gdb/
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2012 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57 #include "stack.h"
58
59 #include <sys/types.h>
60 #include <fcntl.h>
61 #include "gdb_string.h"
62 #include "gdb_stat.h"
63 #include <ctype.h>
64 #include <time.h>
65 #include <sys/time.h>
66
67 #include "psymtab.h"
68
69 int (*deprecated_ui_load_progress_hook) (const char *section,
70 unsigned long num);
71 void (*deprecated_show_load_progress) (const char *section,
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
75 unsigned long total_size);
76 void (*deprecated_pre_add_symbol_hook) (const char *);
77 void (*deprecated_post_add_symbol_hook) (void);
78
79 static void clear_symtab_users_cleanup (void *ignore);
80
81 /* Global variables owned by this file. */
82 int readnow_symbol_files; /* Read full symbols immediately. */
83
84 /* External variables and functions referenced. */
85
86 extern void report_transfer_performance (unsigned long, time_t, time_t);
87
88 /* Functions this file defines. */
89
90 static void load_command (char *, int);
91
92 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
93
94 static void add_symbol_file_command (char *, int);
95
96 bfd *symfile_bfd_open (char *);
97
98 int get_section_index (struct objfile *, char *);
99
100 static const struct sym_fns *find_sym_fns (bfd *);
101
102 static void decrement_reading_symtab (void *);
103
104 static void overlay_invalidate_all (void);
105
106 void list_overlays_command (char *, int);
107
108 void map_overlay_command (char *, int);
109
110 void unmap_overlay_command (char *, int);
111
112 static void overlay_auto_command (char *, int);
113
114 static void overlay_manual_command (char *, int);
115
116 static void overlay_off_command (char *, int);
117
118 static void overlay_load_command (char *, int);
119
120 static void overlay_command (char *, int);
121
122 static void simple_free_overlay_table (void);
123
124 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
125 enum bfd_endian);
126
127 static int simple_read_overlay_table (void);
128
129 static int simple_overlay_update_1 (struct obj_section *);
130
131 static void add_filename_language (char *ext, enum language lang);
132
133 static void info_ext_lang_command (char *args, int from_tty);
134
135 static void init_filename_language_table (void);
136
137 static void symfile_find_segment_sections (struct objfile *objfile);
138
139 void _initialize_symfile (void);
140
141 /* List of all available sym_fns. On gdb startup, each object file reader
142 calls add_symtab_fns() to register information on each format it is
143 prepared to read. */
144
145 typedef const struct sym_fns *sym_fns_ptr;
146 DEF_VEC_P (sym_fns_ptr);
147
148 static VEC (sym_fns_ptr) *symtab_fns = NULL;
149
150 /* Flag for whether user will be reloading symbols multiple times.
151 Defaults to ON for VxWorks, otherwise OFF. */
152
153 #ifdef SYMBOL_RELOADING_DEFAULT
154 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
155 #else
156 int symbol_reloading = 0;
157 #endif
158 static void
159 show_symbol_reloading (struct ui_file *file, int from_tty,
160 struct cmd_list_element *c, const char *value)
161 {
162 fprintf_filtered (file, _("Dynamic symbol table reloading "
163 "multiple times in one run is %s.\n"),
164 value);
165 }
166
167 /* If non-zero, shared library symbols will be added automatically
168 when the inferior is created, new libraries are loaded, or when
169 attaching to the inferior. This is almost always what users will
170 want to have happen; but for very large programs, the startup time
171 will be excessive, and so if this is a problem, the user can clear
172 this flag and then add the shared library symbols as needed. Note
173 that there is a potential for confusion, since if the shared
174 library symbols are not loaded, commands like "info fun" will *not*
175 report all the functions that are actually present. */
176
177 int auto_solib_add = 1;
178 \f
179
180 /* Make a null terminated copy of the string at PTR with SIZE characters in
181 the obstack pointed to by OBSTACKP . Returns the address of the copy.
182 Note that the string at PTR does not have to be null terminated, I.e. it
183 may be part of a larger string and we are only saving a substring. */
184
185 char *
186 obsavestring (const char *ptr, int size, struct obstack *obstackp)
187 {
188 char *p = (char *) obstack_alloc (obstackp, size + 1);
189 /* Open-coded memcpy--saves function call time. These strings are usually
190 short. FIXME: Is this really still true with a compiler that can
191 inline memcpy? */
192 {
193 const char *p1 = ptr;
194 char *p2 = p;
195 const char *end = ptr + size;
196
197 while (p1 != end)
198 *p2++ = *p1++;
199 }
200 p[size] = 0;
201 return p;
202 }
203
204 /* Concatenate NULL terminated variable argument list of `const char *'
205 strings; return the new string. Space is found in the OBSTACKP.
206 Argument list must be terminated by a sentinel expression `(char *)
207 NULL'. */
208
209 char *
210 obconcat (struct obstack *obstackp, ...)
211 {
212 va_list ap;
213
214 va_start (ap, obstackp);
215 for (;;)
216 {
217 const char *s = va_arg (ap, const char *);
218
219 if (s == NULL)
220 break;
221
222 obstack_grow_str (obstackp, s);
223 }
224 va_end (ap);
225 obstack_1grow (obstackp, 0);
226
227 return obstack_finish (obstackp);
228 }
229
230 /* True if we are reading a symbol table. */
231
232 int currently_reading_symtab = 0;
233
234 static void
235 decrement_reading_symtab (void *dummy)
236 {
237 currently_reading_symtab--;
238 }
239
240 /* Increment currently_reading_symtab and return a cleanup that can be
241 used to decrement it. */
242 struct cleanup *
243 increment_reading_symtab (void)
244 {
245 ++currently_reading_symtab;
246 return make_cleanup (decrement_reading_symtab, NULL);
247 }
248
249 /* Remember the lowest-addressed loadable section we've seen.
250 This function is called via bfd_map_over_sections.
251
252 In case of equal vmas, the section with the largest size becomes the
253 lowest-addressed loadable section.
254
255 If the vmas and sizes are equal, the last section is considered the
256 lowest-addressed loadable section. */
257
258 void
259 find_lowest_section (bfd *abfd, asection *sect, void *obj)
260 {
261 asection **lowest = (asection **) obj;
262
263 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
264 return;
265 if (!*lowest)
266 *lowest = sect; /* First loadable section */
267 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
268 *lowest = sect; /* A lower loadable section */
269 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
270 && (bfd_section_size (abfd, (*lowest))
271 <= bfd_section_size (abfd, sect)))
272 *lowest = sect;
273 }
274
275 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
276
277 struct section_addr_info *
278 alloc_section_addr_info (size_t num_sections)
279 {
280 struct section_addr_info *sap;
281 size_t size;
282
283 size = (sizeof (struct section_addr_info)
284 + sizeof (struct other_sections) * (num_sections - 1));
285 sap = (struct section_addr_info *) xmalloc (size);
286 memset (sap, 0, size);
287 sap->num_sections = num_sections;
288
289 return sap;
290 }
291
292 /* Build (allocate and populate) a section_addr_info struct from
293 an existing section table. */
294
295 extern struct section_addr_info *
296 build_section_addr_info_from_section_table (const struct target_section *start,
297 const struct target_section *end)
298 {
299 struct section_addr_info *sap;
300 const struct target_section *stp;
301 int oidx;
302
303 sap = alloc_section_addr_info (end - start);
304
305 for (stp = start, oidx = 0; stp != end; stp++)
306 {
307 if (bfd_get_section_flags (stp->bfd,
308 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
309 && oidx < end - start)
310 {
311 sap->other[oidx].addr = stp->addr;
312 sap->other[oidx].name
313 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
314 sap->other[oidx].sectindex = stp->the_bfd_section->index;
315 oidx++;
316 }
317 }
318
319 return sap;
320 }
321
322 /* Create a section_addr_info from section offsets in ABFD. */
323
324 static struct section_addr_info *
325 build_section_addr_info_from_bfd (bfd *abfd)
326 {
327 struct section_addr_info *sap;
328 int i;
329 struct bfd_section *sec;
330
331 sap = alloc_section_addr_info (bfd_count_sections (abfd));
332 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
333 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
334 {
335 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
336 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
337 sap->other[i].sectindex = sec->index;
338 i++;
339 }
340 return sap;
341 }
342
343 /* Create a section_addr_info from section offsets in OBJFILE. */
344
345 struct section_addr_info *
346 build_section_addr_info_from_objfile (const struct objfile *objfile)
347 {
348 struct section_addr_info *sap;
349 int i;
350
351 /* Before reread_symbols gets rewritten it is not safe to call:
352 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
353 */
354 sap = build_section_addr_info_from_bfd (objfile->obfd);
355 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
356 {
357 int sectindex = sap->other[i].sectindex;
358
359 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
360 }
361 return sap;
362 }
363
364 /* Free all memory allocated by build_section_addr_info_from_section_table. */
365
366 extern void
367 free_section_addr_info (struct section_addr_info *sap)
368 {
369 int idx;
370
371 for (idx = 0; idx < sap->num_sections; idx++)
372 if (sap->other[idx].name)
373 xfree (sap->other[idx].name);
374 xfree (sap);
375 }
376
377
378 /* Initialize OBJFILE's sect_index_* members. */
379 static void
380 init_objfile_sect_indices (struct objfile *objfile)
381 {
382 asection *sect;
383 int i;
384
385 sect = bfd_get_section_by_name (objfile->obfd, ".text");
386 if (sect)
387 objfile->sect_index_text = sect->index;
388
389 sect = bfd_get_section_by_name (objfile->obfd, ".data");
390 if (sect)
391 objfile->sect_index_data = sect->index;
392
393 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
394 if (sect)
395 objfile->sect_index_bss = sect->index;
396
397 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
398 if (sect)
399 objfile->sect_index_rodata = sect->index;
400
401 /* This is where things get really weird... We MUST have valid
402 indices for the various sect_index_* members or gdb will abort.
403 So if for example, there is no ".text" section, we have to
404 accomodate that. First, check for a file with the standard
405 one or two segments. */
406
407 symfile_find_segment_sections (objfile);
408
409 /* Except when explicitly adding symbol files at some address,
410 section_offsets contains nothing but zeros, so it doesn't matter
411 which slot in section_offsets the individual sect_index_* members
412 index into. So if they are all zero, it is safe to just point
413 all the currently uninitialized indices to the first slot. But
414 beware: if this is the main executable, it may be relocated
415 later, e.g. by the remote qOffsets packet, and then this will
416 be wrong! That's why we try segments first. */
417
418 for (i = 0; i < objfile->num_sections; i++)
419 {
420 if (ANOFFSET (objfile->section_offsets, i) != 0)
421 {
422 break;
423 }
424 }
425 if (i == objfile->num_sections)
426 {
427 if (objfile->sect_index_text == -1)
428 objfile->sect_index_text = 0;
429 if (objfile->sect_index_data == -1)
430 objfile->sect_index_data = 0;
431 if (objfile->sect_index_bss == -1)
432 objfile->sect_index_bss = 0;
433 if (objfile->sect_index_rodata == -1)
434 objfile->sect_index_rodata = 0;
435 }
436 }
437
438 /* The arguments to place_section. */
439
440 struct place_section_arg
441 {
442 struct section_offsets *offsets;
443 CORE_ADDR lowest;
444 };
445
446 /* Find a unique offset to use for loadable section SECT if
447 the user did not provide an offset. */
448
449 static void
450 place_section (bfd *abfd, asection *sect, void *obj)
451 {
452 struct place_section_arg *arg = obj;
453 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
454 int done;
455 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
456
457 /* We are only interested in allocated sections. */
458 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
459 return;
460
461 /* If the user specified an offset, honor it. */
462 if (offsets[sect->index] != 0)
463 return;
464
465 /* Otherwise, let's try to find a place for the section. */
466 start_addr = (arg->lowest + align - 1) & -align;
467
468 do {
469 asection *cur_sec;
470
471 done = 1;
472
473 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
474 {
475 int indx = cur_sec->index;
476
477 /* We don't need to compare against ourself. */
478 if (cur_sec == sect)
479 continue;
480
481 /* We can only conflict with allocated sections. */
482 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
483 continue;
484
485 /* If the section offset is 0, either the section has not been placed
486 yet, or it was the lowest section placed (in which case LOWEST
487 will be past its end). */
488 if (offsets[indx] == 0)
489 continue;
490
491 /* If this section would overlap us, then we must move up. */
492 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
493 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
494 {
495 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
496 start_addr = (start_addr + align - 1) & -align;
497 done = 0;
498 break;
499 }
500
501 /* Otherwise, we appear to be OK. So far. */
502 }
503 }
504 while (!done);
505
506 offsets[sect->index] = start_addr;
507 arg->lowest = start_addr + bfd_get_section_size (sect);
508 }
509
510 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
511 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
512 entries. */
513
514 void
515 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
516 int num_sections,
517 struct section_addr_info *addrs)
518 {
519 int i;
520
521 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
522
523 /* Now calculate offsets for section that were specified by the caller. */
524 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
525 {
526 struct other_sections *osp;
527
528 osp = &addrs->other[i];
529 if (osp->sectindex == -1)
530 continue;
531
532 /* Record all sections in offsets. */
533 /* The section_offsets in the objfile are here filled in using
534 the BFD index. */
535 section_offsets->offsets[osp->sectindex] = osp->addr;
536 }
537 }
538
539 /* Transform section name S for a name comparison. prelink can split section
540 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
541 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
542 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
543 (`.sbss') section has invalid (increased) virtual address. */
544
545 static const char *
546 addr_section_name (const char *s)
547 {
548 if (strcmp (s, ".dynbss") == 0)
549 return ".bss";
550 if (strcmp (s, ".sdynbss") == 0)
551 return ".sbss";
552
553 return s;
554 }
555
556 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
557 their (name, sectindex) pair. sectindex makes the sort by name stable. */
558
559 static int
560 addrs_section_compar (const void *ap, const void *bp)
561 {
562 const struct other_sections *a = *((struct other_sections **) ap);
563 const struct other_sections *b = *((struct other_sections **) bp);
564 int retval, a_idx, b_idx;
565
566 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
567 if (retval)
568 return retval;
569
570 return a->sectindex - b->sectindex;
571 }
572
573 /* Provide sorted array of pointers to sections of ADDRS. The array is
574 terminated by NULL. Caller is responsible to call xfree for it. */
575
576 static struct other_sections **
577 addrs_section_sort (struct section_addr_info *addrs)
578 {
579 struct other_sections **array;
580 int i;
581
582 /* `+ 1' for the NULL terminator. */
583 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
584 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
585 array[i] = &addrs->other[i];
586 array[i] = NULL;
587
588 qsort (array, i, sizeof (*array), addrs_section_compar);
589
590 return array;
591 }
592
593 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
594 also SECTINDEXes specific to ABFD there. This function can be used to
595 rebase ADDRS to start referencing different BFD than before. */
596
597 void
598 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
599 {
600 asection *lower_sect;
601 CORE_ADDR lower_offset;
602 int i;
603 struct cleanup *my_cleanup;
604 struct section_addr_info *abfd_addrs;
605 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
606 struct other_sections **addrs_to_abfd_addrs;
607
608 /* Find lowest loadable section to be used as starting point for
609 continguous sections. */
610 lower_sect = NULL;
611 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
612 if (lower_sect == NULL)
613 {
614 warning (_("no loadable sections found in added symbol-file %s"),
615 bfd_get_filename (abfd));
616 lower_offset = 0;
617 }
618 else
619 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
620
621 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
622 in ABFD. Section names are not unique - there can be multiple sections of
623 the same name. Also the sections of the same name do not have to be
624 adjacent to each other. Some sections may be present only in one of the
625 files. Even sections present in both files do not have to be in the same
626 order.
