Path from Roland McGrath <roland@baalperazim.frob.com>
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998
3 Free Software Foundation, Inc.
4 Contributed by Cygnus Support, using pieces from other GDB modules.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "target.h"
29 #include "value.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdbcmd.h"
33 #include "breakpoint.h"
34 #include "language.h"
35 #include "complaints.h"
36 #include "demangle.h"
37 #include "inferior.h" /* for write_pc */
38 #include "gdb-stabs.h"
39 #include "obstack.h"
40
41 #include <assert.h>
42 #include <sys/types.h>
43 #include <fcntl.h>
44 #include "gdb_string.h"
45 #include "gdb_stat.h"
46 #include <ctype.h>
47 #include <time.h>
48 #ifdef HAVE_UNISTD_H
49 #include <unistd.h>
50 #endif
51
52 #ifndef O_BINARY
53 #define O_BINARY 0
54 #endif
55
56 #ifdef HPUXHPPA
57
58 /* Some HP-UX related globals to clear when a new "main"
59 symbol file is loaded. HP-specific. */
60
61 extern int hp_som_som_object_present;
62 extern int hp_cxx_exception_support_initialized;
63 #define RESET_HP_UX_GLOBALS() do {\
64 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
65 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
66 } while (0)
67 #endif
68
69 int (*ui_load_progress_hook) PARAMS ((char *, unsigned long));
70 void (*pre_add_symbol_hook) PARAMS ((char *));
71 void (*post_add_symbol_hook) PARAMS ((void));
72
73 /* Global variables owned by this file */
74 int readnow_symbol_files; /* Read full symbols immediately */
75
76 struct complaint oldsyms_complaint =
77 {
78 "Replacing old symbols for `%s'", 0, 0
79 };
80
81 struct complaint empty_symtab_complaint =
82 {
83 "Empty symbol table found for `%s'", 0, 0
84 };
85
86 /* External variables and functions referenced. */
87
88 extern int info_verbose;
89
90 extern void report_transfer_performance PARAMS ((unsigned long,
91 time_t, time_t));
92
93 /* Functions this file defines */
94
95 #if 0
96 static int simple_read_overlay_region_table PARAMS ((void));
97 static void simple_free_overlay_region_table PARAMS ((void));
98 #endif
99
100 static void set_initial_language PARAMS ((void));
101
102 static void load_command PARAMS ((char *, int));
103
104 static void add_symbol_file_command PARAMS ((char *, int));
105
106 static void add_shared_symbol_files_command PARAMS ((char *, int));
107
108 static void cashier_psymtab PARAMS ((struct partial_symtab *));
109
110 static int compare_psymbols PARAMS ((const void *, const void *));
111
112 static int compare_symbols PARAMS ((const void *, const void *));
113
114 bfd *symfile_bfd_open PARAMS ((char *));
115
116 static void find_sym_fns PARAMS ((struct objfile *));
117
118 static void decrement_reading_symtab PARAMS ((void *));
119
120 static void overlay_invalidate_all PARAMS ((void));
121
122 static int overlay_is_mapped PARAMS ((struct obj_section *));
123
124 void list_overlays_command PARAMS ((char *, int));
125
126 void map_overlay_command PARAMS ((char *, int));
127
128 void unmap_overlay_command PARAMS ((char *, int));
129
130 static void overlay_auto_command PARAMS ((char *, int));
131
132 static void overlay_manual_command PARAMS ((char *, int));
133
134 static void overlay_off_command PARAMS ((char *, int));
135
136 static void overlay_load_command PARAMS ((char *, int));
137
138 static void overlay_command PARAMS ((char *, int));
139
140 static void simple_free_overlay_table PARAMS ((void));
141
142 static void read_target_long_array PARAMS ((CORE_ADDR, unsigned int *, int));
143
144 static int simple_read_overlay_table PARAMS ((void));
145
146 static int simple_overlay_update_1 PARAMS ((struct obj_section *));
147
148 static void add_filename_language PARAMS ((char *ext, enum language lang));
149
150 static void set_ext_lang_command PARAMS ((char *args, int from_tty));
151
152 static void info_ext_lang_command PARAMS ((char *args, int from_tty));
153
154 static void init_filename_language_table PARAMS ((void));
155
156 void _initialize_symfile PARAMS ((void));
157
158 /* List of all available sym_fns. On gdb startup, each object file reader
159 calls add_symtab_fns() to register information on each format it is
160 prepared to read. */
161
162 static struct sym_fns *symtab_fns = NULL;
163
164 /* Flag for whether user will be reloading symbols multiple times.
165 Defaults to ON for VxWorks, otherwise OFF. */
166
167 #ifdef SYMBOL_RELOADING_DEFAULT
168 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
169 #else
170 int symbol_reloading = 0;
171 #endif
172
173 /* If non-zero, then on HP-UX (i.e., platforms that use somsolib.c),
174 this variable is interpreted as a threshhold. If adding a new
175 library's symbol table to those already known to the debugger would
176 exceed this threshhold, then the shlib's symbols are not added.
177
178 If non-zero on other platforms, shared library symbols will be added
179 automatically when the inferior is created, new libraries are loaded,
180 or when attaching to the inferior. This is almost always what users
181 will want to have happen; but for very large programs, the startup
182 time will be excessive, and so if this is a problem, the user can
183 clear this flag and then add the shared library symbols as needed.
184 Note that there is a potential for confusion, since if the shared
185 library symbols are not loaded, commands like "info fun" will *not*
186 report all the functions that are actually present.
187
188 Note that HP-UX interprets this variable to mean, "threshhold size
189 in megabytes, where zero means never add". Other platforms interpret
190 this variable to mean, "always add if non-zero, never add if zero."
191 */
192
193 int auto_solib_add = 1;
194 \f
195
196 /* Since this function is called from within qsort, in an ANSI environment
197 it must conform to the prototype for qsort, which specifies that the
198 comparison function takes two "void *" pointers. */
199
200 static int
201 compare_symbols (s1p, s2p)
202 const PTR s1p;
203 const PTR s2p;
204 {
205 register struct symbol **s1, **s2;
206
207 s1 = (struct symbol **) s1p;
208 s2 = (struct symbol **) s2p;
209
210 return (STRCMP (SYMBOL_NAME (*s1), SYMBOL_NAME (*s2)));
211 }
212
213 /*
214
215 LOCAL FUNCTION
216
217 compare_psymbols -- compare two partial symbols by name
218
219 DESCRIPTION
220
221 Given pointers to pointers to two partial symbol table entries,
222 compare them by name and return -N, 0, or +N (ala strcmp).
223 Typically used by sorting routines like qsort().
224
225 NOTES
226
227 Does direct compare of first two characters before punting
228 and passing to strcmp for longer compares. Note that the
229 original version had a bug whereby two null strings or two
230 identically named one character strings would return the
231 comparison of memory following the null byte.
232
233 */
234
235 static int
236 compare_psymbols (s1p, s2p)
237 const PTR s1p;
238 const PTR s2p;
239 {
240 register char *st1 = SYMBOL_NAME (*(struct partial_symbol **) s1p);
241 register char *st2 = SYMBOL_NAME (*(struct partial_symbol **) s2p);
242
243 if ((st1[0] - st2[0]) || !st1[0])
244 {
245 return (st1[0] - st2[0]);
246 }
247 else if ((st1[1] - st2[1]) || !st1[1])
248 {
249 return (st1[1] - st2[1]);
250 }
251 else
252 {
253 /* Note: I replaced the STRCMP line (commented out below)
254 * with a simpler "strcmp()" which compares the 2 strings
255 * from the beginning. (STRCMP is a macro which first compares
256 * the initial characters, then falls back on strcmp).
257 * The reason is that the STRCMP line was tickling a C compiler
258 * bug on HP-UX 10.30, which is avoided with the simpler
259 * code. The performance gain from the more complicated code
260 * is negligible, given that we have already checked the
261 * initial 2 characters above. I reported the compiler bug,
262 * and once it is fixed the original line can be put back. RT
263 */
264 /* return ( STRCMP (st1 + 2, st2 + 2)); */
265 return (strcmp (st1, st2));
266 }
267 }
268
269 void
270 sort_pst_symbols (pst)
271 struct partial_symtab *pst;
272 {
273 /* Sort the global list; don't sort the static list */
274
275 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
276 pst->n_global_syms, sizeof (struct partial_symbol *),
277 compare_psymbols);
278 }
279
280 /* Call sort_block_syms to sort alphabetically the symbols of one block. */
281
282 void
283 sort_block_syms (b)
284 register struct block *b;
285 {
286 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
287 sizeof (struct symbol *), compare_symbols);
288 }
289
290 /* Call sort_symtab_syms to sort alphabetically
291 the symbols of each block of one symtab. */
292
293 void
294 sort_symtab_syms (s)
295 register struct symtab *s;
296 {
297 register struct blockvector *bv;
298 int nbl;
299 int i;
300 register struct block *b;
301
302 if (s == 0)
303 return;
304 bv = BLOCKVECTOR (s);
305 nbl = BLOCKVECTOR_NBLOCKS (bv);
306 for (i = 0; i < nbl; i++)
307 {
308 b = BLOCKVECTOR_BLOCK (bv, i);
309 if (BLOCK_SHOULD_SORT (b))
310 sort_block_syms (b);
311 }
312 }
313
314 /* Make a null terminated copy of the string at PTR with SIZE characters in
315 the obstack pointed to by OBSTACKP . Returns the address of the copy.
316 Note that the string at PTR does not have to be null terminated, I.E. it
317 may be part of a larger string and we are only saving a substring. */
318
319 char *
320 obsavestring (ptr, size, obstackp)
321 char *ptr;
322 int size;
323 struct obstack *obstackp;
324 {
325 register char *p = (char *) obstack_alloc (obstackp, size + 1);
326 /* Open-coded memcpy--saves function call time. These strings are usually
327 short. FIXME: Is this really still true with a compiler that can
328 inline memcpy? */
329 {
330 register char *p1 = ptr;
331 register char *p2 = p;
332 char *end = ptr + size;
333 while (p1 != end)
334 *p2++ = *p1++;
335 }
336 p[size] = 0;
337 return p;
338 }
339
340 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
341 in the obstack pointed to by OBSTACKP. */
342
343 char *
344 obconcat (obstackp, s1, s2, s3)
345 struct obstack *obstackp;
346 const char *s1, *s2, *s3;
347 {
348 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
349 register char *val = (char *) obstack_alloc (obstackp, len);
350 strcpy (val, s1);
351 strcat (val, s2);
352 strcat (val, s3);
353 return val;
354 }
355
356 /* True if we are nested inside psymtab_to_symtab. */
357
358 int currently_reading_symtab = 0;
359
360 static void
361 decrement_reading_symtab (dummy)
362 void *dummy;
363 {
364 currently_reading_symtab--;
365 }
366
367 /* Get the symbol table that corresponds to a partial_symtab.
368 This is fast after the first time you do it. In fact, there
369 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
370 case inline. */
371
372 struct symtab *
373 psymtab_to_symtab (pst)
374 register struct partial_symtab *pst;
375 {
376 /* If it's been looked up before, return it. */
377 if (pst->symtab)
378 return pst->symtab;
379
380 /* If it has not yet been read in, read it. */
381 if (!pst->readin)
382 {
383 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
384 currently_reading_symtab++;
385 (*pst->read_symtab) (pst);
386 do_cleanups (back_to);
387 }
388
389 return pst->symtab;
390 }
391
392 /* Initialize entry point information for this objfile. */
393
394 void
395 init_entry_point_info (objfile)
396 struct objfile *objfile;
397 {
398 /* Save startup file's range of PC addresses to help blockframe.c
399 decide where the bottom of the stack is. */
400
401 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
402 {
403 /* Executable file -- record its entry point so we'll recognize
404 the startup file because it contains the entry point. */
405 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
406 }
407 else
408 {
409 /* Examination of non-executable.o files. Short-circuit this stuff. */
410 objfile->ei.entry_point = INVALID_ENTRY_POINT;
411 }
412 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
413 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
414 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
415 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
416 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
417 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
418 }
419
420 /* Get current entry point address. */
421
422 CORE_ADDR
423 entry_point_address ()
424 {
425 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
426 }
427
428 /* Remember the lowest-addressed loadable section we've seen.
429 This function is called via bfd_map_over_sections.
430
431 In case of equal vmas, the section with the largest size becomes the
432 lowest-addressed loadable section.
