9f76c5e0f1cca90b3fbd84794732bfa6f8af2ed4
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57 #include "stack.h"
58 #include "gdb_bfd.h"
59 #include "cli/cli-utils.h"
60
61 #include <sys/types.h>
62 #include <fcntl.h>
63 #include "gdb_string.h"
64 #include "gdb_stat.h"
65 #include <ctype.h>
66 #include <time.h>
67 #include <sys/time.h>
68
69 #include "psymtab.h"
70
71 int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
73 void (*deprecated_show_load_progress) (const char *section,
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
77 unsigned long total_size);
78 void (*deprecated_pre_add_symbol_hook) (const char *);
79 void (*deprecated_post_add_symbol_hook) (void);
80
81 static void clear_symtab_users_cleanup (void *ignore);
82
83 /* Global variables owned by this file. */
84 int readnow_symbol_files; /* Read full symbols immediately. */
85
86 /* Functions this file defines. */
87
88 static void load_command (char *, int);
89
90 static void symbol_file_add_main_1 (const char *args, int from_tty, int flags);
91
92 static void add_symbol_file_command (char *, int);
93
94 static const struct sym_fns *find_sym_fns (bfd *);
95
96 static void decrement_reading_symtab (void *);
97
98 static void overlay_invalidate_all (void);
99
100 static void overlay_auto_command (char *, int);
101
102 static void overlay_manual_command (char *, int);
103
104 static void overlay_off_command (char *, int);
105
106 static void overlay_load_command (char *, int);
107
108 static void overlay_command (char *, int);
109
110 static void simple_free_overlay_table (void);
111
112 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
113 enum bfd_endian);
114
115 static int simple_read_overlay_table (void);
116
117 static int simple_overlay_update_1 (struct obj_section *);
118
119 static void add_filename_language (char *ext, enum language lang);
120
121 static void info_ext_lang_command (char *args, int from_tty);
122
123 static void init_filename_language_table (void);
124
125 static void symfile_find_segment_sections (struct objfile *objfile);
126
127 void _initialize_symfile (void);
128
129 /* List of all available sym_fns. On gdb startup, each object file reader
130 calls add_symtab_fns() to register information on each format it is
131 prepared to read. */
132
133 typedef const struct sym_fns *sym_fns_ptr;
134 DEF_VEC_P (sym_fns_ptr);
135
136 static VEC (sym_fns_ptr) *symtab_fns = NULL;
137
138 /* If non-zero, shared library symbols will be added automatically
139 when the inferior is created, new libraries are loaded, or when
140 attaching to the inferior. This is almost always what users will
141 want to have happen; but for very large programs, the startup time
142 will be excessive, and so if this is a problem, the user can clear
143 this flag and then add the shared library symbols as needed. Note
144 that there is a potential for confusion, since if the shared
145 library symbols are not loaded, commands like "info fun" will *not*
146 report all the functions that are actually present. */
147
148 int auto_solib_add = 1;
149 \f
150
151 /* True if we are reading a symbol table. */
152
153 int currently_reading_symtab = 0;
154
155 static void
156 decrement_reading_symtab (void *dummy)
157 {
158 currently_reading_symtab--;
159 gdb_assert (currently_reading_symtab >= 0);
160 }
161
162 /* Increment currently_reading_symtab and return a cleanup that can be
163 used to decrement it. */
164
165 struct cleanup *
166 increment_reading_symtab (void)
167 {
168 ++currently_reading_symtab;
169 gdb_assert (currently_reading_symtab > 0);
170 return make_cleanup (decrement_reading_symtab, NULL);
171 }
172
173 /* Remember the lowest-addressed loadable section we've seen.
174 This function is called via bfd_map_over_sections.
175
176 In case of equal vmas, the section with the largest size becomes the
177 lowest-addressed loadable section.
178
179 If the vmas and sizes are equal, the last section is considered the
180 lowest-addressed loadable section. */
181
182 void
183 find_lowest_section (bfd *abfd, asection *sect, void *obj)
184 {
185 asection **lowest = (asection **) obj;
186
187 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
188 return;
189 if (!*lowest)
190 *lowest = sect; /* First loadable section */
191 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
192 *lowest = sect; /* A lower loadable section */
193 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
194 && (bfd_section_size (abfd, (*lowest))
195 <= bfd_section_size (abfd, sect)))
196 *lowest = sect;
197 }
198
199 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
200 new object's 'num_sections' field is set to 0; it must be updated
201 by the caller. */
202
203 struct section_addr_info *
204 alloc_section_addr_info (size_t num_sections)
205 {
206 struct section_addr_info *sap;
207 size_t size;
208
209 size = (sizeof (struct section_addr_info)
210 + sizeof (struct other_sections) * (num_sections - 1));
211 sap = (struct section_addr_info *) xmalloc (size);
212 memset (sap, 0, size);
213
214 return sap;
215 }
216
217 /* Build (allocate and populate) a section_addr_info struct from
218 an existing section table. */
219
220 extern struct section_addr_info *
221 build_section_addr_info_from_section_table (const struct target_section *start,
222 const struct target_section *end)
223 {
224 struct section_addr_info *sap;
225 const struct target_section *stp;
226 int oidx;
227
228 sap = alloc_section_addr_info (end - start);
229
230 for (stp = start, oidx = 0; stp != end; stp++)
231 {
232 struct bfd_section *asect = stp->the_bfd_section;
233 bfd *abfd = asect->owner;
234
235 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
236 && oidx < end - start)
237 {
238 sap->other[oidx].addr = stp->addr;
239 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
240 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
241 oidx++;
242 }
243 }
244
245 sap->num_sections = oidx;
246
247 return sap;
248 }
249
250 /* Create a section_addr_info from section offsets in ABFD. */
251
252 static struct section_addr_info *
253 build_section_addr_info_from_bfd (bfd *abfd)
254 {
255 struct section_addr_info *sap;
256 int i;
257 struct bfd_section *sec;
258
259 sap = alloc_section_addr_info (bfd_count_sections (abfd));
260 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
261 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
262 {
263 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
264 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
265 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
266 i++;
267 }
268
269 sap->num_sections = i;
270
271 return sap;
272 }
273
274 /* Create a section_addr_info from section offsets in OBJFILE. */
275
276 struct section_addr_info *
277 build_section_addr_info_from_objfile (const struct objfile *objfile)
278 {
279 struct section_addr_info *sap;
280 int i;
281
282 /* Before reread_symbols gets rewritten it is not safe to call:
283 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
284 */
285 sap = build_section_addr_info_from_bfd (objfile->obfd);
286 for (i = 0; i < sap->num_sections; i++)
287 {
288 int sectindex = sap->other[i].sectindex;
289
290 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
291 }
292 return sap;
293 }
294
295 /* Free all memory allocated by build_section_addr_info_from_section_table. */
296
297 extern void
298 free_section_addr_info (struct section_addr_info *sap)
299 {
300 int idx;
301
302 for (idx = 0; idx < sap->num_sections; idx++)
303 xfree (sap->other[idx].name);
304 xfree (sap);
305 }
306
307 /* Initialize OBJFILE's sect_index_* members. */
308
309 static void
310 init_objfile_sect_indices (struct objfile *objfile)
311 {
312 asection *sect;
313 int i;
314
315 sect = bfd_get_section_by_name (objfile->obfd, ".text");
316 if (sect)
317 objfile->sect_index_text = sect->index;
318
319 sect = bfd_get_section_by_name (objfile->obfd, ".data");
320 if (sect)
321 objfile->sect_index_data = sect->index;
322
323 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
324 if (sect)
325 objfile->sect_index_bss = sect->index;
326
327 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
328 if (sect)
329 objfile->sect_index_rodata = sect->index;
330
331 /* This is where things get really weird... We MUST have valid
332 indices for the various sect_index_* members or gdb will abort.
333 So if for example, there is no ".text" section, we have to
334 accomodate that. First, check for a file with the standard
335 one or two segments. */
336
337 symfile_find_segment_sections (objfile);
338
339 /* Except when explicitly adding symbol files at some address,
340 section_offsets contains nothing but zeros, so it doesn't matter
341 which slot in section_offsets the individual sect_index_* members
342 index into. So if they are all zero, it is safe to just point
343 all the currently uninitialized indices to the first slot. But
344 beware: if this is the main executable, it may be relocated
345 later, e.g. by the remote qOffsets packet, and then this will
346 be wrong! That's why we try segments first. */
347
348 for (i = 0; i < objfile->num_sections; i++)
349 {
350 if (ANOFFSET (objfile->section_offsets, i) != 0)
351 {
352 break;
353 }
354 }
355 if (i == objfile->num_sections)
356 {
357 if (objfile->sect_index_text == -1)
358 objfile->sect_index_text = 0;
359 if (objfile->sect_index_data == -1)
360 objfile->sect_index_data = 0;
361 if (objfile->sect_index_bss == -1)
362 objfile->sect_index_bss = 0;
363 if (objfile->sect_index_rodata == -1)
364 objfile->sect_index_rodata = 0;
365 }
366 }
367
368 /* The arguments to place_section. */
369
370 struct place_section_arg
371 {
372 struct section_offsets *offsets;
373 CORE_ADDR lowest;
374 };
375
376 /* Find a unique offset to use for loadable section SECT if
377 the user did not provide an offset. */
378
379 static void
380 place_section (bfd *abfd, asection *sect, void *obj)
381 {
382 struct place_section_arg *arg = obj;
383 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
384 int done;
385 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
386
387 /* We are only interested in allocated sections. */
388 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
389 return;
390
391 /* If the user specified an offset, honor it. */
392 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
393 return;
394
395 /* Otherwise, let's try to find a place for the section. */
396 start_addr = (arg->lowest + align - 1) & -align;
397
398 do {
399 asection *cur_sec;
400
401 done = 1;
402
403 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
404 {
405 int indx = cur_sec->index;
406
407 /* We don't need to compare against ourself. */
408 if (cur_sec == sect)
409 continue;
410
411 /* We can only conflict with allocated sections. */
412 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
413 continue;
414
415 /* If the section offset is 0, either the section has not been placed
416 yet, or it was the lowest section placed (in which case LOWEST
417 will be past its end). */
418 if (offsets[indx] == 0)
419 continue;
420
421 /* If this section would overlap us, then we must move up. */
422 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
423 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
424 {
425 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
426 start_addr = (start_addr + align - 1) & -align;
427 done = 0;
428 break;
429 }
430
431 /* Otherwise, we appear to be OK. So far. */
432 }
433 }
434 while (!done);
435
436 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
437 arg->lowest = start_addr + bfd_get_section_size (sect);
438 }
439
440 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
441 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
442 entries. */
443
444 void
445 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
446 int num_sections,
447 const struct section_addr_info *addrs)
448 {
449 int i;
450
451 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
452
453 /* Now calculate offsets for section that were specified by the caller. */
454 for (i = 0; i < addrs->num_sections; i++)
455 {
456 const struct other_sections *osp;
457
458 osp = &addrs->other[i];
459 if (osp->sectindex == -1)
460 continue;
461
462 /* Record all sections in offsets. */
463 /* The section_offsets in the objfile are here filled in using
464 the BFD index. */
465 section_offsets->offsets[osp->sectindex] = osp->addr;
466 }
467 }
468
469 /* Transform section name S for a name comparison. prelink can split section
470 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
471 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
472 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
473 (`.sbss') section has invalid (increased) virtual address. */
474
475 static const char *
476 addr_section_name (const char *s)
477 {
478 if (strcmp (s, ".dynbss") == 0)
479 return ".bss";
480 if (strcmp (s, ".sdynbss") == 0)
481 return ".sbss";
482
483 return s;
484 }
485
486 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
487 their (name, sectindex) pair. sectindex makes the sort by name stable. */
488
489 static int
490 addrs_section_compar (const void *ap, const void *bp)
491 {
492 const struct other_sections *a = *((struct other_sections **) ap);
493 const struct other_sections *b = *((struct other_sections **) bp);
494 int retval;
495
496 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
497 if (retval)
498 return retval;
499
500 return a->sectindex - b->sectindex;
501 }
502
503 /* Provide sorted array of pointers to sections of ADDRS. The array is
504 terminated by NULL. Caller is responsible to call xfree for it. */
505
506 static struct other_sections **
507 addrs_section_sort (struct section_addr_info *addrs)
508 {
509 struct other_sections **array;
510 int i;
511
512 /* `+ 1' for the NULL terminator. */
513 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
514 for (i = 0; i < addrs->num_sections; i++)
515 array[i] = &addrs->other[i];
516 array[i] = NULL;
517
518 qsort (array, i, sizeof (*array), addrs_section_compar);
519
520 return array;
521 }
522
523 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
524 also SECTINDEXes specific to ABFD there. This function can be used to
525 rebase ADDRS to start referencing different BFD than before. */
526
527 void
528 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
529 {
530 asection *lower_sect;
531 CORE_ADDR lower_offset;
532 int i;
533 struct cleanup *my_cleanup;
534 struct section_addr_info *abfd_addrs;
535 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
536 struct other_sections **addrs_to_abfd_addrs;
537
538 /* Find lowest loadable section to be used as starting point for
539 continguous sections. */
540 lower_sect = NULL;
541 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
542 if (lower_sect == NULL)
543 {
544 warning (_("no loadable sections found in added symbol-file %s"),
545 bfd_get_filename (abfd));
546 lower_offset = 0;
547 }
548 else
549 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
550
551 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
552 in ABFD. Section names are not unique - there can be multiple sections of
553 the same name. Also the sections of the same name do not have to be
554 adjacent to each other. Some sections may be present only in one of the
555 files. Even sections present in both files do not have to be in the same
556 order.
557
558 Use stable sort by name for the sections in both files. Then linearly
559 scan both lists matching as most of the entries as possible. */
560
561 addrs_sorted = addrs_section_sort (addrs);
562 my_cleanup = make_cleanup (xfree, addrs_sorted);
563
564 abfd_addrs = build_section_addr_info_from_bfd (abfd);
565 make_cleanup_free_section_addr_info (abfd_addrs);
566 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
567 make_cleanup (xfree, abfd_addrs_sorted);
568
569 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
570 ABFD_ADDRS_SORTED. */
571
572 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
573 * addrs->num_sections);
574 make_cleanup (xfree, addrs_to_abfd_addrs);
575
576 while (*addrs_sorted)
577 {
578 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
579
580 while (*abfd_addrs_sorted
581 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
582 sect_name) < 0)
583 abfd_addrs_sorted++;
584
585 if (*abfd_addrs_sorted
586 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
587 sect_name) == 0)
588 {
589 int index_in_addrs;
590
591 /* Make the found item directly addressable from ADDRS. */
592 index_in_addrs = *addrs_sorted - addrs->other;
593 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
594 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
595
596 /* Never use the same ABFD entry twice. */
597 abfd_addrs_sorted++;
598 }
599
600 addrs_sorted++;
601 }
602
603 /* Calculate offsets for the loadable sections.