627
628 Use stable sort by name for the sections in both files. Then linearly
629 scan both lists matching as most of the entries as possible. */
630
631 addrs_sorted = addrs_section_sort (addrs);
632 my_cleanup = make_cleanup (xfree, addrs_sorted);
633
634 abfd_addrs = build_section_addr_info_from_bfd (abfd);
635 make_cleanup_free_section_addr_info (abfd_addrs);
636 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
637 make_cleanup (xfree, abfd_addrs_sorted);
638
639 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
640 ABFD_ADDRS_SORTED. */
641
642 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
643 * addrs->num_sections);
644 make_cleanup (xfree, addrs_to_abfd_addrs);
645
646 while (*addrs_sorted)
647 {
648 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
649
650 while (*abfd_addrs_sorted
651 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
652 sect_name) < 0)
653 abfd_addrs_sorted++;
654
655 if (*abfd_addrs_sorted
656 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
657 sect_name) == 0)
658 {
659 int index_in_addrs;
660
661 /* Make the found item directly addressable from ADDRS. */
662 index_in_addrs = *addrs_sorted - addrs->other;
663 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
664 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
665
666 /* Never use the same ABFD entry twice. */
667 abfd_addrs_sorted++;
668 }
669
670 addrs_sorted++;
671 }
672
673 /* Calculate offsets for the loadable sections.
674 FIXME! Sections must be in order of increasing loadable section
675 so that contiguous sections can use the lower-offset!!!
676
677 Adjust offsets if the segments are not contiguous.
678 If the section is contiguous, its offset should be set to
679 the offset of the highest loadable section lower than it
680 (the loadable section directly below it in memory).
681 this_offset = lower_offset = lower_addr - lower_orig_addr */
682
683 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
684 {
685 struct other_sections *sect = addrs_to_abfd_addrs[i];
686
687 if (sect)
688 {
689 /* This is the index used by BFD. */
690 addrs->other[i].sectindex = sect->sectindex;
691
692 if (addrs->other[i].addr != 0)
693 {
694 addrs->other[i].addr -= sect->addr;
695 lower_offset = addrs->other[i].addr;
696 }
697 else
698 addrs->other[i].addr = lower_offset;
699 }
700 else
701 {
702 /* addr_section_name transformation is not used for SECT_NAME. */
703 const char *sect_name = addrs->other[i].name;
704
705 /* This section does not exist in ABFD, which is normally
706 unexpected and we want to issue a warning.
707
708 However, the ELF prelinker does create a few sections which are
709 marked in the main executable as loadable (they are loaded in
710 memory from the DYNAMIC segment) and yet are not present in
711 separate debug info files. This is fine, and should not cause
712 a warning. Shared libraries contain just the section
713 ".gnu.liblist" but it is not marked as loadable there. There is
714 no other way to identify them than by their name as the sections
715 created by prelink have no special flags.
716
717 For the sections `.bss' and `.sbss' see addr_section_name. */
718
719 if (!(strcmp (sect_name, ".gnu.liblist") == 0
720 || strcmp (sect_name, ".gnu.conflict") == 0
721 || (strcmp (sect_name, ".bss") == 0
722 && i > 0
723 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
724 && addrs_to_abfd_addrs[i - 1] != NULL)
725 || (strcmp (sect_name, ".sbss") == 0
726 && i > 0
727 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
728 && addrs_to_abfd_addrs[i - 1] != NULL)))
729 warning (_("section %s not found in %s"), sect_name,
730 bfd_get_filename (abfd));
731
732 addrs->other[i].addr = 0;
733 addrs->other[i].sectindex = -1;
734 }
735 }
736
737 do_cleanups (my_cleanup);
738 }
739
740 /* Parse the user's idea of an offset for dynamic linking, into our idea
741 of how to represent it for fast symbol reading. This is the default
742 version of the sym_fns.sym_offsets function for symbol readers that
743 don't need to do anything special. It allocates a section_offsets table
744 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
745
746 void
747 default_symfile_offsets (struct objfile *objfile,
748 struct section_addr_info *addrs)
749 {
750 objfile->num_sections = bfd_count_sections (objfile->obfd);
751 objfile->section_offsets = (struct section_offsets *)
752 obstack_alloc (&objfile->objfile_obstack,
753 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
754 relative_addr_info_to_section_offsets (objfile->section_offsets,
755 objfile->num_sections, addrs);
756
757 /* For relocatable files, all loadable sections will start at zero.
758 The zero is meaningless, so try to pick arbitrary addresses such
759 that no loadable sections overlap. This algorithm is quadratic,
760 but the number of sections in a single object file is generally
761 small. */
762 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
763 {
764 struct place_section_arg arg;
765 bfd *abfd = objfile->obfd;
766 asection *cur_sec;
767
768 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
769 /* We do not expect this to happen; just skip this step if the
770 relocatable file has a section with an assigned VMA. */
771 if (bfd_section_vma (abfd, cur_sec) != 0)
772 break;
773
774 if (cur_sec == NULL)
775 {
776 CORE_ADDR *offsets = objfile->section_offsets->offsets;
777
778 /* Pick non-overlapping offsets for sections the user did not
779 place explicitly. */
780 arg.offsets = objfile->section_offsets;
781 arg.lowest = 0;
782 bfd_map_over_sections (objfile->obfd, place_section, &arg);
783
784 /* Correctly filling in the section offsets is not quite
785 enough. Relocatable files have two properties that
786 (most) shared objects do not:
787
788 - Their debug information will contain relocations. Some
789 shared libraries do also, but many do not, so this can not
790 be assumed.
791
792 - If there are multiple code sections they will be loaded
793 at different relative addresses in memory than they are
794 in the objfile, since all sections in the file will start
795 at address zero.
796
797 Because GDB has very limited ability to map from an
798 address in debug info to the correct code section,
799 it relies on adding SECT_OFF_TEXT to things which might be
800 code. If we clear all the section offsets, and set the
801 section VMAs instead, then symfile_relocate_debug_section
802 will return meaningful debug information pointing at the
803 correct sections.
804
805 GDB has too many different data structures for section
806 addresses - a bfd, objfile, and so_list all have section
807 tables, as does exec_ops. Some of these could probably
808 be eliminated. */
809
810 for (cur_sec = abfd->sections; cur_sec != NULL;
811 cur_sec = cur_sec->next)
812 {
813 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
814 continue;
815
816 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
817 exec_set_section_address (bfd_get_filename (abfd),
818 cur_sec->index,
819 offsets[cur_sec->index]);
820 offsets[cur_sec->index] = 0;
821 }
822 }
823 }
824
825 /* Remember the bfd indexes for the .text, .data, .bss and
826 .rodata sections. */
827 init_objfile_sect_indices (objfile);
828 }
829
830
831 /* Divide the file into segments, which are individual relocatable units.
832 This is the default version of the sym_fns.sym_segments function for
833 symbol readers that do not have an explicit representation of segments.
834 It assumes that object files do not have segments, and fully linked
835 files have a single segment. */
836
837 struct symfile_segment_data *
838 default_symfile_segments (bfd *abfd)
839 {
840 int num_sections, i;
841 asection *sect;
842 struct symfile_segment_data *data;
843 CORE_ADDR low, high;
844
845 /* Relocatable files contain enough information to position each
846 loadable section independently; they should not be relocated
847 in segments. */
848 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
849 return NULL;
850
851 /* Make sure there is at least one loadable section in the file. */
852 for (sect = abfd->sections; sect != NULL; sect = sect->next)
853 {
854 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
855 continue;
856
857 break;
858 }
859 if (sect == NULL)
860 return NULL;
861
862 low = bfd_get_section_vma (abfd, sect);
863 high = low + bfd_get_section_size (sect);
864
865 data = XZALLOC (struct symfile_segment_data);
866 data->num_segments = 1;
867 data->segment_bases = XCALLOC (1, CORE_ADDR);
868 data->segment_sizes = XCALLOC (1, CORE_ADDR);
869
870 num_sections = bfd_count_sections (abfd);
871 data->segment_info = XCALLOC (num_sections, int);
872
873 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
874 {
875 CORE_ADDR vma;
876
877 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
878 continue;
879
880 vma = bfd_get_section_vma (abfd, sect);
881 if (vma < low)
882 low = vma;
883 if (vma + bfd_get_section_size (sect) > high)
884 high = vma + bfd_get_section_size (sect);
885
886 data->segment_info[i] = 1;
887 }
888
889 data->segment_bases[0] = low;
890 data->segment_sizes[0] = high - low;
891
892 return data;
893 }
894
895 /* Process a symbol file, as either the main file or as a dynamically
896 loaded file.
897
898 OBJFILE is where the symbols are to be read from.
899
900 ADDRS is the list of section load addresses. If the user has given
901 an 'add-symbol-file' command, then this is the list of offsets and
902 addresses he or she provided as arguments to the command; or, if
903 we're handling a shared library, these are the actual addresses the
904 sections are loaded at, according to the inferior's dynamic linker
905 (as gleaned by GDB's shared library code). We convert each address
906 into an offset from the section VMA's as it appears in the object
907 file, and then call the file's sym_offsets function to convert this
908 into a format-specific offset table --- a `struct section_offsets'.
909 If ADDRS is non-zero, OFFSETS must be zero.
910
911 OFFSETS is a table of section offsets already in the right
912 format-specific representation. NUM_OFFSETS is the number of
913 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
914 assume this is the proper table the call to sym_offsets described
915 above would produce. Instead of calling sym_offsets, we just dump
916 it right into objfile->section_offsets. (When we're re-reading
917 symbols from an objfile, we don't have the original load address
918 list any more; all we have is the section offset table.) If
919 OFFSETS is non-zero, ADDRS must be zero.
920
921 ADD_FLAGS encodes verbosity level, whether this is main symbol or
922 an extra symbol file such as dynamically loaded code, and wether
923 breakpoint reset should be deferred. */
924
925 void
926 syms_from_objfile (struct objfile *objfile,
927 struct section_addr_info *addrs,
928 struct section_offsets *offsets,
929 int num_offsets,
930 int add_flags)
931 {
932 struct section_addr_info *local_addr = NULL;
933 struct cleanup *old_chain;
934 const int mainline = add_flags & SYMFILE_MAINLINE;
935
936 gdb_assert (! (addrs && offsets));
937
938 init_entry_point_info (objfile);
939 objfile->sf = find_sym_fns (objfile->obfd);
940
941 if (objfile->sf == NULL)
942 return; /* No symbols. */
943
944 /* Make sure that partially constructed symbol tables will be cleaned up
945 if an error occurs during symbol reading. */
946 old_chain = make_cleanup_free_objfile (objfile);
947
948 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
949 list. We now establish the convention that an addr of zero means
950 no load address was specified. */
951 if (! addrs && ! offsets)
952 {
953 local_addr
954 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
955 make_cleanup (xfree, local_addr);
956 addrs = local_addr;
957 }
958
959 /* Now either addrs or offsets is non-zero. */
960
961 if (mainline)
962 {
963 /* We will modify the main symbol table, make sure that all its users
964 will be cleaned up if an error occurs during symbol reading. */
965 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
966
967 /* Since no error yet, throw away the old symbol table. */
968
969 if (symfile_objfile != NULL)
970 {
971 free_objfile (symfile_objfile);
972 gdb_assert (symfile_objfile == NULL);
973 }
974
975 /* Currently we keep symbols from the add-symbol-file command.
976 If the user wants to get rid of them, they should do "symbol-file"
977 without arguments first. Not sure this is the best behavior
978 (PR 2207). */
979
980 (*objfile->sf->sym_new_init) (objfile);
981 }
982
983 /* Convert addr into an offset rather than an absolute address.
984 We find the lowest address of a loaded segment in the objfile,
985 and assume that <addr> is where that got loaded.
986
987 We no longer warn if the lowest section is not a text segment (as
988 happens for the PA64 port. */
989 if (addrs && addrs->other[0].name)
990 addr_info_make_relative (addrs, objfile->obfd);
991
992 /* Initialize symbol reading routines for this objfile, allow complaints to
993 appear for this new file, and record how verbose to be, then do the
994 initial symbol reading for this file. */
995
996 (*objfile->sf->sym_init) (objfile);
997 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
998
999 if (addrs)
1000 (*objfile->sf->sym_offsets) (objfile, addrs);
1001 else
1002 {
1003 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1004
1005 /* Just copy in the offset table directly as given to us. */
1006 objfile->num_sections = num_offsets;
1007 objfile->section_offsets
1008 = ((struct section_offsets *)
1009 obstack_alloc (&objfile->objfile_obstack, size));
1010 memcpy (objfile->section_offsets, offsets, size);
1011
1012 init_objfile_sect_indices (objfile);
1013 }
1014
1015 (*objfile->sf->sym_read) (objfile, add_flags);
1016
1017 if ((add_flags & SYMFILE_NO_READ) == 0)
1018 require_partial_symbols (objfile, 0);
1019
1020 /* Discard cleanups as symbol reading was successful. */
1021
1022 discard_cleanups (old_chain);
1023 xfree (local_addr);
1024 }
1025
1026 /* Perform required actions after either reading in the initial
1027 symbols for a new objfile, or mapping in the symbols from a reusable
1028 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1029
1030 void
1031 new_symfile_objfile (struct objfile *objfile, int add_flags)
1032 {
1033 /* If this is the main symbol file we have to clean up all users of the
1034 old main symbol file. Otherwise it is sufficient to fixup all the
1035 breakpoints that may have been redefined by this symbol file. */
1036 if (add_flags & SYMFILE_MAINLINE)
1037 {
1038 /* OK, make it the "real" symbol file. */
1039 symfile_objfile = objfile;
1040
1041 clear_symtab_users (add_flags);
1042 }
1043 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1044 {
1045 breakpoint_re_set ();
1046 }
1047
1048 /* We're done reading the symbol file; finish off complaints. */
1049 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1050 }
1051
1052 /* Process a symbol file, as either the main file or as a dynamically
1053 loaded file.
1054
1055 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1056 This BFD will be closed on error, and is always consumed by this function.
1057
1058 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1059 extra, such as dynamically loaded code, and what to do with breakpoins.
1060
1061 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1062 syms_from_objfile, above.