433
434 If the vmas and sizes are equal, the last section is considered the
435 lowest-addressed loadable section. */
436
437 void
438 find_lowest_section (abfd, sect, obj)
439 bfd *abfd;
440 asection *sect;
441 PTR obj;
442 {
443 asection **lowest = (asection **) obj;
444
445 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
446 return;
447 if (!*lowest)
448 *lowest = sect; /* First loadable section */
449 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
450 *lowest = sect; /* A lower loadable section */
451 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
452 && (bfd_section_size (abfd, (*lowest))
453 <= bfd_section_size (abfd, sect)))
454 *lowest = sect;
455 }
456
457 /* Parse the user's idea of an offset for dynamic linking, into our idea
458 of how to represent it for fast symbol reading. This is the default
459 version of the sym_fns.sym_offsets function for symbol readers that
460 don't need to do anything special. It allocates a section_offsets table
461 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
462
463 struct section_offsets *
464 default_symfile_offsets (objfile, addr)
465 struct objfile *objfile;
466 CORE_ADDR addr;
467 {
468 struct section_offsets *section_offsets;
469 int i;
470
471 objfile->num_sections = SECT_OFF_MAX;
472 section_offsets = (struct section_offsets *)
473 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
474 memset (section_offsets, 0, SIZEOF_SECTION_OFFSETS);
475
476 for (i = 0; i < SECT_OFF_MAX; i++)
477 ANOFFSET (section_offsets, i) = addr;
478
479 return section_offsets;
480 }
481
482
483 /* Process a symbol file, as either the main file or as a dynamically
484 loaded file.
485
486 OBJFILE is where the symbols are to be read from.
487
488 ADDR is the address where the text segment was loaded, unless the
489 objfile is the main symbol file, in which case it is zero.
490
491 MAINLINE is nonzero if this is the main symbol file, or zero if
492 it's an extra symbol file such as dynamically loaded code.
493
494 VERBO is nonzero if the caller has printed a verbose message about
495 the symbol reading (and complaints can be more terse about it). */
496
497 void
498 syms_from_objfile (objfile, addr, mainline, verbo)
499 struct objfile *objfile;
500 CORE_ADDR addr;
501 int mainline;
502 int verbo;
503 {
504 struct section_offsets *section_offsets;
505 asection *lowest_sect;
506 struct cleanup *old_chain;
507
508 init_entry_point_info (objfile);
509 find_sym_fns (objfile);
510
511 /* Make sure that partially constructed symbol tables will be cleaned up
512 if an error occurs during symbol reading. */
513 old_chain = make_cleanup ((make_cleanup_func) free_objfile, objfile);
514
515 if (mainline)
516 {
517 /* We will modify the main symbol table, make sure that all its users
518 will be cleaned up if an error occurs during symbol reading. */
519 make_cleanup ((make_cleanup_func) clear_symtab_users, 0);
520
521 /* Since no error yet, throw away the old symbol table. */
522
523 if (symfile_objfile != NULL)
524 {
525 free_objfile (symfile_objfile);
526 symfile_objfile = NULL;
527 }
528
529 /* Currently we keep symbols from the add-symbol-file command.
530 If the user wants to get rid of them, they should do "symbol-file"
531 without arguments first. Not sure this is the best behavior
532 (PR 2207). */
533
534 (*objfile->sf->sym_new_init) (objfile);
535 }
536
537 /* Convert addr into an offset rather than an absolute address.
538 We find the lowest address of a loaded segment in the objfile,
539 and assume that <addr> is where that got loaded.
540
541 We no longer warn if the lowest section is not a text segment (as
542 happens for the PA64 port. */
543 if (mainline)
544 {
545 addr = 0; /* No offset from objfile addresses. */
546 }
547 else
548 {
549 lowest_sect = bfd_get_section_by_name (objfile->obfd, ".text");
550 if (lowest_sect == NULL)
551 bfd_map_over_sections (objfile->obfd, find_lowest_section,
552 (PTR) &lowest_sect);
553
554 if (lowest_sect == NULL)
555 warning ("no loadable sections found in added symbol-file %s",
556 objfile->name);
557
558 if (lowest_sect)
559 addr -= bfd_section_vma (objfile->obfd, lowest_sect);
560 }
561
562 /* Initialize symbol reading routines for this objfile, allow complaints to
563 appear for this new file, and record how verbose to be, then do the
564 initial symbol reading for this file. */
565
566 (*objfile->sf->sym_init) (objfile);
567 clear_complaints (1, verbo);
568
569 section_offsets = (*objfile->sf->sym_offsets) (objfile, addr);
570 objfile->section_offsets = section_offsets;
571
572 #ifndef IBM6000_TARGET
573 /* This is a SVR4/SunOS specific hack, I think. In any event, it
574 screws RS/6000. sym_offsets should be doing this sort of thing,
575 because it knows the mapping between bfd sections and
576 section_offsets. */
577 /* This is a hack. As far as I can tell, section offsets are not
578 target dependent. They are all set to addr with a couple of
579 exceptions. The exceptions are sysvr4 shared libraries, whose
580 offsets are kept in solib structures anyway and rs6000 xcoff
581 which handles shared libraries in a completely unique way.
582
583 Section offsets are built similarly, except that they are built
584 by adding addr in all cases because there is no clear mapping
585 from section_offsets into actual sections. Note that solib.c
586 has a different algorithm for finding section offsets.
587
588 These should probably all be collapsed into some target
589 independent form of shared library support. FIXME. */
590
591 if (addr)
592 {
593 struct obj_section *s;
594
595 ALL_OBJFILE_OSECTIONS (objfile, s)
596 {
597 s->addr -= s->offset;
598 s->addr += addr;
599 s->endaddr -= s->offset;
600 s->endaddr += addr;
601 s->offset += addr;
602 }
603 }
604 #endif /* not IBM6000_TARGET */
605
606 (*objfile->sf->sym_read) (objfile, mainline);
607
608 if (!have_partial_symbols () && !have_full_symbols ())
609 {
610 wrap_here ("");
611 printf_filtered ("(no debugging symbols found)...");
612 wrap_here ("");
613 }
614
615 /* Don't allow char * to have a typename (else would get caddr_t).
616 Ditto void *. FIXME: Check whether this is now done by all the
617 symbol readers themselves (many of them now do), and if so remove
618 it from here. */
619
620 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
621 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
622
623 /* Mark the objfile has having had initial symbol read attempted. Note
624 that this does not mean we found any symbols... */
625
626 objfile->flags |= OBJF_SYMS;
627
628 /* Discard cleanups as symbol reading was successful. */
629
630 discard_cleanups (old_chain);
631
632 /* Call this after reading in a new symbol table to give target
633 dependant code a crack at the new symbols. For instance, this
634 could be used to update the values of target-specific symbols GDB
635 needs to keep track of (such as _sigtramp, or whatever). */
636
637 TARGET_SYMFILE_POSTREAD (objfile);
638 }
639
640 /* Perform required actions after either reading in the initial
641 symbols for a new objfile, or mapping in the symbols from a reusable
642 objfile. */
643
644 void
645 new_symfile_objfile (objfile, mainline, verbo)
646 struct objfile *objfile;
647 int mainline;
648 int verbo;
649 {
650
651 /* If this is the main symbol file we have to clean up all users of the
652 old main symbol file. Otherwise it is sufficient to fixup all the
653 breakpoints that may have been redefined by this symbol file. */
654 if (mainline)
655 {
656 /* OK, make it the "real" symbol file. */
657 symfile_objfile = objfile;
658
659 clear_symtab_users ();
660 }
661 else
662 {
663 breakpoint_re_set ();
664 }
665
666 /* We're done reading the symbol file; finish off complaints. */
667 clear_complaints (0, verbo);
668 }
669
670 /* Process a symbol file, as either the main file or as a dynamically
671 loaded file.
672
673 NAME is the file name (which will be tilde-expanded and made
674 absolute herein) (but we don't free or modify NAME itself).
675 FROM_TTY says how verbose to be. MAINLINE specifies whether this
676 is the main symbol file, or whether it's an extra symbol file such
677 as dynamically loaded code. If !mainline, ADDR is the address
678 where the text segment was loaded.
679
680 USER_LOADED is TRUE if the add-symbol-file command was how this
681 symbol file came to be processed.
682
683 IS_SOLIB is TRUE if this symbol file represents a solib, as discovered
684 by the target's implementation of the solib package.
685
686 Upon success, returns a pointer to the objfile that was added.
687 Upon failure, jumps back to command level (never returns). */
688
689 struct objfile *
690 symbol_file_add (name, from_tty, addr, mainline, mapped, readnow, user_loaded, is_solib)
691 char *name;
692 int from_tty;
693 CORE_ADDR addr;
694 int mainline;
695 int mapped;
696 int readnow;
697 int user_loaded;
698 int is_solib;
699 {
700 struct objfile *objfile;
701 struct partial_symtab *psymtab;
702 bfd *abfd;
703
704 /* Open a bfd for the file, and give user a chance to burp if we'd be
705 interactively wiping out any existing symbols. */
706
707 abfd = symfile_bfd_open (name);
708
709 if ((have_full_symbols () || have_partial_symbols ())
710 && mainline
711 && from_tty
712 && !query ("Load new symbol table from \"%s\"? ", name))
713 error ("Not confirmed.");
714
715 objfile = allocate_objfile (abfd, mapped, user_loaded, is_solib);
716
717 /* If the objfile uses a mapped symbol file, and we have a psymtab for
718 it, then skip reading any symbols at this time. */
719
720 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
721 {
722 /* We mapped in an existing symbol table file that already has had
723 initial symbol reading performed, so we can skip that part. Notify
724 the user that instead of reading the symbols, they have been mapped.
725 */
726 if (from_tty || info_verbose)
727 {
728 printf_filtered ("Mapped symbols for %s...", name);
729 wrap_here ("");
730 gdb_flush (gdb_stdout);
731 }
732 init_entry_point_info (objfile);
733 find_sym_fns (objfile);
734 }
735 else
736 {
737 /* We either created a new mapped symbol table, mapped an existing
738 symbol table file which has not had initial symbol reading
739 performed, or need to read an unmapped symbol table. */
740 if (from_tty || info_verbose)
741 {
742 if (pre_add_symbol_hook)
743 pre_add_symbol_hook (name);
744 else
745 {
746 printf_filtered ("Reading symbols from %s...", name);
747 wrap_here ("");
748 gdb_flush (gdb_stdout);
749 }
750 }
751 syms_from_objfile (objfile, addr, mainline, from_tty);
752 }
753
754 /* We now have at least a partial symbol table. Check to see if the
755 user requested that all symbols be read on initial access via either
756 the gdb startup command line or on a per symbol file basis. Expand
757 all partial symbol tables for this objfile if so. */
758
759 if (readnow || readnow_symbol_files)
760 {
761 if (from_tty || info_verbose)
762 {
763 printf_filtered ("expanding to full symbols...");
764 wrap_here ("");
765 gdb_flush (gdb_stdout);
766 }
767
768 for (psymtab = objfile->psymtabs;
769 psymtab != NULL;
770 psymtab = psymtab->next)
771 {
772 psymtab_to_symtab (psymtab);
773 }
774 }
775
776 if (from_tty || info_verbose)
777 {
778 if (post_add_symbol_hook)
779 post_add_symbol_hook ();
780 else
781 {
782 printf_filtered ("done.\n");
783 gdb_flush (gdb_stdout);
784 }
785 }
786
787 new_symfile_objfile (objfile, mainline, from_tty);
788
789 target_new_objfile (objfile);
790
791 return (objfile);
792 }
793
794 /* This is the symbol-file command. Read the file, analyze its
795 symbols, and add a struct symtab to a symtab list. The syntax of
796 the command is rather bizarre--(1) buildargv implements various
797 quoting conventions which are undocumented and have little or
798 nothing in common with the way things are quoted (or not quoted)
799 elsewhere in GDB, (2) options are used, which are not generally
800 used in GDB (perhaps "set mapped on", "set readnow on" would be
801 better), (3) the order of options matters, which is contrary to GNU
802 conventions (because it is confusing and inconvenient). */
803
804 void
805 symbol_file_command (args, from_tty)
806 char *args;
807 int from_tty;
808 {
809 char **argv;
810 char *name = NULL;
811 CORE_ADDR text_relocation = 0; /* text_relocation */
812 struct cleanup *cleanups;
813 int mapped = 0;
814 int readnow = 0;
815
816 dont_repeat ();
817
818 if (args == NULL)
819 {
820 if ((have_full_symbols () || have_partial_symbols ())
821 && from_tty
822 && !query ("Discard symbol table from `%s'? ",
823 symfile_objfile->name))
824 error ("Not confirmed.");
825 free_all_objfiles ();
826
827 /* solib descriptors may have handles to objfiles. Since their
828 storage has just been released, we'd better wipe the solib
829 descriptors as well.
