*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 #include "defs.h"
27 #include "bfdlink.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcore.h"
31 #include "frame.h"
32 #include "target.h"
33 #include "value.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "source.h"
37 #include "gdbcmd.h"
38 #include "breakpoint.h"
39 #include "language.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "inferior.h" /* for write_pc */
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54 #include "parser-defs.h"
55 #include "varobj.h"
56
57 #include <sys/types.h>
58 #include <fcntl.h>
59 #include "gdb_string.h"
60 #include "gdb_stat.h"
61 #include <ctype.h>
62 #include <time.h>
63 #include <sys/time.h>
64
65
66 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
67 void (*deprecated_show_load_progress) (const char *section,
68 unsigned long section_sent,
69 unsigned long section_size,
70 unsigned long total_sent,
71 unsigned long total_size);
72 void (*deprecated_pre_add_symbol_hook) (const char *);
73 void (*deprecated_post_add_symbol_hook) (void);
74
75 static void clear_symtab_users_cleanup (void *ignore);
76
77 /* Global variables owned by this file */
78 int readnow_symbol_files; /* Read full symbols immediately */
79
80 /* External variables and functions referenced. */
81
82 extern void report_transfer_performance (unsigned long, time_t, time_t);
83
84 /* Functions this file defines */
85
86 #if 0
87 static int simple_read_overlay_region_table (void);
88 static void simple_free_overlay_region_table (void);
89 #endif
90
91 static void set_initial_language (void);
92
93 static void load_command (char *, int);
94
95 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
96
97 static void add_symbol_file_command (char *, int);
98
99 static void add_shared_symbol_files_command (char *, int);
100
101 static void reread_separate_symbols (struct objfile *objfile);
102
103 static void cashier_psymtab (struct partial_symtab *);
104
105 bfd *symfile_bfd_open (char *);
106
107 int get_section_index (struct objfile *, char *);
108
109 static struct sym_fns *find_sym_fns (bfd *);
110
111 static void decrement_reading_symtab (void *);
112
113 static void overlay_invalidate_all (void);
114
115 static int overlay_is_mapped (struct obj_section *);
116
117 void list_overlays_command (char *, int);
118
119 void map_overlay_command (char *, int);
120
121 void unmap_overlay_command (char *, int);
122
123 static void overlay_auto_command (char *, int);
124
125 static void overlay_manual_command (char *, int);
126
127 static void overlay_off_command (char *, int);
128
129 static void overlay_load_command (char *, int);
130
131 static void overlay_command (char *, int);
132
133 static void simple_free_overlay_table (void);
134
135 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
136
137 static int simple_read_overlay_table (void);
138
139 static int simple_overlay_update_1 (struct obj_section *);
140
141 static void add_filename_language (char *ext, enum language lang);
142
143 static void info_ext_lang_command (char *args, int from_tty);
144
145 static char *find_separate_debug_file (struct objfile *objfile);
146
147 static void init_filename_language_table (void);
148
149 static void symfile_find_segment_sections (struct objfile *objfile);
150
151 void _initialize_symfile (void);
152
153 /* List of all available sym_fns. On gdb startup, each object file reader
154 calls add_symtab_fns() to register information on each format it is
155 prepared to read. */
156
157 static struct sym_fns *symtab_fns = NULL;
158
159 /* Flag for whether user will be reloading symbols multiple times.
160 Defaults to ON for VxWorks, otherwise OFF. */
161
162 #ifdef SYMBOL_RELOADING_DEFAULT
163 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
164 #else
165 int symbol_reloading = 0;
166 #endif
167 static void
168 show_symbol_reloading (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170 {
171 fprintf_filtered (file, _("\
172 Dynamic symbol table reloading multiple times in one run is %s.\n"),
173 value);
174 }
175
176
177 /* If non-zero, shared library symbols will be added automatically
178 when the inferior is created, new libraries are loaded, or when
179 attaching to the inferior. This is almost always what users will
180 want to have happen; but for very large programs, the startup time
181 will be excessive, and so if this is a problem, the user can clear
182 this flag and then add the shared library symbols as needed. Note
183 that there is a potential for confusion, since if the shared
184 library symbols are not loaded, commands like "info fun" will *not*
185 report all the functions that are actually present. */
186
187 int auto_solib_add = 1;
188
189 /* For systems that support it, a threshold size in megabytes. If
190 automatically adding a new library's symbol table to those already
191 known to the debugger would cause the total shared library symbol
192 size to exceed this threshhold, then the shlib's symbols are not
193 added. The threshold is ignored if the user explicitly asks for a
194 shlib to be added, such as when using the "sharedlibrary"
195 command. */
196
197 int auto_solib_limit;
198 \f
199
200 /* This compares two partial symbols by names, using strcmp_iw_ordered
201 for the comparison. */
202
203 static int
204 compare_psymbols (const void *s1p, const void *s2p)
205 {
206 struct partial_symbol *const *s1 = s1p;
207 struct partial_symbol *const *s2 = s2p;
208
209 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
210 SYMBOL_SEARCH_NAME (*s2));
211 }
212
213 void
214 sort_pst_symbols (struct partial_symtab *pst)
215 {
216 /* Sort the global list; don't sort the static list */
217
218 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
219 pst->n_global_syms, sizeof (struct partial_symbol *),
220 compare_psymbols);
221 }
222
223 /* Make a null terminated copy of the string at PTR with SIZE characters in
224 the obstack pointed to by OBSTACKP . Returns the address of the copy.
225 Note that the string at PTR does not have to be null terminated, I.E. it
226 may be part of a larger string and we are only saving a substring. */
227
228 char *
229 obsavestring (const char *ptr, int size, struct obstack *obstackp)
230 {
231 char *p = (char *) obstack_alloc (obstackp, size + 1);
232 /* Open-coded memcpy--saves function call time. These strings are usually
233 short. FIXME: Is this really still true with a compiler that can
234 inline memcpy? */
235 {
236 const char *p1 = ptr;
237 char *p2 = p;
238 const char *end = ptr + size;
239 while (p1 != end)
240 *p2++ = *p1++;
241 }
242 p[size] = 0;
243 return p;
244 }
245
246 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
247 in the obstack pointed to by OBSTACKP. */
248
249 char *
250 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
251 const char *s3)
252 {
253 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
254 char *val = (char *) obstack_alloc (obstackp, len);
255 strcpy (val, s1);
256 strcat (val, s2);
257 strcat (val, s3);
258 return val;
259 }
260
261 /* True if we are nested inside psymtab_to_symtab. */
262
263 int currently_reading_symtab = 0;
264
265 static void
266 decrement_reading_symtab (void *dummy)
267 {
268 currently_reading_symtab--;
269 }
270
271 /* Get the symbol table that corresponds to a partial_symtab.
272 This is fast after the first time you do it. In fact, there
273 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
274 case inline. */
275
276 struct symtab *
277 psymtab_to_symtab (struct partial_symtab *pst)
278 {
279 /* If it's been looked up before, return it. */
280 if (pst->symtab)
281 return pst->symtab;
282
283 /* If it has not yet been read in, read it. */
284 if (!pst->readin)
285 {
286 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
287 currently_reading_symtab++;
288 (*pst->read_symtab) (pst);
289 do_cleanups (back_to);
290 }
291
292 return pst->symtab;
293 }
294
295 /* Remember the lowest-addressed loadable section we've seen.
296 This function is called via bfd_map_over_sections.
297
298 In case of equal vmas, the section with the largest size becomes the
299 lowest-addressed loadable section.
300
301 If the vmas and sizes are equal, the last section is considered the
302 lowest-addressed loadable section. */
303
304 void
305 find_lowest_section (bfd *abfd, asection *sect, void *obj)
306 {
307 asection **lowest = (asection **) obj;
308
309 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
310 return;
311 if (!*lowest)
312 *lowest = sect; /* First loadable section */
313 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
314 *lowest = sect; /* A lower loadable section */
315 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
316 && (bfd_section_size (abfd, (*lowest))
317 <= bfd_section_size (abfd, sect)))
318 *lowest = sect;
319 }
320
321 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
322
323 struct section_addr_info *
324 alloc_section_addr_info (size_t num_sections)
325 {
326 struct section_addr_info *sap;
327 size_t size;
328
329 size = (sizeof (struct section_addr_info)
330 + sizeof (struct other_sections) * (num_sections - 1));
331 sap = (struct section_addr_info *) xmalloc (size);
332 memset (sap, 0, size);
333 sap->num_sections = num_sections;
334
335 return sap;
336 }
337
338
339 /* Return a freshly allocated copy of ADDRS. The section names, if
340 any, are also freshly allocated copies of those in ADDRS. */
341 struct section_addr_info *
342 copy_section_addr_info (struct section_addr_info *addrs)
343 {
344 struct section_addr_info *copy
345 = alloc_section_addr_info (addrs->num_sections);
346 int i;
347
348 copy->num_sections = addrs->num_sections;
349 for (i = 0; i < addrs->num_sections; i++)
350 {
351 copy->other[i].addr = addrs->other[i].addr;
352 if (addrs->other[i].name)
353 copy->other[i].name = xstrdup (addrs->other[i].name);
354 else
355 copy->other[i].name = NULL;
356 copy->other[i].sectindex = addrs->other[i].sectindex;
357 }
358
359 return copy;
360 }
361
362
363
364 /* Build (allocate and populate) a section_addr_info struct from
365 an existing section table. */
366
367 extern struct section_addr_info *
368 build_section_addr_info_from_section_table (const struct section_table *start,
369 const struct section_table *end)
370 {
371 struct section_addr_info *sap;
372 const struct section_table *stp;
373 int oidx;
374
375 sap = alloc_section_addr_info (end - start);
376
377 for (stp = start, oidx = 0; stp != end; stp++)
378 {
379 if (bfd_get_section_flags (stp->bfd,
380 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
381 && oidx < end - start)
382 {
383 sap->other[oidx].addr = stp->addr;
384 sap->other[oidx].name
385 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
386 sap->other[oidx].sectindex = stp->the_bfd_section->index;
387 oidx++;
388 }
389 }
390
391 return sap;
392 }
393
394
395 /* Free all memory allocated by build_section_addr_info_from_section_table. */
396
397 extern void
398 free_section_addr_info (struct section_addr_info *sap)
399 {
400 int idx;
401
402 for (idx = 0; idx < sap->num_sections; idx++)
403 if (sap->other[idx].name)
404 xfree (sap->other[idx].name);
405 xfree (sap);
406 }
407
408
409 /* Initialize OBJFILE's sect_index_* members. */
410 static void
411 init_objfile_sect_indices (struct objfile *objfile)
412 {
413 asection *sect;
414 int i;
415
416 sect = bfd_get_section_by_name (objfile->obfd, ".text");
417 if (sect)
418 objfile->sect_index_text = sect->index;
419
420 sect = bfd_get_section_by_name (objfile->obfd, ".data");
421 if (sect)
422 objfile->sect_index_data = sect->index;
423
424 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
425 if (sect)
426 objfile->sect_index_bss = sect->index;
427
428 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
429 if (sect)
430 objfile->sect_index_rodata = sect->index;
431
432 /* This is where things get really weird... We MUST have valid
433 indices for the various sect_index_* members or gdb will abort.
434 So if for example, there is no ".text" section, we have to
435 accomodate that. First, check for a file with the standard
436 one or two segments. */
437
438 symfile_find_segment_sections (objfile);
439
440 /* Except when explicitly adding symbol files at some address,
441 section_offsets contains nothing but zeros, so it doesn't matter
442 which slot in section_offsets the individual sect_index_* members
443 index into. So if they are all zero, it is safe to just point
444 all the currently uninitialized indices to the first slot. But
445 beware: if this is the main executable, it may be relocated
446 later, e.g. by the remote qOffsets packet, and then this will
447 be wrong! That's why we try segments first. */
448
449 for (i = 0; i < objfile->num_sections; i++)
450 {
451 if (ANOFFSET (objfile->section_offsets, i) != 0)
452 {
453 break;
454 }
455 }
456 if (i == objfile->num_sections)
457 {
458 if (objfile->sect_index_text == -1)
459 objfile->sect_index_text = 0;
460 if (objfile->sect_index_data == -1)
461 objfile->sect_index_data = 0;
462 if (objfile->sect_index_bss == -1)
463 objfile->sect_index_bss = 0;
464 if (objfile->sect_index_rodata == -1)
465 objfile->sect_index_rodata = 0;
466 }
467 }
468
469 /* The arguments to place_section. */
470
471 struct place_section_arg
472 {
473 struct section_offsets *offsets;
474 CORE_ADDR lowest;
475 };
476
477 /* Find a unique offset to use for loadable section SECT if
478 the user did not provide an offset. */
479
480 void
481 place_section (bfd *abfd, asection *sect, void *obj)
482 {
483 struct place_section_arg *arg = obj;
484 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
485 int done;
486 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
487
488 /* We are only interested in allocated sections. */
489 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
490 return;
491
492 /* If the user specified an offset, honor it. */
493 if (offsets[sect->index] != 0)
494 return;
495
496 /* Otherwise, let's try to find a place for the section. */
497 start_addr = (arg->lowest + align - 1) & -align;
498
499 do {
500 asection *cur_sec;
501
502 done = 1;
503
504 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
505 {
506 int indx = cur_sec->index;
507 CORE_ADDR cur_offset;
508
509 /* We don't need to compare against ourself. */
510 if (cur_sec == sect)
511 continue;
512
513 /* We can only conflict with allocated sections. */
514 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
515 continue;
516
517 /* If the section offset is 0, either the section has not been placed
518 yet, or it was the lowest section placed (in which case LOWEST
519 will be past its end). */
520 if (offsets[indx] == 0)
521 continue;
522
523 /* If this section would overlap us, then we must move up. */
524 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
525 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
526 {
527 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
528 start_addr = (start_addr + align - 1) & -align;
529 done = 0;
530 break;
531 }
532
533 /* Otherwise, we appear to be OK. So far. */
534 }
535 }
536 while (!done);
537
538 offsets[sect->index] = start_addr;
539 arg->lowest = start_addr + bfd_get_section_size (sect);
540
541 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
542 }
543
544 /* Parse the user's idea of an offset for dynamic linking, into our idea
545 of how to represent it for fast symbol reading. This is the default
546 version of the sym_fns.sym_offsets function for symbol readers that
547 don't need to do anything special. It allocates a section_offsets table
548 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
549
550 void
551 default_symfile_offsets (struct objfile *objfile,
552 struct section_addr_info *addrs)
553 {
554 int i;
555
556 objfile->num_sections = bfd_count_sections (objfile->obfd);
557 objfile->section_offsets = (struct section_offsets *)
558 obstack_alloc (&objfile->objfile_obstack,
559 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
560 memset (objfile->section_offsets, 0,
561 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
562
563 /* Now calculate offsets for section that were specified by the
564 caller. */
565 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
566 {
567 struct other_sections *osp ;
568
569 osp = &addrs->other[i] ;
570 if (osp->addr == 0)
571 continue;
572
573 /* Record all sections in offsets */
574 /* The section_offsets in the objfile are here filled in using
575 the BFD index. */
576 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
577 }
578
579 /* For relocatable files, all loadable sections will start at zero.
580 The zero is meaningless, so try to pick arbitrary addresses such
581 that no loadable sections overlap. This algorithm is quadratic,
582 but the number of sections in a single object file is generally
583 small. */
584 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
585 {
586 struct place_section_arg arg;
587 bfd *abfd = objfile->obfd;
588 asection *cur_sec;
589 CORE_ADDR lowest = 0;
590
591 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
592 /* We do not expect this to happen; just skip this step if the
593 relocatable file has a section with an assigned VMA. */
594 if (bfd_section_vma (abfd, cur_sec) != 0)
595 break;
596
597 if (cur_sec == NULL)
598 {
599 CORE_ADDR *offsets = objfile->section_offsets->offsets;
600
601 /* Pick non-overlapping offsets for sections the user did not
602 place explicitly. */
603 arg.offsets = objfile->section_offsets;
604 arg.lowest = 0;
605 bfd_map_over_sections (objfile->obfd, place_section, &arg);
606
607 /* Correctly filling in the section offsets is not quite
608 enough. Relocatable files have two properties that
609 (most) shared objects do not:
610
611 - Their debug information will contain relocations. Some
612 shared libraries do also, but many do not, so this can not
613 be assumed.
