gdb/
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57 #include "stack.h"
58 #include "gdb_bfd.h"
59 #include "cli/cli-utils.h"
60
61 #include <sys/types.h>
62 #include <fcntl.h>
63 #include "gdb_string.h"
64 #include "gdb_stat.h"
65 #include <ctype.h>
66 #include <time.h>
67 #include <sys/time.h>
68
69 #include "psymtab.h"
70
71 int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
73 void (*deprecated_show_load_progress) (const char *section,
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
77 unsigned long total_size);
78 void (*deprecated_pre_add_symbol_hook) (const char *);
79 void (*deprecated_post_add_symbol_hook) (void);
80
81 static void clear_symtab_users_cleanup (void *ignore);
82
83 /* Global variables owned by this file. */
84 int readnow_symbol_files; /* Read full symbols immediately. */
85
86 /* Functions this file defines. */
87
88 static void load_command (char *, int);
89
90 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
91
92 static void add_symbol_file_command (char *, int);
93
94 bfd *symfile_bfd_open (char *);
95
96 int get_section_index (struct objfile *, char *);
97
98 static const struct sym_fns *find_sym_fns (bfd *);
99
100 static void decrement_reading_symtab (void *);
101
102 static void overlay_invalidate_all (void);
103
104 static void overlay_auto_command (char *, int);
105
106 static void overlay_manual_command (char *, int);
107
108 static void overlay_off_command (char *, int);
109
110 static void overlay_load_command (char *, int);
111
112 static void overlay_command (char *, int);
113
114 static void simple_free_overlay_table (void);
115
116 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
117 enum bfd_endian);
118
119 static int simple_read_overlay_table (void);
120
121 static int simple_overlay_update_1 (struct obj_section *);
122
123 static void add_filename_language (char *ext, enum language lang);
124
125 static void info_ext_lang_command (char *args, int from_tty);
126
127 static void init_filename_language_table (void);
128
129 static void symfile_find_segment_sections (struct objfile *objfile);
130
131 void _initialize_symfile (void);
132
133 /* List of all available sym_fns. On gdb startup, each object file reader
134 calls add_symtab_fns() to register information on each format it is
135 prepared to read. */
136
137 typedef const struct sym_fns *sym_fns_ptr;
138 DEF_VEC_P (sym_fns_ptr);
139
140 static VEC (sym_fns_ptr) *symtab_fns = NULL;
141
142 /* If non-zero, shared library symbols will be added automatically
143 when the inferior is created, new libraries are loaded, or when
144 attaching to the inferior. This is almost always what users will
145 want to have happen; but for very large programs, the startup time
146 will be excessive, and so if this is a problem, the user can clear
147 this flag and then add the shared library symbols as needed. Note
148 that there is a potential for confusion, since if the shared
149 library symbols are not loaded, commands like "info fun" will *not*
150 report all the functions that are actually present. */
151
152 int auto_solib_add = 1;
153 \f
154
155 /* True if we are reading a symbol table. */
156
157 int currently_reading_symtab = 0;
158
159 static void
160 decrement_reading_symtab (void *dummy)
161 {
162 currently_reading_symtab--;
163 gdb_assert (currently_reading_symtab >= 0);
164 }
165
166 /* Increment currently_reading_symtab and return a cleanup that can be
167 used to decrement it. */
168
169 struct cleanup *
170 increment_reading_symtab (void)
171 {
172 ++currently_reading_symtab;
173 gdb_assert (currently_reading_symtab > 0);
174 return make_cleanup (decrement_reading_symtab, NULL);
175 }
176
177 /* Remember the lowest-addressed loadable section we've seen.
178 This function is called via bfd_map_over_sections.
179
180 In case of equal vmas, the section with the largest size becomes the
181 lowest-addressed loadable section.
182
183 If the vmas and sizes are equal, the last section is considered the
184 lowest-addressed loadable section. */
185
186 void
187 find_lowest_section (bfd *abfd, asection *sect, void *obj)
188 {
189 asection **lowest = (asection **) obj;
190
191 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
192 return;
193 if (!*lowest)
194 *lowest = sect; /* First loadable section */
195 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
196 *lowest = sect; /* A lower loadable section */
197 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
198 && (bfd_section_size (abfd, (*lowest))
199 <= bfd_section_size (abfd, sect)))
200 *lowest = sect;
201 }
202
203 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
204 new object's 'num_sections' field is set to 0; it must be updated
205 by the caller. */
206
207 struct section_addr_info *
208 alloc_section_addr_info (size_t num_sections)
209 {
210 struct section_addr_info *sap;
211 size_t size;
212
213 size = (sizeof (struct section_addr_info)
214 + sizeof (struct other_sections) * (num_sections - 1));
215 sap = (struct section_addr_info *) xmalloc (size);
216 memset (sap, 0, size);
217
218 return sap;
219 }
220
221 /* Build (allocate and populate) a section_addr_info struct from
222 an existing section table. */
223
224 extern struct section_addr_info *
225 build_section_addr_info_from_section_table (const struct target_section *start,
226 const struct target_section *end)
227 {
228 struct section_addr_info *sap;
229 const struct target_section *stp;
230 int oidx;
231
232 sap = alloc_section_addr_info (end - start);
233
234 for (stp = start, oidx = 0; stp != end; stp++)
235 {
236 if (bfd_get_section_flags (stp->bfd,
237 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
238 && oidx < end - start)
239 {
240 sap->other[oidx].addr = stp->addr;
241 sap->other[oidx].name
242 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
243 sap->other[oidx].sectindex
244 = gdb_bfd_section_index (stp->bfd, stp->the_bfd_section);
245 oidx++;
246 }
247 }
248
249 sap->num_sections = oidx;
250
251 return sap;
252 }
253
254 /* Create a section_addr_info from section offsets in ABFD. */
255
256 static struct section_addr_info *
257 build_section_addr_info_from_bfd (bfd *abfd)
258 {
259 struct section_addr_info *sap;
260 int i;
261 struct bfd_section *sec;
262
263 sap = alloc_section_addr_info (bfd_count_sections (abfd));
264 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
265 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
266 {
267 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
268 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
269 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
270 i++;
271 }
272
273 sap->num_sections = i;
274
275 return sap;
276 }
277
278 /* Create a section_addr_info from section offsets in OBJFILE. */
279
280 struct section_addr_info *
281 build_section_addr_info_from_objfile (const struct objfile *objfile)
282 {
283 struct section_addr_info *sap;
284 int i;
285
286 /* Before reread_symbols gets rewritten it is not safe to call:
287 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
288 */
289 sap = build_section_addr_info_from_bfd (objfile->obfd);
290 for (i = 0; i < sap->num_sections; i++)
291 {
292 int sectindex = sap->other[i].sectindex;
293
294 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
295 }
296 return sap;
297 }
298
299 /* Free all memory allocated by build_section_addr_info_from_section_table. */
300
301 extern void
302 free_section_addr_info (struct section_addr_info *sap)
303 {
304 int idx;
305
306 for (idx = 0; idx < sap->num_sections; idx++)
307 xfree (sap->other[idx].name);
308 xfree (sap);
309 }
310
311 /* Initialize OBJFILE's sect_index_* members. */
312
313 static void
314 init_objfile_sect_indices (struct objfile *objfile)
315 {
316 asection *sect;
317 int i;
318
319 sect = bfd_get_section_by_name (objfile->obfd, ".text");
320 if (sect)
321 objfile->sect_index_text = sect->index;
322
323 sect = bfd_get_section_by_name (objfile->obfd, ".data");
324 if (sect)
325 objfile->sect_index_data = sect->index;
326
327 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
328 if (sect)
329 objfile->sect_index_bss = sect->index;
330
331 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
332 if (sect)
333 objfile->sect_index_rodata = sect->index;
334
335 /* This is where things get really weird... We MUST have valid
336 indices for the various sect_index_* members or gdb will abort.
337 So if for example, there is no ".text" section, we have to
338 accomodate that. First, check for a file with the standard
339 one or two segments. */
340
341 symfile_find_segment_sections (objfile);
342
343 /* Except when explicitly adding symbol files at some address,
344 section_offsets contains nothing but zeros, so it doesn't matter
345 which slot in section_offsets the individual sect_index_* members
346 index into. So if they are all zero, it is safe to just point
347 all the currently uninitialized indices to the first slot. But
348 beware: if this is the main executable, it may be relocated
349 later, e.g. by the remote qOffsets packet, and then this will
350 be wrong! That's why we try segments first. */
351
352 for (i = 0; i < objfile->num_sections; i++)
353 {
354 if (ANOFFSET (objfile->section_offsets, i) != 0)
355 {
356 break;
357 }
358 }
359 if (i == objfile->num_sections)
360 {
361 if (objfile->sect_index_text == -1)
362 objfile->sect_index_text = 0;
363 if (objfile->sect_index_data == -1)
364 objfile->sect_index_data = 0;
365 if (objfile->sect_index_bss == -1)
366 objfile->sect_index_bss = 0;
367 if (objfile->sect_index_rodata == -1)
368 objfile->sect_index_rodata = 0;
369 }
370 }
371
372 /* The arguments to place_section. */
373
374 struct place_section_arg
375 {
376 struct section_offsets *offsets;
377 CORE_ADDR lowest;
378 };
379
380 /* Find a unique offset to use for loadable section SECT if
381 the user did not provide an offset. */
382
383 static void
384 place_section (bfd *abfd, asection *sect, void *obj)
385 {
386 struct place_section_arg *arg = obj;
387 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
388 int done;
389 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
390
391 /* We are only interested in allocated sections. */
392 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
393 return;
394
395 /* If the user specified an offset, honor it. */
396 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
397 return;
398
399 /* Otherwise, let's try to find a place for the section. */
400 start_addr = (arg->lowest + align - 1) & -align;
401
402 do {
403 asection *cur_sec;
404
405 done = 1;
406
407 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
408 {
409 int indx = cur_sec->index;
410
411 /* We don't need to compare against ourself. */
412 if (cur_sec == sect)
413 continue;
414
415 /* We can only conflict with allocated sections. */
416 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
417 continue;
418
419 /* If the section offset is 0, either the section has not been placed
420 yet, or it was the lowest section placed (in which case LOWEST
421 will be past its end). */
422 if (offsets[indx] == 0)
423 continue;
424
425 /* If this section would overlap us, then we must move up. */
426 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
427 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
428 {
429 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
430 start_addr = (start_addr + align - 1) & -align;
431 done = 0;
432 break;
433 }
434
435 /* Otherwise, we appear to be OK. So far. */
436 }
437 }
438 while (!done);
439
440 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
441 arg->lowest = start_addr + bfd_get_section_size (sect);
442 }
443
444 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
445 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
446 entries. */
447
448 void
449 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
450 int num_sections,
451 const struct section_addr_info *addrs)
452 {
453 int i;
454
455 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
456
457 /* Now calculate offsets for section that were specified by the caller. */
458 for (i = 0; i < addrs->num_sections; i++)
459 {
460 const struct other_sections *osp;
461
462 osp = &addrs->other[i];
463 if (osp->sectindex == -1)
464 continue;
465
466 /* Record all sections in offsets. */
467 /* The section_offsets in the objfile are here filled in using
468 the BFD index. */
469 section_offsets->offsets[osp->sectindex] = osp->addr;
470 }
471 }
472
473 /* Transform section name S for a name comparison. prelink can split section
474 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
475 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
476 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
477 (`.sbss') section has invalid (increased) virtual address. */
478
479 static const char *
480 addr_section_name (const char *s)
481 {
482 if (strcmp (s, ".dynbss") == 0)
483 return ".bss";
484 if (strcmp (s, ".sdynbss") == 0)
485 return ".sbss";
486
487 return s;
488 }
489
490 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
491 their (name, sectindex) pair. sectindex makes the sort by name stable. */
492
493 static int
494 addrs_section_compar (const void *ap, const void *bp)
495 {
496 const struct other_sections *a = *((struct other_sections **) ap);
497 const struct other_sections *b = *((struct other_sections **) bp);
498 int retval;
499
500 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
501 if (retval)
502 return retval;
503
504 return a->sectindex - b->sectindex;
505 }
506
507 /* Provide sorted array of pointers to sections of ADDRS. The array is
508 terminated by NULL. Caller is responsible to call xfree for it. */
509
510 static struct other_sections **
511 addrs_section_sort (struct section_addr_info *addrs)
512 {
513 struct other_sections **array;
514 int i;
515
516 /* `+ 1' for the NULL terminator. */
517 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
518 for (i = 0; i < addrs->num_sections; i++)
519 array[i] = &addrs->other[i];
520 array[i] = NULL;
521
522 qsort (array, i, sizeof (*array), addrs_section_compar);
523
524 return array;
525 }
526
527 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
528 also SECTINDEXes specific to ABFD there. This function can be used to
529 rebase ADDRS to start referencing different BFD than before. */
530
531 void
532 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
533 {
534 asection *lower_sect;
535 CORE_ADDR lower_offset;
536 int i;
537 struct cleanup *my_cleanup;
538 struct section_addr_info *abfd_addrs;
539 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
540 struct other_sections **addrs_to_abfd_addrs;
541
542 /* Find lowest loadable section to be used as starting point for
543 continguous sections. */
544 lower_sect = NULL;
545 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
546 if (lower_sect == NULL)
547 {
548 warning (_("no loadable sections found in added symbol-file %s"),
549 bfd_get_filename (abfd));
550 lower_offset = 0;
551 }
552 else
553 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
554
555 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
556 in ABFD. Section names are not unique - there can be multiple sections of
557 the same name. Also the sections of the same name do not have to be
558 adjacent to each other. Some sections may be present only in one of the
559 files. Even sections present in both files do not have to be in the same
560 order.
561
562 Use stable sort by name for the sections in both files. Then linearly
563 scan both lists matching as most of the entries as possible. */
564
565 addrs_sorted = addrs_section_sort (addrs);
566 my_cleanup = make_cleanup (xfree, addrs_sorted);
567
568 abfd_addrs = build_section_addr_info_from_bfd (abfd);
569 make_cleanup_free_section_addr_info (abfd_addrs);
570 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
571 make_cleanup (xfree, abfd_addrs_sorted);
572
573 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
574 ABFD_ADDRS_SORTED. */
575
576 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
577 * addrs->num_sections);
578 make_cleanup (xfree, addrs_to_abfd_addrs);
579
580 while (*addrs_sorted)
581 {
582 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
583
584 while (*abfd_addrs_sorted
585 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
586 sect_name) < 0)
587 abfd_addrs_sorted++;
588
589 if (*abfd_addrs_sorted
590 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
591 sect_name) == 0)
592 {
593 int index_in_addrs;
594
595 /* Make the found item directly addressable from ADDRS. */
596 index_in_addrs = *addrs_sorted - addrs->other;
597 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
598 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
599
600 /* Never use the same ABFD entry twice. */
601 abfd_addrs_sorted++;
602 }
603
604 addrs_sorted++;
605 }
606
607 /* Calculate offsets for the loadable sections.