830 */
831 #if defined(SOLIB_RESTART)
832 SOLIB_RESTART ();
833 #endif
834
835 symfile_objfile = NULL;
836 if (from_tty)
837 {
838 printf_unfiltered ("No symbol file now.\n");
839 }
840 #ifdef HPUXHPPA
841 RESET_HP_UX_GLOBALS ();
842 #endif
843 }
844 else
845 {
846 if ((argv = buildargv (args)) == NULL)
847 {
848 nomem (0);
849 }
850 cleanups = make_cleanup_freeargv (argv);
851 while (*argv != NULL)
852 {
853 if (STREQ (*argv, "-mapped"))
854 {
855 mapped = 1;
856 }
857 else if (STREQ (*argv, "-readnow"))
858 {
859 readnow = 1;
860 }
861 else if (**argv == '-')
862 {
863 error ("unknown option `%s'", *argv);
864 }
865 else
866 {
867 char *p;
868
869 name = *argv;
870
871 /* this is for rombug remote only, to get the text relocation by
872 using link command */
873 p = strrchr (name, '/');
874 if (p != NULL)
875 p++;
876 else
877 p = name;
878
879 target_link (p, &text_relocation);
880
881 if (text_relocation == (CORE_ADDR) 0)
882 return;
883 else if (text_relocation == (CORE_ADDR) -1)
884 {
885 symbol_file_add (name, from_tty, (CORE_ADDR) 0,
886 1, mapped, readnow, 1, 0);
887 #ifdef HPUXHPPA
888 RESET_HP_UX_GLOBALS ();
889 #endif
890 }
891 else
892 symbol_file_add (name, from_tty, (CORE_ADDR) text_relocation,
893 0, mapped, readnow, 1, 0);
894
895 /* Getting new symbols may change our opinion about what is
896 frameless. */
897 reinit_frame_cache ();
898
899 set_initial_language ();
900 }
901 argv++;
902 }
903
904 if (name == NULL)
905 {
906 error ("no symbol file name was specified");
907 }
908 TUIDO (((TuiOpaqueFuncPtr) tuiDisplayMainFunction));
909 do_cleanups (cleanups);
910 }
911 }
912
913 /* Set the initial language.
914
915 A better solution would be to record the language in the psymtab when reading
916 partial symbols, and then use it (if known) to set the language. This would
917 be a win for formats that encode the language in an easily discoverable place,
918 such as DWARF. For stabs, we can jump through hoops looking for specially
919 named symbols or try to intuit the language from the specific type of stabs
920 we find, but we can't do that until later when we read in full symbols.
921 FIXME. */
922
923 static void
924 set_initial_language ()
925 {
926 struct partial_symtab *pst;
927 enum language lang = language_unknown;
928
929 pst = find_main_psymtab ();
930 if (pst != NULL)
931 {
932 if (pst->filename != NULL)
933 {
934 lang = deduce_language_from_filename (pst->filename);
935 }
936 if (lang == language_unknown)
937 {
938 /* Make C the default language */
939 lang = language_c;
940 }
941 set_language (lang);
942 expected_language = current_language; /* Don't warn the user */
943 }
944 }
945
946 /* Open file specified by NAME and hand it off to BFD for preliminary
947 analysis. Result is a newly initialized bfd *, which includes a newly
948 malloc'd` copy of NAME (tilde-expanded and made absolute).
949 In case of trouble, error() is called. */
950
951 bfd *
952 symfile_bfd_open (name)
953 char *name;
954 {
955 bfd *sym_bfd;
956 int desc;
957 char *absolute_name;
958
959
960
961 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
962
963 /* Look down path for it, allocate 2nd new malloc'd copy. */
964 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
965 #if defined(__GO32__) || defined(_WIN32)
966 if (desc < 0)
967 {
968 char *exename = alloca (strlen (name) + 5);
969 strcat (strcpy (exename, name), ".exe");
970 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
971 0, &absolute_name);
972 }
973 #endif
974 if (desc < 0)
975 {
976 make_cleanup (free, name);
977 perror_with_name (name);
978 }
979 free (name); /* Free 1st new malloc'd copy */
980 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
981 /* It'll be freed in free_objfile(). */
982
983 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
984 if (!sym_bfd)
985 {
986 close (desc);
987 make_cleanup (free, name);
988 error ("\"%s\": can't open to read symbols: %s.", name,
989 bfd_errmsg (bfd_get_error ()));
990 }
991 sym_bfd->cacheable = true;
992
993 if (!bfd_check_format (sym_bfd, bfd_object))
994 {
995 /* FIXME: should be checking for errors from bfd_close (for one thing,
996 on error it does not free all the storage associated with the
997 bfd). */
998 bfd_close (sym_bfd); /* This also closes desc */
999 make_cleanup (free, name);
1000 error ("\"%s\": can't read symbols: %s.", name,
1001 bfd_errmsg (bfd_get_error ()));
1002 }
1003 return (sym_bfd);
1004 }
1005
1006 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1007 startup by the _initialize routine in each object file format reader,
1008 to register information about each format the the reader is prepared
1009 to handle. */
1010
1011 void
1012 add_symtab_fns (sf)
1013 struct sym_fns *sf;
1014 {
1015 sf->next = symtab_fns;
1016 symtab_fns = sf;
1017 }
1018
1019
1020 /* Initialize to read symbols from the symbol file sym_bfd. It either
1021 returns or calls error(). The result is an initialized struct sym_fns
1022 in the objfile structure, that contains cached information about the
1023 symbol file. */
1024
1025 static void
1026 find_sym_fns (objfile)
1027 struct objfile *objfile;
1028 {
1029 struct sym_fns *sf;
1030 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1031 char *our_target = bfd_get_target (objfile->obfd);
1032
1033 /* Special kludge for RS/6000 and PowerMac. See xcoffread.c. */
1034 if (STREQ (our_target, "aixcoff-rs6000") ||
1035 STREQ (our_target, "xcoff-powermac"))
1036 our_flavour = (enum bfd_flavour) -1;
1037
1038 /* Special kludge for apollo. See dstread.c. */
1039 if (STREQN (our_target, "apollo", 6))
1040 our_flavour = (enum bfd_flavour) -2;
1041
1042 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1043 {
1044 if (our_flavour == sf->sym_flavour)
1045 {
1046 objfile->sf = sf;
1047 return;
1048 }
1049 }
1050 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1051 bfd_get_target (objfile->obfd));
1052 }
1053 \f
1054 /* This function runs the load command of our current target. */
1055
1056 static void
1057 load_command (arg, from_tty)
1058 char *arg;
1059 int from_tty;
1060 {
1061 if (arg == NULL)
1062 arg = get_exec_file (1);
1063 target_load (arg, from_tty);
1064 }
1065
1066 /* This version of "load" should be usable for any target. Currently
1067 it is just used for remote targets, not inftarg.c or core files,
1068 on the theory that only in that case is it useful.
1069
1070 Avoiding xmodem and the like seems like a win (a) because we don't have
1071 to worry about finding it, and (b) On VMS, fork() is very slow and so
1072 we don't want to run a subprocess. On the other hand, I'm not sure how
1073 performance compares. */
1074 #define GENERIC_LOAD_CHUNK 256
1075 #define VALIDATE_DOWNLOAD 0
1076 void
1077 generic_load (filename, from_tty)
1078 char *filename;
1079 int from_tty;
1080 {
1081 struct cleanup *old_cleanups;
1082 asection *s;
1083 bfd *loadfile_bfd;
1084 time_t start_time, end_time; /* Start and end times of download */
1085 unsigned long data_count = 0; /* Number of bytes transferred to memory */
1086 int n;
1087 unsigned long load_offset = 0; /* offset to add to vma for each section */
1088 char buf[GENERIC_LOAD_CHUNK + 8];
1089 #if VALIDATE_DOWNLOAD
1090 char verify_buffer[GENERIC_LOAD_CHUNK + 8];
1091 #endif
1092
1093 /* enable user to specify address for downloading as 2nd arg to load */
1094 n = sscanf (filename, "%s 0x%lx", buf, &load_offset);
1095 if (n > 1)
1096 filename = buf;
1097 else
1098 load_offset = 0;
1099
1100 loadfile_bfd = bfd_openr (filename, gnutarget);
1101 if (loadfile_bfd == NULL)
1102 {
1103 perror_with_name (filename);
1104 return;
1105 }
1106 /* FIXME: should be checking for errors from bfd_close (for one thing,
1107 on error it does not free all the storage associated with the
1108 bfd). */
1109 old_cleanups = make_cleanup ((make_cleanup_func) bfd_close, loadfile_bfd);
1110
1111 if (!bfd_check_format (loadfile_bfd, bfd_object))
1112 {
1113 error ("\"%s\" is not an object file: %s", filename,
1114 bfd_errmsg (bfd_get_error ()));
1115 }
1116
1117 start_time = time (NULL);
1118
1119 for (s = loadfile_bfd->sections; s; s = s->next)
1120 {
1121 if (s->flags & SEC_LOAD)
1122 {
1123 bfd_size_type size;
1124
1125 size = bfd_get_section_size_before_reloc (s);
1126 if (size > 0)
1127 {
1128 char *buffer;
1129 struct cleanup *old_chain;
1130 bfd_vma lma;
1131 unsigned long l = size;
1132 int err;
1133 char *sect;
1134 unsigned long sent;
1135 unsigned long len;
1136
1137 l = l > GENERIC_LOAD_CHUNK ? GENERIC_LOAD_CHUNK : l;
1138
1139 buffer = xmalloc (size);
1140 old_chain = make_cleanup (free, buffer);
1141
1142 lma = s->lma;
1143 lma += load_offset;
1144
1145 /* Is this really necessary? I guess it gives the user something
1146 to look at during a long download. */
1147 printf_filtered ("Loading section %s, size 0x%lx lma ",
1148 bfd_get_section_name (loadfile_bfd, s),
1149 (unsigned long) size);
1150 print_address_numeric (lma, 1, gdb_stdout);
1151 printf_filtered ("\n");
1152
1153 bfd_get_section_contents (loadfile_bfd, s, buffer, 0, size);
1154
1155 sect = (char *) bfd_get_section_name (loadfile_bfd, s);
1156 sent = 0;
1157 do
1158 {
1159 len = (size - sent) < l ? (size - sent) : l;
1160 sent += len;
1161 err = target_write_memory (lma, buffer, len);
1162 if (ui_load_progress_hook)
1163 if (ui_load_progress_hook (sect, sent))
1164 error ("Canceled the download");
1165 #if VALIDATE_DOWNLOAD
1166 /* Broken memories and broken monitors manifest themselves
1167 here when bring new computers to life.
1168 This doubles already slow downloads.
1169 */
1170 if (err)
1171 break;
1172 {
1173 target_read_memory (lma, verify_buffer, len);
1174 if (0 != bcmp (buffer, verify_buffer, len))
1175 error ("Download verify failed at %08x",
1176 (unsigned long) lma);
1177 }
1178
1179 #endif
1180 data_count += len;
1181 lma += len;
1182 buffer += len;
1183 } /* od */
1184 while (err == 0 && sent < size);
1185
1186 if (err != 0)
1187 error ("Memory access error while loading section %s.",
1188 bfd_get_section_name (loadfile_bfd, s));
1189
1190 do_cleanups (old_chain);
1191 }
1192 }
1193 }
1194
1195 end_time = time (NULL);
1196 {
1197 unsigned long entry;
1198 entry = bfd_get_start_address (loadfile_bfd);
1199 printf_filtered ("Start address 0x%lx , load size %d\n", entry, data_count);
1200 /* We were doing this in remote-mips.c, I suspect it is right
1201 for other targets too. */
1202 write_pc (entry);
1203 }
1204
1205 /* FIXME: are we supposed to call symbol_file_add or not? According to
1206 a comment from remote-mips.c (where a call to symbol_file_add was
1207 commented out), making the call confuses GDB if more than one file is
1208 loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
1209 does. */
1210
1211 report_transfer_performance (data_count, start_time, end_time);
1212
1213 do_cleanups (old_cleanups);
1214 }
1215
1216 /* Report how fast the transfer went. */
1217
1218 void
1219 report_transfer_performance (data_count, start_time, end_time)
1220 unsigned long data_count;
1221 time_t start_time, end_time;
1222 {
1223 printf_filtered ("Transfer rate: ");
1224 if (end_time != start_time)
1225 printf_filtered ("%d bits/sec",
1226 (data_count * 8) / (end_time - start_time));
1227 else
1228 printf_filtered ("%d bits in <1 sec", (data_count * 8));
1229 printf_filtered (".\n");
1230 }
1231
1232 /* This function allows the addition of incrementally linked object files.