604 FIXME! Sections must be in order of increasing loadable section
605 so that contiguous sections can use the lower-offset!!!
606
607 Adjust offsets if the segments are not contiguous.
608 If the section is contiguous, its offset should be set to
609 the offset of the highest loadable section lower than it
610 (the loadable section directly below it in memory).
611 this_offset = lower_offset = lower_addr - lower_orig_addr */
612
613 for (i = 0; i < addrs->num_sections; i++)
614 {
615 struct other_sections *sect = addrs_to_abfd_addrs[i];
616
617 if (sect)
618 {
619 /* This is the index used by BFD. */
620 addrs->other[i].sectindex = sect->sectindex;
621
622 if (addrs->other[i].addr != 0)
623 {
624 addrs->other[i].addr -= sect->addr;
625 lower_offset = addrs->other[i].addr;
626 }
627 else
628 addrs->other[i].addr = lower_offset;
629 }
630 else
631 {
632 /* addr_section_name transformation is not used for SECT_NAME. */
633 const char *sect_name = addrs->other[i].name;
634
635 /* This section does not exist in ABFD, which is normally
636 unexpected and we want to issue a warning.
637
638 However, the ELF prelinker does create a few sections which are
639 marked in the main executable as loadable (they are loaded in
640 memory from the DYNAMIC segment) and yet are not present in
641 separate debug info files. This is fine, and should not cause
642 a warning. Shared libraries contain just the section
643 ".gnu.liblist" but it is not marked as loadable there. There is
644 no other way to identify them than by their name as the sections
645 created by prelink have no special flags.
646
647 For the sections `.bss' and `.sbss' see addr_section_name. */
648
649 if (!(strcmp (sect_name, ".gnu.liblist") == 0
650 || strcmp (sect_name, ".gnu.conflict") == 0
651 || (strcmp (sect_name, ".bss") == 0
652 && i > 0
653 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
654 && addrs_to_abfd_addrs[i - 1] != NULL)
655 || (strcmp (sect_name, ".sbss") == 0
656 && i > 0
657 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
658 && addrs_to_abfd_addrs[i - 1] != NULL)))
659 warning (_("section %s not found in %s"), sect_name,
660 bfd_get_filename (abfd));
661
662 addrs->other[i].addr = 0;
663 addrs->other[i].sectindex = -1;
664 }
665 }
666
667 do_cleanups (my_cleanup);
668 }
669
670 /* Parse the user's idea of an offset for dynamic linking, into our idea
671 of how to represent it for fast symbol reading. This is the default
672 version of the sym_fns.sym_offsets function for symbol readers that
673 don't need to do anything special. It allocates a section_offsets table
674 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
675
676 void
677 default_symfile_offsets (struct objfile *objfile,
678 const struct section_addr_info *addrs)
679 {
680 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
681 objfile->section_offsets = (struct section_offsets *)
682 obstack_alloc (&objfile->objfile_obstack,
683 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
684 relative_addr_info_to_section_offsets (objfile->section_offsets,
685 objfile->num_sections, addrs);
686
687 /* For relocatable files, all loadable sections will start at zero.
688 The zero is meaningless, so try to pick arbitrary addresses such
689 that no loadable sections overlap. This algorithm is quadratic,
690 but the number of sections in a single object file is generally
691 small. */
692 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
693 {
694 struct place_section_arg arg;
695 bfd *abfd = objfile->obfd;
696 asection *cur_sec;
697
698 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
699 /* We do not expect this to happen; just skip this step if the
700 relocatable file has a section with an assigned VMA. */
701 if (bfd_section_vma (abfd, cur_sec) != 0)
702 break;
703
704 if (cur_sec == NULL)
705 {
706 CORE_ADDR *offsets = objfile->section_offsets->offsets;
707
708 /* Pick non-overlapping offsets for sections the user did not
709 place explicitly. */
710 arg.offsets = objfile->section_offsets;
711 arg.lowest = 0;
712 bfd_map_over_sections (objfile->obfd, place_section, &arg);
713
714 /* Correctly filling in the section offsets is not quite
715 enough. Relocatable files have two properties that
716 (most) shared objects do not:
717
718 - Their debug information will contain relocations. Some
719 shared libraries do also, but many do not, so this can not
720 be assumed.
721
722 - If there are multiple code sections they will be loaded
723 at different relative addresses in memory than they are
724 in the objfile, since all sections in the file will start
725 at address zero.
726
727 Because GDB has very limited ability to map from an
728 address in debug info to the correct code section,
729 it relies on adding SECT_OFF_TEXT to things which might be
730 code. If we clear all the section offsets, and set the
731 section VMAs instead, then symfile_relocate_debug_section
732 will return meaningful debug information pointing at the
733 correct sections.
734
735 GDB has too many different data structures for section
736 addresses - a bfd, objfile, and so_list all have section
737 tables, as does exec_ops. Some of these could probably
738 be eliminated. */
739
740 for (cur_sec = abfd->sections; cur_sec != NULL;
741 cur_sec = cur_sec->next)
742 {
743 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
744 continue;
745
746 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
747 exec_set_section_address (bfd_get_filename (abfd),
748 cur_sec->index,
749 offsets[cur_sec->index]);
750 offsets[cur_sec->index] = 0;
751 }
752 }
753 }
754
755 /* Remember the bfd indexes for the .text, .data, .bss and
756 .rodata sections. */
757 init_objfile_sect_indices (objfile);
758 }
759
760 /* Divide the file into segments, which are individual relocatable units.
761 This is the default version of the sym_fns.sym_segments function for
762 symbol readers that do not have an explicit representation of segments.
763 It assumes that object files do not have segments, and fully linked
764 files have a single segment. */
765
766 struct symfile_segment_data *
767 default_symfile_segments (bfd *abfd)
768 {
769 int num_sections, i;
770 asection *sect;
771 struct symfile_segment_data *data;
772 CORE_ADDR low, high;
773
774 /* Relocatable files contain enough information to position each
775 loadable section independently; they should not be relocated
776 in segments. */
777 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
778 return NULL;
779
780 /* Make sure there is at least one loadable section in the file. */
781 for (sect = abfd->sections; sect != NULL; sect = sect->next)
782 {
783 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
784 continue;
785
786 break;
787 }
788 if (sect == NULL)
789 return NULL;
790
791 low = bfd_get_section_vma (abfd, sect);
792 high = low + bfd_get_section_size (sect);
793
794 data = XZALLOC (struct symfile_segment_data);
795 data->num_segments = 1;
796 data->segment_bases = XCALLOC (1, CORE_ADDR);
797 data->segment_sizes = XCALLOC (1, CORE_ADDR);
798
799 num_sections = bfd_count_sections (abfd);
800 data->segment_info = XCALLOC (num_sections, int);
801
802 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
803 {
804 CORE_ADDR vma;
805
806 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
807 continue;
808
809 vma = bfd_get_section_vma (abfd, sect);
810 if (vma < low)
811 low = vma;
812 if (vma + bfd_get_section_size (sect) > high)
813 high = vma + bfd_get_section_size (sect);
814
815 data->segment_info[i] = 1;
816 }
817
818 data->segment_bases[0] = low;
819 data->segment_sizes[0] = high - low;
820
821 return data;
822 }
823
824 /* This is a convenience function to call sym_read for OBJFILE and
825 possibly force the partial symbols to be read. */
826
827 static void
828 read_symbols (struct objfile *objfile, int add_flags)
829 {
830 (*objfile->sf->sym_read) (objfile, add_flags);
831
832 /* find_separate_debug_file_in_section should be called only if there is
833 single binary with no existing separate debug info file. */
834 if (!objfile_has_partial_symbols (objfile)
835 && objfile->separate_debug_objfile == NULL
836 && objfile->separate_debug_objfile_backlink == NULL)
837 {
838 bfd *abfd = find_separate_debug_file_in_section (objfile);
839 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
840
841 if (abfd != NULL)
842 {
843 /* find_separate_debug_file_in_section uses the same filename for the
844 virtual section-as-bfd like the bfd filename containing the
845 section. Therefore use also non-canonical name form for the same
846 file containing the section. */
847 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
848 objfile);
849 }
850
851 do_cleanups (cleanup);
852 }
853 if ((add_flags & SYMFILE_NO_READ) == 0)
854 require_partial_symbols (objfile, 0);
855 }
856
857 /* Initialize entry point information for this objfile. */
858
859 static void
860 init_entry_point_info (struct objfile *objfile)
861 {
862 /* Save startup file's range of PC addresses to help blockframe.c
863 decide where the bottom of the stack is. */
864
865 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
866 {
867 /* Executable file -- record its entry point so we'll recognize
868 the startup file because it contains the entry point. */
869 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
870 objfile->ei.entry_point_p = 1;
871 }
872 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
873 && bfd_get_start_address (objfile->obfd) != 0)
874 {
875 /* Some shared libraries may have entry points set and be
876 runnable. There's no clear way to indicate this, so just check
877 for values other than zero. */
878 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
879 objfile->ei.entry_point_p = 1;
880 }
881 else
882 {
883 /* Examination of non-executable.o files. Short-circuit this stuff. */
884 objfile->ei.entry_point_p = 0;
885 }
886
887 if (objfile->ei.entry_point_p)
888 {
889 CORE_ADDR entry_point = objfile->ei.entry_point;
890
891 /* Make certain that the address points at real code, and not a
892 function descriptor. */
893 entry_point
894 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
895 entry_point,
896 &current_target);
897
898 /* Remove any ISA markers, so that this matches entries in the
899 symbol table. */
900 objfile->ei.entry_point
901 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
902 }
903 }
904
905 /* Process a symbol file, as either the main file or as a dynamically
906 loaded file.
907
908 This function does not set the OBJFILE's entry-point info.
909
910 OBJFILE is where the symbols are to be read from.
911
912 ADDRS is the list of section load addresses. If the user has given
913 an 'add-symbol-file' command, then this is the list of offsets and
914 addresses he or she provided as arguments to the command; or, if
915 we're handling a shared library, these are the actual addresses the
916 sections are loaded at, according to the inferior's dynamic linker
917 (as gleaned by GDB's shared library code). We convert each address
918 into an offset from the section VMA's as it appears in the object
919 file, and then call the file's sym_offsets function to convert this
920 into a format-specific offset table --- a `struct section_offsets'.
921
922 ADD_FLAGS encodes verbosity level, whether this is main symbol or
923 an extra symbol file such as dynamically loaded code, and wether
924 breakpoint reset should be deferred. */
925
926 static void
927 syms_from_objfile_1 (struct objfile *objfile,
928 struct section_addr_info *addrs,
929 int add_flags)
930 {
931 struct section_addr_info *local_addr = NULL;
932 struct cleanup *old_chain;
933 const int mainline = add_flags & SYMFILE_MAINLINE;
934
935 objfile->sf = find_sym_fns (objfile->obfd);
936
937 if (objfile->sf == NULL)
938 {
939 /* No symbols to load, but we still need to make sure
940 that the section_offsets table is allocated. */
941 int num_sections = gdb_bfd_count_sections (objfile->obfd);
942 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
943
944 objfile->num_sections = num_sections;
945 objfile->section_offsets
946 = obstack_alloc (&objfile->objfile_obstack, size);
947 memset (objfile->section_offsets, 0, size);
948 return;
949 }
950
951 /* Make sure that partially constructed symbol tables will be cleaned up
952 if an error occurs during symbol reading. */
953 old_chain = make_cleanup_free_objfile (objfile);
954
955 /* If ADDRS is NULL, put together a dummy address list.
956 We now establish the convention that an addr of zero means
957 no load address was specified. */
958 if (! addrs)
959 {
960 local_addr = alloc_section_addr_info (1);
961 make_cleanup (xfree, local_addr);
962 addrs = local_addr;
963 }
964
965 if (mainline)
966 {
967 /* We will modify the main symbol table, make sure that all its users
968 will be cleaned up if an error occurs during symbol reading. */
969 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
970
971 /* Since no error yet, throw away the old symbol table. */
972
973 if (symfile_objfile != NULL)
974 {
975 free_objfile (symfile_objfile);
976 gdb_assert (symfile_objfile == NULL);
977 }
978
979 /* Currently we keep symbols from the add-symbol-file command.
980 If the user wants to get rid of them, they should do "symbol-file"
981 without arguments first. Not sure this is the best behavior
982 (PR 2207). */
983
984 (*objfile->sf->sym_new_init) (objfile);
985 }
986
987 /* Convert addr into an offset rather than an absolute address.
988 We find the lowest address of a loaded segment in the objfile,
989 and assume that <addr> is where that got loaded.
990
991 We no longer warn if the lowest section is not a text segment (as
992 happens for the PA64 port. */
993 if (addrs->num_sections > 0)
994 addr_info_make_relative (addrs, objfile->obfd);
995
996 /* Initialize symbol reading routines for this objfile, allow complaints to
997 appear for this new file, and record how verbose to be, then do the
998 initial symbol reading for this file. */
999
1000 (*objfile->sf->sym_init) (objfile);
1001 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1002
1003 (*objfile->sf->sym_offsets) (objfile, addrs);
1004
1005 read_symbols (objfile, add_flags);
1006
1007 /* Discard cleanups as symbol reading was successful. */
1008
1009 discard_cleanups (old_chain);
1010 xfree (local_addr);
1011 }
1012
1013 /* Same as syms_from_objfile_1, but also initializes the objfile
1014 entry-point info. */
1015
1016 static void
1017 syms_from_objfile (struct objfile *objfile,
1018 struct section_addr_info *addrs,
1019 int add_flags)
1020 {
1021 syms_from_objfile_1 (objfile, addrs, add_flags);
1022 init_entry_point_info (objfile);
1023 }
1024
1025 /* Perform required actions after either reading in the initial
1026 symbols for a new objfile, or mapping in the symbols from a reusable
1027 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1028
1029 void
1030 new_symfile_objfile (struct objfile *objfile, int add_flags)
1031 {
1032 /* If this is the main symbol file we have to clean up all users of the
1033 old main symbol file. Otherwise it is sufficient to fixup all the
1034 breakpoints that may have been redefined by this symbol file. */
1035 if (add_flags & SYMFILE_MAINLINE)
1036 {
1037 /* OK, make it the "real" symbol file. */
1038 symfile_objfile = objfile;
1039
1040 clear_symtab_users (add_flags);
1041 }
1042 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1043 {
1044 breakpoint_re_set ();
1045 }
1046
1047 /* We're done reading the symbol file; finish off complaints. */
1048 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1049 }
1050
1051 /* Process a symbol file, as either the main file or as a dynamically
1052 loaded file.
1053
1054 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1055 A new reference is acquired by this function.
1056
1057 For NAME description see allocate_objfile's definition.
1058
1059 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1060 extra, such as dynamically loaded code, and what to do with breakpoins.
