1 /* Generic symbol file reading for the GNU debugger, GDB.
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
5 Contributed by Cygnus Support, using pieces from other GDB modules.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "arch-utils.h"
35 #include "breakpoint.h"
37 #include "complaints.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
52 #include "parser-defs.h"
59 #include "cli/cli-utils.h"
61 #include <sys/types.h>
71 int (*deprecated_ui_load_progress_hook
) (const char *section
,
73 void (*deprecated_show_load_progress
) (const char *section
,
74 unsigned long section_sent
,
75 unsigned long section_size
,
76 unsigned long total_sent
,
77 unsigned long total_size
);
78 void (*deprecated_pre_add_symbol_hook
) (const char *);
79 void (*deprecated_post_add_symbol_hook
) (void);
81 static void clear_symtab_users_cleanup (void *ignore
);
83 /* Global variables owned by this file. */
84 int readnow_symbol_files
; /* Read full symbols immediately. */
86 /* Functions this file defines. */
88 static void load_command (char *, int);
90 static void symbol_file_add_main_1 (const char *args
, int from_tty
, int flags
);
92 static void add_symbol_file_command (char *, int);
94 static const struct sym_fns
*find_sym_fns (bfd
*);
96 static void decrement_reading_symtab (void *);
98 static void overlay_invalidate_all (void);
100 static void overlay_auto_command (char *, int);
102 static void overlay_manual_command (char *, int);
104 static void overlay_off_command (char *, int);
106 static void overlay_load_command (char *, int);
108 static void overlay_command (char *, int);
110 static void simple_free_overlay_table (void);
112 static void read_target_long_array (CORE_ADDR
, unsigned int *, int, int,
115 static int simple_read_overlay_table (void);
117 static int simple_overlay_update_1 (struct obj_section
*);
119 static void add_filename_language (char *ext
, enum language lang
);
121 static void info_ext_lang_command (char *args
, int from_tty
);
123 static void init_filename_language_table (void);
125 static void symfile_find_segment_sections (struct objfile
*objfile
);
127 void _initialize_symfile (void);
129 /* List of all available sym_fns. On gdb startup, each object file reader
130 calls add_symtab_fns() to register information on each format it is
135 /* BFD flavour that we handle. */
136 enum bfd_flavour sym_flavour
;
138 /* The "vtable" of symbol functions. */
139 const struct sym_fns
*sym_fns
;
140 } registered_sym_fns
;
142 DEF_VEC_O (registered_sym_fns
);
144 static VEC (registered_sym_fns
) *symtab_fns
= NULL
;
146 /* If non-zero, shared library symbols will be added automatically
147 when the inferior is created, new libraries are loaded, or when
148 attaching to the inferior. This is almost always what users will
149 want to have happen; but for very large programs, the startup time
150 will be excessive, and so if this is a problem, the user can clear
151 this flag and then add the shared library symbols as needed. Note
152 that there is a potential for confusion, since if the shared
153 library symbols are not loaded, commands like "info fun" will *not*
154 report all the functions that are actually present. */
156 int auto_solib_add
= 1;
159 /* True if we are reading a symbol table. */
161 int currently_reading_symtab
= 0;
164 decrement_reading_symtab (void *dummy
)
166 currently_reading_symtab
--;
167 gdb_assert (currently_reading_symtab
>= 0);
170 /* Increment currently_reading_symtab and return a cleanup that can be
171 used to decrement it. */
174 increment_reading_symtab (void)
176 ++currently_reading_symtab
;
177 gdb_assert (currently_reading_symtab
> 0);
178 return make_cleanup (decrement_reading_symtab
, NULL
);
181 /* Remember the lowest-addressed loadable section we've seen.
182 This function is called via bfd_map_over_sections.
184 In case of equal vmas, the section with the largest size becomes the
185 lowest-addressed loadable section.
187 If the vmas and sizes are equal, the last section is considered the
188 lowest-addressed loadable section. */
191 find_lowest_section (bfd
*abfd
, asection
*sect
, void *obj
)
193 asection
**lowest
= (asection
**) obj
;
195 if (0 == (bfd_get_section_flags (abfd
, sect
) & (SEC_ALLOC
| SEC_LOAD
)))
198 *lowest
= sect
; /* First loadable section */
199 else if (bfd_section_vma (abfd
, *lowest
) > bfd_section_vma (abfd
, sect
))
200 *lowest
= sect
; /* A lower loadable section */
201 else if (bfd_section_vma (abfd
, *lowest
) == bfd_section_vma (abfd
, sect
)
202 && (bfd_section_size (abfd
, (*lowest
))
203 <= bfd_section_size (abfd
, sect
)))
207 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
208 new object's 'num_sections' field is set to 0; it must be updated
211 struct section_addr_info
*
212 alloc_section_addr_info (size_t num_sections
)
214 struct section_addr_info
*sap
;
217 size
= (sizeof (struct section_addr_info
)
218 + sizeof (struct other_sections
) * (num_sections
- 1));
219 sap
= (struct section_addr_info
*) xmalloc (size
);
220 memset (sap
, 0, size
);
225 /* Build (allocate and populate) a section_addr_info struct from
226 an existing section table. */
228 extern struct section_addr_info
*
229 build_section_addr_info_from_section_table (const struct target_section
*start
,
230 const struct target_section
*end
)
232 struct section_addr_info
*sap
;
233 const struct target_section
*stp
;
236 sap
= alloc_section_addr_info (end
- start
);
238 for (stp
= start
, oidx
= 0; stp
!= end
; stp
++)
240 struct bfd_section
*asect
= stp
->the_bfd_section
;
241 bfd
*abfd
= asect
->owner
;
243 if (bfd_get_section_flags (abfd
, asect
) & (SEC_ALLOC
| SEC_LOAD
)
244 && oidx
< end
- start
)
246 sap
->other
[oidx
].addr
= stp
->addr
;
247 sap
->other
[oidx
].name
= xstrdup (bfd_section_name (abfd
, asect
));
248 sap
->other
[oidx
].sectindex
= gdb_bfd_section_index (abfd
, asect
);
253 sap
->num_sections
= oidx
;
258 /* Create a section_addr_info from section offsets in ABFD. */
260 static struct section_addr_info
*
261 build_section_addr_info_from_bfd (bfd
*abfd
)
263 struct section_addr_info
*sap
;
265 struct bfd_section
*sec
;
267 sap
= alloc_section_addr_info (bfd_count_sections (abfd
));
268 for (i
= 0, sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
269 if (bfd_get_section_flags (abfd
, sec
) & (SEC_ALLOC
| SEC_LOAD
))
271 sap
->other
[i
].addr
= bfd_get_section_vma (abfd
, sec
);
272 sap
->other
[i
].name
= xstrdup (bfd_get_section_name (abfd
, sec
));
273 sap
->other
[i
].sectindex
= gdb_bfd_section_index (abfd
, sec
);
277 sap
->num_sections
= i
;
282 /* Create a section_addr_info from section offsets in OBJFILE. */
284 struct section_addr_info
*
285 build_section_addr_info_from_objfile (const struct objfile
*objfile
)
287 struct section_addr_info
*sap
;
290 /* Before reread_symbols gets rewritten it is not safe to call:
291 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
293 sap
= build_section_addr_info_from_bfd (objfile
->obfd
);
294 for (i
= 0; i
< sap
->num_sections
; i
++)
296 int sectindex
= sap
->other
[i
].sectindex
;
298 sap
->other
[i
].addr
+= objfile
->section_offsets
->offsets
[sectindex
];
303 /* Free all memory allocated by build_section_addr_info_from_section_table. */
306 free_section_addr_info (struct section_addr_info
*sap
)
310 for (idx
= 0; idx
< sap
->num_sections
; idx
++)
311 xfree (sap
->other
[idx
].name
);
315 /* Initialize OBJFILE's sect_index_* members. */
318 init_objfile_sect_indices (struct objfile
*objfile
)
323 sect
= bfd_get_section_by_name (objfile
->obfd
, ".text");
325 objfile
->sect_index_text
= sect
->index
;
327 sect
= bfd_get_section_by_name (objfile
->obfd
, ".data");
329 objfile
->sect_index_data
= sect
->index
;
331 sect
= bfd_get_section_by_name (objfile
->obfd
, ".bss");
333 objfile
->sect_index_bss
= sect
->index
;
335 sect
= bfd_get_section_by_name (objfile
->obfd
, ".rodata");
337 objfile
->sect_index_rodata
= sect
->index
;
339 /* This is where things get really weird... We MUST have valid
340 indices for the various sect_index_* members or gdb will abort.
341 So if for example, there is no ".text" section, we have to
342 accomodate that. First, check for a file with the standard
343 one or two segments. */
345 symfile_find_segment_sections (objfile
);
347 /* Except when explicitly adding symbol files at some address,
348 section_offsets contains nothing but zeros, so it doesn't matter
349 which slot in section_offsets the individual sect_index_* members
350 index into. So if they are all zero, it is safe to just point
351 all the currently uninitialized indices to the first slot. But
352 beware: if this is the main executable, it may be relocated
353 later, e.g. by the remote qOffsets packet, and then this will
354 be wrong! That's why we try segments first. */
356 for (i
= 0; i
< objfile
->num_sections
; i
++)
358 if (ANOFFSET (objfile
->section_offsets
, i
) != 0)
363 if (i
== objfile
->num_sections
)
365 if (objfile
->sect_index_text
== -1)
366 objfile
->sect_index_text
= 0;
367 if (objfile
->sect_index_data
== -1)
368 objfile
->sect_index_data
= 0;
369 if (objfile
->sect_index_bss
== -1)
370 objfile
->sect_index_bss
= 0;
371 if (objfile
->sect_index_rodata
== -1)
372 objfile
->sect_index_rodata
= 0;
376 /* The arguments to place_section. */
378 struct place_section_arg
380 struct section_offsets
*offsets
;
384 /* Find a unique offset to use for loadable section SECT if
385 the user did not provide an offset. */
388 place_section (bfd
*abfd
, asection
*sect
, void *obj
)
390 struct place_section_arg
*arg
= obj
;
391 CORE_ADDR
*offsets
= arg
->offsets
->offsets
, start_addr
;
393 ULONGEST align
= ((ULONGEST
) 1) << bfd_get_section_alignment (abfd
, sect
);
395 /* We are only interested in allocated sections. */
396 if ((bfd_get_section_flags (abfd
, sect
) & SEC_ALLOC
) == 0)
399 /* If the user specified an offset, honor it. */
400 if (offsets
[gdb_bfd_section_index (abfd
, sect
)] != 0)
403 /* Otherwise, let's try to find a place for the section. */
404 start_addr
= (arg
->lowest
+ align
- 1) & -align
;
411 for (cur_sec
= abfd
->sections
; cur_sec
!= NULL
; cur_sec
= cur_sec
->next
)
413 int indx
= cur_sec
->index
;
415 /* We don't need to compare against ourself. */
419 /* We can only conflict with allocated sections. */
420 if ((bfd_get_section_flags (abfd
, cur_sec
) & SEC_ALLOC
) == 0)
423 /* If the section offset is 0, either the section has not been placed
424 yet, or it was the lowest section placed (in which case LOWEST
425 will be past its end). */
426 if (offsets
[indx
] == 0)
429 /* If this section would overlap us, then we must move up. */
430 if (start_addr
+ bfd_get_section_size (sect
) > offsets
[indx
]
431 && start_addr
< offsets
[indx
] + bfd_get_section_size (cur_sec
))
433 start_addr
= offsets
[indx
] + bfd_get_section_size (cur_sec
);
434 start_addr
= (start_addr
+ align
- 1) & -align
;
439 /* Otherwise, we appear to be OK. So far. */
444 offsets
[gdb_bfd_section_index (abfd
, sect
)] = start_addr
;
445 arg
->lowest
= start_addr
+ bfd_get_section_size (sect
);
448 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
449 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
453 relative_addr_info_to_section_offsets (struct section_offsets
*section_offsets
,
455 const struct section_addr_info
*addrs
)
459 memset (section_offsets
, 0, SIZEOF_N_SECTION_OFFSETS (num_sections
));
461 /* Now calculate offsets for section that were specified by the caller. */
462 for (i
= 0; i
< addrs
->num_sections
; i
++)
464 const struct other_sections
*osp
;
466 osp
= &addrs
->other
[i
];
467 if (osp
->sectindex
== -1)
470 /* Record all sections in offsets. */
471 /* The section_offsets in the objfile are here filled in using
473 section_offsets
->offsets
[osp
->sectindex
] = osp
->addr
;
477 /* Transform section name S for a name comparison. prelink can split section
478 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
479 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
480 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
481 (`.sbss') section has invalid (increased) virtual address. */
484 addr_section_name (const char *s
)
486 if (strcmp (s
, ".dynbss") == 0)
488 if (strcmp (s
, ".sdynbss") == 0)
494 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
495 their (name, sectindex) pair. sectindex makes the sort by name stable. */
498 addrs_section_compar (const void *ap
, const void *bp
)
500 const struct other_sections
*a
= *((struct other_sections
**) ap
);
501 const struct other_sections
*b
= *((struct other_sections
**) bp
);
504 retval
= strcmp (addr_section_name (a
->name
), addr_section_name (b
->name
));
508 return a
->sectindex
- b
->sectindex
;
511 /* Provide sorted array of pointers to sections of ADDRS. The array is
512 terminated by NULL. Caller is responsible to call xfree for it. */
514 static struct other_sections
**
515 addrs_section_sort (struct section_addr_info
*addrs
)
517 struct other_sections
**array
;
520 /* `+ 1' for the NULL terminator. */
521 array
= xmalloc (sizeof (*array
) * (addrs
->num_sections
+ 1));
522 for (i
= 0; i
< addrs
->num_sections
; i
++)
523 array
[i
] = &addrs
->other
[i
];
526 qsort (array
, i
, sizeof (*array
), addrs_section_compar
);
531 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
532 also SECTINDEXes specific to ABFD there. This function can be used to
533 rebase ADDRS to start referencing different BFD than before. */
536 addr_info_make_relative (struct section_addr_info
*addrs
, bfd
*abfd
)
538 asection
*lower_sect
;
539 CORE_ADDR lower_offset
;
541 struct cleanup
*my_cleanup
;
542 struct section_addr_info
*abfd_addrs
;
543 struct other_sections
**addrs_sorted
, **abfd_addrs_sorted
;
544 struct other_sections
**addrs_to_abfd_addrs
;
546 /* Find lowest loadable section to be used as starting point for
547 continguous sections. */
549 bfd_map_over_sections (abfd
, find_lowest_section
, &lower_sect
);
550 if (lower_sect
== NULL
)
552 warning (_("no loadable sections found in added symbol-file %s"),
553 bfd_get_filename (abfd
));
557 lower_offset
= bfd_section_vma (bfd_get_filename (abfd
), lower_sect
);
559 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
560 in ABFD. Section names are not unique - there can be multiple sections of
561 the same name. Also the sections of the same name do not have to be
562 adjacent to each other. Some sections may be present only in one of the
563 files. Even sections present in both files do not have to be in the same
566 Use stable sort by name for the sections in both files. Then linearly
567 scan both lists matching as most of the entries as possible. */
569 addrs_sorted
= addrs_section_sort (addrs
);
570 my_cleanup
= make_cleanup (xfree
, addrs_sorted
);
572 abfd_addrs
= build_section_addr_info_from_bfd (abfd
);
573 make_cleanup_free_section_addr_info (abfd_addrs
);
574 abfd_addrs_sorted
= addrs_section_sort (abfd_addrs
);
575 make_cleanup (xfree
, abfd_addrs_sorted
);
577 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
578 ABFD_ADDRS_SORTED. */
580 addrs_to_abfd_addrs
= xzalloc (sizeof (*addrs_to_abfd_addrs
)
581 * addrs
->num_sections
);
582 make_cleanup (xfree
, addrs_to_abfd_addrs
);
584 while (*addrs_sorted
)
586 const char *sect_name
= addr_section_name ((*addrs_sorted
)->name
);
588 while (*abfd_addrs_sorted
589 && strcmp (addr_section_name ((*abfd_addrs_sorted
)->name
),
593 if (*abfd_addrs_sorted
594 && strcmp (addr_section_name ((*abfd_addrs_sorted
)->name
),
599 /* Make the found item directly addressable from ADDRS. */
600 index_in_addrs
= *addrs_sorted
- addrs
->other
;
601 gdb_assert (addrs_to_abfd_addrs
[index_in_addrs
] == NULL
);
602 addrs_to_abfd_addrs
[index_in_addrs
] = *abfd_addrs_sorted
;
604 /* Never use the same ABFD entry twice. */
611 /* Calculate offsets for the loadable sections.
