c55cb0395bf3faa95240ba815f021a7ef58aca0c
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h"
42 #include "regcache.h"
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54 #include "parser-defs.h"
55 #include "varobj.h"
56 #include "elf-bfd.h"
57 #include "solib.h"
58 #include "remote.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68
69 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
70 void (*deprecated_show_load_progress) (const char *section,
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
74 unsigned long total_size);
75 void (*deprecated_pre_add_symbol_hook) (const char *);
76 void (*deprecated_post_add_symbol_hook) (void);
77
78 static void clear_symtab_users_cleanup (void *ignore);
79
80 /* Global variables owned by this file */
81 int readnow_symbol_files; /* Read full symbols immediately */
82
83 /* External variables and functions referenced. */
84
85 extern void report_transfer_performance (unsigned long, time_t, time_t);
86
87 /* Functions this file defines */
88
89 #if 0
90 static int simple_read_overlay_region_table (void);
91 static void simple_free_overlay_region_table (void);
92 #endif
93
94 static void load_command (char *, int);
95
96 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
97
98 static void add_symbol_file_command (char *, int);
99
100 static void reread_separate_symbols (struct objfile *objfile);
101
102 static void cashier_psymtab (struct partial_symtab *);
103
104 bfd *symfile_bfd_open (char *);
105
106 int get_section_index (struct objfile *, char *);
107
108 static struct sym_fns *find_sym_fns (bfd *);
109
110 static void decrement_reading_symtab (void *);
111
112 static void overlay_invalidate_all (void);
113
114 void list_overlays_command (char *, int);
115
116 void map_overlay_command (char *, int);
117
118 void unmap_overlay_command (char *, int);
119
120 static void overlay_auto_command (char *, int);
121
122 static void overlay_manual_command (char *, int);
123
124 static void overlay_off_command (char *, int);
125
126 static void overlay_load_command (char *, int);
127
128 static void overlay_command (char *, int);
129
130 static void simple_free_overlay_table (void);
131
132 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
133 enum bfd_endian);
134
135 static int simple_read_overlay_table (void);
136
137 static int simple_overlay_update_1 (struct obj_section *);
138
139 static void add_filename_language (char *ext, enum language lang);
140
141 static void info_ext_lang_command (char *args, int from_tty);
142
143 static char *find_separate_debug_file (struct objfile *objfile);
144
145 static void init_filename_language_table (void);
146
147 static void symfile_find_segment_sections (struct objfile *objfile);
148
149 void _initialize_symfile (void);
150
151 /* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155 static struct sym_fns *symtab_fns = NULL;
156
157 /* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160 #ifdef SYMBOL_RELOADING_DEFAULT
161 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162 #else
163 int symbol_reloading = 0;
164 #endif
165 static void
166 show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 fprintf_filtered (file, _("\
170 Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172 }
173
174 /* If non-zero, shared library symbols will be added automatically
175 when the inferior is created, new libraries are loaded, or when
176 attaching to the inferior. This is almost always what users will
177 want to have happen; but for very large programs, the startup time
178 will be excessive, and so if this is a problem, the user can clear
179 this flag and then add the shared library symbols as needed. Note
180 that there is a potential for confusion, since if the shared
181 library symbols are not loaded, commands like "info fun" will *not*
182 report all the functions that are actually present. */
183
184 int auto_solib_add = 1;
185
186 /* For systems that support it, a threshold size in megabytes. If
187 automatically adding a new library's symbol table to those already
188 known to the debugger would cause the total shared library symbol
189 size to exceed this threshhold, then the shlib's symbols are not
190 added. The threshold is ignored if the user explicitly asks for a
191 shlib to be added, such as when using the "sharedlibrary"
192 command. */
193
194 int auto_solib_limit;
195 \f
196
197 /* This compares two partial symbols by names, using strcmp_iw_ordered
198 for the comparison. */
199
200 static int
201 compare_psymbols (const void *s1p, const void *s2p)
202 {
203 struct partial_symbol *const *s1 = s1p;
204 struct partial_symbol *const *s2 = s2p;
205
206 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
207 SYMBOL_SEARCH_NAME (*s2));
208 }
209
210 void
211 sort_pst_symbols (struct partial_symtab *pst)
212 {
213 /* Sort the global list; don't sort the static list */
214
215 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
216 pst->n_global_syms, sizeof (struct partial_symbol *),
217 compare_psymbols);
218 }
219
220 /* Make a null terminated copy of the string at PTR with SIZE characters in
221 the obstack pointed to by OBSTACKP . Returns the address of the copy.
222 Note that the string at PTR does not have to be null terminated, I.E. it
223 may be part of a larger string and we are only saving a substring. */
224
225 char *
226 obsavestring (const char *ptr, int size, struct obstack *obstackp)
227 {
228 char *p = (char *) obstack_alloc (obstackp, size + 1);
229 /* Open-coded memcpy--saves function call time. These strings are usually
230 short. FIXME: Is this really still true with a compiler that can
231 inline memcpy? */
232 {
233 const char *p1 = ptr;
234 char *p2 = p;
235 const char *end = ptr + size;
236 while (p1 != end)
237 *p2++ = *p1++;
238 }
239 p[size] = 0;
240 return p;
241 }
242
243 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
244 in the obstack pointed to by OBSTACKP. */
245
246 char *
247 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
248 const char *s3)
249 {
250 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
251 char *val = (char *) obstack_alloc (obstackp, len);
252 strcpy (val, s1);
253 strcat (val, s2);
254 strcat (val, s3);
255 return val;
256 }
257
258 /* True if we are nested inside psymtab_to_symtab. */
259
260 int currently_reading_symtab = 0;
261
262 static void
263 decrement_reading_symtab (void *dummy)
264 {
265 currently_reading_symtab--;
266 }
267
268 /* Get the symbol table that corresponds to a partial_symtab.
269 This is fast after the first time you do it. In fact, there
270 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
271 case inline. */
272
273 struct symtab *
274 psymtab_to_symtab (struct partial_symtab *pst)
275 {
276 /* If it's been looked up before, return it. */
277 if (pst->symtab)
278 return pst->symtab;
279
280 /* If it has not yet been read in, read it. */
281 if (!pst->readin)
282 {
283 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
284 currently_reading_symtab++;
285 (*pst->read_symtab) (pst);
286 do_cleanups (back_to);
287 }
288
289 return pst->symtab;
290 }
291
292 /* Remember the lowest-addressed loadable section we've seen.
293 This function is called via bfd_map_over_sections.
294
295 In case of equal vmas, the section with the largest size becomes the
296 lowest-addressed loadable section.
297
298 If the vmas and sizes are equal, the last section is considered the
299 lowest-addressed loadable section. */
300
301 void
302 find_lowest_section (bfd *abfd, asection *sect, void *obj)
303 {
304 asection **lowest = (asection **) obj;
305
306 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
307 return;
308 if (!*lowest)
309 *lowest = sect; /* First loadable section */
310 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
311 *lowest = sect; /* A lower loadable section */
312 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
313 && (bfd_section_size (abfd, (*lowest))
314 <= bfd_section_size (abfd, sect)))
315 *lowest = sect;
316 }
317
318 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
319
320 struct section_addr_info *
321 alloc_section_addr_info (size_t num_sections)
322 {
323 struct section_addr_info *sap;
324 size_t size;
325
326 size = (sizeof (struct section_addr_info)
327 + sizeof (struct other_sections) * (num_sections - 1));
328 sap = (struct section_addr_info *) xmalloc (size);
329 memset (sap, 0, size);
330 sap->num_sections = num_sections;
331
332 return sap;
333 }
334
335
336 /* Return a freshly allocated copy of ADDRS. The section names, if
337 any, are also freshly allocated copies of those in ADDRS. */
338 struct section_addr_info *
339 copy_section_addr_info (struct section_addr_info *addrs)
340 {
341 struct section_addr_info *copy
342 = alloc_section_addr_info (addrs->num_sections);
343 int i;
344
345 copy->num_sections = addrs->num_sections;
346 for (i = 0; i < addrs->num_sections; i++)
347 {
348 copy->other[i].addr = addrs->other[i].addr;
349 if (addrs->other[i].name)
350 copy->other[i].name = xstrdup (addrs->other[i].name);
351 else
352 copy->other[i].name = NULL;
353 copy->other[i].sectindex = addrs->other[i].sectindex;
354 }
355
356 return copy;
357 }
358
359
360
361 /* Build (allocate and populate) a section_addr_info struct from
362 an existing section table. */
363
364 extern struct section_addr_info *
365 build_section_addr_info_from_section_table (const struct target_section *start,
366 const struct target_section *end)
367 {
368 struct section_addr_info *sap;
369 const struct target_section *stp;
370 int oidx;
371
372 sap = alloc_section_addr_info (end - start);
373
374 for (stp = start, oidx = 0; stp != end; stp++)
375 {
376 if (bfd_get_section_flags (stp->bfd,
377 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
378 && oidx < end - start)
379 {
380 sap->other[oidx].addr = stp->addr;
381 sap->other[oidx].name
382 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
383 sap->other[oidx].sectindex = stp->the_bfd_section->index;
384 oidx++;
385 }
386 }
387
388 return sap;
389 }
390
391
392 /* Free all memory allocated by build_section_addr_info_from_section_table. */
393
394 extern void
395 free_section_addr_info (struct section_addr_info *sap)
396 {
397 int idx;
398
399 for (idx = 0; idx < sap->num_sections; idx++)
400 if (sap->other[idx].name)
401 xfree (sap->other[idx].name);
402 xfree (sap);
403 }
404
405
406 /* Initialize OBJFILE's sect_index_* members. */
407 static void
408 init_objfile_sect_indices (struct objfile *objfile)
409 {
410 asection *sect;
411 int i;
412
413 sect = bfd_get_section_by_name (objfile->obfd, ".text");
414 if (sect)
415 objfile->sect_index_text = sect->index;
416
417 sect = bfd_get_section_by_name (objfile->obfd, ".data");
418 if (sect)
419 objfile->sect_index_data = sect->index;
420
421 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
422 if (sect)
423 objfile->sect_index_bss = sect->index;
424
425 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
426 if (sect)
427 objfile->sect_index_rodata = sect->index;
428
429 /* This is where things get really weird... We MUST have valid
430 indices for the various sect_index_* members or gdb will abort.
431 So if for example, there is no ".text" section, we have to
432 accomodate that. First, check for a file with the standard
433 one or two segments. */
434
435 symfile_find_segment_sections (objfile);
436
437 /* Except when explicitly adding symbol files at some address,
438 section_offsets contains nothing but zeros, so it doesn't matter
439 which slot in section_offsets the individual sect_index_* members
440 index into. So if they are all zero, it is safe to just point
441 all the currently uninitialized indices to the first slot. But
442 beware: if this is the main executable, it may be relocated
443 later, e.g. by the remote qOffsets packet, and then this will
444 be wrong! That's why we try segments first. */
445
446 for (i = 0; i < objfile->num_sections; i++)
447 {
448 if (ANOFFSET (objfile->section_offsets, i) != 0)
449 {
450 break;
451 }
452 }
453 if (i == objfile->num_sections)
454 {
455 if (objfile->sect_index_text == -1)
456 objfile->sect_index_text = 0;
457 if (objfile->sect_index_data == -1)
458 objfile->sect_index_data = 0;
459 if (objfile->sect_index_bss == -1)
460 objfile->sect_index_bss = 0;
461 if (objfile->sect_index_rodata == -1)
462 objfile->sect_index_rodata = 0;
463 }
464 }
465
466 /* The arguments to place_section. */
467
468 struct place_section_arg
469 {
470 struct section_offsets *offsets;
471 CORE_ADDR lowest;
472 };
473
474 /* Find a unique offset to use for loadable section SECT if
475 the user did not provide an offset. */
476
477 static void
478 place_section (bfd *abfd, asection *sect, void *obj)
479 {
480 struct place_section_arg *arg = obj;
481 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
482 int done;
483 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
484
485 /* We are only interested in allocated sections. */
486 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
487 return;
488
489 /* If the user specified an offset, honor it. */
490 if (offsets[sect->index] != 0)
491 return;
492
493 /* Otherwise, let's try to find a place for the section. */
494 start_addr = (arg->lowest + align - 1) & -align;
495
496 do {
497 asection *cur_sec;
498
499 done = 1;
500
501 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
502 {
503 int indx = cur_sec->index;
504 CORE_ADDR cur_offset;
505
506 /* We don't need to compare against ourself. */
507 if (cur_sec == sect)
508 continue;
509
510 /* We can only conflict with allocated sections. */
511 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
512 continue;
513
514 /* If the section offset is 0, either the section has not been placed
515 yet, or it was the lowest section placed (in which case LOWEST
516 will be past its end). */
517 if (offsets[indx] == 0)
518 continue;
519
520 /* If this section would overlap us, then we must move up. */
521 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
522 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
523 {
524 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
525 start_addr = (start_addr + align - 1) & -align;
526 done = 0;
527 break;
528 }
529
530 /* Otherwise, we appear to be OK. So far. */
531 }
532 }
533 while (!done);
534
535 offsets[sect->index] = start_addr;
536 arg->lowest = start_addr + bfd_get_section_size (sect);
537 }
538
539 /* Parse the user's idea of an offset for dynamic linking, into our idea
540 of how to represent it for fast symbol reading. This is the default
541 version of the sym_fns.sym_offsets function for symbol readers that
542 don't need to do anything special. It allocates a section_offsets table
543 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
544
545 void
546 default_symfile_offsets (struct objfile *objfile,
547 struct section_addr_info *addrs)
548 {
549 int i;
550
551 objfile->num_sections = bfd_count_sections (objfile->obfd);
552 objfile->section_offsets = (struct section_offsets *)
553 obstack_alloc (&objfile->objfile_obstack,
554 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
555 memset (objfile->section_offsets, 0,
556 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
557
558 /* Now calculate offsets for section that were specified by the
559 caller. */
560 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
561 {
562 struct other_sections *osp ;
563
564 osp = &addrs->other[i] ;
565 if (osp->addr == 0)
566 continue;
567
568 /* Record all sections in offsets */
569 /* The section_offsets in the objfile are here filled in using
570 the BFD index. */
571 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
572 }
573
574 /* For relocatable files, all loadable sections will start at zero.
575 The zero is meaningless, so try to pick arbitrary addresses such
576 that no loadable sections overlap. This algorithm is quadratic,
577 but the number of sections in a single object file is generally
578 small. */
579 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
580 {
581 struct place_section_arg arg;
582 bfd *abfd = objfile->obfd;
583 asection *cur_sec;
584 CORE_ADDR lowest = 0;
585
586 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
587 /* We do not expect this to happen; just skip this step if the
588 relocatable file has a section with an assigned VMA. */
589 if (bfd_section_vma (abfd, cur_sec) != 0)
590 break;
591
592 if (cur_sec == NULL)
593 {
594 CORE_ADDR *offsets = objfile->section_offsets->offsets;
595
596 /* Pick non-overlapping offsets for sections the user did not
597 place explicitly. */
598 arg.offsets = objfile->section_offsets;
599 arg.lowest = 0;
600 bfd_map_over_sections (objfile->obfd, place_section, &arg);
601
602 /* Correctly filling in the section offsets is not quite
603 enough. Relocatable files have two properties that
604 (most) shared objects do not:
605
606 - Their debug information will contain relocations. Some
607 shared libraries do also, but many do not, so this can not
608 be assumed.