1061
1062 ADDRS is as described for syms_from_objfile_1, above.
1063 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1064
1065 PARENT is the original objfile if ABFD is a separate debug info file.
1066 Otherwise PARENT is NULL.
1067
1068 Upon success, returns a pointer to the objfile that was added.
1069 Upon failure, jumps back to command level (never returns). */
1070
1071 static struct objfile *
1072 symbol_file_add_with_addrs (bfd *abfd, const char *name, int add_flags,
1073 struct section_addr_info *addrs,
1074 int flags, struct objfile *parent)
1075 {
1076 struct objfile *objfile;
1077 const int from_tty = add_flags & SYMFILE_VERBOSE;
1078 const int mainline = add_flags & SYMFILE_MAINLINE;
1079 const int should_print = ((from_tty || info_verbose)
1080 && (readnow_symbol_files
1081 || (add_flags & SYMFILE_NO_READ) == 0));
1082
1083 if (readnow_symbol_files)
1084 {
1085 flags |= OBJF_READNOW;
1086 add_flags &= ~SYMFILE_NO_READ;
1087 }
1088
1089 /* Give user a chance to burp if we'd be
1090 interactively wiping out any existing symbols. */
1091
1092 if ((have_full_symbols () || have_partial_symbols ())
1093 && mainline
1094 && from_tty
1095 && !query (_("Load new symbol table from \"%s\"? "), name))
1096 error (_("Not confirmed."));
1097
1098 objfile = allocate_objfile (abfd, name,
1099 flags | (mainline ? OBJF_MAINLINE : 0));
1100
1101 if (parent)
1102 add_separate_debug_objfile (objfile, parent);
1103
1104 /* We either created a new mapped symbol table, mapped an existing
1105 symbol table file which has not had initial symbol reading
1106 performed, or need to read an unmapped symbol table. */
1107 if (should_print)
1108 {
1109 if (deprecated_pre_add_symbol_hook)
1110 deprecated_pre_add_symbol_hook (name);
1111 else
1112 {
1113 printf_unfiltered (_("Reading symbols from %s..."), name);
1114 wrap_here ("");
1115 gdb_flush (gdb_stdout);
1116 }
1117 }
1118 syms_from_objfile (objfile, addrs, add_flags);
1119
1120 /* We now have at least a partial symbol table. Check to see if the
1121 user requested that all symbols be read on initial access via either
1122 the gdb startup command line or on a per symbol file basis. Expand
1123 all partial symbol tables for this objfile if so. */
1124
1125 if ((flags & OBJF_READNOW))
1126 {
1127 if (should_print)
1128 {
1129 printf_unfiltered (_("expanding to full symbols..."));
1130 wrap_here ("");
1131 gdb_flush (gdb_stdout);
1132 }
1133
1134 if (objfile->sf)
1135 objfile->sf->qf->expand_all_symtabs (objfile);
1136 }
1137
1138 if (should_print && !objfile_has_symbols (objfile))
1139 {
1140 wrap_here ("");
1141 printf_unfiltered (_("(no debugging symbols found)..."));
1142 wrap_here ("");
1143 }
1144
1145 if (should_print)
1146 {
1147 if (deprecated_post_add_symbol_hook)
1148 deprecated_post_add_symbol_hook ();
1149 else
1150 printf_unfiltered (_("done.\n"));
1151 }
1152
1153 /* We print some messages regardless of whether 'from_tty ||
1154 info_verbose' is true, so make sure they go out at the right
1155 time. */
1156 gdb_flush (gdb_stdout);
1157
1158 if (objfile->sf == NULL)
1159 {
1160 observer_notify_new_objfile (objfile);
1161 return objfile; /* No symbols. */
1162 }
1163
1164 new_symfile_objfile (objfile, add_flags);
1165
1166 observer_notify_new_objfile (objfile);
1167
1168 bfd_cache_close_all ();
1169 return (objfile);
1170 }
1171
1172 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1173 see allocate_objfile's definition. */
1174
1175 void
1176 symbol_file_add_separate (bfd *bfd, const char *name, int symfile_flags,
1177 struct objfile *objfile)
1178 {
1179 struct objfile *new_objfile;
1180 struct section_addr_info *sap;
1181 struct cleanup *my_cleanup;
1182
1183 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1184 because sections of BFD may not match sections of OBJFILE and because
1185 vma may have been modified by tools such as prelink. */
1186 sap = build_section_addr_info_from_objfile (objfile);
1187 my_cleanup = make_cleanup_free_section_addr_info (sap);
1188
1189 new_objfile = symbol_file_add_with_addrs
1190 (bfd, name, symfile_flags, sap,
1191 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1192 | OBJF_USERLOADED),
1193 objfile);
1194
1195 do_cleanups (my_cleanup);
1196 }
1197
1198 /* Process the symbol file ABFD, as either the main file or as a
1199 dynamically loaded file.
1200 See symbol_file_add_with_addrs's comments for details. */
1201
1202 struct objfile *
1203 symbol_file_add_from_bfd (bfd *abfd, const char *name, int add_flags,
1204 struct section_addr_info *addrs,
1205 int flags, struct objfile *parent)
1206 {
1207 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1208 parent);
1209 }
1210
1211 /* Process a symbol file, as either the main file or as a dynamically
1212 loaded file. See symbol_file_add_with_addrs's comments for details. */
1213
1214 struct objfile *
1215 symbol_file_add (const char *name, int add_flags,
1216 struct section_addr_info *addrs, int flags)
1217 {
1218 bfd *bfd = symfile_bfd_open (name);
1219 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1220 struct objfile *objf;
1221
1222 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
1223 do_cleanups (cleanup);
1224 return objf;
1225 }
1226
1227 /* Call symbol_file_add() with default values and update whatever is
1228 affected by the loading of a new main().
1229 Used when the file is supplied in the gdb command line
1230 and by some targets with special loading requirements.
1231 The auxiliary function, symbol_file_add_main_1(), has the flags
1232 argument for the switches that can only be specified in the symbol_file
1233 command itself. */
1234
1235 void
1236 symbol_file_add_main (const char *args, int from_tty)
1237 {
1238 symbol_file_add_main_1 (args, from_tty, 0);
1239 }
1240
1241 static void
1242 symbol_file_add_main_1 (const char *args, int from_tty, int flags)
1243 {
1244 const int add_flags = (current_inferior ()->symfile_flags
1245 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1246
1247 symbol_file_add (args, add_flags, NULL, flags);
1248
1249 /* Getting new symbols may change our opinion about
1250 what is frameless. */
1251 reinit_frame_cache ();
1252
1253 if ((flags & SYMFILE_NO_READ) == 0)
1254 set_initial_language ();
1255 }
1256
1257 void
1258 symbol_file_clear (int from_tty)
1259 {
1260 if ((have_full_symbols () || have_partial_symbols ())
1261 && from_tty
1262 && (symfile_objfile
1263 ? !query (_("Discard symbol table from `%s'? "),
1264 objfile_name (symfile_objfile))
1265 : !query (_("Discard symbol table? "))))
1266 error (_("Not confirmed."));
1267
1268 /* solib descriptors may have handles to objfiles. Wipe them before their
1269 objfiles get stale by free_all_objfiles. */
1270 no_shared_libraries (NULL, from_tty);
1271
1272 free_all_objfiles ();
1273
1274 gdb_assert (symfile_objfile == NULL);
1275 if (from_tty)
1276 printf_unfiltered (_("No symbol file now.\n"));
1277 }
1278
1279 static int
1280 separate_debug_file_exists (const char *name, unsigned long crc,
1281 struct objfile *parent_objfile)
1282 {
1283 unsigned long file_crc;
1284 int file_crc_p;
1285 bfd *abfd;
1286 struct stat parent_stat, abfd_stat;
1287 int verified_as_different;
1288
1289 /* Find a separate debug info file as if symbols would be present in
1290 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1291 section can contain just the basename of PARENT_OBJFILE without any
1292 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1293 the separate debug infos with the same basename can exist. */
1294
1295 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1296 return 0;
1297
1298 abfd = gdb_bfd_open_maybe_remote (name);
1299
1300 if (!abfd)
1301 return 0;
1302
1303 /* Verify symlinks were not the cause of filename_cmp name difference above.
1304
1305 Some operating systems, e.g. Windows, do not provide a meaningful
1306 st_ino; they always set it to zero. (Windows does provide a
1307 meaningful st_dev.) Do not indicate a duplicate library in that
1308 case. While there is no guarantee that a system that provides
1309 meaningful inode numbers will never set st_ino to zero, this is
1310 merely an optimization, so we do not need to worry about false
1311 negatives. */
1312
1313 if (bfd_stat (abfd, &abfd_stat) == 0
1314 && abfd_stat.st_ino != 0
1315 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1316 {
1317 if (abfd_stat.st_dev == parent_stat.st_dev
1318 && abfd_stat.st_ino == parent_stat.st_ino)
1319 {
1320 gdb_bfd_unref (abfd);
1321 return 0;
1322 }
1323 verified_as_different = 1;
1324 }
1325 else
1326 verified_as_different = 0;
1327
1328 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
1329
1330 gdb_bfd_unref (abfd);
1331
1332 if (!file_crc_p)
1333 return 0;
1334
1335 if (crc != file_crc)
1336 {
1337 unsigned long parent_crc;
1338
1339 /* If one (or both) the files are accessed for example the via "remote:"
1340 gdbserver way it does not support the bfd_stat operation. Verify
1341 whether those two files are not the same manually. */
1342
1343 if (!verified_as_different)
1344 {
1345 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1346 return 0;
1347 }
1348
1349 if (verified_as_different || parent_crc != file_crc)
1350 warning (_("the debug information found in \"%s\""
1351 " does not match \"%s\" (CRC mismatch).\n"),
1352 name, objfile_name (parent_objfile));
1353
1354 return 0;
1355 }
1356
1357 return 1;
1358 }
1359
1360 char *debug_file_directory = NULL;
1361 static void
1362 show_debug_file_directory (struct ui_file *file, int from_tty,
1363 struct cmd_list_element *c, const char *value)
1364 {
1365 fprintf_filtered (file,
1366 _("The directory where separate debug "
1367 "symbols are searched for is \"%s\".\n"),
1368 value);
1369 }
1370
1371 #if ! defined (DEBUG_SUBDIRECTORY)
1372 #define DEBUG_SUBDIRECTORY ".debug"
1373 #endif
1374
1375 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1376 where the original file resides (may not be the same as
1377 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1378 looking for. CANON_DIR is the "realpath" form of DIR.
1379 DIR must contain a trailing '/'.
1380 Returns the path of the file with separate debug info, of NULL. */
1381
1382 static char *
1383 find_separate_debug_file (const char *dir,
1384 const char *canon_dir,
1385 const char *debuglink,
1386 unsigned long crc32, struct objfile *objfile)
1387 {
1388 char *debugdir;
1389 char *debugfile;
1390 int i;
1391 VEC (char_ptr) *debugdir_vec;
1392 struct cleanup *back_to;
1393 int ix;
1394
1395 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1396 i = strlen (dir);
1397 if (canon_dir != NULL && strlen (canon_dir) > i)
1398 i = strlen (canon_dir);
1399
1400 debugfile = xmalloc (strlen (debug_file_directory) + 1
1401 + i
1402 + strlen (DEBUG_SUBDIRECTORY)
1403 + strlen ("/")
1404 + strlen (debuglink)
1405 + 1);
1406
1407 /* First try in the same directory as the original file. */
1408 strcpy (debugfile, dir);
1409 strcat (debugfile, debuglink);
1410
1411 if (separate_debug_file_exists (debugfile, crc32, objfile))
1412 return debugfile;
1413
1414 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1415 strcpy (debugfile, dir);
1416 strcat (debugfile, DEBUG_SUBDIRECTORY);
1417 strcat (debugfile, "/");
1418 strcat (debugfile, debuglink);
1419
1420 if (separate_debug_file_exists (debugfile, crc32, objfile))
1421 return debugfile;
1422
1423 /* Then try in the global debugfile directories.
1424
1425 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1426 cause "/..." lookups. */
1427
1428 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1429 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1430
1431 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1432 {
1433 strcpy (debugfile, debugdir);
1434 strcat (debugfile, "/");
1435 strcat (debugfile, dir);
1436 strcat (debugfile, debuglink);
1437
1438 if (separate_debug_file_exists (debugfile, crc32, objfile))
1439 {
1440 do_cleanups (back_to);
1441 return debugfile;
1442 }
1443
1444 /* If the file is in the sysroot, try using its base path in the
1445 global debugfile directory. */
1446 if (canon_dir != NULL
1447 && filename_ncmp (canon_dir, gdb_sysroot,
1448 strlen (gdb_sysroot)) == 0
1449 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1450 {
1451 strcpy (debugfile, debugdir);
1452 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1453 strcat (debugfile, "/");
1454 strcat (debugfile, debuglink);
1455
1456 if (separate_debug_file_exists (debugfile, crc32, objfile))
1457 {
1458 do_cleanups (back_to);
1459 return debugfile;
1460 }
1461 }
1462 }
1463
1464 do_cleanups (back_to);
1465 xfree (debugfile);
1466 return NULL;
1467 }
1468
1469 /* Modify PATH to contain only "[/]directory/" part of PATH.
1470 If there were no directory separators in PATH, PATH will be empty
1471 string on return. */
1472
1473 static void
1474 terminate_after_last_dir_separator (char *path)
1475 {
1476 int i;
1477
1478 /* Strip off the final filename part, leaving the directory name,
1479 followed by a slash. The directory can be relative or absolute. */
1480 for (i = strlen(path) - 1; i >= 0; i--)
1481 if (IS_DIR_SEPARATOR (path[i]))
1482 break;
1483
1484 /* If I is -1 then no directory is present there and DIR will be "". */
1485 path[i + 1] = '\0';
1486 }
1487
1488 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1489 Returns pathname, or NULL. */
1490
1491 char *
1492 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1493 {
1494 char *debuglink;
1495 char *dir, *canon_dir;
1496 char *debugfile;
1497 unsigned long crc32;
1498 struct cleanup *cleanups;
1499
1500 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1501
1502 if (debuglink == NULL)
1503 {
1504 /* There's no separate debug info, hence there's no way we could
1505 load it => no warning. */
1506 return NULL;
1507 }
1508
1509 cleanups = make_cleanup (xfree, debuglink);
1510 dir = xstrdup (objfile_name (objfile));
1511 make_cleanup (xfree, dir);
1512 terminate_after_last_dir_separator (dir);
1513 canon_dir = lrealpath (dir);
1514
1515 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1516 crc32, objfile);
1517 xfree (canon_dir);
1518
1519 if (debugfile == NULL)
1520 {
1521 #ifdef HAVE_LSTAT
1522 /* For PR gdb/9538, try again with realpath (if different from the
1523 original). */
1524
1525 struct stat st_buf;
1526
1527 if (lstat (objfile_name (objfile), &st_buf) == 0
1528 && S_ISLNK (st_buf.st_mode))
1529 {
1530 char *symlink_dir;
1531
1532 symlink_dir = lrealpath (objfile_name (objfile));
1533 if (symlink_dir != NULL)
1534 {
1535 make_cleanup (xfree, symlink_dir);
1536 terminate_after_last_dir_separator (symlink_dir);
1537 if (strcmp (dir, symlink_dir) != 0)
1538 {
1539 /* Different directory, so try using it. */
1540 debugfile = find_separate_debug_file (symlink_dir,
1541 symlink_dir,
1542 debuglink,
1543 crc32,
1544 objfile);
1545 }
1546 }
1547 }
1548 #endif /* HAVE_LSTAT */
1549 }
1550
1551 do_cleanups (cleanups);
1552 return debugfile;
1553 }
1554
1555 /* This is the symbol-file command. Read the file, analyze its
1556 symbols, and add a struct symtab to a symtab list. The syntax of
1557 the command is rather bizarre:
1558
1559 1. The function buildargv implements various quoting conventions
1560 which are undocumented and have little or nothing in common with
1561 the way things are quoted (or not quoted) elsewhere in GDB.