612 FIXME! Sections must be in order of increasing loadable section
613 so that contiguous sections can use the lower-offset!!!
615 Adjust offsets if the segments are not contiguous.
616 If the section is contiguous, its offset should be set to
617 the offset of the highest loadable section lower than it
618 (the loadable section directly below it in memory).
619 this_offset = lower_offset = lower_addr - lower_orig_addr */
621 for (i
= 0; i
< addrs
->num_sections
; i
++)
623 struct other_sections
*sect
= addrs_to_abfd_addrs
[i
];
627 /* This is the index used by BFD. */
628 addrs
->other
[i
].sectindex
= sect
->sectindex
;
630 if (addrs
->other
[i
].addr
!= 0)
632 addrs
->other
[i
].addr
-= sect
->addr
;
633 lower_offset
= addrs
->other
[i
].addr
;
636 addrs
->other
[i
].addr
= lower_offset
;
640 /* addr_section_name transformation is not used for SECT_NAME. */
641 const char *sect_name
= addrs
->other
[i
].name
;
643 /* This section does not exist in ABFD, which is normally
644 unexpected and we want to issue a warning.
646 However, the ELF prelinker does create a few sections which are
647 marked in the main executable as loadable (they are loaded in
648 memory from the DYNAMIC segment) and yet are not present in
649 separate debug info files. This is fine, and should not cause
650 a warning. Shared libraries contain just the section
651 ".gnu.liblist" but it is not marked as loadable there. There is
652 no other way to identify them than by their name as the sections
653 created by prelink have no special flags.
655 For the sections `.bss' and `.sbss' see addr_section_name. */
657 if (!(strcmp (sect_name
, ".gnu.liblist") == 0
658 || strcmp (sect_name
, ".gnu.conflict") == 0
659 || (strcmp (sect_name
, ".bss") == 0
661 && strcmp (addrs
->other
[i
- 1].name
, ".dynbss") == 0
662 && addrs_to_abfd_addrs
[i
- 1] != NULL
)
663 || (strcmp (sect_name
, ".sbss") == 0
665 && strcmp (addrs
->other
[i
- 1].name
, ".sdynbss") == 0
666 && addrs_to_abfd_addrs
[i
- 1] != NULL
)))
667 warning (_("section %s not found in %s"), sect_name
,
668 bfd_get_filename (abfd
));
670 addrs
->other
[i
].addr
= 0;
671 addrs
->other
[i
].sectindex
= -1;
675 do_cleanups (my_cleanup
);
678 /* Parse the user's idea of an offset for dynamic linking, into our idea
679 of how to represent it for fast symbol reading. This is the default
680 version of the sym_fns.sym_offsets function for symbol readers that
681 don't need to do anything special. It allocates a section_offsets table
682 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
685 default_symfile_offsets (struct objfile
*objfile
,
686 const struct section_addr_info
*addrs
)
688 objfile
->num_sections
= gdb_bfd_count_sections (objfile
->obfd
);
689 objfile
->section_offsets
= (struct section_offsets
*)
690 obstack_alloc (&objfile
->objfile_obstack
,
691 SIZEOF_N_SECTION_OFFSETS (objfile
->num_sections
));
692 relative_addr_info_to_section_offsets (objfile
->section_offsets
,
693 objfile
->num_sections
, addrs
);
695 /* For relocatable files, all loadable sections will start at zero.
696 The zero is meaningless, so try to pick arbitrary addresses such
697 that no loadable sections overlap. This algorithm is quadratic,
698 but the number of sections in a single object file is generally
700 if ((bfd_get_file_flags (objfile
->obfd
) & (EXEC_P
| DYNAMIC
)) == 0)
702 struct place_section_arg arg
;
703 bfd
*abfd
= objfile
->obfd
;
706 for (cur_sec
= abfd
->sections
; cur_sec
!= NULL
; cur_sec
= cur_sec
->next
)
707 /* We do not expect this to happen; just skip this step if the
708 relocatable file has a section with an assigned VMA. */
709 if (bfd_section_vma (abfd
, cur_sec
) != 0)
714 CORE_ADDR
*offsets
= objfile
->section_offsets
->offsets
;
716 /* Pick non-overlapping offsets for sections the user did not
718 arg
.offsets
= objfile
->section_offsets
;
720 bfd_map_over_sections (objfile
->obfd
, place_section
, &arg
);
722 /* Correctly filling in the section offsets is not quite
723 enough. Relocatable files have two properties that
724 (most) shared objects do not:
726 - Their debug information will contain relocations. Some
727 shared libraries do also, but many do not, so this can not
730 - If there are multiple code sections they will be loaded
731 at different relative addresses in memory than they are
732 in the objfile, since all sections in the file will start
735 Because GDB has very limited ability to map from an
736 address in debug info to the correct code section,
737 it relies on adding SECT_OFF_TEXT to things which might be
738 code. If we clear all the section offsets, and set the
739 section VMAs instead, then symfile_relocate_debug_section
740 will return meaningful debug information pointing at the
743 GDB has too many different data structures for section
744 addresses - a bfd, objfile, and so_list all have section
745 tables, as does exec_ops. Some of these could probably
748 for (cur_sec
= abfd
->sections
; cur_sec
!= NULL
;
749 cur_sec
= cur_sec
->next
)
751 if ((bfd_get_section_flags (abfd
, cur_sec
) & SEC_ALLOC
) == 0)
754 bfd_set_section_vma (abfd
, cur_sec
, offsets
[cur_sec
->index
]);
755 exec_set_section_address (bfd_get_filename (abfd
),
757 offsets
[cur_sec
->index
]);
758 offsets
[cur_sec
->index
] = 0;
763 /* Remember the bfd indexes for the .text, .data, .bss and
765 init_objfile_sect_indices (objfile
);
768 /* Divide the file into segments, which are individual relocatable units.
769 This is the default version of the sym_fns.sym_segments function for
770 symbol readers that do not have an explicit representation of segments.
771 It assumes that object files do not have segments, and fully linked
772 files have a single segment. */
774 struct symfile_segment_data
*
775 default_symfile_segments (bfd
*abfd
)
779 struct symfile_segment_data
*data
;
782 /* Relocatable files contain enough information to position each
783 loadable section independently; they should not be relocated
785 if ((bfd_get_file_flags (abfd
) & (EXEC_P
| DYNAMIC
)) == 0)
788 /* Make sure there is at least one loadable section in the file. */
789 for (sect
= abfd
->sections
; sect
!= NULL
; sect
= sect
->next
)
791 if ((bfd_get_section_flags (abfd
, sect
) & SEC_ALLOC
) == 0)
799 low
= bfd_get_section_vma (abfd
, sect
);
800 high
= low
+ bfd_get_section_size (sect
);
802 data
= XCNEW (struct symfile_segment_data
);
803 data
->num_segments
= 1;
804 data
->segment_bases
= XCNEW (CORE_ADDR
);
805 data
->segment_sizes
= XCNEW (CORE_ADDR
);
807 num_sections
= bfd_count_sections (abfd
);
808 data
->segment_info
= XCNEWVEC (int, num_sections
);
810 for (i
= 0, sect
= abfd
->sections
; sect
!= NULL
; i
++, sect
= sect
->next
)
814 if ((bfd_get_section_flags (abfd
, sect
) & SEC_ALLOC
) == 0)
817 vma
= bfd_get_section_vma (abfd
, sect
);
820 if (vma
+ bfd_get_section_size (sect
) > high
)
821 high
= vma
+ bfd_get_section_size (sect
);
823 data
->segment_info
[i
] = 1;
826 data
->segment_bases
[0] = low
;
827 data
->segment_sizes
[0] = high
- low
;
832 /* This is a convenience function to call sym_read for OBJFILE and
833 possibly force the partial symbols to be read. */
836 read_symbols (struct objfile
*objfile
, int add_flags
)
838 (*objfile
->sf
->sym_read
) (objfile
, add_flags
);
840 /* find_separate_debug_file_in_section should be called only if there is
841 single binary with no existing separate debug info file. */
842 if (!objfile_has_partial_symbols (objfile
)
843 && objfile
->separate_debug_objfile
== NULL
844 && objfile
->separate_debug_objfile_backlink
== NULL
)
846 bfd
*abfd
= find_separate_debug_file_in_section (objfile
);
847 struct cleanup
*cleanup
= make_cleanup_bfd_unref (abfd
);
851 /* find_separate_debug_file_in_section uses the same filename for the
852 virtual section-as-bfd like the bfd filename containing the
853 section. Therefore use also non-canonical name form for the same
854 file containing the section. */
855 symbol_file_add_separate (abfd
, objfile
->original_name
, add_flags
,
859 do_cleanups (cleanup
);
861 if ((add_flags
& SYMFILE_NO_READ
) == 0)
862 require_partial_symbols (objfile
, 0);
865 /* Initialize entry point information for this objfile. */
868 init_entry_point_info (struct objfile
*objfile
)
870 struct entry_info
*ei
= &objfile
->per_bfd
->ei
;
876 /* Save startup file's range of PC addresses to help blockframe.c
877 decide where the bottom of the stack is. */
879 if (bfd_get_file_flags (objfile
->obfd
) & EXEC_P
)
881 /* Executable file -- record its entry point so we'll recognize
882 the startup file because it contains the entry point. */
883 ei
->entry_point
= bfd_get_start_address (objfile
->obfd
);
884 ei
->entry_point_p
= 1;
886 else if (bfd_get_file_flags (objfile
->obfd
) & DYNAMIC
887 && bfd_get_start_address (objfile
->obfd
) != 0)
889 /* Some shared libraries may have entry points set and be
890 runnable. There's no clear way to indicate this, so just check
891 for values other than zero. */
892 ei
->entry_point
= bfd_get_start_address (objfile
->obfd
);
893 ei
->entry_point_p
= 1;
897 /* Examination of non-executable.o files. Short-circuit this stuff. */
898 ei
->entry_point_p
= 0;
901 if (ei
->entry_point_p
)
903 struct obj_section
*osect
;
904 CORE_ADDR entry_point
= ei
->entry_point
;
907 /* Make certain that the address points at real code, and not a
908 function descriptor. */
910 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile
),
914 /* Remove any ISA markers, so that this matches entries in the
917 = gdbarch_addr_bits_remove (get_objfile_arch (objfile
), entry_point
);
920 ALL_OBJFILE_OSECTIONS (objfile
, osect
)
922 struct bfd_section
*sect
= osect
->the_bfd_section
;
924 if (entry_point
>= bfd_get_section_vma (objfile
->obfd
, sect
)
925 && entry_point
< (bfd_get_section_vma (objfile
->obfd
, sect
)
926 + bfd_get_section_size (sect
)))
928 ei
->the_bfd_section_index
929 = gdb_bfd_section_index (objfile
->obfd
, sect
);
936 ei
->the_bfd_section_index
= SECT_OFF_TEXT (objfile
);
940 /* Process a symbol file, as either the main file or as a dynamically
943 This function does not set the OBJFILE's entry-point info.
945 OBJFILE is where the symbols are to be read from.
947 ADDRS is the list of section load addresses. If the user has given
948 an 'add-symbol-file' command, then this is the list of offsets and
949 addresses he or she provided as arguments to the command; or, if
950 we're handling a shared library, these are the actual addresses the
951 sections are loaded at, according to the inferior's dynamic linker
952 (as gleaned by GDB's shared library code). We convert each address
953 into an offset from the section VMA's as it appears in the object
954 file, and then call the file's sym_offsets function to convert this
955 into a format-specific offset table --- a `struct section_offsets'.
957 ADD_FLAGS encodes verbosity level, whether this is main symbol or
958 an extra symbol file such as dynamically loaded code, and wether
959 breakpoint reset should be deferred. */
962 syms_from_objfile_1 (struct objfile
*objfile
,
963 struct section_addr_info
*addrs
,
966 struct section_addr_info
*local_addr
= NULL
;
967 struct cleanup
*old_chain
;
968 const int mainline
= add_flags
& SYMFILE_MAINLINE
;
970 objfile_set_sym_fns (objfile
, find_sym_fns (objfile
->obfd
));
972 if (objfile
->sf
== NULL
)
974 /* No symbols to load, but we still need to make sure
975 that the section_offsets table is allocated. */
976 int num_sections
= gdb_bfd_count_sections (objfile
->obfd
);
977 size_t size
= SIZEOF_N_SECTION_OFFSETS (num_sections
);
979 objfile
->num_sections
= num_sections
;
980 objfile
->section_offsets
981 = obstack_alloc (&objfile
->objfile_obstack
, size
);
982 memset (objfile
->section_offsets
, 0, size
);
986 /* Make sure that partially constructed symbol tables will be cleaned up
987 if an error occurs during symbol reading. */
988 old_chain
= make_cleanup_free_objfile (objfile
);
990 /* If ADDRS is NULL, put together a dummy address list.
991 We now establish the convention that an addr of zero means
992 no load address was specified. */
995 local_addr
= alloc_section_addr_info (1);
996 make_cleanup (xfree
, local_addr
);
1002 /* We will modify the main symbol table, make sure that all its users
1003 will be cleaned up if an error occurs during symbol reading. */
1004 make_cleanup (clear_symtab_users_cleanup
, 0 /*ignore*/);
1006 /* Since no error yet, throw away the old symbol table. */
1008 if (symfile_objfile
!= NULL
)
1010 free_objfile (symfile_objfile
);
1011 gdb_assert (symfile_objfile
== NULL
);
1014 /* Currently we keep symbols from the add-symbol-file command.
1015 If the user wants to get rid of them, they should do "symbol-file"
1016 without arguments first. Not sure this is the best behavior
1019 (*objfile
->sf
->sym_new_init
) (objfile
);
1022 /* Convert addr into an offset rather than an absolute address.
1023 We find the lowest address of a loaded segment in the objfile,
1024 and assume that <addr> is where that got loaded.