609
610 - If there are multiple code sections they will be loaded
611 at different relative addresses in memory than they are
612 in the objfile, since all sections in the file will start
613 at address zero.
614
615 Because GDB has very limited ability to map from an
616 address in debug info to the correct code section,
617 it relies on adding SECT_OFF_TEXT to things which might be
618 code. If we clear all the section offsets, and set the
619 section VMAs instead, then symfile_relocate_debug_section
620 will return meaningful debug information pointing at the
621 correct sections.
622
623 GDB has too many different data structures for section
624 addresses - a bfd, objfile, and so_list all have section
625 tables, as does exec_ops. Some of these could probably
626 be eliminated. */
627
628 for (cur_sec = abfd->sections; cur_sec != NULL;
629 cur_sec = cur_sec->next)
630 {
631 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
632 continue;
633
634 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
635 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
636 offsets[cur_sec->index]);
637 offsets[cur_sec->index] = 0;
638 }
639 }
640 }
641
642 /* Remember the bfd indexes for the .text, .data, .bss and
643 .rodata sections. */
644 init_objfile_sect_indices (objfile);
645 }
646
647
648 /* Divide the file into segments, which are individual relocatable units.
649 This is the default version of the sym_fns.sym_segments function for
650 symbol readers that do not have an explicit representation of segments.
651 It assumes that object files do not have segments, and fully linked
652 files have a single segment. */
653
654 struct symfile_segment_data *
655 default_symfile_segments (bfd *abfd)
656 {
657 int num_sections, i;
658 asection *sect;
659 struct symfile_segment_data *data;
660 CORE_ADDR low, high;
661
662 /* Relocatable files contain enough information to position each
663 loadable section independently; they should not be relocated
664 in segments. */
665 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
666 return NULL;
667
668 /* Make sure there is at least one loadable section in the file. */
669 for (sect = abfd->sections; sect != NULL; sect = sect->next)
670 {
671 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
672 continue;
673
674 break;
675 }
676 if (sect == NULL)
677 return NULL;
678
679 low = bfd_get_section_vma (abfd, sect);
680 high = low + bfd_get_section_size (sect);
681
682 data = XZALLOC (struct symfile_segment_data);
683 data->num_segments = 1;
684 data->segment_bases = XCALLOC (1, CORE_ADDR);
685 data->segment_sizes = XCALLOC (1, CORE_ADDR);
686
687 num_sections = bfd_count_sections (abfd);
688 data->segment_info = XCALLOC (num_sections, int);
689
690 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
691 {
692 CORE_ADDR vma;
693
694 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
695 continue;
696
697 vma = bfd_get_section_vma (abfd, sect);
698 if (vma < low)
699 low = vma;
700 if (vma + bfd_get_section_size (sect) > high)
701 high = vma + bfd_get_section_size (sect);
702
703 data->segment_info[i] = 1;
704 }
705
706 data->segment_bases[0] = low;
707 data->segment_sizes[0] = high - low;
708
709 return data;
710 }
711
712 /* Process a symbol file, as either the main file or as a dynamically
713 loaded file.
714
715 OBJFILE is where the symbols are to be read from.
716
717 ADDRS is the list of section load addresses. If the user has given
718 an 'add-symbol-file' command, then this is the list of offsets and
719 addresses he or she provided as arguments to the command; or, if
720 we're handling a shared library, these are the actual addresses the
721 sections are loaded at, according to the inferior's dynamic linker
722 (as gleaned by GDB's shared library code). We convert each address
723 into an offset from the section VMA's as it appears in the object
724 file, and then call the file's sym_offsets function to convert this
725 into a format-specific offset table --- a `struct section_offsets'.
726 If ADDRS is non-zero, OFFSETS must be zero.
727
728 OFFSETS is a table of section offsets already in the right
729 format-specific representation. NUM_OFFSETS is the number of
730 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
731 assume this is the proper table the call to sym_offsets described
732 above would produce. Instead of calling sym_offsets, we just dump
733 it right into objfile->section_offsets. (When we're re-reading
734 symbols from an objfile, we don't have the original load address
735 list any more; all we have is the section offset table.) If
736 OFFSETS is non-zero, ADDRS must be zero.
737
738 ADD_FLAGS encodes verbosity level, whether this is main symbol or
739 an extra symbol file such as dynamically loaded code, and wether
740 breakpoint reset should be deferred. */
741
742 void
743 syms_from_objfile (struct objfile *objfile,
744 struct section_addr_info *addrs,
745 struct section_offsets *offsets,
746 int num_offsets,
747 int add_flags)
748 {
749 struct section_addr_info *local_addr = NULL;
750 struct cleanup *old_chain;
751 const int mainline = add_flags & SYMFILE_MAINLINE;
752
753 gdb_assert (! (addrs && offsets));
754
755 init_entry_point_info (objfile);
756 objfile->sf = find_sym_fns (objfile->obfd);
757
758 if (objfile->sf == NULL)
759 return; /* No symbols. */
760
761 /* Make sure that partially constructed symbol tables will be cleaned up
762 if an error occurs during symbol reading. */
763 old_chain = make_cleanup_free_objfile (objfile);
764
765 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
766 list. We now establish the convention that an addr of zero means
767 no load address was specified. */
768 if (! addrs && ! offsets)
769 {
770 local_addr
771 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
772 make_cleanup (xfree, local_addr);
773 addrs = local_addr;
774 }
775
776 /* Now either addrs or offsets is non-zero. */
777
778 if (mainline)
779 {
780 /* We will modify the main symbol table, make sure that all its users
781 will be cleaned up if an error occurs during symbol reading. */
782 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
783
784 /* Since no error yet, throw away the old symbol table. */
785
786 if (symfile_objfile != NULL)
787 {
788 free_objfile (symfile_objfile);
789 gdb_assert (symfile_objfile == NULL);
790 }
791
792 /* Currently we keep symbols from the add-symbol-file command.
793 If the user wants to get rid of them, they should do "symbol-file"
794 without arguments first. Not sure this is the best behavior
795 (PR 2207). */
796
797 (*objfile->sf->sym_new_init) (objfile);
798 }
799
800 /* Convert addr into an offset rather than an absolute address.
801 We find the lowest address of a loaded segment in the objfile,
802 and assume that <addr> is where that got loaded.
803
804 We no longer warn if the lowest section is not a text segment (as
805 happens for the PA64 port. */
806 if (!mainline && addrs && addrs->other[0].name)
807 {
808 asection *lower_sect;
809 asection *sect;
810 CORE_ADDR lower_offset;
811 int i;
812
813 /* Find lowest loadable section to be used as starting point for
814 continguous sections. FIXME!! won't work without call to find
815 .text first, but this assumes text is lowest section. */
816 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
817 if (lower_sect == NULL)
818 bfd_map_over_sections (objfile->obfd, find_lowest_section,
819 &lower_sect);
820 if (lower_sect == NULL)
821 {
822 warning (_("no loadable sections found in added symbol-file %s"),
823 objfile->name);
824 lower_offset = 0;
825 }
826 else
827 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
828
829 /* Calculate offsets for the loadable sections.
830 FIXME! Sections must be in order of increasing loadable section
831 so that contiguous sections can use the lower-offset!!!
832
833 Adjust offsets if the segments are not contiguous.
834 If the section is contiguous, its offset should be set to
835 the offset of the highest loadable section lower than it
836 (the loadable section directly below it in memory).
837 this_offset = lower_offset = lower_addr - lower_orig_addr */
838
839 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
840 {
841 if (addrs->other[i].addr != 0)
842 {
843 sect = bfd_get_section_by_name (objfile->obfd,
844 addrs->other[i].name);
845 if (sect)
846 {
847 addrs->other[i].addr
848 -= bfd_section_vma (objfile->obfd, sect);
849 lower_offset = addrs->other[i].addr;
850 /* This is the index used by BFD. */
851 addrs->other[i].sectindex = sect->index ;
852 }
853 else
854 {
855 warning (_("section %s not found in %s"),
856 addrs->other[i].name,
857 objfile->name);
858 addrs->other[i].addr = 0;
859 }
860 }
861 else
862 addrs->other[i].addr = lower_offset;
863 }
864 }
865
866 /* Initialize symbol reading routines for this objfile, allow complaints to
867 appear for this new file, and record how verbose to be, then do the
868 initial symbol reading for this file. */
869
870 (*objfile->sf->sym_init) (objfile);
871 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
872
873 if (addrs)
874 (*objfile->sf->sym_offsets) (objfile, addrs);
875 else
876 {
877 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
878
879 /* Just copy in the offset table directly as given to us. */
880 objfile->num_sections = num_offsets;
881 objfile->section_offsets
882 = ((struct section_offsets *)
883 obstack_alloc (&objfile->objfile_obstack, size));
884 memcpy (objfile->section_offsets, offsets, size);
885
886 init_objfile_sect_indices (objfile);
887 }
888
889 (*objfile->sf->sym_read) (objfile, mainline);
890
891 /* Discard cleanups as symbol reading was successful. */
892
893 discard_cleanups (old_chain);
894 xfree (local_addr);
895 }
896
897 /* Perform required actions after either reading in the initial
898 symbols for a new objfile, or mapping in the symbols from a reusable
899 objfile. */
900
901 void
902 new_symfile_objfile (struct objfile *objfile, int add_flags)
903 {
904
905 /* If this is the main symbol file we have to clean up all users of the
906 old main symbol file. Otherwise it is sufficient to fixup all the
907 breakpoints that may have been redefined by this symbol file. */
908 if (add_flags & SYMFILE_MAINLINE)
909 {
910 /* OK, make it the "real" symbol file. */
911 symfile_objfile = objfile;
912
913 clear_symtab_users ();
914 }
915 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
916 {
917 breakpoint_re_set ();
918 }
919
920 /* We're done reading the symbol file; finish off complaints. */
921 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
922 }
923
924 /* Process a symbol file, as either the main file or as a dynamically
925 loaded file.
926
927 ABFD is a BFD already open on the file, as from symfile_bfd_open.
928 This BFD will be closed on error, and is always consumed by this function.
929
930 ADD_FLAGS encodes verbosity, whether this is main symbol file or
931 extra, such as dynamically loaded code, and what to do with breakpoins.
932
933 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
934 syms_from_objfile, above.
935 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
936
937 Upon success, returns a pointer to the objfile that was added.
938 Upon failure, jumps back to command level (never returns). */
939
940 static struct objfile *
941 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
942 int add_flags,
943 struct section_addr_info *addrs,
944 struct section_offsets *offsets,
945 int num_offsets,
946 int flags)
947 {
948 struct objfile *objfile;
949 struct partial_symtab *psymtab;
950 char *debugfile = NULL;
951 struct section_addr_info *orig_addrs = NULL;
952 struct cleanup *my_cleanups;
953 const char *name = bfd_get_filename (abfd);
954 const int from_tty = add_flags & SYMFILE_VERBOSE;
955
956 my_cleanups = make_cleanup_bfd_close (abfd);
957
958 /* Give user a chance to burp if we'd be
959 interactively wiping out any existing symbols. */
960
961 if ((have_full_symbols () || have_partial_symbols ())
962 && (add_flags & SYMFILE_MAINLINE)
963 && from_tty
964 && !query (_("Load new symbol table from \"%s\"? "), name))
965 error (_("Not confirmed."));
966
967 objfile = allocate_objfile (abfd, flags);
968 discard_cleanups (my_cleanups);
969
970 if (addrs)
971 {
972 orig_addrs = copy_section_addr_info (addrs);
973 make_cleanup_free_section_addr_info (orig_addrs);
974 }
975
976 /* We either created a new mapped symbol table, mapped an existing
977 symbol table file which has not had initial symbol reading
978 performed, or need to read an unmapped symbol table. */
979 if (from_tty || info_verbose)
980 {
981 if (deprecated_pre_add_symbol_hook)
982 deprecated_pre_add_symbol_hook (name);
983 else
984 {
985 printf_unfiltered (_("Reading symbols from %s..."), name);
986 wrap_here ("");
987 gdb_flush (gdb_stdout);
988 }
989 }
990 syms_from_objfile (objfile, addrs, offsets, num_offsets,
991 add_flags);
992
993 /* We now have at least a partial symbol table. Check to see if the
994 user requested that all symbols be read on initial access via either
995 the gdb startup command line or on a per symbol file basis. Expand
996 all partial symbol tables for this objfile if so. */
997
998 if ((flags & OBJF_READNOW) || readnow_symbol_files)
999 {
1000 if (from_tty || info_verbose)
1001 {
1002 printf_unfiltered (_("expanding to full symbols..."));
1003 wrap_here ("");
1004 gdb_flush (gdb_stdout);
1005 }
1006
1007 for (psymtab = objfile->psymtabs;
1008 psymtab != NULL;
1009 psymtab = psymtab->next)
1010 {
1011 psymtab_to_symtab (psymtab);
1012 }
1013 }
1014
1015 /* If the file has its own symbol tables it has no separate debug info.
1016 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1017 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1018 if (objfile->psymtabs == NULL)
1019 debugfile = find_separate_debug_file (objfile);
1020 if (debugfile)
1021 {
1022 if (addrs != NULL)
1023 {
1024 objfile->separate_debug_objfile
1025 = symbol_file_add (debugfile, add_flags, orig_addrs, flags);
1026 }
1027 else
1028 {
1029 objfile->separate_debug_objfile
1030 = symbol_file_add (debugfile, add_flags, NULL, flags);
1031 }
1032 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1033 = objfile;
1034
1035 /* Put the separate debug object before the normal one, this is so that
1036 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1037 put_objfile_before (objfile->separate_debug_objfile, objfile);
1038
1039 xfree (debugfile);
1040 }
1041
1042 if ((from_tty || info_verbose)
1043 && !objfile_has_symbols (objfile))
1044 {
1045 wrap_here ("");
1046 printf_unfiltered (_("(no debugging symbols found)..."));
1047 wrap_here ("");
1048 }
1049
1050 if (from_tty || info_verbose)
1051 {
1052 if (deprecated_post_add_symbol_hook)
1053 deprecated_post_add_symbol_hook ();
1054 else
1055 printf_unfiltered (_("done.\n"));
1056 }
1057
1058 /* We print some messages regardless of whether 'from_tty ||
1059 info_verbose' is true, so make sure they go out at the right
1060 time. */
1061 gdb_flush (gdb_stdout);
1062
1063 do_cleanups (my_cleanups);
1064
1065 if (objfile->sf == NULL)
1066 {
1067 observer_notify_new_objfile (objfile);
1068 return objfile; /* No symbols. */
1069 }
1070
1071 new_symfile_objfile (objfile, add_flags);
1072
1073 observer_notify_new_objfile (objfile);
1074
1075 bfd_cache_close_all ();
1076 return (objfile);
1077 }
1078
1079
1080 /* Process the symbol file ABFD, as either the main file or as a
1081 dynamically loaded file.
1082
1083 See symbol_file_add_with_addrs_or_offsets's comments for
1084 details. */
1085 struct objfile *
1086 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1087 struct section_addr_info *addrs,
1088 int flags)
1089 {
1090 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1091 flags);
1092 }
1093
1094
1095 /* Process a symbol file, as either the main file or as a dynamically
1096 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1097 for details. */
1098 struct objfile *
1099 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1100 int flags)
1101 {
1102 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1103 flags);
1104 }
1105
1106
1107 /* Call symbol_file_add() with default values and update whatever is
1108 affected by the loading of a new main().