1063 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1064
1065 PARENT is the original objfile if ABFD is a separate debug info file.
1066 Otherwise PARENT is NULL.
1067
1068 Upon success, returns a pointer to the objfile that was added.
1069 Upon failure, jumps back to command level (never returns). */
1070
1071 static struct objfile *
1072 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1073 int add_flags,
1074 struct section_addr_info *addrs,
1075 struct section_offsets *offsets,
1076 int num_offsets,
1077 int flags, struct objfile *parent)
1078 {
1079 struct objfile *objfile;
1080 struct cleanup *my_cleanups;
1081 const char *name = bfd_get_filename (abfd);
1082 const int from_tty = add_flags & SYMFILE_VERBOSE;
1083 const int mainline = add_flags & SYMFILE_MAINLINE;
1084 const int should_print = ((from_tty || info_verbose)
1085 && (readnow_symbol_files
1086 || (add_flags & SYMFILE_NO_READ) == 0));
1087
1088 if (readnow_symbol_files)
1089 {
1090 flags |= OBJF_READNOW;
1091 add_flags &= ~SYMFILE_NO_READ;
1092 }
1093
1094 my_cleanups = make_cleanup_bfd_close (abfd);
1095
1096 /* Give user a chance to burp if we'd be
1097 interactively wiping out any existing symbols. */
1098
1099 if ((have_full_symbols () || have_partial_symbols ())
1100 && mainline
1101 && from_tty
1102 && !query (_("Load new symbol table from \"%s\"? "), name))
1103 error (_("Not confirmed."));
1104
1105 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
1106 discard_cleanups (my_cleanups);
1107
1108 if (parent)
1109 add_separate_debug_objfile (objfile, parent);
1110
1111 /* We either created a new mapped symbol table, mapped an existing
1112 symbol table file which has not had initial symbol reading
1113 performed, or need to read an unmapped symbol table. */
1114 if (should_print)
1115 {
1116 if (deprecated_pre_add_symbol_hook)
1117 deprecated_pre_add_symbol_hook (name);
1118 else
1119 {
1120 printf_unfiltered (_("Reading symbols from %s..."), name);
1121 wrap_here ("");
1122 gdb_flush (gdb_stdout);
1123 }
1124 }
1125 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1126 add_flags);
1127
1128 /* We now have at least a partial symbol table. Check to see if the
1129 user requested that all symbols be read on initial access via either
1130 the gdb startup command line or on a per symbol file basis. Expand
1131 all partial symbol tables for this objfile if so. */
1132
1133 if ((flags & OBJF_READNOW))
1134 {
1135 if (should_print)
1136 {
1137 printf_unfiltered (_("expanding to full symbols..."));
1138 wrap_here ("");
1139 gdb_flush (gdb_stdout);
1140 }
1141
1142 if (objfile->sf)
1143 objfile->sf->qf->expand_all_symtabs (objfile);
1144 }
1145
1146 if (should_print && !objfile_has_symbols (objfile))
1147 {
1148 wrap_here ("");
1149 printf_unfiltered (_("(no debugging symbols found)..."));
1150 wrap_here ("");
1151 }
1152
1153 if (should_print)
1154 {
1155 if (deprecated_post_add_symbol_hook)
1156 deprecated_post_add_symbol_hook ();
1157 else
1158 printf_unfiltered (_("done.\n"));
1159 }
1160
1161 /* We print some messages regardless of whether 'from_tty ||
1162 info_verbose' is true, so make sure they go out at the right
1163 time. */
1164 gdb_flush (gdb_stdout);
1165
1166 if (objfile->sf == NULL)
1167 {
1168 observer_notify_new_objfile (objfile);
1169 return objfile; /* No symbols. */
1170 }
1171
1172 new_symfile_objfile (objfile, add_flags);
1173
1174 observer_notify_new_objfile (objfile);
1175
1176 bfd_cache_close_all ();
1177 return (objfile);
1178 }
1179
1180 /* Add BFD as a separate debug file for OBJFILE. */
1181
1182 void
1183 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1184 {
1185 struct objfile *new_objfile;
1186 struct section_addr_info *sap;
1187 struct cleanup *my_cleanup;
1188
1189 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1190 because sections of BFD may not match sections of OBJFILE and because
1191 vma may have been modified by tools such as prelink. */
1192 sap = build_section_addr_info_from_objfile (objfile);
1193 my_cleanup = make_cleanup_free_section_addr_info (sap);
1194
1195 new_objfile = symbol_file_add_with_addrs_or_offsets
1196 (bfd, symfile_flags,
1197 sap, NULL, 0,
1198 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1199 | OBJF_USERLOADED),
1200 objfile);
1201
1202 do_cleanups (my_cleanup);
1203 }
1204
1205 /* Process the symbol file ABFD, as either the main file or as a
1206 dynamically loaded file.
1207
1208 See symbol_file_add_with_addrs_or_offsets's comments for
1209 details. */
1210 struct objfile *
1211 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1212 struct section_addr_info *addrs,
1213 int flags, struct objfile *parent)
1214 {
1215 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1216 flags, parent);
1217 }
1218
1219
1220 /* Process a symbol file, as either the main file or as a dynamically
1221 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1222 for details. */
1223 struct objfile *
1224 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1225 int flags)
1226 {
1227 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1228 flags, NULL);
1229 }
1230
1231
1232 /* Call symbol_file_add() with default values and update whatever is
1233 affected by the loading of a new main().
1234 Used when the file is supplied in the gdb command line
1235 and by some targets with special loading requirements.
1236 The auxiliary function, symbol_file_add_main_1(), has the flags
1237 argument for the switches that can only be specified in the symbol_file
1238 command itself. */
1239
1240 void
1241 symbol_file_add_main (char *args, int from_tty)
1242 {
1243 symbol_file_add_main_1 (args, from_tty, 0);
1244 }
1245
1246 static void
1247 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1248 {
1249 const int add_flags = (current_inferior ()->symfile_flags
1250 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1251
1252 symbol_file_add (args, add_flags, NULL, flags);
1253
1254 /* Getting new symbols may change our opinion about
1255 what is frameless. */
1256 reinit_frame_cache ();
1257
1258 if ((flags & SYMFILE_NO_READ) == 0)
1259 set_initial_language ();
1260 }
1261
1262 void
1263 symbol_file_clear (int from_tty)
1264 {
1265 if ((have_full_symbols () || have_partial_symbols ())
1266 && from_tty
1267 && (symfile_objfile
1268 ? !query (_("Discard symbol table from `%s'? "),
1269 symfile_objfile->name)
1270 : !query (_("Discard symbol table? "))))
1271 error (_("Not confirmed."));
1272
1273 /* solib descriptors may have handles to objfiles. Wipe them before their
1274 objfiles get stale by free_all_objfiles. */
1275 no_shared_libraries (NULL, from_tty);
1276
1277 free_all_objfiles ();
1278
1279 gdb_assert (symfile_objfile == NULL);
1280 if (from_tty)
1281 printf_unfiltered (_("No symbol file now.\n"));
1282 }
1283
1284 static char *
1285 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1286 {
1287 asection *sect;
1288 bfd_size_type debuglink_size;
1289 unsigned long crc32;
1290 char *contents;
1291 int crc_offset;
1292
1293 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1294
1295 if (sect == NULL)
1296 return NULL;
1297
1298 debuglink_size = bfd_section_size (objfile->obfd, sect);
1299
1300 contents = xmalloc (debuglink_size);
1301 bfd_get_section_contents (objfile->obfd, sect, contents,
1302 (file_ptr)0, (bfd_size_type)debuglink_size);
1303
1304 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1305 crc_offset = strlen (contents) + 1;
1306 crc_offset = (crc_offset + 3) & ~3;
1307
1308 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1309
1310 *crc32_out = crc32;
1311 return contents;
1312 }
1313
1314 /* Return 32-bit CRC for ABFD. If successful store it to *FILE_CRC_RETURN and
1315 return 1. Otherwise print a warning and return 0. ABFD seek position is
1316 not preserved. */
1317
1318 static int
1319 get_file_crc (bfd *abfd, unsigned long *file_crc_return)
1320 {
1321 unsigned long file_crc = 0;
1322
1323 if (bfd_seek (abfd, 0, SEEK_SET) != 0)
1324 {
1325 warning (_("Problem reading \"%s\" for CRC: %s"),
1326 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1327 return 0;
1328 }
1329
1330 for (;;)
1331 {
1332 gdb_byte buffer[8 * 1024];
1333 bfd_size_type count;
1334
1335 count = bfd_bread (buffer, sizeof (buffer), abfd);
1336 if (count == (bfd_size_type) -1)
1337 {
1338 warning (_("Problem reading \"%s\" for CRC: %s"),
1339 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1340 return 0;
1341 }
1342 if (count == 0)
1343 break;
1344 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1345 }
1346
1347 *file_crc_return = file_crc;
1348 return 1;
1349 }
1350
1351 static int
1352 separate_debug_file_exists (const char *name, unsigned long crc,
1353 struct objfile *parent_objfile)
1354 {
1355 unsigned long file_crc;
1356 int file_crc_p;
1357 bfd *abfd;
1358 struct stat parent_stat, abfd_stat;
1359 int verified_as_different;
1360
1361 /* Find a separate debug info file as if symbols would be present in
1362 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1363 section can contain just the basename of PARENT_OBJFILE without any
1364 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1365 the separate debug infos with the same basename can exist. */
1366
1367 if (filename_cmp (name, parent_objfile->name) == 0)
1368 return 0;
1369
1370 abfd = bfd_open_maybe_remote (name);
1371
1372 if (!abfd)
1373 return 0;
1374
1375 /* Verify symlinks were not the cause of filename_cmp name difference above.
1376
1377 Some operating systems, e.g. Windows, do not provide a meaningful
1378 st_ino; they always set it to zero. (Windows does provide a
1379 meaningful st_dev.) Do not indicate a duplicate library in that
1380 case. While there is no guarantee that a system that provides
1381 meaningful inode numbers will never set st_ino to zero, this is
1382 merely an optimization, so we do not need to worry about false
1383 negatives. */
1384
1385 if (bfd_stat (abfd, &abfd_stat) == 0
1386 && abfd_stat.st_ino != 0
1387 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1388 {
1389 if (abfd_stat.st_dev == parent_stat.st_dev
1390 && abfd_stat.st_ino == parent_stat.st_ino)
1391 {
1392 bfd_close (abfd);
1393 return 0;
1394 }
1395 verified_as_different = 1;
1396 }
1397 else
1398 verified_as_different = 0;
1399
1400 file_crc_p = get_file_crc (abfd, &file_crc);
1401
1402 bfd_close (abfd);
1403
1404 if (!file_crc_p)
1405 return 0;
1406
1407 if (crc != file_crc)
1408 {
1409 /* If one (or both) the files are accessed for example the via "remote:"
1410 gdbserver way it does not support the bfd_stat operation. Verify
1411 whether those two files are not the same manually. */
1412
1413 if (!verified_as_different && !parent_objfile->crc32_p)
1414 {
1415 parent_objfile->crc32_p = get_file_crc (parent_objfile->obfd,
1416 &parent_objfile->crc32);
1417 if (!parent_objfile->crc32_p)
1418 return 0;
1419 }
1420
1421 if (verified_as_different || parent_objfile->crc32 != file_crc)
1422 warning (_("the debug information found in \"%s\""
1423 " does not match \"%s\" (CRC mismatch).\n"),
1424 name, parent_objfile->name);
1425
1426 return 0;
1427 }
1428
1429 return 1;
1430 }
1431
1432 char *debug_file_directory = NULL;
1433 static void
1434 show_debug_file_directory (struct ui_file *file, int from_tty,
1435 struct cmd_list_element *c, const char *value)
1436 {
1437 fprintf_filtered (file,
1438 _("The directory where separate debug "
1439 "symbols are searched for is \"%s\".\n"),
1440 value);
1441 }
1442
1443 #if ! defined (DEBUG_SUBDIRECTORY)
1444 #define DEBUG_SUBDIRECTORY ".debug"
1445 #endif
1446
1447 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1448 where the original file resides (may not be the same as
1449 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1450 looking for. Returns the name of the debuginfo, of NULL. */
1451
1452 static char *
1453 find_separate_debug_file (const char *dir,
1454 const char *canon_dir,
1455 const char *debuglink,
1456 unsigned long crc32, struct objfile *objfile)
1457 {
1458 char *debugdir;
1459 char *debugfile;
1460 int i;
1461
1462 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1463 i = strlen (dir);
1464 if (canon_dir != NULL && strlen (canon_dir) > i)
1465 i = strlen (canon_dir);
1466
1467 debugfile = xmalloc (strlen (debug_file_directory) + 1
1468 + i
1469 + strlen (DEBUG_SUBDIRECTORY)
1470 + strlen ("/")
1471 + strlen (debuglink)
1472 + 1);
1473
1474 /* First try in the same directory as the original file. */
1475 strcpy (debugfile, dir);
1476 strcat (debugfile, debuglink);
1477
1478 if (separate_debug_file_exists (debugfile, crc32, objfile))
1479 return debugfile;
1480
1481 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1482 strcpy (debugfile, dir);
1483 strcat (debugfile, DEBUG_SUBDIRECTORY);
1484 strcat (debugfile, "/");
1485 strcat (debugfile, debuglink);
1486
1487 if (separate_debug_file_exists (debugfile, crc32, objfile))
1488 return debugfile;
1489
1490 /* Then try in the global debugfile directories.
1491
1492 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1493 cause "/..." lookups. */
1494
1495 debugdir = debug_file_directory;
1496 do
1497 {
1498 char *debugdir_end;
1499
1500 while (*debugdir == DIRNAME_SEPARATOR)
1501 debugdir++;
1502
1503 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1504 if (debugdir_end == NULL)
1505 debugdir_end = &debugdir[strlen (debugdir)];
1506
1507 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1508 debugfile[debugdir_end - debugdir] = 0;
1509 strcat (debugfile, "/");
1510 strcat (debugfile, dir);
1511 strcat (debugfile, debuglink);
1512
1513 if (separate_debug_file_exists (debugfile, crc32, objfile))
1514 return debugfile;
1515
1516 /* If the file is in the sysroot, try using its base path in the
1517 global debugfile directory. */
1518 if (canon_dir != NULL
1519 && filename_ncmp (canon_dir, gdb_sysroot,
1520 strlen (gdb_sysroot)) == 0
1521 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1522 {
1523 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1524 debugfile[debugdir_end - debugdir] = 0;
1525 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1526 strcat (debugfile, "/");
1527 strcat (debugfile, debuglink);
1528
1529 if (separate_debug_file_exists (debugfile, crc32, objfile))
1530 return debugfile;
1531 }
1532
1533 debugdir = debugdir_end;
1534 }
1535 while (*debugdir != 0);
1536
1537 xfree (debugfile);
1538 return NULL;
1539 }
1540
1541 /* Modify PATH to contain only "directory/" part of PATH.