608 FIXME! Sections must be in order of increasing loadable section
609 so that contiguous sections can use the lower-offset!!!
610
611 Adjust offsets if the segments are not contiguous.
612 If the section is contiguous, its offset should be set to
613 the offset of the highest loadable section lower than it
614 (the loadable section directly below it in memory).
615 this_offset = lower_offset = lower_addr - lower_orig_addr */
616
617 for (i = 0; i < addrs->num_sections; i++)
618 {
619 struct other_sections *sect = addrs_to_abfd_addrs[i];
620
621 if (sect)
622 {
623 /* This is the index used by BFD. */
624 addrs->other[i].sectindex = sect->sectindex;
625
626 if (addrs->other[i].addr != 0)
627 {
628 addrs->other[i].addr -= sect->addr;
629 lower_offset = addrs->other[i].addr;
630 }
631 else
632 addrs->other[i].addr = lower_offset;
633 }
634 else
635 {
636 /* addr_section_name transformation is not used for SECT_NAME. */
637 const char *sect_name = addrs->other[i].name;
638
639 /* This section does not exist in ABFD, which is normally
640 unexpected and we want to issue a warning.
641
642 However, the ELF prelinker does create a few sections which are
643 marked in the main executable as loadable (they are loaded in
644 memory from the DYNAMIC segment) and yet are not present in
645 separate debug info files. This is fine, and should not cause
646 a warning. Shared libraries contain just the section
647 ".gnu.liblist" but it is not marked as loadable there. There is
648 no other way to identify them than by their name as the sections
649 created by prelink have no special flags.
650
651 For the sections `.bss' and `.sbss' see addr_section_name. */
652
653 if (!(strcmp (sect_name, ".gnu.liblist") == 0
654 || strcmp (sect_name, ".gnu.conflict") == 0
655 || (strcmp (sect_name, ".bss") == 0
656 && i > 0
657 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
658 && addrs_to_abfd_addrs[i - 1] != NULL)
659 || (strcmp (sect_name, ".sbss") == 0
660 && i > 0
661 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
662 && addrs_to_abfd_addrs[i - 1] != NULL)))
663 warning (_("section %s not found in %s"), sect_name,
664 bfd_get_filename (abfd));
665
666 addrs->other[i].addr = 0;
667 addrs->other[i].sectindex = -1;
668 }
669 }
670
671 do_cleanups (my_cleanup);
672 }
673
674 /* Parse the user's idea of an offset for dynamic linking, into our idea
675 of how to represent it for fast symbol reading. This is the default
676 version of the sym_fns.sym_offsets function for symbol readers that
677 don't need to do anything special. It allocates a section_offsets table
678 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
679
680 void
681 default_symfile_offsets (struct objfile *objfile,
682 const struct section_addr_info *addrs)
683 {
684 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
685 objfile->section_offsets = (struct section_offsets *)
686 obstack_alloc (&objfile->objfile_obstack,
687 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
688 relative_addr_info_to_section_offsets (objfile->section_offsets,
689 objfile->num_sections, addrs);
690
691 /* For relocatable files, all loadable sections will start at zero.
692 The zero is meaningless, so try to pick arbitrary addresses such
693 that no loadable sections overlap. This algorithm is quadratic,
694 but the number of sections in a single object file is generally
695 small. */
696 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
697 {
698 struct place_section_arg arg;
699 bfd *abfd = objfile->obfd;
700 asection *cur_sec;
701
702 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
703 /* We do not expect this to happen; just skip this step if the
704 relocatable file has a section with an assigned VMA. */
705 if (bfd_section_vma (abfd, cur_sec) != 0)
706 break;
707
708 if (cur_sec == NULL)
709 {
710 CORE_ADDR *offsets = objfile->section_offsets->offsets;
711
712 /* Pick non-overlapping offsets for sections the user did not
713 place explicitly. */
714 arg.offsets = objfile->section_offsets;
715 arg.lowest = 0;
716 bfd_map_over_sections (objfile->obfd, place_section, &arg);
717
718 /* Correctly filling in the section offsets is not quite
719 enough. Relocatable files have two properties that
720 (most) shared objects do not:
721
722 - Their debug information will contain relocations. Some
723 shared libraries do also, but many do not, so this can not
724 be assumed.
725
726 - If there are multiple code sections they will be loaded
727 at different relative addresses in memory than they are
728 in the objfile, since all sections in the file will start
729 at address zero.
730
731 Because GDB has very limited ability to map from an
732 address in debug info to the correct code section,
733 it relies on adding SECT_OFF_TEXT to things which might be
734 code. If we clear all the section offsets, and set the
735 section VMAs instead, then symfile_relocate_debug_section
736 will return meaningful debug information pointing at the
737 correct sections.
738
739 GDB has too many different data structures for section
740 addresses - a bfd, objfile, and so_list all have section
741 tables, as does exec_ops. Some of these could probably
742 be eliminated. */
743
744 for (cur_sec = abfd->sections; cur_sec != NULL;
745 cur_sec = cur_sec->next)
746 {
747 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
748 continue;
749
750 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
751 exec_set_section_address (bfd_get_filename (abfd),
752 cur_sec->index,
753 offsets[cur_sec->index]);
754 offsets[cur_sec->index] = 0;
755 }
756 }
757 }
758
759 /* Remember the bfd indexes for the .text, .data, .bss and
760 .rodata sections. */
761 init_objfile_sect_indices (objfile);
762 }
763
764 /* Divide the file into segments, which are individual relocatable units.
765 This is the default version of the sym_fns.sym_segments function for
766 symbol readers that do not have an explicit representation of segments.
767 It assumes that object files do not have segments, and fully linked
768 files have a single segment. */
769
770 struct symfile_segment_data *
771 default_symfile_segments (bfd *abfd)
772 {
773 int num_sections, i;
774 asection *sect;
775 struct symfile_segment_data *data;
776 CORE_ADDR low, high;
777
778 /* Relocatable files contain enough information to position each
779 loadable section independently; they should not be relocated
780 in segments. */
781 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
782 return NULL;
783
784 /* Make sure there is at least one loadable section in the file. */
785 for (sect = abfd->sections; sect != NULL; sect = sect->next)
786 {
787 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
788 continue;
789
790 break;
791 }
792 if (sect == NULL)
793 return NULL;
794
795 low = bfd_get_section_vma (abfd, sect);
796 high = low + bfd_get_section_size (sect);
797
798 data = XZALLOC (struct symfile_segment_data);
799 data->num_segments = 1;
800 data->segment_bases = XCALLOC (1, CORE_ADDR);
801 data->segment_sizes = XCALLOC (1, CORE_ADDR);
802
803 num_sections = bfd_count_sections (abfd);
804 data->segment_info = XCALLOC (num_sections, int);
805
806 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
807 {
808 CORE_ADDR vma;
809
810 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
811 continue;
812
813 vma = bfd_get_section_vma (abfd, sect);
814 if (vma < low)
815 low = vma;
816 if (vma + bfd_get_section_size (sect) > high)
817 high = vma + bfd_get_section_size (sect);
818
819 data->segment_info[i] = 1;
820 }
821
822 data->segment_bases[0] = low;
823 data->segment_sizes[0] = high - low;
824
825 return data;
826 }
827
828 /* This is a convenience function to call sym_read for OBJFILE and
829 possibly force the partial symbols to be read. */
830
831 static void
832 read_symbols (struct objfile *objfile, int add_flags)
833 {
834 (*objfile->sf->sym_read) (objfile, add_flags);
835
836 /* find_separate_debug_file_in_section should be called only if there is
837 single binary with no existing separate debug info file. */
838 if (!objfile_has_partial_symbols (objfile)
839 && objfile->separate_debug_objfile == NULL
840 && objfile->separate_debug_objfile_backlink == NULL)
841 {
842 bfd *abfd = find_separate_debug_file_in_section (objfile);
843 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
844
845 if (abfd != NULL)
846 symbol_file_add_separate (abfd, add_flags, objfile);
847
848 do_cleanups (cleanup);
849 }
850 if ((add_flags & SYMFILE_NO_READ) == 0)
851 require_partial_symbols (objfile, 0);
852 }
853
854 /* Initialize entry point information for this objfile. */
855
856 static void
857 init_entry_point_info (struct objfile *objfile)
858 {
859 /* Save startup file's range of PC addresses to help blockframe.c
860 decide where the bottom of the stack is. */
861
862 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
863 {
864 /* Executable file -- record its entry point so we'll recognize
865 the startup file because it contains the entry point. */
866 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
867 objfile->ei.entry_point_p = 1;
868 }
869 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
870 && bfd_get_start_address (objfile->obfd) != 0)
871 {
872 /* Some shared libraries may have entry points set and be
873 runnable. There's no clear way to indicate this, so just check
874 for values other than zero. */
875 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
876 objfile->ei.entry_point_p = 1;
877 }
878 else
879 {
880 /* Examination of non-executable.o files. Short-circuit this stuff. */
881 objfile->ei.entry_point_p = 0;
882 }
883
884 if (objfile->ei.entry_point_p)
885 {
886 CORE_ADDR entry_point = objfile->ei.entry_point;
887
888 /* Make certain that the address points at real code, and not a
889 function descriptor. */
890 entry_point
891 = gdbarch_convert_from_func_ptr_addr (objfile->gdbarch,
892 entry_point,
893 &current_target);
894
895 /* Remove any ISA markers, so that this matches entries in the
896 symbol table. */
897 objfile->ei.entry_point
898 = gdbarch_addr_bits_remove (objfile->gdbarch, entry_point);
899 }
900 }
901
902 /* Process a symbol file, as either the main file or as a dynamically
903 loaded file.
904
905 This function does not set the OBJFILE's entry-point info.
906
907 OBJFILE is where the symbols are to be read from.
908
909 ADDRS is the list of section load addresses. If the user has given
910 an 'add-symbol-file' command, then this is the list of offsets and
911 addresses he or she provided as arguments to the command; or, if
912 we're handling a shared library, these are the actual addresses the
913 sections are loaded at, according to the inferior's dynamic linker
914 (as gleaned by GDB's shared library code). We convert each address
915 into an offset from the section VMA's as it appears in the object
916 file, and then call the file's sym_offsets function to convert this
917 into a format-specific offset table --- a `struct section_offsets'.
918
919 ADD_FLAGS encodes verbosity level, whether this is main symbol or
920 an extra symbol file such as dynamically loaded code, and wether
921 breakpoint reset should be deferred. */
922
923 static void
924 syms_from_objfile_1 (struct objfile *objfile,
925 struct section_addr_info *addrs,
926 int add_flags)
927 {
928 struct section_addr_info *local_addr = NULL;
929 struct cleanup *old_chain;
930 const int mainline = add_flags & SYMFILE_MAINLINE;
931
932 objfile->sf = find_sym_fns (objfile->obfd);
933
934 if (objfile->sf == NULL)
935 {
936 /* No symbols to load, but we still need to make sure
937 that the section_offsets table is allocated. */
938 int num_sections = gdb_bfd_count_sections (objfile->obfd);
939 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
940
941 objfile->num_sections = num_sections;
942 objfile->section_offsets
943 = obstack_alloc (&objfile->objfile_obstack, size);
944 memset (objfile->section_offsets, 0, size);
945 return;
946 }
947
948 /* Make sure that partially constructed symbol tables will be cleaned up
949 if an error occurs during symbol reading. */
950 old_chain = make_cleanup_free_objfile (objfile);
951
952 /* If ADDRS is NULL, put together a dummy address list.
953 We now establish the convention that an addr of zero means
954 no load address was specified. */
955 if (! addrs)
956 {
957 local_addr = alloc_section_addr_info (1);
958 make_cleanup (xfree, local_addr);
959 addrs = local_addr;
960 }
961
962 if (mainline)
963 {
964 /* We will modify the main symbol table, make sure that all its users
965 will be cleaned up if an error occurs during symbol reading. */
966 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
967
968 /* Since no error yet, throw away the old symbol table. */
969
970 if (symfile_objfile != NULL)
971 {
972 free_objfile (symfile_objfile);
973 gdb_assert (symfile_objfile == NULL);
974 }
975
976 /* Currently we keep symbols from the add-symbol-file command.
977 If the user wants to get rid of them, they should do "symbol-file"
978 without arguments first. Not sure this is the best behavior
979 (PR 2207). */
980
981 (*objfile->sf->sym_new_init) (objfile);
982 }
983
984 /* Convert addr into an offset rather than an absolute address.
985 We find the lowest address of a loaded segment in the objfile,
986 and assume that <addr> is where that got loaded.
987
988 We no longer warn if the lowest section is not a text segment (as
989 happens for the PA64 port. */
990 if (addrs->num_sections > 0)
991 addr_info_make_relative (addrs, objfile->obfd);
992
993 /* Initialize symbol reading routines for this objfile, allow complaints to
994 appear for this new file, and record how verbose to be, then do the
995 initial symbol reading for this file. */
996
997 (*objfile->sf->sym_init) (objfile);
998 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
999
1000 (*objfile->sf->sym_offsets) (objfile, addrs);
1001
1002 read_symbols (objfile, add_flags);
1003
1004 /* Discard cleanups as symbol reading was successful. */
1005
1006 discard_cleanups (old_chain);
1007 xfree (local_addr);
1008 }
1009
1010 /* Same as syms_from_objfile_1, but also initializes the objfile
1011 entry-point info. */
1012
1013 static void
1014 syms_from_objfile (struct objfile *objfile,
1015 struct section_addr_info *addrs,
1016 int add_flags)
1017 {
1018 syms_from_objfile_1 (objfile, addrs, add_flags);
1019 init_entry_point_info (objfile);
1020 }
1021
1022 /* Perform required actions after either reading in the initial
1023 symbols for a new objfile, or mapping in the symbols from a reusable
1024 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1025
1026 void
1027 new_symfile_objfile (struct objfile *objfile, int add_flags)
1028 {
1029 /* If this is the main symbol file we have to clean up all users of the
1030 old main symbol file. Otherwise it is sufficient to fixup all the
1031 breakpoints that may have been redefined by this symbol file. */
1032 if (add_flags & SYMFILE_MAINLINE)
1033 {
1034 /* OK, make it the "real" symbol file. */
1035 symfile_objfile = objfile;
1036
1037 clear_symtab_users (add_flags);
1038 }
1039 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1040 {
1041 breakpoint_re_set ();
1042 }
1043
1044 /* We're done reading the symbol file; finish off complaints. */
1045 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1046 }
1047
1048 /* Process a symbol file, as either the main file or as a dynamically
1049 loaded file.
1050
1051 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1052 A new reference is acquired by this function.
1053
1054 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1055 extra, such as dynamically loaded code, and what to do with breakpoins.