1109 Used when the file is supplied in the gdb command line
1110 and by some targets with special loading requirements.
1111 The auxiliary function, symbol_file_add_main_1(), has the flags
1112 argument for the switches that can only be specified in the symbol_file
1113 command itself. */
1114
1115 void
1116 symbol_file_add_main (char *args, int from_tty)
1117 {
1118 symbol_file_add_main_1 (args, from_tty, 0);
1119 }
1120
1121 static void
1122 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1123 {
1124 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1125 symbol_file_add (args, add_flags, NULL, flags);
1126
1127 /* Getting new symbols may change our opinion about
1128 what is frameless. */
1129 reinit_frame_cache ();
1130
1131 set_initial_language ();
1132 }
1133
1134 void
1135 symbol_file_clear (int from_tty)
1136 {
1137 if ((have_full_symbols () || have_partial_symbols ())
1138 && from_tty
1139 && (symfile_objfile
1140 ? !query (_("Discard symbol table from `%s'? "),
1141 symfile_objfile->name)
1142 : !query (_("Discard symbol table? "))))
1143 error (_("Not confirmed."));
1144
1145 free_all_objfiles ();
1146
1147 /* solib descriptors may have handles to objfiles. Since their
1148 storage has just been released, we'd better wipe the solib
1149 descriptors as well. */
1150 no_shared_libraries (NULL, from_tty);
1151
1152 gdb_assert (symfile_objfile == NULL);
1153 if (from_tty)
1154 printf_unfiltered (_("No symbol file now.\n"));
1155 }
1156
1157 struct build_id
1158 {
1159 size_t size;
1160 gdb_byte data[1];
1161 };
1162
1163 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1164
1165 static struct build_id *
1166 build_id_bfd_get (bfd *abfd)
1167 {
1168 struct build_id *retval;
1169
1170 if (!bfd_check_format (abfd, bfd_object)
1171 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1172 || elf_tdata (abfd)->build_id == NULL)
1173 return NULL;
1174
1175 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1176 retval->size = elf_tdata (abfd)->build_id_size;
1177 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1178
1179 return retval;
1180 }
1181
1182 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1183
1184 static int
1185 build_id_verify (const char *filename, struct build_id *check)
1186 {
1187 bfd *abfd;
1188 struct build_id *found = NULL;
1189 int retval = 0;
1190
1191 /* We expect to be silent on the non-existing files. */
1192 if (remote_filename_p (filename))
1193 abfd = remote_bfd_open (filename, gnutarget);
1194 else
1195 abfd = bfd_openr (filename, gnutarget);
1196 if (abfd == NULL)
1197 return 0;
1198
1199 found = build_id_bfd_get (abfd);
1200
1201 if (found == NULL)
1202 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1203 else if (found->size != check->size
1204 || memcmp (found->data, check->data, found->size) != 0)
1205 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1206 else
1207 retval = 1;
1208
1209 if (!bfd_close (abfd))
1210 warning (_("cannot close \"%s\": %s"), filename,
1211 bfd_errmsg (bfd_get_error ()));
1212
1213 xfree (found);
1214
1215 return retval;
1216 }
1217
1218 static char *
1219 build_id_to_debug_filename (struct build_id *build_id)
1220 {
1221 char *link, *debugdir, *retval = NULL;
1222
1223 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1224 link = alloca (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1225 + 2 * build_id->size + (sizeof ".debug" - 1) + 1);
1226
1227 /* Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1228 cause "/.build-id/..." lookups. */
1229
1230 debugdir = debug_file_directory;
1231 do
1232 {
1233 char *s, *debugdir_end;
1234 gdb_byte *data = build_id->data;
1235 size_t size = build_id->size;
1236
1237 while (*debugdir == DIRNAME_SEPARATOR)
1238 debugdir++;
1239
1240 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1241 if (debugdir_end == NULL)
1242 debugdir_end = &debugdir[strlen (debugdir)];
1243
1244 memcpy (link, debugdir, debugdir_end - debugdir);
1245 s = &link[debugdir_end - debugdir];
1246 s += sprintf (s, "/.build-id/");
1247 if (size > 0)
1248 {
1249 size--;
1250 s += sprintf (s, "%02x", (unsigned) *data++);
1251 }
1252 if (size > 0)
1253 *s++ = '/';
1254 while (size-- > 0)
1255 s += sprintf (s, "%02x", (unsigned) *data++);
1256 strcpy (s, ".debug");
1257
1258 /* lrealpath() is expensive even for the usually non-existent files. */
1259 if (access (link, F_OK) == 0)
1260 retval = lrealpath (link);
1261
1262 if (retval != NULL && !build_id_verify (retval, build_id))
1263 {
1264 xfree (retval);
1265 retval = NULL;
1266 }
1267
1268 if (retval != NULL)
1269 break;
1270
1271 debugdir = debugdir_end;
1272 }
1273 while (*debugdir != 0);
1274
1275 return retval;
1276 }
1277
1278 static char *
1279 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1280 {
1281 asection *sect;
1282 bfd_size_type debuglink_size;
1283 unsigned long crc32;
1284 char *contents;
1285 int crc_offset;
1286 unsigned char *p;
1287
1288 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1289
1290 if (sect == NULL)
1291 return NULL;
1292
1293 debuglink_size = bfd_section_size (objfile->obfd, sect);
1294
1295 contents = xmalloc (debuglink_size);
1296 bfd_get_section_contents (objfile->obfd, sect, contents,
1297 (file_ptr)0, (bfd_size_type)debuglink_size);
1298
1299 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1300 crc_offset = strlen (contents) + 1;
1301 crc_offset = (crc_offset + 3) & ~3;
1302
1303 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1304
1305 *crc32_out = crc32;
1306 return contents;
1307 }
1308
1309 static int
1310 separate_debug_file_exists (const char *name, unsigned long crc,
1311 const char *parent_name)
1312 {
1313 unsigned long file_crc = 0;
1314 bfd *abfd;
1315 gdb_byte buffer[8*1024];
1316 int count;
1317
1318 if (remote_filename_p (name))
1319 abfd = remote_bfd_open (name, gnutarget);
1320 else
1321 abfd = bfd_openr (name, gnutarget);
1322
1323 if (!abfd)
1324 return 0;
1325
1326 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1327 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1328
1329 bfd_close (abfd);
1330
1331 if (crc != file_crc)
1332 {
1333 warning (_("the debug information found in \"%s\""
1334 " does not match \"%s\" (CRC mismatch).\n"),
1335 name, parent_name);
1336 return 0;
1337 }
1338
1339 return 1;
1340 }
1341
1342 char *debug_file_directory = NULL;
1343 static void
1344 show_debug_file_directory (struct ui_file *file, int from_tty,
1345 struct cmd_list_element *c, const char *value)
1346 {
1347 fprintf_filtered (file, _("\
1348 The directory where separate debug symbols are searched for is \"%s\".\n"),
1349 value);
1350 }
1351
1352 #if ! defined (DEBUG_SUBDIRECTORY)
1353 #define DEBUG_SUBDIRECTORY ".debug"
1354 #endif
1355
1356 static char *
1357 find_separate_debug_file (struct objfile *objfile)
1358 {
1359 asection *sect;
1360 char *basename, *name_copy, *debugdir;
1361 char *dir = NULL;
1362 char *debugfile = NULL;
1363 char *canon_name = NULL;
1364 bfd_size_type debuglink_size;
1365 unsigned long crc32;
1366 int i;
1367 struct build_id *build_id;
1368
1369 build_id = build_id_bfd_get (objfile->obfd);
1370 if (build_id != NULL)
1371 {
1372 char *build_id_name;
1373
1374 build_id_name = build_id_to_debug_filename (build_id);
1375 xfree (build_id);
1376 /* Prevent looping on a stripped .debug file. */
1377 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1378 {
1379 warning (_("\"%s\": separate debug info file has no debug info"),
1380 build_id_name);
1381 xfree (build_id_name);
1382 }
1383 else if (build_id_name != NULL)
1384 return build_id_name;
1385 }
1386
1387 basename = get_debug_link_info (objfile, &crc32);
1388
1389 if (basename == NULL)
1390 /* There's no separate debug info, hence there's no way we could
1391 load it => no warning. */
1392 goto cleanup_return_debugfile;
1393
1394 dir = xstrdup (objfile->name);
1395
1396 /* Strip off the final filename part, leaving the directory name,
1397 followed by a slash. Objfile names should always be absolute and
1398 tilde-expanded, so there should always be a slash in there
1399 somewhere. */
1400 for (i = strlen(dir) - 1; i >= 0; i--)
1401 {
1402 if (IS_DIR_SEPARATOR (dir[i]))
1403 break;
1404 }
1405 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1406 dir[i+1] = '\0';
1407
1408 /* Set I to max (strlen (canon_name), strlen (dir)). */
1409 canon_name = lrealpath (dir);
1410 i = strlen (dir);
1411 if (canon_name && strlen (canon_name) > i)
1412 i = strlen (canon_name);
1413
1414 debugfile = xmalloc (strlen (debug_file_directory) + 1
1415 + i
1416 + strlen (DEBUG_SUBDIRECTORY)
1417 + strlen ("/")
1418 + strlen (basename)
1419 + 1);
1420
1421 /* First try in the same directory as the original file. */
1422 strcpy (debugfile, dir);
1423 strcat (debugfile, basename);
1424
1425 if (separate_debug_file_exists (debugfile, crc32, objfile->name))
1426 goto cleanup_return_debugfile;
1427
1428 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1429 strcpy (debugfile, dir);
1430 strcat (debugfile, DEBUG_SUBDIRECTORY);
1431 strcat (debugfile, "/");
1432 strcat (debugfile, basename);
1433
1434 if (separate_debug_file_exists (debugfile, crc32, objfile->name))
1435 goto cleanup_return_debugfile;
1436
1437 /* Then try in the global debugfile directories.
1438
1439 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1440 cause "/..." lookups. */
1441
1442 debugdir = debug_file_directory;
1443 do
1444 {
1445 char *debugdir_end;
1446
1447 while (*debugdir == DIRNAME_SEPARATOR)
1448 debugdir++;
1449
1450 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1451 if (debugdir_end == NULL)
1452 debugdir_end = &debugdir[strlen (debugdir)];
1453
1454 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1455 debugfile[debugdir_end - debugdir] = 0;
1456 strcat (debugfile, "/");
1457 strcat (debugfile, dir);
1458 strcat (debugfile, basename);
1459
1460 if (separate_debug_file_exists (debugfile, crc32, objfile->name))
1461 goto cleanup_return_debugfile;
1462
1463 /* If the file is in the sysroot, try using its base path in the
1464 global debugfile directory. */
1465 if (canon_name
1466 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1467 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1468 {
1469 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1470 debugfile[debugdir_end - debugdir] = 0;
1471 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1472 strcat (debugfile, "/");
1473 strcat (debugfile, basename);
1474
1475 if (separate_debug_file_exists (debugfile, crc32, objfile->name))
1476 goto cleanup_return_debugfile;
1477 }
1478
1479 debugdir = debugdir_end;
1480 }
1481 while (*debugdir != 0);
1482
1483 xfree (debugfile);
1484 debugfile = NULL;
1485
1486 cleanup_return_debugfile:
1487 xfree (canon_name);
1488 xfree (basename);
1489 xfree (dir);
1490 return debugfile;
1491 }
1492
1493
1494 /* This is the symbol-file command. Read the file, analyze its
1495 symbols, and add a struct symtab to a symtab list. The syntax of
1496 the command is rather bizarre:
1497
1498 1. The function buildargv implements various quoting conventions
1499 which are undocumented and have little or nothing in common with
1500 the way things are quoted (or not quoted) elsewhere in GDB.
1501
1502 2. Options are used, which are not generally used in GDB (perhaps
1503 "set mapped on", "set readnow on" would be better)
1504
1505 3. The order of options matters, which is contrary to GNU
1506 conventions (because it is confusing and inconvenient). */
1507
1508 void
1509 symbol_file_command (char *args, int from_tty)
1510 {
1511 dont_repeat ();
1512
1513 if (args == NULL)
1514 {
1515 symbol_file_clear (from_tty);
1516 }
1517 else
1518 {
1519 char **argv = gdb_buildargv (args);
1520 int flags = OBJF_USERLOADED;
1521 struct cleanup *cleanups;
1522 char *name = NULL;
1523
1524 cleanups = make_cleanup_freeargv (argv);
1525 while (*argv != NULL)
1526 {
1527 if (strcmp (*argv, "-readnow") == 0)
1528 flags |= OBJF_READNOW;
1529 else if (**argv == '-')
1530 error (_("unknown option `%s'"), *argv);
1531 else
1532 {
1533 symbol_file_add_main_1 (*argv, from_tty, flags);
1534 name = *argv;
1535 }
1536
1537 argv++;
1538 }
1539
1540 if (name == NULL)
1541 error (_("no symbol file name was specified"));
1542
1543 do_cleanups (cleanups);
1544 }
1545 }
1546
1547 /* Set the initial language.
