* dwarf2read.c (read_str_index): Delete arg cu. All callers updated.
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57 #include "stack.h"
58 #include "gdb_bfd.h"
59 #include "cli/cli-utils.h"
60
61 #include <sys/types.h>
62 #include <fcntl.h>
63 #include <string.h>
64 #include <sys/stat.h>
65 #include <ctype.h>
66 #include <time.h>
67 #include <sys/time.h>
68
69 #include "psymtab.h"
70
71 int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
73 void (*deprecated_show_load_progress) (const char *section,
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
77 unsigned long total_size);
78 void (*deprecated_pre_add_symbol_hook) (const char *);
79 void (*deprecated_post_add_symbol_hook) (void);
80
81 static void clear_symtab_users_cleanup (void *ignore);
82
83 /* Global variables owned by this file. */
84 int readnow_symbol_files; /* Read full symbols immediately. */
85
86 /* Functions this file defines. */
87
88 static void load_command (char *, int);
89
90 static void symbol_file_add_main_1 (const char *args, int from_tty, int flags);
91
92 static void add_symbol_file_command (char *, int);
93
94 static const struct sym_fns *find_sym_fns (bfd *);
95
96 static void decrement_reading_symtab (void *);
97
98 static void overlay_invalidate_all (void);
99
100 static void overlay_auto_command (char *, int);
101
102 static void overlay_manual_command (char *, int);
103
104 static void overlay_off_command (char *, int);
105
106 static void overlay_load_command (char *, int);
107
108 static void overlay_command (char *, int);
109
110 static void simple_free_overlay_table (void);
111
112 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
113 enum bfd_endian);
114
115 static int simple_read_overlay_table (void);
116
117 static int simple_overlay_update_1 (struct obj_section *);
118
119 static void add_filename_language (char *ext, enum language lang);
120
121 static void info_ext_lang_command (char *args, int from_tty);
122
123 static void init_filename_language_table (void);
124
125 static void symfile_find_segment_sections (struct objfile *objfile);
126
127 void _initialize_symfile (void);
128
129 /* List of all available sym_fns. On gdb startup, each object file reader
130 calls add_symtab_fns() to register information on each format it is
131 prepared to read. */
132
133 typedef struct
134 {
135 /* BFD flavour that we handle. */
136 enum bfd_flavour sym_flavour;
137
138 /* The "vtable" of symbol functions. */
139 const struct sym_fns *sym_fns;
140 } registered_sym_fns;
141
142 DEF_VEC_O (registered_sym_fns);
143
144 static VEC (registered_sym_fns) *symtab_fns = NULL;
145
146 /* If non-zero, shared library symbols will be added automatically
147 when the inferior is created, new libraries are loaded, or when
148 attaching to the inferior. This is almost always what users will
149 want to have happen; but for very large programs, the startup time
150 will be excessive, and so if this is a problem, the user can clear
151 this flag and then add the shared library symbols as needed. Note
152 that there is a potential for confusion, since if the shared
153 library symbols are not loaded, commands like "info fun" will *not*
154 report all the functions that are actually present. */
155
156 int auto_solib_add = 1;
157 \f
158
159 /* True if we are reading a symbol table. */
160
161 int currently_reading_symtab = 0;
162
163 static void
164 decrement_reading_symtab (void *dummy)
165 {
166 currently_reading_symtab--;
167 gdb_assert (currently_reading_symtab >= 0);
168 }
169
170 /* Increment currently_reading_symtab and return a cleanup that can be
171 used to decrement it. */
172
173 struct cleanup *
174 increment_reading_symtab (void)
175 {
176 ++currently_reading_symtab;
177 gdb_assert (currently_reading_symtab > 0);
178 return make_cleanup (decrement_reading_symtab, NULL);
179 }
180
181 /* Remember the lowest-addressed loadable section we've seen.
182 This function is called via bfd_map_over_sections.
183
184 In case of equal vmas, the section with the largest size becomes the
185 lowest-addressed loadable section.
186
187 If the vmas and sizes are equal, the last section is considered the
188 lowest-addressed loadable section. */
189
190 void
191 find_lowest_section (bfd *abfd, asection *sect, void *obj)
192 {
193 asection **lowest = (asection **) obj;
194
195 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
196 return;
197 if (!*lowest)
198 *lowest = sect; /* First loadable section */
199 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
200 *lowest = sect; /* A lower loadable section */
201 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
202 && (bfd_section_size (abfd, (*lowest))
203 <= bfd_section_size (abfd, sect)))
204 *lowest = sect;
205 }
206
207 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
208 new object's 'num_sections' field is set to 0; it must be updated
209 by the caller. */
210
211 struct section_addr_info *
212 alloc_section_addr_info (size_t num_sections)
213 {
214 struct section_addr_info *sap;
215 size_t size;
216
217 size = (sizeof (struct section_addr_info)
218 + sizeof (struct other_sections) * (num_sections - 1));
219 sap = (struct section_addr_info *) xmalloc (size);
220 memset (sap, 0, size);
221
222 return sap;
223 }
224
225 /* Build (allocate and populate) a section_addr_info struct from
226 an existing section table. */
227
228 extern struct section_addr_info *
229 build_section_addr_info_from_section_table (const struct target_section *start,
230 const struct target_section *end)
231 {
232 struct section_addr_info *sap;
233 const struct target_section *stp;
234 int oidx;
235
236 sap = alloc_section_addr_info (end - start);
237
238 for (stp = start, oidx = 0; stp != end; stp++)
239 {
240 struct bfd_section *asect = stp->the_bfd_section;
241 bfd *abfd = asect->owner;
242
243 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
244 && oidx < end - start)
245 {
246 sap->other[oidx].addr = stp->addr;
247 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
248 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
249 oidx++;
250 }
251 }
252
253 sap->num_sections = oidx;
254
255 return sap;
256 }
257
258 /* Create a section_addr_info from section offsets in ABFD. */
259
260 static struct section_addr_info *
261 build_section_addr_info_from_bfd (bfd *abfd)
262 {
263 struct section_addr_info *sap;
264 int i;
265 struct bfd_section *sec;
266
267 sap = alloc_section_addr_info (bfd_count_sections (abfd));
268 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
269 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
270 {
271 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
272 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
273 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
274 i++;
275 }
276
277 sap->num_sections = i;
278
279 return sap;
280 }
281
282 /* Create a section_addr_info from section offsets in OBJFILE. */
283
284 struct section_addr_info *
285 build_section_addr_info_from_objfile (const struct objfile *objfile)
286 {
287 struct section_addr_info *sap;
288 int i;
289
290 /* Before reread_symbols gets rewritten it is not safe to call:
291 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
292 */
293 sap = build_section_addr_info_from_bfd (objfile->obfd);
294 for (i = 0; i < sap->num_sections; i++)
295 {
296 int sectindex = sap->other[i].sectindex;
297
298 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
299 }
300 return sap;
301 }
302
303 /* Free all memory allocated by build_section_addr_info_from_section_table. */
304
305 extern void
306 free_section_addr_info (struct section_addr_info *sap)
307 {
308 int idx;
309
310 for (idx = 0; idx < sap->num_sections; idx++)
311 xfree (sap->other[idx].name);
312 xfree (sap);
313 }
314
315 /* Initialize OBJFILE's sect_index_* members. */
316
317 static void
318 init_objfile_sect_indices (struct objfile *objfile)
319 {
320 asection *sect;
321 int i;
322
323 sect = bfd_get_section_by_name (objfile->obfd, ".text");
324 if (sect)
325 objfile->sect_index_text = sect->index;
326
327 sect = bfd_get_section_by_name (objfile->obfd, ".data");
328 if (sect)
329 objfile->sect_index_data = sect->index;
330
331 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
332 if (sect)
333 objfile->sect_index_bss = sect->index;
334
335 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
336 if (sect)
337 objfile->sect_index_rodata = sect->index;
338
339 /* This is where things get really weird... We MUST have valid
340 indices for the various sect_index_* members or gdb will abort.
341 So if for example, there is no ".text" section, we have to
342 accomodate that. First, check for a file with the standard
343 one or two segments. */
344
345 symfile_find_segment_sections (objfile);
346
347 /* Except when explicitly adding symbol files at some address,
348 section_offsets contains nothing but zeros, so it doesn't matter
349 which slot in section_offsets the individual sect_index_* members
350 index into. So if they are all zero, it is safe to just point
351 all the currently uninitialized indices to the first slot. But
352 beware: if this is the main executable, it may be relocated
353 later, e.g. by the remote qOffsets packet, and then this will
354 be wrong! That's why we try segments first. */
355
356 for (i = 0; i < objfile->num_sections; i++)
357 {
358 if (ANOFFSET (objfile->section_offsets, i) != 0)
359 {
360 break;
361 }
362 }
363 if (i == objfile->num_sections)
364 {
365 if (objfile->sect_index_text == -1)
366 objfile->sect_index_text = 0;
367 if (objfile->sect_index_data == -1)
368 objfile->sect_index_data = 0;
369 if (objfile->sect_index_bss == -1)
370 objfile->sect_index_bss = 0;
371 if (objfile->sect_index_rodata == -1)
372 objfile->sect_index_rodata = 0;
373 }
374 }
375
376 /* The arguments to place_section. */
377
378 struct place_section_arg
379 {
380 struct section_offsets *offsets;
381 CORE_ADDR lowest;
382 };
383
384 /* Find a unique offset to use for loadable section SECT if
385 the user did not provide an offset. */
386
387 static void
388 place_section (bfd *abfd, asection *sect, void *obj)
389 {
390 struct place_section_arg *arg = obj;
391 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
392 int done;
393 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
394
395 /* We are only interested in allocated sections. */
396 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
397 return;
398
399 /* If the user specified an offset, honor it. */
400 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
401 return;
402
403 /* Otherwise, let's try to find a place for the section. */
404 start_addr = (arg->lowest + align - 1) & -align;
405
406 do {
407 asection *cur_sec;
408
409 done = 1;
410
411 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
412 {
413 int indx = cur_sec->index;
414
415 /* We don't need to compare against ourself. */
416 if (cur_sec == sect)
417 continue;
418
419 /* We can only conflict with allocated sections. */
420 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
421 continue;
422
423 /* If the section offset is 0, either the section has not been placed
424 yet, or it was the lowest section placed (in which case LOWEST
425 will be past its end). */
426 if (offsets[indx] == 0)
427 continue;
428
429 /* If this section would overlap us, then we must move up. */
430 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
431 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
432 {
433 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
434 start_addr = (start_addr + align - 1) & -align;
435 done = 0;
436 break;
437 }
438
439 /* Otherwise, we appear to be OK. So far. */
440 }
441 }
442 while (!done);
443
444 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
445 arg->lowest = start_addr + bfd_get_section_size (sect);
446 }
447
448 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
449 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
450 entries. */
451
452 void
453 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
454 int num_sections,
455 const struct section_addr_info *addrs)
456 {
457 int i;
458
459 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
460
461 /* Now calculate offsets for section that were specified by the caller. */
462 for (i = 0; i < addrs->num_sections; i++)
463 {
464 const struct other_sections *osp;
465
466 osp = &addrs->other[i];
467 if (osp->sectindex == -1)
468 continue;
469
470 /* Record all sections in offsets. */
471 /* The section_offsets in the objfile are here filled in using
472 the BFD index. */
473 section_offsets->offsets[osp->sectindex] = osp->addr;
474 }
475 }
476
477 /* Transform section name S for a name comparison. prelink can split section
478 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
479 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
480 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
481 (`.sbss') section has invalid (increased) virtual address. */
482
483 static const char *
484 addr_section_name (const char *s)
485 {
486 if (strcmp (s, ".dynbss") == 0)
487 return ".bss";
488 if (strcmp (s, ".sdynbss") == 0)
489 return ".sbss";
490
491 return s;
492 }
493
494 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
495 their (name, sectindex) pair. sectindex makes the sort by name stable. */
496
497 static int
498 addrs_section_compar (const void *ap, const void *bp)
499 {
500 const struct other_sections *a = *((struct other_sections **) ap);
501 const struct other_sections *b = *((struct other_sections **) bp);
502 int retval;
503
504 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
505 if (retval)
506 return retval;
507
508 return a->sectindex - b->sectindex;
509 }
510
511 /* Provide sorted array of pointers to sections of ADDRS. The array is
512 terminated by NULL. Caller is responsible to call xfree for it. */
513
514 static struct other_sections **
515 addrs_section_sort (struct section_addr_info *addrs)
516 {
517 struct other_sections **array;
518 int i;
519
520 /* `+ 1' for the NULL terminator. */
521 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
522 for (i = 0; i < addrs->num_sections; i++)
523 array[i] = &addrs->other[i];
524 array[i] = NULL;
525
526 qsort (array, i, sizeof (*array), addrs_section_compar);
527
528 return array;
529 }
530
531 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
532 also SECTINDEXes specific to ABFD there. This function can be used to
533 rebase ADDRS to start referencing different BFD than before. */
534
535 void
536 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
537 {
538 asection *lower_sect;
539 CORE_ADDR lower_offset;
540 int i;
541 struct cleanup *my_cleanup;
542 struct section_addr_info *abfd_addrs;
543 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
544 struct other_sections **addrs_to_abfd_addrs;
545
546 /* Find lowest loadable section to be used as starting point for
547 continguous sections. */
548 lower_sect = NULL;
549 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
550 if (lower_sect == NULL)
551 {
552 warning (_("no loadable sections found in added symbol-file %s"),
553 bfd_get_filename (abfd));
554 lower_offset = 0;
555 }
556 else
557 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
558
559 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
560 in ABFD. Section names are not unique - there can be multiple sections of
561 the same name. Also the sections of the same name do not have to be
562 adjacent to each other. Some sections may be present only in one of the
563 files. Even sections present in both files do not have to be in the same
564 order.
565
566 Use stable sort by name for the sections in both files. Then linearly
567 scan both lists matching as most of the entries as possible. */
568
569 addrs_sorted = addrs_section_sort (addrs);
570 my_cleanup = make_cleanup (xfree, addrs_sorted);
571
572 abfd_addrs = build_section_addr_info_from_bfd (abfd);
573 make_cleanup_free_section_addr_info (abfd_addrs);
574 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
575 make_cleanup (xfree, abfd_addrs_sorted);
576
577 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
578 ABFD_ADDRS_SORTED. */
579
580 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
581 * addrs->num_sections);
582 make_cleanup (xfree, addrs_to_abfd_addrs);
583
584 while (*addrs_sorted)
585 {
586 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
587
588 while (*abfd_addrs_sorted
589 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
590 sect_name) < 0)
591 abfd_addrs_sorted++;
592
593 if (*abfd_addrs_sorted
594 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
595 sect_name) == 0)
596 {
597 int index_in_addrs;
598
599 /* Make the found item directly addressable from ADDRS. */
600 index_in_addrs = *addrs_sorted - addrs->other;
601 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
602 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
603
604 /* Never use the same ABFD entry twice. */
605 abfd_addrs_sorted++;
606 }
607
608 addrs_sorted++;
609 }
610
611 /* Calculate offsets for the loadable sections.
612 FIXME! Sections must be in order of increasing loadable section
613 so that contiguous sections can use the lower-offset!!!
614
615 Adjust offsets if the segments are not contiguous.
616 If the section is contiguous, its offset should be set to
617 the offset of the highest loadable section lower than it
618 (the loadable section directly below it in memory).