614
615 - If there are multiple code sections they will be loaded
616 at different relative addresses in memory than they are
617 in the objfile, since all sections in the file will start
618 at address zero.
619
620 Because GDB has very limited ability to map from an
621 address in debug info to the correct code section,
622 it relies on adding SECT_OFF_TEXT to things which might be
623 code. If we clear all the section offsets, and set the
624 section VMAs instead, then symfile_relocate_debug_section
625 will return meaningful debug information pointing at the
626 correct sections.
627
628 GDB has too many different data structures for section
629 addresses - a bfd, objfile, and so_list all have section
630 tables, as does exec_ops. Some of these could probably
631 be eliminated. */
632
633 for (cur_sec = abfd->sections; cur_sec != NULL;
634 cur_sec = cur_sec->next)
635 {
636 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
637 continue;
638
639 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
640 offsets[cur_sec->index] = 0;
641 }
642 }
643 }
644
645 /* Remember the bfd indexes for the .text, .data, .bss and
646 .rodata sections. */
647 init_objfile_sect_indices (objfile);
648 }
649
650
651 /* Divide the file into segments, which are individual relocatable units.
652 This is the default version of the sym_fns.sym_segments function for
653 symbol readers that do not have an explicit representation of segments.
654 It assumes that object files do not have segments, and fully linked
655 files have a single segment. */
656
657 struct symfile_segment_data *
658 default_symfile_segments (bfd *abfd)
659 {
660 int num_sections, i;
661 asection *sect;
662 struct symfile_segment_data *data;
663 CORE_ADDR low, high;
664
665 /* Relocatable files contain enough information to position each
666 loadable section independently; they should not be relocated
667 in segments. */
668 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
669 return NULL;
670
671 /* Make sure there is at least one loadable section in the file. */
672 for (sect = abfd->sections; sect != NULL; sect = sect->next)
673 {
674 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
675 continue;
676
677 break;
678 }
679 if (sect == NULL)
680 return NULL;
681
682 low = bfd_get_section_vma (abfd, sect);
683 high = low + bfd_get_section_size (sect);
684
685 data = XZALLOC (struct symfile_segment_data);
686 data->num_segments = 1;
687 data->segment_bases = XCALLOC (1, CORE_ADDR);
688 data->segment_sizes = XCALLOC (1, CORE_ADDR);
689
690 num_sections = bfd_count_sections (abfd);
691 data->segment_info = XCALLOC (num_sections, int);
692
693 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
694 {
695 CORE_ADDR vma;
696
697 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
698 continue;
699
700 vma = bfd_get_section_vma (abfd, sect);
701 if (vma < low)
702 low = vma;
703 if (vma + bfd_get_section_size (sect) > high)
704 high = vma + bfd_get_section_size (sect);
705
706 data->segment_info[i] = 1;
707 }
708
709 data->segment_bases[0] = low;
710 data->segment_sizes[0] = high - low;
711
712 return data;
713 }
714
715 /* Process a symbol file, as either the main file or as a dynamically
716 loaded file.
717
718 OBJFILE is where the symbols are to be read from.
719
720 ADDRS is the list of section load addresses. If the user has given
721 an 'add-symbol-file' command, then this is the list of offsets and
722 addresses he or she provided as arguments to the command; or, if
723 we're handling a shared library, these are the actual addresses the
724 sections are loaded at, according to the inferior's dynamic linker
725 (as gleaned by GDB's shared library code). We convert each address
726 into an offset from the section VMA's as it appears in the object
727 file, and then call the file's sym_offsets function to convert this
728 into a format-specific offset table --- a `struct section_offsets'.
729 If ADDRS is non-zero, OFFSETS must be zero.
730
731 OFFSETS is a table of section offsets already in the right
732 format-specific representation. NUM_OFFSETS is the number of
733 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
734 assume this is the proper table the call to sym_offsets described
735 above would produce. Instead of calling sym_offsets, we just dump
736 it right into objfile->section_offsets. (When we're re-reading
737 symbols from an objfile, we don't have the original load address
738 list any more; all we have is the section offset table.) If
739 OFFSETS is non-zero, ADDRS must be zero.
740
741 MAINLINE is nonzero if this is the main symbol file, or zero if
742 it's an extra symbol file such as dynamically loaded code.
743
744 VERBO is nonzero if the caller has printed a verbose message about
745 the symbol reading (and complaints can be more terse about it). */
746
747 void
748 syms_from_objfile (struct objfile *objfile,
749 struct section_addr_info *addrs,
750 struct section_offsets *offsets,
751 int num_offsets,
752 int mainline,
753 int verbo)
754 {
755 struct section_addr_info *local_addr = NULL;
756 struct cleanup *old_chain;
757
758 gdb_assert (! (addrs && offsets));
759
760 init_entry_point_info (objfile);
761 objfile->sf = find_sym_fns (objfile->obfd);
762
763 if (objfile->sf == NULL)
764 return; /* No symbols. */
765
766 /* Make sure that partially constructed symbol tables will be cleaned up
767 if an error occurs during symbol reading. */
768 old_chain = make_cleanup_free_objfile (objfile);
769
770 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
771 list. We now establish the convention that an addr of zero means
772 no load address was specified. */
773 if (! addrs && ! offsets)
774 {
775 local_addr
776 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
777 make_cleanup (xfree, local_addr);
778 addrs = local_addr;
779 }
780
781 /* Now either addrs or offsets is non-zero. */
782
783 if (mainline)
784 {
785 /* We will modify the main symbol table, make sure that all its users
786 will be cleaned up if an error occurs during symbol reading. */
787 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
788
789 /* Since no error yet, throw away the old symbol table. */
790
791 if (symfile_objfile != NULL)
792 {
793 free_objfile (symfile_objfile);
794 symfile_objfile = NULL;
795 }
796
797 /* Currently we keep symbols from the add-symbol-file command.
798 If the user wants to get rid of them, they should do "symbol-file"
799 without arguments first. Not sure this is the best behavior
800 (PR 2207). */
801
802 (*objfile->sf->sym_new_init) (objfile);
803 }
804
805 /* Convert addr into an offset rather than an absolute address.
806 We find the lowest address of a loaded segment in the objfile,
807 and assume that <addr> is where that got loaded.
808
809 We no longer warn if the lowest section is not a text segment (as
810 happens for the PA64 port. */
811 if (!mainline && addrs && addrs->other[0].name)
812 {
813 asection *lower_sect;
814 asection *sect;
815 CORE_ADDR lower_offset;
816 int i;
817
818 /* Find lowest loadable section to be used as starting point for
819 continguous sections. FIXME!! won't work without call to find
820 .text first, but this assumes text is lowest section. */
821 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
822 if (lower_sect == NULL)
823 bfd_map_over_sections (objfile->obfd, find_lowest_section,
824 &lower_sect);
825 if (lower_sect == NULL)
826 warning (_("no loadable sections found in added symbol-file %s"),
827 objfile->name);
828 else
829 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
830 warning (_("Lowest section in %s is %s at %s"),
831 objfile->name,
832 bfd_section_name (objfile->obfd, lower_sect),
833 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
834 if (lower_sect != NULL)
835 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
836 else
837 lower_offset = 0;
838
839 /* Calculate offsets for the loadable sections.
840 FIXME! Sections must be in order of increasing loadable section
841 so that contiguous sections can use the lower-offset!!!
842
843 Adjust offsets if the segments are not contiguous.
844 If the section is contiguous, its offset should be set to
845 the offset of the highest loadable section lower than it
846 (the loadable section directly below it in memory).
847 this_offset = lower_offset = lower_addr - lower_orig_addr */
848
849 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
850 {
851 if (addrs->other[i].addr != 0)
852 {
853 sect = bfd_get_section_by_name (objfile->obfd,
854 addrs->other[i].name);
855 if (sect)
856 {
857 addrs->other[i].addr
858 -= bfd_section_vma (objfile->obfd, sect);
859 lower_offset = addrs->other[i].addr;
860 /* This is the index used by BFD. */
861 addrs->other[i].sectindex = sect->index ;
862 }
863 else
864 {
865 warning (_("section %s not found in %s"),
866 addrs->other[i].name,
867 objfile->name);
868 addrs->other[i].addr = 0;
869 }
870 }
871 else
872 addrs->other[i].addr = lower_offset;
873 }
874 }
875
876 /* Initialize symbol reading routines for this objfile, allow complaints to
877 appear for this new file, and record how verbose to be, then do the
878 initial symbol reading for this file. */
879
880 (*objfile->sf->sym_init) (objfile);
881 clear_complaints (&symfile_complaints, 1, verbo);
882
883 if (addrs)
884 (*objfile->sf->sym_offsets) (objfile, addrs);
885 else
886 {
887 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
888
889 /* Just copy in the offset table directly as given to us. */
890 objfile->num_sections = num_offsets;
891 objfile->section_offsets
892 = ((struct section_offsets *)
893 obstack_alloc (&objfile->objfile_obstack, size));
894 memcpy (objfile->section_offsets, offsets, size);
895
896 init_objfile_sect_indices (objfile);
897 }
898
899 #ifndef DEPRECATED_IBM6000_TARGET
900 /* This is a SVR4/SunOS specific hack, I think. In any event, it
901 screws RS/6000. sym_offsets should be doing this sort of thing,
902 because it knows the mapping between bfd sections and
903 section_offsets. */
904 /* This is a hack. As far as I can tell, section offsets are not
905 target dependent. They are all set to addr with a couple of
906 exceptions. The exceptions are sysvr4 shared libraries, whose
907 offsets are kept in solib structures anyway and rs6000 xcoff
908 which handles shared libraries in a completely unique way.
909
910 Section offsets are built similarly, except that they are built
911 by adding addr in all cases because there is no clear mapping
912 from section_offsets into actual sections. Note that solib.c
913 has a different algorithm for finding section offsets.
914
915 These should probably all be collapsed into some target
916 independent form of shared library support. FIXME. */
917
918 if (addrs)
919 {
920 struct obj_section *s;
921
922 /* Map section offsets in "addr" back to the object's
923 sections by comparing the section names with bfd's
924 section names. Then adjust the section address by
925 the offset. */ /* for gdb/13815 */
926
927 ALL_OBJFILE_OSECTIONS (objfile, s)
928 {
929 CORE_ADDR s_addr = 0;
930 int i;
931
932 for (i = 0;
933 !s_addr && i < addrs->num_sections && addrs->other[i].name;
934 i++)
935 if (strcmp (bfd_section_name (s->objfile->obfd,
936 s->the_bfd_section),
937 addrs->other[i].name) == 0)
938 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
939
940 s->addr -= s->offset;
941 s->addr += s_addr;
942 s->endaddr -= s->offset;
943 s->endaddr += s_addr;
944 s->offset += s_addr;
945 }
946 }
947 #endif /* not DEPRECATED_IBM6000_TARGET */
948
949 (*objfile->sf->sym_read) (objfile, mainline);
950
951 /* Don't allow char * to have a typename (else would get caddr_t).
952 Ditto void *. FIXME: Check whether this is now done by all the
953 symbol readers themselves (many of them now do), and if so remove
954 it from here. */
955
956 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
957 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
958
959 /* Mark the objfile has having had initial symbol read attempted. Note
960 that this does not mean we found any symbols... */
961
962 objfile->flags |= OBJF_SYMS;
963
964 /* Discard cleanups as symbol reading was successful. */
965
966 discard_cleanups (old_chain);
967 }
968
969 /* Perform required actions after either reading in the initial
970 symbols for a new objfile, or mapping in the symbols from a reusable
971 objfile. */
972
973 void
974 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
975 {
976
977 /* If this is the main symbol file we have to clean up all users of the
978 old main symbol file. Otherwise it is sufficient to fixup all the
979 breakpoints that may have been redefined by this symbol file. */
980 if (mainline)
981 {
982 /* OK, make it the "real" symbol file. */
983 symfile_objfile = objfile;
984
985 clear_symtab_users ();
986 }
987 else
988 {
989 breakpoint_re_set ();
990 }
991
992 /* We're done reading the symbol file; finish off complaints. */
993 clear_complaints (&symfile_complaints, 0, verbo);
994 }
995
996 /* Process a symbol file, as either the main file or as a dynamically
997 loaded file.
998
999 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1000 This BFD will be closed on error, and is always consumed by this function.
1001
1002 FROM_TTY says how verbose to be.
1003
1004 MAINLINE specifies whether this is the main symbol file, or whether
1005 it's an extra symbol file such as dynamically loaded code.
1006
1007 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1008 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
1009 non-zero.
1010
1011 Upon success, returns a pointer to the objfile that was added.
1012 Upon failure, jumps back to command level (never returns). */
1013 static struct objfile *
1014 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
1015 struct section_addr_info *addrs,
1016 struct section_offsets *offsets,
1017 int num_offsets,
1018 int mainline, int flags)
1019 {
1020 struct objfile *objfile;
1021 struct partial_symtab *psymtab;
1022 char *debugfile;
1023 struct section_addr_info *orig_addrs = NULL;
1024 struct cleanup *my_cleanups;
1025 const char *name = bfd_get_filename (abfd);
1026
1027 my_cleanups = make_cleanup_bfd_close (abfd);
1028
1029 /* Give user a chance to burp if we'd be
1030 interactively wiping out any existing symbols. */
1031
1032 if ((have_full_symbols () || have_partial_symbols ())
1033 && mainline
1034 && from_tty
1035 && !query ("Load new symbol table from \"%s\"? ", name))
1036 error (_("Not confirmed."));
1037
1038 objfile = allocate_objfile (abfd, flags);
1039 discard_cleanups (my_cleanups);
1040
1041 if (addrs)
1042 {
1043 orig_addrs = copy_section_addr_info (addrs);
1044 make_cleanup_free_section_addr_info (orig_addrs);
1045 }
1046
1047 /* We either created a new mapped symbol table, mapped an existing
1048 symbol table file which has not had initial symbol reading
1049 performed, or need to read an unmapped symbol table. */
1050 if (from_tty || info_verbose)
1051 {
1052 if (deprecated_pre_add_symbol_hook)
1053 deprecated_pre_add_symbol_hook (name);
1054 else
1055 {
1056 printf_unfiltered (_("Reading symbols from %s..."), name);
1057 wrap_here ("");
1058 gdb_flush (gdb_stdout);
1059 }
1060 }
1061 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1062 mainline, from_tty);
1063
1064 /* We now have at least a partial symbol table. Check to see if the
1065 user requested that all symbols be read on initial access via either
1066 the gdb startup command line or on a per symbol file basis. Expand
1067 all partial symbol tables for this objfile if so. */
1068
1069 if ((flags & OBJF_READNOW) || readnow_symbol_files)
1070 {
1071 if (from_tty || info_verbose)
1072 {
1073 printf_unfiltered (_("expanding to full symbols..."));
1074 wrap_here ("");
1075 gdb_flush (gdb_stdout);
1076 }
1077
1078 for (psymtab = objfile->psymtabs;
1079 psymtab != NULL;
1080 psymtab = psymtab->next)
1081 {
1082 psymtab_to_symtab (psymtab);
1083 }
1084 }
1085
1086 debugfile = find_separate_debug_file (objfile);
1087 if (debugfile)
1088 {
1089 if (addrs != NULL)
1090 {
1091 objfile->separate_debug_objfile
1092 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
1093 }
1094 else
1095 {
1096 objfile->separate_debug_objfile
1097 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
1098 }
1099 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1100 = objfile;
1101
1102 /* Put the separate debug object before the normal one, this is so that
1103 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1104 put_objfile_before (objfile->separate_debug_objfile, objfile);
1105
1106 xfree (debugfile);
1107 }
1108
1109 if (!have_partial_symbols () && !have_full_symbols ())
1110 {
1111 wrap_here ("");
1112 printf_filtered (_("(no debugging symbols found)"));
1113 if (from_tty || info_verbose)
1114 printf_filtered ("...");
1115 else
1116 printf_filtered ("\n");
1117 wrap_here ("");
1118 }
1119
1120 if (from_tty || info_verbose)
1121 {
1122 if (deprecated_post_add_symbol_hook)
1123 deprecated_post_add_symbol_hook ();
1124 else
1125 {
1126 printf_unfiltered (_("done.\n"));
1127 }
1128 }
1129
1130 /* We print some messages regardless of whether 'from_tty ||
1131 info_verbose' is true, so make sure they go out at the right
1132 time. */
1133 gdb_flush (gdb_stdout);
1134
1135 do_cleanups (my_cleanups);
1136
1137 if (objfile->sf == NULL)
1138 return objfile; /* No symbols. */
1139
1140 new_symfile_objfile (objfile, mainline, from_tty);
1141
1142 observer_notify_new_objfile (objfile);
1143
1144 bfd_cache_close_all ();
1145 return (objfile);
1146 }
1147
1148
1149 /* Process the symbol file ABFD, as either the main file or as a
1150 dynamically loaded file.