1548
1549 FIXME: A better solution would be to record the language in the
1550 psymtab when reading partial symbols, and then use it (if known) to
1551 set the language. This would be a win for formats that encode the
1552 language in an easily discoverable place, such as DWARF. For
1553 stabs, we can jump through hoops looking for specially named
1554 symbols or try to intuit the language from the specific type of
1555 stabs we find, but we can't do that until later when we read in
1556 full symbols. */
1557
1558 void
1559 set_initial_language (void)
1560 {
1561 struct partial_symtab *pst;
1562 enum language lang = language_unknown;
1563
1564 pst = find_main_psymtab ();
1565 if (pst != NULL)
1566 {
1567 if (pst->filename != NULL)
1568 lang = deduce_language_from_filename (pst->filename);
1569
1570 if (lang == language_unknown)
1571 {
1572 /* Make C the default language */
1573 lang = language_c;
1574 }
1575
1576 set_language (lang);
1577 expected_language = current_language; /* Don't warn the user. */
1578 }
1579 }
1580
1581 /* Open the file specified by NAME and hand it off to BFD for
1582 preliminary analysis. Return a newly initialized bfd *, which
1583 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1584 absolute). In case of trouble, error() is called. */
1585
1586 bfd *
1587 symfile_bfd_open (char *name)
1588 {
1589 bfd *sym_bfd;
1590 int desc;
1591 char *absolute_name;
1592
1593 if (remote_filename_p (name))
1594 {
1595 name = xstrdup (name);
1596 sym_bfd = remote_bfd_open (name, gnutarget);
1597 if (!sym_bfd)
1598 {
1599 make_cleanup (xfree, name);
1600 error (_("`%s': can't open to read symbols: %s."), name,
1601 bfd_errmsg (bfd_get_error ()));
1602 }
1603
1604 if (!bfd_check_format (sym_bfd, bfd_object))
1605 {
1606 bfd_close (sym_bfd);
1607 make_cleanup (xfree, name);
1608 error (_("`%s': can't read symbols: %s."), name,
1609 bfd_errmsg (bfd_get_error ()));
1610 }
1611
1612 return sym_bfd;
1613 }
1614
1615 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1616
1617 /* Look down path for it, allocate 2nd new malloc'd copy. */
1618 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1619 O_RDONLY | O_BINARY, &absolute_name);
1620 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1621 if (desc < 0)
1622 {
1623 char *exename = alloca (strlen (name) + 5);
1624 strcat (strcpy (exename, name), ".exe");
1625 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1626 O_RDONLY | O_BINARY, &absolute_name);
1627 }
1628 #endif
1629 if (desc < 0)
1630 {
1631 make_cleanup (xfree, name);
1632 perror_with_name (name);
1633 }
1634
1635 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1636 bfd. It'll be freed in free_objfile(). */
1637 xfree (name);
1638 name = absolute_name;
1639
1640 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1641 if (!sym_bfd)
1642 {
1643 close (desc);
1644 make_cleanup (xfree, name);
1645 error (_("`%s': can't open to read symbols: %s."), name,
1646 bfd_errmsg (bfd_get_error ()));
1647 }
1648 bfd_set_cacheable (sym_bfd, 1);
1649
1650 if (!bfd_check_format (sym_bfd, bfd_object))
1651 {
1652 /* FIXME: should be checking for errors from bfd_close (for one
1653 thing, on error it does not free all the storage associated
1654 with the bfd). */
1655 bfd_close (sym_bfd); /* This also closes desc. */
1656 make_cleanup (xfree, name);
1657 error (_("`%s': can't read symbols: %s."), name,
1658 bfd_errmsg (bfd_get_error ()));
1659 }
1660
1661 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1662 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1663
1664 return sym_bfd;
1665 }
1666
1667 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1668 the section was not found. */
1669
1670 int
1671 get_section_index (struct objfile *objfile, char *section_name)
1672 {
1673 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1674
1675 if (sect)
1676 return sect->index;
1677 else
1678 return -1;
1679 }
1680
1681 /* Link SF into the global symtab_fns list. Called on startup by the
1682 _initialize routine in each object file format reader, to register
1683 information about each format the the reader is prepared to
1684 handle. */
1685
1686 void
1687 add_symtab_fns (struct sym_fns *sf)
1688 {
1689 sf->next = symtab_fns;
1690 symtab_fns = sf;
1691 }
1692
1693 /* Initialize OBJFILE to read symbols from its associated BFD. It
1694 either returns or calls error(). The result is an initialized
1695 struct sym_fns in the objfile structure, that contains cached
1696 information about the symbol file. */
1697
1698 static struct sym_fns *
1699 find_sym_fns (bfd *abfd)
1700 {
1701 struct sym_fns *sf;
1702 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1703
1704 if (our_flavour == bfd_target_srec_flavour
1705 || our_flavour == bfd_target_ihex_flavour
1706 || our_flavour == bfd_target_tekhex_flavour)
1707 return NULL; /* No symbols. */
1708
1709 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1710 if (our_flavour == sf->sym_flavour)
1711 return sf;
1712
1713 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1714 bfd_get_target (abfd));
1715 }
1716 \f
1717
1718 /* This function runs the load command of our current target. */
1719
1720 static void
1721 load_command (char *arg, int from_tty)
1722 {
1723 /* The user might be reloading because the binary has changed. Take
1724 this opportunity to check. */
1725 reopen_exec_file ();
1726 reread_symbols ();
1727
1728 if (arg == NULL)
1729 {
1730 char *parg;
1731 int count = 0;
1732
1733 parg = arg = get_exec_file (1);
1734
1735 /* Count how many \ " ' tab space there are in the name. */
1736 while ((parg = strpbrk (parg, "\\\"'\t ")))
1737 {
1738 parg++;
1739 count++;
1740 }
1741
1742 if (count)
1743 {
1744 /* We need to quote this string so buildargv can pull it apart. */
1745 char *temp = xmalloc (strlen (arg) + count + 1 );
1746 char *ptemp = temp;
1747 char *prev;
1748
1749 make_cleanup (xfree, temp);
1750
1751 prev = parg = arg;
1752 while ((parg = strpbrk (parg, "\\\"'\t ")))
1753 {
1754 strncpy (ptemp, prev, parg - prev);
1755 ptemp += parg - prev;
1756 prev = parg++;
1757 *ptemp++ = '\\';
1758 }
1759 strcpy (ptemp, prev);
1760
1761 arg = temp;
1762 }
1763 }
1764
1765 target_load (arg, from_tty);
1766
1767 /* After re-loading the executable, we don't really know which
1768 overlays are mapped any more. */
1769 overlay_cache_invalid = 1;
1770 }
1771
1772 /* This version of "load" should be usable for any target. Currently
1773 it is just used for remote targets, not inftarg.c or core files,
1774 on the theory that only in that case is it useful.
1775
1776 Avoiding xmodem and the like seems like a win (a) because we don't have
1777 to worry about finding it, and (b) On VMS, fork() is very slow and so
1778 we don't want to run a subprocess. On the other hand, I'm not sure how
1779 performance compares. */
1780
1781 static int validate_download = 0;
1782
1783 /* Callback service function for generic_load (bfd_map_over_sections). */
1784
1785 static void
1786 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1787 {
1788 bfd_size_type *sum = data;
1789
1790 *sum += bfd_get_section_size (asec);
1791 }
1792
1793 /* Opaque data for load_section_callback. */
1794 struct load_section_data {
1795 unsigned long load_offset;
1796 struct load_progress_data *progress_data;
1797 VEC(memory_write_request_s) *requests;
1798 };
1799
1800 /* Opaque data for load_progress. */
1801 struct load_progress_data {
1802 /* Cumulative data. */
1803 unsigned long write_count;
1804 unsigned long data_count;
1805 bfd_size_type total_size;
1806 };
1807
1808 /* Opaque data for load_progress for a single section. */
1809 struct load_progress_section_data {
1810 struct load_progress_data *cumulative;
1811
1812 /* Per-section data. */
1813 const char *section_name;
1814 ULONGEST section_sent;
1815 ULONGEST section_size;
1816 CORE_ADDR lma;
1817 gdb_byte *buffer;
1818 };
1819
1820 /* Target write callback routine for progress reporting. */
1821
1822 static void
1823 load_progress (ULONGEST bytes, void *untyped_arg)
1824 {
1825 struct load_progress_section_data *args = untyped_arg;
1826 struct load_progress_data *totals;
1827
1828 if (args == NULL)
1829 /* Writing padding data. No easy way to get at the cumulative
1830 stats, so just ignore this. */
1831 return;
1832
1833 totals = args->cumulative;
1834
1835 if (bytes == 0 && args->section_sent == 0)
1836 {
1837 /* The write is just starting. Let the user know we've started
1838 this section. */
1839 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1840 args->section_name, hex_string (args->section_size),
1841 paddress (target_gdbarch, args->lma));
1842 return;
1843 }
1844
1845 if (validate_download)
1846 {
1847 /* Broken memories and broken monitors manifest themselves here
1848 when bring new computers to life. This doubles already slow
1849 downloads. */
1850 /* NOTE: cagney/1999-10-18: A more efficient implementation
1851 might add a verify_memory() method to the target vector and
1852 then use that. remote.c could implement that method using
1853 the ``qCRC'' packet. */
1854 gdb_byte *check = xmalloc (bytes);
1855 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1856
1857 if (target_read_memory (args->lma, check, bytes) != 0)
1858 error (_("Download verify read failed at %s"),
1859 paddress (target_gdbarch, args->lma));
1860 if (memcmp (args->buffer, check, bytes) != 0)
1861 error (_("Download verify compare failed at %s"),
1862 paddress (target_gdbarch, args->lma));
1863 do_cleanups (verify_cleanups);
1864 }
1865 totals->data_count += bytes;
1866 args->lma += bytes;
1867 args->buffer += bytes;
1868 totals->write_count += 1;
1869 args->section_sent += bytes;
1870 if (quit_flag
1871 || (deprecated_ui_load_progress_hook != NULL
1872 && deprecated_ui_load_progress_hook (args->section_name,
1873 args->section_sent)))
1874 error (_("Canceled the download"));
1875
1876 if (deprecated_show_load_progress != NULL)
1877 deprecated_show_load_progress (args->section_name,
1878 args->section_sent,
1879 args->section_size,
1880 totals->data_count,
1881 totals->total_size);
1882 }
1883
1884 /* Callback service function for generic_load (bfd_map_over_sections). */
1885
1886 static void
1887 load_section_callback (bfd *abfd, asection *asec, void *data)
1888 {
1889 struct memory_write_request *new_request;
1890 struct load_section_data *args = data;
1891 struct load_progress_section_data *section_data;
1892 bfd_size_type size = bfd_get_section_size (asec);
1893 gdb_byte *buffer;
1894 const char *sect_name = bfd_get_section_name (abfd, asec);
1895
1896 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1897 return;
1898
1899 if (size == 0)
1900 return;
1901
1902 new_request = VEC_safe_push (memory_write_request_s,
1903 args->requests, NULL);
1904 memset (new_request, 0, sizeof (struct memory_write_request));
1905 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1906 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1907 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1908 new_request->data = xmalloc (size);
1909 new_request->baton = section_data;
1910
1911 buffer = new_request->data;
1912
1913 section_data->cumulative = args->progress_data;
1914 section_data->section_name = sect_name;
1915 section_data->section_size = size;
1916 section_data->lma = new_request->begin;
1917 section_data->buffer = buffer;
1918
1919 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1920 }
1921
1922 /* Clean up an entire memory request vector, including load
1923 data and progress records. */
1924
1925 static void
1926 clear_memory_write_data (void *arg)
1927 {
1928 VEC(memory_write_request_s) **vec_p = arg;
1929 VEC(memory_write_request_s) *vec = *vec_p;
1930 int i;
1931 struct memory_write_request *mr;
1932
1933 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1934 {
1935 xfree (mr->data);
1936 xfree (mr->baton);
1937 }
1938 VEC_free (memory_write_request_s, vec);
1939 }
1940
1941 void
1942 generic_load (char *args, int from_tty)
1943 {
1944 bfd *loadfile_bfd;
1945 struct timeval start_time, end_time;
1946 char *filename;
1947 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1948 struct load_section_data cbdata;
1949 struct load_progress_data total_progress;
1950
1951 CORE_ADDR entry;
1952 char **argv;
1953
1954 memset (&cbdata, 0, sizeof (cbdata));
1955 memset (&total_progress, 0, sizeof (total_progress));
1956 cbdata.progress_data = &total_progress;
1957
1958 make_cleanup (clear_memory_write_data, &cbdata.requests);
1959
1960 if (args == NULL)
1961 error_no_arg (_("file to load"));
1962
1963 argv = gdb_buildargv (args);
1964 make_cleanup_freeargv (argv);
1965
1966 filename = tilde_expand (argv[0]);
1967 make_cleanup (xfree, filename);
1968
1969 if (argv[1] != NULL)
1970 {
1971 char *endptr;
1972
1973 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1974
1975 /* If the last word was not a valid number then
1976 treat it as a file name with spaces in. */
1977 if (argv[1] == endptr)
1978 error (_("Invalid download offset:%s."), argv[1]);
1979
1980 if (argv[2] != NULL)
1981 error (_("Too many parameters."));
1982 }
1983
1984 /* Open the file for loading. */
1985 loadfile_bfd = bfd_openr (filename, gnutarget);
1986 if (loadfile_bfd == NULL)
1987 {
1988 perror_with_name (filename);
1989 return;
1990 }
1991
1992 /* FIXME: should be checking for errors from bfd_close (for one thing,
1993 on error it does not free all the storage associated with the
1994 bfd). */
1995 make_cleanup_bfd_close (loadfile_bfd);
1996
1997 if (!bfd_check_format (loadfile_bfd, bfd_object))
1998 {
1999 error (_("\"%s\" is not an object file: %s"), filename,
2000 bfd_errmsg (bfd_get_error ()));
2001 }
2002
2003 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2004 (void *) &total_progress.total_size);
2005
2006 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2007
2008 gettimeofday (&start_time, NULL);
2009
2010 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2011 load_progress) != 0)
2012 error (_("Load failed"));
2013
2014 gettimeofday (&end_time, NULL);
2015
2016 entry = bfd_get_start_address (loadfile_bfd);
2017 ui_out_text (uiout, "Start address ");
2018 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
2019 ui_out_text (uiout, ", load size ");
2020 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2021 ui_out_text (uiout, "\n");
2022 /* We were doing this in remote-mips.c, I suspect it is right
2023 for other targets too. */
2024 regcache_write_pc (get_current_regcache (), entry);
2025
2026 /* FIXME: are we supposed to call symbol_file_add or not? According
2027 to a comment from remote-mips.c (where a call to symbol_file_add
2028 was commented out), making the call confuses GDB if more than one
2029 file is loaded in. Some targets do (e.g., remote-vx.c) but
2030 others don't (or didn't - perhaps they have all been deleted). */
2031
2032 print_transfer_performance (gdb_stdout, total_progress.data_count,
2033 total_progress.write_count,
2034 &start_time, &end_time);
2035
2036 do_cleanups (old_cleanups);
2037 }
2038
2039 /* Report how fast the transfer went. */
2040
2041 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2042 replaced by print_transfer_performance (with a very different
2043 function signature). */
2044
2045 void
2046 report_transfer_performance (unsigned long data_count, time_t start_time,
2047 time_t end_time)
2048 {
2049 struct timeval start, end;
2050
2051 start.tv_sec = start_time;
2052 start.tv_usec = 0;
2053 end.tv_sec = end_time;
2054 end.tv_usec = 0;
2055
2056 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2057 }
2058
2059 void
2060 print_transfer_performance (struct ui_file *stream,
2061 unsigned long data_count,
2062 unsigned long write_count,
2063 const struct timeval *start_time,
2064 const struct timeval *end_time)
2065 {
2066 ULONGEST time_count;
2067
2068 /* Compute the elapsed time in milliseconds, as a tradeoff between
2069 accuracy and overflow. */
2070 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2071 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2072
2073 ui_out_text (uiout, "Transfer rate: ");
2074 if (time_count > 0)
2075 {
2076 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2077
2078 if (ui_out_is_mi_like_p (uiout))
2079 {
2080 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2081 ui_out_text (uiout, " bits/sec");
2082 }
2083 else if (rate < 1024)
2084 {
2085 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2086 ui_out_text (uiout, " bytes/sec");
2087 }
2088 else
2089 {
2090 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2091 ui_out_text (uiout, " KB/sec");
2092 }
2093 }
2094 else
2095 {
2096 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2097 ui_out_text (uiout, " bits in <1 sec");
2098 }
2099 if (write_count > 0)
2100 {
2101 ui_out_text (uiout, ", ");
2102 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2103 ui_out_text (uiout, " bytes/write");
2104 }
2105 ui_out_text (uiout, ".\n");
2106 }
2107
2108 /* This function allows the addition of incrementally linked object files.