1026 We no longer warn if the lowest section is not a text segment (as
1027 happens for the PA64 port. */
1028 if (addrs
->num_sections
> 0)
1029 addr_info_make_relative (addrs
, objfile
->obfd
);
1031 /* Initialize symbol reading routines for this objfile, allow complaints to
1032 appear for this new file, and record how verbose to be, then do the
1033 initial symbol reading for this file. */
1035 (*objfile
->sf
->sym_init
) (objfile
);
1036 clear_complaints (&symfile_complaints
, 1, add_flags
& SYMFILE_VERBOSE
);
1038 (*objfile
->sf
->sym_offsets
) (objfile
, addrs
);
1040 read_symbols (objfile
, add_flags
);
1042 /* Discard cleanups as symbol reading was successful. */
1044 discard_cleanups (old_chain
);
1048 /* Same as syms_from_objfile_1, but also initializes the objfile
1049 entry-point info. */
1052 syms_from_objfile (struct objfile
*objfile
,
1053 struct section_addr_info
*addrs
,
1056 syms_from_objfile_1 (objfile
, addrs
, add_flags
);
1057 init_entry_point_info (objfile
);
1060 /* Perform required actions after either reading in the initial
1061 symbols for a new objfile, or mapping in the symbols from a reusable
1062 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1065 new_symfile_objfile (struct objfile
*objfile
, int add_flags
)
1067 /* If this is the main symbol file we have to clean up all users of the
1068 old main symbol file. Otherwise it is sufficient to fixup all the
1069 breakpoints that may have been redefined by this symbol file. */
1070 if (add_flags
& SYMFILE_MAINLINE
)
1072 /* OK, make it the "real" symbol file. */
1073 symfile_objfile
= objfile
;
1075 clear_symtab_users (add_flags
);
1077 else if ((add_flags
& SYMFILE_DEFER_BP_RESET
) == 0)
1079 breakpoint_re_set ();
1082 /* We're done reading the symbol file; finish off complaints. */
1083 clear_complaints (&symfile_complaints
, 0, add_flags
& SYMFILE_VERBOSE
);
1086 /* Process a symbol file, as either the main file or as a dynamically
1089 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1090 A new reference is acquired by this function.
1092 For NAME description see allocate_objfile's definition.
1094 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1095 extra, such as dynamically loaded code, and what to do with breakpoins.
1097 ADDRS is as described for syms_from_objfile_1, above.
1098 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1100 PARENT is the original objfile if ABFD is a separate debug info file.
1101 Otherwise PARENT is NULL.
1103 Upon success, returns a pointer to the objfile that was added.
1104 Upon failure, jumps back to command level (never returns). */
1106 static struct objfile
*
1107 symbol_file_add_with_addrs (bfd
*abfd
, const char *name
, int add_flags
,
1108 struct section_addr_info
*addrs
,
1109 int flags
, struct objfile
*parent
)
1111 struct objfile
*objfile
;
1112 const int from_tty
= add_flags
& SYMFILE_VERBOSE
;
1113 const int mainline
= add_flags
& SYMFILE_MAINLINE
;
1114 const int should_print
= ((from_tty
|| info_verbose
)
1115 && (readnow_symbol_files
1116 || (add_flags
& SYMFILE_NO_READ
) == 0));
1118 if (readnow_symbol_files
)
1120 flags
|= OBJF_READNOW
;
1121 add_flags
&= ~SYMFILE_NO_READ
;
1124 /* Give user a chance to burp if we'd be
1125 interactively wiping out any existing symbols. */
1127 if ((have_full_symbols () || have_partial_symbols ())
1130 && !query (_("Load new symbol table from \"%s\"? "), name
))
1131 error (_("Not confirmed."));
1133 objfile
= allocate_objfile (abfd
, name
,
1134 flags
| (mainline
? OBJF_MAINLINE
: 0));
1137 add_separate_debug_objfile (objfile
, parent
);
1139 /* We either created a new mapped symbol table, mapped an existing
1140 symbol table file which has not had initial symbol reading
1141 performed, or need to read an unmapped symbol table. */
1144 if (deprecated_pre_add_symbol_hook
)
1145 deprecated_pre_add_symbol_hook (name
);
1148 printf_unfiltered (_("Reading symbols from %s..."), name
);
1150 gdb_flush (gdb_stdout
);
1153 syms_from_objfile (objfile
, addrs
, add_flags
);
1155 /* We now have at least a partial symbol table. Check to see if the
1156 user requested that all symbols be read on initial access via either
1157 the gdb startup command line or on a per symbol file basis. Expand
1158 all partial symbol tables for this objfile if so. */
1160 if ((flags
& OBJF_READNOW
))
1164 printf_unfiltered (_("expanding to full symbols..."));
1166 gdb_flush (gdb_stdout
);
1170 objfile
->sf
->qf
->expand_all_symtabs (objfile
);
1173 if (should_print
&& !objfile_has_symbols (objfile
))
1176 printf_unfiltered (_("(no debugging symbols found)..."));
1182 if (deprecated_post_add_symbol_hook
)
1183 deprecated_post_add_symbol_hook ();
1185 printf_unfiltered (_("done.\n"));
1188 /* We print some messages regardless of whether 'from_tty ||
1189 info_verbose' is true, so make sure they go out at the right
1191 gdb_flush (gdb_stdout
);
1193 if (objfile
->sf
== NULL
)
1195 observer_notify_new_objfile (objfile
);
1196 return objfile
; /* No symbols. */
1199 new_symfile_objfile (objfile
, add_flags
);
1201 observer_notify_new_objfile (objfile
);
1203 bfd_cache_close_all ();
1207 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1208 see allocate_objfile's definition. */
1211 symbol_file_add_separate (bfd
*bfd
, const char *name
, int symfile_flags
,
1212 struct objfile
*objfile
)
1214 struct objfile
*new_objfile
;
1215 struct section_addr_info
*sap
;
1216 struct cleanup
*my_cleanup
;
1218 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1219 because sections of BFD may not match sections of OBJFILE and because
1220 vma may have been modified by tools such as prelink. */
1221 sap
= build_section_addr_info_from_objfile (objfile
);
1222 my_cleanup
= make_cleanup_free_section_addr_info (sap
);
1224 new_objfile
= symbol_file_add_with_addrs
1225 (bfd
, name
, symfile_flags
, sap
,
1226 objfile
->flags
& (OBJF_REORDERED
| OBJF_SHARED
| OBJF_READNOW
1230 do_cleanups (my_cleanup
);
1233 /* Process the symbol file ABFD, as either the main file or as a
1234 dynamically loaded file.
1235 See symbol_file_add_with_addrs's comments for details. */
1238 symbol_file_add_from_bfd (bfd
*abfd
, const char *name
, int add_flags
,
1239 struct section_addr_info
*addrs
,
1240 int flags
, struct objfile
*parent
)
1242 return symbol_file_add_with_addrs (abfd
, name
, add_flags
, addrs
, flags
,
1246 /* Process a symbol file, as either the main file or as a dynamically
1247 loaded file. See symbol_file_add_with_addrs's comments for details. */
1250 symbol_file_add (const char *name
, int add_flags
,
1251 struct section_addr_info
*addrs
, int flags
)
1253 bfd
*bfd
= symfile_bfd_open (name
);
1254 struct cleanup
*cleanup
= make_cleanup_bfd_unref (bfd
);
1255 struct objfile
*objf
;
1257 objf
= symbol_file_add_from_bfd (bfd
, name
, add_flags
, addrs
, flags
, NULL
);
1258 do_cleanups (cleanup
);
1262 /* Call symbol_file_add() with default values and update whatever is
1263 affected by the loading of a new main().
1264 Used when the file is supplied in the gdb command line
1265 and by some targets with special loading requirements.
1266 The auxiliary function, symbol_file_add_main_1(), has the flags
1267 argument for the switches that can only be specified in the symbol_file
1271 symbol_file_add_main (const char *args
, int from_tty
)
1273 symbol_file_add_main_1 (args
, from_tty
, 0);
1277 symbol_file_add_main_1 (const char *args
, int from_tty
, int flags
)
1279 const int add_flags
= (current_inferior ()->symfile_flags
1280 | SYMFILE_MAINLINE
| (from_tty
? SYMFILE_VERBOSE
: 0));
1282 symbol_file_add (args
, add_flags
, NULL
, flags
);
1284 /* Getting new symbols may change our opinion about
1285 what is frameless. */
1286 reinit_frame_cache ();
1288 if ((flags
& SYMFILE_NO_READ
) == 0)
1289 set_initial_language ();
1293 symbol_file_clear (int from_tty
)
1295 if ((have_full_symbols () || have_partial_symbols ())
1298 ? !query (_("Discard symbol table from `%s'? "),
1299 objfile_name (symfile_objfile
))
1300 : !query (_("Discard symbol table? "))))
1301 error (_("Not confirmed."));
1303 /* solib descriptors may have handles to objfiles. Wipe them before their
1304 objfiles get stale by free_all_objfiles. */
1305 no_shared_libraries (NULL
, from_tty
);
1307 free_all_objfiles ();
1309 gdb_assert (symfile_objfile
== NULL
);
1311 printf_unfiltered (_("No symbol file now.\n"));
1315 separate_debug_file_exists (const char *name
, unsigned long crc
,
1316 struct objfile
*parent_objfile
)
1318 unsigned long file_crc
;
1321 struct stat parent_stat
, abfd_stat
;
1322 int verified_as_different
;
1324 /* Find a separate debug info file as if symbols would be present in
1325 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1326 section can contain just the basename of PARENT_OBJFILE without any
1327 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1328 the separate debug infos with the same basename can exist. */
1330 if (filename_cmp (name
, objfile_name (parent_objfile
)) == 0)
1333 abfd
= gdb_bfd_open_maybe_remote (name
);
1338 /* Verify symlinks were not the cause of filename_cmp name difference above.
1340 Some operating systems, e.g. Windows, do not provide a meaningful
1341 st_ino; they always set it to zero. (Windows does provide a
1342 meaningful st_dev.) Do not indicate a duplicate library in that
1343 case. While there is no guarantee that a system that provides
1344 meaningful inode numbers will never set st_ino to zero, this is
1345 merely an optimization, so we do not need to worry about false
1348 if (bfd_stat (abfd
, &abfd_stat
) == 0
1349 && abfd_stat
.st_ino
!= 0
1350 && bfd_stat (parent_objfile
->obfd
, &parent_stat
) == 0)
1352 if (abfd_stat
.st_dev
== parent_stat
.st_dev
1353 && abfd_stat
.st_ino
== parent_stat
.st_ino
)
1355 gdb_bfd_unref (abfd
);
1358 verified_as_different
= 1;
1361 verified_as_different
= 0;
1363 file_crc_p
= gdb_bfd_crc (abfd
, &file_crc
);
1365 gdb_bfd_unref (abfd
);
1370 if (crc
!= file_crc
)
1372 unsigned long parent_crc
;
1374 /* If one (or both) the files are accessed for example the via "remote:"
1375 gdbserver way it does not support the bfd_stat operation. Verify
1376 whether those two files are not the same manually. */
1378 if (!verified_as_different
)
1380 if (!gdb_bfd_crc (parent_objfile
->obfd
, &parent_crc
))
1384 if (verified_as_different
|| parent_crc
!= file_crc
)
1385 warning (_("the debug information found in \"%s\""
1386 " does not match \"%s\" (CRC mismatch).\n"),
1387 name
, objfile_name (parent_objfile
));
1395 char *debug_file_directory
= NULL
;
1397 show_debug_file_directory (struct ui_file
*file
, int from_tty
,
1398 struct cmd_list_element
*c
, const char *value
)
1400 fprintf_filtered (file
,
1401 _("The directory where separate debug "
1402 "symbols are searched for is \"%s\".\n"),
1406 #if ! defined (DEBUG_SUBDIRECTORY)
1407 #define DEBUG_SUBDIRECTORY ".debug"
1410 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1411 where the original file resides (may not be the same as
1412 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1413 looking for. CANON_DIR is the "realpath" form of DIR.
1414 DIR must contain a trailing '/'.
1415 Returns the path of the file with separate debug info, of NULL. */
1418 find_separate_debug_file (const char *dir
,
1419 const char *canon_dir
,
1420 const char *debuglink
,
1421 unsigned long crc32
, struct objfile
*objfile
)
1426 VEC (char_ptr
) *debugdir_vec
;
1427 struct cleanup
*back_to
;
1430 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1432 if (canon_dir
!= NULL
&& strlen (canon_dir
) > i
)
1433 i
= strlen (canon_dir
);
1435 debugfile
= xmalloc (strlen (debug_file_directory
) + 1
1437 + strlen (DEBUG_SUBDIRECTORY
)
1439 + strlen (debuglink
)
1442 /* First try in the same directory as the original file. */
1443 strcpy (debugfile
, dir
);
1444 strcat (debugfile
, debuglink
);
1446 if (separate_debug_file_exists (debugfile
, crc32
, objfile
))
1449 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1450 strcpy (debugfile
, dir
);
1451 strcat (debugfile
, DEBUG_SUBDIRECTORY
);
1452 strcat (debugfile
, "/");
1453 strcat (debugfile
, debuglink
);
1455 if (separate_debug_file_exists (debugfile
, crc32
, objfile
))
1458 /* Then try in the global debugfile directories.
1460 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1461 cause "/..." lookups. */
1463 debugdir_vec
= dirnames_to_char_ptr_vec (debug_file_directory
);
1464 back_to
= make_cleanup_free_char_ptr_vec (debugdir_vec
);
1466 for (ix
= 0; VEC_iterate (char_ptr
, debugdir_vec
, ix
, debugdir
); ++ix
)
1468 strcpy (debugfile
, debugdir
);
1469 strcat (debugfile
, "/");
1470 strcat (debugfile
, dir
);
1471 strcat (debugfile
, debuglink
);
1473 if (separate_debug_file_exists (debugfile
, crc32
, objfile
))
1475 do_cleanups (back_to
);
1479 /* If the file is in the sysroot, try using its base path in the
1480 global debugfile directory. */
1481 if (canon_dir
!= NULL
1482 && filename_ncmp (canon_dir
, gdb_sysroot
,
1483 strlen (gdb_sysroot
)) == 0
1484 && IS_DIR_SEPARATOR (canon_dir
[strlen (gdb_sysroot
)]))
1486 strcpy (debugfile
, debugdir
);
1487 strcat (debugfile
, canon_dir
+ strlen (gdb_sysroot
));
1488 strcat (debugfile
, "/");
1489 strcat (debugfile
, debuglink
);
1491 if (separate_debug_file_exists (debugfile
, crc32
, objfile
))
1493 do_cleanups (back_to
);
1499 do_cleanups (back_to
);
1504 /* Modify PATH to contain only "[/]directory/" part of PATH.
1505 If there were no directory separators in PATH, PATH will be empty
1506 string on return. */
1509 terminate_after_last_dir_separator (char *path
)
1513 /* Strip off the final filename part, leaving the directory name,
1514 followed by a slash. The directory can be relative or absolute. */
1515 for (i
= strlen(path
) - 1; i
>= 0; i
--)
1516 if (IS_DIR_SEPARATOR (path
[i
]))
1519 /* If I is -1 then no directory is present there and DIR will be "". */
1523 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1524 Returns pathname, or NULL. */
1527 find_separate_debug_file_by_debuglink (struct objfile
*objfile
)
1530 char *dir
, *canon_dir
;
1532 unsigned long crc32
;
1533 struct cleanup
*cleanups
;
1535 debuglink
= bfd_get_debug_link_info (objfile
->obfd
, &crc32
);
1537 if (debuglink
== NULL
)
1539 /* There's no separate debug info, hence there's no way we could
1540 load it => no warning. */
1544 cleanups
= make_cleanup (xfree
, debuglink
);
1545 dir
= xstrdup (objfile_name (objfile
));
1546 make_cleanup (xfree
, dir
);
1547 terminate_after_last_dir_separator (dir
);
1548 canon_dir
= lrealpath (dir
);
1550 debugfile
= find_separate_debug_file (dir
, canon_dir
, debuglink
,
1554 if (debugfile
== NULL
)
1557 /* For PR gdb/9538, try again with realpath (if different from the
1562 if (lstat (objfile_name (objfile
), &st_buf
) == 0
1563 && S_ISLNK (st_buf
.st_mode
))
1567 symlink_dir
= lrealpath (objfile_name (objfile
));
1568 if (symlink_dir
!= NULL
)
1570 make_cleanup (xfree
, symlink_dir
);
1571 terminate_after_last_dir_separator (symlink_dir
);
1572 if (strcmp (dir
, symlink_dir
) != 0)
1574 /* Different directory, so try using it. */
1575 debugfile
= find_separate_debug_file (symlink_dir
,
1583 #endif /* HAVE_LSTAT */
1586 do_cleanups (cleanups
);
1590 /* This is the symbol-file command. Read the file, analyze its
1591 symbols, and add a struct symtab to a symtab list. The syntax of
1592 the command is rather bizarre:
1594 1. The function buildargv implements various quoting conventions
1595 which are undocumented and have little or nothing in common with
1596 the way things are quoted (or not quoted) elsewhere in GDB.