1151
1152 See symbol_file_add_with_addrs_or_offsets's comments for
1153 details. */
1154 struct objfile *
1155 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1156 struct section_addr_info *addrs,
1157 int mainline, int flags)
1158 {
1159 return symbol_file_add_with_addrs_or_offsets (abfd,
1160 from_tty, addrs, 0, 0,
1161 mainline, flags);
1162 }
1163
1164
1165 /* Process a symbol file, as either the main file or as a dynamically
1166 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1167 for details. */
1168 struct objfile *
1169 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1170 int mainline, int flags)
1171 {
1172 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1173 addrs, mainline, flags);
1174 }
1175
1176
1177 /* Call symbol_file_add() with default values and update whatever is
1178 affected by the loading of a new main().
1179 Used when the file is supplied in the gdb command line
1180 and by some targets with special loading requirements.
1181 The auxiliary function, symbol_file_add_main_1(), has the flags
1182 argument for the switches that can only be specified in the symbol_file
1183 command itself. */
1184
1185 void
1186 symbol_file_add_main (char *args, int from_tty)
1187 {
1188 symbol_file_add_main_1 (args, from_tty, 0);
1189 }
1190
1191 static void
1192 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1193 {
1194 symbol_file_add (args, from_tty, NULL, 1, flags);
1195
1196 /* Getting new symbols may change our opinion about
1197 what is frameless. */
1198 reinit_frame_cache ();
1199
1200 set_initial_language ();
1201 }
1202
1203 void
1204 symbol_file_clear (int from_tty)
1205 {
1206 if ((have_full_symbols () || have_partial_symbols ())
1207 && from_tty
1208 && (symfile_objfile
1209 ? !query (_("Discard symbol table from `%s'? "),
1210 symfile_objfile->name)
1211 : !query (_("Discard symbol table? "))))
1212 error (_("Not confirmed."));
1213 free_all_objfiles ();
1214
1215 /* solib descriptors may have handles to objfiles. Since their
1216 storage has just been released, we'd better wipe the solib
1217 descriptors as well.
1218 */
1219 #if defined(SOLIB_RESTART)
1220 SOLIB_RESTART ();
1221 #endif
1222
1223 symfile_objfile = NULL;
1224 if (from_tty)
1225 printf_unfiltered (_("No symbol file now.\n"));
1226 }
1227
1228 static char *
1229 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1230 {
1231 asection *sect;
1232 bfd_size_type debuglink_size;
1233 unsigned long crc32;
1234 char *contents;
1235 int crc_offset;
1236 unsigned char *p;
1237
1238 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1239
1240 if (sect == NULL)
1241 return NULL;
1242
1243 debuglink_size = bfd_section_size (objfile->obfd, sect);
1244
1245 contents = xmalloc (debuglink_size);
1246 bfd_get_section_contents (objfile->obfd, sect, contents,
1247 (file_ptr)0, (bfd_size_type)debuglink_size);
1248
1249 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1250 crc_offset = strlen (contents) + 1;
1251 crc_offset = (crc_offset + 3) & ~3;
1252
1253 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1254
1255 *crc32_out = crc32;
1256 return contents;
1257 }
1258
1259 static int
1260 separate_debug_file_exists (const char *name, unsigned long crc)
1261 {
1262 unsigned long file_crc = 0;
1263 int fd;
1264 gdb_byte buffer[8*1024];
1265 int count;
1266
1267 fd = open (name, O_RDONLY | O_BINARY);
1268 if (fd < 0)
1269 return 0;
1270
1271 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1272 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1273
1274 close (fd);
1275
1276 return crc == file_crc;
1277 }
1278
1279 char *debug_file_directory = NULL;
1280 static void
1281 show_debug_file_directory (struct ui_file *file, int from_tty,
1282 struct cmd_list_element *c, const char *value)
1283 {
1284 fprintf_filtered (file, _("\
1285 The directory where separate debug symbols are searched for is \"%s\".\n"),
1286 value);
1287 }
1288
1289 #if ! defined (DEBUG_SUBDIRECTORY)
1290 #define DEBUG_SUBDIRECTORY ".debug"
1291 #endif
1292
1293 static char *
1294 find_separate_debug_file (struct objfile *objfile)
1295 {
1296 asection *sect;
1297 char *basename;
1298 char *dir;
1299 char *debugfile;
1300 char *name_copy;
1301 char *canon_name;
1302 bfd_size_type debuglink_size;
1303 unsigned long crc32;
1304 int i;
1305
1306 basename = get_debug_link_info (objfile, &crc32);
1307
1308 if (basename == NULL)
1309 return NULL;
1310
1311 dir = xstrdup (objfile->name);
1312
1313 /* Strip off the final filename part, leaving the directory name,
1314 followed by a slash. Objfile names should always be absolute and
1315 tilde-expanded, so there should always be a slash in there
1316 somewhere. */
1317 for (i = strlen(dir) - 1; i >= 0; i--)
1318 {
1319 if (IS_DIR_SEPARATOR (dir[i]))
1320 break;
1321 }
1322 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1323 dir[i+1] = '\0';
1324
1325 debugfile = alloca (strlen (debug_file_directory) + 1
1326 + strlen (dir)
1327 + strlen (DEBUG_SUBDIRECTORY)
1328 + strlen ("/")
1329 + strlen (basename)
1330 + 1);
1331
1332 /* First try in the same directory as the original file. */
1333 strcpy (debugfile, dir);
1334 strcat (debugfile, basename);
1335
1336 if (separate_debug_file_exists (debugfile, crc32))
1337 {
1338 xfree (basename);
1339 xfree (dir);
1340 return xstrdup (debugfile);
1341 }
1342
1343 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1344 strcpy (debugfile, dir);
1345 strcat (debugfile, DEBUG_SUBDIRECTORY);
1346 strcat (debugfile, "/");
1347 strcat (debugfile, basename);
1348
1349 if (separate_debug_file_exists (debugfile, crc32))
1350 {
1351 xfree (basename);
1352 xfree (dir);
1353 return xstrdup (debugfile);
1354 }
1355
1356 /* Then try in the global debugfile directory. */
1357 strcpy (debugfile, debug_file_directory);
1358 strcat (debugfile, "/");
1359 strcat (debugfile, dir);
1360 strcat (debugfile, basename);
1361
1362 if (separate_debug_file_exists (debugfile, crc32))
1363 {
1364 xfree (basename);
1365 xfree (dir);
1366 return xstrdup (debugfile);
1367 }
1368
1369 /* If the file is in the sysroot, try using its base path in the
1370 global debugfile directory. */
1371 canon_name = lrealpath (dir);
1372 if (canon_name
1373 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1374 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1375 {
1376 strcpy (debugfile, debug_file_directory);
1377 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1378 strcat (debugfile, "/");
1379 strcat (debugfile, basename);
1380
1381 if (separate_debug_file_exists (debugfile, crc32))
1382 {
1383 xfree (canon_name);
1384 xfree (basename);
1385 xfree (dir);
1386 return xstrdup (debugfile);
1387 }
1388 }
1389
1390 if (canon_name)
1391 xfree (canon_name);
1392
1393 xfree (basename);
1394 xfree (dir);
1395 return NULL;
1396 }
1397
1398
1399 /* This is the symbol-file command. Read the file, analyze its
1400 symbols, and add a struct symtab to a symtab list. The syntax of
1401 the command is rather bizarre:
1402
1403 1. The function buildargv implements various quoting conventions
1404 which are undocumented and have little or nothing in common with
1405 the way things are quoted (or not quoted) elsewhere in GDB.
1406
1407 2. Options are used, which are not generally used in GDB (perhaps
1408 "set mapped on", "set readnow on" would be better)
1409
1410 3. The order of options matters, which is contrary to GNU
1411 conventions (because it is confusing and inconvenient). */
1412
1413 void
1414 symbol_file_command (char *args, int from_tty)
1415 {
1416 dont_repeat ();
1417
1418 if (args == NULL)
1419 {
1420 symbol_file_clear (from_tty);
1421 }
1422 else
1423 {
1424 char **argv = buildargv (args);
1425 int flags = OBJF_USERLOADED;
1426 struct cleanup *cleanups;
1427 char *name = NULL;
1428
1429 if (argv == NULL)
1430 nomem (0);
1431
1432 cleanups = make_cleanup_freeargv (argv);
1433 while (*argv != NULL)
1434 {
1435 if (strcmp (*argv, "-readnow") == 0)
1436 flags |= OBJF_READNOW;
1437 else if (**argv == '-')
1438 error (_("unknown option `%s'"), *argv);
1439 else
1440 {
1441 symbol_file_add_main_1 (*argv, from_tty, flags);
1442 name = *argv;
1443 }
1444
1445 argv++;
1446 }
1447
1448 if (name == NULL)
1449 error (_("no symbol file name was specified"));
1450
1451 do_cleanups (cleanups);
1452 }
1453 }
1454
1455 /* Set the initial language.
1456
1457 FIXME: A better solution would be to record the language in the
1458 psymtab when reading partial symbols, and then use it (if known) to
1459 set the language. This would be a win for formats that encode the
1460 language in an easily discoverable place, such as DWARF. For
1461 stabs, we can jump through hoops looking for specially named
1462 symbols or try to intuit the language from the specific type of
1463 stabs we find, but we can't do that until later when we read in
1464 full symbols. */
1465
1466 static void
1467 set_initial_language (void)
1468 {
1469 struct partial_symtab *pst;
1470 enum language lang = language_unknown;
1471
1472 pst = find_main_psymtab ();
1473 if (pst != NULL)
1474 {
1475 if (pst->filename != NULL)
1476 lang = deduce_language_from_filename (pst->filename);
1477
1478 if (lang == language_unknown)
1479 {
1480 /* Make C the default language */
1481 lang = language_c;
1482 }
1483
1484 set_language (lang);
1485 expected_language = current_language; /* Don't warn the user. */
1486 }
1487 }
1488
1489 /* Open the file specified by NAME and hand it off to BFD for
1490 preliminary analysis. Return a newly initialized bfd *, which
1491 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1492 absolute). In case of trouble, error() is called. */
1493
1494 bfd *
1495 symfile_bfd_open (char *name)
1496 {
1497 bfd *sym_bfd;
1498 int desc;
1499 char *absolute_name;
1500
1501 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1502
1503 /* Look down path for it, allocate 2nd new malloc'd copy. */
1504 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1505 O_RDONLY | O_BINARY, 0, &absolute_name);
1506 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1507 if (desc < 0)
1508 {
1509 char *exename = alloca (strlen (name) + 5);
1510 strcat (strcpy (exename, name), ".exe");
1511 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1512 O_RDONLY | O_BINARY, 0, &absolute_name);
1513 }
1514 #endif
1515 if (desc < 0)
1516 {
1517 make_cleanup (xfree, name);
1518 perror_with_name (name);
1519 }
1520
1521 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1522 bfd. It'll be freed in free_objfile(). */
1523 xfree (name);
1524 name = absolute_name;
1525
1526 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1527 if (!sym_bfd)
1528 {
1529 close (desc);
1530 make_cleanup (xfree, name);
1531 error (_("\"%s\": can't open to read symbols: %s."), name,
1532 bfd_errmsg (bfd_get_error ()));
1533 }
1534 bfd_set_cacheable (sym_bfd, 1);
1535
1536 if (!bfd_check_format (sym_bfd, bfd_object))
1537 {
1538 /* FIXME: should be checking for errors from bfd_close (for one
1539 thing, on error it does not free all the storage associated
1540 with the bfd). */
1541 bfd_close (sym_bfd); /* This also closes desc. */
1542 make_cleanup (xfree, name);
1543 error (_("\"%s\": can't read symbols: %s."), name,
1544 bfd_errmsg (bfd_get_error ()));
1545 }
1546
1547 return sym_bfd;
1548 }
1549
1550 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1551 the section was not found. */
1552
1553 int
1554 get_section_index (struct objfile *objfile, char *section_name)
1555 {
1556 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1557
1558 if (sect)
1559 return sect->index;
1560 else
1561 return -1;
1562 }
1563
1564 /* Link SF into the global symtab_fns list. Called on startup by the
1565 _initialize routine in each object file format reader, to register
1566 information about each format the the reader is prepared to
1567 handle. */
1568
1569 void
1570 add_symtab_fns (struct sym_fns *sf)
1571 {
1572 sf->next = symtab_fns;
1573 symtab_fns = sf;
1574 }
1575
1576 /* Initialize OBJFILE to read symbols from its associated BFD. It
1577 either returns or calls error(). The result is an initialized
1578 struct sym_fns in the objfile structure, that contains cached
1579 information about the symbol file. */
1580
1581 static struct sym_fns *
1582 find_sym_fns (bfd *abfd)
1583 {
1584 struct sym_fns *sf;
1585 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1586
1587 if (our_flavour == bfd_target_srec_flavour
1588 || our_flavour == bfd_target_ihex_flavour
1589 || our_flavour == bfd_target_tekhex_flavour)
1590 return NULL; /* No symbols. */
1591
1592 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1593 if (our_flavour == sf->sym_flavour)
1594 return sf;
1595
1596 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1597 bfd_get_target (abfd));
1598 }
1599 \f
1600
1601 /* This function runs the load command of our current target. */
1602
1603 static void
1604 load_command (char *arg, int from_tty)
1605 {
1606 if (arg == NULL)
1607 {
1608 char *parg;
1609 int count = 0;
1610
1611 parg = arg = get_exec_file (1);
1612
1613 /* Count how many \ " ' tab space there are in the name. */
1614 while ((parg = strpbrk (parg, "\\\"'\t ")))
1615 {
1616 parg++;
1617 count++;
1618 }
1619
1620 if (count)
1621 {
1622 /* We need to quote this string so buildargv can pull it apart. */
1623 char *temp = xmalloc (strlen (arg) + count + 1 );
1624 char *ptemp = temp;
1625 char *prev;
1626
1627 make_cleanup (xfree, temp);
1628
1629 prev = parg = arg;
1630 while ((parg = strpbrk (parg, "\\\"'\t ")))
1631 {
1632 strncpy (ptemp, prev, parg - prev);
1633 ptemp += parg - prev;
1634 prev = parg++;
1635 *ptemp++ = '\\';
1636 }
1637 strcpy (ptemp, prev);
1638
1639 arg = temp;
1640 }
1641 }
1642
1643 /* The user might be reloading because the binary has changed. Take
1644 this opportunity to check. */
1645 reopen_exec_file ();
1646 reread_symbols ();
1647
1648 target_load (arg, from_tty);
1649
1650 /* After re-loading the executable, we don't really know which
1651 overlays are mapped any more. */
1652 overlay_cache_invalid = 1;
1653 }
1654
1655 /* This version of "load" should be usable for any target. Currently
1656 it is just used for remote targets, not inftarg.c or core files,
1657 on the theory that only in that case is it useful.