1056
1057 ADDRS is as described for syms_from_objfile_1, above.
1058 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1059
1060 PARENT is the original objfile if ABFD is a separate debug info file.
1061 Otherwise PARENT is NULL.
1062
1063 Upon success, returns a pointer to the objfile that was added.
1064 Upon failure, jumps back to command level (never returns). */
1065
1066 static struct objfile *
1067 symbol_file_add_with_addrs (bfd *abfd, int add_flags,
1068 struct section_addr_info *addrs,
1069 int flags, struct objfile *parent)
1070 {
1071 struct objfile *objfile;
1072 const char *name = bfd_get_filename (abfd);
1073 const int from_tty = add_flags & SYMFILE_VERBOSE;
1074 const int mainline = add_flags & SYMFILE_MAINLINE;
1075 const int should_print = ((from_tty || info_verbose)
1076 && (readnow_symbol_files
1077 || (add_flags & SYMFILE_NO_READ) == 0));
1078
1079 if (readnow_symbol_files)
1080 {
1081 flags |= OBJF_READNOW;
1082 add_flags &= ~SYMFILE_NO_READ;
1083 }
1084
1085 /* Give user a chance to burp if we'd be
1086 interactively wiping out any existing symbols. */
1087
1088 if ((have_full_symbols () || have_partial_symbols ())
1089 && mainline
1090 && from_tty
1091 && !query (_("Load new symbol table from \"%s\"? "), name))
1092 error (_("Not confirmed."));
1093
1094 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
1095
1096 if (parent)
1097 add_separate_debug_objfile (objfile, parent);
1098
1099 /* We either created a new mapped symbol table, mapped an existing
1100 symbol table file which has not had initial symbol reading
1101 performed, or need to read an unmapped symbol table. */
1102 if (should_print)
1103 {
1104 if (deprecated_pre_add_symbol_hook)
1105 deprecated_pre_add_symbol_hook (name);
1106 else
1107 {
1108 printf_unfiltered (_("Reading symbols from %s..."), name);
1109 wrap_here ("");
1110 gdb_flush (gdb_stdout);
1111 }
1112 }
1113 syms_from_objfile (objfile, addrs, add_flags);
1114
1115 /* We now have at least a partial symbol table. Check to see if the
1116 user requested that all symbols be read on initial access via either
1117 the gdb startup command line or on a per symbol file basis. Expand
1118 all partial symbol tables for this objfile if so. */
1119
1120 if ((flags & OBJF_READNOW))
1121 {
1122 if (should_print)
1123 {
1124 printf_unfiltered (_("expanding to full symbols..."));
1125 wrap_here ("");
1126 gdb_flush (gdb_stdout);
1127 }
1128
1129 if (objfile->sf)
1130 objfile->sf->qf->expand_all_symtabs (objfile);
1131 }
1132
1133 if (should_print && !objfile_has_symbols (objfile))
1134 {
1135 wrap_here ("");
1136 printf_unfiltered (_("(no debugging symbols found)..."));
1137 wrap_here ("");
1138 }
1139
1140 if (should_print)
1141 {
1142 if (deprecated_post_add_symbol_hook)
1143 deprecated_post_add_symbol_hook ();
1144 else
1145 printf_unfiltered (_("done.\n"));
1146 }
1147
1148 /* We print some messages regardless of whether 'from_tty ||
1149 info_verbose' is true, so make sure they go out at the right
1150 time. */
1151 gdb_flush (gdb_stdout);
1152
1153 if (objfile->sf == NULL)
1154 {
1155 observer_notify_new_objfile (objfile);
1156 return objfile; /* No symbols. */
1157 }
1158
1159 new_symfile_objfile (objfile, add_flags);
1160
1161 observer_notify_new_objfile (objfile);
1162
1163 bfd_cache_close_all ();
1164 return (objfile);
1165 }
1166
1167 /* Add BFD as a separate debug file for OBJFILE. */
1168
1169 void
1170 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1171 {
1172 struct objfile *new_objfile;
1173 struct section_addr_info *sap;
1174 struct cleanup *my_cleanup;
1175
1176 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1177 because sections of BFD may not match sections of OBJFILE and because
1178 vma may have been modified by tools such as prelink. */
1179 sap = build_section_addr_info_from_objfile (objfile);
1180 my_cleanup = make_cleanup_free_section_addr_info (sap);
1181
1182 new_objfile = symbol_file_add_with_addrs
1183 (bfd, symfile_flags, sap,
1184 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1185 | OBJF_USERLOADED),
1186 objfile);
1187
1188 do_cleanups (my_cleanup);
1189 }
1190
1191 /* Process the symbol file ABFD, as either the main file or as a
1192 dynamically loaded file.
1193 See symbol_file_add_with_addrs's comments for details. */
1194
1195 struct objfile *
1196 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1197 struct section_addr_info *addrs,
1198 int flags, struct objfile *parent)
1199 {
1200 return symbol_file_add_with_addrs (abfd, add_flags, addrs, flags, parent);
1201 }
1202
1203 /* Process a symbol file, as either the main file or as a dynamically
1204 loaded file. See symbol_file_add_with_addrs's comments for details. */
1205
1206 struct objfile *
1207 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1208 int flags)
1209 {
1210 bfd *bfd = symfile_bfd_open (name);
1211 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1212 struct objfile *objf;
1213
1214 objf = symbol_file_add_from_bfd (bfd, add_flags, addrs, flags, NULL);
1215 do_cleanups (cleanup);
1216 return objf;
1217 }
1218
1219 /* Call symbol_file_add() with default values and update whatever is
1220 affected by the loading of a new main().
1221 Used when the file is supplied in the gdb command line
1222 and by some targets with special loading requirements.
1223 The auxiliary function, symbol_file_add_main_1(), has the flags
1224 argument for the switches that can only be specified in the symbol_file
1225 command itself. */
1226
1227 void
1228 symbol_file_add_main (char *args, int from_tty)
1229 {
1230 symbol_file_add_main_1 (args, from_tty, 0);
1231 }
1232
1233 static void
1234 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1235 {
1236 const int add_flags = (current_inferior ()->symfile_flags
1237 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1238
1239 symbol_file_add (args, add_flags, NULL, flags);
1240
1241 /* Getting new symbols may change our opinion about
1242 what is frameless. */
1243 reinit_frame_cache ();
1244
1245 if ((flags & SYMFILE_NO_READ) == 0)
1246 set_initial_language ();
1247 }
1248
1249 void
1250 symbol_file_clear (int from_tty)
1251 {
1252 if ((have_full_symbols () || have_partial_symbols ())
1253 && from_tty
1254 && (symfile_objfile
1255 ? !query (_("Discard symbol table from `%s'? "),
1256 symfile_objfile->name)
1257 : !query (_("Discard symbol table? "))))
1258 error (_("Not confirmed."));
1259
1260 /* solib descriptors may have handles to objfiles. Wipe them before their
1261 objfiles get stale by free_all_objfiles. */
1262 no_shared_libraries (NULL, from_tty);
1263
1264 free_all_objfiles ();
1265
1266 gdb_assert (symfile_objfile == NULL);
1267 if (from_tty)
1268 printf_unfiltered (_("No symbol file now.\n"));
1269 }
1270
1271 static int
1272 separate_debug_file_exists (const char *name, unsigned long crc,
1273 struct objfile *parent_objfile)
1274 {
1275 unsigned long file_crc;
1276 int file_crc_p;
1277 bfd *abfd;
1278 struct stat parent_stat, abfd_stat;
1279 int verified_as_different;
1280
1281 /* Find a separate debug info file as if symbols would be present in
1282 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1283 section can contain just the basename of PARENT_OBJFILE without any
1284 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1285 the separate debug infos with the same basename can exist. */
1286
1287 if (filename_cmp (name, parent_objfile->name) == 0)
1288 return 0;
1289
1290 abfd = gdb_bfd_open_maybe_remote (name);
1291
1292 if (!abfd)
1293 return 0;
1294
1295 /* Verify symlinks were not the cause of filename_cmp name difference above.
1296
1297 Some operating systems, e.g. Windows, do not provide a meaningful
1298 st_ino; they always set it to zero. (Windows does provide a
1299 meaningful st_dev.) Do not indicate a duplicate library in that
1300 case. While there is no guarantee that a system that provides
1301 meaningful inode numbers will never set st_ino to zero, this is
1302 merely an optimization, so we do not need to worry about false
1303 negatives. */
1304
1305 if (bfd_stat (abfd, &abfd_stat) == 0
1306 && abfd_stat.st_ino != 0
1307 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1308 {
1309 if (abfd_stat.st_dev == parent_stat.st_dev
1310 && abfd_stat.st_ino == parent_stat.st_ino)
1311 {
1312 gdb_bfd_unref (abfd);
1313 return 0;
1314 }
1315 verified_as_different = 1;
1316 }
1317 else
1318 verified_as_different = 0;
1319
1320 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
1321
1322 gdb_bfd_unref (abfd);
1323
1324 if (!file_crc_p)
1325 return 0;
1326
1327 if (crc != file_crc)
1328 {
1329 unsigned long parent_crc;
1330
1331 /* If one (or both) the files are accessed for example the via "remote:"
1332 gdbserver way it does not support the bfd_stat operation. Verify
1333 whether those two files are not the same manually. */
1334
1335 if (!verified_as_different)
1336 {
1337 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1338 return 0;
1339 }
1340
1341 if (verified_as_different || parent_crc != file_crc)
1342 warning (_("the debug information found in \"%s\""
1343 " does not match \"%s\" (CRC mismatch).\n"),
1344 name, parent_objfile->name);
1345
1346 return 0;
1347 }
1348
1349 return 1;
1350 }
1351
1352 char *debug_file_directory = NULL;
1353 static void
1354 show_debug_file_directory (struct ui_file *file, int from_tty,
1355 struct cmd_list_element *c, const char *value)
1356 {
1357 fprintf_filtered (file,
1358 _("The directory where separate debug "
1359 "symbols are searched for is \"%s\".\n"),
1360 value);
1361 }
1362
1363 #if ! defined (DEBUG_SUBDIRECTORY)
1364 #define DEBUG_SUBDIRECTORY ".debug"
1365 #endif
1366
1367 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1368 where the original file resides (may not be the same as
1369 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1370 looking for. CANON_DIR is the "realpath" form of DIR.
1371 DIR must contain a trailing '/'.
1372 Returns the path of the file with separate debug info, of NULL. */
1373
1374 static char *
1375 find_separate_debug_file (const char *dir,
1376 const char *canon_dir,
1377 const char *debuglink,
1378 unsigned long crc32, struct objfile *objfile)
1379 {
1380 char *debugdir;
1381 char *debugfile;
1382 int i;
1383 VEC (char_ptr) *debugdir_vec;
1384 struct cleanup *back_to;
1385 int ix;
1386
1387 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1388 i = strlen (dir);
1389 if (canon_dir != NULL && strlen (canon_dir) > i)
1390 i = strlen (canon_dir);
1391
1392 debugfile = xmalloc (strlen (debug_file_directory) + 1
1393 + i
1394 + strlen (DEBUG_SUBDIRECTORY)
1395 + strlen ("/")
1396 + strlen (debuglink)
1397 + 1);
1398
1399 /* First try in the same directory as the original file. */
1400 strcpy (debugfile, dir);
1401 strcat (debugfile, debuglink);
1402
1403 if (separate_debug_file_exists (debugfile, crc32, objfile))
1404 return debugfile;
1405
1406 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1407 strcpy (debugfile, dir);
1408 strcat (debugfile, DEBUG_SUBDIRECTORY);
1409 strcat (debugfile, "/");
1410 strcat (debugfile, debuglink);
1411
1412 if (separate_debug_file_exists (debugfile, crc32, objfile))
1413 return debugfile;
1414
1415 /* Then try in the global debugfile directories.
1416
1417 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1418 cause "/..." lookups. */
1419
1420 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1421 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1422
1423 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1424 {
1425 strcpy (debugfile, debugdir);
1426 strcat (debugfile, "/");
1427 strcat (debugfile, dir);
1428 strcat (debugfile, debuglink);
1429
1430 if (separate_debug_file_exists (debugfile, crc32, objfile))
1431 {
1432 do_cleanups (back_to);
1433 return debugfile;
1434 }
1435
1436 /* If the file is in the sysroot, try using its base path in the
1437 global debugfile directory. */
1438 if (canon_dir != NULL
1439 && filename_ncmp (canon_dir, gdb_sysroot,
1440 strlen (gdb_sysroot)) == 0
1441 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1442 {
1443 strcpy (debugfile, debugdir);
1444 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1445 strcat (debugfile, "/");
1446 strcat (debugfile, debuglink);
1447
1448 if (separate_debug_file_exists (debugfile, crc32, objfile))
1449 {
1450 do_cleanups (back_to);
1451 return debugfile;
1452 }
1453 }
1454 }
1455
1456 do_cleanups (back_to);
1457 xfree (debugfile);
1458 return NULL;
1459 }
1460
1461 /* Modify PATH to contain only "[/]directory/" part of PATH.
1462 If there were no directory separators in PATH, PATH will be empty
1463 string on return. */
1464
1465 static void
1466 terminate_after_last_dir_separator (char *path)
1467 {
1468 int i;
1469
1470 /* Strip off the final filename part, leaving the directory name,
1471 followed by a slash. The directory can be relative or absolute. */
1472 for (i = strlen(path) - 1; i >= 0; i--)
1473 if (IS_DIR_SEPARATOR (path[i]))
1474 break;
1475
1476 /* If I is -1 then no directory is present there and DIR will be "". */
1477 path[i + 1] = '\0';
1478 }
1479
1480 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1481 Returns pathname, or NULL. */
1482
1483 char *
1484 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1485 {
1486 char *debuglink;
1487 char *dir, *canon_dir;
1488 char *debugfile;
1489 unsigned long crc32;
1490 struct cleanup *cleanups;
1491
1492 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1493
1494 if (debuglink == NULL)
1495 {
1496 /* There's no separate debug info, hence there's no way we could
1497 load it => no warning. */
1498 return NULL;
1499 }
1500
1501 cleanups = make_cleanup (xfree, debuglink);
1502 dir = xstrdup (objfile->name);
1503 make_cleanup (xfree, dir);
1504 terminate_after_last_dir_separator (dir);
1505 canon_dir = lrealpath (dir);
1506
1507 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1508 crc32, objfile);
1509 xfree (canon_dir);
1510
1511 if (debugfile == NULL)
1512 {
1513 #ifdef HAVE_LSTAT
1514 /* For PR gdb/9538, try again with realpath (if different from the
1515 original). */
1516
1517 struct stat st_buf;
1518
1519 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1520 {
1521 char *symlink_dir;
1522
1523 symlink_dir = lrealpath (objfile->name);
1524 if (symlink_dir != NULL)
1525 {
1526 make_cleanup (xfree, symlink_dir);
1527 terminate_after_last_dir_separator (symlink_dir);
1528 if (strcmp (dir, symlink_dir) != 0)
1529 {
1530 /* Different directory, so try using it. */
1531 debugfile = find_separate_debug_file (symlink_dir,
1532 symlink_dir,
1533 debuglink,
1534 crc32,
1535 objfile);
1536 }
1537 }
1538 }
1539 #endif /* HAVE_LSTAT */
1540 }
1541
1542 do_cleanups (cleanups);
1543 return debugfile;
1544 }
1545
1546 /* This is the symbol-file command. Read the file, analyze its
1547 symbols, and add a struct symtab to a symtab list. The syntax of
1548 the command is rather bizarre:
1549
1550 1. The function buildargv implements various quoting conventions
1551 which are undocumented and have little or nothing in common with
1552 the way things are quoted (or not quoted) elsewhere in GDB.