619 this_offset = lower_offset = lower_addr - lower_orig_addr */
620
621 for (i = 0; i < addrs->num_sections; i++)
622 {
623 struct other_sections *sect = addrs_to_abfd_addrs[i];
624
625 if (sect)
626 {
627 /* This is the index used by BFD. */
628 addrs->other[i].sectindex = sect->sectindex;
629
630 if (addrs->other[i].addr != 0)
631 {
632 addrs->other[i].addr -= sect->addr;
633 lower_offset = addrs->other[i].addr;
634 }
635 else
636 addrs->other[i].addr = lower_offset;
637 }
638 else
639 {
640 /* addr_section_name transformation is not used for SECT_NAME. */
641 const char *sect_name = addrs->other[i].name;
642
643 /* This section does not exist in ABFD, which is normally
644 unexpected and we want to issue a warning.
645
646 However, the ELF prelinker does create a few sections which are
647 marked in the main executable as loadable (they are loaded in
648 memory from the DYNAMIC segment) and yet are not present in
649 separate debug info files. This is fine, and should not cause
650 a warning. Shared libraries contain just the section
651 ".gnu.liblist" but it is not marked as loadable there. There is
652 no other way to identify them than by their name as the sections
653 created by prelink have no special flags.
654
655 For the sections `.bss' and `.sbss' see addr_section_name. */
656
657 if (!(strcmp (sect_name, ".gnu.liblist") == 0
658 || strcmp (sect_name, ".gnu.conflict") == 0
659 || (strcmp (sect_name, ".bss") == 0
660 && i > 0
661 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
662 && addrs_to_abfd_addrs[i - 1] != NULL)
663 || (strcmp (sect_name, ".sbss") == 0
664 && i > 0
665 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
666 && addrs_to_abfd_addrs[i - 1] != NULL)))
667 warning (_("section %s not found in %s"), sect_name,
668 bfd_get_filename (abfd));
669
670 addrs->other[i].addr = 0;
671 addrs->other[i].sectindex = -1;
672 }
673 }
674
675 do_cleanups (my_cleanup);
676 }
677
678 /* Parse the user's idea of an offset for dynamic linking, into our idea
679 of how to represent it for fast symbol reading. This is the default
680 version of the sym_fns.sym_offsets function for symbol readers that
681 don't need to do anything special. It allocates a section_offsets table
682 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
683
684 void
685 default_symfile_offsets (struct objfile *objfile,
686 const struct section_addr_info *addrs)
687 {
688 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
689 objfile->section_offsets = (struct section_offsets *)
690 obstack_alloc (&objfile->objfile_obstack,
691 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
692 relative_addr_info_to_section_offsets (objfile->section_offsets,
693 objfile->num_sections, addrs);
694
695 /* For relocatable files, all loadable sections will start at zero.
696 The zero is meaningless, so try to pick arbitrary addresses such
697 that no loadable sections overlap. This algorithm is quadratic,
698 but the number of sections in a single object file is generally
699 small. */
700 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
701 {
702 struct place_section_arg arg;
703 bfd *abfd = objfile->obfd;
704 asection *cur_sec;
705
706 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
707 /* We do not expect this to happen; just skip this step if the
708 relocatable file has a section with an assigned VMA. */
709 if (bfd_section_vma (abfd, cur_sec) != 0)
710 break;
711
712 if (cur_sec == NULL)
713 {
714 CORE_ADDR *offsets = objfile->section_offsets->offsets;
715
716 /* Pick non-overlapping offsets for sections the user did not
717 place explicitly. */
718 arg.offsets = objfile->section_offsets;
719 arg.lowest = 0;
720 bfd_map_over_sections (objfile->obfd, place_section, &arg);
721
722 /* Correctly filling in the section offsets is not quite
723 enough. Relocatable files have two properties that
724 (most) shared objects do not:
725
726 - Their debug information will contain relocations. Some
727 shared libraries do also, but many do not, so this can not
728 be assumed.
729
730 - If there are multiple code sections they will be loaded
731 at different relative addresses in memory than they are
732 in the objfile, since all sections in the file will start
733 at address zero.
734
735 Because GDB has very limited ability to map from an
736 address in debug info to the correct code section,
737 it relies on adding SECT_OFF_TEXT to things which might be
738 code. If we clear all the section offsets, and set the
739 section VMAs instead, then symfile_relocate_debug_section
740 will return meaningful debug information pointing at the
741 correct sections.
742
743 GDB has too many different data structures for section
744 addresses - a bfd, objfile, and so_list all have section
745 tables, as does exec_ops. Some of these could probably
746 be eliminated. */
747
748 for (cur_sec = abfd->sections; cur_sec != NULL;
749 cur_sec = cur_sec->next)
750 {
751 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
752 continue;
753
754 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
755 exec_set_section_address (bfd_get_filename (abfd),
756 cur_sec->index,
757 offsets[cur_sec->index]);
758 offsets[cur_sec->index] = 0;
759 }
760 }
761 }
762
763 /* Remember the bfd indexes for the .text, .data, .bss and
764 .rodata sections. */
765 init_objfile_sect_indices (objfile);
766 }
767
768 /* Divide the file into segments, which are individual relocatable units.
769 This is the default version of the sym_fns.sym_segments function for
770 symbol readers that do not have an explicit representation of segments.
771 It assumes that object files do not have segments, and fully linked
772 files have a single segment. */
773
774 struct symfile_segment_data *
775 default_symfile_segments (bfd *abfd)
776 {
777 int num_sections, i;
778 asection *sect;
779 struct symfile_segment_data *data;
780 CORE_ADDR low, high;
781
782 /* Relocatable files contain enough information to position each
783 loadable section independently; they should not be relocated
784 in segments. */
785 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
786 return NULL;
787
788 /* Make sure there is at least one loadable section in the file. */
789 for (sect = abfd->sections; sect != NULL; sect = sect->next)
790 {
791 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
792 continue;
793
794 break;
795 }
796 if (sect == NULL)
797 return NULL;
798
799 low = bfd_get_section_vma (abfd, sect);
800 high = low + bfd_get_section_size (sect);
801
802 data = XCNEW (struct symfile_segment_data);
803 data->num_segments = 1;
804 data->segment_bases = XCNEW (CORE_ADDR);
805 data->segment_sizes = XCNEW (CORE_ADDR);
806
807 num_sections = bfd_count_sections (abfd);
808 data->segment_info = XCNEWVEC (int, num_sections);
809
810 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
811 {
812 CORE_ADDR vma;
813
814 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
815 continue;
816
817 vma = bfd_get_section_vma (abfd, sect);
818 if (vma < low)
819 low = vma;
820 if (vma + bfd_get_section_size (sect) > high)
821 high = vma + bfd_get_section_size (sect);
822
823 data->segment_info[i] = 1;
824 }
825
826 data->segment_bases[0] = low;
827 data->segment_sizes[0] = high - low;
828
829 return data;
830 }
831
832 /* This is a convenience function to call sym_read for OBJFILE and
833 possibly force the partial symbols to be read. */
834
835 static void
836 read_symbols (struct objfile *objfile, int add_flags)
837 {
838 (*objfile->sf->sym_read) (objfile, add_flags);
839 objfile->per_bfd->minsyms_read = 1;
840
841 /* find_separate_debug_file_in_section should be called only if there is
842 single binary with no existing separate debug info file. */
843 if (!objfile_has_partial_symbols (objfile)
844 && objfile->separate_debug_objfile == NULL
845 && objfile->separate_debug_objfile_backlink == NULL)
846 {
847 bfd *abfd = find_separate_debug_file_in_section (objfile);
848 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
849
850 if (abfd != NULL)
851 {
852 /* find_separate_debug_file_in_section uses the same filename for the
853 virtual section-as-bfd like the bfd filename containing the
854 section. Therefore use also non-canonical name form for the same
855 file containing the section. */
856 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
857 objfile);
858 }
859
860 do_cleanups (cleanup);
861 }
862 if ((add_flags & SYMFILE_NO_READ) == 0)
863 require_partial_symbols (objfile, 0);
864 }
865
866 /* Initialize entry point information for this objfile. */
867
868 static void
869 init_entry_point_info (struct objfile *objfile)
870 {
871 struct entry_info *ei = &objfile->per_bfd->ei;
872
873 if (ei->initialized)
874 return;
875 ei->initialized = 1;
876
877 /* Save startup file's range of PC addresses to help blockframe.c
878 decide where the bottom of the stack is. */
879
880 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
881 {
882 /* Executable file -- record its entry point so we'll recognize
883 the startup file because it contains the entry point. */
884 ei->entry_point = bfd_get_start_address (objfile->obfd);
885 ei->entry_point_p = 1;
886 }
887 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
888 && bfd_get_start_address (objfile->obfd) != 0)
889 {
890 /* Some shared libraries may have entry points set and be
891 runnable. There's no clear way to indicate this, so just check
892 for values other than zero. */
893 ei->entry_point = bfd_get_start_address (objfile->obfd);
894 ei->entry_point_p = 1;
895 }
896 else
897 {
898 /* Examination of non-executable.o files. Short-circuit this stuff. */
899 ei->entry_point_p = 0;
900 }
901
902 if (ei->entry_point_p)
903 {
904 struct obj_section *osect;
905 CORE_ADDR entry_point = ei->entry_point;
906 int found;
907
908 /* Make certain that the address points at real code, and not a
909 function descriptor. */
910 entry_point
911 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
912 entry_point,
913 &current_target);
914
915 /* Remove any ISA markers, so that this matches entries in the
916 symbol table. */
917 ei->entry_point
918 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
919
920 found = 0;
921 ALL_OBJFILE_OSECTIONS (objfile, osect)
922 {
923 struct bfd_section *sect = osect->the_bfd_section;
924
925 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
926 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
927 + bfd_get_section_size (sect)))
928 {
929 ei->the_bfd_section_index
930 = gdb_bfd_section_index (objfile->obfd, sect);
931 found = 1;
932 break;
933 }
934 }
935
936 if (!found)
937 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
938 }
939 }
940
941 /* Process a symbol file, as either the main file or as a dynamically
942 loaded file.
943
944 This function does not set the OBJFILE's entry-point info.
945
946 OBJFILE is where the symbols are to be read from.
947
948 ADDRS is the list of section load addresses. If the user has given
949 an 'add-symbol-file' command, then this is the list of offsets and
950 addresses he or she provided as arguments to the command; or, if
951 we're handling a shared library, these are the actual addresses the
952 sections are loaded at, according to the inferior's dynamic linker
953 (as gleaned by GDB's shared library code). We convert each address
954 into an offset from the section VMA's as it appears in the object
955 file, and then call the file's sym_offsets function to convert this
956 into a format-specific offset table --- a `struct section_offsets'.
957
958 ADD_FLAGS encodes verbosity level, whether this is main symbol or
959 an extra symbol file such as dynamically loaded code, and wether
960 breakpoint reset should be deferred. */
961
962 static void
963 syms_from_objfile_1 (struct objfile *objfile,
964 struct section_addr_info *addrs,
965 int add_flags)
966 {
967 struct section_addr_info *local_addr = NULL;
968 struct cleanup *old_chain;
969 const int mainline = add_flags & SYMFILE_MAINLINE;
970
971 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
972
973 if (objfile->sf == NULL)
974 {
975 /* No symbols to load, but we still need to make sure
976 that the section_offsets table is allocated. */
977 int num_sections = gdb_bfd_count_sections (objfile->obfd);
978 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
979
980 objfile->num_sections = num_sections;
981 objfile->section_offsets
982 = obstack_alloc (&objfile->objfile_obstack, size);
983 memset (objfile->section_offsets, 0, size);
984 return;
985 }
986
987 /* Make sure that partially constructed symbol tables will be cleaned up
988 if an error occurs during symbol reading. */
989 old_chain = make_cleanup_free_objfile (objfile);
990
991 /* If ADDRS is NULL, put together a dummy address list.
992 We now establish the convention that an addr of zero means
993 no load address was specified. */
994 if (! addrs)
995 {
996 local_addr = alloc_section_addr_info (1);
997 make_cleanup (xfree, local_addr);
998 addrs = local_addr;
999 }
1000
1001 if (mainline)
1002 {
1003 /* We will modify the main symbol table, make sure that all its users
1004 will be cleaned up if an error occurs during symbol reading. */
1005 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1006
1007 /* Since no error yet, throw away the old symbol table. */
1008
1009 if (symfile_objfile != NULL)
1010 {
1011 free_objfile (symfile_objfile);
1012 gdb_assert (symfile_objfile == NULL);
1013 }
1014
1015 /* Currently we keep symbols from the add-symbol-file command.
1016 If the user wants to get rid of them, they should do "symbol-file"
1017 without arguments first. Not sure this is the best behavior
1018 (PR 2207). */
1019
1020 (*objfile->sf->sym_new_init) (objfile);
1021 }
1022
1023 /* Convert addr into an offset rather than an absolute address.
1024 We find the lowest address of a loaded segment in the objfile,
1025 and assume that <addr> is where that got loaded.
1026
1027 We no longer warn if the lowest section is not a text segment (as
1028 happens for the PA64 port. */
1029 if (addrs->num_sections > 0)
1030 addr_info_make_relative (addrs, objfile->obfd);
1031
1032 /* Initialize symbol reading routines for this objfile, allow complaints to
1033 appear for this new file, and record how verbose to be, then do the
1034 initial symbol reading for this file. */
1035
1036 (*objfile->sf->sym_init) (objfile);
1037 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1038
1039 (*objfile->sf->sym_offsets) (objfile, addrs);
1040
1041 read_symbols (objfile, add_flags);
1042
1043 /* Discard cleanups as symbol reading was successful. */
1044
1045 discard_cleanups (old_chain);
1046 xfree (local_addr);
1047 }
1048
1049 /* Same as syms_from_objfile_1, but also initializes the objfile
1050 entry-point info. */
1051
1052 static void
1053 syms_from_objfile (struct objfile *objfile,
1054 struct section_addr_info *addrs,
1055 int add_flags)
1056 {
1057 syms_from_objfile_1 (objfile, addrs, add_flags);
1058 init_entry_point_info (objfile);
1059 }
1060
1061 /* Perform required actions after either reading in the initial
1062 symbols for a new objfile, or mapping in the symbols from a reusable
1063 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1064
1065 void
1066 new_symfile_objfile (struct objfile *objfile, int add_flags)
1067 {
1068 /* If this is the main symbol file we have to clean up all users of the
1069 old main symbol file. Otherwise it is sufficient to fixup all the
1070 breakpoints that may have been redefined by this symbol file. */
1071 if (add_flags & SYMFILE_MAINLINE)
1072 {
1073 /* OK, make it the "real" symbol file. */
1074 symfile_objfile = objfile;
1075
1076 clear_symtab_users (add_flags);
1077 }
1078 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1079 {
1080 breakpoint_re_set ();
1081 }
1082
1083 /* We're done reading the symbol file; finish off complaints. */
1084 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1085 }
1086
1087 /* Process a symbol file, as either the main file or as a dynamically
1088 loaded file.
1089
1090 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1091 A new reference is acquired by this function.
1092
1093 For NAME description see allocate_objfile's definition.
1094
1095 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1096 extra, such as dynamically loaded code, and what to do with breakpoins.