1658
1659 Avoiding xmodem and the like seems like a win (a) because we don't have
1660 to worry about finding it, and (b) On VMS, fork() is very slow and so
1661 we don't want to run a subprocess. On the other hand, I'm not sure how
1662 performance compares. */
1663
1664 static int validate_download = 0;
1665
1666 /* Callback service function for generic_load (bfd_map_over_sections). */
1667
1668 static void
1669 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1670 {
1671 bfd_size_type *sum = data;
1672
1673 *sum += bfd_get_section_size (asec);
1674 }
1675
1676 /* Opaque data for load_section_callback. */
1677 struct load_section_data {
1678 unsigned long load_offset;
1679 struct load_progress_data *progress_data;
1680 VEC(memory_write_request_s) *requests;
1681 };
1682
1683 /* Opaque data for load_progress. */
1684 struct load_progress_data {
1685 /* Cumulative data. */
1686 unsigned long write_count;
1687 unsigned long data_count;
1688 bfd_size_type total_size;
1689 };
1690
1691 /* Opaque data for load_progress for a single section. */
1692 struct load_progress_section_data {
1693 struct load_progress_data *cumulative;
1694
1695 /* Per-section data. */
1696 const char *section_name;
1697 ULONGEST section_sent;
1698 ULONGEST section_size;
1699 CORE_ADDR lma;
1700 gdb_byte *buffer;
1701 };
1702
1703 /* Target write callback routine for progress reporting. */
1704
1705 static void
1706 load_progress (ULONGEST bytes, void *untyped_arg)
1707 {
1708 struct load_progress_section_data *args = untyped_arg;
1709 struct load_progress_data *totals;
1710
1711 if (args == NULL)
1712 /* Writing padding data. No easy way to get at the cumulative
1713 stats, so just ignore this. */
1714 return;
1715
1716 totals = args->cumulative;
1717
1718 if (bytes == 0 && args->section_sent == 0)
1719 {
1720 /* The write is just starting. Let the user know we've started
1721 this section. */
1722 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1723 args->section_name, paddr_nz (args->section_size),
1724 paddr_nz (args->lma));
1725 return;
1726 }
1727
1728 if (validate_download)
1729 {
1730 /* Broken memories and broken monitors manifest themselves here
1731 when bring new computers to life. This doubles already slow
1732 downloads. */
1733 /* NOTE: cagney/1999-10-18: A more efficient implementation
1734 might add a verify_memory() method to the target vector and
1735 then use that. remote.c could implement that method using
1736 the ``qCRC'' packet. */
1737 gdb_byte *check = xmalloc (bytes);
1738 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1739
1740 if (target_read_memory (args->lma, check, bytes) != 0)
1741 error (_("Download verify read failed at 0x%s"),
1742 paddr (args->lma));
1743 if (memcmp (args->buffer, check, bytes) != 0)
1744 error (_("Download verify compare failed at 0x%s"),
1745 paddr (args->lma));
1746 do_cleanups (verify_cleanups);
1747 }
1748 totals->data_count += bytes;
1749 args->lma += bytes;
1750 args->buffer += bytes;
1751 totals->write_count += 1;
1752 args->section_sent += bytes;
1753 if (quit_flag
1754 || (deprecated_ui_load_progress_hook != NULL
1755 && deprecated_ui_load_progress_hook (args->section_name,
1756 args->section_sent)))
1757 error (_("Canceled the download"));
1758
1759 if (deprecated_show_load_progress != NULL)
1760 deprecated_show_load_progress (args->section_name,
1761 args->section_sent,
1762 args->section_size,
1763 totals->data_count,
1764 totals->total_size);
1765 }
1766
1767 /* Callback service function for generic_load (bfd_map_over_sections). */
1768
1769 static void
1770 load_section_callback (bfd *abfd, asection *asec, void *data)
1771 {
1772 struct memory_write_request *new_request;
1773 struct load_section_data *args = data;
1774 struct load_progress_section_data *section_data;
1775 bfd_size_type size = bfd_get_section_size (asec);
1776 gdb_byte *buffer;
1777 const char *sect_name = bfd_get_section_name (abfd, asec);
1778
1779 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1780 return;
1781
1782 if (size == 0)
1783 return;
1784
1785 new_request = VEC_safe_push (memory_write_request_s,
1786 args->requests, NULL);
1787 memset (new_request, 0, sizeof (struct memory_write_request));
1788 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1789 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1790 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1791 new_request->data = xmalloc (size);
1792 new_request->baton = section_data;
1793
1794 buffer = new_request->data;
1795
1796 section_data->cumulative = args->progress_data;
1797 section_data->section_name = sect_name;
1798 section_data->section_size = size;
1799 section_data->lma = new_request->begin;
1800 section_data->buffer = buffer;
1801
1802 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1803 }
1804
1805 /* Clean up an entire memory request vector, including load
1806 data and progress records. */
1807
1808 static void
1809 clear_memory_write_data (void *arg)
1810 {
1811 VEC(memory_write_request_s) **vec_p = arg;
1812 VEC(memory_write_request_s) *vec = *vec_p;
1813 int i;
1814 struct memory_write_request *mr;
1815
1816 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1817 {
1818 xfree (mr->data);
1819 xfree (mr->baton);
1820 }
1821 VEC_free (memory_write_request_s, vec);
1822 }
1823
1824 void
1825 generic_load (char *args, int from_tty)
1826 {
1827 bfd *loadfile_bfd;
1828 struct timeval start_time, end_time;
1829 char *filename;
1830 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1831 struct load_section_data cbdata;
1832 struct load_progress_data total_progress;
1833
1834 CORE_ADDR entry;
1835 char **argv;
1836
1837 memset (&cbdata, 0, sizeof (cbdata));
1838 memset (&total_progress, 0, sizeof (total_progress));
1839 cbdata.progress_data = &total_progress;
1840
1841 make_cleanup (clear_memory_write_data, &cbdata.requests);
1842
1843 argv = buildargv (args);
1844
1845 if (argv == NULL)
1846 nomem(0);
1847
1848 make_cleanup_freeargv (argv);
1849
1850 filename = tilde_expand (argv[0]);
1851 make_cleanup (xfree, filename);
1852
1853 if (argv[1] != NULL)
1854 {
1855 char *endptr;
1856
1857 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1858
1859 /* If the last word was not a valid number then
1860 treat it as a file name with spaces in. */
1861 if (argv[1] == endptr)
1862 error (_("Invalid download offset:%s."), argv[1]);
1863
1864 if (argv[2] != NULL)
1865 error (_("Too many parameters."));
1866 }
1867
1868 /* Open the file for loading. */
1869 loadfile_bfd = bfd_openr (filename, gnutarget);
1870 if (loadfile_bfd == NULL)
1871 {
1872 perror_with_name (filename);
1873 return;
1874 }
1875
1876 /* FIXME: should be checking for errors from bfd_close (for one thing,
1877 on error it does not free all the storage associated with the
1878 bfd). */
1879 make_cleanup_bfd_close (loadfile_bfd);
1880
1881 if (!bfd_check_format (loadfile_bfd, bfd_object))
1882 {
1883 error (_("\"%s\" is not an object file: %s"), filename,
1884 bfd_errmsg (bfd_get_error ()));
1885 }
1886
1887 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1888 (void *) &total_progress.total_size);
1889
1890 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1891
1892 gettimeofday (&start_time, NULL);
1893
1894 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1895 load_progress) != 0)
1896 error (_("Load failed"));
1897
1898 gettimeofday (&end_time, NULL);
1899
1900 entry = bfd_get_start_address (loadfile_bfd);
1901 ui_out_text (uiout, "Start address ");
1902 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1903 ui_out_text (uiout, ", load size ");
1904 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
1905 ui_out_text (uiout, "\n");
1906 /* We were doing this in remote-mips.c, I suspect it is right
1907 for other targets too. */
1908 write_pc (entry);
1909
1910 /* FIXME: are we supposed to call symbol_file_add or not? According
1911 to a comment from remote-mips.c (where a call to symbol_file_add
1912 was commented out), making the call confuses GDB if more than one
1913 file is loaded in. Some targets do (e.g., remote-vx.c) but
1914 others don't (or didn't - perhaps they have all been deleted). */
1915
1916 print_transfer_performance (gdb_stdout, total_progress.data_count,
1917 total_progress.write_count,
1918 &start_time, &end_time);
1919
1920 do_cleanups (old_cleanups);
1921 }
1922
1923 /* Report how fast the transfer went. */
1924
1925 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1926 replaced by print_transfer_performance (with a very different
1927 function signature). */
1928
1929 void
1930 report_transfer_performance (unsigned long data_count, time_t start_time,
1931 time_t end_time)
1932 {
1933 struct timeval start, end;
1934
1935 start.tv_sec = start_time;
1936 start.tv_usec = 0;
1937 end.tv_sec = end_time;
1938 end.tv_usec = 0;
1939
1940 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
1941 }
1942
1943 void
1944 print_transfer_performance (struct ui_file *stream,
1945 unsigned long data_count,
1946 unsigned long write_count,
1947 const struct timeval *start_time,
1948 const struct timeval *end_time)
1949 {
1950 ULONGEST time_count;
1951
1952 /* Compute the elapsed time in milliseconds, as a tradeoff between
1953 accuracy and overflow. */
1954 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
1955 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
1956
1957 ui_out_text (uiout, "Transfer rate: ");
1958 if (time_count > 0)
1959 {
1960 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
1961
1962 if (ui_out_is_mi_like_p (uiout))
1963 {
1964 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
1965 ui_out_text (uiout, " bits/sec");
1966 }
1967 else if (rate < 1024)
1968 {
1969 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
1970 ui_out_text (uiout, " bytes/sec");
1971 }
1972 else
1973 {
1974 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
1975 ui_out_text (uiout, " KB/sec");
1976 }
1977 }
1978 else
1979 {
1980 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1981 ui_out_text (uiout, " bits in <1 sec");
1982 }
1983 if (write_count > 0)
1984 {
1985 ui_out_text (uiout, ", ");
1986 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1987 ui_out_text (uiout, " bytes/write");
1988 }
1989 ui_out_text (uiout, ".\n");
1990 }
1991
1992 /* This function allows the addition of incrementally linked object files.
1993 It does not modify any state in the target, only in the debugger. */
1994 /* Note: ezannoni 2000-04-13 This function/command used to have a
1995 special case syntax for the rombug target (Rombug is the boot
1996 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1997 rombug case, the user doesn't need to supply a text address,
1998 instead a call to target_link() (in target.c) would supply the
1999 value to use. We are now discontinuing this type of ad hoc syntax. */
2000
2001 static void
2002 add_symbol_file_command (char *args, int from_tty)
2003 {
2004 char *filename = NULL;
2005 int flags = OBJF_USERLOADED;
2006 char *arg;
2007 int expecting_option = 0;
2008 int section_index = 0;
2009 int argcnt = 0;
2010 int sec_num = 0;
2011 int i;
2012 int expecting_sec_name = 0;
2013 int expecting_sec_addr = 0;
2014 char **argv;
2015
2016 struct sect_opt
2017 {
2018 char *name;
2019 char *value;
2020 };
2021
2022 struct section_addr_info *section_addrs;
2023 struct sect_opt *sect_opts = NULL;
2024 size_t num_sect_opts = 0;
2025 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2026
2027 num_sect_opts = 16;
2028 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2029 * sizeof (struct sect_opt));
2030
2031 dont_repeat ();
2032
2033 if (args == NULL)
2034 error (_("add-symbol-file takes a file name and an address"));
2035
2036 argv = buildargv (args);
2037 make_cleanup_freeargv (argv);
2038
2039 if (argv == NULL)
2040 nomem (0);
2041
2042 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2043 {
2044 /* Process the argument. */
2045 if (argcnt == 0)
2046 {
2047 /* The first argument is the file name. */
2048 filename = tilde_expand (arg);
2049 make_cleanup (xfree, filename);
2050 }
2051 else
2052 if (argcnt == 1)
2053 {
2054 /* The second argument is always the text address at which
2055 to load the program. */
2056 sect_opts[section_index].name = ".text";
2057 sect_opts[section_index].value = arg;
2058 if (++section_index >= num_sect_opts)
2059 {
2060 num_sect_opts *= 2;
2061 sect_opts = ((struct sect_opt *)
2062 xrealloc (sect_opts,
2063 num_sect_opts
2064 * sizeof (struct sect_opt)));
2065 }
2066 }
2067 else
2068 {
2069 /* It's an option (starting with '-') or it's an argument
2070 to an option */
2071
2072 if (*arg == '-')
2073 {
2074 if (strcmp (arg, "-readnow") == 0)
2075 flags |= OBJF_READNOW;
2076 else if (strcmp (arg, "-s") == 0)
2077 {
2078 expecting_sec_name = 1;
2079 expecting_sec_addr = 1;
2080 }
2081 }
2082 else
2083 {
2084 if (expecting_sec_name)
2085 {
2086 sect_opts[section_index].name = arg;
2087 expecting_sec_name = 0;
2088 }
2089 else
2090 if (expecting_sec_addr)
2091 {
2092 sect_opts[section_index].value = arg;
2093 expecting_sec_addr = 0;
2094 if (++section_index >= num_sect_opts)
2095 {
2096 num_sect_opts *= 2;
2097 sect_opts = ((struct sect_opt *)
2098 xrealloc (sect_opts,
2099 num_sect_opts
2100 * sizeof (struct sect_opt)));
2101 }
2102 }
2103 else
2104 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2105 }
2106 }
2107 }
2108
2109 /* This command takes at least two arguments. The first one is a
2110 filename, and the second is the address where this file has been
2111 loaded. Abort now if this address hasn't been provided by the
2112 user. */
2113 if (section_index < 1)
2114 error (_("The address where %s has been loaded is missing"), filename);
2115
2116 /* Print the prompt for the query below. And save the arguments into
2117 a sect_addr_info structure to be passed around to other
2118 functions. We have to split this up into separate print
2119 statements because hex_string returns a local static
2120 string. */
2121
2122 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2123 section_addrs = alloc_section_addr_info (section_index);
2124 make_cleanup (xfree, section_addrs);
2125 for (i = 0; i < section_index; i++)
2126 {
2127 CORE_ADDR addr;
2128 char *val = sect_opts[i].value;
2129 char *sec = sect_opts[i].name;
2130
2131 addr = parse_and_eval_address (val);
2132
2133 /* Here we store the section offsets in the order they were
2134 entered on the command line. */
2135 section_addrs->other[sec_num].name = sec;
2136 section_addrs->other[sec_num].addr = addr;
2137 printf_unfiltered ("\t%s_addr = %s\n",
2138 sec, hex_string ((unsigned long)addr));
2139 sec_num++;
2140
2141 /* The object's sections are initialized when a
2142 call is made to build_objfile_section_table (objfile).
2143 This happens in reread_symbols.
2144 At this point, we don't know what file type this is,
2145 so we can't determine what section names are valid. */
2146 }
2147
2148 if (from_tty && (!query ("%s", "")))
2149 error (_("Not confirmed."));
2150
2151 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
2152
2153 /* Getting new symbols may change our opinion about what is
2154 frameless. */
2155 reinit_frame_cache ();
2156 do_cleanups (my_cleanups);
2157 }
2158 \f
2159 static void
2160 add_shared_symbol_files_command (char *args, int from_tty)
2161 {
2162 #ifdef ADD_SHARED_SYMBOL_FILES
2163 ADD_SHARED_SYMBOL_FILES (args, from_tty);
2164 #else
2165 error (_("This command is not available in this configuration of GDB."));
2166 #endif
2167 }
2168 \f
2169 /* Re-read symbols if a symbol-file has changed. */
2170 void
2171 reread_symbols (void)
2172 {
2173 struct objfile *objfile;
2174 long new_modtime;
2175 int reread_one = 0;
2176 struct stat new_statbuf;
2177 int res;
2178
2179 /* With the addition of shared libraries, this should be modified,
2180 the load time should be saved in the partial symbol tables, since
2181 different tables may come from different source files. FIXME.