1553
1554 2. Options are used, which are not generally used in GDB (perhaps
1555 "set mapped on", "set readnow on" would be better)
1556
1557 3. The order of options matters, which is contrary to GNU
1558 conventions (because it is confusing and inconvenient). */
1559
1560 void
1561 symbol_file_command (char *args, int from_tty)
1562 {
1563 dont_repeat ();
1564
1565 if (args == NULL)
1566 {
1567 symbol_file_clear (from_tty);
1568 }
1569 else
1570 {
1571 char **argv = gdb_buildargv (args);
1572 int flags = OBJF_USERLOADED;
1573 struct cleanup *cleanups;
1574 char *name = NULL;
1575
1576 cleanups = make_cleanup_freeargv (argv);
1577 while (*argv != NULL)
1578 {
1579 if (strcmp (*argv, "-readnow") == 0)
1580 flags |= OBJF_READNOW;
1581 else if (**argv == '-')
1582 error (_("unknown option `%s'"), *argv);
1583 else
1584 {
1585 symbol_file_add_main_1 (*argv, from_tty, flags);
1586 name = *argv;
1587 }
1588
1589 argv++;
1590 }
1591
1592 if (name == NULL)
1593 error (_("no symbol file name was specified"));
1594
1595 do_cleanups (cleanups);
1596 }
1597 }
1598
1599 /* Set the initial language.
1600
1601 FIXME: A better solution would be to record the language in the
1602 psymtab when reading partial symbols, and then use it (if known) to
1603 set the language. This would be a win for formats that encode the
1604 language in an easily discoverable place, such as DWARF. For
1605 stabs, we can jump through hoops looking for specially named
1606 symbols or try to intuit the language from the specific type of
1607 stabs we find, but we can't do that until later when we read in
1608 full symbols. */
1609
1610 void
1611 set_initial_language (void)
1612 {
1613 enum language lang = language_unknown;
1614
1615 if (language_of_main != language_unknown)
1616 lang = language_of_main;
1617 else
1618 {
1619 const char *filename;
1620
1621 filename = find_main_filename ();
1622 if (filename != NULL)
1623 lang = deduce_language_from_filename (filename);
1624 }
1625
1626 if (lang == language_unknown)
1627 {
1628 /* Make C the default language */
1629 lang = language_c;
1630 }
1631
1632 set_language (lang);
1633 expected_language = current_language; /* Don't warn the user. */
1634 }
1635
1636 /* If NAME is a remote name open the file using remote protocol, otherwise
1637 open it normally. Returns a new reference to the BFD. On error,
1638 returns NULL with the BFD error set. */
1639
1640 bfd *
1641 gdb_bfd_open_maybe_remote (const char *name)
1642 {
1643 bfd *result;
1644
1645 if (remote_filename_p (name))
1646 result = remote_bfd_open (name, gnutarget);
1647 else
1648 result = gdb_bfd_open (name, gnutarget, -1);
1649
1650 return result;
1651 }
1652
1653 /* Open the file specified by NAME and hand it off to BFD for
1654 preliminary analysis. Return a newly initialized bfd *, which
1655 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1656 absolute). In case of trouble, error() is called. */
1657
1658 bfd *
1659 symfile_bfd_open (char *name)
1660 {
1661 bfd *sym_bfd;
1662 int desc;
1663 char *absolute_name;
1664 struct cleanup *back_to;
1665
1666 if (remote_filename_p (name))
1667 {
1668 sym_bfd = remote_bfd_open (name, gnutarget);
1669 if (!sym_bfd)
1670 error (_("`%s': can't open to read symbols: %s."), name,
1671 bfd_errmsg (bfd_get_error ()));
1672
1673 if (!bfd_check_format (sym_bfd, bfd_object))
1674 {
1675 make_cleanup_bfd_unref (sym_bfd);
1676 error (_("`%s': can't read symbols: %s."), name,
1677 bfd_errmsg (bfd_get_error ()));
1678 }
1679
1680 return sym_bfd;
1681 }
1682
1683 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1684
1685 /* Look down path for it, allocate 2nd new malloc'd copy. */
1686 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1687 O_RDONLY | O_BINARY, &absolute_name);
1688 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1689 if (desc < 0)
1690 {
1691 char *exename = alloca (strlen (name) + 5);
1692
1693 strcat (strcpy (exename, name), ".exe");
1694 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1695 O_RDONLY | O_BINARY, &absolute_name);
1696 }
1697 #endif
1698 if (desc < 0)
1699 {
1700 make_cleanup (xfree, name);
1701 perror_with_name (name);
1702 }
1703
1704 xfree (name);
1705 name = absolute_name;
1706 back_to = make_cleanup (xfree, name);
1707
1708 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1709 if (!sym_bfd)
1710 error (_("`%s': can't open to read symbols: %s."), name,
1711 bfd_errmsg (bfd_get_error ()));
1712 bfd_set_cacheable (sym_bfd, 1);
1713
1714 if (!bfd_check_format (sym_bfd, bfd_object))
1715 {
1716 make_cleanup_bfd_unref (sym_bfd);
1717 error (_("`%s': can't read symbols: %s."), name,
1718 bfd_errmsg (bfd_get_error ()));
1719 }
1720
1721 do_cleanups (back_to);
1722
1723 return sym_bfd;
1724 }
1725
1726 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1727 the section was not found. */
1728
1729 int
1730 get_section_index (struct objfile *objfile, char *section_name)
1731 {
1732 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1733
1734 if (sect)
1735 return sect->index;
1736 else
1737 return -1;
1738 }
1739
1740 /* Link SF into the global symtab_fns list. Called on startup by the
1741 _initialize routine in each object file format reader, to register
1742 information about each format the reader is prepared to handle. */
1743
1744 void
1745 add_symtab_fns (const struct sym_fns *sf)
1746 {
1747 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1748 }
1749
1750 /* Initialize OBJFILE to read symbols from its associated BFD. It
1751 either returns or calls error(). The result is an initialized
1752 struct sym_fns in the objfile structure, that contains cached
1753 information about the symbol file. */
1754
1755 static const struct sym_fns *
1756 find_sym_fns (bfd *abfd)
1757 {
1758 const struct sym_fns *sf;
1759 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1760 int i;
1761
1762 if (our_flavour == bfd_target_srec_flavour
1763 || our_flavour == bfd_target_ihex_flavour
1764 || our_flavour == bfd_target_tekhex_flavour)
1765 return NULL; /* No symbols. */
1766
1767 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1768 if (our_flavour == sf->sym_flavour)
1769 return sf;
1770
1771 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1772 bfd_get_target (abfd));
1773 }
1774 \f
1775
1776 /* This function runs the load command of our current target. */
1777
1778 static void
1779 load_command (char *arg, int from_tty)
1780 {
1781 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1782
1783 dont_repeat ();
1784
1785 /* The user might be reloading because the binary has changed. Take
1786 this opportunity to check. */
1787 reopen_exec_file ();
1788 reread_symbols ();
1789
1790 if (arg == NULL)
1791 {
1792 char *parg;
1793 int count = 0;
1794
1795 parg = arg = get_exec_file (1);
1796
1797 /* Count how many \ " ' tab space there are in the name. */
1798 while ((parg = strpbrk (parg, "\\\"'\t ")))
1799 {
1800 parg++;
1801 count++;
1802 }
1803
1804 if (count)
1805 {
1806 /* We need to quote this string so buildargv can pull it apart. */
1807 char *temp = xmalloc (strlen (arg) + count + 1 );
1808 char *ptemp = temp;
1809 char *prev;
1810
1811 make_cleanup (xfree, temp);
1812
1813 prev = parg = arg;
1814 while ((parg = strpbrk (parg, "\\\"'\t ")))
1815 {
1816 strncpy (ptemp, prev, parg - prev);
1817 ptemp += parg - prev;
1818 prev = parg++;
1819 *ptemp++ = '\\';
1820 }
1821 strcpy (ptemp, prev);
1822
1823 arg = temp;
1824 }
1825 }
1826
1827 target_load (arg, from_tty);
1828
1829 /* After re-loading the executable, we don't really know which
1830 overlays are mapped any more. */
1831 overlay_cache_invalid = 1;
1832
1833 do_cleanups (cleanup);
1834 }
1835
1836 /* This version of "load" should be usable for any target. Currently
1837 it is just used for remote targets, not inftarg.c or core files,
1838 on the theory that only in that case is it useful.
1839
1840 Avoiding xmodem and the like seems like a win (a) because we don't have
1841 to worry about finding it, and (b) On VMS, fork() is very slow and so
1842 we don't want to run a subprocess. On the other hand, I'm not sure how
1843 performance compares. */
1844
1845 static int validate_download = 0;
1846
1847 /* Callback service function for generic_load (bfd_map_over_sections). */
1848
1849 static void
1850 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1851 {
1852 bfd_size_type *sum = data;
1853
1854 *sum += bfd_get_section_size (asec);
1855 }
1856
1857 /* Opaque data for load_section_callback. */
1858 struct load_section_data {
1859 CORE_ADDR load_offset;
1860 struct load_progress_data *progress_data;
1861 VEC(memory_write_request_s) *requests;
1862 };
1863
1864 /* Opaque data for load_progress. */
1865 struct load_progress_data {
1866 /* Cumulative data. */
1867 unsigned long write_count;
1868 unsigned long data_count;
1869 bfd_size_type total_size;
1870 };
1871
1872 /* Opaque data for load_progress for a single section. */
1873 struct load_progress_section_data {
1874 struct load_progress_data *cumulative;
1875
1876 /* Per-section data. */
1877 const char *section_name;
1878 ULONGEST section_sent;
1879 ULONGEST section_size;
1880 CORE_ADDR lma;
1881 gdb_byte *buffer;
1882 };
1883
1884 /* Target write callback routine for progress reporting. */
1885
1886 static void
1887 load_progress (ULONGEST bytes, void *untyped_arg)
1888 {
1889 struct load_progress_section_data *args = untyped_arg;
1890 struct load_progress_data *totals;
1891
1892 if (args == NULL)
1893 /* Writing padding data. No easy way to get at the cumulative
1894 stats, so just ignore this. */
1895 return;
1896
1897 totals = args->cumulative;
1898
1899 if (bytes == 0 && args->section_sent == 0)
1900 {
1901 /* The write is just starting. Let the user know we've started
1902 this section. */
1903 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1904 args->section_name, hex_string (args->section_size),
1905 paddress (target_gdbarch (), args->lma));
1906 return;
1907 }
1908
1909 if (validate_download)
1910 {
1911 /* Broken memories and broken monitors manifest themselves here
1912 when bring new computers to life. This doubles already slow
1913 downloads. */
1914 /* NOTE: cagney/1999-10-18: A more efficient implementation
1915 might add a verify_memory() method to the target vector and
1916 then use that. remote.c could implement that method using
1917 the ``qCRC'' packet. */
1918 gdb_byte *check = xmalloc (bytes);
1919 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1920
1921 if (target_read_memory (args->lma, check, bytes) != 0)
1922 error (_("Download verify read failed at %s"),
1923 paddress (target_gdbarch (), args->lma));
1924 if (memcmp (args->buffer, check, bytes) != 0)
1925 error (_("Download verify compare failed at %s"),
1926 paddress (target_gdbarch (), args->lma));
1927 do_cleanups (verify_cleanups);
1928 }
1929 totals->data_count += bytes;
1930 args->lma += bytes;
1931 args->buffer += bytes;
1932 totals->write_count += 1;
1933 args->section_sent += bytes;
1934 if (check_quit_flag ()
1935 || (deprecated_ui_load_progress_hook != NULL
1936 && deprecated_ui_load_progress_hook (args->section_name,
1937 args->section_sent)))
1938 error (_("Canceled the download"));
1939
1940 if (deprecated_show_load_progress != NULL)
1941 deprecated_show_load_progress (args->section_name,
1942 args->section_sent,
1943 args->section_size,
1944 totals->data_count,
1945 totals->total_size);
1946 }
1947
1948 /* Callback service function for generic_load (bfd_map_over_sections). */
1949
1950 static void
1951 load_section_callback (bfd *abfd, asection *asec, void *data)
1952 {
1953 struct memory_write_request *new_request;
1954 struct load_section_data *args = data;
1955 struct load_progress_section_data *section_data;
1956 bfd_size_type size = bfd_get_section_size (asec);
1957 gdb_byte *buffer;
1958 const char *sect_name = bfd_get_section_name (abfd, asec);
1959
1960 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1961 return;
1962
1963 if (size == 0)
1964 return;
1965
1966 new_request = VEC_safe_push (memory_write_request_s,
1967 args->requests, NULL);
1968 memset (new_request, 0, sizeof (struct memory_write_request));
1969 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1970 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1971 new_request->end = new_request->begin + size; /* FIXME Should size
1972 be in instead? */
1973 new_request->data = xmalloc (size);
1974 new_request->baton = section_data;
1975
1976 buffer = new_request->data;
1977
1978 section_data->cumulative = args->progress_data;
1979 section_data->section_name = sect_name;
1980 section_data->section_size = size;
1981 section_data->lma = new_request->begin;
1982 section_data->buffer = buffer;
1983
1984 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1985 }
1986
1987 /* Clean up an entire memory request vector, including load
1988 data and progress records. */
1989
1990 static void
1991 clear_memory_write_data (void *arg)
1992 {
1993 VEC(memory_write_request_s) **vec_p = arg;
1994 VEC(memory_write_request_s) *vec = *vec_p;
1995 int i;
1996 struct memory_write_request *mr;
1997
1998 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1999 {
2000 xfree (mr->data);
2001 xfree (mr->baton);
2002 }
2003 VEC_free (memory_write_request_s, vec);
2004 }
2005
2006 void
2007 generic_load (char *args, int from_tty)
2008 {
2009 bfd *loadfile_bfd;
2010 struct timeval start_time, end_time;