1097
1098 ADDRS is as described for syms_from_objfile_1, above.
1099 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1100
1101 PARENT is the original objfile if ABFD is a separate debug info file.
1102 Otherwise PARENT is NULL.
1103
1104 Upon success, returns a pointer to the objfile that was added.
1105 Upon failure, jumps back to command level (never returns). */
1106
1107 static struct objfile *
1108 symbol_file_add_with_addrs (bfd *abfd, const char *name, int add_flags,
1109 struct section_addr_info *addrs,
1110 int flags, struct objfile *parent)
1111 {
1112 struct objfile *objfile;
1113 const int from_tty = add_flags & SYMFILE_VERBOSE;
1114 const int mainline = add_flags & SYMFILE_MAINLINE;
1115 const int should_print = ((from_tty || info_verbose)
1116 && (readnow_symbol_files
1117 || (add_flags & SYMFILE_NO_READ) == 0));
1118
1119 if (readnow_symbol_files)
1120 {
1121 flags |= OBJF_READNOW;
1122 add_flags &= ~SYMFILE_NO_READ;
1123 }
1124
1125 /* Give user a chance to burp if we'd be
1126 interactively wiping out any existing symbols. */
1127
1128 if ((have_full_symbols () || have_partial_symbols ())
1129 && mainline
1130 && from_tty
1131 && !query (_("Load new symbol table from \"%s\"? "), name))
1132 error (_("Not confirmed."));
1133
1134 objfile = allocate_objfile (abfd, name,
1135 flags | (mainline ? OBJF_MAINLINE : 0));
1136
1137 if (parent)
1138 add_separate_debug_objfile (objfile, parent);
1139
1140 /* We either created a new mapped symbol table, mapped an existing
1141 symbol table file which has not had initial symbol reading
1142 performed, or need to read an unmapped symbol table. */
1143 if (should_print)
1144 {
1145 if (deprecated_pre_add_symbol_hook)
1146 deprecated_pre_add_symbol_hook (name);
1147 else
1148 {
1149 printf_unfiltered (_("Reading symbols from %s..."), name);
1150 wrap_here ("");
1151 gdb_flush (gdb_stdout);
1152 }
1153 }
1154 syms_from_objfile (objfile, addrs, add_flags);
1155
1156 /* We now have at least a partial symbol table. Check to see if the
1157 user requested that all symbols be read on initial access via either
1158 the gdb startup command line or on a per symbol file basis. Expand
1159 all partial symbol tables for this objfile if so. */
1160
1161 if ((flags & OBJF_READNOW))
1162 {
1163 if (should_print)
1164 {
1165 printf_unfiltered (_("expanding to full symbols..."));
1166 wrap_here ("");
1167 gdb_flush (gdb_stdout);
1168 }
1169
1170 if (objfile->sf)
1171 objfile->sf->qf->expand_all_symtabs (objfile);
1172 }
1173
1174 if (should_print && !objfile_has_symbols (objfile))
1175 {
1176 wrap_here ("");
1177 printf_unfiltered (_("(no debugging symbols found)..."));
1178 wrap_here ("");
1179 }
1180
1181 if (should_print)
1182 {
1183 if (deprecated_post_add_symbol_hook)
1184 deprecated_post_add_symbol_hook ();
1185 else
1186 printf_unfiltered (_("done.\n"));
1187 }
1188
1189 /* We print some messages regardless of whether 'from_tty ||
1190 info_verbose' is true, so make sure they go out at the right
1191 time. */
1192 gdb_flush (gdb_stdout);
1193
1194 if (objfile->sf == NULL)
1195 {
1196 observer_notify_new_objfile (objfile);
1197 return objfile; /* No symbols. */
1198 }
1199
1200 new_symfile_objfile (objfile, add_flags);
1201
1202 observer_notify_new_objfile (objfile);
1203
1204 bfd_cache_close_all ();
1205 return (objfile);
1206 }
1207
1208 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1209 see allocate_objfile's definition. */
1210
1211 void
1212 symbol_file_add_separate (bfd *bfd, const char *name, int symfile_flags,
1213 struct objfile *objfile)
1214 {
1215 struct objfile *new_objfile;
1216 struct section_addr_info *sap;
1217 struct cleanup *my_cleanup;
1218
1219 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1220 because sections of BFD may not match sections of OBJFILE and because
1221 vma may have been modified by tools such as prelink. */
1222 sap = build_section_addr_info_from_objfile (objfile);
1223 my_cleanup = make_cleanup_free_section_addr_info (sap);
1224
1225 new_objfile = symbol_file_add_with_addrs
1226 (bfd, name, symfile_flags, sap,
1227 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1228 | OBJF_USERLOADED),
1229 objfile);
1230
1231 do_cleanups (my_cleanup);
1232 }
1233
1234 /* Process the symbol file ABFD, as either the main file or as a
1235 dynamically loaded file.
1236 See symbol_file_add_with_addrs's comments for details. */
1237
1238 struct objfile *
1239 symbol_file_add_from_bfd (bfd *abfd, const char *name, int add_flags,
1240 struct section_addr_info *addrs,
1241 int flags, struct objfile *parent)
1242 {
1243 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1244 parent);
1245 }
1246
1247 /* Process a symbol file, as either the main file or as a dynamically
1248 loaded file. See symbol_file_add_with_addrs's comments for details. */
1249
1250 struct objfile *
1251 symbol_file_add (const char *name, int add_flags,
1252 struct section_addr_info *addrs, int flags)
1253 {
1254 bfd *bfd = symfile_bfd_open (name);
1255 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1256 struct objfile *objf;
1257
1258 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
1259 do_cleanups (cleanup);
1260 return objf;
1261 }
1262
1263 /* Call symbol_file_add() with default values and update whatever is
1264 affected by the loading of a new main().
1265 Used when the file is supplied in the gdb command line
1266 and by some targets with special loading requirements.
1267 The auxiliary function, symbol_file_add_main_1(), has the flags
1268 argument for the switches that can only be specified in the symbol_file
1269 command itself. */
1270
1271 void
1272 symbol_file_add_main (const char *args, int from_tty)
1273 {
1274 symbol_file_add_main_1 (args, from_tty, 0);
1275 }
1276
1277 static void
1278 symbol_file_add_main_1 (const char *args, int from_tty, int flags)
1279 {
1280 const int add_flags = (current_inferior ()->symfile_flags
1281 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1282
1283 symbol_file_add (args, add_flags, NULL, flags);
1284
1285 /* Getting new symbols may change our opinion about
1286 what is frameless. */
1287 reinit_frame_cache ();
1288
1289 if ((flags & SYMFILE_NO_READ) == 0)
1290 set_initial_language ();
1291 }
1292
1293 void
1294 symbol_file_clear (int from_tty)
1295 {
1296 if ((have_full_symbols () || have_partial_symbols ())
1297 && from_tty
1298 && (symfile_objfile
1299 ? !query (_("Discard symbol table from `%s'? "),
1300 objfile_name (symfile_objfile))
1301 : !query (_("Discard symbol table? "))))
1302 error (_("Not confirmed."));
1303
1304 /* solib descriptors may have handles to objfiles. Wipe them before their
1305 objfiles get stale by free_all_objfiles. */
1306 no_shared_libraries (NULL, from_tty);
1307
1308 free_all_objfiles ();
1309
1310 gdb_assert (symfile_objfile == NULL);
1311 if (from_tty)
1312 printf_unfiltered (_("No symbol file now.\n"));
1313 }
1314
1315 static int
1316 separate_debug_file_exists (const char *name, unsigned long crc,
1317 struct objfile *parent_objfile)
1318 {
1319 unsigned long file_crc;
1320 int file_crc_p;
1321 bfd *abfd;
1322 struct stat parent_stat, abfd_stat;
1323 int verified_as_different;
1324
1325 /* Find a separate debug info file as if symbols would be present in
1326 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1327 section can contain just the basename of PARENT_OBJFILE without any
1328 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1329 the separate debug infos with the same basename can exist. */
1330
1331 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1332 return 0;
1333
1334 abfd = gdb_bfd_open_maybe_remote (name);
1335
1336 if (!abfd)
1337 return 0;
1338
1339 /* Verify symlinks were not the cause of filename_cmp name difference above.
1340
1341 Some operating systems, e.g. Windows, do not provide a meaningful
1342 st_ino; they always set it to zero. (Windows does provide a
1343 meaningful st_dev.) Do not indicate a duplicate library in that
1344 case. While there is no guarantee that a system that provides
1345 meaningful inode numbers will never set st_ino to zero, this is
1346 merely an optimization, so we do not need to worry about false
1347 negatives. */
1348
1349 if (bfd_stat (abfd, &abfd_stat) == 0
1350 && abfd_stat.st_ino != 0
1351 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1352 {
1353 if (abfd_stat.st_dev == parent_stat.st_dev
1354 && abfd_stat.st_ino == parent_stat.st_ino)
1355 {
1356 gdb_bfd_unref (abfd);
1357 return 0;
1358 }
1359 verified_as_different = 1;
1360 }
1361 else
1362 verified_as_different = 0;
1363
1364 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
1365
1366 gdb_bfd_unref (abfd);
1367
1368 if (!file_crc_p)
1369 return 0;
1370
1371 if (crc != file_crc)
1372 {
1373 unsigned long parent_crc;
1374
1375 /* If one (or both) the files are accessed for example the via "remote:"
1376 gdbserver way it does not support the bfd_stat operation. Verify
1377 whether those two files are not the same manually. */
1378
1379 if (!verified_as_different)
1380 {
1381 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1382 return 0;
1383 }
1384
1385 if (verified_as_different || parent_crc != file_crc)
1386 warning (_("the debug information found in \"%s\""
1387 " does not match \"%s\" (CRC mismatch).\n"),
1388 name, objfile_name (parent_objfile));
1389
1390 return 0;
1391 }
1392
1393 return 1;
1394 }
1395
1396 char *debug_file_directory = NULL;
1397 static void
1398 show_debug_file_directory (struct ui_file *file, int from_tty,
1399 struct cmd_list_element *c, const char *value)
1400 {
1401 fprintf_filtered (file,
1402 _("The directory where separate debug "
1403 "symbols are searched for is \"%s\".\n"),
1404 value);
1405 }
1406
1407 #if ! defined (DEBUG_SUBDIRECTORY)
1408 #define DEBUG_SUBDIRECTORY ".debug"
1409 #endif
1410
1411 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1412 where the original file resides (may not be the same as
1413 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1414 looking for. CANON_DIR is the "realpath" form of DIR.
1415 DIR must contain a trailing '/'.
1416 Returns the path of the file with separate debug info, of NULL. */
1417
1418 static char *
1419 find_separate_debug_file (const char *dir,
1420 const char *canon_dir,
1421 const char *debuglink,
1422 unsigned long crc32, struct objfile *objfile)
1423 {
1424 char *debugdir;
1425 char *debugfile;
1426 int i;
1427 VEC (char_ptr) *debugdir_vec;
1428 struct cleanup *back_to;
1429 int ix;
1430
1431 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1432 i = strlen (dir);
1433 if (canon_dir != NULL && strlen (canon_dir) > i)
1434 i = strlen (canon_dir);
1435
1436 debugfile = xmalloc (strlen (debug_file_directory) + 1
1437 + i
1438 + strlen (DEBUG_SUBDIRECTORY)
1439 + strlen ("/")
1440 + strlen (debuglink)
1441 + 1);
1442
1443 /* First try in the same directory as the original file. */
1444 strcpy (debugfile, dir);
1445 strcat (debugfile, debuglink);
1446
1447 if (separate_debug_file_exists (debugfile, crc32, objfile))
1448 return debugfile;
1449
1450 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1451 strcpy (debugfile, dir);
1452 strcat (debugfile, DEBUG_SUBDIRECTORY);
1453 strcat (debugfile, "/");
1454 strcat (debugfile, debuglink);
1455
1456 if (separate_debug_file_exists (debugfile, crc32, objfile))
1457 return debugfile;
1458
1459 /* Then try in the global debugfile directories.
1460
1461 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1462 cause "/..." lookups. */
1463
1464 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1465 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1466
1467 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1468 {
1469 strcpy (debugfile, debugdir);
1470 strcat (debugfile, "/");
1471 strcat (debugfile, dir);
1472 strcat (debugfile, debuglink);
1473
1474 if (separate_debug_file_exists (debugfile, crc32, objfile))
1475 {
1476 do_cleanups (back_to);
1477 return debugfile;
1478 }
1479
1480 /* If the file is in the sysroot, try using its base path in the
1481 global debugfile directory. */
1482 if (canon_dir != NULL
1483 && filename_ncmp (canon_dir, gdb_sysroot,
1484 strlen (gdb_sysroot)) == 0
1485 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1486 {
1487 strcpy (debugfile, debugdir);
1488 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1489 strcat (debugfile, "/");
1490 strcat (debugfile, debuglink);
1491
1492 if (separate_debug_file_exists (debugfile, crc32, objfile))
1493 {
1494 do_cleanups (back_to);
1495 return debugfile;
1496 }
1497 }
1498 }
1499
1500 do_cleanups (back_to);
1501 xfree (debugfile);
1502 return NULL;
1503 }
1504
1505 /* Modify PATH to contain only "[/]directory/" part of PATH.
1506 If there were no directory separators in PATH, PATH will be empty
1507 string on return. */
1508
1509 static void
1510 terminate_after_last_dir_separator (char *path)
1511 {
1512 int i;
1513
1514 /* Strip off the final filename part, leaving the directory name,
1515 followed by a slash. The directory can be relative or absolute. */
1516 for (i = strlen(path) - 1; i >= 0; i--)
1517 if (IS_DIR_SEPARATOR (path[i]))
1518 break;
1519
1520 /* If I is -1 then no directory is present there and DIR will be "". */
1521 path[i + 1] = '\0';
1522 }
1523
1524 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1525 Returns pathname, or NULL. */
1526
1527 char *
1528 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1529 {
1530 char *debuglink;
1531 char *dir, *canon_dir;
1532 char *debugfile;
1533 unsigned long crc32;
1534 struct cleanup *cleanups;
1535
1536 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1537
1538 if (debuglink == NULL)
1539 {
1540 /* There's no separate debug info, hence there's no way we could
1541 load it => no warning. */
1542 return NULL;
1543 }
1544
1545 cleanups = make_cleanup (xfree, debuglink);
1546 dir = xstrdup (objfile_name (objfile));
1547 make_cleanup (xfree, dir);
1548 terminate_after_last_dir_separator (dir);
1549 canon_dir = lrealpath (dir);
1550
1551 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1552 crc32, objfile);
1553 xfree (canon_dir);
1554
1555 if (debugfile == NULL)
1556 {
1557 #ifdef HAVE_LSTAT
1558 /* For PR gdb/9538, try again with realpath (if different from the
1559 original). */
1560
1561 struct stat st_buf;
1562
1563 if (lstat (objfile_name (objfile), &st_buf) == 0
1564 && S_ISLNK (st_buf.st_mode))
1565 {
1566 char *symlink_dir;
1567
1568 symlink_dir = lrealpath (objfile_name (objfile));
1569 if (symlink_dir != NULL)
1570 {
1571 make_cleanup (xfree, symlink_dir);
1572 terminate_after_last_dir_separator (symlink_dir);
1573 if (strcmp (dir, symlink_dir) != 0)
1574 {
1575 /* Different directory, so try using it. */
1576 debugfile = find_separate_debug_file (symlink_dir,
1577 symlink_dir,
1578 debuglink,
1579 crc32,
1580 objfile);
1581 }
1582 }
1583 }
1584 #endif /* HAVE_LSTAT */
1585 }
1586
1587 do_cleanups (cleanups);
1588 return debugfile;
1589 }
1590
1591 /* This is the symbol-file command. Read the file, analyze its
1592 symbols, and add a struct symtab to a symtab list. The syntax of
1593 the command is rather bizarre:
1594
1595 1. The function buildargv implements various quoting conventions
1596 which are undocumented and have little or nothing in common with
1597 the way things are quoted (or not quoted) elsewhere in GDB.