1233 It does not modify any state in the target, only in the debugger. */
1234
1235 /* ARGSUSED */
1236 static void
1237 add_symbol_file_command (args, from_tty)
1238 char *args;
1239 int from_tty;
1240 {
1241 char *name = NULL;
1242 CORE_ADDR text_addr;
1243 char *arg;
1244 int readnow = 0;
1245 int mapped = 0;
1246
1247 dont_repeat ();
1248
1249 if (args == NULL)
1250 {
1251 error ("add-symbol-file takes a file name and an address");
1252 }
1253
1254 /* Make a copy of the string that we can safely write into. */
1255
1256 args = strdup (args);
1257 make_cleanup (free, args);
1258
1259 /* Pick off any -option args and the file name. */
1260
1261 while ((*args != '\000') && (name == NULL))
1262 {
1263 while (isspace (*args))
1264 {
1265 args++;
1266 }
1267 arg = args;
1268 while ((*args != '\000') && !isspace (*args))
1269 {
1270 args++;
1271 }
1272 if (*args != '\000')
1273 {
1274 *args++ = '\000';
1275 }
1276 if (*arg != '-')
1277 {
1278 name = arg;
1279 }
1280 else if (STREQ (arg, "-mapped"))
1281 {
1282 mapped = 1;
1283 }
1284 else if (STREQ (arg, "-readnow"))
1285 {
1286 readnow = 1;
1287 }
1288 else
1289 {
1290 error ("unknown option `%s'", arg);
1291 }
1292 }
1293
1294 /* After picking off any options and the file name, args should be
1295 left pointing at the remainder of the command line, which should
1296 be the address expression to evaluate. */
1297
1298 if (name == NULL)
1299 {
1300 error ("add-symbol-file takes a file name");
1301 }
1302 name = tilde_expand (name);
1303 make_cleanup (free, name);
1304
1305 if (*args != '\000')
1306 {
1307 text_addr = parse_and_eval_address (args);
1308 }
1309 else
1310 {
1311 target_link (name, &text_addr);
1312 if (text_addr == (CORE_ADDR) -1)
1313 error ("Don't know how to get text start location for this file");
1314 }
1315
1316 /* FIXME-32x64: Assumes text_addr fits in a long. */
1317 if ((from_tty)
1318 && (!query ("add symbol table from file \"%s\" at text_addr = %s?\n",
1319 name, local_hex_string ((unsigned long) text_addr))))
1320 error ("Not confirmed.");
1321
1322 symbol_file_add (name, from_tty, text_addr, 0, mapped, readnow,
1323 1, /* user_loaded */
1324 0); /* We'll guess it's ! is_solib */
1325
1326 /* Getting new symbols may change our opinion about what is
1327 frameless. */
1328 reinit_frame_cache ();
1329 }
1330 \f
1331 static void
1332 add_shared_symbol_files_command (args, from_tty)
1333 char *args;
1334 int from_tty;
1335 {
1336 #ifdef ADD_SHARED_SYMBOL_FILES
1337 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1338 #else
1339 error ("This command is not available in this configuration of GDB.");
1340 #endif
1341 }
1342 \f
1343 /* Re-read symbols if a symbol-file has changed. */
1344 void
1345 reread_symbols ()
1346 {
1347 struct objfile *objfile;
1348 long new_modtime;
1349 int reread_one = 0;
1350 struct stat new_statbuf;
1351 int res;
1352
1353 /* With the addition of shared libraries, this should be modified,
1354 the load time should be saved in the partial symbol tables, since
1355 different tables may come from different source files. FIXME.
1356 This routine should then walk down each partial symbol table
1357 and see if the symbol table that it originates from has been changed */
1358
1359 for (objfile = object_files; objfile; objfile = objfile->next)
1360 {
1361 if (objfile->obfd)
1362 {
1363 #ifdef IBM6000_TARGET
1364 /* If this object is from a shared library, then you should
1365 stat on the library name, not member name. */
1366
1367 if (objfile->obfd->my_archive)
1368 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1369 else
1370 #endif
1371 res = stat (objfile->name, &new_statbuf);
1372 if (res != 0)
1373 {
1374 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1375 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1376 objfile->name);
1377 continue;
1378 }
1379 new_modtime = new_statbuf.st_mtime;
1380 if (new_modtime != objfile->mtime)
1381 {
1382 struct cleanup *old_cleanups;
1383 struct section_offsets *offsets;
1384 int num_offsets;
1385 int section_offsets_size;
1386 char *obfd_filename;
1387
1388 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1389 objfile->name);
1390
1391 /* There are various functions like symbol_file_add,
1392 symfile_bfd_open, syms_from_objfile, etc., which might
1393 appear to do what we want. But they have various other
1394 effects which we *don't* want. So we just do stuff
1395 ourselves. We don't worry about mapped files (for one thing,
1396 any mapped file will be out of date). */
1397
1398 /* If we get an error, blow away this objfile (not sure if
1399 that is the correct response for things like shared
1400 libraries). */
1401 old_cleanups = make_cleanup ((make_cleanup_func) free_objfile,
1402 objfile);
1403 /* We need to do this whenever any symbols go away. */
1404 make_cleanup ((make_cleanup_func) clear_symtab_users, 0);
1405
1406 /* Clean up any state BFD has sitting around. We don't need
1407 to close the descriptor but BFD lacks a way of closing the
1408 BFD without closing the descriptor. */
1409 obfd_filename = bfd_get_filename (objfile->obfd);
1410 if (!bfd_close (objfile->obfd))
1411 error ("Can't close BFD for %s: %s", objfile->name,
1412 bfd_errmsg (bfd_get_error ()));
1413 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1414 if (objfile->obfd == NULL)
1415 error ("Can't open %s to read symbols.", objfile->name);
1416 /* bfd_openr sets cacheable to true, which is what we want. */
1417 if (!bfd_check_format (objfile->obfd, bfd_object))
1418 error ("Can't read symbols from %s: %s.", objfile->name,
1419 bfd_errmsg (bfd_get_error ()));
1420
1421 /* Save the offsets, we will nuke them with the rest of the
1422 psymbol_obstack. */
1423 num_offsets = objfile->num_sections;
1424 section_offsets_size =
1425 sizeof (struct section_offsets)
1426 + sizeof (objfile->section_offsets->offsets) * num_offsets;
1427 offsets = (struct section_offsets *) alloca (section_offsets_size);
1428 memcpy (offsets, objfile->section_offsets, section_offsets_size);
1429
1430 /* Nuke all the state that we will re-read. Much of the following
1431 code which sets things to NULL really is necessary to tell
1432 other parts of GDB that there is nothing currently there. */
1433
1434 /* FIXME: Do we have to free a whole linked list, or is this
1435 enough? */
1436 if (objfile->global_psymbols.list)
1437 mfree (objfile->md, objfile->global_psymbols.list);
1438 memset (&objfile->global_psymbols, 0,
1439 sizeof (objfile->global_psymbols));
1440 if (objfile->static_psymbols.list)
1441 mfree (objfile->md, objfile->static_psymbols.list);
1442 memset (&objfile->static_psymbols, 0,
1443 sizeof (objfile->static_psymbols));
1444
1445 /* Free the obstacks for non-reusable objfiles */
1446 obstack_free (&objfile->psymbol_cache.cache, 0);
1447 memset (&objfile->psymbol_cache, 0,
1448 sizeof (objfile->psymbol_cache));
1449 obstack_free (&objfile->psymbol_obstack, 0);
1450 obstack_free (&objfile->symbol_obstack, 0);
1451 obstack_free (&objfile->type_obstack, 0);
1452 objfile->sections = NULL;
1453 objfile->symtabs = NULL;
1454 objfile->psymtabs = NULL;
1455 objfile->free_psymtabs = NULL;
1456 objfile->msymbols = NULL;
1457 objfile->minimal_symbol_count = 0;
1458 objfile->fundamental_types = NULL;
1459 if (objfile->sf != NULL)
1460 {
1461 (*objfile->sf->sym_finish) (objfile);
1462 }
1463
1464 /* We never make this a mapped file. */
1465 objfile->md = NULL;
1466 /* obstack_specify_allocation also initializes the obstack so
1467 it is empty. */
1468 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
1469 xmalloc, free);
1470 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
1471 xmalloc, free);
1472 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
1473 xmalloc, free);
1474 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
1475 xmalloc, free);
1476 if (build_objfile_section_table (objfile))
1477 {
1478 error ("Can't find the file sections in `%s': %s",
1479 objfile->name, bfd_errmsg (bfd_get_error ()));
1480 }
1481
1482 /* We use the same section offsets as from last time. I'm not
1483 sure whether that is always correct for shared libraries. */
1484 objfile->section_offsets = (struct section_offsets *)
1485 obstack_alloc (&objfile->psymbol_obstack, section_offsets_size);
1486 memcpy (objfile->section_offsets, offsets, section_offsets_size);
1487 objfile->num_sections = num_offsets;
1488
1489 /* What the hell is sym_new_init for, anyway? The concept of
1490 distinguishing between the main file and additional files
1491 in this way seems rather dubious. */
1492 if (objfile == symfile_objfile)
1493 {
1494 (*objfile->sf->sym_new_init) (objfile);
1495 #ifdef HPUXHPPA
1496 RESET_HP_UX_GLOBALS ();
1497 #endif
1498 }
1499
1500 (*objfile->sf->sym_init) (objfile);
1501 clear_complaints (1, 1);
1502 /* The "mainline" parameter is a hideous hack; I think leaving it
1503 zero is OK since dbxread.c also does what it needs to do if
1504 objfile->global_psymbols.size is 0. */
1505 (*objfile->sf->sym_read) (objfile, 0);
1506 if (!have_partial_symbols () && !have_full_symbols ())
1507 {
1508 wrap_here ("");
1509 printf_filtered ("(no debugging symbols found)\n");
1510 wrap_here ("");
1511 }
1512 objfile->flags |= OBJF_SYMS;
1513
1514 /* We're done reading the symbol file; finish off complaints. */
1515 clear_complaints (0, 1);
1516
1517 /* Getting new symbols may change our opinion about what is
1518 frameless. */
1519
1520 reinit_frame_cache ();
1521
1522 /* Discard cleanups as symbol reading was successful. */
1523 discard_cleanups (old_cleanups);
1524
1525 /* If the mtime has changed between the time we set new_modtime
1526 and now, we *want* this to be out of date, so don't call stat
1527 again now. */
1528 objfile->mtime = new_modtime;
1529 reread_one = 1;
1530
1531 /* Call this after reading in a new symbol table to give target
1532 dependant code a crack at the new symbols. For instance, this
1533 could be used to update the values of target-specific symbols GDB
1534 needs to keep track of (such as _sigtramp, or whatever). */
1535
1536 TARGET_SYMFILE_POSTREAD (objfile);
1537 }
1538 }
1539 }
1540
1541 if (reread_one)
1542 clear_symtab_users ();
1543 }
1544 \f
1545
1546
1547 typedef struct
1548 {
1549 char *ext;
1550 enum language lang;
1551 }
1552 filename_language;
1553
1554 static filename_language *filename_language_table;
1555 static int fl_table_size, fl_table_next;
1556
1557 static void
1558 add_filename_language (ext, lang)
1559 char *ext;
1560 enum language lang;
1561 {
1562 if (fl_table_next >= fl_table_size)
1563 {
1564 fl_table_size += 10;
1565 filename_language_table = realloc (filename_language_table,
1566 fl_table_size);
1567 }
1568
1569 filename_language_table[fl_table_next].ext = strsave (ext);
1570 filename_language_table[fl_table_next].lang = lang;
1571 fl_table_next++;
1572 }
1573
1574 static char *ext_args;
1575
1576 static void
1577 set_ext_lang_command (args, from_tty)
1578 char *args;
1579 int from_tty;
1580 {
1581 int i;
1582 char *cp = ext_args;
1583 enum language lang;
1584
1585 /* First arg is filename extension, starting with '.' */
1586 if (*cp != '.')