2011 char *filename;
2012 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2013 struct load_section_data cbdata;
2014 struct load_progress_data total_progress;
2015 struct ui_out *uiout = current_uiout;
2016
2017 CORE_ADDR entry;
2018 char **argv;
2019
2020 memset (&cbdata, 0, sizeof (cbdata));
2021 memset (&total_progress, 0, sizeof (total_progress));
2022 cbdata.progress_data = &total_progress;
2023
2024 make_cleanup (clear_memory_write_data, &cbdata.requests);
2025
2026 if (args == NULL)
2027 error_no_arg (_("file to load"));
2028
2029 argv = gdb_buildargv (args);
2030 make_cleanup_freeargv (argv);
2031
2032 filename = tilde_expand (argv[0]);
2033 make_cleanup (xfree, filename);
2034
2035 if (argv[1] != NULL)
2036 {
2037 const char *endptr;
2038
2039 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2040
2041 /* If the last word was not a valid number then
2042 treat it as a file name with spaces in. */
2043 if (argv[1] == endptr)
2044 error (_("Invalid download offset:%s."), argv[1]);
2045
2046 if (argv[2] != NULL)
2047 error (_("Too many parameters."));
2048 }
2049
2050 /* Open the file for loading. */
2051 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2052 if (loadfile_bfd == NULL)
2053 {
2054 perror_with_name (filename);
2055 return;
2056 }
2057
2058 make_cleanup_bfd_unref (loadfile_bfd);
2059
2060 if (!bfd_check_format (loadfile_bfd, bfd_object))
2061 {
2062 error (_("\"%s\" is not an object file: %s"), filename,
2063 bfd_errmsg (bfd_get_error ()));
2064 }
2065
2066 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2067 (void *) &total_progress.total_size);
2068
2069 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2070
2071 gettimeofday (&start_time, NULL);
2072
2073 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2074 load_progress) != 0)
2075 error (_("Load failed"));
2076
2077 gettimeofday (&end_time, NULL);
2078
2079 entry = bfd_get_start_address (loadfile_bfd);
2080 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2081 ui_out_text (uiout, "Start address ");
2082 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2083 ui_out_text (uiout, ", load size ");
2084 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2085 ui_out_text (uiout, "\n");
2086 /* We were doing this in remote-mips.c, I suspect it is right
2087 for other targets too. */
2088 regcache_write_pc (get_current_regcache (), entry);
2089
2090 /* Reset breakpoints, now that we have changed the load image. For
2091 instance, breakpoints may have been set (or reset, by
2092 post_create_inferior) while connected to the target but before we
2093 loaded the program. In that case, the prologue analyzer could
2094 have read instructions from the target to find the right
2095 breakpoint locations. Loading has changed the contents of that
2096 memory. */
2097
2098 breakpoint_re_set ();
2099
2100 /* FIXME: are we supposed to call symbol_file_add or not? According
2101 to a comment from remote-mips.c (where a call to symbol_file_add
2102 was commented out), making the call confuses GDB if more than one
2103 file is loaded in. Some targets do (e.g., remote-vx.c) but
2104 others don't (or didn't - perhaps they have all been deleted). */
2105
2106 print_transfer_performance (gdb_stdout, total_progress.data_count,
2107 total_progress.write_count,
2108 &start_time, &end_time);
2109
2110 do_cleanups (old_cleanups);
2111 }
2112
2113 /* Report how fast the transfer went. */
2114
2115 void
2116 print_transfer_performance (struct ui_file *stream,
2117 unsigned long data_count,
2118 unsigned long write_count,
2119 const struct timeval *start_time,
2120 const struct timeval *end_time)
2121 {
2122 ULONGEST time_count;
2123 struct ui_out *uiout = current_uiout;
2124
2125 /* Compute the elapsed time in milliseconds, as a tradeoff between
2126 accuracy and overflow. */
2127 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2128 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2129
2130 ui_out_text (uiout, "Transfer rate: ");
2131 if (time_count > 0)
2132 {
2133 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2134
2135 if (ui_out_is_mi_like_p (uiout))
2136 {
2137 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2138 ui_out_text (uiout, " bits/sec");
2139 }
2140 else if (rate < 1024)
2141 {
2142 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2143 ui_out_text (uiout, " bytes/sec");
2144 }
2145 else
2146 {
2147 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2148 ui_out_text (uiout, " KB/sec");
2149 }
2150 }
2151 else
2152 {
2153 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2154 ui_out_text (uiout, " bits in <1 sec");
2155 }
2156 if (write_count > 0)
2157 {
2158 ui_out_text (uiout, ", ");
2159 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2160 ui_out_text (uiout, " bytes/write");
2161 }
2162 ui_out_text (uiout, ".\n");
2163 }
2164
2165 /* This function allows the addition of incrementally linked object files.
2166 It does not modify any state in the target, only in the debugger. */
2167 /* Note: ezannoni 2000-04-13 This function/command used to have a
2168 special case syntax for the rombug target (Rombug is the boot
2169 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2170 rombug case, the user doesn't need to supply a text address,
2171 instead a call to target_link() (in target.c) would supply the
2172 value to use. We are now discontinuing this type of ad hoc syntax. */
2173
2174 static void
2175 add_symbol_file_command (char *args, int from_tty)
2176 {
2177 struct gdbarch *gdbarch = get_current_arch ();
2178 char *filename = NULL;
2179 int flags = OBJF_USERLOADED;
2180 char *arg;
2181 int section_index = 0;
2182 int argcnt = 0;
2183 int sec_num = 0;
2184 int i;
2185 int expecting_sec_name = 0;
2186 int expecting_sec_addr = 0;
2187 char **argv;
2188
2189 struct sect_opt
2190 {
2191 char *name;
2192 char *value;
2193 };
2194
2195 struct section_addr_info *section_addrs;
2196 struct sect_opt *sect_opts = NULL;
2197 size_t num_sect_opts = 0;
2198 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2199
2200 num_sect_opts = 16;
2201 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2202 * sizeof (struct sect_opt));
2203
2204 dont_repeat ();
2205
2206 if (args == NULL)
2207 error (_("add-symbol-file takes a file name and an address"));
2208
2209 argv = gdb_buildargv (args);
2210 make_cleanup_freeargv (argv);
2211
2212 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2213 {
2214 /* Process the argument. */
2215 if (argcnt == 0)
2216 {
2217 /* The first argument is the file name. */
2218 filename = tilde_expand (arg);
2219 make_cleanup (xfree, filename);
2220 }
2221 else
2222 if (argcnt == 1)
2223 {
2224 /* The second argument is always the text address at which
2225 to load the program. */
2226 sect_opts[section_index].name = ".text";
2227 sect_opts[section_index].value = arg;
2228 if (++section_index >= num_sect_opts)
2229 {
2230 num_sect_opts *= 2;
2231 sect_opts = ((struct sect_opt *)
2232 xrealloc (sect_opts,
2233 num_sect_opts
2234 * sizeof (struct sect_opt)));
2235 }
2236 }
2237 else
2238 {
2239 /* It's an option (starting with '-') or it's an argument
2240 to an option. */
2241
2242 if (*arg == '-')
2243 {
2244 if (strcmp (arg, "-readnow") == 0)
2245 flags |= OBJF_READNOW;
2246 else if (strcmp (arg, "-s") == 0)
2247 {
2248 expecting_sec_name = 1;
2249 expecting_sec_addr = 1;
2250 }
2251 }
2252 else
2253 {
2254 if (expecting_sec_name)
2255 {
2256 sect_opts[section_index].name = arg;
2257 expecting_sec_name = 0;
2258 }
2259 else
2260 if (expecting_sec_addr)
2261 {
2262 sect_opts[section_index].value = arg;
2263 expecting_sec_addr = 0;
2264 if (++section_index >= num_sect_opts)
2265 {
2266 num_sect_opts *= 2;
2267 sect_opts = ((struct sect_opt *)
2268 xrealloc (sect_opts,
2269 num_sect_opts
2270 * sizeof (struct sect_opt)));
2271 }
2272 }
2273 else
2274 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2275 " [-readnow] [-s <secname> <addr>]*"));
2276 }
2277 }
2278 }
2279
2280 /* This command takes at least two arguments. The first one is a
2281 filename, and the second is the address where this file has been
2282 loaded. Abort now if this address hasn't been provided by the
2283 user. */
2284 if (section_index < 1)
2285 error (_("The address where %s has been loaded is missing"), filename);
2286
2287 /* Print the prompt for the query below. And save the arguments into
2288 a sect_addr_info structure to be passed around to other
2289 functions. We have to split this up into separate print
2290 statements because hex_string returns a local static
2291 string. */
2292
2293 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2294 section_addrs = alloc_section_addr_info (section_index);
2295 make_cleanup (xfree, section_addrs);
2296 for (i = 0; i < section_index; i++)
2297 {
2298 CORE_ADDR addr;
2299 char *val = sect_opts[i].value;
2300 char *sec = sect_opts[i].name;
2301
2302 addr = parse_and_eval_address (val);
2303
2304 /* Here we store the section offsets in the order they were
2305 entered on the command line. */
2306 section_addrs->other[sec_num].name = sec;
2307 section_addrs->other[sec_num].addr = addr;
2308 printf_unfiltered ("\t%s_addr = %s\n", sec,
2309 paddress (gdbarch, addr));
2310 sec_num++;
2311
2312 /* The object's sections are initialized when a
2313 call is made to build_objfile_section_table (objfile).
2314 This happens in reread_symbols.
2315 At this point, we don't know what file type this is,
2316 so we can't determine what section names are valid. */
2317 }
2318 section_addrs->num_sections = sec_num;
2319
2320 if (from_tty && (!query ("%s", "")))
2321 error (_("Not confirmed."));
2322
2323 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2324 section_addrs, flags);
2325
2326 /* Getting new symbols may change our opinion about what is
2327 frameless. */
2328 reinit_frame_cache ();
2329 do_cleanups (my_cleanups);
2330 }
2331 \f
2332
2333 typedef struct objfile *objfilep;
2334
2335 DEF_VEC_P (objfilep);
2336
2337 /* Re-read symbols if a symbol-file has changed. */
2338
2339 void
2340 reread_symbols (void)
2341 {
2342 struct objfile *objfile;
2343 long new_modtime;
2344 struct stat new_statbuf;
2345 int res;
2346 VEC (objfilep) *new_objfiles = NULL;
2347 struct cleanup *all_cleanups;
2348
2349 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2350
2351 /* With the addition of shared libraries, this should be modified,
2352 the load time should be saved in the partial symbol tables, since
2353 different tables may come from different source files. FIXME.
2354 This routine should then walk down each partial symbol table
2355 and see if the symbol table that it originates from has been changed. */
2356
2357 for (objfile = object_files; objfile; objfile = objfile->next)
2358 {
2359 /* solib-sunos.c creates one objfile with obfd. */
2360 if (objfile->obfd == NULL)
2361 continue;
2362
2363 /* Separate debug objfiles are handled in the main objfile. */
2364 if (objfile->separate_debug_objfile_backlink)
2365 continue;
2366
2367 /* If this object is from an archive (what you usually create with
2368 `ar', often called a `static library' on most systems, though
2369 a `shared library' on AIX is also an archive), then you should
2370 stat on the archive name, not member name. */
2371 if (objfile->obfd->my_archive)
2372 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2373 else
2374 res = stat (objfile->name, &new_statbuf);
2375 if (res != 0)
2376 {
2377 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2378 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2379 objfile->name);
2380 continue;
2381 }
2382 new_modtime = new_statbuf.st_mtime;
2383 if (new_modtime != objfile->mtime)
2384 {
2385 struct cleanup *old_cleanups;
2386 struct section_offsets *offsets;
2387 int num_offsets;
2388 char *obfd_filename;
2389
2390 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2391 objfile->name);
2392
2393 /* There are various functions like symbol_file_add,
2394 symfile_bfd_open, syms_from_objfile, etc., which might
2395 appear to do what we want. But they have various other
2396 effects which we *don't* want. So we just do stuff
2397 ourselves. We don't worry about mapped files (for one thing,
2398 any mapped file will be out of date). */
2399
2400 /* If we get an error, blow away this objfile (not sure if
2401 that is the correct response for things like shared
2402 libraries). */
2403 old_cleanups = make_cleanup_free_objfile (objfile);
2404 /* We need to do this whenever any symbols go away. */
2405 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2406
2407 if (exec_bfd != NULL
2408 && filename_cmp (bfd_get_filename (objfile->obfd),
2409 bfd_get_filename (exec_bfd)) == 0)
2410 {
2411 /* Reload EXEC_BFD without asking anything. */
2412
2413 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2414 }
2415
2416 /* Keep the calls order approx. the same as in free_objfile. */
2417
2418 /* Free the separate debug objfiles. It will be
2419 automatically recreated by sym_read. */
2420 free_objfile_separate_debug (objfile);
2421
2422 /* Remove any references to this objfile in the global
2423 value lists. */
2424 preserve_values (objfile);
2425
2426 /* Nuke all the state that we will re-read. Much of the following
2427 code which sets things to NULL really is necessary to tell
2428 other parts of GDB that there is nothing currently there.