1598 2. Options are used, which are not generally used in GDB (perhaps
1599 "set mapped on", "set readnow on" would be better)
1601 3. The order of options matters, which is contrary to GNU
1602 conventions (because it is confusing and inconvenient). */
1605 symbol_file_command (char *args
, int from_tty
)
1611 symbol_file_clear (from_tty
);
1615 char **argv
= gdb_buildargv (args
);
1616 int flags
= OBJF_USERLOADED
;
1617 struct cleanup
*cleanups
;
1620 cleanups
= make_cleanup_freeargv (argv
);
1621 while (*argv
!= NULL
)
1623 if (strcmp (*argv
, "-readnow") == 0)
1624 flags
|= OBJF_READNOW
;
1625 else if (**argv
== '-')
1626 error (_("unknown option `%s'"), *argv
);
1629 symbol_file_add_main_1 (*argv
, from_tty
, flags
);
1637 error (_("no symbol file name was specified"));
1639 do_cleanups (cleanups
);
1643 /* Set the initial language.
1645 FIXME: A better solution would be to record the language in the
1646 psymtab when reading partial symbols, and then use it (if known) to
1647 set the language. This would be a win for formats that encode the
1648 language in an easily discoverable place, such as DWARF. For
1649 stabs, we can jump through hoops looking for specially named
1650 symbols or try to intuit the language from the specific type of
1651 stabs we find, but we can't do that until later when we read in
1655 set_initial_language (void)
1657 enum language lang
= language_unknown
;
1659 if (language_of_main
!= language_unknown
)
1660 lang
= language_of_main
;
1663 char *name
= main_name ();
1664 struct symbol
*sym
= lookup_symbol (name
, NULL
, VAR_DOMAIN
, NULL
);
1667 lang
= SYMBOL_LANGUAGE (sym
);
1670 if (lang
== language_unknown
)
1672 /* Make C the default language */
1676 set_language (lang
);
1677 expected_language
= current_language
; /* Don't warn the user. */
1680 /* If NAME is a remote name open the file using remote protocol, otherwise
1681 open it normally. Returns a new reference to the BFD. On error,
1682 returns NULL with the BFD error set. */
1685 gdb_bfd_open_maybe_remote (const char *name
)
1689 if (remote_filename_p (name
))
1690 result
= remote_bfd_open (name
, gnutarget
);
1692 result
= gdb_bfd_open (name
, gnutarget
, -1);
1697 /* Open the file specified by NAME and hand it off to BFD for
1698 preliminary analysis. Return a newly initialized bfd *, which
1699 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1700 absolute). In case of trouble, error() is called. */
1703 symfile_bfd_open (const char *cname
)
1707 char *name
, *absolute_name
;
1708 struct cleanup
*back_to
;
1710 if (remote_filename_p (cname
))
1712 sym_bfd
= remote_bfd_open (cname
, gnutarget
);
1714 error (_("`%s': can't open to read symbols: %s."), cname
,
1715 bfd_errmsg (bfd_get_error ()));
1717 if (!bfd_check_format (sym_bfd
, bfd_object
))
1719 make_cleanup_bfd_unref (sym_bfd
);
1720 error (_("`%s': can't read symbols: %s."), cname
,
1721 bfd_errmsg (bfd_get_error ()));
1727 name
= tilde_expand (cname
); /* Returns 1st new malloc'd copy. */
1729 /* Look down path for it, allocate 2nd new malloc'd copy. */
1730 desc
= openp (getenv ("PATH"), OPF_TRY_CWD_FIRST
| OPF_RETURN_REALPATH
, name
,
1731 O_RDONLY
| O_BINARY
, &absolute_name
);
1732 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1735 char *exename
= alloca (strlen (name
) + 5);
1737 strcat (strcpy (exename
, name
), ".exe");
1738 desc
= openp (getenv ("PATH"), OPF_TRY_CWD_FIRST
| OPF_RETURN_REALPATH
,
1739 exename
, O_RDONLY
| O_BINARY
, &absolute_name
);
1744 make_cleanup (xfree
, name
);
1745 perror_with_name (name
);
1749 name
= absolute_name
;
1750 back_to
= make_cleanup (xfree
, name
);
1752 sym_bfd
= gdb_bfd_open (name
, gnutarget
, desc
);
1754 error (_("`%s': can't open to read symbols: %s."), name
,
1755 bfd_errmsg (bfd_get_error ()));
1756 bfd_set_cacheable (sym_bfd
, 1);
1758 if (!bfd_check_format (sym_bfd
, bfd_object
))
1760 make_cleanup_bfd_unref (sym_bfd
);
1761 error (_("`%s': can't read symbols: %s."), name
,
1762 bfd_errmsg (bfd_get_error ()));
1765 do_cleanups (back_to
);
1770 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1771 the section was not found. */
1774 get_section_index (struct objfile
*objfile
, char *section_name
)
1776 asection
*sect
= bfd_get_section_by_name (objfile
->obfd
, section_name
);
1784 /* Link SF into the global symtab_fns list.
1785 FLAVOUR is the file format that SF handles.
1786 Called on startup by the _initialize routine in each object file format
1787 reader, to register information about each format the reader is prepared
1791 add_symtab_fns (enum bfd_flavour flavour
, const struct sym_fns
*sf
)
1793 registered_sym_fns fns
= { flavour
, sf
};
1795 VEC_safe_push (registered_sym_fns
, symtab_fns
, &fns
);
1798 /* Initialize OBJFILE to read symbols from its associated BFD. It
1799 either returns or calls error(). The result is an initialized
1800 struct sym_fns in the objfile structure, that contains cached
1801 information about the symbol file. */
1803 static const struct sym_fns
*
1804 find_sym_fns (bfd
*abfd
)
1806 registered_sym_fns
*rsf
;
1807 enum bfd_flavour our_flavour
= bfd_get_flavour (abfd
);
1810 if (our_flavour
== bfd_target_srec_flavour
1811 || our_flavour
== bfd_target_ihex_flavour
1812 || our_flavour
== bfd_target_tekhex_flavour
)
1813 return NULL
; /* No symbols. */
1815 for (i
= 0; VEC_iterate (registered_sym_fns
, symtab_fns
, i
, rsf
); ++i
)
1816 if (our_flavour
== rsf
->sym_flavour
)
1817 return rsf
->sym_fns
;
1819 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1820 bfd_get_target (abfd
));
1824 /* This function runs the load command of our current target. */
1827 load_command (char *arg
, int from_tty
)
1829 struct cleanup
*cleanup
= make_cleanup (null_cleanup
, NULL
);
1833 /* The user might be reloading because the binary has changed. Take
1834 this opportunity to check. */
1835 reopen_exec_file ();
1843 parg
= arg
= get_exec_file (1);
1845 /* Count how many \ " ' tab space there are in the name. */
1846 while ((parg
= strpbrk (parg
, "\\\"'\t ")))
1854 /* We need to quote this string so buildargv can pull it apart. */
1855 char *temp
= xmalloc (strlen (arg
) + count
+ 1 );
1859 make_cleanup (xfree
, temp
);
1862 while ((parg
= strpbrk (parg
, "\\\"'\t ")))
1864 strncpy (ptemp
, prev
, parg
- prev
);
1865 ptemp
+= parg
- prev
;
1869 strcpy (ptemp
, prev
);
1875 target_load (arg
, from_tty
);
1877 /* After re-loading the executable, we don't really know which
1878 overlays are mapped any more. */
1879 overlay_cache_invalid
= 1;
1881 do_cleanups (cleanup
);
1884 /* This version of "load" should be usable for any target. Currently
1885 it is just used for remote targets, not inftarg.c or core files,
1886 on the theory that only in that case is it useful.
1888 Avoiding xmodem and the like seems like a win (a) because we don't have
1889 to worry about finding it, and (b) On VMS, fork() is very slow and so
1890 we don't want to run a subprocess. On the other hand, I'm not sure how
1891 performance compares. */
1893 static int validate_download
= 0;
1895 /* Callback service function for generic_load (bfd_map_over_sections). */
1898 add_section_size_callback (bfd
*abfd
, asection
*asec
, void *data
)
1900 bfd_size_type
*sum
= data
;
1902 *sum
+= bfd_get_section_size (asec
);
1905 /* Opaque data for load_section_callback. */
1906 struct load_section_data
{
1907 CORE_ADDR load_offset
;
1908 struct load_progress_data
*progress_data
;
1909 VEC(memory_write_request_s
) *requests
;
1912 /* Opaque data for load_progress. */
1913 struct load_progress_data
{
1914 /* Cumulative data. */
1915 unsigned long write_count
;
1916 unsigned long data_count
;
1917 bfd_size_type total_size
;
1920 /* Opaque data for load_progress for a single section. */
1921 struct load_progress_section_data
{
1922 struct load_progress_data
*cumulative
;
1924 /* Per-section data. */
1925 const char *section_name
;
1926 ULONGEST section_sent
;
1927 ULONGEST section_size
;
1932 /* Target write callback routine for progress reporting. */
1935 load_progress (ULONGEST bytes
, void *untyped_arg
)
1937 struct load_progress_section_data
*args
= untyped_arg
;
1938 struct load_progress_data
*totals
;
1941 /* Writing padding data. No easy way to get at the cumulative
1942 stats, so just ignore this. */
1945 totals
= args
->cumulative
;
1947 if (bytes
== 0 && args
->section_sent
== 0)
1949 /* The write is just starting. Let the user know we've started
1951 ui_out_message (current_uiout
, 0, "Loading section %s, size %s lma %s\n",
1952 args
->section_name
, hex_string (args
->section_size
),
1953 paddress (target_gdbarch (), args
->lma
));
1957 if (validate_download
)
1959 /* Broken memories and broken monitors manifest themselves here
1960 when bring new computers to life. This doubles already slow
1962 /* NOTE: cagney/1999-10-18: A more efficient implementation
1963 might add a verify_memory() method to the target vector and
1964 then use that. remote.c could implement that method using
1965 the ``qCRC'' packet. */
1966 gdb_byte
*check
= xmalloc (bytes
);
1967 struct cleanup
*verify_cleanups
= make_cleanup (xfree
, check
);
1969 if (target_read_memory (args
->lma
, check
, bytes
) != 0)
1970 error (_("Download verify read failed at %s"),
1971 paddress (target_gdbarch (), args
->lma
));
1972 if (memcmp (args
->buffer
, check
, bytes
) != 0)
1973 error (_("Download verify compare failed at %s"),
1974 paddress (target_gdbarch (), args
->lma
));
1975 do_cleanups (verify_cleanups
);
1977 totals
->data_count
+= bytes
;
1979 args
->buffer
+= bytes
;
1980 totals
->write_count
+= 1;
1981 args
->section_sent
+= bytes
;
1982 if (check_quit_flag ()
1983 || (deprecated_ui_load_progress_hook
!= NULL
1984 && deprecated_ui_load_progress_hook (args
->section_name
,
1985 args
->section_sent
)))
1986 error (_("Canceled the download"));
1988 if (deprecated_show_load_progress
!= NULL
)
1989 deprecated_show_load_progress (args
->section_name
,
1993 totals
->total_size
);
1996 /* Callback service function for generic_load (bfd_map_over_sections). */
1999 load_section_callback (bfd
*abfd
, asection
*asec
, void *data
)
2001 struct memory_write_request
*new_request
;
2002 struct load_section_data
*args
= data
;
2003 struct load_progress_section_data
*section_data
;
2004 bfd_size_type size
= bfd_get_section_size (asec
);
2006 const char *sect_name
= bfd_get_section_name (abfd
, asec
);
2008 if ((bfd_get_section_flags (abfd
, asec
) & SEC_LOAD
) == 0)
2014 new_request
= VEC_safe_push (memory_write_request_s
,
2015 args
->requests
, NULL
);
2016 memset (new_request
, 0, sizeof (struct memory_write_request
));
2017 section_data
= xcalloc (1, sizeof (struct load_progress_section_data
));
2018 new_request
->begin
= bfd_section_lma (abfd
, asec
) + args
->load_offset
;
2019 new_request
->end
= new_request
->begin
+ size
; /* FIXME Should size
2021 new_request
->data
= xmalloc (size
);
2022 new_request
->baton
= section_data
;
2024 buffer
= new_request
->data
;
2026 section_data
->cumulative
= args
->progress_data
;
2027 section_data
->section_name
= sect_name
;
2028 section_data
->section_size
= size
;
2029 section_data
->lma
= new_request
->begin
;
2030 section_data
->buffer
= buffer
;
2032 bfd_get_section_contents (abfd
, asec
, buffer
, 0, size
);
2035 /* Clean up an entire memory request vector, including load
2036 data and progress records. */
2039 clear_memory_write_data (void *arg
)
2041 VEC(memory_write_request_s
) **vec_p
= arg
;
2042 VEC(memory_write_request_s
) *vec
= *vec_p
;
2044 struct memory_write_request
*mr
;
2046 for (i
= 0; VEC_iterate (memory_write_request_s
, vec
, i
, mr
); ++i
)
2051 VEC_free (memory_write_request_s
, vec
);
2055 generic_load (char *args
, int from_tty
)
2058 struct timeval start_time
, end_time
;
2060 struct cleanup
*old_cleanups
= make_cleanup (null_cleanup
, 0);
2061 struct load_section_data cbdata
;
2062 struct load_progress_data total_progress
;
2063 struct ui_out
*uiout
= current_uiout
;
2068 memset (&cbdata
, 0, sizeof (cbdata
));
2069 memset (&total_progress
, 0, sizeof (total_progress
));
2070 cbdata
.progress_data
= &total_progress
;
2072 make_cleanup (clear_memory_write_data
, &cbdata
.requests
);
2075 error_no_arg (_("file to load"));
2077 argv
= gdb_buildargv (args
);
2078 make_cleanup_freeargv (argv
);
2080 filename
= tilde_expand (argv
[0]);
2081 make_cleanup (xfree
, filename
);
2083 if (argv
[1] != NULL
)
2087 cbdata
.load_offset
= strtoulst (argv
[1], &endptr
, 0);
2089 /* If the last word was not a valid number then
2090 treat it as a file name with spaces in. */
2091 if (argv
[1] == endptr
)
2092 error (_("Invalid download offset:%s."), argv
[1]);
2094 if (argv
[2] != NULL
)
2095 error (_("Too many parameters."));
2098 /* Open the file for loading. */
2099 loadfile_bfd
= gdb_bfd_open (filename
, gnutarget
, -1);
2100 if (loadfile_bfd
== NULL
)
2102 perror_with_name (filename
);
2106 make_cleanup_bfd_unref (loadfile_bfd
);
2108 if (!bfd_check_format (loadfile_bfd
, bfd_object
))
2110 error (_("\"%s\" is not an object file: %s"), filename
,
2111 bfd_errmsg (bfd_get_error ()));
2114 bfd_map_over_sections (loadfile_bfd
, add_section_size_callback
,
2115 (void *) &total_progress
.total_size
);
2117 bfd_map_over_sections (loadfile_bfd
, load_section_callback
, &cbdata
);
2119 gettimeofday (&start_time
, NULL
);
2121 if (target_write_memory_blocks (cbdata
.requests
, flash_discard
,
2122 load_progress
) != 0)
2123 error (_("Load failed"));
2125 gettimeofday (&end_time
, NULL
);
2127 entry
= bfd_get_start_address (loadfile_bfd
);
2128 entry
= gdbarch_addr_bits_remove (target_gdbarch (), entry
);
2129 ui_out_text (uiout
, "Start address ");
2130 ui_out_field_fmt (uiout
, "address", "%s", paddress (target_gdbarch (), entry
));
2131 ui_out_text (uiout
, ", load size ");
2132 ui_out_field_fmt (uiout
, "load-size", "%lu", total_progress
.data_count
);
2133 ui_out_text (uiout
, "\n");
2134 /* We were doing this in remote-mips.c, I suspect it is right
2135 for other targets too. */
2136 regcache_write_pc (get_current_regcache (), entry
);
2138 /* Reset breakpoints, now that we have changed the load image. For
2139 instance, breakpoints may have been set (or reset, by
2140 post_create_inferior) while connected to the target but before we
2141 loaded the program. In that case, the prologue analyzer could
2142 have read instructions from the target to find the right
2143 breakpoint locations. Loading has changed the contents of that
2146 breakpoint_re_set ();
2148 /* FIXME: are we supposed to call symbol_file_add or not? According
2149 to a comment from remote-mips.c (where a call to symbol_file_add
2150 was commented out), making the call confuses GDB if more than one
2151 file is loaded in. Some targets do (e.g., remote-vx.c) but
2152 others don't (or didn't - perhaps they have all been deleted). */
2154 print_transfer_performance (gdb_stdout
, total_progress
.data_count
,
2155 total_progress
.write_count
,
2156 &start_time
, &end_time
);
2158 do_cleanups (old_cleanups
);
2161 /* Report how fast the transfer went. */
2164 print_transfer_performance (struct ui_file
*stream
,
2165 unsigned long data_count
,
2166 unsigned long write_count
,
2167 const struct timeval
*start_time
,
2168 const struct timeval
*end_time
)
2170 ULONGEST time_count
;
2171 struct ui_out
*uiout
= current_uiout
;
2173 /* Compute the elapsed time in milliseconds, as a tradeoff between
2174 accuracy and overflow. */
2175 time_count
= (end_time
->tv_sec
- start_time
->tv_sec
) * 1000;
2176 time_count
+= (end_time
->tv_usec
- start_time
->tv_usec
) / 1000;
2178 ui_out_text (uiout
, "Transfer rate: ");
2181 unsigned long rate
= ((ULONGEST
) data_count
* 1000) / time_count
;
2183 if (ui_out_is_mi_like_p (uiout
))
2185 ui_out_field_fmt (uiout
, "transfer-rate", "%lu", rate
* 8);
2186 ui_out_text (uiout
, " bits/sec");
2188 else if (rate
< 1024)
2190 ui_out_field_fmt (uiout
, "transfer-rate", "%lu", rate
);
2191 ui_out_text (uiout
, " bytes/sec");
2195 ui_out_field_fmt (uiout
, "transfer-rate", "%lu", rate
/ 1024);
2196 ui_out_text (uiout
, " KB/sec");
2201 ui_out_field_fmt (uiout
, "transferred-bits", "%lu", (data_count
* 8));
2202 ui_out_text (uiout
, " bits in <1 sec");
2204 if (write_count
> 0)
2206 ui_out_text (uiout
, ", ");
2207 ui_out_field_fmt (uiout
, "write-rate", "%lu", data_count
/ write_count
);
2208 ui_out_text (uiout
, " bytes/write");
2210 ui_out_text (uiout
, ".\n");
2213 /* This function allows the addition of incrementally linked object files.