1562
1563 2. Options are used, which are not generally used in GDB (perhaps
1564 "set mapped on", "set readnow on" would be better)
1565
1566 3. The order of options matters, which is contrary to GNU
1567 conventions (because it is confusing and inconvenient). */
1568
1569 void
1570 symbol_file_command (char *args, int from_tty)
1571 {
1572 dont_repeat ();
1573
1574 if (args == NULL)
1575 {
1576 symbol_file_clear (from_tty);
1577 }
1578 else
1579 {
1580 char **argv = gdb_buildargv (args);
1581 int flags = OBJF_USERLOADED;
1582 struct cleanup *cleanups;
1583 char *name = NULL;
1584
1585 cleanups = make_cleanup_freeargv (argv);
1586 while (*argv != NULL)
1587 {
1588 if (strcmp (*argv, "-readnow") == 0)
1589 flags |= OBJF_READNOW;
1590 else if (**argv == '-')
1591 error (_("unknown option `%s'"), *argv);
1592 else
1593 {
1594 symbol_file_add_main_1 (*argv, from_tty, flags);
1595 name = *argv;
1596 }
1597
1598 argv++;
1599 }
1600
1601 if (name == NULL)
1602 error (_("no symbol file name was specified"));
1603
1604 do_cleanups (cleanups);
1605 }
1606 }
1607
1608 /* Set the initial language.
1609
1610 FIXME: A better solution would be to record the language in the
1611 psymtab when reading partial symbols, and then use it (if known) to
1612 set the language. This would be a win for formats that encode the
1613 language in an easily discoverable place, such as DWARF. For
1614 stabs, we can jump through hoops looking for specially named
1615 symbols or try to intuit the language from the specific type of
1616 stabs we find, but we can't do that until later when we read in
1617 full symbols. */
1618
1619 void
1620 set_initial_language (void)
1621 {
1622 enum language lang = language_unknown;
1623
1624 if (language_of_main != language_unknown)
1625 lang = language_of_main;
1626 else
1627 {
1628 char *name = main_name ();
1629 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL);
1630
1631 if (sym != NULL)
1632 lang = SYMBOL_LANGUAGE (sym);
1633 }
1634
1635 if (lang == language_unknown)
1636 {
1637 /* Make C the default language */
1638 lang = language_c;
1639 }
1640
1641 set_language (lang);
1642 expected_language = current_language; /* Don't warn the user. */
1643 }
1644
1645 /* If NAME is a remote name open the file using remote protocol, otherwise
1646 open it normally. Returns a new reference to the BFD. On error,
1647 returns NULL with the BFD error set. */
1648
1649 bfd *
1650 gdb_bfd_open_maybe_remote (const char *name)
1651 {
1652 bfd *result;
1653
1654 if (remote_filename_p (name))
1655 result = remote_bfd_open (name, gnutarget);
1656 else
1657 result = gdb_bfd_open (name, gnutarget, -1);
1658
1659 return result;
1660 }
1661
1662 /* Open the file specified by NAME and hand it off to BFD for
1663 preliminary analysis. Return a newly initialized bfd *, which
1664 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1665 absolute). In case of trouble, error() is called. */
1666
1667 bfd *
1668 symfile_bfd_open (const char *cname)
1669 {
1670 bfd *sym_bfd;
1671 int desc;
1672 char *name, *absolute_name;
1673 struct cleanup *back_to;
1674
1675 if (remote_filename_p (cname))
1676 {
1677 sym_bfd = remote_bfd_open (cname, gnutarget);
1678 if (!sym_bfd)
1679 error (_("`%s': can't open to read symbols: %s."), cname,
1680 bfd_errmsg (bfd_get_error ()));
1681
1682 if (!bfd_check_format (sym_bfd, bfd_object))
1683 {
1684 make_cleanup_bfd_unref (sym_bfd);
1685 error (_("`%s': can't read symbols: %s."), cname,
1686 bfd_errmsg (bfd_get_error ()));
1687 }
1688
1689 return sym_bfd;
1690 }
1691
1692 name = tilde_expand (cname); /* Returns 1st new malloc'd copy. */
1693
1694 /* Look down path for it, allocate 2nd new malloc'd copy. */
1695 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, name,
1696 O_RDONLY | O_BINARY, &absolute_name);
1697 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1698 if (desc < 0)
1699 {
1700 char *exename = alloca (strlen (name) + 5);
1701
1702 strcat (strcpy (exename, name), ".exe");
1703 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1704 exename, O_RDONLY | O_BINARY, &absolute_name);
1705 }
1706 #endif
1707 if (desc < 0)
1708 {
1709 make_cleanup (xfree, name);
1710 perror_with_name (name);
1711 }
1712
1713 xfree (name);
1714 name = absolute_name;
1715 back_to = make_cleanup (xfree, name);
1716
1717 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1718 if (!sym_bfd)
1719 error (_("`%s': can't open to read symbols: %s."), name,
1720 bfd_errmsg (bfd_get_error ()));
1721 bfd_set_cacheable (sym_bfd, 1);
1722
1723 if (!bfd_check_format (sym_bfd, bfd_object))
1724 {
1725 make_cleanup_bfd_unref (sym_bfd);
1726 error (_("`%s': can't read symbols: %s."), name,
1727 bfd_errmsg (bfd_get_error ()));
1728 }
1729
1730 do_cleanups (back_to);
1731
1732 return sym_bfd;
1733 }
1734
1735 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1736 the section was not found. */
1737
1738 int
1739 get_section_index (struct objfile *objfile, char *section_name)
1740 {
1741 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1742
1743 if (sect)
1744 return sect->index;
1745 else
1746 return -1;
1747 }
1748
1749 /* Link SF into the global symtab_fns list. Called on startup by the
1750 _initialize routine in each object file format reader, to register
1751 information about each format the reader is prepared to handle. */
1752
1753 void
1754 add_symtab_fns (const struct sym_fns *sf)
1755 {
1756 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1757 }
1758
1759 /* Initialize OBJFILE to read symbols from its associated BFD. It
1760 either returns or calls error(). The result is an initialized
1761 struct sym_fns in the objfile structure, that contains cached
1762 information about the symbol file. */
1763
1764 static const struct sym_fns *
1765 find_sym_fns (bfd *abfd)
1766 {
1767 const struct sym_fns *sf;
1768 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1769 int i;
1770
1771 if (our_flavour == bfd_target_srec_flavour
1772 || our_flavour == bfd_target_ihex_flavour
1773 || our_flavour == bfd_target_tekhex_flavour)
1774 return NULL; /* No symbols. */
1775
1776 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1777 if (our_flavour == sf->sym_flavour)
1778 return sf;
1779
1780 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1781 bfd_get_target (abfd));
1782 }
1783 \f
1784
1785 /* This function runs the load command of our current target. */
1786
1787 static void
1788 load_command (char *arg, int from_tty)
1789 {
1790 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1791
1792 dont_repeat ();
1793
1794 /* The user might be reloading because the binary has changed. Take
1795 this opportunity to check. */
1796 reopen_exec_file ();
1797 reread_symbols ();
1798
1799 if (arg == NULL)
1800 {
1801 char *parg;
1802 int count = 0;
1803
1804 parg = arg = get_exec_file (1);
1805
1806 /* Count how many \ " ' tab space there are in the name. */
1807 while ((parg = strpbrk (parg, "\\\"'\t ")))
1808 {
1809 parg++;
1810 count++;
1811 }
1812
1813 if (count)
1814 {
1815 /* We need to quote this string so buildargv can pull it apart. */
1816 char *temp = xmalloc (strlen (arg) + count + 1 );
1817 char *ptemp = temp;
1818 char *prev;
1819
1820 make_cleanup (xfree, temp);
1821
1822 prev = parg = arg;
1823 while ((parg = strpbrk (parg, "\\\"'\t ")))
1824 {
1825 strncpy (ptemp, prev, parg - prev);
1826 ptemp += parg - prev;
1827 prev = parg++;
1828 *ptemp++ = '\\';
1829 }
1830 strcpy (ptemp, prev);
1831
1832 arg = temp;
1833 }
1834 }
1835
1836 target_load (arg, from_tty);
1837
1838 /* After re-loading the executable, we don't really know which
1839 overlays are mapped any more. */
1840 overlay_cache_invalid = 1;
1841
1842 do_cleanups (cleanup);
1843 }
1844
1845 /* This version of "load" should be usable for any target. Currently
1846 it is just used for remote targets, not inftarg.c or core files,
1847 on the theory that only in that case is it useful.
1848
1849 Avoiding xmodem and the like seems like a win (a) because we don't have
1850 to worry about finding it, and (b) On VMS, fork() is very slow and so
1851 we don't want to run a subprocess. On the other hand, I'm not sure how
1852 performance compares. */
1853
1854 static int validate_download = 0;
1855
1856 /* Callback service function for generic_load (bfd_map_over_sections). */
1857
1858 static void
1859 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1860 {
1861 bfd_size_type *sum = data;
1862
1863 *sum += bfd_get_section_size (asec);
1864 }
1865
1866 /* Opaque data for load_section_callback. */
1867 struct load_section_data {
1868 CORE_ADDR load_offset;
1869 struct load_progress_data *progress_data;
1870 VEC(memory_write_request_s) *requests;
1871 };
1872
1873 /* Opaque data for load_progress. */
1874 struct load_progress_data {
1875 /* Cumulative data. */
1876 unsigned long write_count;
1877 unsigned long data_count;
1878 bfd_size_type total_size;
1879 };
1880
1881 /* Opaque data for load_progress for a single section. */
1882 struct load_progress_section_data {
1883 struct load_progress_data *cumulative;
1884
1885 /* Per-section data. */
1886 const char *section_name;
1887 ULONGEST section_sent;
1888 ULONGEST section_size;
1889 CORE_ADDR lma;
1890 gdb_byte *buffer;
1891 };
1892
1893 /* Target write callback routine for progress reporting. */
1894
1895 static void
1896 load_progress (ULONGEST bytes, void *untyped_arg)
1897 {
1898 struct load_progress_section_data *args = untyped_arg;
1899 struct load_progress_data *totals;
1900
1901 if (args == NULL)
1902 /* Writing padding data. No easy way to get at the cumulative
1903 stats, so just ignore this. */
1904 return;
1905
1906 totals = args->cumulative;
1907
1908 if (bytes == 0 && args->section_sent == 0)
1909 {
1910 /* The write is just starting. Let the user know we've started
1911 this section. */
1912 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1913 args->section_name, hex_string (args->section_size),
1914 paddress (target_gdbarch (), args->lma));
1915 return;
1916 }
1917
1918 if (validate_download)
1919 {
1920 /* Broken memories and broken monitors manifest themselves here
1921 when bring new computers to life. This doubles already slow
1922 downloads. */
1923 /* NOTE: cagney/1999-10-18: A more efficient implementation
1924 might add a verify_memory() method to the target vector and
1925 then use that. remote.c could implement that method using
1926 the ``qCRC'' packet. */
1927 gdb_byte *check = xmalloc (bytes);
1928 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1929
1930 if (target_read_memory (args->lma, check, bytes) != 0)
1931 error (_("Download verify read failed at %s"),
1932 paddress (target_gdbarch (), args->lma));
1933 if (memcmp (args->buffer, check, bytes) != 0)
1934 error (_("Download verify compare failed at %s"),
1935 paddress (target_gdbarch (), args->lma));
1936 do_cleanups (verify_cleanups);
1937 }
1938 totals->data_count += bytes;
1939 args->lma += bytes;
1940 args->buffer += bytes;
1941 totals->write_count += 1;
1942 args->section_sent += bytes;
1943 if (check_quit_flag ()
1944 || (deprecated_ui_load_progress_hook != NULL
1945 && deprecated_ui_load_progress_hook (args->section_name,
1946 args->section_sent)))
1947 error (_("Canceled the download"));
1948
1949 if (deprecated_show_load_progress != NULL)
1950 deprecated_show_load_progress (args->section_name,
1951 args->section_sent,
1952 args->section_size,
1953 totals->data_count,
1954 totals->total_size);
1955 }
1956
1957 /* Callback service function for generic_load (bfd_map_over_sections). */
1958
1959 static void
1960 load_section_callback (bfd *abfd, asection *asec, void *data)
1961 {
1962 struct memory_write_request *new_request;
1963 struct load_section_data *args = data;
1964 struct load_progress_section_data *section_data;
1965 bfd_size_type size = bfd_get_section_size (asec);
1966 gdb_byte *buffer;
1967 const char *sect_name = bfd_get_section_name (abfd, asec);
1968
1969 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1970 return;
1971
1972 if (size == 0)
1973 return;
1974
1975 new_request = VEC_safe_push (memory_write_request_s,
1976 args->requests, NULL);
1977 memset (new_request, 0, sizeof (struct memory_write_request));
1978 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1979 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1980 new_request->end = new_request->begin + size; /* FIXME Should size
1981 be in instead? */
1982 new_request->data = xmalloc (size);
1983 new_request->baton = section_data;
1984
1985 buffer = new_request->data;
1986
1987 section_data->cumulative = args->progress_data;
1988 section_data->section_name = sect_name;
1989 section_data->section_size = size;
1990 section_data->lma = new_request->begin;
1991 section_data->buffer = buffer;
1992
1993 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1994 }
1995
1996 /* Clean up an entire memory request vector, including load
1997 data and progress records. */
1998
1999 static void
2000 clear_memory_write_data (void *arg)
2001 {
2002 VEC(memory_write_request_s) **vec_p = arg;
2003 VEC(memory_write_request_s) *vec = *vec_p;
2004 int i;
2005 struct memory_write_request *mr;
2006
2007 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2008 {
2009 xfree (mr->data);
2010 xfree (mr->baton);
2011 }
2012 VEC_free (memory_write_request_s, vec);
2013 }
2014
2015 void
2016 generic_load (char *args, int from_tty)