2109 It does not modify any state in the target, only in the debugger. */
2110 /* Note: ezannoni 2000-04-13 This function/command used to have a
2111 special case syntax for the rombug target (Rombug is the boot
2112 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2113 rombug case, the user doesn't need to supply a text address,
2114 instead a call to target_link() (in target.c) would supply the
2115 value to use. We are now discontinuing this type of ad hoc syntax. */
2116
2117 static void
2118 add_symbol_file_command (char *args, int from_tty)
2119 {
2120 struct gdbarch *gdbarch = get_current_arch ();
2121 char *filename = NULL;
2122 int flags = OBJF_USERLOADED;
2123 char *arg;
2124 int expecting_option = 0;
2125 int section_index = 0;
2126 int argcnt = 0;
2127 int sec_num = 0;
2128 int i;
2129 int expecting_sec_name = 0;
2130 int expecting_sec_addr = 0;
2131 char **argv;
2132
2133 struct sect_opt
2134 {
2135 char *name;
2136 char *value;
2137 };
2138
2139 struct section_addr_info *section_addrs;
2140 struct sect_opt *sect_opts = NULL;
2141 size_t num_sect_opts = 0;
2142 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2143
2144 num_sect_opts = 16;
2145 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2146 * sizeof (struct sect_opt));
2147
2148 dont_repeat ();
2149
2150 if (args == NULL)
2151 error (_("add-symbol-file takes a file name and an address"));
2152
2153 argv = gdb_buildargv (args);
2154 make_cleanup_freeargv (argv);
2155
2156 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2157 {
2158 /* Process the argument. */
2159 if (argcnt == 0)
2160 {
2161 /* The first argument is the file name. */
2162 filename = tilde_expand (arg);
2163 make_cleanup (xfree, filename);
2164 }
2165 else
2166 if (argcnt == 1)
2167 {
2168 /* The second argument is always the text address at which
2169 to load the program. */
2170 sect_opts[section_index].name = ".text";
2171 sect_opts[section_index].value = arg;
2172 if (++section_index >= num_sect_opts)
2173 {
2174 num_sect_opts *= 2;
2175 sect_opts = ((struct sect_opt *)
2176 xrealloc (sect_opts,
2177 num_sect_opts
2178 * sizeof (struct sect_opt)));
2179 }
2180 }
2181 else
2182 {
2183 /* It's an option (starting with '-') or it's an argument
2184 to an option */
2185
2186 if (*arg == '-')
2187 {
2188 if (strcmp (arg, "-readnow") == 0)
2189 flags |= OBJF_READNOW;
2190 else if (strcmp (arg, "-s") == 0)
2191 {
2192 expecting_sec_name = 1;
2193 expecting_sec_addr = 1;
2194 }
2195 }
2196 else
2197 {
2198 if (expecting_sec_name)
2199 {
2200 sect_opts[section_index].name = arg;
2201 expecting_sec_name = 0;
2202 }
2203 else
2204 if (expecting_sec_addr)
2205 {
2206 sect_opts[section_index].value = arg;
2207 expecting_sec_addr = 0;
2208 if (++section_index >= num_sect_opts)
2209 {
2210 num_sect_opts *= 2;
2211 sect_opts = ((struct sect_opt *)
2212 xrealloc (sect_opts,
2213 num_sect_opts
2214 * sizeof (struct sect_opt)));
2215 }
2216 }
2217 else
2218 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2219 }
2220 }
2221 }
2222
2223 /* This command takes at least two arguments. The first one is a
2224 filename, and the second is the address where this file has been
2225 loaded. Abort now if this address hasn't been provided by the
2226 user. */
2227 if (section_index < 1)
2228 error (_("The address where %s has been loaded is missing"), filename);
2229
2230 /* Print the prompt for the query below. And save the arguments into
2231 a sect_addr_info structure to be passed around to other
2232 functions. We have to split this up into separate print
2233 statements because hex_string returns a local static
2234 string. */
2235
2236 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2237 section_addrs = alloc_section_addr_info (section_index);
2238 make_cleanup (xfree, section_addrs);
2239 for (i = 0; i < section_index; i++)
2240 {
2241 CORE_ADDR addr;
2242 char *val = sect_opts[i].value;
2243 char *sec = sect_opts[i].name;
2244
2245 addr = parse_and_eval_address (val);
2246
2247 /* Here we store the section offsets in the order they were
2248 entered on the command line. */
2249 section_addrs->other[sec_num].name = sec;
2250 section_addrs->other[sec_num].addr = addr;
2251 printf_unfiltered ("\t%s_addr = %s\n", sec,
2252 paddress (gdbarch, addr));
2253 sec_num++;
2254
2255 /* The object's sections are initialized when a
2256 call is made to build_objfile_section_table (objfile).
2257 This happens in reread_symbols.
2258 At this point, we don't know what file type this is,
2259 so we can't determine what section names are valid. */
2260 }
2261
2262 if (from_tty && (!query ("%s", "")))
2263 error (_("Not confirmed."));
2264
2265 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2266 section_addrs, flags);
2267
2268 /* Getting new symbols may change our opinion about what is
2269 frameless. */
2270 reinit_frame_cache ();
2271 do_cleanups (my_cleanups);
2272 }
2273 \f
2274
2275 /* Re-read symbols if a symbol-file has changed. */
2276 void
2277 reread_symbols (void)
2278 {
2279 struct objfile *objfile;
2280 long new_modtime;
2281 int reread_one = 0;
2282 struct stat new_statbuf;
2283 int res;
2284
2285 /* With the addition of shared libraries, this should be modified,
2286 the load time should be saved in the partial symbol tables, since
2287 different tables may come from different source files. FIXME.
2288 This routine should then walk down each partial symbol table
2289 and see if the symbol table that it originates from has been changed */
2290
2291 for (objfile = object_files; objfile; objfile = objfile->next)
2292 {
2293 if (objfile->obfd)
2294 {
2295 #ifdef DEPRECATED_IBM6000_TARGET
2296 /* If this object is from a shared library, then you should
2297 stat on the library name, not member name. */
2298
2299 if (objfile->obfd->my_archive)
2300 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2301 else
2302 #endif
2303 res = stat (objfile->name, &new_statbuf);
2304 if (res != 0)
2305 {
2306 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2307 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2308 objfile->name);
2309 continue;
2310 }
2311 new_modtime = new_statbuf.st_mtime;
2312 if (new_modtime != objfile->mtime)
2313 {
2314 struct cleanup *old_cleanups;
2315 struct section_offsets *offsets;
2316 int num_offsets;
2317 char *obfd_filename;
2318
2319 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2320 objfile->name);
2321
2322 /* There are various functions like symbol_file_add,
2323 symfile_bfd_open, syms_from_objfile, etc., which might
2324 appear to do what we want. But they have various other
2325 effects which we *don't* want. So we just do stuff
2326 ourselves. We don't worry about mapped files (for one thing,
2327 any mapped file will be out of date). */
2328
2329 /* If we get an error, blow away this objfile (not sure if
2330 that is the correct response for things like shared
2331 libraries). */
2332 old_cleanups = make_cleanup_free_objfile (objfile);
2333 /* We need to do this whenever any symbols go away. */
2334 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2335
2336 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2337 bfd_get_filename (exec_bfd)) == 0)
2338 {
2339 /* Reload EXEC_BFD without asking anything. */
2340
2341 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2342 }
2343
2344 /* Clean up any state BFD has sitting around. We don't need
2345 to close the descriptor but BFD lacks a way of closing the
2346 BFD without closing the descriptor. */
2347 obfd_filename = bfd_get_filename (objfile->obfd);
2348 if (!bfd_close (objfile->obfd))
2349 error (_("Can't close BFD for %s: %s"), objfile->name,
2350 bfd_errmsg (bfd_get_error ()));
2351 if (remote_filename_p (obfd_filename))
2352 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2353 else
2354 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2355 if (objfile->obfd == NULL)
2356 error (_("Can't open %s to read symbols."), objfile->name);
2357 else
2358 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2359 /* bfd_openr sets cacheable to true, which is what we want. */
2360 if (!bfd_check_format (objfile->obfd, bfd_object))
2361 error (_("Can't read symbols from %s: %s."), objfile->name,
2362 bfd_errmsg (bfd_get_error ()));
2363
2364 /* Save the offsets, we will nuke them with the rest of the
2365 objfile_obstack. */
2366 num_offsets = objfile->num_sections;
2367 offsets = ((struct section_offsets *)
2368 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2369 memcpy (offsets, objfile->section_offsets,
2370 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2371
2372 /* Remove any references to this objfile in the global
2373 value lists. */
2374 preserve_values (objfile);
2375
2376 /* Nuke all the state that we will re-read. Much of the following
2377 code which sets things to NULL really is necessary to tell
2378 other parts of GDB that there is nothing currently there.
2379
2380 Try to keep the freeing order compatible with free_objfile. */
2381
2382 if (objfile->sf != NULL)
2383 {
2384 (*objfile->sf->sym_finish) (objfile);
2385 }
2386
2387 clear_objfile_data (objfile);
2388
2389 /* FIXME: Do we have to free a whole linked list, or is this
2390 enough? */
2391 if (objfile->global_psymbols.list)
2392 xfree (objfile->global_psymbols.list);
2393 memset (&objfile->global_psymbols, 0,
2394 sizeof (objfile->global_psymbols));
2395 if (objfile->static_psymbols.list)
2396 xfree (objfile->static_psymbols.list);
2397 memset (&objfile->static_psymbols, 0,
2398 sizeof (objfile->static_psymbols));
2399
2400 /* Free the obstacks for non-reusable objfiles */
2401 bcache_xfree (objfile->psymbol_cache);
2402 objfile->psymbol_cache = bcache_xmalloc ();
2403 bcache_xfree (objfile->macro_cache);
2404 objfile->macro_cache = bcache_xmalloc ();
2405 if (objfile->demangled_names_hash != NULL)
2406 {
2407 htab_delete (objfile->demangled_names_hash);
2408 objfile->demangled_names_hash = NULL;
2409 }
2410 obstack_free (&objfile->objfile_obstack, 0);
2411 objfile->sections = NULL;
2412 objfile->symtabs = NULL;
2413 objfile->psymtabs = NULL;
2414 objfile->psymtabs_addrmap = NULL;
2415 objfile->free_psymtabs = NULL;
2416 objfile->cp_namespace_symtab = NULL;
2417 objfile->msymbols = NULL;
2418 objfile->deprecated_sym_private = NULL;
2419 objfile->minimal_symbol_count = 0;
2420 memset (&objfile->msymbol_hash, 0,
2421 sizeof (objfile->msymbol_hash));
2422 memset (&objfile->msymbol_demangled_hash, 0,
2423 sizeof (objfile->msymbol_demangled_hash));
2424
2425 objfile->psymbol_cache = bcache_xmalloc ();
2426 objfile->macro_cache = bcache_xmalloc ();
2427 /* obstack_init also initializes the obstack so it is
2428 empty. We could use obstack_specify_allocation but
2429 gdb_obstack.h specifies the alloc/dealloc
2430 functions. */
2431 obstack_init (&objfile->objfile_obstack);
2432 if (build_objfile_section_table (objfile))
2433 {
2434 error (_("Can't find the file sections in `%s': %s"),
2435 objfile->name, bfd_errmsg (bfd_get_error ()));
2436 }
2437 terminate_minimal_symbol_table (objfile);
2438
2439 /* We use the same section offsets as from last time. I'm not
2440 sure whether that is always correct for shared libraries. */
2441 objfile->section_offsets = (struct section_offsets *)
2442 obstack_alloc (&objfile->objfile_obstack,
2443 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2444 memcpy (objfile->section_offsets, offsets,
2445 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2446 objfile->num_sections = num_offsets;
2447
2448 /* What the hell is sym_new_init for, anyway? The concept of
2449 distinguishing between the main file and additional files
2450 in this way seems rather dubious. */
2451 if (objfile == symfile_objfile)
2452 {
2453 (*objfile->sf->sym_new_init) (objfile);
2454 }
2455
2456 (*objfile->sf->sym_init) (objfile);
2457 clear_complaints (&symfile_complaints, 1, 1);
2458 /* The "mainline" parameter is a hideous hack; I think leaving it
2459 zero is OK since dbxread.c also does what it needs to do if
2460 objfile->global_psymbols.size is 0. */
2461 (*objfile->sf->sym_read) (objfile, 0);
2462 if (!objfile_has_symbols (objfile))
2463 {
2464 wrap_here ("");
2465 printf_unfiltered (_("(no debugging symbols found)\n"));
2466 wrap_here ("");
2467 }
2468
2469 /* We're done reading the symbol file; finish off complaints. */
2470 clear_complaints (&symfile_complaints, 0, 1);
2471
2472 /* Getting new symbols may change our opinion about what is
2473 frameless. */
2474
2475 reinit_frame_cache ();
2476
2477 /* Discard cleanups as symbol reading was successful. */
2478 discard_cleanups (old_cleanups);
2479
2480 /* If the mtime has changed between the time we set new_modtime
2481 and now, we *want* this to be out of date, so don't call stat
2482 again now. */
2483 objfile->mtime = new_modtime;
2484 reread_one = 1;
2485 reread_separate_symbols (objfile);
2486 init_entry_point_info (objfile);
2487 }
2488 }
2489 }
2490
2491 if (reread_one)
2492 {
2493 /* Notify objfiles that we've modified objfile sections. */
2494 objfiles_changed ();
2495
2496 clear_symtab_users ();
2497 /* At least one objfile has changed, so we can consider that
2498 the executable we're debugging has changed too. */
2499 observer_notify_executable_changed ();
2500 }
2501 }
2502
2503
2504 /* Handle separate debug info for OBJFILE, which has just been
2505 re-read:
2506 - If we had separate debug info before, but now we don't, get rid
2507 of the separated objfile.
2508 - If we didn't have separated debug info before, but now we do,
2509 read in the new separated debug info file.
2510 - If the debug link points to a different file, toss the old one
2511 and read the new one.
2512 This function does *not* handle the case where objfile is still
2513 using the same separate debug info file, but that file's timestamp
2514 has changed. That case should be handled by the loop in
2515 reread_symbols already. */
2516 static void
2517 reread_separate_symbols (struct objfile *objfile)
2518 {
2519 char *debug_file;
2520 unsigned long crc32;
2521
2522 /* Does the updated objfile's debug info live in a
2523 separate file? */
2524 debug_file = find_separate_debug_file (objfile);
2525
2526 if (objfile->separate_debug_objfile)
2527 {
2528 /* There are two cases where we need to get rid of
2529 the old separated debug info objfile:
2530 - if the new primary objfile doesn't have
2531 separated debug info, or
2532 - if the new primary objfile has separate debug
2533 info, but it's under a different filename.
2534
2535 If the old and new objfiles both have separate
2536 debug info, under the same filename, then we're
2537 okay --- if the separated file's contents have
2538 changed, we will have caught that when we
2539 visited it in this function's outermost
2540 loop. */
2541 if (! debug_file
2542 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2543 free_objfile (objfile->separate_debug_objfile);
2544 }
2545
2546 /* If the new objfile has separate debug info, and we
2547 haven't loaded it already, do so now. */
2548 if (debug_file
2549 && ! objfile->separate_debug_objfile)
2550 {
2551 /* Use the same section offset table as objfile itself.