2214 It does not modify any state in the target, only in the debugger. */
2215 /* Note: ezannoni 2000-04-13 This function/command used to have a
2216 special case syntax for the rombug target (Rombug is the boot
2217 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2218 rombug case, the user doesn't need to supply a text address,
2219 instead a call to target_link() (in target.c) would supply the
2220 value to use. We are now discontinuing this type of ad hoc syntax. */
2223 add_symbol_file_command (char *args
, int from_tty
)
2225 struct gdbarch
*gdbarch
= get_current_arch ();
2226 char *filename
= NULL
;
2227 int flags
= OBJF_USERLOADED
;
2229 int section_index
= 0;
2233 int expecting_sec_name
= 0;
2234 int expecting_sec_addr
= 0;
2236 struct objfile
*objf
;
2244 struct section_addr_info
*section_addrs
;
2245 struct sect_opt
*sect_opts
= NULL
;
2246 size_t num_sect_opts
= 0;
2247 struct cleanup
*my_cleanups
= make_cleanup (null_cleanup
, NULL
);
2250 sect_opts
= (struct sect_opt
*) xmalloc (num_sect_opts
2251 * sizeof (struct sect_opt
));
2256 error (_("add-symbol-file takes a file name and an address"));
2258 argv
= gdb_buildargv (args
);
2259 make_cleanup_freeargv (argv
);
2261 for (arg
= argv
[0], argcnt
= 0; arg
!= NULL
; arg
= argv
[++argcnt
])
2263 /* Process the argument. */
2266 /* The first argument is the file name. */
2267 filename
= tilde_expand (arg
);
2268 make_cleanup (xfree
, filename
);
2270 else if (argcnt
== 1)
2272 /* The second argument is always the text address at which
2273 to load the program. */
2274 sect_opts
[section_index
].name
= ".text";
2275 sect_opts
[section_index
].value
= arg
;
2276 if (++section_index
>= num_sect_opts
)
2279 sect_opts
= ((struct sect_opt
*)
2280 xrealloc (sect_opts
,
2282 * sizeof (struct sect_opt
)));
2287 /* It's an option (starting with '-') or it's an argument
2289 if (expecting_sec_name
)
2291 sect_opts
[section_index
].name
= arg
;
2292 expecting_sec_name
= 0;
2294 else if (expecting_sec_addr
)
2296 sect_opts
[section_index
].value
= arg
;
2297 expecting_sec_addr
= 0;
2298 if (++section_index
>= num_sect_opts
)
2301 sect_opts
= ((struct sect_opt
*)
2302 xrealloc (sect_opts
,
2304 * sizeof (struct sect_opt
)));
2307 else if (strcmp (arg
, "-readnow") == 0)
2308 flags
|= OBJF_READNOW
;
2309 else if (strcmp (arg
, "-s") == 0)
2311 expecting_sec_name
= 1;
2312 expecting_sec_addr
= 1;
2315 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2316 " [-readnow] [-s <secname> <addr>]*"));
2320 /* This command takes at least two arguments. The first one is a
2321 filename, and the second is the address where this file has been
2322 loaded. Abort now if this address hasn't been provided by the
2324 if (section_index
< 1)
2325 error (_("The address where %s has been loaded is missing"), filename
);
2327 /* Print the prompt for the query below. And save the arguments into
2328 a sect_addr_info structure to be passed around to other
2329 functions. We have to split this up into separate print
2330 statements because hex_string returns a local static
2333 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename
);
2334 section_addrs
= alloc_section_addr_info (section_index
);
2335 make_cleanup (xfree
, section_addrs
);
2336 for (i
= 0; i
< section_index
; i
++)
2339 char *val
= sect_opts
[i
].value
;
2340 char *sec
= sect_opts
[i
].name
;
2342 addr
= parse_and_eval_address (val
);
2344 /* Here we store the section offsets in the order they were
2345 entered on the command line. */
2346 section_addrs
->other
[sec_num
].name
= sec
;
2347 section_addrs
->other
[sec_num
].addr
= addr
;
2348 printf_unfiltered ("\t%s_addr = %s\n", sec
,
2349 paddress (gdbarch
, addr
));
2352 /* The object's sections are initialized when a
2353 call is made to build_objfile_section_table (objfile).
2354 This happens in reread_symbols.
2355 At this point, we don't know what file type this is,
2356 so we can't determine what section names are valid. */
2358 section_addrs
->num_sections
= sec_num
;
2360 if (from_tty
&& (!query ("%s", "")))
2361 error (_("Not confirmed."));
2363 objf
= symbol_file_add (filename
, from_tty
? SYMFILE_VERBOSE
: 0,
2364 section_addrs
, flags
);
2366 add_target_sections_of_objfile (objf
);
2368 /* Getting new symbols may change our opinion about what is
2370 reinit_frame_cache ();
2371 do_cleanups (my_cleanups
);
2375 /* This function removes a symbol file that was added via add-symbol-file. */
2378 remove_symbol_file_command (char *args
, int from_tty
)
2381 struct objfile
*objf
= NULL
;
2382 struct cleanup
*my_cleanups
;
2383 struct program_space
*pspace
= current_program_space
;
2384 struct gdbarch
*gdbarch
= get_current_arch ();
2389 error (_("remove-symbol-file: no symbol file provided"));
2391 my_cleanups
= make_cleanup (null_cleanup
, NULL
);
2393 argv
= gdb_buildargv (args
);
2395 if (strcmp (argv
[0], "-a") == 0)
2397 /* Interpret the next argument as an address. */
2400 if (argv
[1] == NULL
)
2401 error (_("Missing address argument"));
2403 if (argv
[2] != NULL
)
2404 error (_("Junk after %s"), argv
[1]);
2406 addr
= parse_and_eval_address (argv
[1]);
2411 && objf
->flags
& OBJF_USERLOADED
2412 && objf
->pspace
== pspace
&& is_addr_in_objfile (addr
, objf
))
2416 else if (argv
[0] != NULL
)
2418 /* Interpret the current argument as a file name. */
2421 if (argv
[1] != NULL
)
2422 error (_("Junk after %s"), argv
[0]);
2424 filename
= tilde_expand (argv
[0]);
2425 make_cleanup (xfree
, filename
);
2430 && objf
->flags
& OBJF_USERLOADED
2431 && objf
->pspace
== pspace
2432 && filename_cmp (filename
, objfile_name (objf
)) == 0)
2438 error (_("No symbol file found"));
2441 && !query (_("Remove symbol table from file \"%s\"? "),
2442 objfile_name (objf
)))
2443 error (_("Not confirmed."));
2445 free_objfile (objf
);
2446 clear_symtab_users (0);
2448 do_cleanups (my_cleanups
);
2451 typedef struct objfile
*objfilep
;
2453 DEF_VEC_P (objfilep
);
2455 /* Re-read symbols if a symbol-file has changed. */
2458 reread_symbols (void)
2460 struct objfile
*objfile
;
2462 struct stat new_statbuf
;
2464 VEC (objfilep
) *new_objfiles
= NULL
;
2465 struct cleanup
*all_cleanups
;
2467 all_cleanups
= make_cleanup (VEC_cleanup (objfilep
), &new_objfiles
);
2469 /* With the addition of shared libraries, this should be modified,
2470 the load time should be saved in the partial symbol tables, since
2471 different tables may come from different source files. FIXME.
2472 This routine should then walk down each partial symbol table
2473 and see if the symbol table that it originates from has been changed. */
2475 for (objfile
= object_files
; objfile
; objfile
= objfile
->next
)
2477 if (objfile
->obfd
== NULL
)
2480 /* Separate debug objfiles are handled in the main objfile. */
2481 if (objfile
->separate_debug_objfile_backlink
)
2484 /* If this object is from an archive (what you usually create with
2485 `ar', often called a `static library' on most systems, though
2486 a `shared library' on AIX is also an archive), then you should
2487 stat on the archive name, not member name. */
2488 if (objfile
->obfd
->my_archive
)
2489 res
= stat (objfile
->obfd
->my_archive
->filename
, &new_statbuf
);
2491 res
= stat (objfile_name (objfile
), &new_statbuf
);
2494 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2495 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2496 objfile_name (objfile
));
2499 new_modtime
= new_statbuf
.st_mtime
;
2500 if (new_modtime
!= objfile
->mtime
)
2502 struct cleanup
*old_cleanups
;
2503 struct section_offsets
*offsets
;
2505 char *original_name
;
2507 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2508 objfile_name (objfile
));
2510 /* There are various functions like symbol_file_add,
2511 symfile_bfd_open, syms_from_objfile, etc., which might
2512 appear to do what we want. But they have various other
2513 effects which we *don't* want. So we just do stuff
2514 ourselves. We don't worry about mapped files (for one thing,
2515 any mapped file will be out of date). */
2517 /* If we get an error, blow away this objfile (not sure if
2518 that is the correct response for things like shared
2520 old_cleanups
= make_cleanup_free_objfile (objfile
);
2521 /* We need to do this whenever any symbols go away. */
2522 make_cleanup (clear_symtab_users_cleanup
, 0 /*ignore*/);
2524 if (exec_bfd
!= NULL
2525 && filename_cmp (bfd_get_filename (objfile
->obfd
),
2526 bfd_get_filename (exec_bfd
)) == 0)
2528 /* Reload EXEC_BFD without asking anything. */
2530 exec_file_attach (bfd_get_filename (objfile
->obfd
), 0);
2533 /* Keep the calls order approx. the same as in free_objfile. */
2535 /* Free the separate debug objfiles. It will be
2536 automatically recreated by sym_read. */
2537 free_objfile_separate_debug (objfile
);
2539 /* Remove any references to this objfile in the global
2541 preserve_values (objfile
);
2543 /* Nuke all the state that we will re-read. Much of the following
2544 code which sets things to NULL really is necessary to tell
2545 other parts of GDB that there is nothing currently there.