2017 {
2018 bfd *loadfile_bfd;
2019 struct timeval start_time, end_time;
2020 char *filename;
2021 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2022 struct load_section_data cbdata;
2023 struct load_progress_data total_progress;
2024 struct ui_out *uiout = current_uiout;
2025
2026 CORE_ADDR entry;
2027 char **argv;
2028
2029 memset (&cbdata, 0, sizeof (cbdata));
2030 memset (&total_progress, 0, sizeof (total_progress));
2031 cbdata.progress_data = &total_progress;
2032
2033 make_cleanup (clear_memory_write_data, &cbdata.requests);
2034
2035 if (args == NULL)
2036 error_no_arg (_("file to load"));
2037
2038 argv = gdb_buildargv (args);
2039 make_cleanup_freeargv (argv);
2040
2041 filename = tilde_expand (argv[0]);
2042 make_cleanup (xfree, filename);
2043
2044 if (argv[1] != NULL)
2045 {
2046 const char *endptr;
2047
2048 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2049
2050 /* If the last word was not a valid number then
2051 treat it as a file name with spaces in. */
2052 if (argv[1] == endptr)
2053 error (_("Invalid download offset:%s."), argv[1]);
2054
2055 if (argv[2] != NULL)
2056 error (_("Too many parameters."));
2057 }
2058
2059 /* Open the file for loading. */
2060 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2061 if (loadfile_bfd == NULL)
2062 {
2063 perror_with_name (filename);
2064 return;
2065 }
2066
2067 make_cleanup_bfd_unref (loadfile_bfd);
2068
2069 if (!bfd_check_format (loadfile_bfd, bfd_object))
2070 {
2071 error (_("\"%s\" is not an object file: %s"), filename,
2072 bfd_errmsg (bfd_get_error ()));
2073 }
2074
2075 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2076 (void *) &total_progress.total_size);
2077
2078 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2079
2080 gettimeofday (&start_time, NULL);
2081
2082 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2083 load_progress) != 0)
2084 error (_("Load failed"));
2085
2086 gettimeofday (&end_time, NULL);
2087
2088 entry = bfd_get_start_address (loadfile_bfd);
2089 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2090 ui_out_text (uiout, "Start address ");
2091 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2092 ui_out_text (uiout, ", load size ");
2093 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2094 ui_out_text (uiout, "\n");
2095 /* We were doing this in remote-mips.c, I suspect it is right
2096 for other targets too. */
2097 regcache_write_pc (get_current_regcache (), entry);
2098
2099 /* Reset breakpoints, now that we have changed the load image. For
2100 instance, breakpoints may have been set (or reset, by
2101 post_create_inferior) while connected to the target but before we
2102 loaded the program. In that case, the prologue analyzer could
2103 have read instructions from the target to find the right
2104 breakpoint locations. Loading has changed the contents of that
2105 memory. */
2106
2107 breakpoint_re_set ();
2108
2109 /* FIXME: are we supposed to call symbol_file_add or not? According
2110 to a comment from remote-mips.c (where a call to symbol_file_add
2111 was commented out), making the call confuses GDB if more than one
2112 file is loaded in. Some targets do (e.g., remote-vx.c) but
2113 others don't (or didn't - perhaps they have all been deleted). */
2114
2115 print_transfer_performance (gdb_stdout, total_progress.data_count,
2116 total_progress.write_count,
2117 &start_time, &end_time);
2118
2119 do_cleanups (old_cleanups);
2120 }
2121
2122 /* Report how fast the transfer went. */
2123
2124 void
2125 print_transfer_performance (struct ui_file *stream,
2126 unsigned long data_count,
2127 unsigned long write_count,
2128 const struct timeval *start_time,
2129 const struct timeval *end_time)
2130 {
2131 ULONGEST time_count;
2132 struct ui_out *uiout = current_uiout;
2133
2134 /* Compute the elapsed time in milliseconds, as a tradeoff between
2135 accuracy and overflow. */
2136 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2137 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2138
2139 ui_out_text (uiout, "Transfer rate: ");
2140 if (time_count > 0)
2141 {
2142 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2143
2144 if (ui_out_is_mi_like_p (uiout))
2145 {
2146 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2147 ui_out_text (uiout, " bits/sec");
2148 }
2149 else if (rate < 1024)
2150 {
2151 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2152 ui_out_text (uiout, " bytes/sec");
2153 }
2154 else
2155 {
2156 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2157 ui_out_text (uiout, " KB/sec");
2158 }
2159 }
2160 else
2161 {
2162 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2163 ui_out_text (uiout, " bits in <1 sec");
2164 }
2165 if (write_count > 0)
2166 {
2167 ui_out_text (uiout, ", ");
2168 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2169 ui_out_text (uiout, " bytes/write");
2170 }
2171 ui_out_text (uiout, ".\n");
2172 }
2173
2174 /* This function allows the addition of incrementally linked object files.
2175 It does not modify any state in the target, only in the debugger. */
2176 /* Note: ezannoni 2000-04-13 This function/command used to have a
2177 special case syntax for the rombug target (Rombug is the boot
2178 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2179 rombug case, the user doesn't need to supply a text address,
2180 instead a call to target_link() (in target.c) would supply the
2181 value to use. We are now discontinuing this type of ad hoc syntax. */
2182
2183 static void
2184 add_symbol_file_command (char *args, int from_tty)
2185 {
2186 struct gdbarch *gdbarch = get_current_arch ();
2187 char *filename = NULL;
2188 int flags = OBJF_USERLOADED;
2189 char *arg;
2190 int section_index = 0;
2191 int argcnt = 0;
2192 int sec_num = 0;
2193 int i;
2194 int expecting_sec_name = 0;
2195 int expecting_sec_addr = 0;
2196 char **argv;
2197
2198 struct sect_opt
2199 {
2200 char *name;
2201 char *value;
2202 };
2203
2204 struct section_addr_info *section_addrs;
2205 struct sect_opt *sect_opts = NULL;
2206 size_t num_sect_opts = 0;
2207 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2208
2209 num_sect_opts = 16;
2210 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2211 * sizeof (struct sect_opt));
2212
2213 dont_repeat ();
2214
2215 if (args == NULL)
2216 error (_("add-symbol-file takes a file name and an address"));
2217
2218 argv = gdb_buildargv (args);
2219 make_cleanup_freeargv (argv);
2220
2221 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2222 {
2223 /* Process the argument. */
2224 if (argcnt == 0)
2225 {
2226 /* The first argument is the file name. */
2227 filename = tilde_expand (arg);
2228 make_cleanup (xfree, filename);
2229 }
2230 else if (argcnt == 1)
2231 {
2232 /* The second argument is always the text address at which
2233 to load the program. */
2234 sect_opts[section_index].name = ".text";
2235 sect_opts[section_index].value = arg;
2236 if (++section_index >= num_sect_opts)
2237 {
2238 num_sect_opts *= 2;
2239 sect_opts = ((struct sect_opt *)
2240 xrealloc (sect_opts,
2241 num_sect_opts
2242 * sizeof (struct sect_opt)));
2243 }
2244 }
2245 else
2246 {
2247 /* It's an option (starting with '-') or it's an argument
2248 to an option. */
2249 if (expecting_sec_name)
2250 {
2251 sect_opts[section_index].name = arg;
2252 expecting_sec_name = 0;
2253 }
2254 else if (expecting_sec_addr)
2255 {
2256 sect_opts[section_index].value = arg;
2257 expecting_sec_addr = 0;
2258 if (++section_index >= num_sect_opts)
2259 {
2260 num_sect_opts *= 2;
2261 sect_opts = ((struct sect_opt *)
2262 xrealloc (sect_opts,
2263 num_sect_opts
2264 * sizeof (struct sect_opt)));
2265 }
2266 }
2267 else if (strcmp (arg, "-readnow") == 0)
2268 flags |= OBJF_READNOW;
2269 else if (strcmp (arg, "-s") == 0)
2270 {
2271 expecting_sec_name = 1;
2272 expecting_sec_addr = 1;
2273 }
2274 else
2275 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2276 " [-readnow] [-s <secname> <addr>]*"));
2277 }
2278 }
2279
2280 /* This command takes at least two arguments. The first one is a
2281 filename, and the second is the address where this file has been
2282 loaded. Abort now if this address hasn't been provided by the
2283 user. */
2284 if (section_index < 1)
2285 error (_("The address where %s has been loaded is missing"), filename);
2286
2287 /* Print the prompt for the query below. And save the arguments into
2288 a sect_addr_info structure to be passed around to other
2289 functions. We have to split this up into separate print
2290 statements because hex_string returns a local static
2291 string. */
2292
2293 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2294 section_addrs = alloc_section_addr_info (section_index);
2295 make_cleanup (xfree, section_addrs);
2296 for (i = 0; i < section_index; i++)
2297 {
2298 CORE_ADDR addr;
2299 char *val = sect_opts[i].value;
2300 char *sec = sect_opts[i].name;
2301
2302 addr = parse_and_eval_address (val);
2303
2304 /* Here we store the section offsets in the order they were
2305 entered on the command line. */
2306 section_addrs->other[sec_num].name = sec;
2307 section_addrs->other[sec_num].addr = addr;
2308 printf_unfiltered ("\t%s_addr = %s\n", sec,
2309 paddress (gdbarch, addr));
2310 sec_num++;
2311
2312 /* The object's sections are initialized when a
2313 call is made to build_objfile_section_table (objfile).
2314 This happens in reread_symbols.
2315 At this point, we don't know what file type this is,
2316 so we can't determine what section names are valid. */
2317 }
2318 section_addrs->num_sections = sec_num;
2319
2320 if (from_tty && (!query ("%s", "")))
2321 error (_("Not confirmed."));
2322
2323 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2324 section_addrs, flags);
2325
2326 /* Getting new symbols may change our opinion about what is
2327 frameless. */
2328 reinit_frame_cache ();
2329 do_cleanups (my_cleanups);
2330 }
2331 \f
2332
2333 typedef struct objfile *objfilep;
2334
2335 DEF_VEC_P (objfilep);
2336
2337 /* Re-read symbols if a symbol-file has changed. */
2338
2339 void
2340 reread_symbols (void)
2341 {
2342 struct objfile *objfile;
2343 long new_modtime;
2344 struct stat new_statbuf;
2345 int res;
2346 VEC (objfilep) *new_objfiles = NULL;
2347 struct cleanup *all_cleanups;
2348
2349 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2350
2351 /* With the addition of shared libraries, this should be modified,
2352 the load time should be saved in the partial symbol tables, since
2353 different tables may come from different source files. FIXME.
2354 This routine should then walk down each partial symbol table
2355 and see if the symbol table that it originates from has been changed. */
2356
2357 for (objfile = object_files; objfile; objfile = objfile->next)
2358 {
2359 if (objfile->obfd == NULL)
2360 continue;
2361
2362 /* Separate debug objfiles are handled in the main objfile. */
2363 if (objfile->separate_debug_objfile_backlink)
2364 continue;
2365
2366 /* If this object is from an archive (what you usually create with
2367 `ar', often called a `static library' on most systems, though
2368 a `shared library' on AIX is also an archive), then you should
2369 stat on the archive name, not member name. */
2370 if (objfile->obfd->my_archive)
2371 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2372 else
2373 res = stat (objfile_name (objfile), &new_statbuf);
2374 if (res != 0)
2375 {
2376 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2377 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2378 objfile_name (objfile));
2379 continue;
2380 }
2381 new_modtime = new_statbuf.st_mtime;
2382 if (new_modtime != objfile->mtime)
2383 {
2384 struct cleanup *old_cleanups;
2385 struct section_offsets *offsets;
2386 int num_offsets;
2387 char *original_name;
2388
2389 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2390 objfile_name (objfile));
2391
2392 /* There are various functions like symbol_file_add,
2393 symfile_bfd_open, syms_from_objfile, etc., which might
2394 appear to do what we want. But they have various other
2395 effects which we *don't* want. So we just do stuff
2396 ourselves. We don't worry about mapped files (for one thing,
2397 any mapped file will be out of date). */
2398
2399 /* If we get an error, blow away this objfile (not sure if
2400 that is the correct response for things like shared
2401 libraries). */
2402 old_cleanups = make_cleanup_free_objfile (objfile);
2403 /* We need to do this whenever any symbols go away. */
2404 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2405
2406 if (exec_bfd != NULL
2407 && filename_cmp (bfd_get_filename (objfile->obfd),
2408 bfd_get_filename (exec_bfd)) == 0)
2409 {
2410 /* Reload EXEC_BFD without asking anything. */
2411
2412 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2413 }
2414
2415 /* Keep the calls order approx. the same as in free_objfile. */
2416
2417 /* Free the separate debug objfiles. It will be
2418 automatically recreated by sym_read. */
2419 free_objfile_separate_debug (objfile);
2420
2421 /* Remove any references to this objfile in the global
2422 value lists. */
2423 preserve_values (objfile);
2424
2425 /* Nuke all the state that we will re-read. Much of the following
2426 code which sets things to NULL really is necessary to tell
2427 other parts of GDB that there is nothing currently there.