1587 error ("'%s': Filename extension must begin with '.'", ext_args);
1588
1589 /* Find end of first arg. */
1590 while (*cp && !isspace (*cp))
1591 cp++;
1592
1593 if (*cp == '\0')
1594 error ("'%s': two arguments required -- filename extension and language",
1595 ext_args);
1596
1597 /* Null-terminate first arg */
1598 *cp++ = '\0';
1599
1600 /* Find beginning of second arg, which should be a source language. */
1601 while (*cp && isspace (*cp))
1602 cp++;
1603
1604 if (*cp == '\0')
1605 error ("'%s': two arguments required -- filename extension and language",
1606 ext_args);
1607
1608 /* Lookup the language from among those we know. */
1609 lang = language_enum (cp);
1610
1611 /* Now lookup the filename extension: do we already know it? */
1612 for (i = 0; i < fl_table_next; i++)
1613 if (0 == strcmp (ext_args, filename_language_table[i].ext))
1614 break;
1615
1616 if (i >= fl_table_next)
1617 {
1618 /* new file extension */
1619 add_filename_language (ext_args, lang);
1620 }
1621 else
1622 {
1623 /* redefining a previously known filename extension */
1624
1625 /* if (from_tty) */
1626 /* query ("Really make files of type %s '%s'?", */
1627 /* ext_args, language_str (lang)); */
1628
1629 free (filename_language_table[i].ext);
1630 filename_language_table[i].ext = strsave (ext_args);
1631 filename_language_table[i].lang = lang;
1632 }
1633 }
1634
1635 static void
1636 info_ext_lang_command (args, from_tty)
1637 char *args;
1638 int from_tty;
1639 {
1640 int i;
1641
1642 printf_filtered ("Filename extensions and the languages they represent:");
1643 printf_filtered ("\n\n");
1644 for (i = 0; i < fl_table_next; i++)
1645 printf_filtered ("\t%s\t- %s\n",
1646 filename_language_table[i].ext,
1647 language_str (filename_language_table[i].lang));
1648 }
1649
1650 static void
1651 init_filename_language_table ()
1652 {
1653 if (fl_table_size == 0) /* protect against repetition */
1654 {
1655 fl_table_size = 20;
1656 fl_table_next = 0;
1657 filename_language_table =
1658 xmalloc (fl_table_size * sizeof (*filename_language_table));
1659 add_filename_language (".c", language_c);
1660 add_filename_language (".C", language_cplus);
1661 add_filename_language (".cc", language_cplus);
1662 add_filename_language (".cp", language_cplus);
1663 add_filename_language (".cpp", language_cplus);
1664 add_filename_language (".cxx", language_cplus);
1665 add_filename_language (".c++", language_cplus);
1666 add_filename_language (".java", language_java);
1667 add_filename_language (".class", language_java);
1668 add_filename_language (".ch", language_chill);
1669 add_filename_language (".c186", language_chill);
1670 add_filename_language (".c286", language_chill);
1671 add_filename_language (".f", language_fortran);
1672 add_filename_language (".F", language_fortran);
1673 add_filename_language (".s", language_asm);
1674 add_filename_language (".S", language_asm);
1675 }
1676 }
1677
1678 enum language
1679 deduce_language_from_filename (filename)
1680 char *filename;
1681 {
1682 int i;
1683 char *cp;
1684
1685 if (filename != NULL)
1686 if ((cp = strrchr (filename, '.')) != NULL)
1687 for (i = 0; i < fl_table_next; i++)
1688 if (strcmp (cp, filename_language_table[i].ext) == 0)
1689 return filename_language_table[i].lang;
1690
1691 return language_unknown;
1692 }
1693 \f
1694 /* allocate_symtab:
1695
1696 Allocate and partly initialize a new symbol table. Return a pointer
1697 to it. error() if no space.
1698
1699 Caller must set these fields:
1700 LINETABLE(symtab)
1701 symtab->blockvector
1702 symtab->dirname
1703 symtab->free_code
1704 symtab->free_ptr
1705 possibly free_named_symtabs (symtab->filename);
1706 */
1707
1708 struct symtab *
1709 allocate_symtab (filename, objfile)
1710 char *filename;
1711 struct objfile *objfile;
1712 {
1713 register struct symtab *symtab;
1714
1715 symtab = (struct symtab *)
1716 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
1717 memset (symtab, 0, sizeof (*symtab));
1718 symtab->filename = obsavestring (filename, strlen (filename),
1719 &objfile->symbol_obstack);
1720 symtab->fullname = NULL;
1721 symtab->language = deduce_language_from_filename (filename);
1722 symtab->debugformat = obsavestring ("unknown", 7,
1723 &objfile->symbol_obstack);
1724
1725 /* Hook it to the objfile it comes from */
1726
1727 symtab->objfile = objfile;
1728 symtab->next = objfile->symtabs;
1729 objfile->symtabs = symtab;
1730
1731 /* FIXME: This should go away. It is only defined for the Z8000,
1732 and the Z8000 definition of this macro doesn't have anything to
1733 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
1734 here for convenience. */
1735 #ifdef INIT_EXTRA_SYMTAB_INFO
1736 INIT_EXTRA_SYMTAB_INFO (symtab);
1737 #endif
1738
1739 return (symtab);
1740 }
1741
1742 struct partial_symtab *
1743 allocate_psymtab (filename, objfile)
1744 char *filename;
1745 struct objfile *objfile;
1746 {
1747 struct partial_symtab *psymtab;
1748
1749 if (objfile->free_psymtabs)
1750 {
1751 psymtab = objfile->free_psymtabs;
1752 objfile->free_psymtabs = psymtab->next;
1753 }
1754 else
1755 psymtab = (struct partial_symtab *)
1756 obstack_alloc (&objfile->psymbol_obstack,
1757 sizeof (struct partial_symtab));
1758
1759 memset (psymtab, 0, sizeof (struct partial_symtab));
1760 psymtab->filename = obsavestring (filename, strlen (filename),
1761 &objfile->psymbol_obstack);
1762 psymtab->symtab = NULL;
1763
1764 /* Prepend it to the psymtab list for the objfile it belongs to.
1765 Psymtabs are searched in most recent inserted -> least recent
1766 inserted order. */
1767
1768 psymtab->objfile = objfile;
1769 psymtab->next = objfile->psymtabs;
1770 objfile->psymtabs = psymtab;
1771 #if 0
1772 {
1773 struct partial_symtab **prev_pst;
1774 psymtab->objfile = objfile;
1775 psymtab->next = NULL;
1776 prev_pst = &(objfile->psymtabs);
1777 while ((*prev_pst) != NULL)
1778 prev_pst = &((*prev_pst)->next);
1779 (*prev_pst) = psymtab;
1780 }
1781 #endif
1782
1783 return (psymtab);
1784 }
1785
1786 void
1787 discard_psymtab (pst)
1788 struct partial_symtab *pst;
1789 {
1790 struct partial_symtab **prev_pst;
1791
1792 /* From dbxread.c:
1793 Empty psymtabs happen as a result of header files which don't
1794 have any symbols in them. There can be a lot of them. But this
1795 check is wrong, in that a psymtab with N_SLINE entries but
1796 nothing else is not empty, but we don't realize that. Fixing
1797 that without slowing things down might be tricky. */
1798
1799 /* First, snip it out of the psymtab chain */
1800
1801 prev_pst = &(pst->objfile->psymtabs);
1802 while ((*prev_pst) != pst)
1803 prev_pst = &((*prev_pst)->next);
1804 (*prev_pst) = pst->next;
1805
1806 /* Next, put it on a free list for recycling */
1807
1808 pst->next = pst->objfile->free_psymtabs;
1809 pst->objfile->free_psymtabs = pst;
1810 }
1811 \f
1812
1813 /* Reset all data structures in gdb which may contain references to symbol
1814 table data. */
1815
1816 void
1817 clear_symtab_users ()
1818 {
1819 /* Someday, we should do better than this, by only blowing away
1820 the things that really need to be blown. */
1821 clear_value_history ();
1822 clear_displays ();
1823 clear_internalvars ();
1824 breakpoint_re_set ();
1825 set_default_breakpoint (0, 0, 0, 0);
1826 current_source_symtab = 0;
1827 current_source_line = 0;
1828 clear_pc_function_cache ();
1829 target_new_objfile (NULL);
1830 }
1831
1832 /* clear_symtab_users_once:
1833
1834 This function is run after symbol reading, or from a cleanup.
1835 If an old symbol table was obsoleted, the old symbol table
1836 has been blown away, but the other GDB data structures that may
1837 reference it have not yet been cleared or re-directed. (The old
1838 symtab was zapped, and the cleanup queued, in free_named_symtab()
1839 below.)
1840
1841 This function can be queued N times as a cleanup, or called
1842 directly; it will do all the work the first time, and then will be a
1843 no-op until the next time it is queued. This works by bumping a
1844 counter at queueing time. Much later when the cleanup is run, or at
1845 the end of symbol processing (in case the cleanup is discarded), if
1846 the queued count is greater than the "done-count", we do the work
1847 and set the done-count to the queued count. If the queued count is
1848 less than or equal to the done-count, we just ignore the call. This
1849 is needed because reading a single .o file will often replace many
1850 symtabs (one per .h file, for example), and we don't want to reset
1851 the breakpoints N times in the user's face.
1852
1853 The reason we both queue a cleanup, and call it directly after symbol
1854 reading, is because the cleanup protects us in case of errors, but is
1855 discarded if symbol reading is successful. */
1856
1857 #if 0
1858 /* FIXME: As free_named_symtabs is currently a big noop this function
1859 is no longer needed. */
1860 static void
1861 clear_symtab_users_once PARAMS ((void));
1862
1863 static int clear_symtab_users_queued;
1864 static int clear_symtab_users_done;
1865
1866 static void
1867 clear_symtab_users_once ()
1868 {
1869 /* Enforce once-per-`do_cleanups'-semantics */
1870 if (clear_symtab_users_queued <= clear_symtab_users_done)
1871 return;
1872 clear_symtab_users_done = clear_symtab_users_queued;
1873
1874 clear_symtab_users ();
1875 }
1876 #endif
1877
1878 /* Delete the specified psymtab, and any others that reference it. */
1879
1880 static void
1881 cashier_psymtab (pst)
1882 struct partial_symtab *pst;
1883 {
1884 struct partial_symtab *ps, *pprev = NULL;
1885 int i;
1886
1887 /* Find its previous psymtab in the chain */
1888 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
1889 {
1890 if (ps == pst)
1891 break;
1892 pprev = ps;
1893 }
1894
1895 if (ps)
1896 {
1897 /* Unhook it from the chain. */
1898 if (ps == pst->objfile->psymtabs)
1899 pst->objfile->psymtabs = ps->next;
1900 else
1901 pprev->next = ps->next;
1902
1903 /* FIXME, we can't conveniently deallocate the entries in the
1904 partial_symbol lists (global_psymbols/static_psymbols) that
1905 this psymtab points to. These just take up space until all
1906 the psymtabs are reclaimed. Ditto the dependencies list and
1907 filename, which are all in the psymbol_obstack. */
1908
1909 /* We need to cashier any psymtab that has this one as a dependency... */
1910 again:
1911 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
1912 {
1913 for (i = 0; i < ps->number_of_dependencies; i++)
1914 {
1915 if (ps->dependencies[i] == pst)
1916 {
1917 cashier_psymtab (ps);
1918 goto again; /* Must restart, chain has been munged. */
1919 }
1920 }
1921 }
1922 }
1923 }
1924
1925 /* If a symtab or psymtab for filename NAME is found, free it along
1926 with any dependent breakpoints, displays, etc.
1927 Used when loading new versions of object modules with the "add-file"
1928 command. This is only called on the top-level symtab or psymtab's name;
1929 it is not called for subsidiary files such as .h files.