2547 Try to keep the freeing order compatible with free_objfile. */
2549 if (objfile
->sf
!= NULL
)
2551 (*objfile
->sf
->sym_finish
) (objfile
);
2554 clear_objfile_data (objfile
);
2556 /* Clean up any state BFD has sitting around. */
2558 struct bfd
*obfd
= objfile
->obfd
;
2559 char *obfd_filename
;
2561 obfd_filename
= bfd_get_filename (objfile
->obfd
);
2562 /* Open the new BFD before freeing the old one, so that
2563 the filename remains live. */
2564 objfile
->obfd
= gdb_bfd_open_maybe_remote (obfd_filename
);
2565 if (objfile
->obfd
== NULL
)
2567 /* We have to make a cleanup and error here, rather
2568 than erroring later, because once we unref OBFD,
2569 OBFD_FILENAME will be freed. */
2570 make_cleanup_bfd_unref (obfd
);
2571 error (_("Can't open %s to read symbols."), obfd_filename
);
2573 gdb_bfd_unref (obfd
);
2576 original_name
= xstrdup (objfile
->original_name
);
2577 make_cleanup (xfree
, original_name
);
2579 /* bfd_openr sets cacheable to true, which is what we want. */
2580 if (!bfd_check_format (objfile
->obfd
, bfd_object
))
2581 error (_("Can't read symbols from %s: %s."), objfile_name (objfile
),
2582 bfd_errmsg (bfd_get_error ()));
2584 /* Save the offsets, we will nuke them with the rest of the
2586 num_offsets
= objfile
->num_sections
;
2587 offsets
= ((struct section_offsets
*)
2588 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets
)));
2589 memcpy (offsets
, objfile
->section_offsets
,
2590 SIZEOF_N_SECTION_OFFSETS (num_offsets
));
2592 /* FIXME: Do we have to free a whole linked list, or is this
2594 if (objfile
->global_psymbols
.list
)
2595 xfree (objfile
->global_psymbols
.list
);
2596 memset (&objfile
->global_psymbols
, 0,
2597 sizeof (objfile
->global_psymbols
));
2598 if (objfile
->static_psymbols
.list
)
2599 xfree (objfile
->static_psymbols
.list
);
2600 memset (&objfile
->static_psymbols
, 0,
2601 sizeof (objfile
->static_psymbols
));
2603 /* Free the obstacks for non-reusable objfiles. */
2604 psymbol_bcache_free (objfile
->psymbol_cache
);
2605 objfile
->psymbol_cache
= psymbol_bcache_init ();
2606 obstack_free (&objfile
->objfile_obstack
, 0);
2607 objfile
->sections
= NULL
;
2608 objfile
->symtabs
= NULL
;
2609 objfile
->psymtabs
= NULL
;
2610 objfile
->psymtabs_addrmap
= NULL
;
2611 objfile
->free_psymtabs
= NULL
;
2612 objfile
->template_symbols
= NULL
;
2613 objfile
->msymbols
= NULL
;
2614 objfile
->minimal_symbol_count
= 0;
2615 memset (&objfile
->msymbol_hash
, 0,
2616 sizeof (objfile
->msymbol_hash
));
2617 memset (&objfile
->msymbol_demangled_hash
, 0,
2618 sizeof (objfile
->msymbol_demangled_hash
));
2620 /* obstack_init also initializes the obstack so it is
2621 empty. We could use obstack_specify_allocation but
2622 gdb_obstack.h specifies the alloc/dealloc functions. */
2623 obstack_init (&objfile
->objfile_obstack
);
2625 /* set_objfile_per_bfd potentially allocates the per-bfd
2626 data on the objfile's obstack (if sharing data across
2627 multiple users is not possible), so it's important to
2628 do it *after* the obstack has been initialized. */
2629 set_objfile_per_bfd (objfile
);
2631 objfile
->original_name
= obstack_copy0 (&objfile
->objfile_obstack
,
2633 strlen (original_name
));
2635 /* Reset the sym_fns pointer. The ELF reader can change it
2636 based on whether .gdb_index is present, and we need it to
2637 start over. PR symtab/15885 */
2638 objfile_set_sym_fns (objfile
, find_sym_fns (objfile
->obfd
));
2640 build_objfile_section_table (objfile
);
2641 terminate_minimal_symbol_table (objfile
);
2643 /* We use the same section offsets as from last time. I'm not
2644 sure whether that is always correct for shared libraries. */
2645 objfile
->section_offsets
= (struct section_offsets
*)
2646 obstack_alloc (&objfile
->objfile_obstack
,
2647 SIZEOF_N_SECTION_OFFSETS (num_offsets
));
2648 memcpy (objfile
->section_offsets
, offsets
,
2649 SIZEOF_N_SECTION_OFFSETS (num_offsets
));
2650 objfile
->num_sections
= num_offsets
;
2652 /* What the hell is sym_new_init for, anyway? The concept of
2653 distinguishing between the main file and additional files
2654 in this way seems rather dubious. */
2655 if (objfile
== symfile_objfile
)
2657 (*objfile
->sf
->sym_new_init
) (objfile
);
2660 (*objfile
->sf
->sym_init
) (objfile
);
2661 clear_complaints (&symfile_complaints
, 1, 1);
2663 objfile
->flags
&= ~OBJF_PSYMTABS_READ
;
2664 read_symbols (objfile
, 0);
2666 if (!objfile_has_symbols (objfile
))
2669 printf_unfiltered (_("(no debugging symbols found)\n"));
2673 /* We're done reading the symbol file; finish off complaints. */
2674 clear_complaints (&symfile_complaints
, 0, 1);
2676 /* Getting new symbols may change our opinion about what is
2679 reinit_frame_cache ();
2681 /* Discard cleanups as symbol reading was successful. */
2682 discard_cleanups (old_cleanups
);
2684 /* If the mtime has changed between the time we set new_modtime
2685 and now, we *want* this to be out of date, so don't call stat
2687 objfile
->mtime
= new_modtime
;
2688 init_entry_point_info (objfile
);
2690 VEC_safe_push (objfilep
, new_objfiles
, objfile
);
2698 /* Notify objfiles that we've modified objfile sections. */
2699 objfiles_changed ();
2701 clear_symtab_users (0);
2703 /* clear_objfile_data for each objfile was called before freeing it and
2704 observer_notify_new_objfile (NULL) has been called by
2705 clear_symtab_users above. Notify the new files now. */
2706 for (ix
= 0; VEC_iterate (objfilep
, new_objfiles
, ix
, objfile
); ix
++)
2707 observer_notify_new_objfile (objfile
);
2709 /* At least one objfile has changed, so we can consider that
2710 the executable we're debugging has changed too. */
2711 observer_notify_executable_changed ();
2714 do_cleanups (all_cleanups
);
2725 static filename_language
*filename_language_table
;
2726 static int fl_table_size
, fl_table_next
;
2729 add_filename_language (char *ext
, enum language lang
)
2731 if (fl_table_next
>= fl_table_size
)
2733 fl_table_size
+= 10;
2734 filename_language_table
=
2735 xrealloc (filename_language_table
,
2736 fl_table_size
* sizeof (*filename_language_table
));
2739 filename_language_table
[fl_table_next
].ext
= xstrdup (ext
);
2740 filename_language_table
[fl_table_next
].lang
= lang
;
2744 static char *ext_args
;
2746 show_ext_args (struct ui_file
*file
, int from_tty
,
2747 struct cmd_list_element
*c
, const char *value
)
2749 fprintf_filtered (file
,
2750 _("Mapping between filename extension "
2751 "and source language is \"%s\".\n"),
2756 set_ext_lang_command (char *args
, int from_tty
, struct cmd_list_element
*e
)
2759 char *cp
= ext_args
;
2762 /* First arg is filename extension, starting with '.' */
2764 error (_("'%s': Filename extension must begin with '.'"), ext_args
);
2766 /* Find end of first arg. */
2767 while (*cp
&& !isspace (*cp
))
2771 error (_("'%s': two arguments required -- "
2772 "filename extension and language"),
2775 /* Null-terminate first arg. */
2778 /* Find beginning of second arg, which should be a source language. */
2779 cp
= skip_spaces (cp
);
2782 error (_("'%s': two arguments required -- "
2783 "filename extension and language"),
2786 /* Lookup the language from among those we know. */
2787 lang
= language_enum (cp
);
2789 /* Now lookup the filename extension: do we already know it? */
2790 for (i
= 0; i
< fl_table_next
; i
++)
2791 if (0 == strcmp (ext_args
, filename_language_table
[i
].ext
))
2794 if (i
>= fl_table_next
)
2796 /* New file extension. */
2797 add_filename_language (ext_args
, lang
);
2801 /* Redefining a previously known filename extension. */
2804 /* query ("Really make files of type %s '%s'?", */
2805 /* ext_args, language_str (lang)); */
2807 xfree (filename_language_table
[i
].ext
);
2808 filename_language_table
[i
].ext
= xstrdup (ext_args
);
2809 filename_language_table
[i
].lang
= lang
;
2814 info_ext_lang_command (char *args
, int from_tty
)
2818 printf_filtered (_("Filename extensions and the languages they represent:"));
2819 printf_filtered ("\n\n");
2820 for (i
= 0; i
< fl_table_next
; i
++)
2821 printf_filtered ("\t%s\t- %s\n",
2822 filename_language_table
[i
].ext
,
2823 language_str (filename_language_table
[i
].lang
));
2827 init_filename_language_table (void)
2829 if (fl_table_size
== 0) /* Protect against repetition. */
2833 filename_language_table
=
2834 xmalloc (fl_table_size
* sizeof (*filename_language_table
));
2835 add_filename_language (".c", language_c
);
2836 add_filename_language (".d", language_d
);
2837 add_filename_language (".C", language_cplus
);
2838 add_filename_language (".cc", language_cplus
);
2839 add_filename_language (".cp", language_cplus
);
2840 add_filename_language (".cpp", language_cplus
);
2841 add_filename_language (".cxx", language_cplus
);
2842 add_filename_language (".c++", language_cplus
);
2843 add_filename_language (".java", language_java
);
2844 add_filename_language (".class", language_java
);
2845 add_filename_language (".m", language_objc
);
2846 add_filename_language (".f", language_fortran
);
2847 add_filename_language (".F", language_fortran
);
2848 add_filename_language (".for", language_fortran
);
2849 add_filename_language (".FOR", language_fortran
);
2850 add_filename_language (".ftn", language_fortran
);
2851 add_filename_language (".FTN", language_fortran
);
2852 add_filename_language (".fpp", language_fortran
);
2853 add_filename_language (".FPP", language_fortran
);
2854 add_filename_language (".f90", language_fortran
);
2855 add_filename_language (".F90", language_fortran
);
2856 add_filename_language (".f95", language_fortran
);
2857 add_filename_language (".F95", language_fortran
);
2858 add_filename_language (".f03", language_fortran
);
2859 add_filename_language (".F03", language_fortran
);
2860 add_filename_language (".f08", language_fortran
);
2861 add_filename_language (".F08", language_fortran
);
2862 add_filename_language (".s", language_asm
);
2863 add_filename_language (".sx", language_asm
);
2864 add_filename_language (".S", language_asm
);
2865 add_filename_language (".pas", language_pascal
);
2866 add_filename_language (".p", language_pascal
);
2867 add_filename_language (".pp", language_pascal
);
2868 add_filename_language (".adb", language_ada
);
2869 add_filename_language (".ads", language_ada
);
2870 add_filename_language (".a", language_ada
);
2871 add_filename_language (".ada", language_ada
);
2872 add_filename_language (".dg", language_ada
);
2877 deduce_language_from_filename (const char *filename
)
2882 if (filename
!= NULL
)
2883 if ((cp
= strrchr (filename
, '.')) != NULL
)
2884 for (i
= 0; i
< fl_table_next
; i
++)
2885 if (strcmp (cp
, filename_language_table
[i
].ext
) == 0)
2886 return filename_language_table
[i
].lang
;
2888 return language_unknown
;
2893 Allocate and partly initialize a new symbol table. Return a pointer
2894 to it. error() if no space.
2896 Caller must set these fields:
2905 allocate_symtab (const char *filename
, struct objfile
*objfile
)
2907 struct symtab
*symtab
;
2909 symtab
= (struct symtab
*)
2910 obstack_alloc (&objfile
->objfile_obstack
, sizeof (struct symtab
));
2911 memset (symtab
, 0, sizeof (*symtab
));
2912 symtab
->filename
= bcache (filename
, strlen (filename
) + 1,
2913 objfile
->per_bfd
->filename_cache
);
2914 symtab
->fullname
= NULL
;
2915 symtab
->language
= deduce_language_from_filename (filename
);
2916 symtab
->debugformat
= "unknown";
2918 /* Hook it to the objfile it comes from. */
2920 symtab
->objfile
= objfile
;
2921 symtab
->next
= objfile
->symtabs
;
2922 objfile
->symtabs
= symtab
;
2924 /* This can be very verbose with lots of headers.
2925 Only print at higher debug levels. */
2926 if (symtab_create_debug
>= 2)
2928 /* Be a bit clever with debugging messages, and don't print objfile
2929 every time, only when it changes. */
2930 static char *last_objfile_name
= NULL
;
2932 if (last_objfile_name
== NULL
2933 || strcmp (last_objfile_name
, objfile_name (objfile
)) != 0)
2935 xfree (last_objfile_name
);
2936 last_objfile_name
= xstrdup (objfile_name (objfile
));
2937 fprintf_unfiltered (gdb_stdlog
,
2938 "Creating one or more symtabs for objfile %s ...\n",
2941 fprintf_unfiltered (gdb_stdlog
,
2942 "Created symtab %s for module %s.\n",
2943 host_address_to_string (symtab
), filename
);
2950 /* Reset all data structures in gdb which may contain references to symbol
2951 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2954 clear_symtab_users (int add_flags
)
2956 /* Someday, we should do better than this, by only blowing away
2957 the things that really need to be blown. */
2959 /* Clear the "current" symtab first, because it is no longer valid.
2960 breakpoint_re_set may try to access the current symtab. */
2961 clear_current_source_symtab_and_line ();
2964 if ((add_flags
& SYMFILE_DEFER_BP_RESET
) == 0)
2965 breakpoint_re_set ();
2966 clear_last_displayed_sal ();
2967 clear_pc_function_cache ();
2968 observer_notify_new_objfile (NULL
);
2970 /* Clear globals which might have pointed into a removed objfile.
2971 FIXME: It's not clear which of these are supposed to persist
2972 between expressions and which ought to be reset each time. */
2973 expression_context_block
= NULL
;
2974 innermost_block
= NULL
;
2976 /* Varobj may refer to old symbols, perform a cleanup. */
2977 varobj_invalidate ();
2982 clear_symtab_users_cleanup (void *ignore
)
2984 clear_symtab_users (0);
2988 The following code implements an abstraction for debugging overlay sections.
2990 The target model is as follows:
2991 1) The gnu linker will permit multiple sections to be mapped into the
2992 same VMA, each with its own unique LMA (or load address).
2993 2) It is assumed that some runtime mechanism exists for mapping the
2994 sections, one by one, from the load address into the VMA address.
2995 3) This code provides a mechanism for gdb to keep track of which
2996 sections should be considered to be mapped from the VMA to the LMA.
2997 This information is used for symbol lookup, and memory read/write.
2998 For instance, if a section has been mapped then its contents
2999 should be read from the VMA, otherwise from the LMA.
3001 Two levels of debugger support for overlays are available. One is
3002 "manual", in which the debugger relies on the user to tell it which
3003 overlays are currently mapped. This level of support is
3004 implemented entirely in the core debugger, and the information about
3005 whether a section is mapped is kept in the objfile->obj_section table.
3007 The second level of support is "automatic", and is only available if
3008 the target-specific code provides functionality to read the target's
3009 overlay mapping table, and translate its contents for the debugger
3010 (by updating the mapped state information in the obj_section tables).
3012 The interface is as follows:
3014 overlay map <name> -- tell gdb to consider this section mapped
3015 overlay unmap <name> -- tell gdb to consider this section unmapped
3016 overlay list -- list the sections that GDB thinks are mapped
3017 overlay read-target -- get the target's state of what's mapped
3018 overlay off/manual/auto -- set overlay debugging state
3019 Functional interface:
3020 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3021 section, return that section.