2182 This routine should then walk down each partial symbol table
2183 and see if the symbol table that it originates from has been changed */
2184
2185 for (objfile = object_files; objfile; objfile = objfile->next)
2186 {
2187 if (objfile->obfd)
2188 {
2189 #ifdef DEPRECATED_IBM6000_TARGET
2190 /* If this object is from a shared library, then you should
2191 stat on the library name, not member name. */
2192
2193 if (objfile->obfd->my_archive)
2194 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2195 else
2196 #endif
2197 res = stat (objfile->name, &new_statbuf);
2198 if (res != 0)
2199 {
2200 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2201 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2202 objfile->name);
2203 continue;
2204 }
2205 new_modtime = new_statbuf.st_mtime;
2206 if (new_modtime != objfile->mtime)
2207 {
2208 struct cleanup *old_cleanups;
2209 struct section_offsets *offsets;
2210 int num_offsets;
2211 char *obfd_filename;
2212
2213 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2214 objfile->name);
2215
2216 /* There are various functions like symbol_file_add,
2217 symfile_bfd_open, syms_from_objfile, etc., which might
2218 appear to do what we want. But they have various other
2219 effects which we *don't* want. So we just do stuff
2220 ourselves. We don't worry about mapped files (for one thing,
2221 any mapped file will be out of date). */
2222
2223 /* If we get an error, blow away this objfile (not sure if
2224 that is the correct response for things like shared
2225 libraries). */
2226 old_cleanups = make_cleanup_free_objfile (objfile);
2227 /* We need to do this whenever any symbols go away. */
2228 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2229
2230 /* Clean up any state BFD has sitting around. We don't need
2231 to close the descriptor but BFD lacks a way of closing the
2232 BFD without closing the descriptor. */
2233 obfd_filename = bfd_get_filename (objfile->obfd);
2234 if (!bfd_close (objfile->obfd))
2235 error (_("Can't close BFD for %s: %s"), objfile->name,
2236 bfd_errmsg (bfd_get_error ()));
2237 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2238 if (objfile->obfd == NULL)
2239 error (_("Can't open %s to read symbols."), objfile->name);
2240 /* bfd_openr sets cacheable to true, which is what we want. */
2241 if (!bfd_check_format (objfile->obfd, bfd_object))
2242 error (_("Can't read symbols from %s: %s."), objfile->name,
2243 bfd_errmsg (bfd_get_error ()));
2244
2245 /* Save the offsets, we will nuke them with the rest of the
2246 objfile_obstack. */
2247 num_offsets = objfile->num_sections;
2248 offsets = ((struct section_offsets *)
2249 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2250 memcpy (offsets, objfile->section_offsets,
2251 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2252
2253 /* Remove any references to this objfile in the global
2254 value lists. */
2255 preserve_values (objfile);
2256
2257 /* Nuke all the state that we will re-read. Much of the following
2258 code which sets things to NULL really is necessary to tell
2259 other parts of GDB that there is nothing currently there. */
2260
2261 /* FIXME: Do we have to free a whole linked list, or is this
2262 enough? */
2263 if (objfile->global_psymbols.list)
2264 xfree (objfile->global_psymbols.list);
2265 memset (&objfile->global_psymbols, 0,
2266 sizeof (objfile->global_psymbols));
2267 if (objfile->static_psymbols.list)
2268 xfree (objfile->static_psymbols.list);
2269 memset (&objfile->static_psymbols, 0,
2270 sizeof (objfile->static_psymbols));
2271
2272 /* Free the obstacks for non-reusable objfiles */
2273 bcache_xfree (objfile->psymbol_cache);
2274 objfile->psymbol_cache = bcache_xmalloc ();
2275 bcache_xfree (objfile->macro_cache);
2276 objfile->macro_cache = bcache_xmalloc ();
2277 if (objfile->demangled_names_hash != NULL)
2278 {
2279 htab_delete (objfile->demangled_names_hash);
2280 objfile->demangled_names_hash = NULL;
2281 }
2282 obstack_free (&objfile->objfile_obstack, 0);
2283 objfile->sections = NULL;
2284 objfile->symtabs = NULL;
2285 objfile->psymtabs = NULL;
2286 objfile->free_psymtabs = NULL;
2287 objfile->cp_namespace_symtab = NULL;
2288 objfile->msymbols = NULL;
2289 objfile->deprecated_sym_private = NULL;
2290 objfile->minimal_symbol_count = 0;
2291 memset (&objfile->msymbol_hash, 0,
2292 sizeof (objfile->msymbol_hash));
2293 memset (&objfile->msymbol_demangled_hash, 0,
2294 sizeof (objfile->msymbol_demangled_hash));
2295 objfile->fundamental_types = NULL;
2296 clear_objfile_data (objfile);
2297 if (objfile->sf != NULL)
2298 {
2299 (*objfile->sf->sym_finish) (objfile);
2300 }
2301
2302 /* We never make this a mapped file. */
2303 objfile->md = NULL;
2304 objfile->psymbol_cache = bcache_xmalloc ();
2305 objfile->macro_cache = bcache_xmalloc ();
2306 /* obstack_init also initializes the obstack so it is
2307 empty. We could use obstack_specify_allocation but
2308 gdb_obstack.h specifies the alloc/dealloc
2309 functions. */
2310 obstack_init (&objfile->objfile_obstack);
2311 if (build_objfile_section_table (objfile))
2312 {
2313 error (_("Can't find the file sections in `%s': %s"),
2314 objfile->name, bfd_errmsg (bfd_get_error ()));
2315 }
2316 terminate_minimal_symbol_table (objfile);
2317
2318 /* We use the same section offsets as from last time. I'm not
2319 sure whether that is always correct for shared libraries. */
2320 objfile->section_offsets = (struct section_offsets *)
2321 obstack_alloc (&objfile->objfile_obstack,
2322 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2323 memcpy (objfile->section_offsets, offsets,
2324 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2325 objfile->num_sections = num_offsets;
2326
2327 /* What the hell is sym_new_init for, anyway? The concept of
2328 distinguishing between the main file and additional files
2329 in this way seems rather dubious. */
2330 if (objfile == symfile_objfile)
2331 {
2332 (*objfile->sf->sym_new_init) (objfile);
2333 }
2334
2335 (*objfile->sf->sym_init) (objfile);
2336 clear_complaints (&symfile_complaints, 1, 1);
2337 /* The "mainline" parameter is a hideous hack; I think leaving it
2338 zero is OK since dbxread.c also does what it needs to do if
2339 objfile->global_psymbols.size is 0. */
2340 (*objfile->sf->sym_read) (objfile, 0);
2341 if (!have_partial_symbols () && !have_full_symbols ())
2342 {
2343 wrap_here ("");
2344 printf_unfiltered (_("(no debugging symbols found)\n"));
2345 wrap_here ("");
2346 }
2347 objfile->flags |= OBJF_SYMS;
2348
2349 /* We're done reading the symbol file; finish off complaints. */
2350 clear_complaints (&symfile_complaints, 0, 1);
2351
2352 /* Getting new symbols may change our opinion about what is
2353 frameless. */
2354
2355 reinit_frame_cache ();
2356
2357 /* Discard cleanups as symbol reading was successful. */
2358 discard_cleanups (old_cleanups);
2359
2360 /* If the mtime has changed between the time we set new_modtime
2361 and now, we *want* this to be out of date, so don't call stat
2362 again now. */
2363 objfile->mtime = new_modtime;
2364 reread_one = 1;
2365 reread_separate_symbols (objfile);
2366 }
2367 }
2368 }
2369
2370 if (reread_one)
2371 {
2372 clear_symtab_users ();
2373 /* At least one objfile has changed, so we can consider that
2374 the executable we're debugging has changed too. */
2375 observer_notify_executable_changed (NULL);
2376 }
2377
2378 }
2379
2380
2381 /* Handle separate debug info for OBJFILE, which has just been
2382 re-read:
2383 - If we had separate debug info before, but now we don't, get rid
2384 of the separated objfile.
2385 - If we didn't have separated debug info before, but now we do,
2386 read in the new separated debug info file.
2387 - If the debug link points to a different file, toss the old one
2388 and read the new one.
2389 This function does *not* handle the case where objfile is still
2390 using the same separate debug info file, but that file's timestamp
2391 has changed. That case should be handled by the loop in
2392 reread_symbols already. */
2393 static void
2394 reread_separate_symbols (struct objfile *objfile)
2395 {
2396 char *debug_file;
2397 unsigned long crc32;
2398
2399 /* Does the updated objfile's debug info live in a
2400 separate file? */
2401 debug_file = find_separate_debug_file (objfile);
2402
2403 if (objfile->separate_debug_objfile)
2404 {
2405 /* There are two cases where we need to get rid of
2406 the old separated debug info objfile:
2407 - if the new primary objfile doesn't have
2408 separated debug info, or
2409 - if the new primary objfile has separate debug
2410 info, but it's under a different filename.
2411
2412 If the old and new objfiles both have separate
2413 debug info, under the same filename, then we're
2414 okay --- if the separated file's contents have
2415 changed, we will have caught that when we
2416 visited it in this function's outermost
2417 loop. */
2418 if (! debug_file
2419 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2420 free_objfile (objfile->separate_debug_objfile);
2421 }
2422
2423 /* If the new objfile has separate debug info, and we
2424 haven't loaded it already, do so now. */
2425 if (debug_file
2426 && ! objfile->separate_debug_objfile)
2427 {
2428 /* Use the same section offset table as objfile itself.
2429 Preserve the flags from objfile that make sense. */
2430 objfile->separate_debug_objfile
2431 = (symbol_file_add_with_addrs_or_offsets
2432 (symfile_bfd_open (debug_file),
2433 info_verbose, /* from_tty: Don't override the default. */
2434 0, /* No addr table. */
2435 objfile->section_offsets, objfile->num_sections,
2436 0, /* Not mainline. See comments about this above. */
2437 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2438 | OBJF_USERLOADED)));
2439 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2440 = objfile;
2441 }
2442 if (debug_file)
2443 xfree (debug_file);
2444 }
2445
2446
2447 \f
2448
2449
2450 typedef struct
2451 {
2452 char *ext;
2453 enum language lang;
2454 }
2455 filename_language;
2456
2457 static filename_language *filename_language_table;
2458 static int fl_table_size, fl_table_next;
2459
2460 static void
2461 add_filename_language (char *ext, enum language lang)
2462 {
2463 if (fl_table_next >= fl_table_size)
2464 {
2465 fl_table_size += 10;
2466 filename_language_table =
2467 xrealloc (filename_language_table,
2468 fl_table_size * sizeof (*filename_language_table));
2469 }
2470
2471 filename_language_table[fl_table_next].ext = xstrdup (ext);
2472 filename_language_table[fl_table_next].lang = lang;
2473 fl_table_next++;
2474 }
2475
2476 static char *ext_args;
2477 static void
2478 show_ext_args (struct ui_file *file, int from_tty,
2479 struct cmd_list_element *c, const char *value)
2480 {
2481 fprintf_filtered (file, _("\
2482 Mapping between filename extension and source language is \"%s\".\n"),
2483 value);
2484 }
2485
2486 static void
2487 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2488 {
2489 int i;
2490 char *cp = ext_args;
2491 enum language lang;
2492
2493 /* First arg is filename extension, starting with '.' */
2494 if (*cp != '.')
2495 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2496
2497 /* Find end of first arg. */
2498 while (*cp && !isspace (*cp))
2499 cp++;
2500
2501 if (*cp == '\0')
2502 error (_("'%s': two arguments required -- filename extension and language"),
2503 ext_args);
2504
2505 /* Null-terminate first arg */
2506 *cp++ = '\0';
2507
2508 /* Find beginning of second arg, which should be a source language. */
2509 while (*cp && isspace (*cp))
2510 cp++;
2511
2512 if (*cp == '\0')
2513 error (_("'%s': two arguments required -- filename extension and language"),
2514 ext_args);
2515
2516 /* Lookup the language from among those we know. */
2517 lang = language_enum (cp);
2518
2519 /* Now lookup the filename extension: do we already know it? */
2520 for (i = 0; i < fl_table_next; i++)
2521 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2522 break;
2523
2524 if (i >= fl_table_next)
2525 {
2526 /* new file extension */
2527 add_filename_language (ext_args, lang);
2528 }
2529 else
2530 {
2531 /* redefining a previously known filename extension */
2532
2533 /* if (from_tty) */
2534 /* query ("Really make files of type %s '%s'?", */
2535 /* ext_args, language_str (lang)); */
2536
2537 xfree (filename_language_table[i].ext);
2538 filename_language_table[i].ext = xstrdup (ext_args);
2539 filename_language_table[i].lang = lang;
2540 }
2541 }
2542
2543 static void
2544 info_ext_lang_command (char *args, int from_tty)
2545 {
2546 int i;
2547
2548 printf_filtered (_("Filename extensions and the languages they represent:"));
2549 printf_filtered ("\n\n");
2550 for (i = 0; i < fl_table_next; i++)
2551 printf_filtered ("\t%s\t- %s\n",
2552 filename_language_table[i].ext,
2553 language_str (filename_language_table[i].lang));
2554 }
2555
2556 static void
2557 init_filename_language_table (void)
2558 {
2559 if (fl_table_size == 0) /* protect against repetition */
2560 {
2561 fl_table_size = 20;
2562 fl_table_next = 0;
2563 filename_language_table =
2564 xmalloc (fl_table_size * sizeof (*filename_language_table));
2565 add_filename_language (".c", language_c);
2566 add_filename_language (".C", language_cplus);
2567 add_filename_language (".cc", language_cplus);
2568 add_filename_language (".cp", language_cplus);
2569 add_filename_language (".cpp", language_cplus);
2570 add_filename_language (".cxx", language_cplus);
2571 add_filename_language (".c++", language_cplus);
2572 add_filename_language (".java", language_java);
2573 add_filename_language (".class", language_java);
2574 add_filename_language (".m", language_objc);
2575 add_filename_language (".f", language_fortran);
2576 add_filename_language (".F", language_fortran);
2577 add_filename_language (".s", language_asm);
2578 add_filename_language (".S", language_asm);
2579 add_filename_language (".pas", language_pascal);
2580 add_filename_language (".p", language_pascal);
2581 add_filename_language (".pp", language_pascal);
2582 add_filename_language (".adb", language_ada);
2583 add_filename_language (".ads", language_ada);
2584 add_filename_language (".a", language_ada);
2585 add_filename_language (".ada", language_ada);
2586 }
2587 }
2588
2589 enum language
2590 deduce_language_from_filename (char *filename)
2591 {
2592 int i;
2593 char *cp;
2594
2595 if (filename != NULL)
2596 if ((cp = strrchr (filename, '.')) != NULL)
2597 for (i = 0; i < fl_table_next; i++)
2598 if (strcmp (cp, filename_language_table[i].ext) == 0)
2599 return filename_language_table[i].lang;
2600
2601 return language_unknown;
2602 }
2603 \f
2604 /* allocate_symtab:
2605
2606 Allocate and partly initialize a new symbol table. Return a pointer
2607 to it. error() if no space.