2429
2430 Try to keep the freeing order compatible with free_objfile. */
2431
2432 if (objfile->sf != NULL)
2433 {
2434 (*objfile->sf->sym_finish) (objfile);
2435 }
2436
2437 clear_objfile_data (objfile);
2438
2439 /* Clean up any state BFD has sitting around. */
2440 {
2441 struct bfd *obfd = objfile->obfd;
2442
2443 obfd_filename = bfd_get_filename (objfile->obfd);
2444 /* Open the new BFD before freeing the old one, so that
2445 the filename remains live. */
2446 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
2447 if (objfile->obfd == NULL)
2448 {
2449 /* We have to make a cleanup and error here, rather
2450 than erroring later, because once we unref OBFD,
2451 OBFD_FILENAME will be freed. */
2452 make_cleanup_bfd_unref (obfd);
2453 error (_("Can't open %s to read symbols."), obfd_filename);
2454 }
2455 gdb_bfd_unref (obfd);
2456 }
2457
2458 objfile->name = bfd_get_filename (objfile->obfd);
2459 /* bfd_openr sets cacheable to true, which is what we want. */
2460 if (!bfd_check_format (objfile->obfd, bfd_object))
2461 error (_("Can't read symbols from %s: %s."), objfile->name,
2462 bfd_errmsg (bfd_get_error ()));
2463
2464 /* Save the offsets, we will nuke them with the rest of the
2465 objfile_obstack. */
2466 num_offsets = objfile->num_sections;
2467 offsets = ((struct section_offsets *)
2468 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2469 memcpy (offsets, objfile->section_offsets,
2470 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2471
2472 /* FIXME: Do we have to free a whole linked list, or is this
2473 enough? */
2474 if (objfile->global_psymbols.list)
2475 xfree (objfile->global_psymbols.list);
2476 memset (&objfile->global_psymbols, 0,
2477 sizeof (objfile->global_psymbols));
2478 if (objfile->static_psymbols.list)
2479 xfree (objfile->static_psymbols.list);
2480 memset (&objfile->static_psymbols, 0,
2481 sizeof (objfile->static_psymbols));
2482
2483 /* Free the obstacks for non-reusable objfiles. */
2484 psymbol_bcache_free (objfile->psymbol_cache);
2485 objfile->psymbol_cache = psymbol_bcache_init ();
2486 if (objfile->demangled_names_hash != NULL)
2487 {
2488 htab_delete (objfile->demangled_names_hash);
2489 objfile->demangled_names_hash = NULL;
2490 }
2491 obstack_free (&objfile->objfile_obstack, 0);
2492 objfile->sections = NULL;
2493 objfile->symtabs = NULL;
2494 objfile->psymtabs = NULL;
2495 objfile->psymtabs_addrmap = NULL;
2496 objfile->free_psymtabs = NULL;
2497 objfile->template_symbols = NULL;
2498 objfile->msymbols = NULL;
2499 objfile->minimal_symbol_count = 0;
2500 memset (&objfile->msymbol_hash, 0,
2501 sizeof (objfile->msymbol_hash));
2502 memset (&objfile->msymbol_demangled_hash, 0,
2503 sizeof (objfile->msymbol_demangled_hash));
2504
2505 set_objfile_per_bfd (objfile);
2506
2507 /* obstack_init also initializes the obstack so it is
2508 empty. We could use obstack_specify_allocation but
2509 gdb_obstack.h specifies the alloc/dealloc functions. */
2510 obstack_init (&objfile->objfile_obstack);
2511 build_objfile_section_table (objfile);
2512 terminate_minimal_symbol_table (objfile);
2513
2514 /* We use the same section offsets as from last time. I'm not
2515 sure whether that is always correct for shared libraries. */
2516 objfile->section_offsets = (struct section_offsets *)
2517 obstack_alloc (&objfile->objfile_obstack,
2518 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2519 memcpy (objfile->section_offsets, offsets,
2520 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2521 objfile->num_sections = num_offsets;
2522
2523 /* What the hell is sym_new_init for, anyway? The concept of
2524 distinguishing between the main file and additional files
2525 in this way seems rather dubious. */
2526 if (objfile == symfile_objfile)
2527 {
2528 (*objfile->sf->sym_new_init) (objfile);
2529 }
2530
2531 (*objfile->sf->sym_init) (objfile);
2532 clear_complaints (&symfile_complaints, 1, 1);
2533
2534 objfile->flags &= ~OBJF_PSYMTABS_READ;
2535 read_symbols (objfile, 0);
2536
2537 if (!objfile_has_symbols (objfile))
2538 {
2539 wrap_here ("");
2540 printf_unfiltered (_("(no debugging symbols found)\n"));
2541 wrap_here ("");
2542 }
2543
2544 /* We're done reading the symbol file; finish off complaints. */
2545 clear_complaints (&symfile_complaints, 0, 1);
2546
2547 /* Getting new symbols may change our opinion about what is
2548 frameless. */
2549
2550 reinit_frame_cache ();
2551
2552 /* Discard cleanups as symbol reading was successful. */
2553 discard_cleanups (old_cleanups);
2554
2555 /* If the mtime has changed between the time we set new_modtime
2556 and now, we *want* this to be out of date, so don't call stat
2557 again now. */
2558 objfile->mtime = new_modtime;
2559 init_entry_point_info (objfile);
2560
2561 VEC_safe_push (objfilep, new_objfiles, objfile);
2562 }
2563 }
2564
2565 if (new_objfiles)
2566 {
2567 int ix;
2568
2569 /* Notify objfiles that we've modified objfile sections. */
2570 objfiles_changed ();
2571
2572 clear_symtab_users (0);
2573
2574 /* clear_objfile_data for each objfile was called before freeing it and
2575 observer_notify_new_objfile (NULL) has been called by
2576 clear_symtab_users above. Notify the new files now. */
2577 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2578 observer_notify_new_objfile (objfile);
2579
2580 /* At least one objfile has changed, so we can consider that
2581 the executable we're debugging has changed too. */
2582 observer_notify_executable_changed ();
2583 }
2584
2585 do_cleanups (all_cleanups);
2586 }
2587 \f
2588
2589 typedef struct
2590 {
2591 char *ext;
2592 enum language lang;
2593 }
2594 filename_language;
2595
2596 static filename_language *filename_language_table;
2597 static int fl_table_size, fl_table_next;
2598
2599 static void
2600 add_filename_language (char *ext, enum language lang)
2601 {
2602 if (fl_table_next >= fl_table_size)
2603 {
2604 fl_table_size += 10;
2605 filename_language_table =
2606 xrealloc (filename_language_table,
2607 fl_table_size * sizeof (*filename_language_table));
2608 }
2609
2610 filename_language_table[fl_table_next].ext = xstrdup (ext);
2611 filename_language_table[fl_table_next].lang = lang;
2612 fl_table_next++;
2613 }
2614
2615 static char *ext_args;
2616 static void
2617 show_ext_args (struct ui_file *file, int from_tty,
2618 struct cmd_list_element *c, const char *value)
2619 {
2620 fprintf_filtered (file,
2621 _("Mapping between filename extension "
2622 "and source language is \"%s\".\n"),
2623 value);
2624 }
2625
2626 static void
2627 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2628 {
2629 int i;
2630 char *cp = ext_args;
2631 enum language lang;
2632
2633 /* First arg is filename extension, starting with '.' */
2634 if (*cp != '.')
2635 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2636
2637 /* Find end of first arg. */
2638 while (*cp && !isspace (*cp))
2639 cp++;
2640
2641 if (*cp == '\0')
2642 error (_("'%s': two arguments required -- "
2643 "filename extension and language"),
2644 ext_args);
2645
2646 /* Null-terminate first arg. */
2647 *cp++ = '\0';
2648
2649 /* Find beginning of second arg, which should be a source language. */
2650 cp = skip_spaces (cp);
2651
2652 if (*cp == '\0')
2653 error (_("'%s': two arguments required -- "
2654 "filename extension and language"),
2655 ext_args);
2656
2657 /* Lookup the language from among those we know. */
2658 lang = language_enum (cp);
2659
2660 /* Now lookup the filename extension: do we already know it? */
2661 for (i = 0; i < fl_table_next; i++)
2662 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2663 break;
2664
2665 if (i >= fl_table_next)
2666 {
2667 /* New file extension. */
2668 add_filename_language (ext_args, lang);
2669 }
2670 else
2671 {
2672 /* Redefining a previously known filename extension. */
2673
2674 /* if (from_tty) */
2675 /* query ("Really make files of type %s '%s'?", */
2676 /* ext_args, language_str (lang)); */
2677
2678 xfree (filename_language_table[i].ext);
2679 filename_language_table[i].ext = xstrdup (ext_args);
2680 filename_language_table[i].lang = lang;
2681 }
2682 }
2683
2684 static void
2685 info_ext_lang_command (char *args, int from_tty)
2686 {
2687 int i;
2688
2689 printf_filtered (_("Filename extensions and the languages they represent:"));
2690 printf_filtered ("\n\n");
2691 for (i = 0; i < fl_table_next; i++)
2692 printf_filtered ("\t%s\t- %s\n",
2693 filename_language_table[i].ext,
2694 language_str (filename_language_table[i].lang));
2695 }
2696
2697 static void
2698 init_filename_language_table (void)
2699 {
2700 if (fl_table_size == 0) /* Protect against repetition. */
2701 {
2702 fl_table_size = 20;
2703 fl_table_next = 0;
2704 filename_language_table =
2705 xmalloc (fl_table_size * sizeof (*filename_language_table));
2706 add_filename_language (".c", language_c);
2707 add_filename_language (".d", language_d);
2708 add_filename_language (".C", language_cplus);
2709 add_filename_language (".cc", language_cplus);
2710 add_filename_language (".cp", language_cplus);
2711 add_filename_language (".cpp", language_cplus);
2712 add_filename_language (".cxx", language_cplus);
2713 add_filename_language (".c++", language_cplus);
2714 add_filename_language (".java", language_java);
2715 add_filename_language (".class", language_java);
2716 add_filename_language (".m", language_objc);
2717 add_filename_language (".f", language_fortran);
2718 add_filename_language (".F", language_fortran);
2719 add_filename_language (".for", language_fortran);
2720 add_filename_language (".FOR", language_fortran);
2721 add_filename_language (".ftn", language_fortran);
2722 add_filename_language (".FTN", language_fortran);
2723 add_filename_language (".fpp", language_fortran);
2724 add_filename_language (".FPP", language_fortran);
2725 add_filename_language (".f90", language_fortran);
2726 add_filename_language (".F90", language_fortran);
2727 add_filename_language (".f95", language_fortran);
2728 add_filename_language (".F95", language_fortran);
2729 add_filename_language (".f03", language_fortran);
2730 add_filename_language (".F03", language_fortran);
2731 add_filename_language (".f08", language_fortran);
2732 add_filename_language (".F08", language_fortran);
2733 add_filename_language (".s", language_asm);
2734 add_filename_language (".sx", language_asm);
2735 add_filename_language (".S", language_asm);
2736 add_filename_language (".pas", language_pascal);
2737 add_filename_language (".p", language_pascal);
2738 add_filename_language (".pp", language_pascal);
2739 add_filename_language (".adb", language_ada);
2740 add_filename_language (".ads", language_ada);
2741 add_filename_language (".a", language_ada);
2742 add_filename_language (".ada", language_ada);
2743 add_filename_language (".dg", language_ada);
2744 }
2745 }
2746
2747 enum language
2748 deduce_language_from_filename (const char *filename)
2749 {
2750 int i;
2751 char *cp;
2752
2753 if (filename != NULL)
2754 if ((cp = strrchr (filename, '.')) != NULL)
2755 for (i = 0; i < fl_table_next; i++)
2756 if (strcmp (cp, filename_language_table[i].ext) == 0)
2757 return filename_language_table[i].lang;
2758
2759 return language_unknown;
2760 }
2761 \f
2762 /* allocate_symtab:
2763
2764 Allocate and partly initialize a new symbol table. Return a pointer
2765 to it. error() if no space.
2766
2767 Caller must set these fields:
2768 LINETABLE(symtab)
2769 symtab->blockvector
2770 symtab->dirname
2771 symtab->free_code
2772 symtab->free_ptr
2773 */
2774
2775 struct symtab *
2776 allocate_symtab (const char *filename, struct objfile *objfile)
2777 {
2778 struct symtab *symtab;
2779
2780 symtab = (struct symtab *)
2781 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2782 memset (symtab, 0, sizeof (*symtab));
2783 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2784 objfile->per_bfd->filename_cache);
2785 symtab->fullname = NULL;
2786 symtab->language = deduce_language_from_filename (filename);
2787 symtab->debugformat = "unknown";
2788
2789 /* Hook it to the objfile it comes from. */
2790
2791 symtab->objfile = objfile;
2792 symtab->next = objfile->symtabs;
2793 objfile->symtabs = symtab;
2794
2795 if (symtab_create_debug)
2796 {
2797 /* Be a bit clever with debugging messages, and don't print objfile
2798 every time, only when it changes. */
2799 static char *last_objfile_name = NULL;
2800
2801 if (last_objfile_name == NULL
2802 || strcmp (last_objfile_name, objfile->name) != 0)
2803 {
2804 xfree (last_objfile_name);
2805 last_objfile_name = xstrdup (objfile->name);
2806 fprintf_unfiltered (gdb_stdlog,
2807 "Creating one or more symtabs for objfile %s ...\n",
2808 last_objfile_name);
2809 }
2810 fprintf_unfiltered (gdb_stdlog,
2811 "Created symtab %s for module %s.\n",
2812 host_address_to_string (symtab), filename);
2813 }
2814
2815 return (symtab);
2816 }
2817 \f
2818
2819 /* Reset all data structures in gdb which may contain references to symbol
2820 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2821
2822 void
2823 clear_symtab_users (int add_flags)
2824 {
2825 /* Someday, we should do better than this, by only blowing away
2826 the things that really need to be blown. */
2827
2828 /* Clear the "current" symtab first, because it is no longer valid.
2829 breakpoint_re_set may try to access the current symtab. */
2830 clear_current_source_symtab_and_line ();
2831
2832 clear_displays ();
2833 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2834 breakpoint_re_set ();
2835 clear_last_displayed_sal ();
2836 clear_pc_function_cache ();
2837 observer_notify_new_objfile (NULL);
2838
2839 /* Clear globals which might have pointed into a removed objfile.
2840 FIXME: It's not clear which of these are supposed to persist
2841 between expressions and which ought to be reset each time. */
2842 expression_context_block = NULL;
2843 innermost_block = NULL;
2844
2845 /* Varobj may refer to old symbols, perform a cleanup. */
2846 varobj_invalidate ();
2847
2848 }
2849
2850 static void
2851 clear_symtab_users_cleanup (void *ignore)
2852 {
2853 clear_symtab_users (0);
2854 }
2855 \f
2856 /* OVERLAYS:
2857 The following code implements an abstraction for debugging overlay sections.
2858
2859 The target model is as follows:
2860 1) The gnu linker will permit multiple sections to be mapped into the
2861 same VMA, each with its own unique LMA (or load address).
2862 2) It is assumed that some runtime mechanism exists for mapping the
2863 sections, one by one, from the load address into the VMA address.
2864 3) This code provides a mechanism for gdb to keep track of which
2865 sections should be considered to be mapped from the VMA to the LMA.
2866 This information is used for symbol lookup, and memory read/write.
2867 For instance, if a section has been mapped then its contents
2868 should be read from the VMA, otherwise from the LMA.
2869
2870 Two levels of debugger support for overlays are available. One is
2871 "manual", in which the debugger relies on the user to tell it which
2872 overlays are currently mapped. This level of support is
2873 implemented entirely in the core debugger, and the information about
2874 whether a section is mapped is kept in the objfile->obj_section table.
2875
2876 The second level of support is "automatic", and is only available if
2877 the target-specific code provides functionality to read the target's
2878 overlay mapping table, and translate its contents for the debugger
2879 (by updating the mapped state information in the obj_section tables).
2880
2881 The interface is as follows:
2882 User commands:
2883 overlay map <name> -- tell gdb to consider this section mapped
2884 overlay unmap <name> -- tell gdb to consider this section unmapped
2885 overlay list -- list the sections that GDB thinks are mapped
2886 overlay read-target -- get the target's state of what's mapped
2887 overlay off/manual/auto -- set overlay debugging state
2888 Functional interface:
2889 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2890 section, return that section.