1930
1931 Return value is 1 if we blew away the environment, 0 if not.
1932 FIXME. The return valu appears to never be used.
1933
1934 FIXME. I think this is not the best way to do this. We should
1935 work on being gentler to the environment while still cleaning up
1936 all stray pointers into the freed symtab. */
1937
1938 int
1939 free_named_symtabs (name)
1940 char *name;
1941 {
1942 #if 0
1943 /* FIXME: With the new method of each objfile having it's own
1944 psymtab list, this function needs serious rethinking. In particular,
1945 why was it ever necessary to toss psymtabs with specific compilation
1946 unit filenames, as opposed to all psymtabs from a particular symbol
1947 file? -- fnf
1948 Well, the answer is that some systems permit reloading of particular
1949 compilation units. We want to blow away any old info about these
1950 compilation units, regardless of which objfiles they arrived in. --gnu. */
1951
1952 register struct symtab *s;
1953 register struct symtab *prev;
1954 register struct partial_symtab *ps;
1955 struct blockvector *bv;
1956 int blewit = 0;
1957
1958 /* We only wack things if the symbol-reload switch is set. */
1959 if (!symbol_reloading)
1960 return 0;
1961
1962 /* Some symbol formats have trouble providing file names... */
1963 if (name == 0 || *name == '\0')
1964 return 0;
1965
1966 /* Look for a psymtab with the specified name. */
1967
1968 again2:
1969 for (ps = partial_symtab_list; ps; ps = ps->next)
1970 {
1971 if (STREQ (name, ps->filename))
1972 {
1973 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
1974 goto again2; /* Must restart, chain has been munged */
1975 }
1976 }
1977
1978 /* Look for a symtab with the specified name. */
1979
1980 for (s = symtab_list; s; s = s->next)
1981 {
1982 if (STREQ (name, s->filename))
1983 break;
1984 prev = s;
1985 }
1986
1987 if (s)
1988 {
1989 if (s == symtab_list)
1990 symtab_list = s->next;
1991 else
1992 prev->next = s->next;
1993
1994 /* For now, queue a delete for all breakpoints, displays, etc., whether
1995 or not they depend on the symtab being freed. This should be
1996 changed so that only those data structures affected are deleted. */
1997
1998 /* But don't delete anything if the symtab is empty.
1999 This test is necessary due to a bug in "dbxread.c" that
2000 causes empty symtabs to be created for N_SO symbols that
2001 contain the pathname of the object file. (This problem
2002 has been fixed in GDB 3.9x). */
2003
2004 bv = BLOCKVECTOR (s);
2005 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2006 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2007 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2008 {
2009 complain (&oldsyms_complaint, name);
2010
2011 clear_symtab_users_queued++;
2012 make_cleanup (clear_symtab_users_once, 0);
2013 blewit = 1;
2014 }
2015 else
2016 {
2017 complain (&empty_symtab_complaint, name);
2018 }
2019
2020 free_symtab (s);
2021 }
2022 else
2023 {
2024 /* It is still possible that some breakpoints will be affected
2025 even though no symtab was found, since the file might have
2026 been compiled without debugging, and hence not be associated
2027 with a symtab. In order to handle this correctly, we would need
2028 to keep a list of text address ranges for undebuggable files.
2029 For now, we do nothing, since this is a fairly obscure case. */
2030 ;
2031 }
2032
2033 /* FIXME, what about the minimal symbol table? */
2034 return blewit;
2035 #else
2036 return (0);
2037 #endif
2038 }
2039 \f
2040 /* Allocate and partially fill a partial symtab. It will be
2041 completely filled at the end of the symbol list.
2042
2043 SYMFILE_NAME is the name of the symbol-file we are reading from, and ADDR
2044 is the address relative to which its symbols are (incremental) or 0
2045 (normal). */
2046
2047
2048 struct partial_symtab *
2049 start_psymtab_common (objfile, section_offsets,
2050 filename, textlow, global_syms, static_syms)
2051 struct objfile *objfile;
2052 struct section_offsets *section_offsets;
2053 char *filename;
2054 CORE_ADDR textlow;
2055 struct partial_symbol **global_syms;
2056 struct partial_symbol **static_syms;
2057 {
2058 struct partial_symtab *psymtab;
2059
2060 psymtab = allocate_psymtab (filename, objfile);
2061 psymtab->section_offsets = section_offsets;
2062 psymtab->textlow = textlow;
2063 psymtab->texthigh = psymtab->textlow; /* default */
2064 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2065 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2066 return (psymtab);
2067 }
2068 \f
2069 /* Add a symbol with a long value to a psymtab.
2070 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2071
2072 void
2073 add_psymbol_to_list (name, namelength, namespace, class, list, val, coreaddr,
2074 language, objfile)
2075 char *name;
2076 int namelength;
2077 namespace_enum namespace;
2078 enum address_class class;
2079 struct psymbol_allocation_list *list;
2080 long val; /* Value as a long */
2081 CORE_ADDR coreaddr; /* Value as a CORE_ADDR */
2082 enum language language;
2083 struct objfile *objfile;
2084 {
2085 register struct partial_symbol *psym;
2086 char *buf = alloca (namelength + 1);
2087 /* psymbol is static so that there will be no uninitialized gaps in the
2088 structure which might contain random data, causing cache misses in
2089 bcache. */
2090 static struct partial_symbol psymbol;
2091
2092 /* Create local copy of the partial symbol */
2093 memcpy (buf, name, namelength);
2094 buf[namelength] = '\0';
2095 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2096 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2097 if (val != 0)
2098 {
2099 SYMBOL_VALUE (&psymbol) = val;
2100 }
2101 else
2102 {
2103 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2104 }
2105 SYMBOL_SECTION (&psymbol) = 0;
2106 SYMBOL_LANGUAGE (&psymbol) = language;
2107 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2108 PSYMBOL_CLASS (&psymbol) = class;
2109 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2110
2111 /* Stash the partial symbol away in the cache */
2112 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2113
2114 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2115 if (list->next >= list->list + list->size)
2116 {
2117 extend_psymbol_list (list, objfile);
2118 }
2119 *list->next++ = psym;
2120 OBJSTAT (objfile, n_psyms++);
2121 }
2122
2123 /* Add a symbol with a long value to a psymtab. This differs from
2124 * add_psymbol_to_list above in taking both a mangled and a demangled
2125 * name. */
2126
2127 void
2128 add_psymbol_with_dem_name_to_list (name, namelength, dem_name, dem_namelength,
2129 namespace, class, list, val, coreaddr, language, objfile)
2130 char *name;
2131 int namelength;
2132 char *dem_name;
2133 int dem_namelength;
2134 namespace_enum namespace;
2135 enum address_class class;
2136 struct psymbol_allocation_list *list;
2137 long val; /* Value as a long */
2138 CORE_ADDR coreaddr; /* Value as a CORE_ADDR */
2139 enum language language;
2140 struct objfile *objfile;
2141 {
2142 register struct partial_symbol *psym;
2143 char *buf = alloca (namelength + 1);
2144 /* psymbol is static so that there will be no uninitialized gaps in the
2145 structure which might contain random data, causing cache misses in
2146 bcache. */
2147 static struct partial_symbol psymbol;
2148
2149 /* Create local copy of the partial symbol */
2150
2151 memcpy (buf, name, namelength);
2152 buf[namelength] = '\0';
2153 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2154
2155 buf = alloca (dem_namelength + 1);
2156 memcpy (buf, dem_name, dem_namelength);
2157 buf[dem_namelength] = '\0';
2158
2159 switch (language)
2160 {
2161 case language_c:
2162 case language_cplus:
2163 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2164 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2165 break;
2166 case language_chill:
2167 SYMBOL_CHILL_DEMANGLED_NAME (&psymbol) =
2168 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2169
2170 /* FIXME What should be done for the default case? Ignoring for now. */
2171 }
2172
2173 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2174 if (val != 0)
2175 {
2176 SYMBOL_VALUE (&psymbol) = val;
2177 }
2178 else
2179 {
2180 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2181 }
2182 SYMBOL_SECTION (&psymbol) = 0;
2183 SYMBOL_LANGUAGE (&psymbol) = language;
2184 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2185 PSYMBOL_CLASS (&psymbol) = class;
2186 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2187
2188 /* Stash the partial symbol away in the cache */
2189 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2190
2191 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2192 if (list->next >= list->list + list->size)
2193 {
2194 extend_psymbol_list (list, objfile);
2195 }
2196 *list->next++ = psym;
2197 OBJSTAT (objfile, n_psyms++);
2198 }
2199
2200 /* Initialize storage for partial symbols. */
2201
2202 void
2203 init_psymbol_list (objfile, total_symbols)
2204 struct objfile *objfile;
2205 int total_symbols;
2206 {
2207 /* Free any previously allocated psymbol lists. */
2208
2209 if (objfile->global_psymbols.list)
2210 {
2211 mfree (objfile->md, (PTR) objfile->global_psymbols.list);
2212 }
2213 if (objfile->static_psymbols.list)
2214 {
2215 mfree (objfile->md, (PTR) objfile->static_psymbols.list);
2216 }
2217
2218 /* Current best guess is that approximately a twentieth
2219 of the total symbols (in a debugging file) are global or static
2220 oriented symbols */
2221
2222 objfile->global_psymbols.size = total_symbols / 10;
2223 objfile->static_psymbols.size = total_symbols / 10;
2224
2225 if (objfile->global_psymbols.size > 0)
2226 {
2227 objfile->global_psymbols.next =
2228 objfile->global_psymbols.list = (struct partial_symbol **)
2229 xmmalloc (objfile->md, (objfile->global_psymbols.size
2230 * sizeof (struct partial_symbol *)));
2231 }
2232 if (objfile->static_psymbols.size > 0)
2233 {
2234 objfile->static_psymbols.next =
2235 objfile->static_psymbols.list = (struct partial_symbol **)
2236 xmmalloc (objfile->md, (objfile->static_psymbols.size
2237 * sizeof (struct partial_symbol *)));
2238 }
2239 }
2240
2241 /* OVERLAYS:
2242 The following code implements an abstraction for debugging overlay sections.
2243
2244 The target model is as follows:
2245 1) The gnu linker will permit multiple sections to be mapped into the
2246 same VMA, each with its own unique LMA (or load address).
2247 2) It is assumed that some runtime mechanism exists for mapping the
2248 sections, one by one, from the load address into the VMA address.
2249 3) This code provides a mechanism for gdb to keep track of which
2250 sections should be considered to be mapped from the VMA to the LMA.
2251 This information is used for symbol lookup, and memory read/write.
2252 For instance, if a section has been mapped then its contents
2253 should be read from the VMA, otherwise from the LMA.
2254
2255 Two levels of debugger support for overlays are available. One is
2256 "manual", in which the debugger relies on the user to tell it which
2257 overlays are currently mapped. This level of support is
2258 implemented entirely in the core debugger, and the information about
2259 whether a section is mapped is kept in the objfile->obj_section table.
2260
2261 The second level of support is "automatic", and is only available if
2262 the target-specific code provides functionality to read the target's
2263 overlay mapping table, and translate its contents for the debugger
2264 (by updating the mapped state information in the obj_section tables).
2265
2266 The interface is as follows:
2267 User commands:
2268 overlay map <name> -- tell gdb to consider this section mapped
2269 overlay unmap <name> -- tell gdb to consider this section unmapped
2270 overlay list -- list the sections that GDB thinks are mapped
2271 overlay read-target -- get the target's state of what's mapped
2272 overlay off/manual/auto -- set overlay debugging state
2273 Functional interface:
2274 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2275 section, return that section.