3022 find_pc_overlay(pc): find any overlay section that contains
3023 the pc, either in its VMA or its LMA
3024 section_is_mapped(sect): true if overlay is marked as mapped
3025 section_is_overlay(sect): true if section's VMA != LMA
3026 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3027 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3028 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3029 overlay_mapped_address(...): map an address from section's LMA to VMA
3030 overlay_unmapped_address(...): map an address from section's VMA to LMA
3031 symbol_overlayed_address(...): Return a "current" address for symbol:
3032 either in VMA or LMA depending on whether
3033 the symbol's section is currently mapped. */
3035 /* Overlay debugging state: */
3037 enum overlay_debugging_state overlay_debugging
= ovly_off
;
3038 int overlay_cache_invalid
= 0; /* True if need to refresh mapped state. */
3040 /* Function: section_is_overlay (SECTION)
3041 Returns true if SECTION has VMA not equal to LMA, ie.
3042 SECTION is loaded at an address different from where it will "run". */
3045 section_is_overlay (struct obj_section
*section
)
3047 if (overlay_debugging
&& section
)
3049 bfd
*abfd
= section
->objfile
->obfd
;
3050 asection
*bfd_section
= section
->the_bfd_section
;
3052 if (bfd_section_lma (abfd
, bfd_section
) != 0
3053 && bfd_section_lma (abfd
, bfd_section
)
3054 != bfd_section_vma (abfd
, bfd_section
))
3061 /* Function: overlay_invalidate_all (void)
3062 Invalidate the mapped state of all overlay sections (mark it as stale). */
3065 overlay_invalidate_all (void)
3067 struct objfile
*objfile
;
3068 struct obj_section
*sect
;
3070 ALL_OBJSECTIONS (objfile
, sect
)
3071 if (section_is_overlay (sect
))
3072 sect
->ovly_mapped
= -1;
3075 /* Function: section_is_mapped (SECTION)
3076 Returns true if section is an overlay, and is currently mapped.
3078 Access to the ovly_mapped flag is restricted to this function, so
3079 that we can do automatic update. If the global flag
3080 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3081 overlay_invalidate_all. If the mapped state of the particular
3082 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3085 section_is_mapped (struct obj_section
*osect
)
3087 struct gdbarch
*gdbarch
;
3089 if (osect
== 0 || !section_is_overlay (osect
))
3092 switch (overlay_debugging
)
3096 return 0; /* overlay debugging off */
3097 case ovly_auto
: /* overlay debugging automatic */
3098 /* Unles there is a gdbarch_overlay_update function,
3099 there's really nothing useful to do here (can't really go auto). */
3100 gdbarch
= get_objfile_arch (osect
->objfile
);
3101 if (gdbarch_overlay_update_p (gdbarch
))
3103 if (overlay_cache_invalid
)
3105 overlay_invalidate_all ();
3106 overlay_cache_invalid
= 0;
3108 if (osect
->ovly_mapped
== -1)
3109 gdbarch_overlay_update (gdbarch
, osect
);
3111 /* fall thru to manual case */
3112 case ovly_on
: /* overlay debugging manual */
3113 return osect
->ovly_mapped
== 1;
3117 /* Function: pc_in_unmapped_range
3118 If PC falls into the lma range of SECTION, return true, else false. */
3121 pc_in_unmapped_range (CORE_ADDR pc
, struct obj_section
*section
)
3123 if (section_is_overlay (section
))
3125 bfd
*abfd
= section
->objfile
->obfd
;
3126 asection
*bfd_section
= section
->the_bfd_section
;
3128 /* We assume the LMA is relocated by the same offset as the VMA. */
3129 bfd_vma size
= bfd_get_section_size (bfd_section
);
3130 CORE_ADDR offset
= obj_section_offset (section
);
3132 if (bfd_get_section_lma (abfd
, bfd_section
) + offset
<= pc
3133 && pc
< bfd_get_section_lma (abfd
, bfd_section
) + offset
+ size
)
3140 /* Function: pc_in_mapped_range
3141 If PC falls into the vma range of SECTION, return true, else false. */
3144 pc_in_mapped_range (CORE_ADDR pc
, struct obj_section
*section
)
3146 if (section_is_overlay (section
))
3148 if (obj_section_addr (section
) <= pc
3149 && pc
< obj_section_endaddr (section
))
3156 /* Return true if the mapped ranges of sections A and B overlap, false
3160 sections_overlap (struct obj_section
*a
, struct obj_section
*b
)
3162 CORE_ADDR a_start
= obj_section_addr (a
);
3163 CORE_ADDR a_end
= obj_section_endaddr (a
);
3164 CORE_ADDR b_start
= obj_section_addr (b
);
3165 CORE_ADDR b_end
= obj_section_endaddr (b
);
3167 return (a_start
< b_end
&& b_start
< a_end
);
3170 /* Function: overlay_unmapped_address (PC, SECTION)
3171 Returns the address corresponding to PC in the unmapped (load) range.
3172 May be the same as PC. */
3175 overlay_unmapped_address (CORE_ADDR pc
, struct obj_section
*section
)
3177 if (section_is_overlay (section
) && pc_in_mapped_range (pc
, section
))
3179 bfd
*abfd
= section
->objfile
->obfd
;
3180 asection
*bfd_section
= section
->the_bfd_section
;
3182 return pc
+ bfd_section_lma (abfd
, bfd_section
)
3183 - bfd_section_vma (abfd
, bfd_section
);
3189 /* Function: overlay_mapped_address (PC, SECTION)
3190 Returns the address corresponding to PC in the mapped (runtime) range.
3191 May be the same as PC. */
3194 overlay_mapped_address (CORE_ADDR pc
, struct obj_section
*section
)
3196 if (section_is_overlay (section
) && pc_in_unmapped_range (pc
, section
))
3198 bfd
*abfd
= section
->objfile
->obfd
;
3199 asection
*bfd_section
= section
->the_bfd_section
;
3201 return pc
+ bfd_section_vma (abfd
, bfd_section
)
3202 - bfd_section_lma (abfd
, bfd_section
);
3208 /* Function: symbol_overlayed_address
3209 Return one of two addresses (relative to the VMA or to the LMA),
3210 depending on whether the section is mapped or not. */
3213 symbol_overlayed_address (CORE_ADDR address
, struct obj_section
*section
)
3215 if (overlay_debugging
)
3217 /* If the symbol has no section, just return its regular address. */
3220 /* If the symbol's section is not an overlay, just return its
3222 if (!section_is_overlay (section
))
3224 /* If the symbol's section is mapped, just return its address. */
3225 if (section_is_mapped (section
))
3228 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3229 * then return its LOADED address rather than its vma address!!
3231 return overlay_unmapped_address (address
, section
);
3236 /* Function: find_pc_overlay (PC)
3237 Return the best-match overlay section for PC:
3238 If PC matches a mapped overlay section's VMA, return that section.
3239 Else if PC matches an unmapped section's VMA, return that section.
3240 Else if PC matches an unmapped section's LMA, return that section. */
3242 struct obj_section
*
3243 find_pc_overlay (CORE_ADDR pc
)
3245 struct objfile
*objfile
;
3246 struct obj_section
*osect
, *best_match
= NULL
;
3248 if (overlay_debugging
)
3249 ALL_OBJSECTIONS (objfile
, osect
)
3250 if (section_is_overlay (osect
))
3252 if (pc_in_mapped_range (pc
, osect
))
3254 if (section_is_mapped (osect
))
3259 else if (pc_in_unmapped_range (pc
, osect
))
3265 /* Function: find_pc_mapped_section (PC)
3266 If PC falls into the VMA address range of an overlay section that is
3267 currently marked as MAPPED, return that section. Else return NULL. */
3269 struct obj_section
*
3270 find_pc_mapped_section (CORE_ADDR pc
)
3272 struct objfile
*objfile
;
3273 struct obj_section
*osect
;
3275 if (overlay_debugging
)
3276 ALL_OBJSECTIONS (objfile
, osect
)
3277 if (pc_in_mapped_range (pc
, osect
) && section_is_mapped (osect
))
3283 /* Function: list_overlays_command
3284 Print a list of mapped sections and their PC ranges. */
3287 list_overlays_command (char *args
, int from_tty
)
3290 struct objfile
*objfile
;
3291 struct obj_section
*osect
;
3293 if (overlay_debugging
)
3294 ALL_OBJSECTIONS (objfile
, osect
)
3295 if (section_is_mapped (osect
))
3297 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
3302 vma
= bfd_section_vma (objfile
->obfd
, osect
->the_bfd_section
);
3303 lma
= bfd_section_lma (objfile
->obfd
, osect
->the_bfd_section
);
3304 size
= bfd_get_section_size (osect
->the_bfd_section
);
3305 name
= bfd_section_name (objfile
->obfd
, osect
->the_bfd_section
);
3307 printf_filtered ("Section %s, loaded at ", name
);
3308 fputs_filtered (paddress (gdbarch
, lma
), gdb_stdout
);
3309 puts_filtered (" - ");
3310 fputs_filtered (paddress (gdbarch
, lma
+ size
), gdb_stdout
);
3311 printf_filtered (", mapped at ");
3312 fputs_filtered (paddress (gdbarch
, vma
), gdb_stdout
);
3313 puts_filtered (" - ");
3314 fputs_filtered (paddress (gdbarch
, vma
+ size
), gdb_stdout
);
3315 puts_filtered ("\n");
3320 printf_filtered (_("No sections are mapped.\n"));
3323 /* Function: map_overlay_command
3324 Mark the named section as mapped (ie. residing at its VMA address). */
3327 map_overlay_command (char *args
, int from_tty
)
3329 struct objfile
*objfile
, *objfile2
;
3330 struct obj_section
*sec
, *sec2
;
3332 if (!overlay_debugging
)
3333 error (_("Overlay debugging not enabled. Use "
3334 "either the 'overlay auto' or\n"
3335 "the 'overlay manual' command."));
3337 if (args
== 0 || *args
== 0)
3338 error (_("Argument required: name of an overlay section"));
3340 /* First, find a section matching the user supplied argument. */
3341 ALL_OBJSECTIONS (objfile
, sec
)
3342 if (!strcmp (bfd_section_name (objfile
->obfd
, sec
->the_bfd_section
), args
))
3344 /* Now, check to see if the section is an overlay. */
3345 if (!section_is_overlay (sec
))
3346 continue; /* not an overlay section */
3348 /* Mark the overlay as "mapped". */
3349 sec
->ovly_mapped
= 1;
3351 /* Next, make a pass and unmap any sections that are
3352 overlapped by this new section: */
3353 ALL_OBJSECTIONS (objfile2
, sec2
)
3354 if (sec2
->ovly_mapped
&& sec
!= sec2
&& sections_overlap (sec
, sec2
))
3357 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3358 bfd_section_name (objfile
->obfd
,
3359 sec2
->the_bfd_section
));
3360 sec2
->ovly_mapped
= 0; /* sec2 overlaps sec: unmap sec2. */
3364 error (_("No overlay section called %s"), args
);
3367 /* Function: unmap_overlay_command
3368 Mark the overlay section as unmapped
3369 (ie. resident in its LMA address range, rather than the VMA range). */
3372 unmap_overlay_command (char *args
, int from_tty
)
3374 struct objfile
*objfile
;
3375 struct obj_section
*sec
;
3377 if (!overlay_debugging
)
3378 error (_("Overlay debugging not enabled. "
3379 "Use either the 'overlay auto' or\n"
3380 "the 'overlay manual' command."));
3382 if (args
== 0 || *args
== 0)
3383 error (_("Argument required: name of an overlay section"));
3385 /* First, find a section matching the user supplied argument. */
3386 ALL_OBJSECTIONS (objfile
, sec
)
3387 if (!strcmp (bfd_section_name (objfile
->obfd
, sec
->the_bfd_section
), args
))
3389 if (!sec
->ovly_mapped
)
3390 error (_("Section %s is not mapped"), args
);
3391 sec
->ovly_mapped
= 0;
3394 error (_("No overlay section called %s"), args
);
3397 /* Function: overlay_auto_command
3398 A utility command to turn on overlay debugging.
3399 Possibly this should be done via a set/show command. */
3402 overlay_auto_command (char *args
, int from_tty
)
3404 overlay_debugging
= ovly_auto
;
3405 enable_overlay_breakpoints ();
3407 printf_unfiltered (_("Automatic overlay debugging enabled."));
3410 /* Function: overlay_manual_command
3411 A utility command to turn on overlay debugging.
3412 Possibly this should be done via a set/show command. */
3415 overlay_manual_command (char *args
, int from_tty
)
3417 overlay_debugging
= ovly_on
;
3418 disable_overlay_breakpoints ();
3420 printf_unfiltered (_("Overlay debugging enabled."));
3423 /* Function: overlay_off_command
3424 A utility command to turn on overlay debugging.
3425 Possibly this should be done via a set/show command. */
3428 overlay_off_command (char *args
, int from_tty
)
3430 overlay_debugging
= ovly_off
;
3431 disable_overlay_breakpoints ();
3433 printf_unfiltered (_("Overlay debugging disabled."));
3437 overlay_load_command (char *args
, int from_tty
)
3439 struct gdbarch
*gdbarch
= get_current_arch ();
3441 if (gdbarch_overlay_update_p (gdbarch
))
3442 gdbarch_overlay_update (gdbarch
, NULL
);
3444 error (_("This target does not know how to read its overlay state."));
3447 /* Function: overlay_command
3448 A place-holder for a mis-typed command. */
3450 /* Command list chain containing all defined "overlay" subcommands. */
3451 static struct cmd_list_element
*overlaylist
;
3454 overlay_command (char *args
, int from_tty
)
3457 ("\"overlay\" must be followed by the name of an overlay command.\n");
3458 help_list (overlaylist
, "overlay ", -1, gdb_stdout
);
3461 /* Target Overlays for the "Simplest" overlay manager:
3463 This is GDB's default target overlay layer. It works with the
3464 minimal overlay manager supplied as an example by Cygnus. The
3465 entry point is via a function pointer "gdbarch_overlay_update",
3466 so targets that use a different runtime overlay manager can
3467 substitute their own overlay_update function and take over the
3470 The overlay_update function pokes around in the target's data structures
3471 to see what overlays are mapped, and updates GDB's overlay mapping with
3474 In this simple implementation, the target data structures are as follows:
3475 unsigned _novlys; /# number of overlay sections #/
3476 unsigned _ovly_table[_novlys][4] = {
3477 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3478 {..., ..., ..., ...},
3480 unsigned _novly_regions; /# number of overlay regions #/
3481 unsigned _ovly_region_table[_novly_regions][3] = {
3482 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3485 These functions will attempt to update GDB's mappedness state in the
3486 symbol section table, based on the target's mappedness state.
3488 To do this, we keep a cached copy of the target's _ovly_table, and
3489 attempt to detect when the cached copy is invalidated. The main
3490 entry point is "simple_overlay_update(SECT), which looks up SECT in
3491 the cached table and re-reads only the entry for that section from
3492 the target (whenever possible). */
3494 /* Cached, dynamically allocated copies of the target data structures: */
3495 static unsigned (*cache_ovly_table
)[4] = 0;
3496 static unsigned cache_novlys
= 0;
3497 static CORE_ADDR cache_ovly_table_base
= 0;
3500 VMA
, SIZE
, LMA
, MAPPED
3503 /* Throw away the cached copy of _ovly_table. */
3506 simple_free_overlay_table (void)
3508 if (cache_ovly_table
)
3509 xfree (cache_ovly_table
);
3511 cache_ovly_table
= NULL
;
3512 cache_ovly_table_base
= 0;
3515 /* Read an array of ints of size SIZE from the target into a local buffer.
3516 Convert to host order. int LEN is number of ints. */
3519 read_target_long_array (CORE_ADDR memaddr
, unsigned int *myaddr
,
3520 int len
, int size
, enum bfd_endian byte_order
)
3522 /* FIXME (alloca): Not safe if array is very large. */
3523 gdb_byte
*buf
= alloca (len
* size
);
3526 read_memory (memaddr
, buf
, len
* size
);
3527 for (i
= 0; i
< len
; i
++)
3528 myaddr
[i
] = extract_unsigned_integer (size
* i
+ buf
, size
, byte_order
);
3531 /* Find and grab a copy of the target _ovly_table
3532 (and _novlys, which is needed for the table's size). */
3535 simple_read_overlay_table (void)
3537 struct minimal_symbol
*novlys_msym
;
3538 struct bound_minimal_symbol ovly_table_msym
;
3539 struct gdbarch
*gdbarch
;
3541 enum bfd_endian byte_order
;
3543 simple_free_overlay_table ();
3544 novlys_msym
= lookup_minimal_symbol ("_novlys", NULL
, NULL
);
3547 error (_("Error reading inferior's overlay table: "
3548 "couldn't find `_novlys' variable\n"
3549 "in inferior. Use `overlay manual' mode."));
3553 ovly_table_msym
= lookup_bound_minimal_symbol ("_ovly_table");
3554 if (! ovly_table_msym
.minsym
)
3556 error (_("Error reading inferior's overlay table: couldn't find "
3557 "`_ovly_table' array\n"
3558 "in inferior. Use `overlay manual' mode."));
3562 gdbarch
= get_objfile_arch (ovly_table_msym
.objfile
);
3563 word_size
= gdbarch_long_bit (gdbarch
) / TARGET_CHAR_BIT
;
3564 byte_order
= gdbarch_byte_order (gdbarch
);
3566 cache_novlys
= read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym
),
3569 = (void *) xmalloc (cache_novlys
* sizeof (*cache_ovly_table
));
3570 cache_ovly_table_base
= SYMBOL_VALUE_ADDRESS (ovly_table_msym
.minsym
);
3571 read_target_long_array (cache_ovly_table_base
,
3572 (unsigned int *) cache_ovly_table
,
3573 cache_novlys
* 4, word_size
, byte_order
);
3575 return 1; /* SUCCESS */
3578 /* Function: simple_overlay_update_1
3579 A helper function for simple_overlay_update. Assuming a cached copy
3580 of _ovly_table exists, look through it to find an entry whose vma,
3581 lma and size match those of OSECT. Re-read the entry and make sure
3582 it still matches OSECT (else the table may no longer be valid).