2891 find_pc_overlay(pc): find any overlay section that contains
2892 the pc, either in its VMA or its LMA
2893 section_is_mapped(sect): true if overlay is marked as mapped
2894 section_is_overlay(sect): true if section's VMA != LMA
2895 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2896 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2897 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2898 overlay_mapped_address(...): map an address from section's LMA to VMA
2899 overlay_unmapped_address(...): map an address from section's VMA to LMA
2900 symbol_overlayed_address(...): Return a "current" address for symbol:
2901 either in VMA or LMA depending on whether
2902 the symbol's section is currently mapped. */
2903
2904 /* Overlay debugging state: */
2905
2906 enum overlay_debugging_state overlay_debugging = ovly_off;
2907 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2908
2909 /* Function: section_is_overlay (SECTION)
2910 Returns true if SECTION has VMA not equal to LMA, ie.
2911 SECTION is loaded at an address different from where it will "run". */
2912
2913 int
2914 section_is_overlay (struct obj_section *section)
2915 {
2916 if (overlay_debugging && section)
2917 {
2918 bfd *abfd = section->objfile->obfd;
2919 asection *bfd_section = section->the_bfd_section;
2920
2921 if (bfd_section_lma (abfd, bfd_section) != 0
2922 && bfd_section_lma (abfd, bfd_section)
2923 != bfd_section_vma (abfd, bfd_section))
2924 return 1;
2925 }
2926
2927 return 0;
2928 }
2929
2930 /* Function: overlay_invalidate_all (void)
2931 Invalidate the mapped state of all overlay sections (mark it as stale). */
2932
2933 static void
2934 overlay_invalidate_all (void)
2935 {
2936 struct objfile *objfile;
2937 struct obj_section *sect;
2938
2939 ALL_OBJSECTIONS (objfile, sect)
2940 if (section_is_overlay (sect))
2941 sect->ovly_mapped = -1;
2942 }
2943
2944 /* Function: section_is_mapped (SECTION)
2945 Returns true if section is an overlay, and is currently mapped.
2946
2947 Access to the ovly_mapped flag is restricted to this function, so
2948 that we can do automatic update. If the global flag
2949 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2950 overlay_invalidate_all. If the mapped state of the particular
2951 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2952
2953 int
2954 section_is_mapped (struct obj_section *osect)
2955 {
2956 struct gdbarch *gdbarch;
2957
2958 if (osect == 0 || !section_is_overlay (osect))
2959 return 0;
2960
2961 switch (overlay_debugging)
2962 {
2963 default:
2964 case ovly_off:
2965 return 0; /* overlay debugging off */
2966 case ovly_auto: /* overlay debugging automatic */
2967 /* Unles there is a gdbarch_overlay_update function,
2968 there's really nothing useful to do here (can't really go auto). */
2969 gdbarch = get_objfile_arch (osect->objfile);
2970 if (gdbarch_overlay_update_p (gdbarch))
2971 {
2972 if (overlay_cache_invalid)
2973 {
2974 overlay_invalidate_all ();
2975 overlay_cache_invalid = 0;
2976 }
2977 if (osect->ovly_mapped == -1)
2978 gdbarch_overlay_update (gdbarch, osect);
2979 }
2980 /* fall thru to manual case */
2981 case ovly_on: /* overlay debugging manual */
2982 return osect->ovly_mapped == 1;
2983 }
2984 }
2985
2986 /* Function: pc_in_unmapped_range
2987 If PC falls into the lma range of SECTION, return true, else false. */
2988
2989 CORE_ADDR
2990 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
2991 {
2992 if (section_is_overlay (section))
2993 {
2994 bfd *abfd = section->objfile->obfd;
2995 asection *bfd_section = section->the_bfd_section;
2996
2997 /* We assume the LMA is relocated by the same offset as the VMA. */
2998 bfd_vma size = bfd_get_section_size (bfd_section);
2999 CORE_ADDR offset = obj_section_offset (section);
3000
3001 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3002 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3003 return 1;
3004 }
3005
3006 return 0;
3007 }
3008
3009 /* Function: pc_in_mapped_range
3010 If PC falls into the vma range of SECTION, return true, else false. */
3011
3012 CORE_ADDR
3013 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3014 {
3015 if (section_is_overlay (section))
3016 {
3017 if (obj_section_addr (section) <= pc
3018 && pc < obj_section_endaddr (section))
3019 return 1;
3020 }
3021
3022 return 0;
3023 }
3024
3025 /* Return true if the mapped ranges of sections A and B overlap, false
3026 otherwise. */
3027
3028 static int
3029 sections_overlap (struct obj_section *a, struct obj_section *b)
3030 {
3031 CORE_ADDR a_start = obj_section_addr (a);
3032 CORE_ADDR a_end = obj_section_endaddr (a);
3033 CORE_ADDR b_start = obj_section_addr (b);
3034 CORE_ADDR b_end = obj_section_endaddr (b);
3035
3036 return (a_start < b_end && b_start < a_end);
3037 }
3038
3039 /* Function: overlay_unmapped_address (PC, SECTION)
3040 Returns the address corresponding to PC in the unmapped (load) range.
3041 May be the same as PC. */
3042
3043 CORE_ADDR
3044 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3045 {
3046 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3047 {
3048 bfd *abfd = section->objfile->obfd;
3049 asection *bfd_section = section->the_bfd_section;
3050
3051 return pc + bfd_section_lma (abfd, bfd_section)
3052 - bfd_section_vma (abfd, bfd_section);
3053 }
3054
3055 return pc;
3056 }
3057
3058 /* Function: overlay_mapped_address (PC, SECTION)
3059 Returns the address corresponding to PC in the mapped (runtime) range.
3060 May be the same as PC. */
3061
3062 CORE_ADDR
3063 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3064 {
3065 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3066 {
3067 bfd *abfd = section->objfile->obfd;
3068 asection *bfd_section = section->the_bfd_section;
3069
3070 return pc + bfd_section_vma (abfd, bfd_section)
3071 - bfd_section_lma (abfd, bfd_section);
3072 }
3073
3074 return pc;
3075 }
3076
3077 /* Function: symbol_overlayed_address
3078 Return one of two addresses (relative to the VMA or to the LMA),
3079 depending on whether the section is mapped or not. */
3080
3081 CORE_ADDR
3082 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3083 {
3084 if (overlay_debugging)
3085 {
3086 /* If the symbol has no section, just return its regular address. */
3087 if (section == 0)
3088 return address;
3089 /* If the symbol's section is not an overlay, just return its
3090 address. */
3091 if (!section_is_overlay (section))
3092 return address;
3093 /* If the symbol's section is mapped, just return its address. */
3094 if (section_is_mapped (section))
3095 return address;
3096 /*
3097 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3098 * then return its LOADED address rather than its vma address!!
3099 */
3100 return overlay_unmapped_address (address, section);
3101 }
3102 return address;
3103 }
3104
3105 /* Function: find_pc_overlay (PC)
3106 Return the best-match overlay section for PC:
3107 If PC matches a mapped overlay section's VMA, return that section.
3108 Else if PC matches an unmapped section's VMA, return that section.
3109 Else if PC matches an unmapped section's LMA, return that section. */
3110
3111 struct obj_section *
3112 find_pc_overlay (CORE_ADDR pc)
3113 {
3114 struct objfile *objfile;
3115 struct obj_section *osect, *best_match = NULL;
3116
3117 if (overlay_debugging)
3118 ALL_OBJSECTIONS (objfile, osect)
3119 if (section_is_overlay (osect))
3120 {
3121 if (pc_in_mapped_range (pc, osect))
3122 {
3123 if (section_is_mapped (osect))
3124 return osect;
3125 else
3126 best_match = osect;
3127 }
3128 else if (pc_in_unmapped_range (pc, osect))
3129 best_match = osect;
3130 }
3131 return best_match;
3132 }
3133
3134 /* Function: find_pc_mapped_section (PC)
3135 If PC falls into the VMA address range of an overlay section that is
3136 currently marked as MAPPED, return that section. Else return NULL. */
3137
3138 struct obj_section *
3139 find_pc_mapped_section (CORE_ADDR pc)
3140 {
3141 struct objfile *objfile;
3142 struct obj_section *osect;
3143
3144 if (overlay_debugging)
3145 ALL_OBJSECTIONS (objfile, osect)
3146 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3147 return osect;
3148
3149 return NULL;
3150 }
3151
3152 /* Function: list_overlays_command
3153 Print a list of mapped sections and their PC ranges. */
3154
3155 static void
3156 list_overlays_command (char *args, int from_tty)
3157 {
3158 int nmapped = 0;
3159 struct objfile *objfile;
3160 struct obj_section *osect;
3161
3162 if (overlay_debugging)
3163 ALL_OBJSECTIONS (objfile, osect)
3164 if (section_is_mapped (osect))
3165 {
3166 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3167 const char *name;
3168 bfd_vma lma, vma;
3169 int size;
3170
3171 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3172 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3173 size = bfd_get_section_size (osect->the_bfd_section);
3174 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3175
3176 printf_filtered ("Section %s, loaded at ", name);
3177 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3178 puts_filtered (" - ");
3179 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3180 printf_filtered (", mapped at ");
3181 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3182 puts_filtered (" - ");
3183 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3184 puts_filtered ("\n");
3185
3186 nmapped++;
3187 }
3188 if (nmapped == 0)
3189 printf_filtered (_("No sections are mapped.\n"));
3190 }
3191
3192 /* Function: map_overlay_command
3193 Mark the named section as mapped (ie. residing at its VMA address). */
3194
3195 static void
3196 map_overlay_command (char *args, int from_tty)
3197 {
3198 struct objfile *objfile, *objfile2;
3199 struct obj_section *sec, *sec2;
3200
3201 if (!overlay_debugging)
3202 error (_("Overlay debugging not enabled. Use "
3203 "either the 'overlay auto' or\n"
3204 "the 'overlay manual' command."));
3205
3206 if (args == 0 || *args == 0)
3207 error (_("Argument required: name of an overlay section"));
3208
3209 /* First, find a section matching the user supplied argument. */
3210 ALL_OBJSECTIONS (objfile, sec)
3211 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3212 {
3213 /* Now, check to see if the section is an overlay. */
3214 if (!section_is_overlay (sec))
3215 continue; /* not an overlay section */
3216
3217 /* Mark the overlay as "mapped". */
3218 sec->ovly_mapped = 1;
3219
3220 /* Next, make a pass and unmap any sections that are
3221 overlapped by this new section: */
3222 ALL_OBJSECTIONS (objfile2, sec2)
3223 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3224 {
3225 if (info_verbose)
3226 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3227 bfd_section_name (objfile->obfd,
3228 sec2->the_bfd_section));
3229 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3230 }
3231 return;
3232 }
3233 error (_("No overlay section called %s"), args);
3234 }
3235
3236 /* Function: unmap_overlay_command
3237 Mark the overlay section as unmapped
3238 (ie. resident in its LMA address range, rather than the VMA range). */
3239
3240 static void
3241 unmap_overlay_command (char *args, int from_tty)
3242 {
3243 struct objfile *objfile;
3244 struct obj_section *sec;
3245
3246 if (!overlay_debugging)
3247 error (_("Overlay debugging not enabled. "
3248 "Use either the 'overlay auto' or\n"
3249 "the 'overlay manual' command."));
3250
3251 if (args == 0 || *args == 0)
3252 error (_("Argument required: name of an overlay section"));
3253
3254 /* First, find a section matching the user supplied argument. */
3255 ALL_OBJSECTIONS (objfile, sec)
3256 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3257 {
3258 if (!sec->ovly_mapped)
3259 error (_("Section %s is not mapped"), args);
3260 sec->ovly_mapped = 0;
3261 return;
3262 }
3263 error (_("No overlay section called %s"), args);
3264 }
3265
3266 /* Function: overlay_auto_command
3267 A utility command to turn on overlay debugging.
3268 Possibly this should be done via a set/show command. */
3269
3270 static void
3271 overlay_auto_command (char *args, int from_tty)
3272 {
3273 overlay_debugging = ovly_auto;
3274 enable_overlay_breakpoints ();
3275 if (info_verbose)
3276 printf_unfiltered (_("Automatic overlay debugging enabled."));
3277 }
3278
3279 /* Function: overlay_manual_command
3280 A utility command to turn on overlay debugging.
3281 Possibly this should be done via a set/show command. */
3282
3283 static void
3284 overlay_manual_command (char *args, int from_tty)
3285 {
3286 overlay_debugging = ovly_on;
3287 disable_overlay_breakpoints ();
3288 if (info_verbose)
3289 printf_unfiltered (_("Overlay debugging enabled."));
3290 }
3291
3292 /* Function: overlay_off_command
3293 A utility command to turn on overlay debugging.
3294 Possibly this should be done via a set/show command. */
3295
3296 static void
3297 overlay_off_command (char *args, int from_tty)
3298 {
3299 overlay_debugging = ovly_off;
3300 disable_overlay_breakpoints ();
3301 if (info_verbose)
3302 printf_unfiltered (_("Overlay debugging disabled."));
3303 }
3304
3305 static void
3306 overlay_load_command (char *args, int from_tty)
3307 {
3308 struct gdbarch *gdbarch = get_current_arch ();
3309
3310 if (gdbarch_overlay_update_p (gdbarch))
3311 gdbarch_overlay_update (gdbarch, NULL);
3312 else
3313 error (_("This target does not know how to read its overlay state."));
3314 }
3315
3316 /* Function: overlay_command
3317 A place-holder for a mis-typed command. */
3318
3319 /* Command list chain containing all defined "overlay" subcommands. */
3320 static struct cmd_list_element *overlaylist;
3321
3322 static void
3323 overlay_command (char *args, int from_tty)
3324 {
3325 printf_unfiltered
3326 ("\"overlay\" must be followed by the name of an overlay command.\n");
3327 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3328 }
3329
3330 /* Target Overlays for the "Simplest" overlay manager:
3331
3332 This is GDB's default target overlay layer. It works with the
3333 minimal overlay manager supplied as an example by Cygnus. The
3334 entry point is via a function pointer "gdbarch_overlay_update",
3335 so targets that use a different runtime overlay manager can
3336 substitute their own overlay_update function and take over the
3337 function pointer.
3338
3339 The overlay_update function pokes around in the target's data structures
3340 to see what overlays are mapped, and updates GDB's overlay mapping with
3341 this information.
3342
3343 In this simple implementation, the target data structures are as follows:
3344 unsigned _novlys; /# number of overlay sections #/
3345 unsigned _ovly_table[_novlys][4] = {
3346 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3347 {..., ..., ..., ...},
3348 }
3349 unsigned _novly_regions; /# number of overlay regions #/
3350 unsigned _ovly_region_table[_novly_regions][3] = {
3351 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3352 {..., ..., ...},
3353 }
3354 These functions will attempt to update GDB's mappedness state in the
3355 symbol section table, based on the target's mappedness state.