2608
2609 Caller must set these fields:
2610 LINETABLE(symtab)
2611 symtab->blockvector
2612 symtab->dirname
2613 symtab->free_code
2614 symtab->free_ptr
2615 possibly free_named_symtabs (symtab->filename);
2616 */
2617
2618 struct symtab *
2619 allocate_symtab (char *filename, struct objfile *objfile)
2620 {
2621 struct symtab *symtab;
2622
2623 symtab = (struct symtab *)
2624 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2625 memset (symtab, 0, sizeof (*symtab));
2626 symtab->filename = obsavestring (filename, strlen (filename),
2627 &objfile->objfile_obstack);
2628 symtab->fullname = NULL;
2629 symtab->language = deduce_language_from_filename (filename);
2630 symtab->debugformat = obsavestring ("unknown", 7,
2631 &objfile->objfile_obstack);
2632
2633 /* Hook it to the objfile it comes from */
2634
2635 symtab->objfile = objfile;
2636 symtab->next = objfile->symtabs;
2637 objfile->symtabs = symtab;
2638
2639 return (symtab);
2640 }
2641
2642 struct partial_symtab *
2643 allocate_psymtab (char *filename, struct objfile *objfile)
2644 {
2645 struct partial_symtab *psymtab;
2646
2647 if (objfile->free_psymtabs)
2648 {
2649 psymtab = objfile->free_psymtabs;
2650 objfile->free_psymtabs = psymtab->next;
2651 }
2652 else
2653 psymtab = (struct partial_symtab *)
2654 obstack_alloc (&objfile->objfile_obstack,
2655 sizeof (struct partial_symtab));
2656
2657 memset (psymtab, 0, sizeof (struct partial_symtab));
2658 psymtab->filename = obsavestring (filename, strlen (filename),
2659 &objfile->objfile_obstack);
2660 psymtab->symtab = NULL;
2661
2662 /* Prepend it to the psymtab list for the objfile it belongs to.
2663 Psymtabs are searched in most recent inserted -> least recent
2664 inserted order. */
2665
2666 psymtab->objfile = objfile;
2667 psymtab->next = objfile->psymtabs;
2668 objfile->psymtabs = psymtab;
2669 #if 0
2670 {
2671 struct partial_symtab **prev_pst;
2672 psymtab->objfile = objfile;
2673 psymtab->next = NULL;
2674 prev_pst = &(objfile->psymtabs);
2675 while ((*prev_pst) != NULL)
2676 prev_pst = &((*prev_pst)->next);
2677 (*prev_pst) = psymtab;
2678 }
2679 #endif
2680
2681 return (psymtab);
2682 }
2683
2684 void
2685 discard_psymtab (struct partial_symtab *pst)
2686 {
2687 struct partial_symtab **prev_pst;
2688
2689 /* From dbxread.c:
2690 Empty psymtabs happen as a result of header files which don't
2691 have any symbols in them. There can be a lot of them. But this
2692 check is wrong, in that a psymtab with N_SLINE entries but
2693 nothing else is not empty, but we don't realize that. Fixing
2694 that without slowing things down might be tricky. */
2695
2696 /* First, snip it out of the psymtab chain */
2697
2698 prev_pst = &(pst->objfile->psymtabs);
2699 while ((*prev_pst) != pst)
2700 prev_pst = &((*prev_pst)->next);
2701 (*prev_pst) = pst->next;
2702
2703 /* Next, put it on a free list for recycling */
2704
2705 pst->next = pst->objfile->free_psymtabs;
2706 pst->objfile->free_psymtabs = pst;
2707 }
2708 \f
2709
2710 /* Reset all data structures in gdb which may contain references to symbol
2711 table data. */
2712
2713 void
2714 clear_symtab_users (void)
2715 {
2716 /* Someday, we should do better than this, by only blowing away
2717 the things that really need to be blown. */
2718
2719 /* Clear the "current" symtab first, because it is no longer valid.
2720 breakpoint_re_set may try to access the current symtab. */
2721 clear_current_source_symtab_and_line ();
2722
2723 clear_displays ();
2724 breakpoint_re_set ();
2725 set_default_breakpoint (0, 0, 0, 0);
2726 clear_pc_function_cache ();
2727 observer_notify_new_objfile (NULL);
2728
2729 /* Clear globals which might have pointed into a removed objfile.
2730 FIXME: It's not clear which of these are supposed to persist
2731 between expressions and which ought to be reset each time. */
2732 expression_context_block = NULL;
2733 innermost_block = NULL;
2734
2735 /* Varobj may refer to old symbols, perform a cleanup. */
2736 varobj_invalidate ();
2737
2738 }
2739
2740 static void
2741 clear_symtab_users_cleanup (void *ignore)
2742 {
2743 clear_symtab_users ();
2744 }
2745
2746 /* clear_symtab_users_once:
2747
2748 This function is run after symbol reading, or from a cleanup.
2749 If an old symbol table was obsoleted, the old symbol table
2750 has been blown away, but the other GDB data structures that may
2751 reference it have not yet been cleared or re-directed. (The old
2752 symtab was zapped, and the cleanup queued, in free_named_symtab()
2753 below.)
2754
2755 This function can be queued N times as a cleanup, or called
2756 directly; it will do all the work the first time, and then will be a
2757 no-op until the next time it is queued. This works by bumping a
2758 counter at queueing time. Much later when the cleanup is run, or at
2759 the end of symbol processing (in case the cleanup is discarded), if
2760 the queued count is greater than the "done-count", we do the work
2761 and set the done-count to the queued count. If the queued count is
2762 less than or equal to the done-count, we just ignore the call. This
2763 is needed because reading a single .o file will often replace many
2764 symtabs (one per .h file, for example), and we don't want to reset
2765 the breakpoints N times in the user's face.
2766
2767 The reason we both queue a cleanup, and call it directly after symbol
2768 reading, is because the cleanup protects us in case of errors, but is
2769 discarded if symbol reading is successful. */
2770
2771 #if 0
2772 /* FIXME: As free_named_symtabs is currently a big noop this function
2773 is no longer needed. */
2774 static void clear_symtab_users_once (void);
2775
2776 static int clear_symtab_users_queued;
2777 static int clear_symtab_users_done;
2778
2779 static void
2780 clear_symtab_users_once (void)
2781 {
2782 /* Enforce once-per-`do_cleanups'-semantics */
2783 if (clear_symtab_users_queued <= clear_symtab_users_done)
2784 return;
2785 clear_symtab_users_done = clear_symtab_users_queued;
2786
2787 clear_symtab_users ();
2788 }
2789 #endif
2790
2791 /* Delete the specified psymtab, and any others that reference it. */
2792
2793 static void
2794 cashier_psymtab (struct partial_symtab *pst)
2795 {
2796 struct partial_symtab *ps, *pprev = NULL;
2797 int i;
2798
2799 /* Find its previous psymtab in the chain */
2800 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2801 {
2802 if (ps == pst)
2803 break;
2804 pprev = ps;
2805 }
2806
2807 if (ps)
2808 {
2809 /* Unhook it from the chain. */
2810 if (ps == pst->objfile->psymtabs)
2811 pst->objfile->psymtabs = ps->next;
2812 else
2813 pprev->next = ps->next;
2814
2815 /* FIXME, we can't conveniently deallocate the entries in the
2816 partial_symbol lists (global_psymbols/static_psymbols) that
2817 this psymtab points to. These just take up space until all
2818 the psymtabs are reclaimed. Ditto the dependencies list and
2819 filename, which are all in the objfile_obstack. */
2820
2821 /* We need to cashier any psymtab that has this one as a dependency... */
2822 again:
2823 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2824 {
2825 for (i = 0; i < ps->number_of_dependencies; i++)
2826 {
2827 if (ps->dependencies[i] == pst)
2828 {
2829 cashier_psymtab (ps);
2830 goto again; /* Must restart, chain has been munged. */
2831 }
2832 }
2833 }
2834 }
2835 }
2836
2837 /* If a symtab or psymtab for filename NAME is found, free it along
2838 with any dependent breakpoints, displays, etc.
2839 Used when loading new versions of object modules with the "add-file"
2840 command. This is only called on the top-level symtab or psymtab's name;
2841 it is not called for subsidiary files such as .h files.
2842
2843 Return value is 1 if we blew away the environment, 0 if not.
2844 FIXME. The return value appears to never be used.
2845
2846 FIXME. I think this is not the best way to do this. We should
2847 work on being gentler to the environment while still cleaning up
2848 all stray pointers into the freed symtab. */
2849
2850 int
2851 free_named_symtabs (char *name)
2852 {
2853 #if 0
2854 /* FIXME: With the new method of each objfile having it's own
2855 psymtab list, this function needs serious rethinking. In particular,
2856 why was it ever necessary to toss psymtabs with specific compilation
2857 unit filenames, as opposed to all psymtabs from a particular symbol
2858 file? -- fnf
2859 Well, the answer is that some systems permit reloading of particular
2860 compilation units. We want to blow away any old info about these
2861 compilation units, regardless of which objfiles they arrived in. --gnu. */
2862
2863 struct symtab *s;
2864 struct symtab *prev;
2865 struct partial_symtab *ps;
2866 struct blockvector *bv;
2867 int blewit = 0;
2868
2869 /* We only wack things if the symbol-reload switch is set. */
2870 if (!symbol_reloading)
2871 return 0;
2872
2873 /* Some symbol formats have trouble providing file names... */
2874 if (name == 0 || *name == '\0')
2875 return 0;
2876
2877 /* Look for a psymtab with the specified name. */
2878
2879 again2:
2880 for (ps = partial_symtab_list; ps; ps = ps->next)
2881 {
2882 if (strcmp (name, ps->filename) == 0)
2883 {
2884 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2885 goto again2; /* Must restart, chain has been munged */
2886 }
2887 }
2888
2889 /* Look for a symtab with the specified name. */
2890
2891 for (s = symtab_list; s; s = s->next)
2892 {
2893 if (strcmp (name, s->filename) == 0)
2894 break;
2895 prev = s;
2896 }
2897
2898 if (s)
2899 {
2900 if (s == symtab_list)
2901 symtab_list = s->next;
2902 else
2903 prev->next = s->next;
2904
2905 /* For now, queue a delete for all breakpoints, displays, etc., whether
2906 or not they depend on the symtab being freed. This should be
2907 changed so that only those data structures affected are deleted. */
2908
2909 /* But don't delete anything if the symtab is empty.
2910 This test is necessary due to a bug in "dbxread.c" that
2911 causes empty symtabs to be created for N_SO symbols that
2912 contain the pathname of the object file. (This problem
2913 has been fixed in GDB 3.9x). */
2914
2915 bv = BLOCKVECTOR (s);
2916 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2917 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2918 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2919 {
2920 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
2921 name);
2922 clear_symtab_users_queued++;
2923 make_cleanup (clear_symtab_users_once, 0);
2924 blewit = 1;
2925 }
2926 else
2927 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2928 name);
2929
2930 free_symtab (s);
2931 }
2932 else
2933 {
2934 /* It is still possible that some breakpoints will be affected
2935 even though no symtab was found, since the file might have
2936 been compiled without debugging, and hence not be associated
2937 with a symtab. In order to handle this correctly, we would need
2938 to keep a list of text address ranges for undebuggable files.
2939 For now, we do nothing, since this is a fairly obscure case. */
2940 ;
2941 }
2942
2943 /* FIXME, what about the minimal symbol table? */
2944 return blewit;
2945 #else
2946 return (0);
2947 #endif
2948 }
2949 \f
2950 /* Allocate and partially fill a partial symtab. It will be
2951 completely filled at the end of the symbol list.
2952
2953 FILENAME is the name of the symbol-file we are reading from. */
2954
2955 struct partial_symtab *
2956 start_psymtab_common (struct objfile *objfile,
2957 struct section_offsets *section_offsets, char *filename,
2958 CORE_ADDR textlow, struct partial_symbol **global_syms,
2959 struct partial_symbol **static_syms)
2960 {
2961 struct partial_symtab *psymtab;
2962
2963 psymtab = allocate_psymtab (filename, objfile);
2964 psymtab->section_offsets = section_offsets;
2965 psymtab->textlow = textlow;
2966 psymtab->texthigh = psymtab->textlow; /* default */
2967 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2968 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2969 return (psymtab);
2970 }
2971 \f
2972 /* Add a symbol with a long value to a psymtab.
2973 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2974 Return the partial symbol that has been added. */
2975
2976 /* NOTE: carlton/2003-09-11: The reason why we return the partial
2977 symbol is so that callers can get access to the symbol's demangled
2978 name, which they don't have any cheap way to determine otherwise.
2979 (Currenly, dwarf2read.c is the only file who uses that information,
2980 though it's possible that other readers might in the future.)
2981 Elena wasn't thrilled about that, and I don't blame her, but we
2982 couldn't come up with a better way to get that information. If
2983 it's needed in other situations, we could consider breaking up
2984 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2985 cache. */
2986
2987 const struct partial_symbol *
2988 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2989 enum address_class class,
2990 struct psymbol_allocation_list *list, long val, /* Value as a long */
2991 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2992 enum language language, struct objfile *objfile)
2993 {
2994 struct partial_symbol *psym;
2995 char *buf = alloca (namelength + 1);
2996 /* psymbol is static so that there will be no uninitialized gaps in the
2997 structure which might contain random data, causing cache misses in
2998 bcache. */
2999 static struct partial_symbol psymbol;
3000
3001 /* Create local copy of the partial symbol */
3002 memcpy (buf, name, namelength);
3003 buf[namelength] = '\0';
3004 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3005 if (val != 0)
3006 {
3007 SYMBOL_VALUE (&psymbol) = val;
3008 }
3009 else
3010 {
3011 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3012 }
3013 SYMBOL_SECTION (&psymbol) = 0;
3014 SYMBOL_LANGUAGE (&psymbol) = language;
3015 PSYMBOL_DOMAIN (&psymbol) = domain;
3016 PSYMBOL_CLASS (&psymbol) = class;
3017
3018 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3019
3020 /* Stash the partial symbol away in the cache */
3021 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
3022 objfile->psymbol_cache);
3023
3024 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3025 if (list->next >= list->list + list->size)
3026 {
3027 extend_psymbol_list (list, objfile);
3028 }
3029 *list->next++ = psym;
3030 OBJSTAT (objfile, n_psyms++);
3031
3032 return psym;
3033 }
3034
3035 /* Initialize storage for partial symbols. */
3036
3037 void
3038 init_psymbol_list (struct objfile *objfile, int total_symbols)
3039 {
3040 /* Free any previously allocated psymbol lists. */
3041
3042 if (objfile->global_psymbols.list)
3043 {
3044 xfree (objfile->global_psymbols.list);
3045 }
3046 if (objfile->static_psymbols.list)
3047 {
3048 xfree (objfile->static_psymbols.list);
3049 }
3050
3051 /* Current best guess is that approximately a twentieth
3052 of the total symbols (in a debugging file) are global or static
3053 oriented symbols */
3054
3055 objfile->global_psymbols.size = total_symbols / 10;
3056 objfile->static_psymbols.size = total_symbols / 10;
3057
3058 if (objfile->global_psymbols.size > 0)
3059 {
3060 objfile->global_psymbols.next =
3061 objfile->global_psymbols.list = (struct partial_symbol **)
3062 xmalloc ((objfile->global_psymbols.size
3063 * sizeof (struct partial_symbol *)));
3064 }
3065 if (objfile->static_psymbols.size > 0)
3066 {
3067 objfile->static_psymbols.next =
3068 objfile->static_psymbols.list = (struct partial_symbol **)
3069 xmalloc ((objfile->static_psymbols.size
3070 * sizeof (struct partial_symbol *)));
3071 }
3072 }
3073
3074 /* OVERLAYS:
3075 The following code implements an abstraction for debugging overlay sections.
3076
3077 The target model is as follows:
3078 1) The gnu linker will permit multiple sections to be mapped into the
3079 same VMA, each with its own unique LMA (or load address).
3080 2) It is assumed that some runtime mechanism exists for mapping the
3081 sections, one by one, from the load address into the VMA address.
3082 3) This code provides a mechanism for gdb to keep track of which
3083 sections should be considered to be mapped from the VMA to the LMA.