3583 Set OSECT's mapped state to match the entry. Return: 1 for
3584 success, 0 for failure. */
3587 simple_overlay_update_1 (struct obj_section
*osect
)
3590 bfd
*obfd
= osect
->objfile
->obfd
;
3591 asection
*bsect
= osect
->the_bfd_section
;
3592 struct gdbarch
*gdbarch
= get_objfile_arch (osect
->objfile
);
3593 int word_size
= gdbarch_long_bit (gdbarch
) / TARGET_CHAR_BIT
;
3594 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
3596 size
= bfd_get_section_size (osect
->the_bfd_section
);
3597 for (i
= 0; i
< cache_novlys
; i
++)
3598 if (cache_ovly_table
[i
][VMA
] == bfd_section_vma (obfd
, bsect
)
3599 && cache_ovly_table
[i
][LMA
] == bfd_section_lma (obfd
, bsect
)
3600 /* && cache_ovly_table[i][SIZE] == size */ )
3602 read_target_long_array (cache_ovly_table_base
+ i
* word_size
,
3603 (unsigned int *) cache_ovly_table
[i
],
3604 4, word_size
, byte_order
);
3605 if (cache_ovly_table
[i
][VMA
] == bfd_section_vma (obfd
, bsect
)
3606 && cache_ovly_table
[i
][LMA
] == bfd_section_lma (obfd
, bsect
)
3607 /* && cache_ovly_table[i][SIZE] == size */ )
3609 osect
->ovly_mapped
= cache_ovly_table
[i
][MAPPED
];
3612 else /* Warning! Warning! Target's ovly table has changed! */
3618 /* Function: simple_overlay_update
3619 If OSECT is NULL, then update all sections' mapped state
3620 (after re-reading the entire target _ovly_table).
3621 If OSECT is non-NULL, then try to find a matching entry in the
3622 cached ovly_table and update only OSECT's mapped state.
3623 If a cached entry can't be found or the cache isn't valid, then
3624 re-read the entire cache, and go ahead and update all sections. */
3627 simple_overlay_update (struct obj_section
*osect
)
3629 struct objfile
*objfile
;
3631 /* Were we given an osect to look up? NULL means do all of them. */
3633 /* Have we got a cached copy of the target's overlay table? */
3634 if (cache_ovly_table
!= NULL
)
3636 /* Does its cached location match what's currently in the
3638 struct minimal_symbol
*minsym
3639 = lookup_minimal_symbol ("_ovly_table", NULL
, NULL
);
3642 error (_("Error reading inferior's overlay table: couldn't "
3643 "find `_ovly_table' array\n"
3644 "in inferior. Use `overlay manual' mode."));
3646 if (cache_ovly_table_base
== SYMBOL_VALUE_ADDRESS (minsym
))
3647 /* Then go ahead and try to look up this single section in
3649 if (simple_overlay_update_1 (osect
))
3650 /* Found it! We're done. */
3654 /* Cached table no good: need to read the entire table anew.
3655 Or else we want all the sections, in which case it's actually
3656 more efficient to read the whole table in one block anyway. */
3658 if (! simple_read_overlay_table ())
3661 /* Now may as well update all sections, even if only one was requested. */
3662 ALL_OBJSECTIONS (objfile
, osect
)
3663 if (section_is_overlay (osect
))
3666 bfd
*obfd
= osect
->objfile
->obfd
;
3667 asection
*bsect
= osect
->the_bfd_section
;
3669 size
= bfd_get_section_size (bsect
);
3670 for (i
= 0; i
< cache_novlys
; i
++)
3671 if (cache_ovly_table
[i
][VMA
] == bfd_section_vma (obfd
, bsect
)
3672 && cache_ovly_table
[i
][LMA
] == bfd_section_lma (obfd
, bsect
)
3673 /* && cache_ovly_table[i][SIZE] == size */ )
3674 { /* obj_section matches i'th entry in ovly_table. */
3675 osect
->ovly_mapped
= cache_ovly_table
[i
][MAPPED
];
3676 break; /* finished with inner for loop: break out. */
3681 /* Set the output sections and output offsets for section SECTP in
3682 ABFD. The relocation code in BFD will read these offsets, so we
3683 need to be sure they're initialized. We map each section to itself,
3684 with no offset; this means that SECTP->vma will be honored. */
3687 symfile_dummy_outputs (bfd
*abfd
, asection
*sectp
, void *dummy
)
3689 sectp
->output_section
= sectp
;
3690 sectp
->output_offset
= 0;
3693 /* Default implementation for sym_relocate. */
3696 default_symfile_relocate (struct objfile
*objfile
, asection
*sectp
,
3699 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3701 bfd
*abfd
= sectp
->owner
;
3703 /* We're only interested in sections with relocation
3705 if ((sectp
->flags
& SEC_RELOC
) == 0)
3708 /* We will handle section offsets properly elsewhere, so relocate as if
3709 all sections begin at 0. */
3710 bfd_map_over_sections (abfd
, symfile_dummy_outputs
, NULL
);
3712 return bfd_simple_get_relocated_section_contents (abfd
, sectp
, buf
, NULL
);
3715 /* Relocate the contents of a debug section SECTP in ABFD. The
3716 contents are stored in BUF if it is non-NULL, or returned in a
3717 malloc'd buffer otherwise.
3719 For some platforms and debug info formats, shared libraries contain
3720 relocations against the debug sections (particularly for DWARF-2;
3721 one affected platform is PowerPC GNU/Linux, although it depends on
3722 the version of the linker in use). Also, ELF object files naturally
3723 have unresolved relocations for their debug sections. We need to apply
3724 the relocations in order to get the locations of symbols correct.
3725 Another example that may require relocation processing, is the
3726 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3730 symfile_relocate_debug_section (struct objfile
*objfile
,
3731 asection
*sectp
, bfd_byte
*buf
)
3733 gdb_assert (objfile
->sf
->sym_relocate
);
3735 return (*objfile
->sf
->sym_relocate
) (objfile
, sectp
, buf
);
3738 struct symfile_segment_data
*
3739 get_symfile_segment_data (bfd
*abfd
)
3741 const struct sym_fns
*sf
= find_sym_fns (abfd
);
3746 return sf
->sym_segments (abfd
);
3750 free_symfile_segment_data (struct symfile_segment_data
*data
)
3752 xfree (data
->segment_bases
);
3753 xfree (data
->segment_sizes
);
3754 xfree (data
->segment_info
);
3759 - DATA, containing segment addresses from the object file ABFD, and
3760 the mapping from ABFD's sections onto the segments that own them,
3762 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3763 segment addresses reported by the target,
3764 store the appropriate offsets for each section in OFFSETS.
3766 If there are fewer entries in SEGMENT_BASES than there are segments
3767 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3769 If there are more entries, then ignore the extra. The target may
3770 not be able to distinguish between an empty data segment and a
3771 missing data segment; a missing text segment is less plausible. */
3774 symfile_map_offsets_to_segments (bfd
*abfd
,
3775 const struct symfile_segment_data
*data
,
3776 struct section_offsets
*offsets
,
3777 int num_segment_bases
,
3778 const CORE_ADDR
*segment_bases
)
3783 /* It doesn't make sense to call this function unless you have some
3784 segment base addresses. */
3785 gdb_assert (num_segment_bases
> 0);
3787 /* If we do not have segment mappings for the object file, we
3788 can not relocate it by segments. */
3789 gdb_assert (data
!= NULL
);
3790 gdb_assert (data
->num_segments
> 0);
3792 for (i
= 0, sect
= abfd
->sections
; sect
!= NULL
; i
++, sect
= sect
->next
)
3794 int which
= data
->segment_info
[i
];
3796 gdb_assert (0 <= which
&& which
<= data
->num_segments
);
3798 /* Don't bother computing offsets for sections that aren't
3799 loaded as part of any segment. */
3803 /* Use the last SEGMENT_BASES entry as the address of any extra
3804 segments mentioned in DATA->segment_info. */
3805 if (which
> num_segment_bases
)
3806 which
= num_segment_bases
;
3808 offsets
->offsets
[i
] = (segment_bases
[which
- 1]
3809 - data
->segment_bases
[which
- 1]);
3816 symfile_find_segment_sections (struct objfile
*objfile
)
3818 bfd
*abfd
= objfile
->obfd
;
3821 struct symfile_segment_data
*data
;
3823 data
= get_symfile_segment_data (objfile
->obfd
);
3827 if (data
->num_segments
!= 1 && data
->num_segments
!= 2)
3829 free_symfile_segment_data (data
);
3833 for (i
= 0, sect
= abfd
->sections
; sect
!= NULL
; i
++, sect
= sect
->next
)
3835 int which
= data
->segment_info
[i
];
3839 if (objfile
->sect_index_text
== -1)
3840 objfile
->sect_index_text
= sect
->index
;
3842 if (objfile
->sect_index_rodata
== -1)
3843 objfile
->sect_index_rodata
= sect
->index
;
3845 else if (which
== 2)
3847 if (objfile
->sect_index_data
== -1)
3848 objfile
->sect_index_data
= sect
->index
;
3850 if (objfile
->sect_index_bss
== -1)
3851 objfile
->sect_index_bss
= sect
->index
;
3855 free_symfile_segment_data (data
);
3858 /* Listen for free_objfile events. */
3861 symfile_free_objfile (struct objfile
*objfile
)
3863 /* Remove the target sections of user-added objfiles. */
3864 if (objfile
!= 0 && objfile
->flags
& OBJF_USERLOADED
)
3865 remove_target_sections ((void *) objfile
);
3868 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3869 Expand all symtabs that match the specified criteria.
3870 See quick_symbol_functions.expand_symtabs_matching for details. */
3873 expand_symtabs_matching (expand_symtabs_file_matcher_ftype
*file_matcher
,
3874 expand_symtabs_symbol_matcher_ftype
*symbol_matcher
,
3875 enum search_domain kind
,
3878 struct objfile
*objfile
;
3880 ALL_OBJFILES (objfile
)
3883 objfile
->sf
->qf
->expand_symtabs_matching (objfile
, file_matcher
,
3884 symbol_matcher
, kind
,
3889 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3890 Map function FUN over every file.
3891 See quick_symbol_functions.map_symbol_filenames for details. */
3894 map_symbol_filenames (symbol_filename_ftype
*fun
, void *data
,
3897 struct objfile
*objfile
;
3899 ALL_OBJFILES (objfile
)
3902 objfile
->sf
->qf
->map_symbol_filenames (objfile
, fun
, data
,
3908 _initialize_symfile (void)
3910 struct cmd_list_element
*c
;
3912 observer_attach_free_objfile (symfile_free_objfile
);
3914 c
= add_cmd ("symbol-file", class_files
, symbol_file_command
, _("\
3915 Load symbol table from executable file FILE.\n\
3916 The `file' command can also load symbol tables, as well as setting the file\n\
3917 to execute."), &cmdlist
);
3918 set_cmd_completer (c
, filename_completer
);
3920 c
= add_cmd ("add-symbol-file", class_files
, add_symbol_file_command
, _("\
3921 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3922 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3923 ...]\nADDR is the starting address of the file's text.\n\
3924 The optional arguments are section-name section-address pairs and\n\
3925 should be specified if the data and bss segments are not contiguous\n\
3926 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3928 set_cmd_completer (c
, filename_completer
);
3930 c
= add_cmd ("remove-symbol-file", class_files
,
3931 remove_symbol_file_command
, _("\
3932 Remove a symbol file added via the add-symbol-file command.\n\
3933 Usage: remove-symbol-file FILENAME\n\
3934 remove-symbol-file -a ADDRESS\n\
3935 The file to remove can be identified by its filename or by an address\n\
3936 that lies within the boundaries of this symbol file in memory."),
3939 c
= add_cmd ("load", class_files
, load_command
, _("\
3940 Dynamically load FILE into the running program, and record its symbols\n\
3941 for access from GDB.\n\
3942 A load OFFSET may also be given."), &cmdlist
);
3943 set_cmd_completer (c
, filename_completer
);
3945 add_prefix_cmd ("overlay", class_support
, overlay_command
,
3946 _("Commands for debugging overlays."), &overlaylist
,
3947 "overlay ", 0, &cmdlist
);
3949 add_com_alias ("ovly", "overlay", class_alias
, 1);
3950 add_com_alias ("ov", "overlay", class_alias
, 1);
3952 add_cmd ("map-overlay", class_support
, map_overlay_command
,
3953 _("Assert that an overlay section is mapped."), &overlaylist
);
3955 add_cmd ("unmap-overlay", class_support
, unmap_overlay_command
,
3956 _("Assert that an overlay section is unmapped."), &overlaylist
);
3958 add_cmd ("list-overlays", class_support
, list_overlays_command
,
3959 _("List mappings of overlay sections."), &overlaylist
);
3961 add_cmd ("manual", class_support
, overlay_manual_command
,
3962 _("Enable overlay debugging."), &overlaylist
);
3963 add_cmd ("off", class_support
, overlay_off_command
,
3964 _("Disable overlay debugging."), &overlaylist
);
3965 add_cmd ("auto", class_support
, overlay_auto_command
,
3966 _("Enable automatic overlay debugging."), &overlaylist
);
3967 add_cmd ("load-target", class_support
, overlay_load_command
,
3968 _("Read the overlay mapping state from the target."), &overlaylist
);
3970 /* Filename extension to source language lookup table: */
3971 init_filename_language_table ();
3972 add_setshow_string_noescape_cmd ("extension-language", class_files
,
3974 Set mapping between filename extension and source language."), _("\
3975 Show mapping between filename extension and source language."), _("\
3976 Usage: set extension-language .foo bar"),
3977 set_ext_lang_command
,
3979 &setlist
, &showlist
);
3981 add_info ("extensions", info_ext_lang_command
,
3982 _("All filename extensions associated with a source language."));
3984 add_setshow_optional_filename_cmd ("debug-file-directory", class_support
,
3985 &debug_file_directory
, _("\
3986 Set the directories where separate debug symbols are searched for."), _("\
3987 Show the directories where separate debug symbols are searched for."), _("\
3988 Separate debug symbols are first searched for in the same\n\
3989 directory as the binary, then in the `" DEBUG_SUBDIRECTORY
"' subdirectory,\n\
3990 and lastly at the path of the directory of the binary with\n\
3991 each global debug-file-directory component prepended."),
3993 show_debug_file_directory
,
3994 &setlist
, &showlist
);