1542 If there were no directory separators in PATH, PATH will be empty
1543 string on return. */
1544
1545 static void
1546 terminate_after_last_dir_separator (char *path)
1547 {
1548 int i;
1549
1550 /* Strip off the final filename part, leaving the directory name,
1551 followed by a slash. The directory can be relative or absolute. */
1552 for (i = strlen(path) - 1; i >= 0; i--)
1553 if (IS_DIR_SEPARATOR (path[i]))
1554 break;
1555
1556 /* If I is -1 then no directory is present there and DIR will be "". */
1557 path[i + 1] = '\0';
1558 }
1559
1560 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1561 Returns pathname, or NULL. */
1562
1563 char *
1564 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1565 {
1566 char *debuglink;
1567 char *dir, *canon_dir;
1568 char *debugfile;
1569 unsigned long crc32;
1570 struct cleanup *cleanups;
1571
1572 debuglink = get_debug_link_info (objfile, &crc32);
1573
1574 if (debuglink == NULL)
1575 {
1576 /* There's no separate debug info, hence there's no way we could
1577 load it => no warning. */
1578 return NULL;
1579 }
1580
1581 dir = xstrdup (objfile->name);
1582 cleanups = make_cleanup (xfree, dir);
1583 terminate_after_last_dir_separator (dir);
1584 canon_dir = lrealpath (dir);
1585
1586 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1587 crc32, objfile);
1588 xfree (canon_dir);
1589
1590 if (debugfile == NULL)
1591 {
1592 #ifdef HAVE_LSTAT
1593 /* For PR gdb/9538, try again with realpath (if different from the
1594 original). */
1595
1596 struct stat st_buf;
1597
1598 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1599 {
1600 char *symlink_dir;
1601
1602 symlink_dir = lrealpath (objfile->name);
1603 if (symlink_dir != NULL)
1604 {
1605 make_cleanup (xfree, symlink_dir);
1606 terminate_after_last_dir_separator (symlink_dir);
1607 if (strcmp (dir, symlink_dir) != 0)
1608 {
1609 /* Different directory, so try using it. */
1610 debugfile = find_separate_debug_file (symlink_dir,
1611 symlink_dir,
1612 debuglink,
1613 crc32,
1614 objfile);
1615 }
1616 }
1617 }
1618 #endif /* HAVE_LSTAT */
1619 }
1620
1621 do_cleanups (cleanups);
1622 return debugfile;
1623 }
1624
1625
1626 /* This is the symbol-file command. Read the file, analyze its
1627 symbols, and add a struct symtab to a symtab list. The syntax of
1628 the command is rather bizarre:
1629
1630 1. The function buildargv implements various quoting conventions
1631 which are undocumented and have little or nothing in common with
1632 the way things are quoted (or not quoted) elsewhere in GDB.
1633
1634 2. Options are used, which are not generally used in GDB (perhaps
1635 "set mapped on", "set readnow on" would be better)
1636
1637 3. The order of options matters, which is contrary to GNU
1638 conventions (because it is confusing and inconvenient). */
1639
1640 void
1641 symbol_file_command (char *args, int from_tty)
1642 {
1643 dont_repeat ();
1644
1645 if (args == NULL)
1646 {
1647 symbol_file_clear (from_tty);
1648 }
1649 else
1650 {
1651 char **argv = gdb_buildargv (args);
1652 int flags = OBJF_USERLOADED;
1653 struct cleanup *cleanups;
1654 char *name = NULL;
1655
1656 cleanups = make_cleanup_freeargv (argv);
1657 while (*argv != NULL)
1658 {
1659 if (strcmp (*argv, "-readnow") == 0)
1660 flags |= OBJF_READNOW;
1661 else if (**argv == '-')
1662 error (_("unknown option `%s'"), *argv);
1663 else
1664 {
1665 symbol_file_add_main_1 (*argv, from_tty, flags);
1666 name = *argv;
1667 }
1668
1669 argv++;
1670 }
1671
1672 if (name == NULL)
1673 error (_("no symbol file name was specified"));
1674
1675 do_cleanups (cleanups);
1676 }
1677 }
1678
1679 /* Set the initial language.
1680
1681 FIXME: A better solution would be to record the language in the
1682 psymtab when reading partial symbols, and then use it (if known) to
1683 set the language. This would be a win for formats that encode the
1684 language in an easily discoverable place, such as DWARF. For
1685 stabs, we can jump through hoops looking for specially named
1686 symbols or try to intuit the language from the specific type of
1687 stabs we find, but we can't do that until later when we read in
1688 full symbols. */
1689
1690 void
1691 set_initial_language (void)
1692 {
1693 enum language lang = language_unknown;
1694
1695 if (language_of_main != language_unknown)
1696 lang = language_of_main;
1697 else
1698 {
1699 const char *filename;
1700
1701 filename = find_main_filename ();
1702 if (filename != NULL)
1703 lang = deduce_language_from_filename (filename);
1704 }
1705
1706 if (lang == language_unknown)
1707 {
1708 /* Make C the default language */
1709 lang = language_c;
1710 }
1711
1712 set_language (lang);
1713 expected_language = current_language; /* Don't warn the user. */
1714 }
1715
1716 /* If NAME is a remote name open the file using remote protocol, otherwise
1717 open it normally. */
1718
1719 bfd *
1720 bfd_open_maybe_remote (const char *name)
1721 {
1722 if (remote_filename_p (name))
1723 return remote_bfd_open (name, gnutarget);
1724 else
1725 return bfd_openr (name, gnutarget);
1726 }
1727
1728
1729 /* Open the file specified by NAME and hand it off to BFD for
1730 preliminary analysis. Return a newly initialized bfd *, which
1731 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1732 absolute). In case of trouble, error() is called. */
1733
1734 bfd *
1735 symfile_bfd_open (char *name)
1736 {
1737 bfd *sym_bfd;
1738 int desc;
1739 char *absolute_name;
1740
1741 if (remote_filename_p (name))
1742 {
1743 name = xstrdup (name);
1744 sym_bfd = remote_bfd_open (name, gnutarget);
1745 if (!sym_bfd)
1746 {
1747 make_cleanup (xfree, name);
1748 error (_("`%s': can't open to read symbols: %s."), name,
1749 bfd_errmsg (bfd_get_error ()));
1750 }
1751
1752 if (!bfd_check_format (sym_bfd, bfd_object))
1753 {
1754 bfd_close (sym_bfd);
1755 make_cleanup (xfree, name);
1756 error (_("`%s': can't read symbols: %s."), name,
1757 bfd_errmsg (bfd_get_error ()));
1758 }
1759
1760 return sym_bfd;
1761 }
1762
1763 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1764
1765 /* Look down path for it, allocate 2nd new malloc'd copy. */
1766 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1767 O_RDONLY | O_BINARY, &absolute_name);
1768 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1769 if (desc < 0)
1770 {
1771 char *exename = alloca (strlen (name) + 5);
1772
1773 strcat (strcpy (exename, name), ".exe");
1774 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1775 O_RDONLY | O_BINARY, &absolute_name);
1776 }
1777 #endif
1778 if (desc < 0)
1779 {
1780 make_cleanup (xfree, name);
1781 perror_with_name (name);
1782 }
1783
1784 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1785 bfd. It'll be freed in free_objfile(). */
1786 xfree (name);
1787 name = absolute_name;
1788
1789 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1790 if (!sym_bfd)
1791 {
1792 close (desc);
1793 make_cleanup (xfree, name);
1794 error (_("`%s': can't open to read symbols: %s."), name,
1795 bfd_errmsg (bfd_get_error ()));
1796 }
1797 bfd_set_cacheable (sym_bfd, 1);
1798
1799 if (!bfd_check_format (sym_bfd, bfd_object))
1800 {
1801 /* FIXME: should be checking for errors from bfd_close (for one
1802 thing, on error it does not free all the storage associated
1803 with the bfd). */
1804 bfd_close (sym_bfd); /* This also closes desc. */
1805 make_cleanup (xfree, name);
1806 error (_("`%s': can't read symbols: %s."), name,
1807 bfd_errmsg (bfd_get_error ()));
1808 }
1809
1810 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1811 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1812
1813 return sym_bfd;
1814 }
1815
1816 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1817 the section was not found. */
1818
1819 int
1820 get_section_index (struct objfile *objfile, char *section_name)
1821 {
1822 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1823
1824 if (sect)
1825 return sect->index;
1826 else
1827 return -1;
1828 }
1829
1830 /* Link SF into the global symtab_fns list. Called on startup by the
1831 _initialize routine in each object file format reader, to register
1832 information about each format the reader is prepared to handle. */
1833
1834 void
1835 add_symtab_fns (const struct sym_fns *sf)
1836 {
1837 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1838 }
1839
1840 /* Initialize OBJFILE to read symbols from its associated BFD. It
1841 either returns or calls error(). The result is an initialized
1842 struct sym_fns in the objfile structure, that contains cached
1843 information about the symbol file. */
1844
1845 static const struct sym_fns *
1846 find_sym_fns (bfd *abfd)
1847 {
1848 const struct sym_fns *sf;
1849 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1850 int i;
1851
1852 if (our_flavour == bfd_target_srec_flavour
1853 || our_flavour == bfd_target_ihex_flavour
1854 || our_flavour == bfd_target_tekhex_flavour)
1855 return NULL; /* No symbols. */
1856
1857 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1858 if (our_flavour == sf->sym_flavour)
1859 return sf;
1860
1861 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1862 bfd_get_target (abfd));
1863 }
1864 \f
1865
1866 /* This function runs the load command of our current target. */
1867
1868 static void
1869 load_command (char *arg, int from_tty)
1870 {
1871 dont_repeat ();
1872
1873 /* The user might be reloading because the binary has changed. Take
1874 this opportunity to check. */
1875 reopen_exec_file ();
1876 reread_symbols ();
1877
1878 if (arg == NULL)
1879 {
1880 char *parg;
1881 int count = 0;
1882
1883 parg = arg = get_exec_file (1);
1884
1885 /* Count how many \ " ' tab space there are in the name. */
1886 while ((parg = strpbrk (parg, "\\\"'\t ")))
1887 {
1888 parg++;
1889 count++;
1890 }
1891
1892 if (count)
1893 {
1894 /* We need to quote this string so buildargv can pull it apart. */
1895 char *temp = xmalloc (strlen (arg) + count + 1 );
1896 char *ptemp = temp;
1897 char *prev;
1898
1899 make_cleanup (xfree, temp);
1900
1901 prev = parg = arg;
1902 while ((parg = strpbrk (parg, "\\\"'\t ")))
1903 {
1904 strncpy (ptemp, prev, parg - prev);
1905 ptemp += parg - prev;
1906 prev = parg++;
1907 *ptemp++ = '\\';
1908 }
1909 strcpy (ptemp, prev);
1910
1911 arg = temp;
1912 }
1913 }
1914
1915 target_load (arg, from_tty);
1916
1917 /* After re-loading the executable, we don't really know which
1918 overlays are mapped any more. */
1919 overlay_cache_invalid = 1;
1920 }
1921
1922 /* This version of "load" should be usable for any target. Currently
1923 it is just used for remote targets, not inftarg.c or core files,
1924 on the theory that only in that case is it useful.
1925
1926 Avoiding xmodem and the like seems like a win (a) because we don't have
1927 to worry about finding it, and (b) On VMS, fork() is very slow and so
1928 we don't want to run a subprocess. On the other hand, I'm not sure how
1929 performance compares. */
1930
1931 static int validate_download = 0;
1932
1933 /* Callback service function for generic_load (bfd_map_over_sections). */
1934
1935 static void
1936 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1937 {
1938 bfd_size_type *sum = data;
1939
1940 *sum += bfd_get_section_size (asec);
1941 }
1942
1943 /* Opaque data for load_section_callback. */
1944 struct load_section_data {
1945 unsigned long load_offset;
1946 struct load_progress_data *progress_data;
1947 VEC(memory_write_request_s) *requests;
1948 };
1949
1950 /* Opaque data for load_progress. */
1951 struct load_progress_data {
1952 /* Cumulative data. */
1953 unsigned long write_count;
1954 unsigned long data_count;
1955 bfd_size_type total_size;
1956 };
1957
1958 /* Opaque data for load_progress for a single section. */
1959 struct load_progress_section_data {
1960 struct load_progress_data *cumulative;
1961
1962 /* Per-section data. */
1963 const char *section_name;
1964 ULONGEST section_sent;
1965 ULONGEST section_size;
1966 CORE_ADDR lma;
1967 gdb_byte *buffer;
1968 };
1969
1970 /* Target write callback routine for progress reporting. */
1971
1972 static void
1973 load_progress (ULONGEST bytes, void *untyped_arg)
1974 {
1975 struct load_progress_section_data *args = untyped_arg;
1976 struct load_progress_data *totals;
1977
1978 if (args == NULL)
1979 /* Writing padding data. No easy way to get at the cumulative
1980 stats, so just ignore this. */
1981 return;
1982
1983 totals = args->cumulative;
1984
1985 if (bytes == 0 && args->section_sent == 0)
1986 {
1987 /* The write is just starting. Let the user know we've started
1988 this section. */
1989 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1990 args->section_name, hex_string (args->section_size),
1991 paddress (target_gdbarch, args->lma));
1992 return;
1993 }
1994
1995 if (validate_download)
1996 {
1997 /* Broken memories and broken monitors manifest themselves here
1998 when bring new computers to life. This doubles already slow
1999 downloads. */
2000 /* NOTE: cagney/1999-10-18: A more efficient implementation
2001 might add a verify_memory() method to the target vector and
2002 then use that. remote.c could implement that method using
2003 the ``qCRC'' packet. */
2004 gdb_byte *check = xmalloc (bytes);
2005 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
2006
2007 if (target_read_memory (args->lma, check, bytes) != 0)
2008 error (_("Download verify read failed at %s"),
2009 paddress (target_gdbarch, args->lma));
2010 if (memcmp (args->buffer, check, bytes) != 0)
2011 error (_("Download verify compare failed at %s"),
2012 paddress (target_gdbarch, args->lma));
2013 do_cleanups (verify_cleanups);
2014 }
2015 totals->data_count += bytes;
2016 args->lma += bytes;
2017 args->buffer += bytes;
2018 totals->write_count += 1;
2019 args->section_sent += bytes;
2020 if (quit_flag
2021 || (deprecated_ui_load_progress_hook != NULL
2022 && deprecated_ui_load_progress_hook (args->section_name,
2023 args->section_sent)))
2024 error (_("Canceled the download"));
2025
2026 if (deprecated_show_load_progress != NULL)
2027 deprecated_show_load_progress (args->section_name,
2028 args->section_sent,
2029 args->section_size,
2030 totals->data_count,
2031 totals->total_size);
2032 }
2033
2034 /* Callback service function for generic_load (bfd_map_over_sections). */
2035
2036 static void
2037 load_section_callback (bfd *abfd, asection *asec, void *data)
2038 {
2039 struct memory_write_request *new_request;
2040 struct load_section_data *args = data;
2041 struct load_progress_section_data *section_data;
2042 bfd_size_type size = bfd_get_section_size (asec);
2043 gdb_byte *buffer;
2044 const char *sect_name = bfd_get_section_name (abfd, asec);
2045
2046 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2047 return;
2048
2049 if (size == 0)
2050 return;
2051
2052 new_request = VEC_safe_push (memory_write_request_s,
2053 args->requests, NULL);
2054 memset (new_request, 0, sizeof (struct memory_write_request));
2055 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2056 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2057 new_request->end = new_request->begin + size; /* FIXME Should size