3084 This information is used for symbol lookup, and memory read/write.
3085 For instance, if a section has been mapped then its contents
3086 should be read from the VMA, otherwise from the LMA.
3087
3088 Two levels of debugger support for overlays are available. One is
3089 "manual", in which the debugger relies on the user to tell it which
3090 overlays are currently mapped. This level of support is
3091 implemented entirely in the core debugger, and the information about
3092 whether a section is mapped is kept in the objfile->obj_section table.
3093
3094 The second level of support is "automatic", and is only available if
3095 the target-specific code provides functionality to read the target's
3096 overlay mapping table, and translate its contents for the debugger
3097 (by updating the mapped state information in the obj_section tables).
3098
3099 The interface is as follows:
3100 User commands:
3101 overlay map <name> -- tell gdb to consider this section mapped
3102 overlay unmap <name> -- tell gdb to consider this section unmapped
3103 overlay list -- list the sections that GDB thinks are mapped
3104 overlay read-target -- get the target's state of what's mapped
3105 overlay off/manual/auto -- set overlay debugging state
3106 Functional interface:
3107 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3108 section, return that section.
3109 find_pc_overlay(pc): find any overlay section that contains
3110 the pc, either in its VMA or its LMA
3111 overlay_is_mapped(sect): true if overlay is marked as mapped
3112 section_is_overlay(sect): true if section's VMA != LMA
3113 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3114 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3115 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3116 overlay_mapped_address(...): map an address from section's LMA to VMA
3117 overlay_unmapped_address(...): map an address from section's VMA to LMA
3118 symbol_overlayed_address(...): Return a "current" address for symbol:
3119 either in VMA or LMA depending on whether
3120 the symbol's section is currently mapped
3121 */
3122
3123 /* Overlay debugging state: */
3124
3125 enum overlay_debugging_state overlay_debugging = ovly_off;
3126 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3127
3128 /* Function: section_is_overlay (SECTION)
3129 Returns true if SECTION has VMA not equal to LMA, ie.
3130 SECTION is loaded at an address different from where it will "run". */
3131
3132 int
3133 section_is_overlay (asection *section)
3134 {
3135 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3136
3137 if (overlay_debugging)
3138 if (section && section->lma != 0 &&
3139 section->vma != section->lma)
3140 return 1;
3141
3142 return 0;
3143 }
3144
3145 /* Function: overlay_invalidate_all (void)
3146 Invalidate the mapped state of all overlay sections (mark it as stale). */
3147
3148 static void
3149 overlay_invalidate_all (void)
3150 {
3151 struct objfile *objfile;
3152 struct obj_section *sect;
3153
3154 ALL_OBJSECTIONS (objfile, sect)
3155 if (section_is_overlay (sect->the_bfd_section))
3156 sect->ovly_mapped = -1;
3157 }
3158
3159 /* Function: overlay_is_mapped (SECTION)
3160 Returns true if section is an overlay, and is currently mapped.
3161 Private: public access is thru function section_is_mapped.
3162
3163 Access to the ovly_mapped flag is restricted to this function, so
3164 that we can do automatic update. If the global flag
3165 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3166 overlay_invalidate_all. If the mapped state of the particular
3167 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3168
3169 static int
3170 overlay_is_mapped (struct obj_section *osect)
3171 {
3172 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3173 return 0;
3174
3175 switch (overlay_debugging)
3176 {
3177 default:
3178 case ovly_off:
3179 return 0; /* overlay debugging off */
3180 case ovly_auto: /* overlay debugging automatic */
3181 /* Unles there is a gdbarch_overlay_update function,
3182 there's really nothing useful to do here (can't really go auto) */
3183 if (gdbarch_overlay_update_p (current_gdbarch))
3184 {
3185 if (overlay_cache_invalid)
3186 {
3187 overlay_invalidate_all ();
3188 overlay_cache_invalid = 0;
3189 }
3190 if (osect->ovly_mapped == -1)
3191 gdbarch_overlay_update (current_gdbarch, osect);
3192 }
3193 /* fall thru to manual case */
3194 case ovly_on: /* overlay debugging manual */
3195 return osect->ovly_mapped == 1;
3196 }
3197 }
3198
3199 /* Function: section_is_mapped
3200 Returns true if section is an overlay, and is currently mapped. */
3201
3202 int
3203 section_is_mapped (asection *section)
3204 {
3205 struct objfile *objfile;
3206 struct obj_section *osect;
3207
3208 if (overlay_debugging)
3209 if (section && section_is_overlay (section))
3210 ALL_OBJSECTIONS (objfile, osect)
3211 if (osect->the_bfd_section == section)
3212 return overlay_is_mapped (osect);
3213
3214 return 0;
3215 }
3216
3217 /* Function: pc_in_unmapped_range
3218 If PC falls into the lma range of SECTION, return true, else false. */
3219
3220 CORE_ADDR
3221 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
3222 {
3223 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3224
3225 int size;
3226
3227 if (overlay_debugging)
3228 if (section && section_is_overlay (section))
3229 {
3230 size = bfd_get_section_size (section);
3231 if (section->lma <= pc && pc < section->lma + size)
3232 return 1;
3233 }
3234 return 0;
3235 }
3236
3237 /* Function: pc_in_mapped_range
3238 If PC falls into the vma range of SECTION, return true, else false. */
3239
3240 CORE_ADDR
3241 pc_in_mapped_range (CORE_ADDR pc, asection *section)
3242 {
3243 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3244
3245 int size;
3246
3247 if (overlay_debugging)
3248 if (section && section_is_overlay (section))
3249 {
3250 size = bfd_get_section_size (section);
3251 if (section->vma <= pc && pc < section->vma + size)
3252 return 1;
3253 }
3254 return 0;
3255 }
3256
3257
3258 /* Return true if the mapped ranges of sections A and B overlap, false
3259 otherwise. */
3260 static int
3261 sections_overlap (asection *a, asection *b)
3262 {
3263 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3264
3265 CORE_ADDR a_start = a->vma;
3266 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
3267 CORE_ADDR b_start = b->vma;
3268 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
3269
3270 return (a_start < b_end && b_start < a_end);
3271 }
3272
3273 /* Function: overlay_unmapped_address (PC, SECTION)
3274 Returns the address corresponding to PC in the unmapped (load) range.
3275 May be the same as PC. */
3276
3277 CORE_ADDR
3278 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3279 {
3280 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3281
3282 if (overlay_debugging)
3283 if (section && section_is_overlay (section) &&
3284 pc_in_mapped_range (pc, section))
3285 return pc + section->lma - section->vma;
3286
3287 return pc;
3288 }
3289
3290 /* Function: overlay_mapped_address (PC, SECTION)
3291 Returns the address corresponding to PC in the mapped (runtime) range.
3292 May be the same as PC. */
3293
3294 CORE_ADDR
3295 overlay_mapped_address (CORE_ADDR pc, asection *section)
3296 {
3297 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3298
3299 if (overlay_debugging)
3300 if (section && section_is_overlay (section) &&
3301 pc_in_unmapped_range (pc, section))
3302 return pc + section->vma - section->lma;
3303
3304 return pc;
3305 }
3306
3307
3308 /* Function: symbol_overlayed_address
3309 Return one of two addresses (relative to the VMA or to the LMA),
3310 depending on whether the section is mapped or not. */
3311
3312 CORE_ADDR
3313 symbol_overlayed_address (CORE_ADDR address, asection *section)
3314 {
3315 if (overlay_debugging)
3316 {
3317 /* If the symbol has no section, just return its regular address. */
3318 if (section == 0)
3319 return address;
3320 /* If the symbol's section is not an overlay, just return its address */
3321 if (!section_is_overlay (section))
3322 return address;
3323 /* If the symbol's section is mapped, just return its address */
3324 if (section_is_mapped (section))
3325 return address;
3326 /*
3327 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3328 * then return its LOADED address rather than its vma address!!
3329 */
3330 return overlay_unmapped_address (address, section);
3331 }
3332 return address;
3333 }
3334
3335 /* Function: find_pc_overlay (PC)
3336 Return the best-match overlay section for PC:
3337 If PC matches a mapped overlay section's VMA, return that section.
3338 Else if PC matches an unmapped section's VMA, return that section.
3339 Else if PC matches an unmapped section's LMA, return that section. */
3340
3341 asection *
3342 find_pc_overlay (CORE_ADDR pc)
3343 {
3344 struct objfile *objfile;
3345 struct obj_section *osect, *best_match = NULL;
3346
3347 if (overlay_debugging)
3348 ALL_OBJSECTIONS (objfile, osect)
3349 if (section_is_overlay (osect->the_bfd_section))
3350 {
3351 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3352 {
3353 if (overlay_is_mapped (osect))
3354 return osect->the_bfd_section;
3355 else
3356 best_match = osect;
3357 }
3358 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3359 best_match = osect;
3360 }
3361 return best_match ? best_match->the_bfd_section : NULL;
3362 }
3363
3364 /* Function: find_pc_mapped_section (PC)
3365 If PC falls into the VMA address range of an overlay section that is
3366 currently marked as MAPPED, return that section. Else return NULL. */
3367
3368 asection *
3369 find_pc_mapped_section (CORE_ADDR pc)
3370 {
3371 struct objfile *objfile;
3372 struct obj_section *osect;
3373
3374 if (overlay_debugging)
3375 ALL_OBJSECTIONS (objfile, osect)
3376 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3377 overlay_is_mapped (osect))
3378 return osect->the_bfd_section;
3379
3380 return NULL;
3381 }
3382
3383 /* Function: list_overlays_command
3384 Print a list of mapped sections and their PC ranges */
3385
3386 void
3387 list_overlays_command (char *args, int from_tty)
3388 {
3389 int nmapped = 0;
3390 struct objfile *objfile;
3391 struct obj_section *osect;
3392
3393 if (overlay_debugging)
3394 ALL_OBJSECTIONS (objfile, osect)
3395 if (overlay_is_mapped (osect))
3396 {
3397 const char *name;
3398 bfd_vma lma, vma;
3399 int size;
3400
3401 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3402 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3403 size = bfd_get_section_size (osect->the_bfd_section);
3404 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3405
3406 printf_filtered ("Section %s, loaded at ", name);
3407 deprecated_print_address_numeric (lma, 1, gdb_stdout);
3408 puts_filtered (" - ");
3409 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
3410 printf_filtered (", mapped at ");
3411 deprecated_print_address_numeric (vma, 1, gdb_stdout);
3412 puts_filtered (" - ");
3413 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
3414 puts_filtered ("\n");
3415
3416 nmapped++;
3417 }
3418 if (nmapped == 0)
3419 printf_filtered (_("No sections are mapped.\n"));
3420 }
3421
3422 /* Function: map_overlay_command
3423 Mark the named section as mapped (ie. residing at its VMA address). */
3424
3425 void
3426 map_overlay_command (char *args, int from_tty)
3427 {
3428 struct objfile *objfile, *objfile2;
3429 struct obj_section *sec, *sec2;
3430 asection *bfdsec;
3431
3432 if (!overlay_debugging)
3433 error (_("\
3434 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3435 the 'overlay manual' command."));
3436
3437 if (args == 0 || *args == 0)
3438 error (_("Argument required: name of an overlay section"));
3439
3440 /* First, find a section matching the user supplied argument */
3441 ALL_OBJSECTIONS (objfile, sec)
3442 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3443 {
3444 /* Now, check to see if the section is an overlay. */
3445 bfdsec = sec->the_bfd_section;
3446 if (!section_is_overlay (bfdsec))
3447 continue; /* not an overlay section */
3448
3449 /* Mark the overlay as "mapped" */
3450 sec->ovly_mapped = 1;
3451
3452 /* Next, make a pass and unmap any sections that are
3453 overlapped by this new section: */
3454 ALL_OBJSECTIONS (objfile2, sec2)
3455 if (sec2->ovly_mapped
3456 && sec != sec2
3457 && sec->the_bfd_section != sec2->the_bfd_section
3458 && sections_overlap (sec->the_bfd_section,
3459 sec2->the_bfd_section))
3460 {
3461 if (info_verbose)
3462 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3463 bfd_section_name (objfile->obfd,
3464 sec2->the_bfd_section));
3465 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3466 }
3467 return;
3468 }
3469 error (_("No overlay section called %s"), args);
3470 }
3471
3472 /* Function: unmap_overlay_command
3473 Mark the overlay section as unmapped
3474 (ie. resident in its LMA address range, rather than the VMA range). */
3475
3476 void
3477 unmap_overlay_command (char *args, int from_tty)
3478 {
3479 struct objfile *objfile;
3480 struct obj_section *sec;
3481
3482 if (!overlay_debugging)
3483 error (_("\
3484 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3485 the 'overlay manual' command."));
3486
3487 if (args == 0 || *args == 0)
3488 error (_("Argument required: name of an overlay section"));
3489
3490 /* First, find a section matching the user supplied argument */
3491 ALL_OBJSECTIONS (objfile, sec)
3492 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3493 {
3494 if (!sec->ovly_mapped)
3495 error (_("Section %s is not mapped"), args);
3496 sec->ovly_mapped = 0;
3497 return;
3498 }
3499 error (_("No overlay section called %s"), args);
3500 }
3501
3502 /* Function: overlay_auto_command
3503 A utility command to turn on overlay debugging.
3504 Possibly this should be done via a set/show command. */
3505
3506 static void
3507 overlay_auto_command (char *args, int from_tty)
3508 {
3509 overlay_debugging = ovly_auto;
3510 enable_overlay_breakpoints ();
3511 if (info_verbose)
3512 printf_unfiltered (_("Automatic overlay debugging enabled."));
3513 }
3514
3515 /* Function: overlay_manual_command
3516 A utility command to turn on overlay debugging.
3517 Possibly this should be done via a set/show command. */
3518
3519 static void
3520 overlay_manual_command (char *args, int from_tty)
3521 {
3522 overlay_debugging = ovly_on;
3523 disable_overlay_breakpoints ();
3524 if (info_verbose)
3525 printf_unfiltered (_("Overlay debugging enabled."));
3526 }
3527
3528 /* Function: overlay_off_command
3529 A utility command to turn on overlay debugging.
3530 Possibly this should be done via a set/show command. */
3531
3532 static void
3533 overlay_off_command (char *args, int from_tty)
3534 {
3535 overlay_debugging = ovly_off;
3536 disable_overlay_breakpoints ();
3537 if (info_verbose)
3538 printf_unfiltered (_("Overlay debugging disabled."));
3539 }
3540
3541 static void
3542 overlay_load_command (char *args, int from_tty)
3543 {
3544 if (gdbarch_overlay_update_p (current_gdbarch))
3545 gdbarch_overlay_update (current_gdbarch, NULL);
3546 else
3547 error (_("This target does not know how to read its overlay state."));
3548 }
3549
3550 /* Function: overlay_command
3551 A place-holder for a mis-typed command */
3552
3553 /* Command list chain containing all defined "overlay" subcommands. */
3554 struct cmd_list_element *overlaylist;
3555
3556 static void
3557 overlay_command (char *args, int from_tty)
3558 {
3559 printf_unfiltered
3560 ("\"overlay\" must be followed by the name of an overlay command.\n");
3561 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3562 }
3563
3564
3565 /* Target Overlays for the "Simplest" overlay manager:
3566
3567 This is GDB's default target overlay layer. It works with the
3568 minimal overlay manager supplied as an example by Cygnus. The
3569 entry point is via a function pointer "gdbarch_overlay_update",
3570 so targets that use a different runtime overlay manager can
3571 substitute their own overlay_update function and take over the
3572 function pointer.
3573
3574 The overlay_update function pokes around in the target's data structures
3575 to see what overlays are mapped, and updates GDB's overlay mapping with
3576 this information.