1598
1599 2. Options are used, which are not generally used in GDB (perhaps
1600 "set mapped on", "set readnow on" would be better)
1601
1602 3. The order of options matters, which is contrary to GNU
1603 conventions (because it is confusing and inconvenient). */
1604
1605 void
1606 symbol_file_command (char *args, int from_tty)
1607 {
1608 dont_repeat ();
1609
1610 if (args == NULL)
1611 {
1612 symbol_file_clear (from_tty);
1613 }
1614 else
1615 {
1616 char **argv = gdb_buildargv (args);
1617 int flags = OBJF_USERLOADED;
1618 struct cleanup *cleanups;
1619 char *name = NULL;
1620
1621 cleanups = make_cleanup_freeargv (argv);
1622 while (*argv != NULL)
1623 {
1624 if (strcmp (*argv, "-readnow") == 0)
1625 flags |= OBJF_READNOW;
1626 else if (**argv == '-')
1627 error (_("unknown option `%s'"), *argv);
1628 else
1629 {
1630 symbol_file_add_main_1 (*argv, from_tty, flags);
1631 name = *argv;
1632 }
1633
1634 argv++;
1635 }
1636
1637 if (name == NULL)
1638 error (_("no symbol file name was specified"));
1639
1640 do_cleanups (cleanups);
1641 }
1642 }
1643
1644 /* Set the initial language.
1645
1646 FIXME: A better solution would be to record the language in the
1647 psymtab when reading partial symbols, and then use it (if known) to
1648 set the language. This would be a win for formats that encode the
1649 language in an easily discoverable place, such as DWARF. For
1650 stabs, we can jump through hoops looking for specially named
1651 symbols or try to intuit the language from the specific type of
1652 stabs we find, but we can't do that until later when we read in
1653 full symbols. */
1654
1655 void
1656 set_initial_language (void)
1657 {
1658 enum language lang = main_language ();
1659
1660 if (lang == language_unknown)
1661 {
1662 char *name = main_name ();
1663 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL);
1664
1665 if (sym != NULL)
1666 lang = SYMBOL_LANGUAGE (sym);
1667 }
1668
1669 if (lang == language_unknown)
1670 {
1671 /* Make C the default language */
1672 lang = language_c;
1673 }
1674
1675 set_language (lang);
1676 expected_language = current_language; /* Don't warn the user. */
1677 }
1678
1679 /* If NAME is a remote name open the file using remote protocol, otherwise
1680 open it normally. Returns a new reference to the BFD. On error,
1681 returns NULL with the BFD error set. */
1682
1683 bfd *
1684 gdb_bfd_open_maybe_remote (const char *name)
1685 {
1686 bfd *result;
1687
1688 if (remote_filename_p (name))
1689 result = remote_bfd_open (name, gnutarget);
1690 else
1691 result = gdb_bfd_open (name, gnutarget, -1);
1692
1693 return result;
1694 }
1695
1696 /* Open the file specified by NAME and hand it off to BFD for
1697 preliminary analysis. Return a newly initialized bfd *, which
1698 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1699 absolute). In case of trouble, error() is called. */
1700
1701 bfd *
1702 symfile_bfd_open (const char *cname)
1703 {
1704 bfd *sym_bfd;
1705 int desc;
1706 char *name, *absolute_name;
1707 struct cleanup *back_to;
1708
1709 if (remote_filename_p (cname))
1710 {
1711 sym_bfd = remote_bfd_open (cname, gnutarget);
1712 if (!sym_bfd)
1713 error (_("`%s': can't open to read symbols: %s."), cname,
1714 bfd_errmsg (bfd_get_error ()));
1715
1716 if (!bfd_check_format (sym_bfd, bfd_object))
1717 {
1718 make_cleanup_bfd_unref (sym_bfd);
1719 error (_("`%s': can't read symbols: %s."), cname,
1720 bfd_errmsg (bfd_get_error ()));
1721 }
1722
1723 return sym_bfd;
1724 }
1725
1726 name = tilde_expand (cname); /* Returns 1st new malloc'd copy. */
1727
1728 /* Look down path for it, allocate 2nd new malloc'd copy. */
1729 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, name,
1730 O_RDONLY | O_BINARY, &absolute_name);
1731 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1732 if (desc < 0)
1733 {
1734 char *exename = alloca (strlen (name) + 5);
1735
1736 strcat (strcpy (exename, name), ".exe");
1737 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1738 exename, O_RDONLY | O_BINARY, &absolute_name);
1739 }
1740 #endif
1741 if (desc < 0)
1742 {
1743 make_cleanup (xfree, name);
1744 perror_with_name (name);
1745 }
1746
1747 xfree (name);
1748 name = absolute_name;
1749 back_to = make_cleanup (xfree, name);
1750
1751 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1752 if (!sym_bfd)
1753 error (_("`%s': can't open to read symbols: %s."), name,
1754 bfd_errmsg (bfd_get_error ()));
1755 bfd_set_cacheable (sym_bfd, 1);
1756
1757 if (!bfd_check_format (sym_bfd, bfd_object))
1758 {
1759 make_cleanup_bfd_unref (sym_bfd);
1760 error (_("`%s': can't read symbols: %s."), name,
1761 bfd_errmsg (bfd_get_error ()));
1762 }
1763
1764 do_cleanups (back_to);
1765
1766 return sym_bfd;
1767 }
1768
1769 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1770 the section was not found. */
1771
1772 int
1773 get_section_index (struct objfile *objfile, char *section_name)
1774 {
1775 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1776
1777 if (sect)
1778 return sect->index;
1779 else
1780 return -1;
1781 }
1782
1783 /* Link SF into the global symtab_fns list.
1784 FLAVOUR is the file format that SF handles.
1785 Called on startup by the _initialize routine in each object file format
1786 reader, to register information about each format the reader is prepared
1787 to handle. */
1788
1789 void
1790 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1791 {
1792 registered_sym_fns fns = { flavour, sf };
1793
1794 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
1795 }
1796
1797 /* Initialize OBJFILE to read symbols from its associated BFD. It
1798 either returns or calls error(). The result is an initialized
1799 struct sym_fns in the objfile structure, that contains cached
1800 information about the symbol file. */
1801
1802 static const struct sym_fns *
1803 find_sym_fns (bfd *abfd)
1804 {
1805 registered_sym_fns *rsf;
1806 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1807 int i;
1808
1809 if (our_flavour == bfd_target_srec_flavour
1810 || our_flavour == bfd_target_ihex_flavour
1811 || our_flavour == bfd_target_tekhex_flavour)
1812 return NULL; /* No symbols. */
1813
1814 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1815 if (our_flavour == rsf->sym_flavour)
1816 return rsf->sym_fns;
1817
1818 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1819 bfd_get_target (abfd));
1820 }
1821 \f
1822
1823 /* This function runs the load command of our current target. */
1824
1825 static void
1826 load_command (char *arg, int from_tty)
1827 {
1828 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1829
1830 dont_repeat ();
1831
1832 /* The user might be reloading because the binary has changed. Take
1833 this opportunity to check. */
1834 reopen_exec_file ();
1835 reread_symbols ();
1836
1837 if (arg == NULL)
1838 {
1839 char *parg;
1840 int count = 0;
1841
1842 parg = arg = get_exec_file (1);
1843
1844 /* Count how many \ " ' tab space there are in the name. */
1845 while ((parg = strpbrk (parg, "\\\"'\t ")))
1846 {
1847 parg++;
1848 count++;
1849 }
1850
1851 if (count)
1852 {
1853 /* We need to quote this string so buildargv can pull it apart. */
1854 char *temp = xmalloc (strlen (arg) + count + 1 );
1855 char *ptemp = temp;
1856 char *prev;
1857
1858 make_cleanup (xfree, temp);
1859
1860 prev = parg = arg;
1861 while ((parg = strpbrk (parg, "\\\"'\t ")))
1862 {
1863 strncpy (ptemp, prev, parg - prev);
1864 ptemp += parg - prev;
1865 prev = parg++;
1866 *ptemp++ = '\\';
1867 }
1868 strcpy (ptemp, prev);
1869
1870 arg = temp;
1871 }
1872 }
1873
1874 target_load (arg, from_tty);
1875
1876 /* After re-loading the executable, we don't really know which
1877 overlays are mapped any more. */
1878 overlay_cache_invalid = 1;
1879
1880 do_cleanups (cleanup);
1881 }
1882
1883 /* This version of "load" should be usable for any target. Currently
1884 it is just used for remote targets, not inftarg.c or core files,
1885 on the theory that only in that case is it useful.
1886
1887 Avoiding xmodem and the like seems like a win (a) because we don't have
1888 to worry about finding it, and (b) On VMS, fork() is very slow and so
1889 we don't want to run a subprocess. On the other hand, I'm not sure how
1890 performance compares. */
1891
1892 static int validate_download = 0;
1893
1894 /* Callback service function for generic_load (bfd_map_over_sections). */
1895
1896 static void
1897 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1898 {
1899 bfd_size_type *sum = data;
1900
1901 *sum += bfd_get_section_size (asec);
1902 }
1903
1904 /* Opaque data for load_section_callback. */
1905 struct load_section_data {
1906 CORE_ADDR load_offset;
1907 struct load_progress_data *progress_data;
1908 VEC(memory_write_request_s) *requests;
1909 };
1910
1911 /* Opaque data for load_progress. */
1912 struct load_progress_data {
1913 /* Cumulative data. */
1914 unsigned long write_count;
1915 unsigned long data_count;
1916 bfd_size_type total_size;
1917 };
1918
1919 /* Opaque data for load_progress for a single section. */
1920 struct load_progress_section_data {
1921 struct load_progress_data *cumulative;
1922
1923 /* Per-section data. */
1924 const char *section_name;
1925 ULONGEST section_sent;
1926 ULONGEST section_size;
1927 CORE_ADDR lma;
1928 gdb_byte *buffer;
1929 };
1930
1931 /* Target write callback routine for progress reporting. */
1932
1933 static void
1934 load_progress (ULONGEST bytes, void *untyped_arg)
1935 {
1936 struct load_progress_section_data *args = untyped_arg;
1937 struct load_progress_data *totals;
1938
1939 if (args == NULL)
1940 /* Writing padding data. No easy way to get at the cumulative
1941 stats, so just ignore this. */
1942 return;
1943
1944 totals = args->cumulative;
1945
1946 if (bytes == 0 && args->section_sent == 0)
1947 {
1948 /* The write is just starting. Let the user know we've started
1949 this section. */
1950 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1951 args->section_name, hex_string (args->section_size),
1952 paddress (target_gdbarch (), args->lma));
1953 return;
1954 }
1955
1956 if (validate_download)
1957 {
1958 /* Broken memories and broken monitors manifest themselves here
1959 when bring new computers to life. This doubles already slow
1960 downloads. */
1961 /* NOTE: cagney/1999-10-18: A more efficient implementation
1962 might add a verify_memory() method to the target vector and
1963 then use that. remote.c could implement that method using
1964 the ``qCRC'' packet. */
1965 gdb_byte *check = xmalloc (bytes);
1966 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1967
1968 if (target_read_memory (args->lma, check, bytes) != 0)
1969 error (_("Download verify read failed at %s"),
1970 paddress (target_gdbarch (), args->lma));
1971 if (memcmp (args->buffer, check, bytes) != 0)
1972 error (_("Download verify compare failed at %s"),
1973 paddress (target_gdbarch (), args->lma));
1974 do_cleanups (verify_cleanups);
1975 }
1976 totals->data_count += bytes;
1977 args->lma += bytes;
1978 args->buffer += bytes;
1979 totals->write_count += 1;
1980 args->section_sent += bytes;
1981 if (check_quit_flag ()
1982 || (deprecated_ui_load_progress_hook != NULL
1983 && deprecated_ui_load_progress_hook (args->section_name,
1984 args->section_sent)))
1985 error (_("Canceled the download"));
1986
1987 if (deprecated_show_load_progress != NULL)
1988 deprecated_show_load_progress (args->section_name,
1989 args->section_sent,
1990 args->section_size,
1991 totals->data_count,
1992 totals->total_size);
1993 }
1994
1995 /* Callback service function for generic_load (bfd_map_over_sections). */
1996
1997 static void
1998 load_section_callback (bfd *abfd, asection *asec, void *data)
1999 {
2000 struct memory_write_request *new_request;
2001 struct load_section_data *args = data;
2002 struct load_progress_section_data *section_data;
2003 bfd_size_type size = bfd_get_section_size (asec);
2004 gdb_byte *buffer;
2005 const char *sect_name = bfd_get_section_name (abfd, asec);
2006
2007 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2008 return;
2009
2010 if (size == 0)
2011 return;
2012
2013 new_request = VEC_safe_push (memory_write_request_s,
2014 args->requests, NULL);
2015 memset (new_request, 0, sizeof (struct memory_write_request));
2016 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2017 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2018 new_request->end = new_request->begin + size; /* FIXME Should size
2019 be in instead? */
2020 new_request->data = xmalloc (size);
2021 new_request->baton = section_data;
2022
2023 buffer = new_request->data;
2024
2025 section_data->cumulative = args->progress_data;
2026 section_data->section_name = sect_name;
2027 section_data->section_size = size;
2028 section_data->lma = new_request->begin;
2029 section_data->buffer = buffer;
2030
2031 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2032 }
2033
2034 /* Clean up an entire memory request vector, including load
2035 data and progress records. */
2036
2037 static void
2038 clear_memory_write_data (void *arg)
2039 {
2040 VEC(memory_write_request_s) **vec_p = arg;
2041 VEC(memory_write_request_s) *vec = *vec_p;
2042 int i;
2043 struct memory_write_request *mr;
2044
2045 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2046 {
2047 xfree (mr->data);
2048 xfree (mr->baton);
2049 }
2050 VEC_free (memory_write_request_s, vec);
2051 }
2052
2053 void
2054 generic_load (char *args, int from_tty)
2055 {
2056 bfd *loadfile_bfd;
2057 struct timeval start_time, end_time;
2058 char *filename;
2059 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2060 struct load_section_data cbdata;
2061 struct load_progress_data total_progress;
2062 struct ui_out *uiout = current_uiout;
2063
2064 CORE_ADDR entry;
2065 char **argv;
2066
2067 memset (&cbdata, 0, sizeof (cbdata));
2068 memset (&total_progress, 0, sizeof (total_progress));
2069 cbdata.progress_data = &total_progress;
2070
2071 make_cleanup (clear_memory_write_data, &cbdata.requests);
2072
2073 if (args == NULL)
2074 error_no_arg (_("file to load"));
2075
2076 argv = gdb_buildargv (args);
2077 make_cleanup_freeargv (argv);
2078
2079 filename = tilde_expand (argv[0]);
2080 make_cleanup (xfree, filename);
2081
2082 if (argv[1] != NULL)
2083 {
2084 const char *endptr;
2085
2086 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2087
2088 /* If the last word was not a valid number then
2089 treat it as a file name with spaces in. */
2090 if (argv[1] == endptr)
2091 error (_("Invalid download offset:%s."), argv[1]);
2092
2093 if (argv[2] != NULL)
2094 error (_("Too many parameters."));
2095 }
2096
2097 /* Open the file for loading. */
2098 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2099 if (loadfile_bfd == NULL)
2100 {
2101 perror_with_name (filename);
2102 return;
2103 }
2104
2105 make_cleanup_bfd_unref (loadfile_bfd);
2106
2107 if (!bfd_check_format (loadfile_bfd, bfd_object))
2108 {
2109 error (_("\"%s\" is not an object file: %s"), filename,
2110 bfd_errmsg (bfd_get_error ()));
2111 }
2112
2113 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2114 (void *) &total_progress.total_size);
2115
2116 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2117
2118 gettimeofday (&start_time, NULL);
2119
2120 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2121 load_progress) != 0)
2122 error (_("Load failed"));
2123
2124 gettimeofday (&end_time, NULL);
2125
2126 entry = bfd_get_start_address (loadfile_bfd);
2127 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2128 ui_out_text (uiout, "Start address ");
2129 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2130 ui_out_text (uiout, ", load size ");
2131 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2132 ui_out_text (uiout, "\n");
2133 /* We were doing this in remote-mips.c, I suspect it is right
2134 for other targets too. */
2135 regcache_write_pc (get_current_regcache (), entry);
2136
2137 /* Reset breakpoints, now that we have changed the load image. For
2138 instance, breakpoints may have been set (or reset, by
2139 post_create_inferior) while connected to the target but before we
2140 loaded the program. In that case, the prologue analyzer could
2141 have read instructions from the target to find the right
2142 breakpoint locations. Loading has changed the contents of that
2143 memory. */
2144
2145 breakpoint_re_set ();
2146
2147 /* FIXME: are we supposed to call symbol_file_add or not? According
2148 to a comment from remote-mips.c (where a call to symbol_file_add
2149 was commented out), making the call confuses GDB if more than one
2150 file is loaded in. Some targets do (e.g., remote-vx.c) but
2151 others don't (or didn't - perhaps they have all been deleted). */
2152
2153 print_transfer_performance (gdb_stdout, total_progress.data_count,
2154 total_progress.write_count,
2155 &start_time, &end_time);
2156
2157 do_cleanups (old_cleanups);
2158 }
2159
2160 /* Report how fast the transfer went. */
2161
2162 void
2163 print_transfer_performance (struct ui_file *stream,
2164 unsigned long data_count,
2165 unsigned long write_count,
2166 const struct timeval *start_time,
2167 const struct timeval *end_time)
2168 {
2169 ULONGEST time_count;
2170 struct ui_out *uiout = current_uiout;
2171
2172 /* Compute the elapsed time in milliseconds, as a tradeoff between
2173 accuracy and overflow. */
2174 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2175 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2176
2177 ui_out_text (uiout, "Transfer rate: ");
2178 if (time_count > 0)
2179 {
2180 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2181
2182 if (ui_out_is_mi_like_p (uiout))
2183 {
2184 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2185 ui_out_text (uiout, " bits/sec");
2186 }
2187 else if (rate < 1024)
2188 {
2189 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2190 ui_out_text (uiout, " bytes/sec");
2191 }
2192 else
2193 {
2194 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2195 ui_out_text (uiout, " KB/sec");
2196 }
2197 }
2198 else
2199 {
2200 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2201 ui_out_text (uiout, " bits in <1 sec");
2202 }
2203 if (write_count > 0)
2204 {
2205 ui_out_text (uiout, ", ");
2206 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2207 ui_out_text (uiout, " bytes/write");
2208 }
2209 ui_out_text (uiout, ".\n");
2210 }
2211
2212 /* This function allows the addition of incrementally linked object files.