2276 find_pc_overlay(pc): find any overlay section that contains
2277 the pc, either in its VMA or its LMA
2278 overlay_is_mapped(sect): true if overlay is marked as mapped
2279 section_is_overlay(sect): true if section's VMA != LMA
2280 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2281 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2282 overlay_mapped_address(...): map an address from section's LMA to VMA
2283 overlay_unmapped_address(...): map an address from section's VMA to LMA
2284 symbol_overlayed_address(...): Return a "current" address for symbol:
2285 either in VMA or LMA depending on whether
2286 the symbol's section is currently mapped
2287 */
2288
2289 /* Overlay debugging state: */
2290
2291 int overlay_debugging = 0; /* 0 == off, 1 == manual, -1 == auto */
2292 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2293
2294 /* Target vector for refreshing overlay mapped state */
2295 static void simple_overlay_update PARAMS ((struct obj_section *));
2296 void (*target_overlay_update) PARAMS ((struct obj_section *))
2297 = simple_overlay_update;
2298
2299 /* Function: section_is_overlay (SECTION)
2300 Returns true if SECTION has VMA not equal to LMA, ie.
2301 SECTION is loaded at an address different from where it will "run". */
2302
2303 int
2304 section_is_overlay (section)
2305 asection *section;
2306 {
2307 if (overlay_debugging)
2308 if (section && section->lma != 0 &&
2309 section->vma != section->lma)
2310 return 1;
2311
2312 return 0;
2313 }
2314
2315 /* Function: overlay_invalidate_all (void)
2316 Invalidate the mapped state of all overlay sections (mark it as stale). */
2317
2318 static void
2319 overlay_invalidate_all ()
2320 {
2321 struct objfile *objfile;
2322 struct obj_section *sect;
2323
2324 ALL_OBJSECTIONS (objfile, sect)
2325 if (section_is_overlay (sect->the_bfd_section))
2326 sect->ovly_mapped = -1;
2327 }
2328
2329 /* Function: overlay_is_mapped (SECTION)
2330 Returns true if section is an overlay, and is currently mapped.
2331 Private: public access is thru function section_is_mapped.
2332
2333 Access to the ovly_mapped flag is restricted to this function, so
2334 that we can do automatic update. If the global flag
2335 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2336 overlay_invalidate_all. If the mapped state of the particular
2337 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2338
2339 static int
2340 overlay_is_mapped (osect)
2341 struct obj_section *osect;
2342 {
2343 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2344 return 0;
2345
2346 switch (overlay_debugging)
2347 {
2348 default:
2349 case 0:
2350 return 0; /* overlay debugging off */
2351 case -1: /* overlay debugging automatic */
2352 /* Unles there is a target_overlay_update function,
2353 there's really nothing useful to do here (can't really go auto) */
2354 if (target_overlay_update)
2355 {
2356 if (overlay_cache_invalid)
2357 {
2358 overlay_invalidate_all ();
2359 overlay_cache_invalid = 0;
2360 }
2361 if (osect->ovly_mapped == -1)
2362 (*target_overlay_update) (osect);
2363 }
2364 /* fall thru to manual case */
2365 case 1: /* overlay debugging manual */
2366 return osect->ovly_mapped == 1;
2367 }
2368 }
2369
2370 /* Function: section_is_mapped
2371 Returns true if section is an overlay, and is currently mapped. */
2372
2373 int
2374 section_is_mapped (section)
2375 asection *section;
2376 {
2377 struct objfile *objfile;
2378 struct obj_section *osect;
2379
2380 if (overlay_debugging)
2381 if (section && section_is_overlay (section))
2382 ALL_OBJSECTIONS (objfile, osect)
2383 if (osect->the_bfd_section == section)
2384 return overlay_is_mapped (osect);
2385
2386 return 0;
2387 }
2388
2389 /* Function: pc_in_unmapped_range
2390 If PC falls into the lma range of SECTION, return true, else false. */
2391
2392 CORE_ADDR
2393 pc_in_unmapped_range (pc, section)
2394 CORE_ADDR pc;
2395 asection *section;
2396 {
2397 int size;
2398
2399 if (overlay_debugging)
2400 if (section && section_is_overlay (section))
2401 {
2402 size = bfd_get_section_size_before_reloc (section);
2403 if (section->lma <= pc && pc < section->lma + size)
2404 return 1;
2405 }
2406 return 0;
2407 }
2408
2409 /* Function: pc_in_mapped_range
2410 If PC falls into the vma range of SECTION, return true, else false. */
2411
2412 CORE_ADDR
2413 pc_in_mapped_range (pc, section)
2414 CORE_ADDR pc;
2415 asection *section;
2416 {
2417 int size;
2418
2419 if (overlay_debugging)
2420 if (section && section_is_overlay (section))
2421 {
2422 size = bfd_get_section_size_before_reloc (section);
2423 if (section->vma <= pc && pc < section->vma + size)
2424 return 1;
2425 }
2426 return 0;
2427 }
2428
2429 /* Function: overlay_unmapped_address (PC, SECTION)
2430 Returns the address corresponding to PC in the unmapped (load) range.
2431 May be the same as PC. */
2432
2433 CORE_ADDR
2434 overlay_unmapped_address (pc, section)
2435 CORE_ADDR pc;
2436 asection *section;
2437 {
2438 if (overlay_debugging)
2439 if (section && section_is_overlay (section) &&
2440 pc_in_mapped_range (pc, section))
2441 return pc + section->lma - section->vma;
2442
2443 return pc;
2444 }
2445
2446 /* Function: overlay_mapped_address (PC, SECTION)
2447 Returns the address corresponding to PC in the mapped (runtime) range.
2448 May be the same as PC. */
2449
2450 CORE_ADDR
2451 overlay_mapped_address (pc, section)
2452 CORE_ADDR pc;
2453 asection *section;
2454 {
2455 if (overlay_debugging)
2456 if (section && section_is_overlay (section) &&
2457 pc_in_unmapped_range (pc, section))
2458 return pc + section->vma - section->lma;
2459
2460 return pc;
2461 }
2462
2463
2464 /* Function: symbol_overlayed_address
2465 Return one of two addresses (relative to the VMA or to the LMA),
2466 depending on whether the section is mapped or not. */
2467
2468 CORE_ADDR
2469 symbol_overlayed_address (address, section)
2470 CORE_ADDR address;
2471 asection *section;
2472 {
2473 if (overlay_debugging)
2474 {
2475 /* If the symbol has no section, just return its regular address. */
2476 if (section == 0)
2477 return address;
2478 /* If the symbol's section is not an overlay, just return its address */
2479 if (!section_is_overlay (section))
2480 return address;
2481 /* If the symbol's section is mapped, just return its address */
2482 if (section_is_mapped (section))
2483 return address;
2484 /*
2485 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2486 * then return its LOADED address rather than its vma address!!
2487 */
2488 return overlay_unmapped_address (address, section);
2489 }
2490 return address;
2491 }
2492
2493 /* Function: find_pc_overlay (PC)
2494 Return the best-match overlay section for PC:
2495 If PC matches a mapped overlay section's VMA, return that section.
2496 Else if PC matches an unmapped section's VMA, return that section.
2497 Else if PC matches an unmapped section's LMA, return that section. */
2498
2499 asection *
2500 find_pc_overlay (pc)
2501 CORE_ADDR pc;
2502 {
2503 struct objfile *objfile;
2504 struct obj_section *osect, *best_match = NULL;
2505
2506 if (overlay_debugging)
2507 ALL_OBJSECTIONS (objfile, osect)
2508 if (section_is_overlay (osect->the_bfd_section))
2509 {
2510 if (pc_in_mapped_range (pc, osect->the_bfd_section))
2511 {
2512 if (overlay_is_mapped (osect))
2513 return osect->the_bfd_section;
2514 else
2515 best_match = osect;
2516 }
2517 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
2518 best_match = osect;
2519 }
2520 return best_match ? best_match->the_bfd_section : NULL;
2521 }
2522
2523 /* Function: find_pc_mapped_section (PC)
2524 If PC falls into the VMA address range of an overlay section that is
2525 currently marked as MAPPED, return that section. Else return NULL. */
2526
2527 asection *
2528 find_pc_mapped_section (pc)
2529 CORE_ADDR pc;
2530 {
2531 struct objfile *objfile;
2532 struct obj_section *osect;
2533
2534 if (overlay_debugging)
2535 ALL_OBJSECTIONS (objfile, osect)
2536 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
2537 overlay_is_mapped (osect))
2538 return osect->the_bfd_section;
2539
2540 return NULL;
2541 }
2542
2543 /* Function: list_overlays_command
2544 Print a list of mapped sections and their PC ranges */
2545
2546 void
2547 list_overlays_command (args, from_tty)
2548 char *args;
2549 int from_tty;
2550 {
2551 int nmapped = 0;
2552 struct objfile *objfile;
2553 struct obj_section *osect;
2554
2555 if (overlay_debugging)
2556 ALL_OBJSECTIONS (objfile, osect)
2557 if (overlay_is_mapped (osect))
2558 {
2559 const char *name;
2560 bfd_vma lma, vma;
2561 int size;
2562
2563 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
2564 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2565 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2566 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
2567
2568 printf_filtered ("Section %s, loaded at ", name);
2569 print_address_numeric (lma, 1, gdb_stdout);
2570 puts_filtered (" - ");
2571 print_address_numeric (lma + size, 1, gdb_stdout);
2572 printf_filtered (", mapped at ");
2573 print_address_numeric (vma, 1, gdb_stdout);
2574 puts_filtered (" - ");
2575 print_address_numeric (vma + size, 1, gdb_stdout);
2576 puts_filtered ("\n");
2577
2578 nmapped++;
2579 }
2580 if (nmapped == 0)
2581 printf_filtered ("No sections are mapped.\n");
2582 }
2583
2584 /* Function: map_overlay_command
2585 Mark the named section as mapped (ie. residing at its VMA address). */
2586
2587 void
2588 map_overlay_command (args, from_tty)
2589 char *args;
2590 int from_tty;
2591 {
2592 struct objfile *objfile, *objfile2;
2593 struct obj_section *sec, *sec2;
2594 asection *bfdsec;
2595
2596 if (!overlay_debugging)
2597 error ("Overlay debugging not enabled. Use the 'OVERLAY ON' command.");
2598
2599 if (args == 0 || *args == 0)
2600 error ("Argument required: name of an overlay section");
2601
2602 /* First, find a section matching the user supplied argument */
2603 ALL_OBJSECTIONS (objfile, sec)
2604 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2605 {
2606 /* Now, check to see if the section is an overlay. */
2607 bfdsec = sec->the_bfd_section;
2608 if (!section_is_overlay (bfdsec))
2609 continue; /* not an overlay section */
2610
2611 /* Mark the overlay as "mapped" */
2612 sec->ovly_mapped = 1;
2613
2614 /* Next, make a pass and unmap any sections that are
2615 overlapped by this new section: */
2616 ALL_OBJSECTIONS (objfile2, sec2)
2617 if (sec2->ovly_mapped &&
2618 sec != sec2 &&
2619 sec->the_bfd_section != sec2->the_bfd_section &&
2620 (pc_in_mapped_range (sec2->addr, sec->the_bfd_section) ||
2621 pc_in_mapped_range (sec2->endaddr, sec->the_bfd_section)))
2622 {
2623 if (info_verbose)
2624 printf_filtered ("Note: section %s unmapped by overlap\n",
2625 bfd_section_name (objfile->obfd,
2626 sec2->the_bfd_section));
2627 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
2628 }
2629 return;
2630 }
2631 error ("No overlay section called %s", args);
2632 }
2633
2634 /* Function: unmap_overlay_command
2635 Mark the overlay section as unmapped
2636 (ie. resident in its LMA address range, rather than the VMA range). */
2637
2638 void
2639 unmap_overlay_command (args, from_tty)
2640 char *args;
2641 int from_tty;
2642 {
2643 struct objfile *objfile;
2644 struct obj_section *sec;
2645
2646 if (!overlay_debugging)
2647 error ("Overlay debugging not enabled. Use the 'OVERLAY ON' command.");
2648
2649 if (args == 0 || *args == 0)
2650 error ("Argument required: name of an overlay section");
2651
2652 /* First, find a section matching the user supplied argument */
2653 ALL_OBJSECTIONS (objfile, sec)
2654 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2655 {
2656 if (!sec->ovly_mapped)
2657 error ("Section %s is not mapped", args);
2658 sec->ovly_mapped = 0;
2659 return;
2660 }
2661 error ("No overlay section called %s", args);
2662 }
2663
2664 /* Function: overlay_auto_command
2665 A utility command to turn on overlay debugging.
2666 Possibly this should be done via a set/show command. */
2667
2668 static void
2669 overlay_auto_command (args, from_tty)
2670 char *args;
2671 int from_tty;
2672 {
2673 overlay_debugging = -1;
2674 if (info_verbose)
2675 printf_filtered ("Automatic overlay debugging enabled.");
2676 }
2677
2678 /* Function: overlay_manual_command
2679 A utility command to turn on overlay debugging.
2680 Possibly this should be done via a set/show command. */
2681
2682 static void
2683 overlay_manual_command (args, from_tty)
2684 char *args;
2685 int from_tty;
2686 {
2687 overlay_debugging = 1;
2688 if (info_verbose)
2689 printf_filtered ("Overlay debugging enabled.");
2690 }
2691
2692 /* Function: overlay_off_command
2693 A utility command to turn on overlay debugging.
2694 Possibly this should be done via a set/show command. */
2695
2696 static void
2697 overlay_off_command (args, from_tty)
2698 char *args;
2699 int from_tty;
2700 {
2701 overlay_debugging = 0;
2702 if (info_verbose)
2703 printf_filtered ("Overlay debugging disabled.");
2704 }
2705
2706 static void
2707 overlay_load_command (args, from_tty)
2708 char *args;
2709 int from_tty;
2710 {
2711 if (target_overlay_update)
2712 (*target_overlay_update) (NULL);
2713 else
2714 error ("This target does not know how to read its overlay state.");
2715 }
2716
2717 /* Function: overlay_command
2718 A place-holder for a mis-typed command */
2719
2720 /* Command list chain containing all defined "overlay" subcommands. */
2721 struct cmd_list_element *overlaylist;
2722
2723 static void
2724 overlay_command (args, from_tty)
2725 char *args;
2726 int from_tty;
2727 {
2728 printf_unfiltered
2729 ("\"overlay\" must be followed by the name of an overlay command.\n");
2730 help_list (overlaylist, "overlay ", -1, gdb_stdout);
2731 }
2732
2733
2734 /* Target Overlays for the "Simplest" overlay manager:
2735
2736 This is GDB's default target overlay layer. It works with the
2737 minimal overlay manager supplied as an example by Cygnus. The
2738 entry point is via a function pointer "target_overlay_update",
2739 so targets that use a different runtime overlay manager can
2740 substitute their own overlay_update function and take over the
2741 function pointer.