3577
3578 In this simple implementation, the target data structures are as follows:
3579 unsigned _novlys; /# number of overlay sections #/
3580 unsigned _ovly_table[_novlys][4] = {
3581 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3582 {..., ..., ..., ...},
3583 }
3584 unsigned _novly_regions; /# number of overlay regions #/
3585 unsigned _ovly_region_table[_novly_regions][3] = {
3586 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3587 {..., ..., ...},
3588 }
3589 These functions will attempt to update GDB's mappedness state in the
3590 symbol section table, based on the target's mappedness state.
3591
3592 To do this, we keep a cached copy of the target's _ovly_table, and
3593 attempt to detect when the cached copy is invalidated. The main
3594 entry point is "simple_overlay_update(SECT), which looks up SECT in
3595 the cached table and re-reads only the entry for that section from
3596 the target (whenever possible).
3597 */
3598
3599 /* Cached, dynamically allocated copies of the target data structures: */
3600 static unsigned (*cache_ovly_table)[4] = 0;
3601 #if 0
3602 static unsigned (*cache_ovly_region_table)[3] = 0;
3603 #endif
3604 static unsigned cache_novlys = 0;
3605 #if 0
3606 static unsigned cache_novly_regions = 0;
3607 #endif
3608 static CORE_ADDR cache_ovly_table_base = 0;
3609 #if 0
3610 static CORE_ADDR cache_ovly_region_table_base = 0;
3611 #endif
3612 enum ovly_index
3613 {
3614 VMA, SIZE, LMA, MAPPED
3615 };
3616 #define TARGET_LONG_BYTES (gdbarch_long_bit (current_gdbarch) \
3617 / TARGET_CHAR_BIT)
3618
3619 /* Throw away the cached copy of _ovly_table */
3620 static void
3621 simple_free_overlay_table (void)
3622 {
3623 if (cache_ovly_table)
3624 xfree (cache_ovly_table);
3625 cache_novlys = 0;
3626 cache_ovly_table = NULL;
3627 cache_ovly_table_base = 0;
3628 }
3629
3630 #if 0
3631 /* Throw away the cached copy of _ovly_region_table */
3632 static void
3633 simple_free_overlay_region_table (void)
3634 {
3635 if (cache_ovly_region_table)
3636 xfree (cache_ovly_region_table);
3637 cache_novly_regions = 0;
3638 cache_ovly_region_table = NULL;
3639 cache_ovly_region_table_base = 0;
3640 }
3641 #endif
3642
3643 /* Read an array of ints from the target into a local buffer.
3644 Convert to host order. int LEN is number of ints */
3645 static void
3646 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3647 {
3648 /* FIXME (alloca): Not safe if array is very large. */
3649 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3650 int i;
3651
3652 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3653 for (i = 0; i < len; i++)
3654 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3655 TARGET_LONG_BYTES);
3656 }
3657
3658 /* Find and grab a copy of the target _ovly_table
3659 (and _novlys, which is needed for the table's size) */
3660 static int
3661 simple_read_overlay_table (void)
3662 {
3663 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3664
3665 simple_free_overlay_table ();
3666 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3667 if (! novlys_msym)
3668 {
3669 error (_("Error reading inferior's overlay table: "
3670 "couldn't find `_novlys' variable\n"
3671 "in inferior. Use `overlay manual' mode."));
3672 return 0;
3673 }
3674
3675 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3676 if (! ovly_table_msym)
3677 {
3678 error (_("Error reading inferior's overlay table: couldn't find "
3679 "`_ovly_table' array\n"
3680 "in inferior. Use `overlay manual' mode."));
3681 return 0;
3682 }
3683
3684 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3685 cache_ovly_table
3686 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3687 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3688 read_target_long_array (cache_ovly_table_base,
3689 (unsigned int *) cache_ovly_table,
3690 cache_novlys * 4);
3691
3692 return 1; /* SUCCESS */
3693 }
3694
3695 #if 0
3696 /* Find and grab a copy of the target _ovly_region_table
3697 (and _novly_regions, which is needed for the table's size) */
3698 static int
3699 simple_read_overlay_region_table (void)
3700 {
3701 struct minimal_symbol *msym;
3702
3703 simple_free_overlay_region_table ();
3704 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3705 if (msym != NULL)
3706 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3707 else
3708 return 0; /* failure */
3709 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3710 if (cache_ovly_region_table != NULL)
3711 {
3712 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3713 if (msym != NULL)
3714 {
3715 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3716 read_target_long_array (cache_ovly_region_table_base,
3717 (unsigned int *) cache_ovly_region_table,
3718 cache_novly_regions * 3);
3719 }
3720 else
3721 return 0; /* failure */
3722 }
3723 else
3724 return 0; /* failure */
3725 return 1; /* SUCCESS */
3726 }
3727 #endif
3728
3729 /* Function: simple_overlay_update_1
3730 A helper function for simple_overlay_update. Assuming a cached copy
3731 of _ovly_table exists, look through it to find an entry whose vma,
3732 lma and size match those of OSECT. Re-read the entry and make sure
3733 it still matches OSECT (else the table may no longer be valid).
3734 Set OSECT's mapped state to match the entry. Return: 1 for
3735 success, 0 for failure. */
3736
3737 static int
3738 simple_overlay_update_1 (struct obj_section *osect)
3739 {
3740 int i, size;
3741 bfd *obfd = osect->objfile->obfd;
3742 asection *bsect = osect->the_bfd_section;
3743
3744 size = bfd_get_section_size (osect->the_bfd_section);
3745 for (i = 0; i < cache_novlys; i++)
3746 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3747 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3748 /* && cache_ovly_table[i][SIZE] == size */ )
3749 {
3750 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3751 (unsigned int *) cache_ovly_table[i], 4);
3752 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3753 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3754 /* && cache_ovly_table[i][SIZE] == size */ )
3755 {
3756 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3757 return 1;
3758 }
3759 else /* Warning! Warning! Target's ovly table has changed! */
3760 return 0;
3761 }
3762 return 0;
3763 }
3764
3765 /* Function: simple_overlay_update
3766 If OSECT is NULL, then update all sections' mapped state
3767 (after re-reading the entire target _ovly_table).
3768 If OSECT is non-NULL, then try to find a matching entry in the
3769 cached ovly_table and update only OSECT's mapped state.
3770 If a cached entry can't be found or the cache isn't valid, then
3771 re-read the entire cache, and go ahead and update all sections. */
3772
3773 void
3774 simple_overlay_update (struct obj_section *osect)
3775 {
3776 struct objfile *objfile;
3777
3778 /* Were we given an osect to look up? NULL means do all of them. */
3779 if (osect)
3780 /* Have we got a cached copy of the target's overlay table? */
3781 if (cache_ovly_table != NULL)
3782 /* Does its cached location match what's currently in the symtab? */
3783 if (cache_ovly_table_base ==
3784 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3785 /* Then go ahead and try to look up this single section in the cache */
3786 if (simple_overlay_update_1 (osect))
3787 /* Found it! We're done. */
3788 return;
3789
3790 /* Cached table no good: need to read the entire table anew.
3791 Or else we want all the sections, in which case it's actually
3792 more efficient to read the whole table in one block anyway. */
3793
3794 if (! simple_read_overlay_table ())
3795 return;
3796
3797 /* Now may as well update all sections, even if only one was requested. */
3798 ALL_OBJSECTIONS (objfile, osect)
3799 if (section_is_overlay (osect->the_bfd_section))
3800 {
3801 int i, size;
3802 bfd *obfd = osect->objfile->obfd;
3803 asection *bsect = osect->the_bfd_section;
3804
3805 size = bfd_get_section_size (bsect);
3806 for (i = 0; i < cache_novlys; i++)
3807 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3808 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3809 /* && cache_ovly_table[i][SIZE] == size */ )
3810 { /* obj_section matches i'th entry in ovly_table */
3811 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3812 break; /* finished with inner for loop: break out */
3813 }
3814 }
3815 }
3816
3817 /* Set the output sections and output offsets for section SECTP in
3818 ABFD. The relocation code in BFD will read these offsets, so we
3819 need to be sure they're initialized. We map each section to itself,
3820 with no offset; this means that SECTP->vma will be honored. */
3821
3822 static void
3823 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3824 {
3825 sectp->output_section = sectp;
3826 sectp->output_offset = 0;
3827 }
3828
3829 /* Relocate the contents of a debug section SECTP in ABFD. The
3830 contents are stored in BUF if it is non-NULL, or returned in a
3831 malloc'd buffer otherwise.
3832
3833 For some platforms and debug info formats, shared libraries contain
3834 relocations against the debug sections (particularly for DWARF-2;
3835 one affected platform is PowerPC GNU/Linux, although it depends on
3836 the version of the linker in use). Also, ELF object files naturally
3837 have unresolved relocations for their debug sections. We need to apply
3838 the relocations in order to get the locations of symbols correct. */
3839
3840 bfd_byte *
3841 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3842 {
3843 /* We're only interested in debugging sections with relocation
3844 information. */
3845 if ((sectp->flags & SEC_RELOC) == 0)
3846 return NULL;
3847 if ((sectp->flags & SEC_DEBUGGING) == 0)
3848 return NULL;
3849
3850 /* We will handle section offsets properly elsewhere, so relocate as if
3851 all sections begin at 0. */
3852 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3853
3854 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3855 }
3856
3857 struct symfile_segment_data *
3858 get_symfile_segment_data (bfd *abfd)
3859 {
3860 struct sym_fns *sf = find_sym_fns (abfd);
3861
3862 if (sf == NULL)
3863 return NULL;
3864
3865 return sf->sym_segments (abfd);
3866 }
3867
3868 void
3869 free_symfile_segment_data (struct symfile_segment_data *data)
3870 {
3871 xfree (data->segment_bases);
3872 xfree (data->segment_sizes);
3873 xfree (data->segment_info);
3874 xfree (data);
3875 }
3876
3877 int
3878 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3879 struct section_offsets *offsets,
3880 int num_segment_bases,
3881 const CORE_ADDR *segment_bases)
3882 {
3883 int i;
3884 asection *sect;
3885
3886 /* If we do not have segment mappings for the object file, we
3887 can not relocate it by segments. */
3888 gdb_assert (data != NULL);
3889 gdb_assert (data->num_segments > 0);
3890
3891 /* If more offsets are provided than we have segments, make sure the
3892 excess offsets are all the same as the last segment's offset.
3893 This allows "Text=X;Data=X" for files which have only a single
3894 segment. */
3895 if (num_segment_bases > data->num_segments)
3896 for (i = data->num_segments; i < num_segment_bases; i++)
3897 if (segment_bases[i] != segment_bases[data->num_segments - 1])
3898 return 0;
3899
3900 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3901 {
3902 CORE_ADDR vma;
3903 int which = data->segment_info[i];
3904
3905 if (which > num_segment_bases)
3906 offsets->offsets[i] = segment_bases[num_segment_bases - 1];
3907 else if (which > 0)
3908 offsets->offsets[i] = segment_bases[which - 1];
3909 else
3910 continue;
3911
3912 offsets->offsets[i] -= data->segment_bases[which - 1];
3913 }
3914
3915 return 1;
3916 }
3917
3918 static void
3919 symfile_find_segment_sections (struct objfile *objfile)
3920 {
3921 bfd *abfd = objfile->obfd;
3922 int i;
3923 asection *sect;
3924 struct symfile_segment_data *data;
3925
3926 data = get_symfile_segment_data (objfile->obfd);
3927 if (data == NULL)
3928 return;
3929
3930 if (data->num_segments != 1 && data->num_segments != 2)
3931 {
3932 free_symfile_segment_data (data);
3933 return;
3934 }
3935
3936 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3937 {
3938 CORE_ADDR vma;
3939 int which = data->segment_info[i];
3940
3941 if (which == 1)
3942 {
3943 if (objfile->sect_index_text == -1)
3944 objfile->sect_index_text = sect->index;
3945
3946 if (objfile->sect_index_rodata == -1)
3947 objfile->sect_index_rodata = sect->index;
3948 }
3949 else if (which == 2)
3950 {
3951 if (objfile->sect_index_data == -1)
3952 objfile->sect_index_data = sect->index;
3953
3954 if (objfile->sect_index_bss == -1)
3955 objfile->sect_index_bss = sect->index;
3956 }
3957 }
3958
3959 free_symfile_segment_data (data);
3960 }
3961
3962 void
3963 _initialize_symfile (void)
3964 {
3965 struct cmd_list_element *c;
3966
3967 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3968 Load symbol table from executable file FILE.\n\
3969 The `file' command can also load symbol tables, as well as setting the file\n\
3970 to execute."), &cmdlist);
3971 set_cmd_completer (c, filename_completer);
3972
3973 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3974 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3975 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3976 ADDR is the starting address of the file's text.\n\
3977 The optional arguments are section-name section-address pairs and\n\
3978 should be specified if the data and bss segments are not contiguous\n\
3979 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3980 &cmdlist);
3981 set_cmd_completer (c, filename_completer);
3982
3983 c = add_cmd ("add-shared-symbol-files", class_files,
3984 add_shared_symbol_files_command, _("\
3985 Load the symbols from shared objects in the dynamic linker's link map."),
3986 &cmdlist);
3987 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3988 &cmdlist);
3989
3990 c = add_cmd ("load", class_files, load_command, _("\
3991 Dynamically load FILE into the running program, and record its symbols\n\
3992 for access from GDB.\n\
3993 A load OFFSET may also be given."), &cmdlist);
3994 set_cmd_completer (c, filename_completer);
3995
3996 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3997 &symbol_reloading, _("\
3998 Set dynamic symbol table reloading multiple times in one run."), _("\
3999 Show dynamic symbol table reloading multiple times in one run."), NULL,
4000 NULL,
4001 show_symbol_reloading,
4002 &setlist, &showlist);
4003
4004 add_prefix_cmd ("overlay", class_support, overlay_command,
4005 _("Commands for debugging overlays."), &overlaylist,
4006 "overlay ", 0, &cmdlist);
4007
4008 add_com_alias ("ovly", "overlay", class_alias, 1);
4009 add_com_alias ("ov", "overlay", class_alias, 1);
4010
4011 add_cmd ("map-overlay", class_support, map_overlay_command,
4012 _("Assert that an overlay section is mapped."), &overlaylist);
4013
4014 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4015 _("Assert that an overlay section is unmapped."), &overlaylist);
4016
4017 add_cmd ("list-overlays", class_support, list_overlays_command,
4018 _("List mappings of overlay sections."), &overlaylist);
4019
4020 add_cmd ("manual", class_support, overlay_manual_command,
4021 _("Enable overlay debugging."), &overlaylist);
4022 add_cmd ("off", class_support, overlay_off_command,
4023 _("Disable overlay debugging."), &overlaylist);
4024 add_cmd ("auto", class_support, overlay_auto_command,
4025 _("Enable automatic overlay debugging."), &overlaylist);
4026 add_cmd ("load-target", class_support, overlay_load_command,
4027 _("Read the overlay mapping state from the target."), &overlaylist);
4028
4029 /* Filename extension to source language lookup table: */
4030 init_filename_language_table ();
4031 add_setshow_string_noescape_cmd ("extension-language", class_files,
4032 &ext_args, _("\
4033 Set mapping between filename extension and source language."), _("\
4034 Show mapping between filename extension and source language."), _("\
4035 Usage: set extension-language .foo bar"),
4036 set_ext_lang_command,
4037 show_ext_args,
4038 &setlist, &showlist);
4039
4040 add_info ("extensions", info_ext_lang_command,
4041 _("All filename extensions associated with a source language."));
4042
4043 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4044 &debug_file_directory, _("\
4045 Set the directory where separate debug symbols are searched for."), _("\
4046 Show the directory where separate debug symbols are searched for."), _("\
4047 Separate debug symbols are first searched for in the same\n\
4048 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4049 and lastly at the path of the directory of the binary with\n\
4050 the global debug-file directory prepended."),
4051 NULL,
4052 show_debug_file_directory,
4053 &setlist, &showlist);
4054 }
This page took 0.112981 seconds and 4 git commands to generate.