2213 It does not modify any state in the target, only in the debugger. */
2214 /* Note: ezannoni 2000-04-13 This function/command used to have a
2215 special case syntax for the rombug target (Rombug is the boot
2216 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2217 rombug case, the user doesn't need to supply a text address,
2218 instead a call to target_link() (in target.c) would supply the
2219 value to use. We are now discontinuing this type of ad hoc syntax. */
2220
2221 static void
2222 add_symbol_file_command (char *args, int from_tty)
2223 {
2224 struct gdbarch *gdbarch = get_current_arch ();
2225 char *filename = NULL;
2226 int flags = OBJF_USERLOADED;
2227 char *arg;
2228 int section_index = 0;
2229 int argcnt = 0;
2230 int sec_num = 0;
2231 int i;
2232 int expecting_sec_name = 0;
2233 int expecting_sec_addr = 0;
2234 char **argv;
2235 struct objfile *objf;
2236
2237 struct sect_opt
2238 {
2239 char *name;
2240 char *value;
2241 };
2242
2243 struct section_addr_info *section_addrs;
2244 struct sect_opt *sect_opts = NULL;
2245 size_t num_sect_opts = 0;
2246 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2247
2248 num_sect_opts = 16;
2249 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2250 * sizeof (struct sect_opt));
2251
2252 dont_repeat ();
2253
2254 if (args == NULL)
2255 error (_("add-symbol-file takes a file name and an address"));
2256
2257 argv = gdb_buildargv (args);
2258 make_cleanup_freeargv (argv);
2259
2260 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2261 {
2262 /* Process the argument. */
2263 if (argcnt == 0)
2264 {
2265 /* The first argument is the file name. */
2266 filename = tilde_expand (arg);
2267 make_cleanup (xfree, filename);
2268 }
2269 else if (argcnt == 1)
2270 {
2271 /* The second argument is always the text address at which
2272 to load the program. */
2273 sect_opts[section_index].name = ".text";
2274 sect_opts[section_index].value = arg;
2275 if (++section_index >= num_sect_opts)
2276 {
2277 num_sect_opts *= 2;
2278 sect_opts = ((struct sect_opt *)
2279 xrealloc (sect_opts,
2280 num_sect_opts
2281 * sizeof (struct sect_opt)));
2282 }
2283 }
2284 else
2285 {
2286 /* It's an option (starting with '-') or it's an argument
2287 to an option. */
2288 if (expecting_sec_name)
2289 {
2290 sect_opts[section_index].name = arg;
2291 expecting_sec_name = 0;
2292 }
2293 else if (expecting_sec_addr)
2294 {
2295 sect_opts[section_index].value = arg;
2296 expecting_sec_addr = 0;
2297 if (++section_index >= num_sect_opts)
2298 {
2299 num_sect_opts *= 2;
2300 sect_opts = ((struct sect_opt *)
2301 xrealloc (sect_opts,
2302 num_sect_opts
2303 * sizeof (struct sect_opt)));
2304 }
2305 }
2306 else if (strcmp (arg, "-readnow") == 0)
2307 flags |= OBJF_READNOW;
2308 else if (strcmp (arg, "-s") == 0)
2309 {
2310 expecting_sec_name = 1;
2311 expecting_sec_addr = 1;
2312 }
2313 else
2314 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2315 " [-readnow] [-s <secname> <addr>]*"));
2316 }
2317 }
2318
2319 /* This command takes at least two arguments. The first one is a
2320 filename, and the second is the address where this file has been
2321 loaded. Abort now if this address hasn't been provided by the
2322 user. */
2323 if (section_index < 1)
2324 error (_("The address where %s has been loaded is missing"), filename);
2325
2326 /* Print the prompt for the query below. And save the arguments into
2327 a sect_addr_info structure to be passed around to other
2328 functions. We have to split this up into separate print
2329 statements because hex_string returns a local static
2330 string. */
2331
2332 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2333 section_addrs = alloc_section_addr_info (section_index);
2334 make_cleanup (xfree, section_addrs);
2335 for (i = 0; i < section_index; i++)
2336 {
2337 CORE_ADDR addr;
2338 char *val = sect_opts[i].value;
2339 char *sec = sect_opts[i].name;
2340
2341 addr = parse_and_eval_address (val);
2342
2343 /* Here we store the section offsets in the order they were
2344 entered on the command line. */
2345 section_addrs->other[sec_num].name = sec;
2346 section_addrs->other[sec_num].addr = addr;
2347 printf_unfiltered ("\t%s_addr = %s\n", sec,
2348 paddress (gdbarch, addr));
2349 sec_num++;
2350
2351 /* The object's sections are initialized when a
2352 call is made to build_objfile_section_table (objfile).
2353 This happens in reread_symbols.
2354 At this point, we don't know what file type this is,
2355 so we can't determine what section names are valid. */
2356 }
2357 section_addrs->num_sections = sec_num;
2358
2359 if (from_tty && (!query ("%s", "")))
2360 error (_("Not confirmed."));
2361
2362 objf = symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2363 section_addrs, flags);
2364
2365 add_target_sections_of_objfile (objf);
2366
2367 /* Getting new symbols may change our opinion about what is
2368 frameless. */
2369 reinit_frame_cache ();
2370 do_cleanups (my_cleanups);
2371 }
2372 \f
2373
2374 /* This function removes a symbol file that was added via add-symbol-file. */
2375
2376 static void
2377 remove_symbol_file_command (char *args, int from_tty)
2378 {
2379 char **argv;
2380 struct objfile *objf = NULL;
2381 struct cleanup *my_cleanups;
2382 struct program_space *pspace = current_program_space;
2383 struct gdbarch *gdbarch = get_current_arch ();
2384
2385 dont_repeat ();
2386
2387 if (args == NULL)
2388 error (_("remove-symbol-file: no symbol file provided"));
2389
2390 my_cleanups = make_cleanup (null_cleanup, NULL);
2391
2392 argv = gdb_buildargv (args);
2393
2394 if (strcmp (argv[0], "-a") == 0)
2395 {
2396 /* Interpret the next argument as an address. */
2397 CORE_ADDR addr;
2398
2399 if (argv[1] == NULL)
2400 error (_("Missing address argument"));
2401
2402 if (argv[2] != NULL)
2403 error (_("Junk after %s"), argv[1]);
2404
2405 addr = parse_and_eval_address (argv[1]);
2406
2407 ALL_OBJFILES (objf)
2408 {
2409 if (objf != 0
2410 && objf->flags & OBJF_USERLOADED
2411 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2412 break;
2413 }
2414 }
2415 else if (argv[0] != NULL)
2416 {
2417 /* Interpret the current argument as a file name. */
2418 char *filename;
2419
2420 if (argv[1] != NULL)
2421 error (_("Junk after %s"), argv[0]);
2422
2423 filename = tilde_expand (argv[0]);
2424 make_cleanup (xfree, filename);
2425
2426 ALL_OBJFILES (objf)
2427 {
2428 if (objf != 0
2429 && objf->flags & OBJF_USERLOADED
2430 && objf->pspace == pspace
2431 && filename_cmp (filename, objfile_name (objf)) == 0)
2432 break;
2433 }
2434 }
2435
2436 if (objf == NULL)
2437 error (_("No symbol file found"));
2438
2439 if (from_tty
2440 && !query (_("Remove symbol table from file \"%s\"? "),
2441 objfile_name (objf)))
2442 error (_("Not confirmed."));
2443
2444 free_objfile (objf);
2445 clear_symtab_users (0);
2446
2447 do_cleanups (my_cleanups);
2448 }
2449
2450 typedef struct objfile *objfilep;
2451
2452 DEF_VEC_P (objfilep);
2453
2454 /* Re-read symbols if a symbol-file has changed. */
2455
2456 void
2457 reread_symbols (void)
2458 {
2459 struct objfile *objfile;
2460 long new_modtime;
2461 struct stat new_statbuf;
2462 int res;
2463 VEC (objfilep) *new_objfiles = NULL;
2464 struct cleanup *all_cleanups;
2465
2466 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2467
2468 /* With the addition of shared libraries, this should be modified,
2469 the load time should be saved in the partial symbol tables, since
2470 different tables may come from different source files. FIXME.
2471 This routine should then walk down each partial symbol table
2472 and see if the symbol table that it originates from has been changed. */
2473
2474 for (objfile = object_files; objfile; objfile = objfile->next)
2475 {
2476 if (objfile->obfd == NULL)
2477 continue;
2478
2479 /* Separate debug objfiles are handled in the main objfile. */
2480 if (objfile->separate_debug_objfile_backlink)
2481 continue;
2482
2483 /* If this object is from an archive (what you usually create with
2484 `ar', often called a `static library' on most systems, though
2485 a `shared library' on AIX is also an archive), then you should
2486 stat on the archive name, not member name. */
2487 if (objfile->obfd->my_archive)
2488 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2489 else
2490 res = stat (objfile_name (objfile), &new_statbuf);
2491 if (res != 0)
2492 {
2493 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2494 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2495 objfile_name (objfile));
2496 continue;
2497 }
2498 new_modtime = new_statbuf.st_mtime;
2499 if (new_modtime != objfile->mtime)
2500 {
2501 struct cleanup *old_cleanups;
2502 struct section_offsets *offsets;
2503 int num_offsets;
2504 char *original_name;
2505
2506 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2507 objfile_name (objfile));
2508
2509 /* There are various functions like symbol_file_add,
2510 symfile_bfd_open, syms_from_objfile, etc., which might
2511 appear to do what we want. But they have various other
2512 effects which we *don't* want. So we just do stuff
2513 ourselves. We don't worry about mapped files (for one thing,
2514 any mapped file will be out of date). */
2515
2516 /* If we get an error, blow away this objfile (not sure if
2517 that is the correct response for things like shared
2518 libraries). */
2519 old_cleanups = make_cleanup_free_objfile (objfile);
2520 /* We need to do this whenever any symbols go away. */
2521 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2522
2523 if (exec_bfd != NULL
2524 && filename_cmp (bfd_get_filename (objfile->obfd),
2525 bfd_get_filename (exec_bfd)) == 0)
2526 {
2527 /* Reload EXEC_BFD without asking anything. */
2528
2529 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2530 }
2531
2532 /* Keep the calls order approx. the same as in free_objfile. */
2533
2534 /* Free the separate debug objfiles. It will be
2535 automatically recreated by sym_read. */
2536 free_objfile_separate_debug (objfile);
2537
2538 /* Remove any references to this objfile in the global
2539 value lists. */
2540 preserve_values (objfile);
2541
2542 /* Nuke all the state that we will re-read. Much of the following
2543 code which sets things to NULL really is necessary to tell
2544 other parts of GDB that there is nothing currently there.