2058 be in instead? */
2059 new_request->data = xmalloc (size);
2060 new_request->baton = section_data;
2061
2062 buffer = new_request->data;
2063
2064 section_data->cumulative = args->progress_data;
2065 section_data->section_name = sect_name;
2066 section_data->section_size = size;
2067 section_data->lma = new_request->begin;
2068 section_data->buffer = buffer;
2069
2070 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2071 }
2072
2073 /* Clean up an entire memory request vector, including load
2074 data and progress records. */
2075
2076 static void
2077 clear_memory_write_data (void *arg)
2078 {
2079 VEC(memory_write_request_s) **vec_p = arg;
2080 VEC(memory_write_request_s) *vec = *vec_p;
2081 int i;
2082 struct memory_write_request *mr;
2083
2084 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2085 {
2086 xfree (mr->data);
2087 xfree (mr->baton);
2088 }
2089 VEC_free (memory_write_request_s, vec);
2090 }
2091
2092 void
2093 generic_load (char *args, int from_tty)
2094 {
2095 bfd *loadfile_bfd;
2096 struct timeval start_time, end_time;
2097 char *filename;
2098 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2099 struct load_section_data cbdata;
2100 struct load_progress_data total_progress;
2101 struct ui_out *uiout = current_uiout;
2102
2103 CORE_ADDR entry;
2104 char **argv;
2105
2106 memset (&cbdata, 0, sizeof (cbdata));
2107 memset (&total_progress, 0, sizeof (total_progress));
2108 cbdata.progress_data = &total_progress;
2109
2110 make_cleanup (clear_memory_write_data, &cbdata.requests);
2111
2112 if (args == NULL)
2113 error_no_arg (_("file to load"));
2114
2115 argv = gdb_buildargv (args);
2116 make_cleanup_freeargv (argv);
2117
2118 filename = tilde_expand (argv[0]);
2119 make_cleanup (xfree, filename);
2120
2121 if (argv[1] != NULL)
2122 {
2123 char *endptr;
2124
2125 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2126
2127 /* If the last word was not a valid number then
2128 treat it as a file name with spaces in. */
2129 if (argv[1] == endptr)
2130 error (_("Invalid download offset:%s."), argv[1]);
2131
2132 if (argv[2] != NULL)
2133 error (_("Too many parameters."));
2134 }
2135
2136 /* Open the file for loading. */
2137 loadfile_bfd = bfd_openr (filename, gnutarget);
2138 if (loadfile_bfd == NULL)
2139 {
2140 perror_with_name (filename);
2141 return;
2142 }
2143
2144 /* FIXME: should be checking for errors from bfd_close (for one thing,
2145 on error it does not free all the storage associated with the
2146 bfd). */
2147 make_cleanup_bfd_close (loadfile_bfd);
2148
2149 if (!bfd_check_format (loadfile_bfd, bfd_object))
2150 {
2151 error (_("\"%s\" is not an object file: %s"), filename,
2152 bfd_errmsg (bfd_get_error ()));
2153 }
2154
2155 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2156 (void *) &total_progress.total_size);
2157
2158 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2159
2160 gettimeofday (&start_time, NULL);
2161
2162 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2163 load_progress) != 0)
2164 error (_("Load failed"));
2165
2166 gettimeofday (&end_time, NULL);
2167
2168 entry = bfd_get_start_address (loadfile_bfd);
2169 ui_out_text (uiout, "Start address ");
2170 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
2171 ui_out_text (uiout, ", load size ");
2172 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2173 ui_out_text (uiout, "\n");
2174 /* We were doing this in remote-mips.c, I suspect it is right
2175 for other targets too. */
2176 regcache_write_pc (get_current_regcache (), entry);
2177
2178 /* Reset breakpoints, now that we have changed the load image. For
2179 instance, breakpoints may have been set (or reset, by
2180 post_create_inferior) while connected to the target but before we
2181 loaded the program. In that case, the prologue analyzer could
2182 have read instructions from the target to find the right
2183 breakpoint locations. Loading has changed the contents of that
2184 memory. */
2185
2186 breakpoint_re_set ();
2187
2188 /* FIXME: are we supposed to call symbol_file_add or not? According
2189 to a comment from remote-mips.c (where a call to symbol_file_add
2190 was commented out), making the call confuses GDB if more than one
2191 file is loaded in. Some targets do (e.g., remote-vx.c) but
2192 others don't (or didn't - perhaps they have all been deleted). */
2193
2194 print_transfer_performance (gdb_stdout, total_progress.data_count,
2195 total_progress.write_count,
2196 &start_time, &end_time);
2197
2198 do_cleanups (old_cleanups);
2199 }
2200
2201 /* Report how fast the transfer went. */
2202
2203 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2204 replaced by print_transfer_performance (with a very different
2205 function signature). */
2206
2207 void
2208 report_transfer_performance (unsigned long data_count, time_t start_time,
2209 time_t end_time)
2210 {
2211 struct timeval start, end;
2212
2213 start.tv_sec = start_time;
2214 start.tv_usec = 0;
2215 end.tv_sec = end_time;
2216 end.tv_usec = 0;
2217
2218 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2219 }
2220
2221 void
2222 print_transfer_performance (struct ui_file *stream,
2223 unsigned long data_count,
2224 unsigned long write_count,
2225 const struct timeval *start_time,
2226 const struct timeval *end_time)
2227 {
2228 ULONGEST time_count;
2229 struct ui_out *uiout = current_uiout;
2230
2231 /* Compute the elapsed time in milliseconds, as a tradeoff between
2232 accuracy and overflow. */
2233 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2234 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2235
2236 ui_out_text (uiout, "Transfer rate: ");
2237 if (time_count > 0)
2238 {
2239 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2240
2241 if (ui_out_is_mi_like_p (uiout))
2242 {
2243 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2244 ui_out_text (uiout, " bits/sec");
2245 }
2246 else if (rate < 1024)
2247 {
2248 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2249 ui_out_text (uiout, " bytes/sec");
2250 }
2251 else
2252 {
2253 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2254 ui_out_text (uiout, " KB/sec");
2255 }
2256 }
2257 else
2258 {
2259 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2260 ui_out_text (uiout, " bits in <1 sec");
2261 }
2262 if (write_count > 0)
2263 {
2264 ui_out_text (uiout, ", ");
2265 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2266 ui_out_text (uiout, " bytes/write");
2267 }
2268 ui_out_text (uiout, ".\n");
2269 }
2270
2271 /* This function allows the addition of incrementally linked object files.
2272 It does not modify any state in the target, only in the debugger. */
2273 /* Note: ezannoni 2000-04-13 This function/command used to have a
2274 special case syntax for the rombug target (Rombug is the boot
2275 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2276 rombug case, the user doesn't need to supply a text address,
2277 instead a call to target_link() (in target.c) would supply the
2278 value to use. We are now discontinuing this type of ad hoc syntax. */
2279
2280 static void
2281 add_symbol_file_command (char *args, int from_tty)
2282 {
2283 struct gdbarch *gdbarch = get_current_arch ();
2284 char *filename = NULL;
2285 int flags = OBJF_USERLOADED;
2286 char *arg;
2287 int section_index = 0;
2288 int argcnt = 0;
2289 int sec_num = 0;
2290 int i;
2291 int expecting_sec_name = 0;
2292 int expecting_sec_addr = 0;
2293 char **argv;
2294
2295 struct sect_opt
2296 {
2297 char *name;
2298 char *value;
2299 };
2300
2301 struct section_addr_info *section_addrs;
2302 struct sect_opt *sect_opts = NULL;
2303 size_t num_sect_opts = 0;
2304 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2305
2306 num_sect_opts = 16;
2307 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2308 * sizeof (struct sect_opt));
2309
2310 dont_repeat ();
2311
2312 if (args == NULL)
2313 error (_("add-symbol-file takes a file name and an address"));
2314
2315 argv = gdb_buildargv (args);
2316 make_cleanup_freeargv (argv);
2317
2318 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2319 {
2320 /* Process the argument. */
2321 if (argcnt == 0)
2322 {
2323 /* The first argument is the file name. */
2324 filename = tilde_expand (arg);
2325 make_cleanup (xfree, filename);
2326 }
2327 else
2328 if (argcnt == 1)
2329 {
2330 /* The second argument is always the text address at which
2331 to load the program. */
2332 sect_opts[section_index].name = ".text";
2333 sect_opts[section_index].value = arg;
2334 if (++section_index >= num_sect_opts)
2335 {
2336 num_sect_opts *= 2;
2337 sect_opts = ((struct sect_opt *)
2338 xrealloc (sect_opts,
2339 num_sect_opts
2340 * sizeof (struct sect_opt)));
2341 }
2342 }
2343 else
2344 {
2345 /* It's an option (starting with '-') or it's an argument
2346 to an option. */
2347
2348 if (*arg == '-')
2349 {
2350 if (strcmp (arg, "-readnow") == 0)
2351 flags |= OBJF_READNOW;
2352 else if (strcmp (arg, "-s") == 0)
2353 {
2354 expecting_sec_name = 1;
2355 expecting_sec_addr = 1;
2356 }
2357 }
2358 else
2359 {
2360 if (expecting_sec_name)
2361 {
2362 sect_opts[section_index].name = arg;
2363 expecting_sec_name = 0;
2364 }
2365 else
2366 if (expecting_sec_addr)
2367 {
2368 sect_opts[section_index].value = arg;
2369 expecting_sec_addr = 0;
2370 if (++section_index >= num_sect_opts)
2371 {
2372 num_sect_opts *= 2;
2373 sect_opts = ((struct sect_opt *)
2374 xrealloc (sect_opts,
2375 num_sect_opts
2376 * sizeof (struct sect_opt)));
2377 }
2378 }
2379 else
2380 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2381 " [-readnow] [-s <secname> <addr>]*"));
2382 }
2383 }
2384 }
2385
2386 /* This command takes at least two arguments. The first one is a
2387 filename, and the second is the address where this file has been
2388 loaded. Abort now if this address hasn't been provided by the
2389 user. */
2390 if (section_index < 1)
2391 error (_("The address where %s has been loaded is missing"), filename);
2392
2393 /* Print the prompt for the query below. And save the arguments into
2394 a sect_addr_info structure to be passed around to other
2395 functions. We have to split this up into separate print
2396 statements because hex_string returns a local static
2397 string. */
2398
2399 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2400 section_addrs = alloc_section_addr_info (section_index);
2401 make_cleanup (xfree, section_addrs);
2402 for (i = 0; i < section_index; i++)
2403 {
2404 CORE_ADDR addr;
2405 char *val = sect_opts[i].value;
2406 char *sec = sect_opts[i].name;
2407
2408 addr = parse_and_eval_address (val);
2409
2410 /* Here we store the section offsets in the order they were
2411 entered on the command line. */
2412 section_addrs->other[sec_num].name = sec;
2413 section_addrs->other[sec_num].addr = addr;
2414 printf_unfiltered ("\t%s_addr = %s\n", sec,
2415 paddress (gdbarch, addr));
2416 sec_num++;
2417
2418 /* The object's sections are initialized when a
2419 call is made to build_objfile_section_table (objfile).
2420 This happens in reread_symbols.
2421 At this point, we don't know what file type this is,
2422 so we can't determine what section names are valid. */
2423 }
2424
2425 if (from_tty && (!query ("%s", "")))
2426 error (_("Not confirmed."));
2427
2428 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2429 section_addrs, flags);
2430
2431 /* Getting new symbols may change our opinion about what is
2432 frameless. */
2433 reinit_frame_cache ();
2434 do_cleanups (my_cleanups);
2435 }
2436 \f
2437
2438 typedef struct objfile *objfilep;
2439
2440 DEF_VEC_P (objfilep);
2441
2442 /* Re-read symbols if a symbol-file has changed. */
2443 void
2444 reread_symbols (void)
2445 {
2446 struct objfile *objfile;
2447 long new_modtime;
2448 struct stat new_statbuf;
2449 int res;
2450 VEC (objfilep) *new_objfiles = NULL;
2451 struct cleanup *all_cleanups;
2452
2453 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2454
2455 /* With the addition of shared libraries, this should be modified,
2456 the load time should be saved in the partial symbol tables, since
2457 different tables may come from different source files. FIXME.
2458 This routine should then walk down each partial symbol table
2459 and see if the symbol table that it originates from has been changed. */
2460
2461 for (objfile = object_files; objfile; objfile = objfile->next)
2462 {
2463 /* solib-sunos.c creates one objfile with obfd. */
2464 if (objfile->obfd == NULL)
2465 continue;
2466
2467 /* Separate debug objfiles are handled in the main objfile. */
2468 if (objfile->separate_debug_objfile_backlink)
2469 continue;
2470
2471 /* If this object is from an archive (what you usually create with
2472 `ar', often called a `static library' on most systems, though
2473 a `shared library' on AIX is also an archive), then you should
2474 stat on the archive name, not member name. */
2475 if (objfile->obfd->my_archive)
2476 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2477 else
2478 res = stat (objfile->name, &new_statbuf);
2479 if (res != 0)
2480 {
2481 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2482 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2483 objfile->name);
2484 continue;
2485 }
2486 new_modtime = new_statbuf.st_mtime;
2487 if (new_modtime != objfile->mtime)
2488 {
2489 struct cleanup *old_cleanups;
2490 struct section_offsets *offsets;
2491 int num_offsets;
2492 char *obfd_filename;
2493
2494 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2495 objfile->name);
2496
2497 /* There are various functions like symbol_file_add,
2498 symfile_bfd_open, syms_from_objfile, etc., which might
2499 appear to do what we want. But they have various other
2500 effects which we *don't* want. So we just do stuff
2501 ourselves. We don't worry about mapped files (for one thing,
2502 any mapped file will be out of date). */
2503
2504 /* If we get an error, blow away this objfile (not sure if
2505 that is the correct response for things like shared
2506 libraries). */
2507 old_cleanups = make_cleanup_free_objfile (objfile);
2508 /* We need to do this whenever any symbols go away. */
2509 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2510
2511 if (exec_bfd != NULL
2512 && filename_cmp (bfd_get_filename (objfile->obfd),
2513 bfd_get_filename (exec_bfd)) == 0)
2514 {
2515 /* Reload EXEC_BFD without asking anything. */
2516
2517 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2518 }
2519
2520 /* Keep the calls order approx. the same as in free_objfile. */
2521
2522 /* Free the separate debug objfiles. It will be
2523 automatically recreated by sym_read. */
2524 free_objfile_separate_debug (objfile);
2525
2526 /* Remove any references to this objfile in the global
2527 value lists. */
2528 preserve_values (objfile);
2529
2530 /* Nuke all the state that we will re-read. Much of the following
2531 code which sets things to NULL really is necessary to tell
2532 other parts of GDB that there is nothing currently there.