2552 Preserve the flags from objfile that make sense. */
2553 objfile->separate_debug_objfile
2554 = (symbol_file_add_with_addrs_or_offsets
2555 (symfile_bfd_open (debug_file),
2556 info_verbose ? SYMFILE_VERBOSE : 0,
2557 0, /* No addr table. */
2558 objfile->section_offsets, objfile->num_sections,
2559 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2560 | OBJF_USERLOADED)));
2561 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2562 = objfile;
2563 }
2564 if (debug_file)
2565 xfree (debug_file);
2566 }
2567
2568
2569 \f
2570
2571
2572 typedef struct
2573 {
2574 char *ext;
2575 enum language lang;
2576 }
2577 filename_language;
2578
2579 static filename_language *filename_language_table;
2580 static int fl_table_size, fl_table_next;
2581
2582 static void
2583 add_filename_language (char *ext, enum language lang)
2584 {
2585 if (fl_table_next >= fl_table_size)
2586 {
2587 fl_table_size += 10;
2588 filename_language_table =
2589 xrealloc (filename_language_table,
2590 fl_table_size * sizeof (*filename_language_table));
2591 }
2592
2593 filename_language_table[fl_table_next].ext = xstrdup (ext);
2594 filename_language_table[fl_table_next].lang = lang;
2595 fl_table_next++;
2596 }
2597
2598 static char *ext_args;
2599 static void
2600 show_ext_args (struct ui_file *file, int from_tty,
2601 struct cmd_list_element *c, const char *value)
2602 {
2603 fprintf_filtered (file, _("\
2604 Mapping between filename extension and source language is \"%s\".\n"),
2605 value);
2606 }
2607
2608 static void
2609 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2610 {
2611 int i;
2612 char *cp = ext_args;
2613 enum language lang;
2614
2615 /* First arg is filename extension, starting with '.' */
2616 if (*cp != '.')
2617 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2618
2619 /* Find end of first arg. */
2620 while (*cp && !isspace (*cp))
2621 cp++;
2622
2623 if (*cp == '\0')
2624 error (_("'%s': two arguments required -- filename extension and language"),
2625 ext_args);
2626
2627 /* Null-terminate first arg */
2628 *cp++ = '\0';
2629
2630 /* Find beginning of second arg, which should be a source language. */
2631 while (*cp && isspace (*cp))
2632 cp++;
2633
2634 if (*cp == '\0')
2635 error (_("'%s': two arguments required -- filename extension and language"),
2636 ext_args);
2637
2638 /* Lookup the language from among those we know. */
2639 lang = language_enum (cp);
2640
2641 /* Now lookup the filename extension: do we already know it? */
2642 for (i = 0; i < fl_table_next; i++)
2643 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2644 break;
2645
2646 if (i >= fl_table_next)
2647 {
2648 /* new file extension */
2649 add_filename_language (ext_args, lang);
2650 }
2651 else
2652 {
2653 /* redefining a previously known filename extension */
2654
2655 /* if (from_tty) */
2656 /* query ("Really make files of type %s '%s'?", */
2657 /* ext_args, language_str (lang)); */
2658
2659 xfree (filename_language_table[i].ext);
2660 filename_language_table[i].ext = xstrdup (ext_args);
2661 filename_language_table[i].lang = lang;
2662 }
2663 }
2664
2665 static void
2666 info_ext_lang_command (char *args, int from_tty)
2667 {
2668 int i;
2669
2670 printf_filtered (_("Filename extensions and the languages they represent:"));
2671 printf_filtered ("\n\n");
2672 for (i = 0; i < fl_table_next; i++)
2673 printf_filtered ("\t%s\t- %s\n",
2674 filename_language_table[i].ext,
2675 language_str (filename_language_table[i].lang));
2676 }
2677
2678 static void
2679 init_filename_language_table (void)
2680 {
2681 if (fl_table_size == 0) /* protect against repetition */
2682 {
2683 fl_table_size = 20;
2684 fl_table_next = 0;
2685 filename_language_table =
2686 xmalloc (fl_table_size * sizeof (*filename_language_table));
2687 add_filename_language (".c", language_c);
2688 add_filename_language (".C", language_cplus);
2689 add_filename_language (".cc", language_cplus);
2690 add_filename_language (".cp", language_cplus);
2691 add_filename_language (".cpp", language_cplus);
2692 add_filename_language (".cxx", language_cplus);
2693 add_filename_language (".c++", language_cplus);
2694 add_filename_language (".java", language_java);
2695 add_filename_language (".class", language_java);
2696 add_filename_language (".m", language_objc);
2697 add_filename_language (".f", language_fortran);
2698 add_filename_language (".F", language_fortran);
2699 add_filename_language (".s", language_asm);
2700 add_filename_language (".sx", language_asm);
2701 add_filename_language (".S", language_asm);
2702 add_filename_language (".pas", language_pascal);
2703 add_filename_language (".p", language_pascal);
2704 add_filename_language (".pp", language_pascal);
2705 add_filename_language (".adb", language_ada);
2706 add_filename_language (".ads", language_ada);
2707 add_filename_language (".a", language_ada);
2708 add_filename_language (".ada", language_ada);
2709 }
2710 }
2711
2712 enum language
2713 deduce_language_from_filename (char *filename)
2714 {
2715 int i;
2716 char *cp;
2717
2718 if (filename != NULL)
2719 if ((cp = strrchr (filename, '.')) != NULL)
2720 for (i = 0; i < fl_table_next; i++)
2721 if (strcmp (cp, filename_language_table[i].ext) == 0)
2722 return filename_language_table[i].lang;
2723
2724 return language_unknown;
2725 }
2726 \f
2727 /* allocate_symtab:
2728
2729 Allocate and partly initialize a new symbol table. Return a pointer
2730 to it. error() if no space.
2731
2732 Caller must set these fields:
2733 LINETABLE(symtab)
2734 symtab->blockvector
2735 symtab->dirname
2736 symtab->free_code
2737 symtab->free_ptr
2738 possibly free_named_symtabs (symtab->filename);
2739 */
2740
2741 struct symtab *
2742 allocate_symtab (char *filename, struct objfile *objfile)
2743 {
2744 struct symtab *symtab;
2745
2746 symtab = (struct symtab *)
2747 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2748 memset (symtab, 0, sizeof (*symtab));
2749 symtab->filename = obsavestring (filename, strlen (filename),
2750 &objfile->objfile_obstack);
2751 symtab->fullname = NULL;
2752 symtab->language = deduce_language_from_filename (filename);
2753 symtab->debugformat = obsavestring ("unknown", 7,
2754 &objfile->objfile_obstack);
2755
2756 /* Hook it to the objfile it comes from */
2757
2758 symtab->objfile = objfile;
2759 symtab->next = objfile->symtabs;
2760 objfile->symtabs = symtab;
2761
2762 return (symtab);
2763 }
2764
2765 struct partial_symtab *
2766 allocate_psymtab (char *filename, struct objfile *objfile)
2767 {
2768 struct partial_symtab *psymtab;
2769
2770 if (objfile->free_psymtabs)
2771 {
2772 psymtab = objfile->free_psymtabs;
2773 objfile->free_psymtabs = psymtab->next;
2774 }
2775 else
2776 psymtab = (struct partial_symtab *)
2777 obstack_alloc (&objfile->objfile_obstack,
2778 sizeof (struct partial_symtab));
2779
2780 memset (psymtab, 0, sizeof (struct partial_symtab));
2781 psymtab->filename = obsavestring (filename, strlen (filename),
2782 &objfile->objfile_obstack);
2783 psymtab->symtab = NULL;
2784
2785 /* Prepend it to the psymtab list for the objfile it belongs to.
2786 Psymtabs are searched in most recent inserted -> least recent
2787 inserted order. */
2788
2789 psymtab->objfile = objfile;
2790 psymtab->next = objfile->psymtabs;
2791 objfile->psymtabs = psymtab;
2792 #if 0
2793 {
2794 struct partial_symtab **prev_pst;
2795 psymtab->objfile = objfile;
2796 psymtab->next = NULL;
2797 prev_pst = &(objfile->psymtabs);
2798 while ((*prev_pst) != NULL)
2799 prev_pst = &((*prev_pst)->next);
2800 (*prev_pst) = psymtab;
2801 }
2802 #endif
2803
2804 return (psymtab);
2805 }
2806
2807 void
2808 discard_psymtab (struct partial_symtab *pst)
2809 {
2810 struct partial_symtab **prev_pst;
2811
2812 /* From dbxread.c:
2813 Empty psymtabs happen as a result of header files which don't
2814 have any symbols in them. There can be a lot of them. But this
2815 check is wrong, in that a psymtab with N_SLINE entries but
2816 nothing else is not empty, but we don't realize that. Fixing
2817 that without slowing things down might be tricky. */
2818
2819 /* First, snip it out of the psymtab chain */
2820
2821 prev_pst = &(pst->objfile->psymtabs);
2822 while ((*prev_pst) != pst)
2823 prev_pst = &((*prev_pst)->next);
2824 (*prev_pst) = pst->next;
2825
2826 /* Next, put it on a free list for recycling */
2827
2828 pst->next = pst->objfile->free_psymtabs;
2829 pst->objfile->free_psymtabs = pst;
2830 }
2831 \f
2832
2833 /* Reset all data structures in gdb which may contain references to symbol
2834 table data. */
2835
2836 void
2837 clear_symtab_users (void)
2838 {
2839 /* Someday, we should do better than this, by only blowing away
2840 the things that really need to be blown. */
2841
2842 /* Clear the "current" symtab first, because it is no longer valid.
2843 breakpoint_re_set may try to access the current symtab. */
2844 clear_current_source_symtab_and_line ();
2845
2846 clear_displays ();
2847 breakpoint_re_set ();
2848 set_default_breakpoint (0, NULL, 0, 0, 0);
2849 clear_pc_function_cache ();
2850 observer_notify_new_objfile (NULL);
2851
2852 /* Clear globals which might have pointed into a removed objfile.
2853 FIXME: It's not clear which of these are supposed to persist
2854 between expressions and which ought to be reset each time. */
2855 expression_context_block = NULL;
2856 innermost_block = NULL;
2857
2858 /* Varobj may refer to old symbols, perform a cleanup. */
2859 varobj_invalidate ();
2860
2861 }
2862
2863 static void
2864 clear_symtab_users_cleanup (void *ignore)
2865 {
2866 clear_symtab_users ();
2867 }
2868
2869 /* clear_symtab_users_once:
2870
2871 This function is run after symbol reading, or from a cleanup.
2872 If an old symbol table was obsoleted, the old symbol table
2873 has been blown away, but the other GDB data structures that may
2874 reference it have not yet been cleared or re-directed. (The old
2875 symtab was zapped, and the cleanup queued, in free_named_symtab()
2876 below.)
2877
2878 This function can be queued N times as a cleanup, or called
2879 directly; it will do all the work the first time, and then will be a
2880 no-op until the next time it is queued. This works by bumping a
2881 counter at queueing time. Much later when the cleanup is run, or at
2882 the end of symbol processing (in case the cleanup is discarded), if
2883 the queued count is greater than the "done-count", we do the work
2884 and set the done-count to the queued count. If the queued count is
2885 less than or equal to the done-count, we just ignore the call. This
2886 is needed because reading a single .o file will often replace many
2887 symtabs (one per .h file, for example), and we don't want to reset
2888 the breakpoints N times in the user's face.
2889
2890 The reason we both queue a cleanup, and call it directly after symbol
2891 reading, is because the cleanup protects us in case of errors, but is
2892 discarded if symbol reading is successful. */
2893
2894 #if 0
2895 /* FIXME: As free_named_symtabs is currently a big noop this function
2896 is no longer needed. */
2897 static void clear_symtab_users_once (void);
2898
2899 static int clear_symtab_users_queued;
2900 static int clear_symtab_users_done;
2901
2902 static void
2903 clear_symtab_users_once (void)
2904 {
2905 /* Enforce once-per-`do_cleanups'-semantics */
2906 if (clear_symtab_users_queued <= clear_symtab_users_done)
2907 return;
2908 clear_symtab_users_done = clear_symtab_users_queued;
2909
2910 clear_symtab_users ();
2911 }
2912 #endif
2913
2914 /* Delete the specified psymtab, and any others that reference it. */
2915
2916 static void
2917 cashier_psymtab (struct partial_symtab *pst)
2918 {
2919 struct partial_symtab *ps, *pprev = NULL;
2920 int i;
2921
2922 /* Find its previous psymtab in the chain */
2923 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2924 {
2925 if (ps == pst)
2926 break;
2927 pprev = ps;
2928 }
2929
2930 if (ps)
2931 {
2932 /* Unhook it from the chain. */
2933 if (ps == pst->objfile->psymtabs)
2934 pst->objfile->psymtabs = ps->next;
2935 else
2936 pprev->next = ps->next;
2937
2938 /* FIXME, we can't conveniently deallocate the entries in the
2939 partial_symbol lists (global_psymbols/static_psymbols) that
2940 this psymtab points to. These just take up space until all
2941 the psymtabs are reclaimed. Ditto the dependencies list and
2942 filename, which are all in the objfile_obstack. */
2943
2944 /* We need to cashier any psymtab that has this one as a dependency... */
2945 again:
2946 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2947 {
2948 for (i = 0; i < ps->number_of_dependencies; i++)
2949 {
2950 if (ps->dependencies[i] == pst)
2951 {
2952 cashier_psymtab (ps);
2953 goto again; /* Must restart, chain has been munged. */
2954 }
2955 }
2956 }
2957 }
2958 }
2959
2960 /* If a symtab or psymtab for filename NAME is found, free it along
2961 with any dependent breakpoints, displays, etc.
2962 Used when loading new versions of object modules with the "add-file"
2963 command. This is only called on the top-level symtab or psymtab's name;
2964 it is not called for subsidiary files such as .h files.
2965
2966 Return value is 1 if we blew away the environment, 0 if not.
2967 FIXME. The return value appears to never be used.
2968
2969 FIXME. I think this is not the best way to do this. We should
2970 work on being gentler to the environment while still cleaning up
2971 all stray pointers into the freed symtab. */
2972
2973 int
2974 free_named_symtabs (char *name)
2975 {
2976 #if 0
2977 /* FIXME: With the new method of each objfile having it's own
2978 psymtab list, this function needs serious rethinking. In particular,
2979 why was it ever necessary to toss psymtabs with specific compilation
2980 unit filenames, as opposed to all psymtabs from a particular symbol
2981 file? -- fnf
2982 Well, the answer is that some systems permit reloading of particular
2983 compilation units. We want to blow away any old info about these
2984 compilation units, regardless of which objfiles they arrived in. --gnu. */
2985
2986 struct symtab *s;
2987 struct symtab *prev;
2988 struct partial_symtab *ps;
2989 struct blockvector *bv;
2990 int blewit = 0;
2991
2992 /* We only wack things if the symbol-reload switch is set. */
2993 if (!symbol_reloading)
2994 return 0;
2995
2996 /* Some symbol formats have trouble providing file names... */
2997 if (name == 0 || *name == '\0')
2998 return 0;
2999
3000 /* Look for a psymtab with the specified name. */
3001
3002 again2:
3003 for (ps = partial_symtab_list; ps; ps = ps->next)
3004 {
3005 if (strcmp (name, ps->filename) == 0)
3006 {
3007 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
3008 goto again2; /* Must restart, chain has been munged */
3009 }
3010 }
3011
3012 /* Look for a symtab with the specified name. */
3013
3014 for (s = symtab_list; s; s = s->next)
3015 {
3016 if (strcmp (name, s->filename) == 0)
3017 break;
3018 prev = s;
3019 }
3020
3021 if (s)
3022 {
3023 if (s == symtab_list)
3024 symtab_list = s->next;
3025 else
3026 prev->next = s->next;
3027
3028 /* For now, queue a delete for all breakpoints, displays, etc., whether
3029 or not they depend on the symtab being freed. This should be
3030 changed so that only those data structures affected are deleted. */
3031
3032 /* But don't delete anything if the symtab is empty.