2545
2546 Try to keep the freeing order compatible with free_objfile. */
2547
2548 if (objfile->sf != NULL)
2549 {
2550 (*objfile->sf->sym_finish) (objfile);
2551 }
2552
2553 clear_objfile_data (objfile);
2554
2555 /* Clean up any state BFD has sitting around. */
2556 {
2557 struct bfd *obfd = objfile->obfd;
2558 char *obfd_filename;
2559
2560 obfd_filename = bfd_get_filename (objfile->obfd);
2561 /* Open the new BFD before freeing the old one, so that
2562 the filename remains live. */
2563 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
2564 if (objfile->obfd == NULL)
2565 {
2566 /* We have to make a cleanup and error here, rather
2567 than erroring later, because once we unref OBFD,
2568 OBFD_FILENAME will be freed. */
2569 make_cleanup_bfd_unref (obfd);
2570 error (_("Can't open %s to read symbols."), obfd_filename);
2571 }
2572 gdb_bfd_unref (obfd);
2573 }
2574
2575 original_name = xstrdup (objfile->original_name);
2576 make_cleanup (xfree, original_name);
2577
2578 /* bfd_openr sets cacheable to true, which is what we want. */
2579 if (!bfd_check_format (objfile->obfd, bfd_object))
2580 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2581 bfd_errmsg (bfd_get_error ()));
2582
2583 /* Save the offsets, we will nuke them with the rest of the
2584 objfile_obstack. */
2585 num_offsets = objfile->num_sections;
2586 offsets = ((struct section_offsets *)
2587 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2588 memcpy (offsets, objfile->section_offsets,
2589 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2590
2591 /* FIXME: Do we have to free a whole linked list, or is this
2592 enough? */
2593 if (objfile->global_psymbols.list)
2594 xfree (objfile->global_psymbols.list);
2595 memset (&objfile->global_psymbols, 0,
2596 sizeof (objfile->global_psymbols));
2597 if (objfile->static_psymbols.list)
2598 xfree (objfile->static_psymbols.list);
2599 memset (&objfile->static_psymbols, 0,
2600 sizeof (objfile->static_psymbols));
2601
2602 /* Free the obstacks for non-reusable objfiles. */
2603 psymbol_bcache_free (objfile->psymbol_cache);
2604 objfile->psymbol_cache = psymbol_bcache_init ();
2605 obstack_free (&objfile->objfile_obstack, 0);
2606 objfile->sections = NULL;
2607 objfile->symtabs = NULL;
2608 objfile->psymtabs = NULL;
2609 objfile->psymtabs_addrmap = NULL;
2610 objfile->free_psymtabs = NULL;
2611 objfile->template_symbols = NULL;
2612
2613 /* obstack_init also initializes the obstack so it is
2614 empty. We could use obstack_specify_allocation but
2615 gdb_obstack.h specifies the alloc/dealloc functions. */
2616 obstack_init (&objfile->objfile_obstack);
2617
2618 /* set_objfile_per_bfd potentially allocates the per-bfd
2619 data on the objfile's obstack (if sharing data across
2620 multiple users is not possible), so it's important to
2621 do it *after* the obstack has been initialized. */
2622 set_objfile_per_bfd (objfile);
2623
2624 objfile->original_name = obstack_copy0 (&objfile->objfile_obstack,
2625 original_name,
2626 strlen (original_name));
2627
2628 /* Reset the sym_fns pointer. The ELF reader can change it
2629 based on whether .gdb_index is present, and we need it to
2630 start over. PR symtab/15885 */
2631 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2632
2633 build_objfile_section_table (objfile);
2634 terminate_minimal_symbol_table (objfile);
2635
2636 /* We use the same section offsets as from last time. I'm not
2637 sure whether that is always correct for shared libraries. */
2638 objfile->section_offsets = (struct section_offsets *)
2639 obstack_alloc (&objfile->objfile_obstack,
2640 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2641 memcpy (objfile->section_offsets, offsets,
2642 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2643 objfile->num_sections = num_offsets;
2644
2645 /* What the hell is sym_new_init for, anyway? The concept of
2646 distinguishing between the main file and additional files
2647 in this way seems rather dubious. */
2648 if (objfile == symfile_objfile)
2649 {
2650 (*objfile->sf->sym_new_init) (objfile);
2651 }
2652
2653 (*objfile->sf->sym_init) (objfile);
2654 clear_complaints (&symfile_complaints, 1, 1);
2655
2656 objfile->flags &= ~OBJF_PSYMTABS_READ;
2657 read_symbols (objfile, 0);
2658
2659 if (!objfile_has_symbols (objfile))
2660 {
2661 wrap_here ("");
2662 printf_unfiltered (_("(no debugging symbols found)\n"));
2663 wrap_here ("");
2664 }
2665
2666 /* We're done reading the symbol file; finish off complaints. */
2667 clear_complaints (&symfile_complaints, 0, 1);
2668
2669 /* Getting new symbols may change our opinion about what is
2670 frameless. */
2671
2672 reinit_frame_cache ();
2673
2674 /* Discard cleanups as symbol reading was successful. */
2675 discard_cleanups (old_cleanups);
2676
2677 /* If the mtime has changed between the time we set new_modtime
2678 and now, we *want* this to be out of date, so don't call stat
2679 again now. */
2680 objfile->mtime = new_modtime;
2681 init_entry_point_info (objfile);
2682
2683 VEC_safe_push (objfilep, new_objfiles, objfile);
2684 }
2685 }
2686
2687 if (new_objfiles)
2688 {
2689 int ix;
2690
2691 /* Notify objfiles that we've modified objfile sections. */
2692 objfiles_changed ();
2693
2694 clear_symtab_users (0);
2695
2696 /* clear_objfile_data for each objfile was called before freeing it and
2697 observer_notify_new_objfile (NULL) has been called by
2698 clear_symtab_users above. Notify the new files now. */
2699 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2700 observer_notify_new_objfile (objfile);
2701
2702 /* At least one objfile has changed, so we can consider that
2703 the executable we're debugging has changed too. */
2704 observer_notify_executable_changed ();
2705 }
2706
2707 do_cleanups (all_cleanups);
2708 }
2709 \f
2710
2711 typedef struct
2712 {
2713 char *ext;
2714 enum language lang;
2715 }
2716 filename_language;
2717
2718 static filename_language *filename_language_table;
2719 static int fl_table_size, fl_table_next;
2720
2721 static void
2722 add_filename_language (char *ext, enum language lang)
2723 {
2724 if (fl_table_next >= fl_table_size)
2725 {
2726 fl_table_size += 10;
2727 filename_language_table =
2728 xrealloc (filename_language_table,
2729 fl_table_size * sizeof (*filename_language_table));
2730 }
2731
2732 filename_language_table[fl_table_next].ext = xstrdup (ext);
2733 filename_language_table[fl_table_next].lang = lang;
2734 fl_table_next++;
2735 }
2736
2737 static char *ext_args;
2738 static void
2739 show_ext_args (struct ui_file *file, int from_tty,
2740 struct cmd_list_element *c, const char *value)
2741 {
2742 fprintf_filtered (file,
2743 _("Mapping between filename extension "
2744 "and source language is \"%s\".\n"),
2745 value);
2746 }
2747
2748 static void
2749 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2750 {
2751 int i;
2752 char *cp = ext_args;
2753 enum language lang;
2754
2755 /* First arg is filename extension, starting with '.' */
2756 if (*cp != '.')
2757 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2758
2759 /* Find end of first arg. */
2760 while (*cp && !isspace (*cp))
2761 cp++;
2762
2763 if (*cp == '\0')
2764 error (_("'%s': two arguments required -- "
2765 "filename extension and language"),
2766 ext_args);
2767
2768 /* Null-terminate first arg. */
2769 *cp++ = '\0';
2770
2771 /* Find beginning of second arg, which should be a source language. */
2772 cp = skip_spaces (cp);
2773
2774 if (*cp == '\0')
2775 error (_("'%s': two arguments required -- "
2776 "filename extension and language"),
2777 ext_args);
2778
2779 /* Lookup the language from among those we know. */
2780 lang = language_enum (cp);
2781
2782 /* Now lookup the filename extension: do we already know it? */
2783 for (i = 0; i < fl_table_next; i++)
2784 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2785 break;
2786
2787 if (i >= fl_table_next)
2788 {
2789 /* New file extension. */
2790 add_filename_language (ext_args, lang);
2791 }
2792 else
2793 {
2794 /* Redefining a previously known filename extension. */
2795
2796 /* if (from_tty) */
2797 /* query ("Really make files of type %s '%s'?", */
2798 /* ext_args, language_str (lang)); */
2799
2800 xfree (filename_language_table[i].ext);
2801 filename_language_table[i].ext = xstrdup (ext_args);
2802 filename_language_table[i].lang = lang;
2803 }
2804 }
2805
2806 static void
2807 info_ext_lang_command (char *args, int from_tty)
2808 {
2809 int i;
2810
2811 printf_filtered (_("Filename extensions and the languages they represent:"));
2812 printf_filtered ("\n\n");
2813 for (i = 0; i < fl_table_next; i++)
2814 printf_filtered ("\t%s\t- %s\n",
2815 filename_language_table[i].ext,
2816 language_str (filename_language_table[i].lang));
2817 }
2818
2819 static void
2820 init_filename_language_table (void)
2821 {
2822 if (fl_table_size == 0) /* Protect against repetition. */
2823 {
2824 fl_table_size = 20;
2825 fl_table_next = 0;
2826 filename_language_table =
2827 xmalloc (fl_table_size * sizeof (*filename_language_table));
2828 add_filename_language (".c", language_c);
2829 add_filename_language (".d", language_d);
2830 add_filename_language (".C", language_cplus);
2831 add_filename_language (".cc", language_cplus);
2832 add_filename_language (".cp", language_cplus);
2833 add_filename_language (".cpp", language_cplus);
2834 add_filename_language (".cxx", language_cplus);
2835 add_filename_language (".c++", language_cplus);
2836 add_filename_language (".java", language_java);
2837 add_filename_language (".class", language_java);
2838 add_filename_language (".m", language_objc);
2839 add_filename_language (".f", language_fortran);
2840 add_filename_language (".F", language_fortran);
2841 add_filename_language (".for", language_fortran);
2842 add_filename_language (".FOR", language_fortran);
2843 add_filename_language (".ftn", language_fortran);
2844 add_filename_language (".FTN", language_fortran);
2845 add_filename_language (".fpp", language_fortran);
2846 add_filename_language (".FPP", language_fortran);
2847 add_filename_language (".f90", language_fortran);
2848 add_filename_language (".F90", language_fortran);
2849 add_filename_language (".f95", language_fortran);
2850 add_filename_language (".F95", language_fortran);
2851 add_filename_language (".f03", language_fortran);
2852 add_filename_language (".F03", language_fortran);
2853 add_filename_language (".f08", language_fortran);
2854 add_filename_language (".F08", language_fortran);
2855 add_filename_language (".s", language_asm);
2856 add_filename_language (".sx", language_asm);
2857 add_filename_language (".S", language_asm);
2858 add_filename_language (".pas", language_pascal);
2859 add_filename_language (".p", language_pascal);
2860 add_filename_language (".pp", language_pascal);
2861 add_filename_language (".adb", language_ada);
2862 add_filename_language (".ads", language_ada);
2863 add_filename_language (".a", language_ada);
2864 add_filename_language (".ada", language_ada);
2865 add_filename_language (".dg", language_ada);
2866 }
2867 }
2868
2869 enum language
2870 deduce_language_from_filename (const char *filename)
2871 {
2872 int i;
2873 char *cp;
2874
2875 if (filename != NULL)
2876 if ((cp = strrchr (filename, '.')) != NULL)
2877 for (i = 0; i < fl_table_next; i++)
2878 if (strcmp (cp, filename_language_table[i].ext) == 0)
2879 return filename_language_table[i].lang;
2880
2881 return language_unknown;
2882 }
2883 \f
2884 /* allocate_symtab:
2885
2886 Allocate and partly initialize a new symbol table. Return a pointer
2887 to it. error() if no space.
2888
2889 Caller must set these fields:
2890 LINETABLE(symtab)
2891 symtab->blockvector
2892 symtab->dirname
2893 symtab->free_code
2894 symtab->free_ptr
2895 */
2896
2897 struct symtab *
2898 allocate_symtab (const char *filename, struct objfile *objfile)
2899 {
2900 struct symtab *symtab;
2901
2902 symtab = (struct symtab *)
2903 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2904 memset (symtab, 0, sizeof (*symtab));
2905 symtab->filename = bcache (filename, strlen (filename) + 1,
2906 objfile->per_bfd->filename_cache);
2907 symtab->fullname = NULL;
2908 symtab->language = deduce_language_from_filename (filename);
2909 symtab->debugformat = "unknown";
2910
2911 /* Hook it to the objfile it comes from. */
2912
2913 symtab->objfile = objfile;
2914 symtab->next = objfile->symtabs;
2915 objfile->symtabs = symtab;
2916
2917 /* This can be very verbose with lots of headers.
2918 Only print at higher debug levels. */
2919 if (symtab_create_debug >= 2)
2920 {
2921 /* Be a bit clever with debugging messages, and don't print objfile
2922 every time, only when it changes. */
2923 static char *last_objfile_name = NULL;
2924
2925 if (last_objfile_name == NULL
2926 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2927 {
2928 xfree (last_objfile_name);
2929 last_objfile_name = xstrdup (objfile_name (objfile));
2930 fprintf_unfiltered (gdb_stdlog,
2931 "Creating one or more symtabs for objfile %s ...\n",
2932 last_objfile_name);
2933 }
2934 fprintf_unfiltered (gdb_stdlog,
2935 "Created symtab %s for module %s.\n",
2936 host_address_to_string (symtab), filename);
2937 }
2938
2939 return (symtab);
2940 }
2941 \f
2942
2943 /* Reset all data structures in gdb which may contain references to symbol
2944 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2945
2946 void
2947 clear_symtab_users (int add_flags)
2948 {
2949 /* Someday, we should do better than this, by only blowing away
2950 the things that really need to be blown. */
2951
2952 /* Clear the "current" symtab first, because it is no longer valid.
2953 breakpoint_re_set may try to access the current symtab. */
2954 clear_current_source_symtab_and_line ();
2955
2956 clear_displays ();
2957 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2958 breakpoint_re_set ();
2959 clear_last_displayed_sal ();
2960 clear_pc_function_cache ();
2961 observer_notify_new_objfile (NULL);
2962
2963 /* Clear globals which might have pointed into a removed objfile.
2964 FIXME: It's not clear which of these are supposed to persist
2965 between expressions and which ought to be reset each time. */
2966 expression_context_block = NULL;
2967 innermost_block = NULL;
2968
2969 /* Varobj may refer to old symbols, perform a cleanup. */
2970 varobj_invalidate ();
2971
2972 }
2973
2974 static void
2975 clear_symtab_users_cleanup (void *ignore)
2976 {
2977 clear_symtab_users (0);
2978 }
2979 \f
2980 /* OVERLAYS:
2981 The following code implements an abstraction for debugging overlay sections.
2982
2983 The target model is as follows:
2984 1) The gnu linker will permit multiple sections to be mapped into the
2985 same VMA, each with its own unique LMA (or load address).
2986 2) It is assumed that some runtime mechanism exists for mapping the
2987 sections, one by one, from the load address into the VMA address.
2988 3) This code provides a mechanism for gdb to keep track of which
2989 sections should be considered to be mapped from the VMA to the LMA.
2990 This information is used for symbol lookup, and memory read/write.
2991 For instance, if a section has been mapped then its contents
2992 should be read from the VMA, otherwise from the LMA.
2993
2994 Two levels of debugger support for overlays are available. One is
2995 "manual", in which the debugger relies on the user to tell it which
2996 overlays are currently mapped. This level of support is
2997 implemented entirely in the core debugger, and the information about
2998 whether a section is mapped is kept in the objfile->obj_section table.
2999
3000 The second level of support is "automatic", and is only available if
3001 the target-specific code provides functionality to read the target's
3002 overlay mapping table, and translate its contents for the debugger
3003 (by updating the mapped state information in the obj_section tables).
3004
3005 The interface is as follows:
3006 User commands:
3007 overlay map <name> -- tell gdb to consider this section mapped
3008 overlay unmap <name> -- tell gdb to consider this section unmapped
3009 overlay list -- list the sections that GDB thinks are mapped
3010 overlay read-target -- get the target's state of what's mapped
3011 overlay off/manual/auto -- set overlay debugging state
3012 Functional interface:
3013 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3014 section, return that section.