2533
2534 Try to keep the freeing order compatible with free_objfile. */
2535
2536 if (objfile->sf != NULL)
2537 {
2538 (*objfile->sf->sym_finish) (objfile);
2539 }
2540
2541 clear_objfile_data (objfile);
2542
2543 /* Clean up any state BFD has sitting around. We don't need
2544 to close the descriptor but BFD lacks a way of closing the
2545 BFD without closing the descriptor. */
2546 obfd_filename = bfd_get_filename (objfile->obfd);
2547 if (!bfd_close (objfile->obfd))
2548 error (_("Can't close BFD for %s: %s"), objfile->name,
2549 bfd_errmsg (bfd_get_error ()));
2550 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
2551 if (objfile->obfd == NULL)
2552 error (_("Can't open %s to read symbols."), objfile->name);
2553 else
2554 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2555 /* bfd_openr sets cacheable to true, which is what we want. */
2556 if (!bfd_check_format (objfile->obfd, bfd_object))
2557 error (_("Can't read symbols from %s: %s."), objfile->name,
2558 bfd_errmsg (bfd_get_error ()));
2559
2560 /* Save the offsets, we will nuke them with the rest of the
2561 objfile_obstack. */
2562 num_offsets = objfile->num_sections;
2563 offsets = ((struct section_offsets *)
2564 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2565 memcpy (offsets, objfile->section_offsets,
2566 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2567
2568 /* FIXME: Do we have to free a whole linked list, or is this
2569 enough? */
2570 if (objfile->global_psymbols.list)
2571 xfree (objfile->global_psymbols.list);
2572 memset (&objfile->global_psymbols, 0,
2573 sizeof (objfile->global_psymbols));
2574 if (objfile->static_psymbols.list)
2575 xfree (objfile->static_psymbols.list);
2576 memset (&objfile->static_psymbols, 0,
2577 sizeof (objfile->static_psymbols));
2578
2579 /* Free the obstacks for non-reusable objfiles. */
2580 psymbol_bcache_free (objfile->psymbol_cache);
2581 objfile->psymbol_cache = psymbol_bcache_init ();
2582 bcache_xfree (objfile->macro_cache);
2583 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2584 bcache_xfree (objfile->filename_cache);
2585 objfile->filename_cache = bcache_xmalloc (NULL,NULL);
2586 if (objfile->demangled_names_hash != NULL)
2587 {
2588 htab_delete (objfile->demangled_names_hash);
2589 objfile->demangled_names_hash = NULL;
2590 }
2591 obstack_free (&objfile->objfile_obstack, 0);
2592 objfile->sections = NULL;
2593 objfile->symtabs = NULL;
2594 objfile->psymtabs = NULL;
2595 objfile->psymtabs_addrmap = NULL;
2596 objfile->free_psymtabs = NULL;
2597 objfile->template_symbols = NULL;
2598 objfile->msymbols = NULL;
2599 objfile->deprecated_sym_private = NULL;
2600 objfile->minimal_symbol_count = 0;
2601 memset (&objfile->msymbol_hash, 0,
2602 sizeof (objfile->msymbol_hash));
2603 memset (&objfile->msymbol_demangled_hash, 0,
2604 sizeof (objfile->msymbol_demangled_hash));
2605
2606 /* obstack_init also initializes the obstack so it is
2607 empty. We could use obstack_specify_allocation but
2608 gdb_obstack.h specifies the alloc/dealloc functions. */
2609 obstack_init (&objfile->objfile_obstack);
2610 build_objfile_section_table (objfile);
2611 terminate_minimal_symbol_table (objfile);
2612
2613 /* We use the same section offsets as from last time. I'm not
2614 sure whether that is always correct for shared libraries. */
2615 objfile->section_offsets = (struct section_offsets *)
2616 obstack_alloc (&objfile->objfile_obstack,
2617 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2618 memcpy (objfile->section_offsets, offsets,
2619 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2620 objfile->num_sections = num_offsets;
2621
2622 /* What the hell is sym_new_init for, anyway? The concept of
2623 distinguishing between the main file and additional files
2624 in this way seems rather dubious. */
2625 if (objfile == symfile_objfile)
2626 {
2627 (*objfile->sf->sym_new_init) (objfile);
2628 }
2629
2630 (*objfile->sf->sym_init) (objfile);
2631 clear_complaints (&symfile_complaints, 1, 1);
2632 /* Do not set flags as this is safe and we don't want to be
2633 verbose. */
2634 (*objfile->sf->sym_read) (objfile, 0);
2635 if ((objfile->flags & OBJF_PSYMTABS_READ) != 0)
2636 {
2637 objfile->flags &= ~OBJF_PSYMTABS_READ;
2638 require_partial_symbols (objfile, 0);
2639 }
2640
2641 if (!objfile_has_symbols (objfile))
2642 {
2643 wrap_here ("");
2644 printf_unfiltered (_("(no debugging symbols found)\n"));
2645 wrap_here ("");
2646 }
2647
2648 /* We're done reading the symbol file; finish off complaints. */
2649 clear_complaints (&symfile_complaints, 0, 1);
2650
2651 /* Getting new symbols may change our opinion about what is
2652 frameless. */
2653
2654 reinit_frame_cache ();
2655
2656 /* Discard cleanups as symbol reading was successful. */
2657 discard_cleanups (old_cleanups);
2658
2659 /* If the mtime has changed between the time we set new_modtime
2660 and now, we *want* this to be out of date, so don't call stat
2661 again now. */
2662 objfile->mtime = new_modtime;
2663 init_entry_point_info (objfile);
2664
2665 VEC_safe_push (objfilep, new_objfiles, objfile);
2666 }
2667 }
2668
2669 if (new_objfiles)
2670 {
2671 int ix;
2672
2673 /* Notify objfiles that we've modified objfile sections. */
2674 objfiles_changed ();
2675
2676 clear_symtab_users (0);
2677
2678 /* clear_objfile_data for each objfile was called before freeing it and
2679 observer_notify_new_objfile (NULL) has been called by
2680 clear_symtab_users above. Notify the new files now. */
2681 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2682 observer_notify_new_objfile (objfile);
2683
2684 /* At least one objfile has changed, so we can consider that
2685 the executable we're debugging has changed too. */
2686 observer_notify_executable_changed ();
2687 }
2688
2689 do_cleanups (all_cleanups);
2690 }
2691 \f
2692
2693
2694 typedef struct
2695 {
2696 char *ext;
2697 enum language lang;
2698 }
2699 filename_language;
2700
2701 static filename_language *filename_language_table;
2702 static int fl_table_size, fl_table_next;
2703
2704 static void
2705 add_filename_language (char *ext, enum language lang)
2706 {
2707 if (fl_table_next >= fl_table_size)
2708 {
2709 fl_table_size += 10;
2710 filename_language_table =
2711 xrealloc (filename_language_table,
2712 fl_table_size * sizeof (*filename_language_table));
2713 }
2714
2715 filename_language_table[fl_table_next].ext = xstrdup (ext);
2716 filename_language_table[fl_table_next].lang = lang;
2717 fl_table_next++;
2718 }
2719
2720 static char *ext_args;
2721 static void
2722 show_ext_args (struct ui_file *file, int from_tty,
2723 struct cmd_list_element *c, const char *value)
2724 {
2725 fprintf_filtered (file,
2726 _("Mapping between filename extension "
2727 "and source language is \"%s\".\n"),
2728 value);
2729 }
2730
2731 static void
2732 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2733 {
2734 int i;
2735 char *cp = ext_args;
2736 enum language lang;
2737
2738 /* First arg is filename extension, starting with '.' */
2739 if (*cp != '.')
2740 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2741
2742 /* Find end of first arg. */
2743 while (*cp && !isspace (*cp))
2744 cp++;
2745
2746 if (*cp == '\0')
2747 error (_("'%s': two arguments required -- "
2748 "filename extension and language"),
2749 ext_args);
2750
2751 /* Null-terminate first arg. */
2752 *cp++ = '\0';
2753
2754 /* Find beginning of second arg, which should be a source language. */
2755 while (*cp && isspace (*cp))
2756 cp++;
2757
2758 if (*cp == '\0')
2759 error (_("'%s': two arguments required -- "
2760 "filename extension and language"),
2761 ext_args);
2762
2763 /* Lookup the language from among those we know. */
2764 lang = language_enum (cp);
2765
2766 /* Now lookup the filename extension: do we already know it? */
2767 for (i = 0; i < fl_table_next; i++)
2768 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2769 break;
2770
2771 if (i >= fl_table_next)
2772 {
2773 /* New file extension. */
2774 add_filename_language (ext_args, lang);
2775 }
2776 else
2777 {
2778 /* Redefining a previously known filename extension. */
2779
2780 /* if (from_tty) */
2781 /* query ("Really make files of type %s '%s'?", */
2782 /* ext_args, language_str (lang)); */
2783
2784 xfree (filename_language_table[i].ext);
2785 filename_language_table[i].ext = xstrdup (ext_args);
2786 filename_language_table[i].lang = lang;
2787 }
2788 }
2789
2790 static void
2791 info_ext_lang_command (char *args, int from_tty)
2792 {
2793 int i;
2794
2795 printf_filtered (_("Filename extensions and the languages they represent:"));
2796 printf_filtered ("\n\n");
2797 for (i = 0; i < fl_table_next; i++)
2798 printf_filtered ("\t%s\t- %s\n",
2799 filename_language_table[i].ext,
2800 language_str (filename_language_table[i].lang));
2801 }
2802
2803 static void
2804 init_filename_language_table (void)
2805 {
2806 if (fl_table_size == 0) /* Protect against repetition. */
2807 {
2808 fl_table_size = 20;
2809 fl_table_next = 0;
2810 filename_language_table =
2811 xmalloc (fl_table_size * sizeof (*filename_language_table));
2812 add_filename_language (".c", language_c);
2813 add_filename_language (".d", language_d);
2814 add_filename_language (".C", language_cplus);
2815 add_filename_language (".cc", language_cplus);
2816 add_filename_language (".cp", language_cplus);
2817 add_filename_language (".cpp", language_cplus);
2818 add_filename_language (".cxx", language_cplus);
2819 add_filename_language (".c++", language_cplus);
2820 add_filename_language (".java", language_java);
2821 add_filename_language (".class", language_java);
2822 add_filename_language (".m", language_objc);
2823 add_filename_language (".f", language_fortran);
2824 add_filename_language (".F", language_fortran);
2825 add_filename_language (".for", language_fortran);
2826 add_filename_language (".FOR", language_fortran);
2827 add_filename_language (".ftn", language_fortran);
2828 add_filename_language (".FTN", language_fortran);
2829 add_filename_language (".fpp", language_fortran);
2830 add_filename_language (".FPP", language_fortran);
2831 add_filename_language (".f90", language_fortran);
2832 add_filename_language (".F90", language_fortran);
2833 add_filename_language (".f95", language_fortran);
2834 add_filename_language (".F95", language_fortran);
2835 add_filename_language (".f03", language_fortran);
2836 add_filename_language (".F03", language_fortran);
2837 add_filename_language (".f08", language_fortran);
2838 add_filename_language (".F08", language_fortran);
2839 add_filename_language (".s", language_asm);
2840 add_filename_language (".sx", language_asm);
2841 add_filename_language (".S", language_asm);
2842 add_filename_language (".pas", language_pascal);
2843 add_filename_language (".p", language_pascal);
2844 add_filename_language (".pp", language_pascal);
2845 add_filename_language (".adb", language_ada);
2846 add_filename_language (".ads", language_ada);
2847 add_filename_language (".a", language_ada);
2848 add_filename_language (".ada", language_ada);
2849 add_filename_language (".dg", language_ada);
2850 }
2851 }
2852
2853 enum language
2854 deduce_language_from_filename (const char *filename)
2855 {
2856 int i;
2857 char *cp;
2858
2859 if (filename != NULL)
2860 if ((cp = strrchr (filename, '.')) != NULL)
2861 for (i = 0; i < fl_table_next; i++)
2862 if (strcmp (cp, filename_language_table[i].ext) == 0)
2863 return filename_language_table[i].lang;
2864
2865 return language_unknown;
2866 }
2867 \f
2868 /* allocate_symtab:
2869
2870 Allocate and partly initialize a new symbol table. Return a pointer
2871 to it. error() if no space.
2872
2873 Caller must set these fields:
2874 LINETABLE(symtab)
2875 symtab->blockvector
2876 symtab->dirname
2877 symtab->free_code
2878 symtab->free_ptr
2879 */
2880
2881 struct symtab *
2882 allocate_symtab (const char *filename, struct objfile *objfile)
2883 {
2884 struct symtab *symtab;
2885
2886 symtab = (struct symtab *)
2887 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2888 memset (symtab, 0, sizeof (*symtab));
2889 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2890 objfile->filename_cache);
2891 symtab->fullname = NULL;
2892 symtab->language = deduce_language_from_filename (filename);
2893 symtab->debugformat = "unknown";
2894
2895 /* Hook it to the objfile it comes from. */
2896
2897 symtab->objfile = objfile;
2898 symtab->next = objfile->symtabs;
2899 objfile->symtabs = symtab;
2900
2901 return (symtab);
2902 }
2903 \f
2904
2905 /* Reset all data structures in gdb which may contain references to symbol
2906 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2907
2908 void
2909 clear_symtab_users (int add_flags)
2910 {
2911 /* Someday, we should do better than this, by only blowing away
2912 the things that really need to be blown. */
2913
2914 /* Clear the "current" symtab first, because it is no longer valid.
2915 breakpoint_re_set may try to access the current symtab. */
2916 clear_current_source_symtab_and_line ();
2917
2918 clear_displays ();
2919 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2920 breakpoint_re_set ();
2921 clear_last_displayed_sal ();
2922 clear_pc_function_cache ();
2923 observer_notify_new_objfile (NULL);
2924
2925 /* Clear globals which might have pointed into a removed objfile.
2926 FIXME: It's not clear which of these are supposed to persist
2927 between expressions and which ought to be reset each time. */
2928 expression_context_block = NULL;
2929 innermost_block = NULL;
2930
2931 /* Varobj may refer to old symbols, perform a cleanup. */
2932 varobj_invalidate ();
2933
2934 }
2935
2936 static void
2937 clear_symtab_users_cleanup (void *ignore)
2938 {
2939 clear_symtab_users (0);
2940 }
2941 \f
2942 /* OVERLAYS:
2943 The following code implements an abstraction for debugging overlay sections.
2944
2945 The target model is as follows:
2946 1) The gnu linker will permit multiple sections to be mapped into the
2947 same VMA, each with its own unique LMA (or load address).
2948 2) It is assumed that some runtime mechanism exists for mapping the
2949 sections, one by one, from the load address into the VMA address.
2950 3) This code provides a mechanism for gdb to keep track of which
2951 sections should be considered to be mapped from the VMA to the LMA.
2952 This information is used for symbol lookup, and memory read/write.
2953 For instance, if a section has been mapped then its contents
2954 should be read from the VMA, otherwise from the LMA.
2955
2956 Two levels of debugger support for overlays are available. One is
2957 "manual", in which the debugger relies on the user to tell it which
2958 overlays are currently mapped. This level of support is
2959 implemented entirely in the core debugger, and the information about
2960 whether a section is mapped is kept in the objfile->obj_section table.
2961
2962 The second level of support is "automatic", and is only available if
2963 the target-specific code provides functionality to read the target's
2964 overlay mapping table, and translate its contents for the debugger
2965 (by updating the mapped state information in the obj_section tables).