3356
3357 To do this, we keep a cached copy of the target's _ovly_table, and
3358 attempt to detect when the cached copy is invalidated. The main
3359 entry point is "simple_overlay_update(SECT), which looks up SECT in
3360 the cached table and re-reads only the entry for that section from
3361 the target (whenever possible). */
3362
3363 /* Cached, dynamically allocated copies of the target data structures: */
3364 static unsigned (*cache_ovly_table)[4] = 0;
3365 static unsigned cache_novlys = 0;
3366 static CORE_ADDR cache_ovly_table_base = 0;
3367 enum ovly_index
3368 {
3369 VMA, SIZE, LMA, MAPPED
3370 };
3371
3372 /* Throw away the cached copy of _ovly_table. */
3373
3374 static void
3375 simple_free_overlay_table (void)
3376 {
3377 if (cache_ovly_table)
3378 xfree (cache_ovly_table);
3379 cache_novlys = 0;
3380 cache_ovly_table = NULL;
3381 cache_ovly_table_base = 0;
3382 }
3383
3384 /* Read an array of ints of size SIZE from the target into a local buffer.
3385 Convert to host order. int LEN is number of ints. */
3386
3387 static void
3388 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3389 int len, int size, enum bfd_endian byte_order)
3390 {
3391 /* FIXME (alloca): Not safe if array is very large. */
3392 gdb_byte *buf = alloca (len * size);
3393 int i;
3394
3395 read_memory (memaddr, buf, len * size);
3396 for (i = 0; i < len; i++)
3397 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3398 }
3399
3400 /* Find and grab a copy of the target _ovly_table
3401 (and _novlys, which is needed for the table's size). */
3402
3403 static int
3404 simple_read_overlay_table (void)
3405 {
3406 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3407 struct gdbarch *gdbarch;
3408 int word_size;
3409 enum bfd_endian byte_order;
3410
3411 simple_free_overlay_table ();
3412 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3413 if (! novlys_msym)
3414 {
3415 error (_("Error reading inferior's overlay table: "
3416 "couldn't find `_novlys' variable\n"
3417 "in inferior. Use `overlay manual' mode."));
3418 return 0;
3419 }
3420
3421 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3422 if (! ovly_table_msym)
3423 {
3424 error (_("Error reading inferior's overlay table: couldn't find "
3425 "`_ovly_table' array\n"
3426 "in inferior. Use `overlay manual' mode."));
3427 return 0;
3428 }
3429
3430 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3431 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3432 byte_order = gdbarch_byte_order (gdbarch);
3433
3434 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3435 4, byte_order);
3436 cache_ovly_table
3437 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3438 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3439 read_target_long_array (cache_ovly_table_base,
3440 (unsigned int *) cache_ovly_table,
3441 cache_novlys * 4, word_size, byte_order);
3442
3443 return 1; /* SUCCESS */
3444 }
3445
3446 /* Function: simple_overlay_update_1
3447 A helper function for simple_overlay_update. Assuming a cached copy
3448 of _ovly_table exists, look through it to find an entry whose vma,
3449 lma and size match those of OSECT. Re-read the entry and make sure
3450 it still matches OSECT (else the table may no longer be valid).
3451 Set OSECT's mapped state to match the entry. Return: 1 for
3452 success, 0 for failure. */
3453
3454 static int
3455 simple_overlay_update_1 (struct obj_section *osect)
3456 {
3457 int i, size;
3458 bfd *obfd = osect->objfile->obfd;
3459 asection *bsect = osect->the_bfd_section;
3460 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3461 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3462 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3463
3464 size = bfd_get_section_size (osect->the_bfd_section);
3465 for (i = 0; i < cache_novlys; i++)
3466 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3467 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3468 /* && cache_ovly_table[i][SIZE] == size */ )
3469 {
3470 read_target_long_array (cache_ovly_table_base + i * word_size,
3471 (unsigned int *) cache_ovly_table[i],
3472 4, word_size, byte_order);
3473 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3474 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3475 /* && cache_ovly_table[i][SIZE] == size */ )
3476 {
3477 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3478 return 1;
3479 }
3480 else /* Warning! Warning! Target's ovly table has changed! */
3481 return 0;
3482 }
3483 return 0;
3484 }
3485
3486 /* Function: simple_overlay_update
3487 If OSECT is NULL, then update all sections' mapped state
3488 (after re-reading the entire target _ovly_table).
3489 If OSECT is non-NULL, then try to find a matching entry in the
3490 cached ovly_table and update only OSECT's mapped state.
3491 If a cached entry can't be found or the cache isn't valid, then
3492 re-read the entire cache, and go ahead and update all sections. */
3493
3494 void
3495 simple_overlay_update (struct obj_section *osect)
3496 {
3497 struct objfile *objfile;
3498
3499 /* Were we given an osect to look up? NULL means do all of them. */
3500 if (osect)
3501 /* Have we got a cached copy of the target's overlay table? */
3502 if (cache_ovly_table != NULL)
3503 {
3504 /* Does its cached location match what's currently in the
3505 symtab? */
3506 struct minimal_symbol *minsym
3507 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3508
3509 if (minsym == NULL)
3510 error (_("Error reading inferior's overlay table: couldn't "
3511 "find `_ovly_table' array\n"
3512 "in inferior. Use `overlay manual' mode."));
3513
3514 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3515 /* Then go ahead and try to look up this single section in
3516 the cache. */
3517 if (simple_overlay_update_1 (osect))
3518 /* Found it! We're done. */
3519 return;
3520 }
3521
3522 /* Cached table no good: need to read the entire table anew.
3523 Or else we want all the sections, in which case it's actually
3524 more efficient to read the whole table in one block anyway. */
3525
3526 if (! simple_read_overlay_table ())
3527 return;
3528
3529 /* Now may as well update all sections, even if only one was requested. */
3530 ALL_OBJSECTIONS (objfile, osect)
3531 if (section_is_overlay (osect))
3532 {
3533 int i, size;
3534 bfd *obfd = osect->objfile->obfd;
3535 asection *bsect = osect->the_bfd_section;
3536
3537 size = bfd_get_section_size (bsect);
3538 for (i = 0; i < cache_novlys; i++)
3539 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3540 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3541 /* && cache_ovly_table[i][SIZE] == size */ )
3542 { /* obj_section matches i'th entry in ovly_table. */
3543 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3544 break; /* finished with inner for loop: break out. */
3545 }
3546 }
3547 }
3548
3549 /* Set the output sections and output offsets for section SECTP in
3550 ABFD. The relocation code in BFD will read these offsets, so we
3551 need to be sure they're initialized. We map each section to itself,
3552 with no offset; this means that SECTP->vma will be honored. */
3553
3554 static void
3555 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3556 {
3557 sectp->output_section = sectp;
3558 sectp->output_offset = 0;
3559 }
3560
3561 /* Default implementation for sym_relocate. */
3562
3563 bfd_byte *
3564 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3565 bfd_byte *buf)
3566 {
3567 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3568 DWO file. */
3569 bfd *abfd = sectp->owner;
3570
3571 /* We're only interested in sections with relocation
3572 information. */
3573 if ((sectp->flags & SEC_RELOC) == 0)
3574 return NULL;
3575
3576 /* We will handle section offsets properly elsewhere, so relocate as if
3577 all sections begin at 0. */
3578 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3579
3580 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3581 }
3582
3583 /* Relocate the contents of a debug section SECTP in ABFD. The
3584 contents are stored in BUF if it is non-NULL, or returned in a
3585 malloc'd buffer otherwise.
3586
3587 For some platforms and debug info formats, shared libraries contain
3588 relocations against the debug sections (particularly for DWARF-2;
3589 one affected platform is PowerPC GNU/Linux, although it depends on
3590 the version of the linker in use). Also, ELF object files naturally
3591 have unresolved relocations for their debug sections. We need to apply
3592 the relocations in order to get the locations of symbols correct.
3593 Another example that may require relocation processing, is the
3594 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3595 debug section. */
3596
3597 bfd_byte *
3598 symfile_relocate_debug_section (struct objfile *objfile,
3599 asection *sectp, bfd_byte *buf)
3600 {
3601 gdb_assert (objfile->sf->sym_relocate);
3602
3603 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3604 }
3605
3606 struct symfile_segment_data *
3607 get_symfile_segment_data (bfd *abfd)
3608 {
3609 const struct sym_fns *sf = find_sym_fns (abfd);
3610
3611 if (sf == NULL)
3612 return NULL;
3613
3614 return sf->sym_segments (abfd);
3615 }
3616
3617 void
3618 free_symfile_segment_data (struct symfile_segment_data *data)
3619 {
3620 xfree (data->segment_bases);
3621 xfree (data->segment_sizes);
3622 xfree (data->segment_info);
3623 xfree (data);
3624 }
3625
3626 /* Given:
3627 - DATA, containing segment addresses from the object file ABFD, and
3628 the mapping from ABFD's sections onto the segments that own them,
3629 and
3630 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3631 segment addresses reported by the target,
3632 store the appropriate offsets for each section in OFFSETS.
3633
3634 If there are fewer entries in SEGMENT_BASES than there are segments
3635 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3636
3637 If there are more entries, then ignore the extra. The target may
3638 not be able to distinguish between an empty data segment and a
3639 missing data segment; a missing text segment is less plausible. */
3640
3641 int
3642 symfile_map_offsets_to_segments (bfd *abfd,
3643 const struct symfile_segment_data *data,
3644 struct section_offsets *offsets,
3645 int num_segment_bases,
3646 const CORE_ADDR *segment_bases)
3647 {
3648 int i;
3649 asection *sect;
3650
3651 /* It doesn't make sense to call this function unless you have some
3652 segment base addresses. */
3653 gdb_assert (num_segment_bases > 0);
3654
3655 /* If we do not have segment mappings for the object file, we
3656 can not relocate it by segments. */
3657 gdb_assert (data != NULL);
3658 gdb_assert (data->num_segments > 0);
3659
3660 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3661 {
3662 int which = data->segment_info[i];
3663
3664 gdb_assert (0 <= which && which <= data->num_segments);
3665
3666 /* Don't bother computing offsets for sections that aren't
3667 loaded as part of any segment. */
3668 if (! which)
3669 continue;
3670
3671 /* Use the last SEGMENT_BASES entry as the address of any extra
3672 segments mentioned in DATA->segment_info. */
3673 if (which > num_segment_bases)
3674 which = num_segment_bases;
3675
3676 offsets->offsets[i] = (segment_bases[which - 1]
3677 - data->segment_bases[which - 1]);
3678 }
3679
3680 return 1;
3681 }
3682
3683 static void
3684 symfile_find_segment_sections (struct objfile *objfile)
3685 {
3686 bfd *abfd = objfile->obfd;
3687 int i;
3688 asection *sect;
3689 struct symfile_segment_data *data;
3690
3691 data = get_symfile_segment_data (objfile->obfd);
3692 if (data == NULL)
3693 return;
3694
3695 if (data->num_segments != 1 && data->num_segments != 2)
3696 {
3697 free_symfile_segment_data (data);
3698 return;
3699 }
3700
3701 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3702 {
3703 int which = data->segment_info[i];
3704
3705 if (which == 1)
3706 {
3707 if (objfile->sect_index_text == -1)
3708 objfile->sect_index_text = sect->index;
3709
3710 if (objfile->sect_index_rodata == -1)
3711 objfile->sect_index_rodata = sect->index;
3712 }
3713 else if (which == 2)
3714 {
3715 if (objfile->sect_index_data == -1)
3716 objfile->sect_index_data = sect->index;
3717
3718 if (objfile->sect_index_bss == -1)
3719 objfile->sect_index_bss = sect->index;
3720 }
3721 }
3722
3723 free_symfile_segment_data (data);
3724 }
3725
3726 void
3727 _initialize_symfile (void)
3728 {
3729 struct cmd_list_element *c;
3730
3731 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3732 Load symbol table from executable file FILE.\n\
3733 The `file' command can also load symbol tables, as well as setting the file\n\
3734 to execute."), &cmdlist);
3735 set_cmd_completer (c, filename_completer);
3736
3737 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3738 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3739 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3740 ...]\nADDR is the starting address of the file's text.\n\
3741 The optional arguments are section-name section-address pairs and\n\
3742 should be specified if the data and bss segments are not contiguous\n\
3743 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3744 &cmdlist);
3745 set_cmd_completer (c, filename_completer);
3746
3747 c = add_cmd ("load", class_files, load_command, _("\
3748 Dynamically load FILE into the running program, and record its symbols\n\
3749 for access from GDB.\n\
3750 A load OFFSET may also be given."), &cmdlist);
3751 set_cmd_completer (c, filename_completer);
3752
3753 add_prefix_cmd ("overlay", class_support, overlay_command,
3754 _("Commands for debugging overlays."), &overlaylist,
3755 "overlay ", 0, &cmdlist);
3756
3757 add_com_alias ("ovly", "overlay", class_alias, 1);
3758 add_com_alias ("ov", "overlay", class_alias, 1);
3759
3760 add_cmd ("map-overlay", class_support, map_overlay_command,
3761 _("Assert that an overlay section is mapped."), &overlaylist);
3762
3763 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3764 _("Assert that an overlay section is unmapped."), &overlaylist);
3765
3766 add_cmd ("list-overlays", class_support, list_overlays_command,
3767 _("List mappings of overlay sections."), &overlaylist);
3768
3769 add_cmd ("manual", class_support, overlay_manual_command,
3770 _("Enable overlay debugging."), &overlaylist);
3771 add_cmd ("off", class_support, overlay_off_command,
3772 _("Disable overlay debugging."), &overlaylist);
3773 add_cmd ("auto", class_support, overlay_auto_command,
3774 _("Enable automatic overlay debugging."), &overlaylist);
3775 add_cmd ("load-target", class_support, overlay_load_command,
3776 _("Read the overlay mapping state from the target."), &overlaylist);
3777
3778 /* Filename extension to source language lookup table: */
3779 init_filename_language_table ();
3780 add_setshow_string_noescape_cmd ("extension-language", class_files,
3781 &ext_args, _("\
3782 Set mapping between filename extension and source language."), _("\
3783 Show mapping between filename extension and source language."), _("\
3784 Usage: set extension-language .foo bar"),
3785 set_ext_lang_command,
3786 show_ext_args,
3787 &setlist, &showlist);
3788
3789 add_info ("extensions", info_ext_lang_command,
3790 _("All filename extensions associated with a source language."));
3791
3792 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3793 &debug_file_directory, _("\
3794 Set the directories where separate debug symbols are searched for."), _("\
3795 Show the directories where separate debug symbols are searched for."), _("\
3796 Separate debug symbols are first searched for in the same\n\
3797 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3798 and lastly at the path of the directory of the binary with\n\
3799 each global debug-file-directory component prepended."),
3800 NULL,
3801 show_debug_file_directory,
3802 &setlist, &showlist);
3803 }
This page took 0.172137 seconds and 4 git commands to generate.