3015 find_pc_overlay(pc): find any overlay section that contains
3016 the pc, either in its VMA or its LMA
3017 section_is_mapped(sect): true if overlay is marked as mapped
3018 section_is_overlay(sect): true if section's VMA != LMA
3019 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3020 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3021 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3022 overlay_mapped_address(...): map an address from section's LMA to VMA
3023 overlay_unmapped_address(...): map an address from section's VMA to LMA
3024 symbol_overlayed_address(...): Return a "current" address for symbol:
3025 either in VMA or LMA depending on whether
3026 the symbol's section is currently mapped. */
3027
3028 /* Overlay debugging state: */
3029
3030 enum overlay_debugging_state overlay_debugging = ovly_off;
3031 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
3032
3033 /* Function: section_is_overlay (SECTION)
3034 Returns true if SECTION has VMA not equal to LMA, ie.
3035 SECTION is loaded at an address different from where it will "run". */
3036
3037 int
3038 section_is_overlay (struct obj_section *section)
3039 {
3040 if (overlay_debugging && section)
3041 {
3042 bfd *abfd = section->objfile->obfd;
3043 asection *bfd_section = section->the_bfd_section;
3044
3045 if (bfd_section_lma (abfd, bfd_section) != 0
3046 && bfd_section_lma (abfd, bfd_section)
3047 != bfd_section_vma (abfd, bfd_section))
3048 return 1;
3049 }
3050
3051 return 0;
3052 }
3053
3054 /* Function: overlay_invalidate_all (void)
3055 Invalidate the mapped state of all overlay sections (mark it as stale). */
3056
3057 static void
3058 overlay_invalidate_all (void)
3059 {
3060 struct objfile *objfile;
3061 struct obj_section *sect;
3062
3063 ALL_OBJSECTIONS (objfile, sect)
3064 if (section_is_overlay (sect))
3065 sect->ovly_mapped = -1;
3066 }
3067
3068 /* Function: section_is_mapped (SECTION)
3069 Returns true if section is an overlay, and is currently mapped.
3070
3071 Access to the ovly_mapped flag is restricted to this function, so
3072 that we can do automatic update. If the global flag
3073 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3074 overlay_invalidate_all. If the mapped state of the particular
3075 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3076
3077 int
3078 section_is_mapped (struct obj_section *osect)
3079 {
3080 struct gdbarch *gdbarch;
3081
3082 if (osect == 0 || !section_is_overlay (osect))
3083 return 0;
3084
3085 switch (overlay_debugging)
3086 {
3087 default:
3088 case ovly_off:
3089 return 0; /* overlay debugging off */
3090 case ovly_auto: /* overlay debugging automatic */
3091 /* Unles there is a gdbarch_overlay_update function,
3092 there's really nothing useful to do here (can't really go auto). */
3093 gdbarch = get_objfile_arch (osect->objfile);
3094 if (gdbarch_overlay_update_p (gdbarch))
3095 {
3096 if (overlay_cache_invalid)
3097 {
3098 overlay_invalidate_all ();
3099 overlay_cache_invalid = 0;
3100 }
3101 if (osect->ovly_mapped == -1)
3102 gdbarch_overlay_update (gdbarch, osect);
3103 }
3104 /* fall thru to manual case */
3105 case ovly_on: /* overlay debugging manual */
3106 return osect->ovly_mapped == 1;
3107 }
3108 }
3109
3110 /* Function: pc_in_unmapped_range
3111 If PC falls into the lma range of SECTION, return true, else false. */
3112
3113 CORE_ADDR
3114 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3115 {
3116 if (section_is_overlay (section))
3117 {
3118 bfd *abfd = section->objfile->obfd;
3119 asection *bfd_section = section->the_bfd_section;
3120
3121 /* We assume the LMA is relocated by the same offset as the VMA. */
3122 bfd_vma size = bfd_get_section_size (bfd_section);
3123 CORE_ADDR offset = obj_section_offset (section);
3124
3125 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3126 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3127 return 1;
3128 }
3129
3130 return 0;
3131 }
3132
3133 /* Function: pc_in_mapped_range
3134 If PC falls into the vma range of SECTION, return true, else false. */
3135
3136 CORE_ADDR
3137 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3138 {
3139 if (section_is_overlay (section))
3140 {
3141 if (obj_section_addr (section) <= pc
3142 && pc < obj_section_endaddr (section))
3143 return 1;
3144 }
3145
3146 return 0;
3147 }
3148
3149 /* Return true if the mapped ranges of sections A and B overlap, false
3150 otherwise. */
3151
3152 static int
3153 sections_overlap (struct obj_section *a, struct obj_section *b)
3154 {
3155 CORE_ADDR a_start = obj_section_addr (a);
3156 CORE_ADDR a_end = obj_section_endaddr (a);
3157 CORE_ADDR b_start = obj_section_addr (b);
3158 CORE_ADDR b_end = obj_section_endaddr (b);
3159
3160 return (a_start < b_end && b_start < a_end);
3161 }
3162
3163 /* Function: overlay_unmapped_address (PC, SECTION)
3164 Returns the address corresponding to PC in the unmapped (load) range.
3165 May be the same as PC. */
3166
3167 CORE_ADDR
3168 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3169 {
3170 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3171 {
3172 bfd *abfd = section->objfile->obfd;
3173 asection *bfd_section = section->the_bfd_section;
3174
3175 return pc + bfd_section_lma (abfd, bfd_section)
3176 - bfd_section_vma (abfd, bfd_section);
3177 }
3178
3179 return pc;
3180 }
3181
3182 /* Function: overlay_mapped_address (PC, SECTION)
3183 Returns the address corresponding to PC in the mapped (runtime) range.
3184 May be the same as PC. */
3185
3186 CORE_ADDR
3187 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3188 {
3189 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3190 {
3191 bfd *abfd = section->objfile->obfd;
3192 asection *bfd_section = section->the_bfd_section;
3193
3194 return pc + bfd_section_vma (abfd, bfd_section)
3195 - bfd_section_lma (abfd, bfd_section);
3196 }
3197
3198 return pc;
3199 }
3200
3201 /* Function: symbol_overlayed_address
3202 Return one of two addresses (relative to the VMA or to the LMA),
3203 depending on whether the section is mapped or not. */
3204
3205 CORE_ADDR
3206 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3207 {
3208 if (overlay_debugging)
3209 {
3210 /* If the symbol has no section, just return its regular address. */
3211 if (section == 0)
3212 return address;
3213 /* If the symbol's section is not an overlay, just return its
3214 address. */
3215 if (!section_is_overlay (section))
3216 return address;
3217 /* If the symbol's section is mapped, just return its address. */
3218 if (section_is_mapped (section))
3219 return address;
3220 /*
3221 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3222 * then return its LOADED address rather than its vma address!!
3223 */
3224 return overlay_unmapped_address (address, section);
3225 }
3226 return address;
3227 }
3228
3229 /* Function: find_pc_overlay (PC)
3230 Return the best-match overlay section for PC:
3231 If PC matches a mapped overlay section's VMA, return that section.
3232 Else if PC matches an unmapped section's VMA, return that section.
3233 Else if PC matches an unmapped section's LMA, return that section. */
3234
3235 struct obj_section *
3236 find_pc_overlay (CORE_ADDR pc)
3237 {
3238 struct objfile *objfile;
3239 struct obj_section *osect, *best_match = NULL;
3240
3241 if (overlay_debugging)
3242 ALL_OBJSECTIONS (objfile, osect)
3243 if (section_is_overlay (osect))
3244 {
3245 if (pc_in_mapped_range (pc, osect))
3246 {
3247 if (section_is_mapped (osect))
3248 return osect;
3249 else
3250 best_match = osect;
3251 }
3252 else if (pc_in_unmapped_range (pc, osect))
3253 best_match = osect;
3254 }
3255 return best_match;
3256 }
3257
3258 /* Function: find_pc_mapped_section (PC)
3259 If PC falls into the VMA address range of an overlay section that is
3260 currently marked as MAPPED, return that section. Else return NULL. */
3261
3262 struct obj_section *
3263 find_pc_mapped_section (CORE_ADDR pc)
3264 {
3265 struct objfile *objfile;
3266 struct obj_section *osect;
3267
3268 if (overlay_debugging)
3269 ALL_OBJSECTIONS (objfile, osect)
3270 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3271 return osect;
3272
3273 return NULL;
3274 }
3275
3276 /* Function: list_overlays_command
3277 Print a list of mapped sections and their PC ranges. */
3278
3279 static void
3280 list_overlays_command (char *args, int from_tty)
3281 {
3282 int nmapped = 0;
3283 struct objfile *objfile;
3284 struct obj_section *osect;
3285
3286 if (overlay_debugging)
3287 ALL_OBJSECTIONS (objfile, osect)
3288 if (section_is_mapped (osect))
3289 {
3290 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3291 const char *name;
3292 bfd_vma lma, vma;
3293 int size;
3294
3295 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3296 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3297 size = bfd_get_section_size (osect->the_bfd_section);
3298 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3299
3300 printf_filtered ("Section %s, loaded at ", name);
3301 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3302 puts_filtered (" - ");
3303 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3304 printf_filtered (", mapped at ");
3305 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3306 puts_filtered (" - ");
3307 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3308 puts_filtered ("\n");
3309
3310 nmapped++;
3311 }
3312 if (nmapped == 0)
3313 printf_filtered (_("No sections are mapped.\n"));
3314 }
3315
3316 /* Function: map_overlay_command
3317 Mark the named section as mapped (ie. residing at its VMA address). */
3318
3319 static void
3320 map_overlay_command (char *args, int from_tty)
3321 {
3322 struct objfile *objfile, *objfile2;
3323 struct obj_section *sec, *sec2;
3324
3325 if (!overlay_debugging)
3326 error (_("Overlay debugging not enabled. Use "
3327 "either the 'overlay auto' or\n"
3328 "the 'overlay manual' command."));
3329
3330 if (args == 0 || *args == 0)
3331 error (_("Argument required: name of an overlay section"));
3332
3333 /* First, find a section matching the user supplied argument. */
3334 ALL_OBJSECTIONS (objfile, sec)
3335 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3336 {
3337 /* Now, check to see if the section is an overlay. */
3338 if (!section_is_overlay (sec))
3339 continue; /* not an overlay section */
3340
3341 /* Mark the overlay as "mapped". */
3342 sec->ovly_mapped = 1;
3343
3344 /* Next, make a pass and unmap any sections that are
3345 overlapped by this new section: */
3346 ALL_OBJSECTIONS (objfile2, sec2)
3347 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3348 {
3349 if (info_verbose)
3350 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3351 bfd_section_name (objfile->obfd,
3352 sec2->the_bfd_section));
3353 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3354 }
3355 return;
3356 }
3357 error (_("No overlay section called %s"), args);
3358 }
3359
3360 /* Function: unmap_overlay_command
3361 Mark the overlay section as unmapped
3362 (ie. resident in its LMA address range, rather than the VMA range). */
3363
3364 static void
3365 unmap_overlay_command (char *args, int from_tty)
3366 {
3367 struct objfile *objfile;
3368 struct obj_section *sec;
3369
3370 if (!overlay_debugging)
3371 error (_("Overlay debugging not enabled. "
3372 "Use either the 'overlay auto' or\n"
3373 "the 'overlay manual' command."));
3374
3375 if (args == 0 || *args == 0)
3376 error (_("Argument required: name of an overlay section"));
3377
3378 /* First, find a section matching the user supplied argument. */
3379 ALL_OBJSECTIONS (objfile, sec)
3380 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3381 {
3382 if (!sec->ovly_mapped)
3383 error (_("Section %s is not mapped"), args);
3384 sec->ovly_mapped = 0;
3385 return;
3386 }
3387 error (_("No overlay section called %s"), args);
3388 }
3389
3390 /* Function: overlay_auto_command
3391 A utility command to turn on overlay debugging.
3392 Possibly this should be done via a set/show command. */
3393
3394 static void
3395 overlay_auto_command (char *args, int from_tty)
3396 {
3397 overlay_debugging = ovly_auto;
3398 enable_overlay_breakpoints ();
3399 if (info_verbose)
3400 printf_unfiltered (_("Automatic overlay debugging enabled."));
3401 }
3402
3403 /* Function: overlay_manual_command
3404 A utility command to turn on overlay debugging.
3405 Possibly this should be done via a set/show command. */
3406
3407 static void
3408 overlay_manual_command (char *args, int from_tty)
3409 {
3410 overlay_debugging = ovly_on;
3411 disable_overlay_breakpoints ();
3412 if (info_verbose)
3413 printf_unfiltered (_("Overlay debugging enabled."));
3414 }
3415
3416 /* Function: overlay_off_command
3417 A utility command to turn on overlay debugging.
3418 Possibly this should be done via a set/show command. */
3419
3420 static void
3421 overlay_off_command (char *args, int from_tty)
3422 {
3423 overlay_debugging = ovly_off;
3424 disable_overlay_breakpoints ();
3425 if (info_verbose)
3426 printf_unfiltered (_("Overlay debugging disabled."));
3427 }
3428
3429 static void
3430 overlay_load_command (char *args, int from_tty)
3431 {
3432 struct gdbarch *gdbarch = get_current_arch ();
3433
3434 if (gdbarch_overlay_update_p (gdbarch))
3435 gdbarch_overlay_update (gdbarch, NULL);
3436 else
3437 error (_("This target does not know how to read its overlay state."));
3438 }
3439
3440 /* Function: overlay_command
3441 A place-holder for a mis-typed command. */
3442
3443 /* Command list chain containing all defined "overlay" subcommands. */
3444 static struct cmd_list_element *overlaylist;
3445
3446 static void
3447 overlay_command (char *args, int from_tty)
3448 {
3449 printf_unfiltered
3450 ("\"overlay\" must be followed by the name of an overlay command.\n");
3451 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3452 }
3453
3454 /* Target Overlays for the "Simplest" overlay manager:
3455
3456 This is GDB's default target overlay layer. It works with the
3457 minimal overlay manager supplied as an example by Cygnus. The
3458 entry point is via a function pointer "gdbarch_overlay_update",
3459 so targets that use a different runtime overlay manager can
3460 substitute their own overlay_update function and take over the
3461 function pointer.
3462
3463 The overlay_update function pokes around in the target's data structures
3464 to see what overlays are mapped, and updates GDB's overlay mapping with
3465 this information.
3466
3467 In this simple implementation, the target data structures are as follows:
3468 unsigned _novlys; /# number of overlay sections #/
3469 unsigned _ovly_table[_novlys][4] = {
3470 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3471 {..., ..., ..., ...},
3472 }
3473 unsigned _novly_regions; /# number of overlay regions #/
3474 unsigned _ovly_region_table[_novly_regions][3] = {
3475 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3476 {..., ..., ...},
3477 }
3478 These functions will attempt to update GDB's mappedness state in the
3479 symbol section table, based on the target's mappedness state.
3480
3481 To do this, we keep a cached copy of the target's _ovly_table, and
3482 attempt to detect when the cached copy is invalidated. The main
3483 entry point is "simple_overlay_update(SECT), which looks up SECT in
3484 the cached table and re-reads only the entry for that section from
3485 the target (whenever possible). */
3486
3487 /* Cached, dynamically allocated copies of the target data structures: */
3488 static unsigned (*cache_ovly_table)[4] = 0;
3489 static unsigned cache_novlys = 0;
3490 static CORE_ADDR cache_ovly_table_base = 0;
3491 enum ovly_index
3492 {
3493 VMA, SIZE, LMA, MAPPED
3494 };
3495
3496 /* Throw away the cached copy of _ovly_table. */
3497
3498 static void
3499 simple_free_overlay_table (void)
3500 {
3501 if (cache_ovly_table)
3502 xfree (cache_ovly_table);
3503 cache_novlys = 0;
3504 cache_ovly_table = NULL;
3505 cache_ovly_table_base = 0;
3506 }
3507
3508 /* Read an array of ints of size SIZE from the target into a local buffer.