2966
2967 The interface is as follows:
2968 User commands:
2969 overlay map <name> -- tell gdb to consider this section mapped
2970 overlay unmap <name> -- tell gdb to consider this section unmapped
2971 overlay list -- list the sections that GDB thinks are mapped
2972 overlay read-target -- get the target's state of what's mapped
2973 overlay off/manual/auto -- set overlay debugging state
2974 Functional interface:
2975 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2976 section, return that section.
2977 find_pc_overlay(pc): find any overlay section that contains
2978 the pc, either in its VMA or its LMA
2979 section_is_mapped(sect): true if overlay is marked as mapped
2980 section_is_overlay(sect): true if section's VMA != LMA
2981 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2982 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2983 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2984 overlay_mapped_address(...): map an address from section's LMA to VMA
2985 overlay_unmapped_address(...): map an address from section's VMA to LMA
2986 symbol_overlayed_address(...): Return a "current" address for symbol:
2987 either in VMA or LMA depending on whether
2988 the symbol's section is currently mapped. */
2989
2990 /* Overlay debugging state: */
2991
2992 enum overlay_debugging_state overlay_debugging = ovly_off;
2993 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2994
2995 /* Function: section_is_overlay (SECTION)
2996 Returns true if SECTION has VMA not equal to LMA, ie.
2997 SECTION is loaded at an address different from where it will "run". */
2998
2999 int
3000 section_is_overlay (struct obj_section *section)
3001 {
3002 if (overlay_debugging && section)
3003 {
3004 bfd *abfd = section->objfile->obfd;
3005 asection *bfd_section = section->the_bfd_section;
3006
3007 if (bfd_section_lma (abfd, bfd_section) != 0
3008 && bfd_section_lma (abfd, bfd_section)
3009 != bfd_section_vma (abfd, bfd_section))
3010 return 1;
3011 }
3012
3013 return 0;
3014 }
3015
3016 /* Function: overlay_invalidate_all (void)
3017 Invalidate the mapped state of all overlay sections (mark it as stale). */
3018
3019 static void
3020 overlay_invalidate_all (void)
3021 {
3022 struct objfile *objfile;
3023 struct obj_section *sect;
3024
3025 ALL_OBJSECTIONS (objfile, sect)
3026 if (section_is_overlay (sect))
3027 sect->ovly_mapped = -1;
3028 }
3029
3030 /* Function: section_is_mapped (SECTION)
3031 Returns true if section is an overlay, and is currently mapped.
3032
3033 Access to the ovly_mapped flag is restricted to this function, so
3034 that we can do automatic update. If the global flag
3035 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3036 overlay_invalidate_all. If the mapped state of the particular
3037 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3038
3039 int
3040 section_is_mapped (struct obj_section *osect)
3041 {
3042 struct gdbarch *gdbarch;
3043
3044 if (osect == 0 || !section_is_overlay (osect))
3045 return 0;
3046
3047 switch (overlay_debugging)
3048 {
3049 default:
3050 case ovly_off:
3051 return 0; /* overlay debugging off */
3052 case ovly_auto: /* overlay debugging automatic */
3053 /* Unles there is a gdbarch_overlay_update function,
3054 there's really nothing useful to do here (can't really go auto). */
3055 gdbarch = get_objfile_arch (osect->objfile);
3056 if (gdbarch_overlay_update_p (gdbarch))
3057 {
3058 if (overlay_cache_invalid)
3059 {
3060 overlay_invalidate_all ();
3061 overlay_cache_invalid = 0;
3062 }
3063 if (osect->ovly_mapped == -1)
3064 gdbarch_overlay_update (gdbarch, osect);
3065 }
3066 /* fall thru to manual case */
3067 case ovly_on: /* overlay debugging manual */
3068 return osect->ovly_mapped == 1;
3069 }
3070 }
3071
3072 /* Function: pc_in_unmapped_range
3073 If PC falls into the lma range of SECTION, return true, else false. */
3074
3075 CORE_ADDR
3076 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3077 {
3078 if (section_is_overlay (section))
3079 {
3080 bfd *abfd = section->objfile->obfd;
3081 asection *bfd_section = section->the_bfd_section;
3082
3083 /* We assume the LMA is relocated by the same offset as the VMA. */
3084 bfd_vma size = bfd_get_section_size (bfd_section);
3085 CORE_ADDR offset = obj_section_offset (section);
3086
3087 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3088 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3089 return 1;
3090 }
3091
3092 return 0;
3093 }
3094
3095 /* Function: pc_in_mapped_range
3096 If PC falls into the vma range of SECTION, return true, else false. */
3097
3098 CORE_ADDR
3099 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3100 {
3101 if (section_is_overlay (section))
3102 {
3103 if (obj_section_addr (section) <= pc
3104 && pc < obj_section_endaddr (section))
3105 return 1;
3106 }
3107
3108 return 0;
3109 }
3110
3111
3112 /* Return true if the mapped ranges of sections A and B overlap, false
3113 otherwise. */
3114 static int
3115 sections_overlap (struct obj_section *a, struct obj_section *b)
3116 {
3117 CORE_ADDR a_start = obj_section_addr (a);
3118 CORE_ADDR a_end = obj_section_endaddr (a);
3119 CORE_ADDR b_start = obj_section_addr (b);
3120 CORE_ADDR b_end = obj_section_endaddr (b);
3121
3122 return (a_start < b_end && b_start < a_end);
3123 }
3124
3125 /* Function: overlay_unmapped_address (PC, SECTION)
3126 Returns the address corresponding to PC in the unmapped (load) range.
3127 May be the same as PC. */
3128
3129 CORE_ADDR
3130 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3131 {
3132 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3133 {
3134 bfd *abfd = section->objfile->obfd;
3135 asection *bfd_section = section->the_bfd_section;
3136
3137 return pc + bfd_section_lma (abfd, bfd_section)
3138 - bfd_section_vma (abfd, bfd_section);
3139 }
3140
3141 return pc;
3142 }
3143
3144 /* Function: overlay_mapped_address (PC, SECTION)
3145 Returns the address corresponding to PC in the mapped (runtime) range.
3146 May be the same as PC. */
3147
3148 CORE_ADDR
3149 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3150 {
3151 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3152 {
3153 bfd *abfd = section->objfile->obfd;
3154 asection *bfd_section = section->the_bfd_section;
3155
3156 return pc + bfd_section_vma (abfd, bfd_section)
3157 - bfd_section_lma (abfd, bfd_section);
3158 }
3159
3160 return pc;
3161 }
3162
3163
3164 /* Function: symbol_overlayed_address
3165 Return one of two addresses (relative to the VMA or to the LMA),
3166 depending on whether the section is mapped or not. */
3167
3168 CORE_ADDR
3169 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3170 {
3171 if (overlay_debugging)
3172 {
3173 /* If the symbol has no section, just return its regular address. */
3174 if (section == 0)
3175 return address;
3176 /* If the symbol's section is not an overlay, just return its
3177 address. */
3178 if (!section_is_overlay (section))
3179 return address;
3180 /* If the symbol's section is mapped, just return its address. */
3181 if (section_is_mapped (section))
3182 return address;
3183 /*
3184 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3185 * then return its LOADED address rather than its vma address!!
3186 */
3187 return overlay_unmapped_address (address, section);
3188 }
3189 return address;
3190 }
3191
3192 /* Function: find_pc_overlay (PC)
3193 Return the best-match overlay section for PC:
3194 If PC matches a mapped overlay section's VMA, return that section.
3195 Else if PC matches an unmapped section's VMA, return that section.
3196 Else if PC matches an unmapped section's LMA, return that section. */
3197
3198 struct obj_section *
3199 find_pc_overlay (CORE_ADDR pc)
3200 {
3201 struct objfile *objfile;
3202 struct obj_section *osect, *best_match = NULL;
3203
3204 if (overlay_debugging)
3205 ALL_OBJSECTIONS (objfile, osect)
3206 if (section_is_overlay (osect))
3207 {
3208 if (pc_in_mapped_range (pc, osect))
3209 {
3210 if (section_is_mapped (osect))
3211 return osect;
3212 else
3213 best_match = osect;
3214 }
3215 else if (pc_in_unmapped_range (pc, osect))
3216 best_match = osect;
3217 }
3218 return best_match;
3219 }
3220
3221 /* Function: find_pc_mapped_section (PC)
3222 If PC falls into the VMA address range of an overlay section that is
3223 currently marked as MAPPED, return that section. Else return NULL. */
3224
3225 struct obj_section *
3226 find_pc_mapped_section (CORE_ADDR pc)
3227 {
3228 struct objfile *objfile;
3229 struct obj_section *osect;
3230
3231 if (overlay_debugging)
3232 ALL_OBJSECTIONS (objfile, osect)
3233 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3234 return osect;
3235
3236 return NULL;
3237 }
3238
3239 /* Function: list_overlays_command
3240 Print a list of mapped sections and their PC ranges. */
3241
3242 void
3243 list_overlays_command (char *args, int from_tty)
3244 {
3245 int nmapped = 0;
3246 struct objfile *objfile;
3247 struct obj_section *osect;
3248
3249 if (overlay_debugging)
3250 ALL_OBJSECTIONS (objfile, osect)
3251 if (section_is_mapped (osect))
3252 {
3253 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3254 const char *name;
3255 bfd_vma lma, vma;
3256 int size;
3257
3258 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3259 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3260 size = bfd_get_section_size (osect->the_bfd_section);
3261 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3262
3263 printf_filtered ("Section %s, loaded at ", name);
3264 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3265 puts_filtered (" - ");
3266 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3267 printf_filtered (", mapped at ");
3268 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3269 puts_filtered (" - ");
3270 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3271 puts_filtered ("\n");
3272
3273 nmapped++;
3274 }
3275 if (nmapped == 0)
3276 printf_filtered (_("No sections are mapped.\n"));
3277 }
3278
3279 /* Function: map_overlay_command
3280 Mark the named section as mapped (ie. residing at its VMA address). */
3281
3282 void
3283 map_overlay_command (char *args, int from_tty)
3284 {
3285 struct objfile *objfile, *objfile2;
3286 struct obj_section *sec, *sec2;
3287
3288 if (!overlay_debugging)
3289 error (_("Overlay debugging not enabled. Use "
3290 "either the 'overlay auto' or\n"
3291 "the 'overlay manual' command."));
3292
3293 if (args == 0 || *args == 0)
3294 error (_("Argument required: name of an overlay section"));
3295
3296 /* First, find a section matching the user supplied argument. */
3297 ALL_OBJSECTIONS (objfile, sec)
3298 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3299 {
3300 /* Now, check to see if the section is an overlay. */
3301 if (!section_is_overlay (sec))
3302 continue; /* not an overlay section */
3303
3304 /* Mark the overlay as "mapped". */
3305 sec->ovly_mapped = 1;
3306
3307 /* Next, make a pass and unmap any sections that are
3308 overlapped by this new section: */
3309 ALL_OBJSECTIONS (objfile2, sec2)
3310 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3311 {
3312 if (info_verbose)
3313 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3314 bfd_section_name (objfile->obfd,
3315 sec2->the_bfd_section));
3316 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3317 }
3318 return;
3319 }
3320 error (_("No overlay section called %s"), args);
3321 }
3322
3323 /* Function: unmap_overlay_command
3324 Mark the overlay section as unmapped
3325 (ie. resident in its LMA address range, rather than the VMA range). */
3326
3327 void
3328 unmap_overlay_command (char *args, int from_tty)
3329 {
3330 struct objfile *objfile;
3331 struct obj_section *sec;
3332
3333 if (!overlay_debugging)
3334 error (_("Overlay debugging not enabled. "
3335 "Use either the 'overlay auto' or\n"
3336 "the 'overlay manual' command."));
3337
3338 if (args == 0 || *args == 0)
3339 error (_("Argument required: name of an overlay section"));
3340
3341 /* First, find a section matching the user supplied argument. */
3342 ALL_OBJSECTIONS (objfile, sec)
3343 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3344 {
3345 if (!sec->ovly_mapped)
3346 error (_("Section %s is not mapped"), args);
3347 sec->ovly_mapped = 0;
3348 return;
3349 }
3350 error (_("No overlay section called %s"), args);
3351 }
3352
3353 /* Function: overlay_auto_command
3354 A utility command to turn on overlay debugging.
3355 Possibly this should be done via a set/show command. */
3356
3357 static void
3358 overlay_auto_command (char *args, int from_tty)
3359 {
3360 overlay_debugging = ovly_auto;
3361 enable_overlay_breakpoints ();
3362 if (info_verbose)
3363 printf_unfiltered (_("Automatic overlay debugging enabled."));
3364 }
3365
3366 /* Function: overlay_manual_command
3367 A utility command to turn on overlay debugging.
3368 Possibly this should be done via a set/show command. */
3369
3370 static void
3371 overlay_manual_command (char *args, int from_tty)
3372 {
3373 overlay_debugging = ovly_on;
3374 disable_overlay_breakpoints ();
3375 if (info_verbose)
3376 printf_unfiltered (_("Overlay debugging enabled."));
3377 }
3378
3379 /* Function: overlay_off_command
3380 A utility command to turn on overlay debugging.
3381 Possibly this should be done via a set/show command. */
3382
3383 static void
3384 overlay_off_command (char *args, int from_tty)
3385 {
3386 overlay_debugging = ovly_off;
3387 disable_overlay_breakpoints ();
3388 if (info_verbose)
3389 printf_unfiltered (_("Overlay debugging disabled."));
3390 }
3391
3392 static void
3393 overlay_load_command (char *args, int from_tty)
3394 {
3395 struct gdbarch *gdbarch = get_current_arch ();
3396
3397 if (gdbarch_overlay_update_p (gdbarch))
3398 gdbarch_overlay_update (gdbarch, NULL);
3399 else
3400 error (_("This target does not know how to read its overlay state."));
3401 }
3402
3403 /* Function: overlay_command
3404 A place-holder for a mis-typed command. */
3405
3406 /* Command list chain containing all defined "overlay" subcommands. */
3407 struct cmd_list_element *overlaylist;
3408
3409 static void
3410 overlay_command (char *args, int from_tty)
3411 {
3412 printf_unfiltered
3413 ("\"overlay\" must be followed by the name of an overlay command.\n");
3414 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3415 }
3416
3417
3418 /* Target Overlays for the "Simplest" overlay manager:
3419
3420 This is GDB's default target overlay layer. It works with the
3421 minimal overlay manager supplied as an example by Cygnus. The
3422 entry point is via a function pointer "gdbarch_overlay_update",
3423 so targets that use a different runtime overlay manager can
3424 substitute their own overlay_update function and take over the
3425 function pointer.
3426
3427 The overlay_update function pokes around in the target's data structures
3428 to see what overlays are mapped, and updates GDB's overlay mapping with
3429 this information.
3430
3431 In this simple implementation, the target data structures are as follows:
3432 unsigned _novlys; /# number of overlay sections #/
3433 unsigned _ovly_table[_novlys][4] = {
3434 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3435 {..., ..., ..., ...},
3436 }
3437 unsigned _novly_regions; /# number of overlay regions #/
3438 unsigned _ovly_region_table[_novly_regions][3] = {
3439 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3440 {..., ..., ...},
3441 }
3442 These functions will attempt to update GDB's mappedness state in the
3443 symbol section table, based on the target's mappedness state.