3033 This test is necessary due to a bug in "dbxread.c" that
3034 causes empty symtabs to be created for N_SO symbols that
3035 contain the pathname of the object file. (This problem
3036 has been fixed in GDB 3.9x). */
3037
3038 bv = BLOCKVECTOR (s);
3039 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3040 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3041 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3042 {
3043 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
3044 name);
3045 clear_symtab_users_queued++;
3046 make_cleanup (clear_symtab_users_once, 0);
3047 blewit = 1;
3048 }
3049 else
3050 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3051 name);
3052
3053 free_symtab (s);
3054 }
3055 else
3056 {
3057 /* It is still possible that some breakpoints will be affected
3058 even though no symtab was found, since the file might have
3059 been compiled without debugging, and hence not be associated
3060 with a symtab. In order to handle this correctly, we would need
3061 to keep a list of text address ranges for undebuggable files.
3062 For now, we do nothing, since this is a fairly obscure case. */
3063 ;
3064 }
3065
3066 /* FIXME, what about the minimal symbol table? */
3067 return blewit;
3068 #else
3069 return (0);
3070 #endif
3071 }
3072 \f
3073 /* Allocate and partially fill a partial symtab. It will be
3074 completely filled at the end of the symbol list.
3075
3076 FILENAME is the name of the symbol-file we are reading from. */
3077
3078 struct partial_symtab *
3079 start_psymtab_common (struct objfile *objfile,
3080 struct section_offsets *section_offsets, char *filename,
3081 CORE_ADDR textlow, struct partial_symbol **global_syms,
3082 struct partial_symbol **static_syms)
3083 {
3084 struct partial_symtab *psymtab;
3085
3086 psymtab = allocate_psymtab (filename, objfile);
3087 psymtab->section_offsets = section_offsets;
3088 psymtab->textlow = textlow;
3089 psymtab->texthigh = psymtab->textlow; /* default */
3090 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3091 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
3092 return (psymtab);
3093 }
3094 \f
3095 /* Helper function, initialises partial symbol structure and stashes
3096 it into objfile's bcache. Note that our caching mechanism will
3097 use all fields of struct partial_symbol to determine hash value of the
3098 structure. In other words, having two symbols with the same name but
3099 different domain (or address) is possible and correct. */
3100
3101 static const struct partial_symbol *
3102 add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3103 enum address_class class,
3104 long val, /* Value as a long */
3105 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3106 enum language language, struct objfile *objfile,
3107 int *added)
3108 {
3109 struct partial_symbol psymbol;
3110
3111 memset (&psymbol, 0, sizeof (struct partial_symbol));
3112 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3113 if (val != 0)
3114 {
3115 SYMBOL_VALUE (&psymbol) = val;
3116 }
3117 else
3118 {
3119 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3120 }
3121 SYMBOL_SECTION (&psymbol) = 0;
3122 SYMBOL_LANGUAGE (&psymbol) = language;
3123 PSYMBOL_DOMAIN (&psymbol) = domain;
3124 PSYMBOL_CLASS (&psymbol) = class;
3125
3126 SYMBOL_SET_NAMES (&psymbol, name, namelength, objfile);
3127
3128 /* Stash the partial symbol away in the cache */
3129 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3130 objfile->psymbol_cache, added);
3131 }
3132
3133 /* Helper function, adds partial symbol to the given partial symbol
3134 list. */
3135
3136 static void
3137 append_psymbol_to_list (struct psymbol_allocation_list *list,
3138 const struct partial_symbol *psym,
3139 struct objfile *objfile)
3140 {
3141 if (list->next >= list->list + list->size)
3142 extend_psymbol_list (list, objfile);
3143 *list->next++ = (struct partial_symbol *) psym;
3144 OBJSTAT (objfile, n_psyms++);
3145 }
3146
3147 /* Add a symbol with a long value to a psymtab.
3148 Since one arg is a struct, we pass in a ptr and deref it (sigh).
3149 Return the partial symbol that has been added. */
3150
3151 /* NOTE: carlton/2003-09-11: The reason why we return the partial
3152 symbol is so that callers can get access to the symbol's demangled
3153 name, which they don't have any cheap way to determine otherwise.
3154 (Currenly, dwarf2read.c is the only file who uses that information,
3155 though it's possible that other readers might in the future.)
3156 Elena wasn't thrilled about that, and I don't blame her, but we
3157 couldn't come up with a better way to get that information. If
3158 it's needed in other situations, we could consider breaking up
3159 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3160 cache. */
3161
3162 const struct partial_symbol *
3163 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
3164 enum address_class class,
3165 struct psymbol_allocation_list *list,
3166 long val, /* Value as a long */
3167 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3168 enum language language, struct objfile *objfile)
3169 {
3170 const struct partial_symbol *psym;
3171
3172 int added;
3173
3174 /* Stash the partial symbol away in the cache */
3175 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3176 val, coreaddr, language, objfile, &added);
3177
3178 /* Do not duplicate global partial symbols. */
3179 if (list == &objfile->global_psymbols
3180 && !added)
3181 return psym;
3182
3183 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3184 append_psymbol_to_list (list, psym, objfile);
3185 return psym;
3186 }
3187
3188 /* Initialize storage for partial symbols. */
3189
3190 void
3191 init_psymbol_list (struct objfile *objfile, int total_symbols)
3192 {
3193 /* Free any previously allocated psymbol lists. */
3194
3195 if (objfile->global_psymbols.list)
3196 {
3197 xfree (objfile->global_psymbols.list);
3198 }
3199 if (objfile->static_psymbols.list)
3200 {
3201 xfree (objfile->static_psymbols.list);
3202 }
3203
3204 /* Current best guess is that approximately a twentieth
3205 of the total symbols (in a debugging file) are global or static
3206 oriented symbols */
3207
3208 objfile->global_psymbols.size = total_symbols / 10;
3209 objfile->static_psymbols.size = total_symbols / 10;
3210
3211 if (objfile->global_psymbols.size > 0)
3212 {
3213 objfile->global_psymbols.next =
3214 objfile->global_psymbols.list = (struct partial_symbol **)
3215 xmalloc ((objfile->global_psymbols.size
3216 * sizeof (struct partial_symbol *)));
3217 }
3218 if (objfile->static_psymbols.size > 0)
3219 {
3220 objfile->static_psymbols.next =
3221 objfile->static_psymbols.list = (struct partial_symbol **)
3222 xmalloc ((objfile->static_psymbols.size
3223 * sizeof (struct partial_symbol *)));
3224 }
3225 }
3226
3227 /* OVERLAYS:
3228 The following code implements an abstraction for debugging overlay sections.
3229
3230 The target model is as follows:
3231 1) The gnu linker will permit multiple sections to be mapped into the
3232 same VMA, each with its own unique LMA (or load address).
3233 2) It is assumed that some runtime mechanism exists for mapping the
3234 sections, one by one, from the load address into the VMA address.
3235 3) This code provides a mechanism for gdb to keep track of which
3236 sections should be considered to be mapped from the VMA to the LMA.
3237 This information is used for symbol lookup, and memory read/write.
3238 For instance, if a section has been mapped then its contents
3239 should be read from the VMA, otherwise from the LMA.
3240
3241 Two levels of debugger support for overlays are available. One is
3242 "manual", in which the debugger relies on the user to tell it which
3243 overlays are currently mapped. This level of support is
3244 implemented entirely in the core debugger, and the information about
3245 whether a section is mapped is kept in the objfile->obj_section table.
3246
3247 The second level of support is "automatic", and is only available if
3248 the target-specific code provides functionality to read the target's
3249 overlay mapping table, and translate its contents for the debugger
3250 (by updating the mapped state information in the obj_section tables).
3251
3252 The interface is as follows:
3253 User commands:
3254 overlay map <name> -- tell gdb to consider this section mapped
3255 overlay unmap <name> -- tell gdb to consider this section unmapped
3256 overlay list -- list the sections that GDB thinks are mapped
3257 overlay read-target -- get the target's state of what's mapped
3258 overlay off/manual/auto -- set overlay debugging state
3259 Functional interface:
3260 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3261 section, return that section.
3262 find_pc_overlay(pc): find any overlay section that contains
3263 the pc, either in its VMA or its LMA
3264 section_is_mapped(sect): true if overlay is marked as mapped
3265 section_is_overlay(sect): true if section's VMA != LMA
3266 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3267 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3268 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3269 overlay_mapped_address(...): map an address from section's LMA to VMA
3270 overlay_unmapped_address(...): map an address from section's VMA to LMA
3271 symbol_overlayed_address(...): Return a "current" address for symbol:
3272 either in VMA or LMA depending on whether
3273 the symbol's section is currently mapped
3274 */
3275
3276 /* Overlay debugging state: */
3277
3278 enum overlay_debugging_state overlay_debugging = ovly_off;
3279 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3280
3281 /* Function: section_is_overlay (SECTION)
3282 Returns true if SECTION has VMA not equal to LMA, ie.
3283 SECTION is loaded at an address different from where it will "run". */
3284
3285 int
3286 section_is_overlay (struct obj_section *section)
3287 {
3288 if (overlay_debugging && section)
3289 {
3290 bfd *abfd = section->objfile->obfd;
3291 asection *bfd_section = section->the_bfd_section;
3292
3293 if (bfd_section_lma (abfd, bfd_section) != 0
3294 && bfd_section_lma (abfd, bfd_section)
3295 != bfd_section_vma (abfd, bfd_section))
3296 return 1;
3297 }
3298
3299 return 0;
3300 }
3301
3302 /* Function: overlay_invalidate_all (void)
3303 Invalidate the mapped state of all overlay sections (mark it as stale). */
3304
3305 static void
3306 overlay_invalidate_all (void)
3307 {
3308 struct objfile *objfile;
3309 struct obj_section *sect;
3310
3311 ALL_OBJSECTIONS (objfile, sect)
3312 if (section_is_overlay (sect))
3313 sect->ovly_mapped = -1;
3314 }
3315
3316 /* Function: section_is_mapped (SECTION)
3317 Returns true if section is an overlay, and is currently mapped.
3318
3319 Access to the ovly_mapped flag is restricted to this function, so
3320 that we can do automatic update. If the global flag
3321 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3322 overlay_invalidate_all. If the mapped state of the particular
3323 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3324
3325 int
3326 section_is_mapped (struct obj_section *osect)
3327 {
3328 struct gdbarch *gdbarch;
3329
3330 if (osect == 0 || !section_is_overlay (osect))
3331 return 0;
3332
3333 switch (overlay_debugging)
3334 {
3335 default:
3336 case ovly_off:
3337 return 0; /* overlay debugging off */
3338 case ovly_auto: /* overlay debugging automatic */
3339 /* Unles there is a gdbarch_overlay_update function,
3340 there's really nothing useful to do here (can't really go auto) */
3341 gdbarch = get_objfile_arch (osect->objfile);
3342 if (gdbarch_overlay_update_p (gdbarch))
3343 {
3344 if (overlay_cache_invalid)
3345 {
3346 overlay_invalidate_all ();
3347 overlay_cache_invalid = 0;
3348 }
3349 if (osect->ovly_mapped == -1)
3350 gdbarch_overlay_update (gdbarch, osect);
3351 }
3352 /* fall thru to manual case */
3353 case ovly_on: /* overlay debugging manual */
3354 return osect->ovly_mapped == 1;
3355 }
3356 }
3357
3358 /* Function: pc_in_unmapped_range
3359 If PC falls into the lma range of SECTION, return true, else false. */
3360
3361 CORE_ADDR
3362 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3363 {
3364 if (section_is_overlay (section))
3365 {
3366 bfd *abfd = section->objfile->obfd;
3367 asection *bfd_section = section->the_bfd_section;
3368
3369 /* We assume the LMA is relocated by the same offset as the VMA. */
3370 bfd_vma size = bfd_get_section_size (bfd_section);
3371 CORE_ADDR offset = obj_section_offset (section);
3372
3373 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3374 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3375 return 1;
3376 }
3377
3378 return 0;
3379 }
3380
3381 /* Function: pc_in_mapped_range
3382 If PC falls into the vma range of SECTION, return true, else false. */
3383
3384 CORE_ADDR
3385 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3386 {
3387 if (section_is_overlay (section))
3388 {
3389 if (obj_section_addr (section) <= pc
3390 && pc < obj_section_endaddr (section))
3391 return 1;
3392 }
3393
3394 return 0;
3395 }
3396
3397
3398 /* Return true if the mapped ranges of sections A and B overlap, false
3399 otherwise. */
3400 static int
3401 sections_overlap (struct obj_section *a, struct obj_section *b)
3402 {
3403 CORE_ADDR a_start = obj_section_addr (a);
3404 CORE_ADDR a_end = obj_section_endaddr (a);
3405 CORE_ADDR b_start = obj_section_addr (b);
3406 CORE_ADDR b_end = obj_section_endaddr (b);
3407
3408 return (a_start < b_end && b_start < a_end);
3409 }
3410
3411 /* Function: overlay_unmapped_address (PC, SECTION)
3412 Returns the address corresponding to PC in the unmapped (load) range.
3413 May be the same as PC. */
3414
3415 CORE_ADDR
3416 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3417 {
3418 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3419 {
3420 bfd *abfd = section->objfile->obfd;
3421 asection *bfd_section = section->the_bfd_section;
3422
3423 return pc + bfd_section_lma (abfd, bfd_section)
3424 - bfd_section_vma (abfd, bfd_section);
3425 }
3426
3427 return pc;
3428 }
3429
3430 /* Function: overlay_mapped_address (PC, SECTION)
3431 Returns the address corresponding to PC in the mapped (runtime) range.
3432 May be the same as PC. */
3433
3434 CORE_ADDR
3435 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3436 {
3437 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3438 {
3439 bfd *abfd = section->objfile->obfd;
3440 asection *bfd_section = section->the_bfd_section;
3441
3442 return pc + bfd_section_vma (abfd, bfd_section)
3443 - bfd_section_lma (abfd, bfd_section);
3444 }
3445
3446 return pc;
3447 }
3448
3449
3450 /* Function: symbol_overlayed_address
3451 Return one of two addresses (relative to the VMA or to the LMA),
3452 depending on whether the section is mapped or not. */
3453
3454 CORE_ADDR
3455 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3456 {
3457 if (overlay_debugging)
3458 {
3459 /* If the symbol has no section, just return its regular address. */
3460 if (section == 0)
3461 return address;
3462 /* If the symbol's section is not an overlay, just return its address */
3463 if (!section_is_overlay (section))
3464 return address;
3465 /* If the symbol's section is mapped, just return its address */
3466 if (section_is_mapped (section))
3467 return address;
3468 /*
3469 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3470 * then return its LOADED address rather than its vma address!!