3509 Convert to host order. int LEN is number of ints. */
3510
3511 static void
3512 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3513 int len, int size, enum bfd_endian byte_order)
3514 {
3515 /* FIXME (alloca): Not safe if array is very large. */
3516 gdb_byte *buf = alloca (len * size);
3517 int i;
3518
3519 read_memory (memaddr, buf, len * size);
3520 for (i = 0; i < len; i++)
3521 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3522 }
3523
3524 /* Find and grab a copy of the target _ovly_table
3525 (and _novlys, which is needed for the table's size). */
3526
3527 static int
3528 simple_read_overlay_table (void)
3529 {
3530 struct bound_minimal_symbol novlys_msym;
3531 struct bound_minimal_symbol ovly_table_msym;
3532 struct gdbarch *gdbarch;
3533 int word_size;
3534 enum bfd_endian byte_order;
3535
3536 simple_free_overlay_table ();
3537 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3538 if (! novlys_msym.minsym)
3539 {
3540 error (_("Error reading inferior's overlay table: "
3541 "couldn't find `_novlys' variable\n"
3542 "in inferior. Use `overlay manual' mode."));
3543 return 0;
3544 }
3545
3546 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3547 if (! ovly_table_msym.minsym)
3548 {
3549 error (_("Error reading inferior's overlay table: couldn't find "
3550 "`_ovly_table' array\n"
3551 "in inferior. Use `overlay manual' mode."));
3552 return 0;
3553 }
3554
3555 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3556 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3557 byte_order = gdbarch_byte_order (gdbarch);
3558
3559 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3560 4, byte_order);
3561 cache_ovly_table
3562 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3563 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3564 read_target_long_array (cache_ovly_table_base,
3565 (unsigned int *) cache_ovly_table,
3566 cache_novlys * 4, word_size, byte_order);
3567
3568 return 1; /* SUCCESS */
3569 }
3570
3571 /* Function: simple_overlay_update_1
3572 A helper function for simple_overlay_update. Assuming a cached copy
3573 of _ovly_table exists, look through it to find an entry whose vma,
3574 lma and size match those of OSECT. Re-read the entry and make sure
3575 it still matches OSECT (else the table may no longer be valid).
3576 Set OSECT's mapped state to match the entry. Return: 1 for
3577 success, 0 for failure. */
3578
3579 static int
3580 simple_overlay_update_1 (struct obj_section *osect)
3581 {
3582 int i, size;
3583 bfd *obfd = osect->objfile->obfd;
3584 asection *bsect = osect->the_bfd_section;
3585 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3586 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3587 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3588
3589 size = bfd_get_section_size (osect->the_bfd_section);
3590 for (i = 0; i < cache_novlys; i++)
3591 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3592 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3593 /* && cache_ovly_table[i][SIZE] == size */ )
3594 {
3595 read_target_long_array (cache_ovly_table_base + i * word_size,
3596 (unsigned int *) cache_ovly_table[i],
3597 4, word_size, byte_order);
3598 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3599 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3600 /* && cache_ovly_table[i][SIZE] == size */ )
3601 {
3602 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3603 return 1;
3604 }
3605 else /* Warning! Warning! Target's ovly table has changed! */
3606 return 0;
3607 }
3608 return 0;
3609 }
3610
3611 /* Function: simple_overlay_update
3612 If OSECT is NULL, then update all sections' mapped state
3613 (after re-reading the entire target _ovly_table).
3614 If OSECT is non-NULL, then try to find a matching entry in the
3615 cached ovly_table and update only OSECT's mapped state.
3616 If a cached entry can't be found or the cache isn't valid, then
3617 re-read the entire cache, and go ahead and update all sections. */
3618
3619 void
3620 simple_overlay_update (struct obj_section *osect)
3621 {
3622 struct objfile *objfile;
3623
3624 /* Were we given an osect to look up? NULL means do all of them. */
3625 if (osect)
3626 /* Have we got a cached copy of the target's overlay table? */
3627 if (cache_ovly_table != NULL)
3628 {
3629 /* Does its cached location match what's currently in the
3630 symtab? */
3631 struct bound_minimal_symbol minsym
3632 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3633
3634 if (minsym.minsym == NULL)
3635 error (_("Error reading inferior's overlay table: couldn't "
3636 "find `_ovly_table' array\n"
3637 "in inferior. Use `overlay manual' mode."));
3638
3639 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3640 /* Then go ahead and try to look up this single section in
3641 the cache. */
3642 if (simple_overlay_update_1 (osect))
3643 /* Found it! We're done. */
3644 return;
3645 }
3646
3647 /* Cached table no good: need to read the entire table anew.
3648 Or else we want all the sections, in which case it's actually
3649 more efficient to read the whole table in one block anyway. */
3650
3651 if (! simple_read_overlay_table ())
3652 return;
3653
3654 /* Now may as well update all sections, even if only one was requested. */
3655 ALL_OBJSECTIONS (objfile, osect)
3656 if (section_is_overlay (osect))
3657 {
3658 int i, size;
3659 bfd *obfd = osect->objfile->obfd;
3660 asection *bsect = osect->the_bfd_section;
3661
3662 size = bfd_get_section_size (bsect);
3663 for (i = 0; i < cache_novlys; i++)
3664 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3665 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3666 /* && cache_ovly_table[i][SIZE] == size */ )
3667 { /* obj_section matches i'th entry in ovly_table. */
3668 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3669 break; /* finished with inner for loop: break out. */
3670 }
3671 }
3672 }
3673
3674 /* Set the output sections and output offsets for section SECTP in
3675 ABFD. The relocation code in BFD will read these offsets, so we
3676 need to be sure they're initialized. We map each section to itself,
3677 with no offset; this means that SECTP->vma will be honored. */
3678
3679 static void
3680 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3681 {
3682 sectp->output_section = sectp;
3683 sectp->output_offset = 0;
3684 }
3685
3686 /* Default implementation for sym_relocate. */
3687
3688 bfd_byte *
3689 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3690 bfd_byte *buf)
3691 {
3692 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3693 DWO file. */
3694 bfd *abfd = sectp->owner;
3695
3696 /* We're only interested in sections with relocation
3697 information. */
3698 if ((sectp->flags & SEC_RELOC) == 0)
3699 return NULL;
3700
3701 /* We will handle section offsets properly elsewhere, so relocate as if
3702 all sections begin at 0. */
3703 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3704
3705 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3706 }
3707
3708 /* Relocate the contents of a debug section SECTP in ABFD. The
3709 contents are stored in BUF if it is non-NULL, or returned in a
3710 malloc'd buffer otherwise.
3711
3712 For some platforms and debug info formats, shared libraries contain
3713 relocations against the debug sections (particularly for DWARF-2;
3714 one affected platform is PowerPC GNU/Linux, although it depends on
3715 the version of the linker in use). Also, ELF object files naturally
3716 have unresolved relocations for their debug sections. We need to apply
3717 the relocations in order to get the locations of symbols correct.
3718 Another example that may require relocation processing, is the
3719 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3720 debug section. */
3721
3722 bfd_byte *
3723 symfile_relocate_debug_section (struct objfile *objfile,
3724 asection *sectp, bfd_byte *buf)
3725 {
3726 gdb_assert (objfile->sf->sym_relocate);
3727
3728 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3729 }
3730
3731 struct symfile_segment_data *
3732 get_symfile_segment_data (bfd *abfd)
3733 {
3734 const struct sym_fns *sf = find_sym_fns (abfd);
3735
3736 if (sf == NULL)
3737 return NULL;
3738
3739 return sf->sym_segments (abfd);
3740 }
3741
3742 void
3743 free_symfile_segment_data (struct symfile_segment_data *data)
3744 {
3745 xfree (data->segment_bases);
3746 xfree (data->segment_sizes);
3747 xfree (data->segment_info);
3748 xfree (data);
3749 }
3750
3751 /* Given:
3752 - DATA, containing segment addresses from the object file ABFD, and
3753 the mapping from ABFD's sections onto the segments that own them,
3754 and
3755 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3756 segment addresses reported by the target,
3757 store the appropriate offsets for each section in OFFSETS.
3758
3759 If there are fewer entries in SEGMENT_BASES than there are segments
3760 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3761
3762 If there are more entries, then ignore the extra. The target may
3763 not be able to distinguish between an empty data segment and a
3764 missing data segment; a missing text segment is less plausible. */
3765
3766 int
3767 symfile_map_offsets_to_segments (bfd *abfd,
3768 const struct symfile_segment_data *data,
3769 struct section_offsets *offsets,
3770 int num_segment_bases,
3771 const CORE_ADDR *segment_bases)
3772 {
3773 int i;
3774 asection *sect;
3775
3776 /* It doesn't make sense to call this function unless you have some
3777 segment base addresses. */
3778 gdb_assert (num_segment_bases > 0);
3779
3780 /* If we do not have segment mappings for the object file, we
3781 can not relocate it by segments. */
3782 gdb_assert (data != NULL);
3783 gdb_assert (data->num_segments > 0);
3784
3785 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3786 {
3787 int which = data->segment_info[i];
3788
3789 gdb_assert (0 <= which && which <= data->num_segments);
3790
3791 /* Don't bother computing offsets for sections that aren't
3792 loaded as part of any segment. */
3793 if (! which)
3794 continue;
3795
3796 /* Use the last SEGMENT_BASES entry as the address of any extra
3797 segments mentioned in DATA->segment_info. */
3798 if (which > num_segment_bases)
3799 which = num_segment_bases;
3800
3801 offsets->offsets[i] = (segment_bases[which - 1]
3802 - data->segment_bases[which - 1]);
3803 }
3804
3805 return 1;
3806 }
3807
3808 static void
3809 symfile_find_segment_sections (struct objfile *objfile)
3810 {
3811 bfd *abfd = objfile->obfd;
3812 int i;
3813 asection *sect;
3814 struct symfile_segment_data *data;
3815
3816 data = get_symfile_segment_data (objfile->obfd);
3817 if (data == NULL)
3818 return;
3819
3820 if (data->num_segments != 1 && data->num_segments != 2)
3821 {
3822 free_symfile_segment_data (data);
3823 return;
3824 }
3825
3826 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3827 {
3828 int which = data->segment_info[i];
3829
3830 if (which == 1)
3831 {
3832 if (objfile->sect_index_text == -1)
3833 objfile->sect_index_text = sect->index;
3834
3835 if (objfile->sect_index_rodata == -1)
3836 objfile->sect_index_rodata = sect->index;
3837 }
3838 else if (which == 2)
3839 {
3840 if (objfile->sect_index_data == -1)
3841 objfile->sect_index_data = sect->index;
3842
3843 if (objfile->sect_index_bss == -1)
3844 objfile->sect_index_bss = sect->index;
3845 }
3846 }
3847
3848 free_symfile_segment_data (data);
3849 }
3850
3851 /* Listen for free_objfile events. */
3852
3853 static void
3854 symfile_free_objfile (struct objfile *objfile)
3855 {
3856 /* Remove the target sections of user-added objfiles. */
3857 if (objfile != 0 && objfile->flags & OBJF_USERLOADED)
3858 remove_target_sections ((void *) objfile);
3859 }
3860
3861 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3862 Expand all symtabs that match the specified criteria.
3863 See quick_symbol_functions.expand_symtabs_matching for details. */
3864
3865 void
3866 expand_symtabs_matching (expand_symtabs_file_matcher_ftype *file_matcher,
3867 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3868 enum search_domain kind,
3869 void *data)
3870 {
3871 struct objfile *objfile;
3872
3873 ALL_OBJFILES (objfile)
3874 {
3875 if (objfile->sf)
3876 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3877 symbol_matcher, kind,
3878 data);
3879 }
3880 }
3881
3882 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3883 Map function FUN over every file.
3884 See quick_symbol_functions.map_symbol_filenames for details. */
3885
3886 void
3887 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3888 int need_fullname)
3889 {
3890 struct objfile *objfile;
3891
3892 ALL_OBJFILES (objfile)
3893 {
3894 if (objfile->sf)
3895 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3896 need_fullname);
3897 }
3898 }
3899
3900 void
3901 _initialize_symfile (void)
3902 {
3903 struct cmd_list_element *c;
3904
3905 observer_attach_free_objfile (symfile_free_objfile);
3906
3907 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3908 Load symbol table from executable file FILE.\n\
3909 The `file' command can also load symbol tables, as well as setting the file\n\
3910 to execute."), &cmdlist);
3911 set_cmd_completer (c, filename_completer);
3912
3913 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3914 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3915 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3916 ...]\nADDR is the starting address of the file's text.\n\
3917 The optional arguments are section-name section-address pairs and\n\
3918 should be specified if the data and bss segments are not contiguous\n\
3919 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3920 &cmdlist);
3921 set_cmd_completer (c, filename_completer);
3922
3923 c = add_cmd ("remove-symbol-file", class_files,
3924 remove_symbol_file_command, _("\
3925 Remove a symbol file added via the add-symbol-file command.\n\
3926 Usage: remove-symbol-file FILENAME\n\
3927 remove-symbol-file -a ADDRESS\n\
3928 The file to remove can be identified by its filename or by an address\n\
3929 that lies within the boundaries of this symbol file in memory."),
3930 &cmdlist);
3931
3932 c = add_cmd ("load", class_files, load_command, _("\
3933 Dynamically load FILE into the running program, and record its symbols\n\
3934 for access from GDB.\n\
3935 A load OFFSET may also be given."), &cmdlist);
3936 set_cmd_completer (c, filename_completer);
3937
3938 add_prefix_cmd ("overlay", class_support, overlay_command,
3939 _("Commands for debugging overlays."), &overlaylist,
3940 "overlay ", 0, &cmdlist);
3941
3942 add_com_alias ("ovly", "overlay", class_alias, 1);
3943 add_com_alias ("ov", "overlay", class_alias, 1);
3944
3945 add_cmd ("map-overlay", class_support, map_overlay_command,
3946 _("Assert that an overlay section is mapped."), &overlaylist);
3947
3948 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3949 _("Assert that an overlay section is unmapped."), &overlaylist);
3950
3951 add_cmd ("list-overlays", class_support, list_overlays_command,
3952 _("List mappings of overlay sections."), &overlaylist);
3953
3954 add_cmd ("manual", class_support, overlay_manual_command,
3955 _("Enable overlay debugging."), &overlaylist);
3956 add_cmd ("off", class_support, overlay_off_command,
3957 _("Disable overlay debugging."), &overlaylist);
3958 add_cmd ("auto", class_support, overlay_auto_command,
3959 _("Enable automatic overlay debugging."), &overlaylist);
3960 add_cmd ("load-target", class_support, overlay_load_command,
3961 _("Read the overlay mapping state from the target."), &overlaylist);
3962
3963 /* Filename extension to source language lookup table: */
3964 init_filename_language_table ();
3965 add_setshow_string_noescape_cmd ("extension-language", class_files,
3966 &ext_args, _("\
3967 Set mapping between filename extension and source language."), _("\
3968 Show mapping between filename extension and source language."), _("\
3969 Usage: set extension-language .foo bar"),
3970 set_ext_lang_command,
3971 show_ext_args,
3972 &setlist, &showlist);
3973
3974 add_info ("extensions", info_ext_lang_command,
3975 _("All filename extensions associated with a source language."));
3976
3977 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3978 &debug_file_directory, _("\
3979 Set the directories where separate debug symbols are searched for."), _("\
3980 Show the directories where separate debug symbols are searched for."), _("\
3981 Separate debug symbols are first searched for in the same\n\
3982 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3983 and lastly at the path of the directory of the binary with\n\
3984 each global debug-file-directory component prepended."),
3985 NULL,
3986 show_debug_file_directory,
3987 &setlist, &showlist);
3988 }
This page took 0.1152 seconds and 4 git commands to generate.