2428
2429 Try to keep the freeing order compatible with free_objfile. */
2430
2431 if (objfile->sf != NULL)
2432 {
2433 (*objfile->sf->sym_finish) (objfile);
2434 }
2435
2436 clear_objfile_data (objfile);
2437
2438 /* Clean up any state BFD has sitting around. */
2439 {
2440 struct bfd *obfd = objfile->obfd;
2441 char *obfd_filename;
2442
2443 obfd_filename = bfd_get_filename (objfile->obfd);
2444 /* Open the new BFD before freeing the old one, so that
2445 the filename remains live. */
2446 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
2447 if (objfile->obfd == NULL)
2448 {
2449 /* We have to make a cleanup and error here, rather
2450 than erroring later, because once we unref OBFD,
2451 OBFD_FILENAME will be freed. */
2452 make_cleanup_bfd_unref (obfd);
2453 error (_("Can't open %s to read symbols."), obfd_filename);
2454 }
2455 gdb_bfd_unref (obfd);
2456 }
2457
2458 original_name = xstrdup (objfile->original_name);
2459 make_cleanup (xfree, original_name);
2460
2461 /* bfd_openr sets cacheable to true, which is what we want. */
2462 if (!bfd_check_format (objfile->obfd, bfd_object))
2463 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2464 bfd_errmsg (bfd_get_error ()));
2465
2466 /* Save the offsets, we will nuke them with the rest of the
2467 objfile_obstack. */
2468 num_offsets = objfile->num_sections;
2469 offsets = ((struct section_offsets *)
2470 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2471 memcpy (offsets, objfile->section_offsets,
2472 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2473
2474 /* FIXME: Do we have to free a whole linked list, or is this
2475 enough? */
2476 if (objfile->global_psymbols.list)
2477 xfree (objfile->global_psymbols.list);
2478 memset (&objfile->global_psymbols, 0,
2479 sizeof (objfile->global_psymbols));
2480 if (objfile->static_psymbols.list)
2481 xfree (objfile->static_psymbols.list);
2482 memset (&objfile->static_psymbols, 0,
2483 sizeof (objfile->static_psymbols));
2484
2485 /* Free the obstacks for non-reusable objfiles. */
2486 psymbol_bcache_free (objfile->psymbol_cache);
2487 objfile->psymbol_cache = psymbol_bcache_init ();
2488 if (objfile->demangled_names_hash != NULL)
2489 {
2490 htab_delete (objfile->demangled_names_hash);
2491 objfile->demangled_names_hash = NULL;
2492 }
2493 obstack_free (&objfile->objfile_obstack, 0);
2494 objfile->sections = NULL;
2495 objfile->symtabs = NULL;
2496 objfile->psymtabs = NULL;
2497 objfile->psymtabs_addrmap = NULL;
2498 objfile->free_psymtabs = NULL;
2499 objfile->template_symbols = NULL;
2500 objfile->msymbols = NULL;
2501 objfile->minimal_symbol_count = 0;
2502 memset (&objfile->msymbol_hash, 0,
2503 sizeof (objfile->msymbol_hash));
2504 memset (&objfile->msymbol_demangled_hash, 0,
2505 sizeof (objfile->msymbol_demangled_hash));
2506
2507 set_objfile_per_bfd (objfile);
2508
2509 /* obstack_init also initializes the obstack so it is
2510 empty. We could use obstack_specify_allocation but
2511 gdb_obstack.h specifies the alloc/dealloc functions. */
2512 obstack_init (&objfile->objfile_obstack);
2513
2514 objfile->original_name = obstack_copy0 (&objfile->objfile_obstack,
2515 original_name,
2516 strlen (original_name));
2517
2518 /* Reset the sym_fns pointer. The ELF reader can change it
2519 based on whether .gdb_index is present, and we need it to
2520 start over. PR symtab/15885 */
2521 objfile->sf = find_sym_fns (objfile->obfd);
2522
2523 build_objfile_section_table (objfile);
2524 terminate_minimal_symbol_table (objfile);
2525
2526 /* We use the same section offsets as from last time. I'm not
2527 sure whether that is always correct for shared libraries. */
2528 objfile->section_offsets = (struct section_offsets *)
2529 obstack_alloc (&objfile->objfile_obstack,
2530 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2531 memcpy (objfile->section_offsets, offsets,
2532 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2533 objfile->num_sections = num_offsets;
2534
2535 /* What the hell is sym_new_init for, anyway? The concept of
2536 distinguishing between the main file and additional files
2537 in this way seems rather dubious. */
2538 if (objfile == symfile_objfile)
2539 {
2540 (*objfile->sf->sym_new_init) (objfile);
2541 }
2542
2543 (*objfile->sf->sym_init) (objfile);
2544 clear_complaints (&symfile_complaints, 1, 1);
2545
2546 objfile->flags &= ~OBJF_PSYMTABS_READ;
2547 read_symbols (objfile, 0);
2548
2549 if (!objfile_has_symbols (objfile))
2550 {
2551 wrap_here ("");
2552 printf_unfiltered (_("(no debugging symbols found)\n"));
2553 wrap_here ("");
2554 }
2555
2556 /* We're done reading the symbol file; finish off complaints. */
2557 clear_complaints (&symfile_complaints, 0, 1);
2558
2559 /* Getting new symbols may change our opinion about what is
2560 frameless. */
2561
2562 reinit_frame_cache ();
2563
2564 /* Discard cleanups as symbol reading was successful. */
2565 discard_cleanups (old_cleanups);
2566
2567 /* If the mtime has changed between the time we set new_modtime
2568 and now, we *want* this to be out of date, so don't call stat
2569 again now. */
2570 objfile->mtime = new_modtime;
2571 init_entry_point_info (objfile);
2572
2573 VEC_safe_push (objfilep, new_objfiles, objfile);
2574 }
2575 }
2576
2577 if (new_objfiles)
2578 {
2579 int ix;
2580
2581 /* Notify objfiles that we've modified objfile sections. */
2582 objfiles_changed ();
2583
2584 clear_symtab_users (0);
2585
2586 /* clear_objfile_data for each objfile was called before freeing it and
2587 observer_notify_new_objfile (NULL) has been called by
2588 clear_symtab_users above. Notify the new files now. */
2589 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2590 observer_notify_new_objfile (objfile);
2591
2592 /* At least one objfile has changed, so we can consider that
2593 the executable we're debugging has changed too. */
2594 observer_notify_executable_changed ();
2595 }
2596
2597 do_cleanups (all_cleanups);
2598 }
2599 \f
2600
2601 typedef struct
2602 {
2603 char *ext;
2604 enum language lang;
2605 }
2606 filename_language;
2607
2608 static filename_language *filename_language_table;
2609 static int fl_table_size, fl_table_next;
2610
2611 static void
2612 add_filename_language (char *ext, enum language lang)
2613 {
2614 if (fl_table_next >= fl_table_size)
2615 {
2616 fl_table_size += 10;
2617 filename_language_table =
2618 xrealloc (filename_language_table,
2619 fl_table_size * sizeof (*filename_language_table));
2620 }
2621
2622 filename_language_table[fl_table_next].ext = xstrdup (ext);
2623 filename_language_table[fl_table_next].lang = lang;
2624 fl_table_next++;
2625 }
2626
2627 static char *ext_args;
2628 static void
2629 show_ext_args (struct ui_file *file, int from_tty,
2630 struct cmd_list_element *c, const char *value)
2631 {
2632 fprintf_filtered (file,
2633 _("Mapping between filename extension "
2634 "and source language is \"%s\".\n"),
2635 value);
2636 }
2637
2638 static void
2639 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2640 {
2641 int i;
2642 char *cp = ext_args;
2643 enum language lang;
2644
2645 /* First arg is filename extension, starting with '.' */
2646 if (*cp != '.')
2647 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2648
2649 /* Find end of first arg. */
2650 while (*cp && !isspace (*cp))
2651 cp++;
2652
2653 if (*cp == '\0')
2654 error (_("'%s': two arguments required -- "
2655 "filename extension and language"),
2656 ext_args);
2657
2658 /* Null-terminate first arg. */
2659 *cp++ = '\0';
2660
2661 /* Find beginning of second arg, which should be a source language. */
2662 cp = skip_spaces (cp);
2663
2664 if (*cp == '\0')
2665 error (_("'%s': two arguments required -- "
2666 "filename extension and language"),
2667 ext_args);
2668
2669 /* Lookup the language from among those we know. */
2670 lang = language_enum (cp);
2671
2672 /* Now lookup the filename extension: do we already know it? */
2673 for (i = 0; i < fl_table_next; i++)
2674 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2675 break;
2676
2677 if (i >= fl_table_next)
2678 {
2679 /* New file extension. */
2680 add_filename_language (ext_args, lang);
2681 }
2682 else
2683 {
2684 /* Redefining a previously known filename extension. */
2685
2686 /* if (from_tty) */
2687 /* query ("Really make files of type %s '%s'?", */
2688 /* ext_args, language_str (lang)); */
2689
2690 xfree (filename_language_table[i].ext);
2691 filename_language_table[i].ext = xstrdup (ext_args);
2692 filename_language_table[i].lang = lang;
2693 }
2694 }
2695
2696 static void
2697 info_ext_lang_command (char *args, int from_tty)
2698 {
2699 int i;
2700
2701 printf_filtered (_("Filename extensions and the languages they represent:"));
2702 printf_filtered ("\n\n");
2703 for (i = 0; i < fl_table_next; i++)
2704 printf_filtered ("\t%s\t- %s\n",
2705 filename_language_table[i].ext,
2706 language_str (filename_language_table[i].lang));
2707 }
2708
2709 static void
2710 init_filename_language_table (void)
2711 {
2712 if (fl_table_size == 0) /* Protect against repetition. */
2713 {
2714 fl_table_size = 20;
2715 fl_table_next = 0;
2716 filename_language_table =
2717 xmalloc (fl_table_size * sizeof (*filename_language_table));
2718 add_filename_language (".c", language_c);
2719 add_filename_language (".d", language_d);
2720 add_filename_language (".C", language_cplus);
2721 add_filename_language (".cc", language_cplus);
2722 add_filename_language (".cp", language_cplus);
2723 add_filename_language (".cpp", language_cplus);
2724 add_filename_language (".cxx", language_cplus);
2725 add_filename_language (".c++", language_cplus);
2726 add_filename_language (".java", language_java);
2727 add_filename_language (".class", language_java);
2728 add_filename_language (".m", language_objc);
2729 add_filename_language (".f", language_fortran);
2730 add_filename_language (".F", language_fortran);
2731 add_filename_language (".for", language_fortran);
2732 add_filename_language (".FOR", language_fortran);
2733 add_filename_language (".ftn", language_fortran);
2734 add_filename_language (".FTN", language_fortran);
2735 add_filename_language (".fpp", language_fortran);
2736 add_filename_language (".FPP", language_fortran);
2737 add_filename_language (".f90", language_fortran);
2738 add_filename_language (".F90", language_fortran);
2739 add_filename_language (".f95", language_fortran);
2740 add_filename_language (".F95", language_fortran);
2741 add_filename_language (".f03", language_fortran);
2742 add_filename_language (".F03", language_fortran);
2743 add_filename_language (".f08", language_fortran);
2744 add_filename_language (".F08", language_fortran);
2745 add_filename_language (".s", language_asm);
2746 add_filename_language (".sx", language_asm);
2747 add_filename_language (".S", language_asm);
2748 add_filename_language (".pas", language_pascal);
2749 add_filename_language (".p", language_pascal);
2750 add_filename_language (".pp", language_pascal);
2751 add_filename_language (".adb", language_ada);
2752 add_filename_language (".ads", language_ada);
2753 add_filename_language (".a", language_ada);
2754 add_filename_language (".ada", language_ada);
2755 add_filename_language (".dg", language_ada);
2756 }
2757 }
2758
2759 enum language
2760 deduce_language_from_filename (const char *filename)
2761 {
2762 int i;
2763 char *cp;
2764
2765 if (filename != NULL)
2766 if ((cp = strrchr (filename, '.')) != NULL)
2767 for (i = 0; i < fl_table_next; i++)
2768 if (strcmp (cp, filename_language_table[i].ext) == 0)
2769 return filename_language_table[i].lang;
2770
2771 return language_unknown;
2772 }
2773 \f
2774 /* allocate_symtab:
2775
2776 Allocate and partly initialize a new symbol table. Return a pointer
2777 to it. error() if no space.
2778
2779 Caller must set these fields:
2780 LINETABLE(symtab)
2781 symtab->blockvector
2782 symtab->dirname
2783 symtab->free_code
2784 symtab->free_ptr
2785 */
2786
2787 struct symtab *
2788 allocate_symtab (const char *filename, struct objfile *objfile)
2789 {
2790 struct symtab *symtab;
2791
2792 symtab = (struct symtab *)
2793 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2794 memset (symtab, 0, sizeof (*symtab));
2795 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2796 objfile->per_bfd->filename_cache);
2797 symtab->fullname = NULL;
2798 symtab->language = deduce_language_from_filename (filename);
2799 symtab->debugformat = "unknown";
2800
2801 /* Hook it to the objfile it comes from. */
2802
2803 symtab->objfile = objfile;
2804 symtab->next = objfile->symtabs;
2805 objfile->symtabs = symtab;
2806
2807 if (symtab_create_debug)
2808 {
2809 /* Be a bit clever with debugging messages, and don't print objfile
2810 every time, only when it changes. */
2811 static char *last_objfile_name = NULL;
2812
2813 if (last_objfile_name == NULL
2814 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2815 {
2816 xfree (last_objfile_name);
2817 last_objfile_name = xstrdup (objfile_name (objfile));
2818 fprintf_unfiltered (gdb_stdlog,
2819 "Creating one or more symtabs for objfile %s ...\n",
2820 last_objfile_name);
2821 }
2822 fprintf_unfiltered (gdb_stdlog,
2823 "Created symtab %s for module %s.\n",
2824 host_address_to_string (symtab), filename);
2825 }
2826
2827 return (symtab);
2828 }
2829 \f
2830
2831 /* Reset all data structures in gdb which may contain references to symbol
2832 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2833
2834 void
2835 clear_symtab_users (int add_flags)
2836 {
2837 /* Someday, we should do better than this, by only blowing away
2838 the things that really need to be blown. */
2839
2840 /* Clear the "current" symtab first, because it is no longer valid.
2841 breakpoint_re_set may try to access the current symtab. */
2842 clear_current_source_symtab_and_line ();
2843
2844 clear_displays ();
2845 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2846 breakpoint_re_set ();
2847 clear_last_displayed_sal ();
2848 clear_pc_function_cache ();
2849 observer_notify_new_objfile (NULL);
2850
2851 /* Clear globals which might have pointed into a removed objfile.
2852 FIXME: It's not clear which of these are supposed to persist
2853 between expressions and which ought to be reset each time. */
2854 expression_context_block = NULL;
2855 innermost_block = NULL;
2856
2857 /* Varobj may refer to old symbols, perform a cleanup. */
2858 varobj_invalidate ();
2859
2860 }
2861
2862 static void
2863 clear_symtab_users_cleanup (void *ignore)
2864 {
2865 clear_symtab_users (0);
2866 }
2867 \f
2868 /* OVERLAYS:
2869 The following code implements an abstraction for debugging overlay sections.
2870
2871 The target model is as follows:
2872 1) The gnu linker will permit multiple sections to be mapped into the
2873 same VMA, each with its own unique LMA (or load address).
2874 2) It is assumed that some runtime mechanism exists for mapping the
2875 sections, one by one, from the load address into the VMA address.
2876 3) This code provides a mechanism for gdb to keep track of which
2877 sections should be considered to be mapped from the VMA to the LMA.
2878 This information is used for symbol lookup, and memory read/write.
2879 For instance, if a section has been mapped then its contents
2880 should be read from the VMA, otherwise from the LMA.
2881
2882 Two levels of debugger support for overlays are available. One is
2883 "manual", in which the debugger relies on the user to tell it which
2884 overlays are currently mapped. This level of support is
2885 implemented entirely in the core debugger, and the information about
2886 whether a section is mapped is kept in the objfile->obj_section table.
2887
2888 The second level of support is "automatic", and is only available if
2889 the target-specific code provides functionality to read the target's
2890 overlay mapping table, and translate its contents for the debugger
2891 (by updating the mapped state information in the obj_section tables).
2892
2893 The interface is as follows:
2894 User commands:
2895 overlay map <name> -- tell gdb to consider this section mapped
2896 overlay unmap <name> -- tell gdb to consider this section unmapped
2897 overlay list -- list the sections that GDB thinks are mapped
2898 overlay read-target -- get the target's state of what's mapped
2899 overlay off/manual/auto -- set overlay debugging state
2900 Functional interface:
2901 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2902 section, return that section.