2742
2743 The overlay_update function pokes around in the target's data structures
2744 to see what overlays are mapped, and updates GDB's overlay mapping with
2745 this information.
2746
2747 In this simple implementation, the target data structures are as follows:
2748 unsigned _novlys; /# number of overlay sections #/
2749 unsigned _ovly_table[_novlys][4] = {
2750 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
2751 {..., ..., ..., ...},
2752 }
2753 unsigned _novly_regions; /# number of overlay regions #/
2754 unsigned _ovly_region_table[_novly_regions][3] = {
2755 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
2756 {..., ..., ...},
2757 }
2758 These functions will attempt to update GDB's mappedness state in the
2759 symbol section table, based on the target's mappedness state.
2760
2761 To do this, we keep a cached copy of the target's _ovly_table, and
2762 attempt to detect when the cached copy is invalidated. The main
2763 entry point is "simple_overlay_update(SECT), which looks up SECT in
2764 the cached table and re-reads only the entry for that section from
2765 the target (whenever possible).
2766 */
2767
2768 /* Cached, dynamically allocated copies of the target data structures: */
2769 static unsigned (*cache_ovly_table)[4] = 0;
2770 #if 0
2771 static unsigned (*cache_ovly_region_table)[3] = 0;
2772 #endif
2773 static unsigned cache_novlys = 0;
2774 #if 0
2775 static unsigned cache_novly_regions = 0;
2776 #endif
2777 static CORE_ADDR cache_ovly_table_base = 0;
2778 #if 0
2779 static CORE_ADDR cache_ovly_region_table_base = 0;
2780 #endif
2781 enum ovly_index
2782 {
2783 VMA, SIZE, LMA, MAPPED
2784 };
2785 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
2786
2787 /* Throw away the cached copy of _ovly_table */
2788 static void
2789 simple_free_overlay_table ()
2790 {
2791 if (cache_ovly_table)
2792 free (cache_ovly_table);
2793 cache_novlys = 0;
2794 cache_ovly_table = NULL;
2795 cache_ovly_table_base = 0;
2796 }
2797
2798 #if 0
2799 /* Throw away the cached copy of _ovly_region_table */
2800 static void
2801 simple_free_overlay_region_table ()
2802 {
2803 if (cache_ovly_region_table)
2804 free (cache_ovly_region_table);
2805 cache_novly_regions = 0;
2806 cache_ovly_region_table = NULL;
2807 cache_ovly_region_table_base = 0;
2808 }
2809 #endif
2810
2811 /* Read an array of ints from the target into a local buffer.
2812 Convert to host order. int LEN is number of ints */
2813 static void
2814 read_target_long_array (memaddr, myaddr, len)
2815 CORE_ADDR memaddr;
2816 unsigned int *myaddr;
2817 int len;
2818 {
2819 char *buf = alloca (len * TARGET_LONG_BYTES);
2820 int i;
2821
2822 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
2823 for (i = 0; i < len; i++)
2824 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
2825 TARGET_LONG_BYTES);
2826 }
2827
2828 /* Find and grab a copy of the target _ovly_table
2829 (and _novlys, which is needed for the table's size) */
2830 static int
2831 simple_read_overlay_table ()
2832 {
2833 struct minimal_symbol *msym;
2834
2835 simple_free_overlay_table ();
2836 msym = lookup_minimal_symbol ("_novlys", 0, 0);
2837 if (msym != NULL)
2838 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
2839 else
2840 return 0; /* failure */
2841 cache_ovly_table = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
2842 if (cache_ovly_table != NULL)
2843 {
2844 msym = lookup_minimal_symbol ("_ovly_table", 0, 0);
2845 if (msym != NULL)
2846 {
2847 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (msym);
2848 read_target_long_array (cache_ovly_table_base,
2849 (int *) cache_ovly_table,
2850 cache_novlys * 4);
2851 }
2852 else
2853 return 0; /* failure */
2854 }
2855 else
2856 return 0; /* failure */
2857 return 1; /* SUCCESS */
2858 }
2859
2860 #if 0
2861 /* Find and grab a copy of the target _ovly_region_table
2862 (and _novly_regions, which is needed for the table's size) */
2863 static int
2864 simple_read_overlay_region_table ()
2865 {
2866 struct minimal_symbol *msym;
2867
2868 simple_free_overlay_region_table ();
2869 msym = lookup_minimal_symbol ("_novly_regions", 0, 0);
2870 if (msym != NULL)
2871 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
2872 else
2873 return 0; /* failure */
2874 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
2875 if (cache_ovly_region_table != NULL)
2876 {
2877 msym = lookup_minimal_symbol ("_ovly_region_table", 0, 0);
2878 if (msym != NULL)
2879 {
2880 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
2881 read_target_long_array (cache_ovly_region_table_base,
2882 (int *) cache_ovly_region_table,
2883 cache_novly_regions * 3);
2884 }
2885 else
2886 return 0; /* failure */
2887 }
2888 else
2889 return 0; /* failure */
2890 return 1; /* SUCCESS */
2891 }
2892 #endif
2893
2894 /* Function: simple_overlay_update_1
2895 A helper function for simple_overlay_update. Assuming a cached copy
2896 of _ovly_table exists, look through it to find an entry whose vma,
2897 lma and size match those of OSECT. Re-read the entry and make sure
2898 it still matches OSECT (else the table may no longer be valid).
2899 Set OSECT's mapped state to match the entry. Return: 1 for
2900 success, 0 for failure. */
2901
2902 static int
2903 simple_overlay_update_1 (osect)
2904 struct obj_section *osect;
2905 {
2906 int i, size;
2907
2908 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2909 for (i = 0; i < cache_novlys; i++)
2910 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
2911 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
2912 cache_ovly_table[i][SIZE] == size */ )
2913 {
2914 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
2915 (int *) cache_ovly_table[i], 4);
2916 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
2917 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
2918 cache_ovly_table[i][SIZE] == size */ )
2919 {
2920 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
2921 return 1;
2922 }
2923 else /* Warning! Warning! Target's ovly table has changed! */
2924 return 0;
2925 }
2926 return 0;
2927 }
2928
2929 /* Function: simple_overlay_update
2930 If OSECT is NULL, then update all sections' mapped state
2931 (after re-reading the entire target _ovly_table).
2932 If OSECT is non-NULL, then try to find a matching entry in the
2933 cached ovly_table and update only OSECT's mapped state.
2934 If a cached entry can't be found or the cache isn't valid, then
2935 re-read the entire cache, and go ahead and update all sections. */
2936
2937 static void
2938 simple_overlay_update (osect)
2939 struct obj_section *osect;
2940 {
2941 struct objfile *objfile;
2942
2943 /* Were we given an osect to look up? NULL means do all of them. */
2944 if (osect)
2945 /* Have we got a cached copy of the target's overlay table? */
2946 if (cache_ovly_table != NULL)
2947 /* Does its cached location match what's currently in the symtab? */
2948 if (cache_ovly_table_base ==
2949 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", 0, 0)))
2950 /* Then go ahead and try to look up this single section in the cache */
2951 if (simple_overlay_update_1 (osect))
2952 /* Found it! We're done. */
2953 return;
2954
2955 /* Cached table no good: need to read the entire table anew.
2956 Or else we want all the sections, in which case it's actually
2957 more efficient to read the whole table in one block anyway. */
2958
2959 if (simple_read_overlay_table () == 0) /* read failed? No table? */
2960 {
2961 warning ("Failed to read the target overlay mapping table.");
2962 return;
2963 }
2964 /* Now may as well update all sections, even if only one was requested. */
2965 ALL_OBJSECTIONS (objfile, osect)
2966 if (section_is_overlay (osect->the_bfd_section))
2967 {
2968 int i, size;
2969
2970 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2971 for (i = 0; i < cache_novlys; i++)
2972 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
2973 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
2974 cache_ovly_table[i][SIZE] == size */ )
2975 { /* obj_section matches i'th entry in ovly_table */
2976 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
2977 break; /* finished with inner for loop: break out */
2978 }
2979 }
2980 }
2981
2982
2983 void
2984 _initialize_symfile ()
2985 {
2986 struct cmd_list_element *c;
2987
2988 c = add_cmd ("symbol-file", class_files, symbol_file_command,
2989 "Load symbol table from executable file FILE.\n\
2990 The `file' command can also load symbol tables, as well as setting the file\n\
2991 to execute.", &cmdlist);
2992 c->completer = filename_completer;
2993
2994 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
2995 "Usage: add-symbol-file FILE ADDR\n\
2996 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
2997 ADDR is the starting address of the file's text.",
2998 &cmdlist);
2999 c->completer = filename_completer;
3000
3001 c = add_cmd ("add-shared-symbol-files", class_files,
3002 add_shared_symbol_files_command,
3003 "Load the symbols from shared objects in the dynamic linker's link map.",
3004 &cmdlist);
3005 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3006 &cmdlist);
3007
3008 c = add_cmd ("load", class_files, load_command,
3009 "Dynamically load FILE into the running program, and record its symbols\n\
3010 for access from GDB.", &cmdlist);
3011 c->completer = filename_completer;
3012
3013 add_show_from_set
3014 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3015 (char *) &symbol_reloading,
3016 "Set dynamic symbol table reloading multiple times in one run.",
3017 &setlist),
3018 &showlist);
3019
3020 add_prefix_cmd ("overlay", class_support, overlay_command,
3021 "Commands for debugging overlays.", &overlaylist,
3022 "overlay ", 0, &cmdlist);
3023
3024 add_com_alias ("ovly", "overlay", class_alias, 1);
3025 add_com_alias ("ov", "overlay", class_alias, 1);
3026
3027 add_cmd ("map-overlay", class_support, map_overlay_command,
3028 "Assert that an overlay section is mapped.", &overlaylist);
3029
3030 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3031 "Assert that an overlay section is unmapped.", &overlaylist);
3032
3033 add_cmd ("list-overlays", class_support, list_overlays_command,
3034 "List mappings of overlay sections.", &overlaylist);
3035
3036 add_cmd ("manual", class_support, overlay_manual_command,
3037 "Enable overlay debugging.", &overlaylist);
3038 add_cmd ("off", class_support, overlay_off_command,
3039 "Disable overlay debugging.", &overlaylist);
3040 add_cmd ("auto", class_support, overlay_auto_command,
3041 "Enable automatic overlay debugging.", &overlaylist);
3042 add_cmd ("load-target", class_support, overlay_load_command,
3043 "Read the overlay mapping state from the target.", &overlaylist);
3044
3045 /* Filename extension to source language lookup table: */
3046 init_filename_language_table ();
3047 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3048 (char *) &ext_args,
3049 "Set mapping between filename extension and source language.\n\
3050 Usage: set extension-language .foo bar",
3051 &setlist);
3052 c->function.cfunc = set_ext_lang_command;
3053
3054 add_info ("extensions", info_ext_lang_command,
3055 "All filename extensions associated with a source language.");
3056 }
This page took 0.095887 seconds and 4 git commands to generate.