3444
3445 To do this, we keep a cached copy of the target's _ovly_table, and
3446 attempt to detect when the cached copy is invalidated. The main
3447 entry point is "simple_overlay_update(SECT), which looks up SECT in
3448 the cached table and re-reads only the entry for that section from
3449 the target (whenever possible). */
3450
3451 /* Cached, dynamically allocated copies of the target data structures: */
3452 static unsigned (*cache_ovly_table)[4] = 0;
3453 static unsigned cache_novlys = 0;
3454 static CORE_ADDR cache_ovly_table_base = 0;
3455 enum ovly_index
3456 {
3457 VMA, SIZE, LMA, MAPPED
3458 };
3459
3460 /* Throw away the cached copy of _ovly_table. */
3461 static void
3462 simple_free_overlay_table (void)
3463 {
3464 if (cache_ovly_table)
3465 xfree (cache_ovly_table);
3466 cache_novlys = 0;
3467 cache_ovly_table = NULL;
3468 cache_ovly_table_base = 0;
3469 }
3470
3471 /* Read an array of ints of size SIZE from the target into a local buffer.
3472 Convert to host order. int LEN is number of ints. */
3473 static void
3474 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3475 int len, int size, enum bfd_endian byte_order)
3476 {
3477 /* FIXME (alloca): Not safe if array is very large. */
3478 gdb_byte *buf = alloca (len * size);
3479 int i;
3480
3481 read_memory (memaddr, buf, len * size);
3482 for (i = 0; i < len; i++)
3483 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3484 }
3485
3486 /* Find and grab a copy of the target _ovly_table
3487 (and _novlys, which is needed for the table's size). */
3488 static int
3489 simple_read_overlay_table (void)
3490 {
3491 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3492 struct gdbarch *gdbarch;
3493 int word_size;
3494 enum bfd_endian byte_order;
3495
3496 simple_free_overlay_table ();
3497 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3498 if (! novlys_msym)
3499 {
3500 error (_("Error reading inferior's overlay table: "
3501 "couldn't find `_novlys' variable\n"
3502 "in inferior. Use `overlay manual' mode."));
3503 return 0;
3504 }
3505
3506 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3507 if (! ovly_table_msym)
3508 {
3509 error (_("Error reading inferior's overlay table: couldn't find "
3510 "`_ovly_table' array\n"
3511 "in inferior. Use `overlay manual' mode."));
3512 return 0;
3513 }
3514
3515 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3516 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3517 byte_order = gdbarch_byte_order (gdbarch);
3518
3519 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3520 4, byte_order);
3521 cache_ovly_table
3522 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3523 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3524 read_target_long_array (cache_ovly_table_base,
3525 (unsigned int *) cache_ovly_table,
3526 cache_novlys * 4, word_size, byte_order);
3527
3528 return 1; /* SUCCESS */
3529 }
3530
3531 /* Function: simple_overlay_update_1
3532 A helper function for simple_overlay_update. Assuming a cached copy
3533 of _ovly_table exists, look through it to find an entry whose vma,
3534 lma and size match those of OSECT. Re-read the entry and make sure
3535 it still matches OSECT (else the table may no longer be valid).
3536 Set OSECT's mapped state to match the entry. Return: 1 for
3537 success, 0 for failure. */
3538
3539 static int
3540 simple_overlay_update_1 (struct obj_section *osect)
3541 {
3542 int i, size;
3543 bfd *obfd = osect->objfile->obfd;
3544 asection *bsect = osect->the_bfd_section;
3545 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3546 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3547 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3548
3549 size = bfd_get_section_size (osect->the_bfd_section);
3550 for (i = 0; i < cache_novlys; i++)
3551 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3552 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3553 /* && cache_ovly_table[i][SIZE] == size */ )
3554 {
3555 read_target_long_array (cache_ovly_table_base + i * word_size,
3556 (unsigned int *) cache_ovly_table[i],
3557 4, word_size, byte_order);
3558 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3559 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3560 /* && cache_ovly_table[i][SIZE] == size */ )
3561 {
3562 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3563 return 1;
3564 }
3565 else /* Warning! Warning! Target's ovly table has changed! */
3566 return 0;
3567 }
3568 return 0;
3569 }
3570
3571 /* Function: simple_overlay_update
3572 If OSECT is NULL, then update all sections' mapped state
3573 (after re-reading the entire target _ovly_table).
3574 If OSECT is non-NULL, then try to find a matching entry in the
3575 cached ovly_table and update only OSECT's mapped state.
3576 If a cached entry can't be found or the cache isn't valid, then
3577 re-read the entire cache, and go ahead and update all sections. */
3578
3579 void
3580 simple_overlay_update (struct obj_section *osect)
3581 {
3582 struct objfile *objfile;
3583
3584 /* Were we given an osect to look up? NULL means do all of them. */
3585 if (osect)
3586 /* Have we got a cached copy of the target's overlay table? */
3587 if (cache_ovly_table != NULL)
3588 {
3589 /* Does its cached location match what's currently in the
3590 symtab? */
3591 struct minimal_symbol *minsym
3592 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3593
3594 if (minsym == NULL)
3595 error (_("Error reading inferior's overlay table: couldn't "
3596 "find `_ovly_table' array\n"
3597 "in inferior. Use `overlay manual' mode."));
3598
3599 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3600 /* Then go ahead and try to look up this single section in
3601 the cache. */
3602 if (simple_overlay_update_1 (osect))
3603 /* Found it! We're done. */
3604 return;
3605 }
3606
3607 /* Cached table no good: need to read the entire table anew.
3608 Or else we want all the sections, in which case it's actually
3609 more efficient to read the whole table in one block anyway. */
3610
3611 if (! simple_read_overlay_table ())
3612 return;
3613
3614 /* Now may as well update all sections, even if only one was requested. */
3615 ALL_OBJSECTIONS (objfile, osect)
3616 if (section_is_overlay (osect))
3617 {
3618 int i, size;
3619 bfd *obfd = osect->objfile->obfd;
3620 asection *bsect = osect->the_bfd_section;
3621
3622 size = bfd_get_section_size (bsect);
3623 for (i = 0; i < cache_novlys; i++)
3624 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3625 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3626 /* && cache_ovly_table[i][SIZE] == size */ )
3627 { /* obj_section matches i'th entry in ovly_table. */
3628 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3629 break; /* finished with inner for loop: break out. */
3630 }
3631 }
3632 }
3633
3634 /* Set the output sections and output offsets for section SECTP in
3635 ABFD. The relocation code in BFD will read these offsets, so we
3636 need to be sure they're initialized. We map each section to itself,
3637 with no offset; this means that SECTP->vma will be honored. */
3638
3639 static void
3640 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3641 {
3642 sectp->output_section = sectp;
3643 sectp->output_offset = 0;
3644 }
3645
3646 /* Default implementation for sym_relocate. */
3647
3648
3649 bfd_byte *
3650 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3651 bfd_byte *buf)
3652 {
3653 bfd *abfd = objfile->obfd;
3654
3655 /* We're only interested in sections with relocation
3656 information. */
3657 if ((sectp->flags & SEC_RELOC) == 0)
3658 return NULL;
3659
3660 /* We will handle section offsets properly elsewhere, so relocate as if
3661 all sections begin at 0. */
3662 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3663
3664 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3665 }
3666
3667 /* Relocate the contents of a debug section SECTP in ABFD. The
3668 contents are stored in BUF if it is non-NULL, or returned in a
3669 malloc'd buffer otherwise.
3670
3671 For some platforms and debug info formats, shared libraries contain
3672 relocations against the debug sections (particularly for DWARF-2;
3673 one affected platform is PowerPC GNU/Linux, although it depends on
3674 the version of the linker in use). Also, ELF object files naturally
3675 have unresolved relocations for their debug sections. We need to apply
3676 the relocations in order to get the locations of symbols correct.
3677 Another example that may require relocation processing, is the
3678 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3679 debug section. */
3680
3681 bfd_byte *
3682 symfile_relocate_debug_section (struct objfile *objfile,
3683 asection *sectp, bfd_byte *buf)
3684 {
3685 gdb_assert (objfile->sf->sym_relocate);
3686
3687 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3688 }
3689
3690 struct symfile_segment_data *
3691 get_symfile_segment_data (bfd *abfd)
3692 {
3693 const struct sym_fns *sf = find_sym_fns (abfd);
3694
3695 if (sf == NULL)
3696 return NULL;
3697
3698 return sf->sym_segments (abfd);
3699 }
3700
3701 void
3702 free_symfile_segment_data (struct symfile_segment_data *data)
3703 {
3704 xfree (data->segment_bases);
3705 xfree (data->segment_sizes);
3706 xfree (data->segment_info);
3707 xfree (data);
3708 }
3709
3710
3711 /* Given:
3712 - DATA, containing segment addresses from the object file ABFD, and
3713 the mapping from ABFD's sections onto the segments that own them,
3714 and
3715 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3716 segment addresses reported by the target,
3717 store the appropriate offsets for each section in OFFSETS.
3718
3719 If there are fewer entries in SEGMENT_BASES than there are segments
3720 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3721
3722 If there are more entries, then ignore the extra. The target may
3723 not be able to distinguish between an empty data segment and a
3724 missing data segment; a missing text segment is less plausible. */
3725 int
3726 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3727 struct section_offsets *offsets,
3728 int num_segment_bases,
3729 const CORE_ADDR *segment_bases)
3730 {
3731 int i;
3732 asection *sect;
3733
3734 /* It doesn't make sense to call this function unless you have some
3735 segment base addresses. */
3736 gdb_assert (num_segment_bases > 0);
3737
3738 /* If we do not have segment mappings for the object file, we
3739 can not relocate it by segments. */
3740 gdb_assert (data != NULL);
3741 gdb_assert (data->num_segments > 0);
3742
3743 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3744 {
3745 int which = data->segment_info[i];
3746
3747 gdb_assert (0 <= which && which <= data->num_segments);
3748
3749 /* Don't bother computing offsets for sections that aren't
3750 loaded as part of any segment. */
3751 if (! which)
3752 continue;
3753
3754 /* Use the last SEGMENT_BASES entry as the address of any extra
3755 segments mentioned in DATA->segment_info. */
3756 if (which > num_segment_bases)
3757 which = num_segment_bases;
3758
3759 offsets->offsets[i] = (segment_bases[which - 1]
3760 - data->segment_bases[which - 1]);
3761 }
3762
3763 return 1;
3764 }
3765
3766 static void
3767 symfile_find_segment_sections (struct objfile *objfile)
3768 {
3769 bfd *abfd = objfile->obfd;
3770 int i;
3771 asection *sect;
3772 struct symfile_segment_data *data;
3773
3774 data = get_symfile_segment_data (objfile->obfd);
3775 if (data == NULL)
3776 return;
3777
3778 if (data->num_segments != 1 && data->num_segments != 2)
3779 {
3780 free_symfile_segment_data (data);
3781 return;
3782 }
3783
3784 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3785 {
3786 int which = data->segment_info[i];
3787
3788 if (which == 1)
3789 {
3790 if (objfile->sect_index_text == -1)
3791 objfile->sect_index_text = sect->index;
3792
3793 if (objfile->sect_index_rodata == -1)
3794 objfile->sect_index_rodata = sect->index;
3795 }
3796 else if (which == 2)
3797 {
3798 if (objfile->sect_index_data == -1)
3799 objfile->sect_index_data = sect->index;
3800
3801 if (objfile->sect_index_bss == -1)
3802 objfile->sect_index_bss = sect->index;
3803 }
3804 }
3805
3806 free_symfile_segment_data (data);
3807 }
3808
3809 void
3810 _initialize_symfile (void)
3811 {
3812 struct cmd_list_element *c;
3813
3814 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3815 Load symbol table from executable file FILE.\n\
3816 The `file' command can also load symbol tables, as well as setting the file\n\
3817 to execute."), &cmdlist);
3818 set_cmd_completer (c, filename_completer);
3819
3820 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3821 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3822 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3823 ...]\nADDR is the starting address of the file's text.\n\
3824 The optional arguments are section-name section-address pairs and\n\
3825 should be specified if the data and bss segments are not contiguous\n\
3826 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3827 &cmdlist);
3828 set_cmd_completer (c, filename_completer);
3829
3830 c = add_cmd ("load", class_files, load_command, _("\
3831 Dynamically load FILE into the running program, and record its symbols\n\
3832 for access from GDB.\n\
3833 A load OFFSET may also be given."), &cmdlist);
3834 set_cmd_completer (c, filename_completer);
3835
3836 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3837 &symbol_reloading, _("\
3838 Set dynamic symbol table reloading multiple times in one run."), _("\
3839 Show dynamic symbol table reloading multiple times in one run."), NULL,
3840 NULL,
3841 show_symbol_reloading,
3842 &setlist, &showlist);
3843
3844 add_prefix_cmd ("overlay", class_support, overlay_command,
3845 _("Commands for debugging overlays."), &overlaylist,
3846 "overlay ", 0, &cmdlist);
3847
3848 add_com_alias ("ovly", "overlay", class_alias, 1);
3849 add_com_alias ("ov", "overlay", class_alias, 1);
3850
3851 add_cmd ("map-overlay", class_support, map_overlay_command,
3852 _("Assert that an overlay section is mapped."), &overlaylist);
3853
3854 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3855 _("Assert that an overlay section is unmapped."), &overlaylist);
3856
3857 add_cmd ("list-overlays", class_support, list_overlays_command,
3858 _("List mappings of overlay sections."), &overlaylist);
3859
3860 add_cmd ("manual", class_support, overlay_manual_command,
3861 _("Enable overlay debugging."), &overlaylist);
3862 add_cmd ("off", class_support, overlay_off_command,
3863 _("Disable overlay debugging."), &overlaylist);
3864 add_cmd ("auto", class_support, overlay_auto_command,
3865 _("Enable automatic overlay debugging."), &overlaylist);
3866 add_cmd ("load-target", class_support, overlay_load_command,
3867 _("Read the overlay mapping state from the target."), &overlaylist);
3868
3869 /* Filename extension to source language lookup table: */
3870 init_filename_language_table ();
3871 add_setshow_string_noescape_cmd ("extension-language", class_files,
3872 &ext_args, _("\
3873 Set mapping between filename extension and source language."), _("\
3874 Show mapping between filename extension and source language."), _("\
3875 Usage: set extension-language .foo bar"),
3876 set_ext_lang_command,
3877 show_ext_args,
3878 &setlist, &showlist);
3879
3880 add_info ("extensions", info_ext_lang_command,
3881 _("All filename extensions associated with a source language."));
3882
3883 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3884 &debug_file_directory, _("\
3885 Set the directories where separate debug symbols are searched for."), _("\
3886 Show the directories where separate debug symbols are searched for."), _("\
3887 Separate debug symbols are first searched for in the same\n\
3888 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3889 and lastly at the path of the directory of the binary with\n\
3890 each global debug-file-directory component prepended."),
3891 NULL,
3892 show_debug_file_directory,
3893 &setlist, &showlist);
3894 }
This page took 0.107845 seconds and 4 git commands to generate.