2903 find_pc_overlay(pc): find any overlay section that contains
2904 the pc, either in its VMA or its LMA
2905 section_is_mapped(sect): true if overlay is marked as mapped
2906 section_is_overlay(sect): true if section's VMA != LMA
2907 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2908 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2909 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2910 overlay_mapped_address(...): map an address from section's LMA to VMA
2911 overlay_unmapped_address(...): map an address from section's VMA to LMA
2912 symbol_overlayed_address(...): Return a "current" address for symbol:
2913 either in VMA or LMA depending on whether
2914 the symbol's section is currently mapped. */
2915
2916 /* Overlay debugging state: */
2917
2918 enum overlay_debugging_state overlay_debugging = ovly_off;
2919 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2920
2921 /* Function: section_is_overlay (SECTION)
2922 Returns true if SECTION has VMA not equal to LMA, ie.
2923 SECTION is loaded at an address different from where it will "run". */
2924
2925 int
2926 section_is_overlay (struct obj_section *section)
2927 {
2928 if (overlay_debugging && section)
2929 {
2930 bfd *abfd = section->objfile->obfd;
2931 asection *bfd_section = section->the_bfd_section;
2932
2933 if (bfd_section_lma (abfd, bfd_section) != 0
2934 && bfd_section_lma (abfd, bfd_section)
2935 != bfd_section_vma (abfd, bfd_section))
2936 return 1;
2937 }
2938
2939 return 0;
2940 }
2941
2942 /* Function: overlay_invalidate_all (void)
2943 Invalidate the mapped state of all overlay sections (mark it as stale). */
2944
2945 static void
2946 overlay_invalidate_all (void)
2947 {
2948 struct objfile *objfile;
2949 struct obj_section *sect;
2950
2951 ALL_OBJSECTIONS (objfile, sect)
2952 if (section_is_overlay (sect))
2953 sect->ovly_mapped = -1;
2954 }
2955
2956 /* Function: section_is_mapped (SECTION)
2957 Returns true if section is an overlay, and is currently mapped.
2958
2959 Access to the ovly_mapped flag is restricted to this function, so
2960 that we can do automatic update. If the global flag
2961 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2962 overlay_invalidate_all. If the mapped state of the particular
2963 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2964
2965 int
2966 section_is_mapped (struct obj_section *osect)
2967 {
2968 struct gdbarch *gdbarch;
2969
2970 if (osect == 0 || !section_is_overlay (osect))
2971 return 0;
2972
2973 switch (overlay_debugging)
2974 {
2975 default:
2976 case ovly_off:
2977 return 0; /* overlay debugging off */
2978 case ovly_auto: /* overlay debugging automatic */
2979 /* Unles there is a gdbarch_overlay_update function,
2980 there's really nothing useful to do here (can't really go auto). */
2981 gdbarch = get_objfile_arch (osect->objfile);
2982 if (gdbarch_overlay_update_p (gdbarch))
2983 {
2984 if (overlay_cache_invalid)
2985 {
2986 overlay_invalidate_all ();
2987 overlay_cache_invalid = 0;
2988 }
2989 if (osect->ovly_mapped == -1)
2990 gdbarch_overlay_update (gdbarch, osect);
2991 }
2992 /* fall thru to manual case */
2993 case ovly_on: /* overlay debugging manual */
2994 return osect->ovly_mapped == 1;
2995 }
2996 }
2997
2998 /* Function: pc_in_unmapped_range
2999 If PC falls into the lma range of SECTION, return true, else false. */
3000
3001 CORE_ADDR
3002 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3003 {
3004 if (section_is_overlay (section))
3005 {
3006 bfd *abfd = section->objfile->obfd;
3007 asection *bfd_section = section->the_bfd_section;
3008
3009 /* We assume the LMA is relocated by the same offset as the VMA. */
3010 bfd_vma size = bfd_get_section_size (bfd_section);
3011 CORE_ADDR offset = obj_section_offset (section);
3012
3013 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3014 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3015 return 1;
3016 }
3017
3018 return 0;
3019 }
3020
3021 /* Function: pc_in_mapped_range
3022 If PC falls into the vma range of SECTION, return true, else false. */
3023
3024 CORE_ADDR
3025 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3026 {
3027 if (section_is_overlay (section))
3028 {
3029 if (obj_section_addr (section) <= pc
3030 && pc < obj_section_endaddr (section))
3031 return 1;
3032 }
3033
3034 return 0;
3035 }
3036
3037 /* Return true if the mapped ranges of sections A and B overlap, false
3038 otherwise. */
3039
3040 static int
3041 sections_overlap (struct obj_section *a, struct obj_section *b)
3042 {
3043 CORE_ADDR a_start = obj_section_addr (a);
3044 CORE_ADDR a_end = obj_section_endaddr (a);
3045 CORE_ADDR b_start = obj_section_addr (b);
3046 CORE_ADDR b_end = obj_section_endaddr (b);
3047
3048 return (a_start < b_end && b_start < a_end);
3049 }
3050
3051 /* Function: overlay_unmapped_address (PC, SECTION)
3052 Returns the address corresponding to PC in the unmapped (load) range.
3053 May be the same as PC. */
3054
3055 CORE_ADDR
3056 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3057 {
3058 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3059 {
3060 bfd *abfd = section->objfile->obfd;
3061 asection *bfd_section = section->the_bfd_section;
3062
3063 return pc + bfd_section_lma (abfd, bfd_section)
3064 - bfd_section_vma (abfd, bfd_section);
3065 }
3066
3067 return pc;
3068 }
3069
3070 /* Function: overlay_mapped_address (PC, SECTION)
3071 Returns the address corresponding to PC in the mapped (runtime) range.
3072 May be the same as PC. */
3073
3074 CORE_ADDR
3075 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3076 {
3077 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3078 {
3079 bfd *abfd = section->objfile->obfd;
3080 asection *bfd_section = section->the_bfd_section;
3081
3082 return pc + bfd_section_vma (abfd, bfd_section)
3083 - bfd_section_lma (abfd, bfd_section);
3084 }
3085
3086 return pc;
3087 }
3088
3089 /* Function: symbol_overlayed_address
3090 Return one of two addresses (relative to the VMA or to the LMA),
3091 depending on whether the section is mapped or not. */
3092
3093 CORE_ADDR
3094 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3095 {
3096 if (overlay_debugging)
3097 {
3098 /* If the symbol has no section, just return its regular address. */
3099 if (section == 0)
3100 return address;
3101 /* If the symbol's section is not an overlay, just return its
3102 address. */
3103 if (!section_is_overlay (section))
3104 return address;
3105 /* If the symbol's section is mapped, just return its address. */
3106 if (section_is_mapped (section))
3107 return address;
3108 /*
3109 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3110 * then return its LOADED address rather than its vma address!!
3111 */
3112 return overlay_unmapped_address (address, section);
3113 }
3114 return address;
3115 }
3116
3117 /* Function: find_pc_overlay (PC)
3118 Return the best-match overlay section for PC:
3119 If PC matches a mapped overlay section's VMA, return that section.
3120 Else if PC matches an unmapped section's VMA, return that section.
3121 Else if PC matches an unmapped section's LMA, return that section. */
3122
3123 struct obj_section *
3124 find_pc_overlay (CORE_ADDR pc)
3125 {
3126 struct objfile *objfile;
3127 struct obj_section *osect, *best_match = NULL;
3128
3129 if (overlay_debugging)
3130 ALL_OBJSECTIONS (objfile, osect)
3131 if (section_is_overlay (osect))
3132 {
3133 if (pc_in_mapped_range (pc, osect))
3134 {
3135 if (section_is_mapped (osect))
3136 return osect;
3137 else
3138 best_match = osect;
3139 }
3140 else if (pc_in_unmapped_range (pc, osect))
3141 best_match = osect;
3142 }
3143 return best_match;
3144 }
3145
3146 /* Function: find_pc_mapped_section (PC)
3147 If PC falls into the VMA address range of an overlay section that is
3148 currently marked as MAPPED, return that section. Else return NULL. */
3149
3150 struct obj_section *
3151 find_pc_mapped_section (CORE_ADDR pc)
3152 {
3153 struct objfile *objfile;
3154 struct obj_section *osect;
3155
3156 if (overlay_debugging)
3157 ALL_OBJSECTIONS (objfile, osect)
3158 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3159 return osect;
3160
3161 return NULL;
3162 }
3163
3164 /* Function: list_overlays_command
3165 Print a list of mapped sections and their PC ranges. */
3166
3167 static void
3168 list_overlays_command (char *args, int from_tty)
3169 {
3170 int nmapped = 0;
3171 struct objfile *objfile;
3172 struct obj_section *osect;
3173
3174 if (overlay_debugging)
3175 ALL_OBJSECTIONS (objfile, osect)
3176 if (section_is_mapped (osect))
3177 {
3178 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3179 const char *name;
3180 bfd_vma lma, vma;
3181 int size;
3182
3183 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3184 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3185 size = bfd_get_section_size (osect->the_bfd_section);
3186 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3187
3188 printf_filtered ("Section %s, loaded at ", name);
3189 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3190 puts_filtered (" - ");
3191 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3192 printf_filtered (", mapped at ");
3193 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3194 puts_filtered (" - ");
3195 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3196 puts_filtered ("\n");
3197
3198 nmapped++;
3199 }
3200 if (nmapped == 0)
3201 printf_filtered (_("No sections are mapped.\n"));
3202 }
3203
3204 /* Function: map_overlay_command
3205 Mark the named section as mapped (ie. residing at its VMA address). */
3206
3207 static void
3208 map_overlay_command (char *args, int from_tty)
3209 {
3210 struct objfile *objfile, *objfile2;
3211 struct obj_section *sec, *sec2;
3212
3213 if (!overlay_debugging)
3214 error (_("Overlay debugging not enabled. Use "
3215 "either the 'overlay auto' or\n"
3216 "the 'overlay manual' command."));
3217
3218 if (args == 0 || *args == 0)
3219 error (_("Argument required: name of an overlay section"));
3220
3221 /* First, find a section matching the user supplied argument. */
3222 ALL_OBJSECTIONS (objfile, sec)
3223 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3224 {
3225 /* Now, check to see if the section is an overlay. */
3226 if (!section_is_overlay (sec))
3227 continue; /* not an overlay section */
3228
3229 /* Mark the overlay as "mapped". */
3230 sec->ovly_mapped = 1;
3231
3232 /* Next, make a pass and unmap any sections that are
3233 overlapped by this new section: */
3234 ALL_OBJSECTIONS (objfile2, sec2)
3235 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3236 {
3237 if (info_verbose)
3238 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3239 bfd_section_name (objfile->obfd,
3240 sec2->the_bfd_section));
3241 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3242 }
3243 return;
3244 }
3245 error (_("No overlay section called %s"), args);
3246 }
3247
3248 /* Function: unmap_overlay_command
3249 Mark the overlay section as unmapped
3250 (ie. resident in its LMA address range, rather than the VMA range). */
3251
3252 static void
3253 unmap_overlay_command (char *args, int from_tty)
3254 {
3255 struct objfile *objfile;
3256 struct obj_section *sec;
3257
3258 if (!overlay_debugging)
3259 error (_("Overlay debugging not enabled. "
3260 "Use either the 'overlay auto' or\n"
3261 "the 'overlay manual' command."));
3262
3263 if (args == 0 || *args == 0)
3264 error (_("Argument required: name of an overlay section"));
3265
3266 /* First, find a section matching the user supplied argument. */
3267 ALL_OBJSECTIONS (objfile, sec)
3268 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3269 {
3270 if (!sec->ovly_mapped)
3271 error (_("Section %s is not mapped"), args);
3272 sec->ovly_mapped = 0;
3273 return;
3274 }
3275 error (_("No overlay section called %s"), args);
3276 }
3277
3278 /* Function: overlay_auto_command
3279 A utility command to turn on overlay debugging.
3280 Possibly this should be done via a set/show command. */
3281
3282 static void
3283 overlay_auto_command (char *args, int from_tty)
3284 {
3285 overlay_debugging = ovly_auto;
3286 enable_overlay_breakpoints ();
3287 if (info_verbose)
3288 printf_unfiltered (_("Automatic overlay debugging enabled."));
3289 }
3290
3291 /* Function: overlay_manual_command
3292 A utility command to turn on overlay debugging.
3293 Possibly this should be done via a set/show command. */
3294
3295 static void
3296 overlay_manual_command (char *args, int from_tty)
3297 {
3298 overlay_debugging = ovly_on;
3299 disable_overlay_breakpoints ();
3300 if (info_verbose)
3301 printf_unfiltered (_("Overlay debugging enabled."));
3302 }
3303
3304 /* Function: overlay_off_command
3305 A utility command to turn on overlay debugging.
3306 Possibly this should be done via a set/show command. */
3307
3308 static void
3309 overlay_off_command (char *args, int from_tty)
3310 {
3311 overlay_debugging = ovly_off;
3312 disable_overlay_breakpoints ();
3313 if (info_verbose)
3314 printf_unfiltered (_("Overlay debugging disabled."));
3315 }
3316
3317 static void
3318 overlay_load_command (char *args, int from_tty)
3319 {
3320 struct gdbarch *gdbarch = get_current_arch ();
3321
3322 if (gdbarch_overlay_update_p (gdbarch))
3323 gdbarch_overlay_update (gdbarch, NULL);
3324 else
3325 error (_("This target does not know how to read its overlay state."));
3326 }
3327
3328 /* Function: overlay_command
3329 A place-holder for a mis-typed command. */
3330
3331 /* Command list chain containing all defined "overlay" subcommands. */
3332 static struct cmd_list_element *overlaylist;
3333
3334 static void
3335 overlay_command (char *args, int from_tty)
3336 {
3337 printf_unfiltered
3338 ("\"overlay\" must be followed by the name of an overlay command.\n");
3339 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3340 }
3341
3342 /* Target Overlays for the "Simplest" overlay manager:
3343
3344 This is GDB's default target overlay layer. It works with the
3345 minimal overlay manager supplied as an example by Cygnus. The
3346 entry point is via a function pointer "gdbarch_overlay_update",
3347 so targets that use a different runtime overlay manager can
3348 substitute their own overlay_update function and take over the
3349 function pointer.
3350
3351 The overlay_update function pokes around in the target's data structures
3352 to see what overlays are mapped, and updates GDB's overlay mapping with
3353 this information.
3354
3355 In this simple implementation, the target data structures are as follows:
3356 unsigned _novlys; /# number of overlay sections #/
3357 unsigned _ovly_table[_novlys][4] = {
3358 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3359 {..., ..., ..., ...},
3360 }
3361 unsigned _novly_regions; /# number of overlay regions #/
3362 unsigned _ovly_region_table[_novly_regions][3] = {
3363 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3364 {..., ..., ...},
3365 }
3366 These functions will attempt to update GDB's mappedness state in the
3367 symbol section table, based on the target's mappedness state.
