cmd ("map-overlay", class_support, map_overlay_command,
3652 "Assert that an overlay section is mapped.", &overlaylist);
3653
3654 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3655 "Assert that an overlay section is unmapped.", &overlaylist);
3656
3657 add_cmd ("list-overlays", class_support, list_overlays_command,
3658 "List mappings of overlay sections.", &overlaylist);
3659
3660 add_cmd ("manual", class_support, overlay_manual_command,
3661 "Enable overlay debugging.", &overlaylist);
3662 add_cmd ("off", class_support, overlay_off_command,
3663 "Disable overlay debugging.", &overlaylist);
3664 add_cmd ("auto", class_support, overlay_auto_command,
3665 "Enable automatic overlay debugging.", &overlaylist);
3666 add_cmd ("load-target", class_support, overlay_load_command,
3667 "Read the overlay mapping state from the target.", &overlaylist);
3668
3669 /* Filename extension to source language lookup table: */
3670 init_filename_language_table ();
3671 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3672 (char *) &ext_args,
3673 "Set mapping between filename extension and source language.\n\
3674 Usage: set extension-language .foo bar",
3675 &setlist);
3676 set_cmd_cfunc (c, set_ext_lang_command);
3677
3678 add_info ("extensions", info_ext_lang_command,
3679 "All filename extensions associated with a source language.");
3680
3681 add_show_from_set
3682 (add_set_cmd ("download-write-size", class_obscure,
3683 var_integer, (char *) &download_write_size,
3684 "Set the write size used when downloading a program.\n"
3685 "Only used when downloading a program onto a remote\n"
3686 "target. Specify zero, or a negative value, to disable\n"
3687 "blocked writes. The actual size of each transfer is also\n"
3688 "limited by the size of the target packet and the memory\n"
3689 "cache.\n",
3690 &setlist),
3691 &showlist);
3692
3693 debug_file_directory = xstrdup (DEBUGDIR);
3694 c = (add_set_cmd
3695 ("debug-file-directory", class_support, var_string,
3696 (char *) &debug_file_directory,
3697 "Set the directory where separate debug symbols are searched for.\n"
3698 "Separate debug symbols are first searched for in the same\n"
3699 "directory as the binary, then in the `" DEBUG_SUBDIRECTORY
3700 "' subdirectory,\n"
3701 "and lastly at the path of the directory of the binary with\n"
3702 "the global debug-file directory prepended\n",
3703 &setlist));
3704 add_show_from_set (c, &showlist);
3705 set_cmd_completer (c, filename_completer);
3706 }
This page took 0.107574 seconds and 4 git commands to generate.