3368
3369 To do this, we keep a cached copy of the target's _ovly_table, and
3370 attempt to detect when the cached copy is invalidated. The main
3371 entry point is "simple_overlay_update(SECT), which looks up SECT in
3372 the cached table and re-reads only the entry for that section from
3373 the target (whenever possible). */
3374
3375 /* Cached, dynamically allocated copies of the target data structures: */
3376 static unsigned (*cache_ovly_table)[4] = 0;
3377 static unsigned cache_novlys = 0;
3378 static CORE_ADDR cache_ovly_table_base = 0;
3379 enum ovly_index
3380 {
3381 VMA, SIZE, LMA, MAPPED
3382 };
3383
3384 /* Throw away the cached copy of _ovly_table. */
3385
3386 static void
3387 simple_free_overlay_table (void)
3388 {
3389 if (cache_ovly_table)
3390 xfree (cache_ovly_table);
3391 cache_novlys = 0;
3392 cache_ovly_table = NULL;
3393 cache_ovly_table_base = 0;
3394 }
3395
3396 /* Read an array of ints of size SIZE from the target into a local buffer.
3397 Convert to host order. int LEN is number of ints. */
3398
3399 static void
3400 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3401 int len, int size, enum bfd_endian byte_order)
3402 {
3403 /* FIXME (alloca): Not safe if array is very large. */
3404 gdb_byte *buf = alloca (len * size);
3405 int i;
3406
3407 read_memory (memaddr, buf, len * size);
3408 for (i = 0; i < len; i++)
3409 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3410 }
3411
3412 /* Find and grab a copy of the target _ovly_table
3413 (and _novlys, which is needed for the table's size). */
3414
3415 static int
3416 simple_read_overlay_table (void)
3417 {
3418 struct minimal_symbol *novlys_msym;
3419 struct bound_minimal_symbol ovly_table_msym;
3420 struct gdbarch *gdbarch;
3421 int word_size;
3422 enum bfd_endian byte_order;
3423
3424 simple_free_overlay_table ();
3425 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3426 if (! novlys_msym)
3427 {
3428 error (_("Error reading inferior's overlay table: "
3429 "couldn't find `_novlys' variable\n"
3430 "in inferior. Use `overlay manual' mode."));
3431 return 0;
3432 }
3433
3434 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3435 if (! ovly_table_msym.minsym)
3436 {
3437 error (_("Error reading inferior's overlay table: couldn't find "
3438 "`_ovly_table' array\n"
3439 "in inferior. Use `overlay manual' mode."));
3440 return 0;
3441 }
3442
3443 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3444 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3445 byte_order = gdbarch_byte_order (gdbarch);
3446
3447 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3448 4, byte_order);
3449 cache_ovly_table
3450 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3451 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym.minsym);
3452 read_target_long_array (cache_ovly_table_base,
3453 (unsigned int *) cache_ovly_table,
3454 cache_novlys * 4, word_size, byte_order);
3455
3456 return 1; /* SUCCESS */
3457 }
3458
3459 /* Function: simple_overlay_update_1
3460 A helper function for simple_overlay_update. Assuming a cached copy
3461 of _ovly_table exists, look through it to find an entry whose vma,
3462 lma and size match those of OSECT. Re-read the entry and make sure
3463 it still matches OSECT (else the table may no longer be valid).
3464 Set OSECT's mapped state to match the entry. Return: 1 for
3465 success, 0 for failure. */
3466
3467 static int
3468 simple_overlay_update_1 (struct obj_section *osect)
3469 {
3470 int i, size;
3471 bfd *obfd = osect->objfile->obfd;
3472 asection *bsect = osect->the_bfd_section;
3473 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3474 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3475 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3476
3477 size = bfd_get_section_size (osect->the_bfd_section);
3478 for (i = 0; i < cache_novlys; i++)
3479 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3480 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3481 /* && cache_ovly_table[i][SIZE] == size */ )
3482 {
3483 read_target_long_array (cache_ovly_table_base + i * word_size,
3484 (unsigned int *) cache_ovly_table[i],
3485 4, word_size, byte_order);
3486 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3487 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3488 /* && cache_ovly_table[i][SIZE] == size */ )
3489 {
3490 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3491 return 1;
3492 }
3493 else /* Warning! Warning! Target's ovly table has changed! */
3494 return 0;
3495 }
3496 return 0;
3497 }
3498
3499 /* Function: simple_overlay_update
3500 If OSECT is NULL, then update all sections' mapped state
3501 (after re-reading the entire target _ovly_table).
3502 If OSECT is non-NULL, then try to find a matching entry in the
3503 cached ovly_table and update only OSECT's mapped state.
3504 If a cached entry can't be found or the cache isn't valid, then
3505 re-read the entire cache, and go ahead and update all sections. */
3506
3507 void
3508 simple_overlay_update (struct obj_section *osect)
3509 {
3510 struct objfile *objfile;
3511
3512 /* Were we given an osect to look up? NULL means do all of them. */
3513 if (osect)
3514 /* Have we got a cached copy of the target's overlay table? */
3515 if (cache_ovly_table != NULL)
3516 {
3517 /* Does its cached location match what's currently in the
3518 symtab? */
3519 struct minimal_symbol *minsym
3520 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3521
3522 if (minsym == NULL)
3523 error (_("Error reading inferior's overlay table: couldn't "
3524 "find `_ovly_table' array\n"
3525 "in inferior. Use `overlay manual' mode."));
3526
3527 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3528 /* Then go ahead and try to look up this single section in
3529 the cache. */
3530 if (simple_overlay_update_1 (osect))
3531 /* Found it! We're done. */
3532 return;
3533 }
3534
3535 /* Cached table no good: need to read the entire table anew.
3536 Or else we want all the sections, in which case it's actually
3537 more efficient to read the whole table in one block anyway. */
3538
3539 if (! simple_read_overlay_table ())
3540 return;
3541
3542 /* Now may as well update all sections, even if only one was requested. */
3543 ALL_OBJSECTIONS (objfile, osect)
3544 if (section_is_overlay (osect))
3545 {
3546 int i, size;
3547 bfd *obfd = osect->objfile->obfd;
3548 asection *bsect = osect->the_bfd_section;
3549
3550 size = bfd_get_section_size (bsect);
3551 for (i = 0; i < cache_novlys; i++)
3552 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3553 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3554 /* && cache_ovly_table[i][SIZE] == size */ )
3555 { /* obj_section matches i'th entry in ovly_table. */
3556 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3557 break; /* finished with inner for loop: break out. */
3558 }
3559 }
3560 }
3561
3562 /* Set the output sections and output offsets for section SECTP in
3563 ABFD. The relocation code in BFD will read these offsets, so we
3564 need to be sure they're initialized. We map each section to itself,
3565 with no offset; this means that SECTP->vma will be honored. */
3566
3567 static void
3568 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3569 {
3570 sectp->output_section = sectp;
3571 sectp->output_offset = 0;
3572 }
3573
3574 /* Default implementation for sym_relocate. */
3575
3576 bfd_byte *
3577 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3578 bfd_byte *buf)
3579 {
3580 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3581 DWO file. */
3582 bfd *abfd = sectp->owner;
3583
3584 /* We're only interested in sections with relocation
3585 information. */
3586 if ((sectp->flags & SEC_RELOC) == 0)
3587 return NULL;
3588
3589 /* We will handle section offsets properly elsewhere, so relocate as if
3590 all sections begin at 0. */
3591 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3592
3593 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3594 }
3595
3596 /* Relocate the contents of a debug section SECTP in ABFD. The
3597 contents are stored in BUF if it is non-NULL, or returned in a
3598 malloc'd buffer otherwise.
3599
3600 For some platforms and debug info formats, shared libraries contain
3601 relocations against the debug sections (particularly for DWARF-2;
3602 one affected platform is PowerPC GNU/Linux, although it depends on
3603 the version of the linker in use). Also, ELF object files naturally
3604 have unresolved relocations for their debug sections. We need to apply
3605 the relocations in order to get the locations of symbols correct.
3606 Another example that may require relocation processing, is the
3607 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3608 debug section. */
3609
3610 bfd_byte *
3611 symfile_relocate_debug_section (struct objfile *objfile,
3612 asection *sectp, bfd_byte *buf)
3613 {
3614 gdb_assert (objfile->sf->sym_relocate);
3615
3616 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3617 }
3618
3619 struct symfile_segment_data *
3620 get_symfile_segment_data (bfd *abfd)
3621 {
3622 const struct sym_fns *sf = find_sym_fns (abfd);
3623
3624 if (sf == NULL)
3625 return NULL;
3626
3627 return sf->sym_segments (abfd);
3628 }
3629
3630 void
3631 free_symfile_segment_data (struct symfile_segment_data *data)
3632 {
3633 xfree (data->segment_bases);
3634 xfree (data->segment_sizes);
3635 xfree (data->segment_info);
3636 xfree (data);
3637 }
3638
3639 /* Given:
3640 - DATA, containing segment addresses from the object file ABFD, and
3641 the mapping from ABFD's sections onto the segments that own them,
3642 and
3643 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3644 segment addresses reported by the target,
3645 store the appropriate offsets for each section in OFFSETS.
3646
3647 If there are fewer entries in SEGMENT_BASES than there are segments
3648 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3649
3650 If there are more entries, then ignore the extra. The target may
3651 not be able to distinguish between an empty data segment and a
3652 missing data segment; a missing text segment is less plausible. */
3653
3654 int
3655 symfile_map_offsets_to_segments (bfd *abfd,
3656 const struct symfile_segment_data *data,
3657 struct section_offsets *offsets,
3658 int num_segment_bases,
3659 const CORE_ADDR *segment_bases)
3660 {
3661 int i;
3662 asection *sect;
3663
3664 /* It doesn't make sense to call this function unless you have some
3665 segment base addresses. */
3666 gdb_assert (num_segment_bases > 0);
3667
3668 /* If we do not have segment mappings for the object file, we
3669 can not relocate it by segments. */
3670 gdb_assert (data != NULL);
3671 gdb_assert (data->num_segments > 0);
3672
3673 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3674 {
3675 int which = data->segment_info[i];
3676
3677 gdb_assert (0 <= which && which <= data->num_segments);
3678
3679 /* Don't bother computing offsets for sections that aren't
3680 loaded as part of any segment. */
3681 if (! which)
3682 continue;
3683
3684 /* Use the last SEGMENT_BASES entry as the address of any extra
3685 segments mentioned in DATA->segment_info. */
3686 if (which > num_segment_bases)
3687 which = num_segment_bases;
3688
3689 offsets->offsets[i] = (segment_bases[which - 1]
3690 - data->segment_bases[which - 1]);
3691 }
3692
3693 return 1;
3694 }
3695
3696 static void
3697 symfile_find_segment_sections (struct objfile *objfile)
3698 {
3699 bfd *abfd = objfile->obfd;
3700 int i;
3701 asection *sect;
3702 struct symfile_segment_data *data;
3703
3704 data = get_symfile_segment_data (objfile->obfd);
3705 if (data == NULL)
3706 return;
3707
3708 if (data->num_segments != 1 && data->num_segments != 2)
3709 {
3710 free_symfile_segment_data (data);
3711 return;
3712 }
3713
3714 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3715 {
3716 int which = data->segment_info[i];
3717
3718 if (which == 1)
3719 {
3720 if (objfile->sect_index_text == -1)
3721 objfile->sect_index_text = sect->index;
3722
3723 if (objfile->sect_index_rodata == -1)
3724 objfile->sect_index_rodata = sect->index;
3725 }
3726 else if (which == 2)
3727 {
3728 if (objfile->sect_index_data == -1)
3729 objfile->sect_index_data = sect->index;
3730
3731 if (objfile->sect_index_bss == -1)
3732 objfile->sect_index_bss = sect->index;
3733 }
3734 }
3735
3736 free_symfile_segment_data (data);
3737 }
3738
3739 void
3740 _initialize_symfile (void)
3741 {
3742 struct cmd_list_element *c;
3743
3744 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3745 Load symbol table from executable file FILE.\n\
3746 The `file' command can also load symbol tables, as well as setting the file\n\
3747 to execute."), &cmdlist);
3748 set_cmd_completer (c, filename_completer);
3749
3750 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3751 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3752 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3753 ...]\nADDR is the starting address of the file's text.\n\
3754 The optional arguments are section-name section-address pairs and\n\
3755 should be specified if the data and bss segments are not contiguous\n\
3756 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3757 &cmdlist);
3758 set_cmd_completer (c, filename_completer);
3759
3760 c = add_cmd ("load", class_files, load_command, _("\
3761 Dynamically load FILE into the running program, and record its symbols\n\
3762 for access from GDB.\n\
3763 A load OFFSET may also be given."), &cmdlist);
3764 set_cmd_completer (c, filename_completer);
3765
3766 add_prefix_cmd ("overlay", class_support, overlay_command,
3767 _("Commands for debugging overlays."), &overlaylist,
3768 "overlay ", 0, &cmdlist);
3769
3770 add_com_alias ("ovly", "overlay", class_alias, 1);
3771 add_com_alias ("ov", "overlay", class_alias, 1);
3772
3773 add_cmd ("map-overlay", class_support, map_overlay_command,
3774 _("Assert that an overlay section is mapped."), &overlaylist);
3775
3776 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3777 _("Assert that an overlay section is unmapped."), &overlaylist);
3778
3779 add_cmd ("list-overlays", class_support, list_overlays_command,
3780 _("List mappings of overlay sections."), &overlaylist);
3781
3782 add_cmd ("manual", class_support, overlay_manual_command,
3783 _("Enable overlay debugging."), &overlaylist);
3784 add_cmd ("off", class_support, overlay_off_command,
3785 _("Disable overlay debugging."), &overlaylist);
3786 add_cmd ("auto", class_support, overlay_auto_command,
3787 _("Enable automatic overlay debugging."), &overlaylist);
3788 add_cmd ("load-target", class_support, overlay_load_command,
3789 _("Read the overlay mapping state from the target."), &overlaylist);
3790
3791 /* Filename extension to source language lookup table: */
3792 init_filename_language_table ();
3793 add_setshow_string_noescape_cmd ("extension-language", class_files,
3794 &ext_args, _("\
3795 Set mapping between filename extension and source language."), _("\
3796 Show mapping between filename extension and source language."), _("\
3797 Usage: set extension-language .foo bar"),
3798 set_ext_lang_command,
3799 show_ext_args,
3800 &setlist, &showlist);
3801
3802 add_info ("extensions", info_ext_lang_command,
3803 _("All filename extensions associated with a source language."));
3804
3805 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3806 &debug_file_directory, _("\
3807 Set the directories where separate debug symbols are searched for."), _("\
3808 Show the directories where separate debug symbols are searched for."), _("\
3809 Separate debug symbols are first searched for in the same\n\
3810 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3811 and lastly at the path of the directory of the binary with\n\
3812 each global debug-file-directory component prepended."),
3813 NULL,
3814 show_debug_file_directory,
3815 &setlist, &showlist);
3816 }
This page took 0.160983 seconds and 4 git commands to generate.