3471 */
3472 return overlay_unmapped_address (address, section);
3473 }
3474 return address;
3475 }
3476
3477 /* Function: find_pc_overlay (PC)
3478 Return the best-match overlay section for PC:
3479 If PC matches a mapped overlay section's VMA, return that section.
3480 Else if PC matches an unmapped section's VMA, return that section.
3481 Else if PC matches an unmapped section's LMA, return that section. */
3482
3483 struct obj_section *
3484 find_pc_overlay (CORE_ADDR pc)
3485 {
3486 struct objfile *objfile;
3487 struct obj_section *osect, *best_match = NULL;
3488
3489 if (overlay_debugging)
3490 ALL_OBJSECTIONS (objfile, osect)
3491 if (section_is_overlay (osect))
3492 {
3493 if (pc_in_mapped_range (pc, osect))
3494 {
3495 if (section_is_mapped (osect))
3496 return osect;
3497 else
3498 best_match = osect;
3499 }
3500 else if (pc_in_unmapped_range (pc, osect))
3501 best_match = osect;
3502 }
3503 return best_match;
3504 }
3505
3506 /* Function: find_pc_mapped_section (PC)
3507 If PC falls into the VMA address range of an overlay section that is
3508 currently marked as MAPPED, return that section. Else return NULL. */
3509
3510 struct obj_section *
3511 find_pc_mapped_section (CORE_ADDR pc)
3512 {
3513 struct objfile *objfile;
3514 struct obj_section *osect;
3515
3516 if (overlay_debugging)
3517 ALL_OBJSECTIONS (objfile, osect)
3518 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3519 return osect;
3520
3521 return NULL;
3522 }
3523
3524 /* Function: list_overlays_command
3525 Print a list of mapped sections and their PC ranges */
3526
3527 void
3528 list_overlays_command (char *args, int from_tty)
3529 {
3530 int nmapped = 0;
3531 struct objfile *objfile;
3532 struct obj_section *osect;
3533
3534 if (overlay_debugging)
3535 ALL_OBJSECTIONS (objfile, osect)
3536 if (section_is_mapped (osect))
3537 {
3538 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3539 const char *name;
3540 bfd_vma lma, vma;
3541 int size;
3542
3543 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3544 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3545 size = bfd_get_section_size (osect->the_bfd_section);
3546 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3547
3548 printf_filtered ("Section %s, loaded at ", name);
3549 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3550 puts_filtered (" - ");
3551 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3552 printf_filtered (", mapped at ");
3553 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3554 puts_filtered (" - ");
3555 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3556 puts_filtered ("\n");
3557
3558 nmapped++;
3559 }
3560 if (nmapped == 0)
3561 printf_filtered (_("No sections are mapped.\n"));
3562 }
3563
3564 /* Function: map_overlay_command
3565 Mark the named section as mapped (ie. residing at its VMA address). */
3566
3567 void
3568 map_overlay_command (char *args, int from_tty)
3569 {
3570 struct objfile *objfile, *objfile2;
3571 struct obj_section *sec, *sec2;
3572
3573 if (!overlay_debugging)
3574 error (_("\
3575 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3576 the 'overlay manual' command."));
3577
3578 if (args == 0 || *args == 0)
3579 error (_("Argument required: name of an overlay section"));
3580
3581 /* First, find a section matching the user supplied argument */
3582 ALL_OBJSECTIONS (objfile, sec)
3583 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3584 {
3585 /* Now, check to see if the section is an overlay. */
3586 if (!section_is_overlay (sec))
3587 continue; /* not an overlay section */
3588
3589 /* Mark the overlay as "mapped" */
3590 sec->ovly_mapped = 1;
3591
3592 /* Next, make a pass and unmap any sections that are
3593 overlapped by this new section: */
3594 ALL_OBJSECTIONS (objfile2, sec2)
3595 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3596 {
3597 if (info_verbose)
3598 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3599 bfd_section_name (objfile->obfd,
3600 sec2->the_bfd_section));
3601 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3602 }
3603 return;
3604 }
3605 error (_("No overlay section called %s"), args);
3606 }
3607
3608 /* Function: unmap_overlay_command
3609 Mark the overlay section as unmapped
3610 (ie. resident in its LMA address range, rather than the VMA range). */
3611
3612 void
3613 unmap_overlay_command (char *args, int from_tty)
3614 {
3615 struct objfile *objfile;
3616 struct obj_section *sec;
3617
3618 if (!overlay_debugging)
3619 error (_("\
3620 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3621 the 'overlay manual' command."));
3622
3623 if (args == 0 || *args == 0)
3624 error (_("Argument required: name of an overlay section"));
3625
3626 /* First, find a section matching the user supplied argument */
3627 ALL_OBJSECTIONS (objfile, sec)
3628 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3629 {
3630 if (!sec->ovly_mapped)
3631 error (_("Section %s is not mapped"), args);
3632 sec->ovly_mapped = 0;
3633 return;
3634 }
3635 error (_("No overlay section called %s"), args);
3636 }
3637
3638 /* Function: overlay_auto_command
3639 A utility command to turn on overlay debugging.
3640 Possibly this should be done via a set/show command. */
3641
3642 static void
3643 overlay_auto_command (char *args, int from_tty)
3644 {
3645 overlay_debugging = ovly_auto;
3646 enable_overlay_breakpoints ();
3647 if (info_verbose)
3648 printf_unfiltered (_("Automatic overlay debugging enabled."));
3649 }
3650
3651 /* Function: overlay_manual_command
3652 A utility command to turn on overlay debugging.
3653 Possibly this should be done via a set/show command. */
3654
3655 static void
3656 overlay_manual_command (char *args, int from_tty)
3657 {
3658 overlay_debugging = ovly_on;
3659 disable_overlay_breakpoints ();
3660 if (info_verbose)
3661 printf_unfiltered (_("Overlay debugging enabled."));
3662 }
3663
3664 /* Function: overlay_off_command
3665 A utility command to turn on overlay debugging.
3666 Possibly this should be done via a set/show command. */
3667
3668 static void
3669 overlay_off_command (char *args, int from_tty)
3670 {
3671 overlay_debugging = ovly_off;
3672 disable_overlay_breakpoints ();
3673 if (info_verbose)
3674 printf_unfiltered (_("Overlay debugging disabled."));
3675 }
3676
3677 static void
3678 overlay_load_command (char *args, int from_tty)
3679 {
3680 struct gdbarch *gdbarch = get_current_arch ();
3681
3682 if (gdbarch_overlay_update_p (gdbarch))
3683 gdbarch_overlay_update (gdbarch, NULL);
3684 else
3685 error (_("This target does not know how to read its overlay state."));
3686 }
3687
3688 /* Function: overlay_command
3689 A place-holder for a mis-typed command */
3690
3691 /* Command list chain containing all defined "overlay" subcommands. */
3692 struct cmd_list_element *overlaylist;
3693
3694 static void
3695 overlay_command (char *args, int from_tty)
3696 {
3697 printf_unfiltered
3698 ("\"overlay\" must be followed by the name of an overlay command.\n");
3699 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3700 }
3701
3702
3703 /* Target Overlays for the "Simplest" overlay manager:
3704
3705 This is GDB's default target overlay layer. It works with the
3706 minimal overlay manager supplied as an example by Cygnus. The
3707 entry point is via a function pointer "gdbarch_overlay_update",
3708 so targets that use a different runtime overlay manager can
3709 substitute their own overlay_update function and take over the
3710 function pointer.
3711
3712 The overlay_update function pokes around in the target's data structures
3713 to see what overlays are mapped, and updates GDB's overlay mapping with
3714 this information.
3715
3716 In this simple implementation, the target data structures are as follows:
3717 unsigned _novlys; /# number of overlay sections #/
3718 unsigned _ovly_table[_novlys][4] = {
3719 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3720 {..., ..., ..., ...},
3721 }
3722 unsigned _novly_regions; /# number of overlay regions #/
3723 unsigned _ovly_region_table[_novly_regions][3] = {
3724 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3725 {..., ..., ...},
3726 }
3727 These functions will attempt to update GDB's mappedness state in the
3728 symbol section table, based on the target's mappedness state.
3729
3730 To do this, we keep a cached copy of the target's _ovly_table, and
3731 attempt to detect when the cached copy is invalidated. The main
3732 entry point is "simple_overlay_update(SECT), which looks up SECT in
3733 the cached table and re-reads only the entry for that section from
3734 the target (whenever possible).
3735 */
3736
3737 /* Cached, dynamically allocated copies of the target data structures: */
3738 static unsigned (*cache_ovly_table)[4] = 0;
3739 #if 0
3740 static unsigned (*cache_ovly_region_table)[3] = 0;
3741 #endif
3742 static unsigned cache_novlys = 0;
3743 #if 0
3744 static unsigned cache_novly_regions = 0;
3745 #endif
3746 static CORE_ADDR cache_ovly_table_base = 0;
3747 #if 0
3748 static CORE_ADDR cache_ovly_region_table_base = 0;
3749 #endif
3750 enum ovly_index
3751 {
3752 VMA, SIZE, LMA, MAPPED
3753 };
3754
3755 /* Throw away the cached copy of _ovly_table */
3756 static void
3757 simple_free_overlay_table (void)
3758 {
3759 if (cache_ovly_table)
3760 xfree (cache_ovly_table);
3761 cache_novlys = 0;
3762 cache_ovly_table = NULL;
3763 cache_ovly_table_base = 0;
3764 }
3765
3766 #if 0
3767 /* Throw away the cached copy of _ovly_region_table */
3768 static void
3769 simple_free_overlay_region_table (void)
3770 {
3771 if (cache_ovly_region_table)
3772 xfree (cache_ovly_region_table);
3773 cache_novly_regions = 0;
3774 cache_ovly_region_table = NULL;
3775 cache_ovly_region_table_base = 0;
3776 }
3777 #endif
3778
3779 /* Read an array of ints of size SIZE from the target into a local buffer.
3780 Convert to host order. int LEN is number of ints */
3781 static void
3782 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3783 int len, int size, enum bfd_endian byte_order)
3784 {
3785 /* FIXME (alloca): Not safe if array is very large. */
3786 gdb_byte *buf = alloca (len * size);
3787 int i;
3788
3789 read_memory (memaddr, buf, len * size);
3790 for (i = 0; i < len; i++)
3791 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3792 }
3793
3794 /* Find and grab a copy of the target _ovly_table
3795 (and _novlys, which is needed for the table's size) */
3796 static int
3797 simple_read_overlay_table (void)
3798 {
3799 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3800 struct gdbarch *gdbarch;
3801 int word_size;
3802 enum bfd_endian byte_order;
3803
3804 simple_free_overlay_table ();
3805 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3806 if (! novlys_msym)
3807 {
3808 error (_("Error reading inferior's overlay table: "
3809 "couldn't find `_novlys' variable\n"
3810 "in inferior. Use `overlay manual' mode."));
3811 return 0;
3812 }
3813
3814 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3815 if (! ovly_table_msym)
3816 {
3817 error (_("Error reading inferior's overlay table: couldn't find "
3818 "`_ovly_table' array\n"
3819 "in inferior. Use `overlay manual' mode."));
3820 return 0;
3821 }
3822
3823 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3824 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3825 byte_order = gdbarch_byte_order (gdbarch);
3826
3827 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3828 4, byte_order);
3829 cache_ovly_table
3830 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3831 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3832 read_target_long_array (cache_ovly_table_base,
3833 (unsigned int *) cache_ovly_table,
3834 cache_novlys * 4, word_size, byte_order);
3835
3836 return 1; /* SUCCESS */
3837 }
3838
3839 #if 0
3840 /* Find and grab a copy of the target _ovly_region_table
3841 (and _novly_regions, which is needed for the table's size) */
3842 static int
3843 simple_read_overlay_region_table (void)
3844 {
3845 struct minimal_symbol *msym;
3846 struct gdbarch *gdbarch;
3847 int word_size;
3848 enum bfd_endian byte_order;
3849
3850 simple_free_overlay_region_table ();
3851 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3852 if (msym == NULL)
3853 return 0; /* failure */
3854
3855 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3856 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3857 byte_order = gdbarch_byte_order (gdbarch);
3858
3859 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3860 4, byte_order);
3861
3862 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3863 if (cache_ovly_region_table != NULL)
3864 {
3865 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3866 if (msym != NULL)
3867 {
3868 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3869 read_target_long_array (cache_ovly_region_table_base,
3870 (unsigned int *) cache_ovly_region_table,
3871 cache_novly_regions * 3,
3872 word_size, byte_order);
3873 }
3874 else
3875 return 0; /* failure */
3876 }
3877 else
3878 return 0; /* failure */
3879 return 1; /* SUCCESS */
3880 }
3881 #endif
3882
3883 /* Function: simple_overlay_update_1
3884 A helper function for simple_overlay_update. Assuming a cached copy
3885 of _ovly_table exists, look through it to find an entry whose vma,
3886 lma and size match those of OSECT. Re-read the entry and make sure
3887 it still matches OSECT (else the table may no longer be valid).
3888 Set OSECT's mapped state to match the entry. Return: 1 for
3889 success, 0 for failure. */
3890
3891 static int
3892 simple_overlay_update_1 (struct obj_section *osect)
3893 {
3894 int i, size;
3895 bfd *obfd = osect->objfile->obfd;
3896 asection *bsect = osect->the_bfd_section;
3897 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3898 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3899 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3900
3901 size = bfd_get_section_size (osect->the_bfd_section);
3902 for (i = 0; i < cache_novlys; i++)
3903 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3904 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3905 /* && cache_ovly_table[i][SIZE] == size */ )
3906 {
3907 read_target_long_array (cache_ovly_table_base + i * word_size,
3908 (unsigned int *) cache_ovly_table[i],
3909 4, word_size, byte_order);
3910 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3911 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3912 /* && cache_ovly_table[i][SIZE] == size */ )
3913 {
3914 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3915 return 1;
3916 }
3917 else /* Warning! Warning! Target's ovly table has changed! */
3918 return 0;
3919 }
3920 return 0;
3921 }
3922
3923 /* Function: simple_overlay_update
3924 If OSECT is NULL, then update all sections' mapped state
3925 (after re-reading the entire target _ovly_table).
3926 If OSECT is non-NULL, then try to find a matching entry in the
3927 cached ovly_table and update only OSECT's mapped state.
3928 If a cached entry can't be found or the cache isn't valid, then
3929 re-read the entire cache, and go ahead and update all sections. */
3930
3931 void
3932 simple_overlay_update (struct obj_section *osect)
3933 {
3934 struct objfile *objfile;
3935
3936 /* Were we given an osect to look up? NULL means do all of them. */
3937 if (osect)
3938 /* Have we got a cached copy of the target's overlay table? */
3939 if (cache_ovly_table != NULL)
3940 /* Does its cached location match what's currently in the symtab? */
3941 if (cache_ovly_table_base ==
3942 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3943 /* Then go ahead and try to look up this single section in the cache */
3944 if (simple_overlay_update_1 (osect))
3945 /* Found it! We're done. */
3946 return;
3947
3948 /* Cached table no good: need to read the entire table anew.
3949 Or else we want all the sections, in which case it's actually
3950 more efficient to read the whole table in one block anyway. */
3951
3952 if (! simple_read_overlay_table ())
3953 return;
3954
3955 /* Now may as well update all sections, even if only one was requested. */
3956 ALL_OBJSECTIONS (objfile, osect)
3957 if (section_is_overlay (osect))
3958 {
3959 int i, size;
3960 bfd *obfd = osect->objfile->obfd;
3961 asection *bsect = osect->the_bfd_section;
3962
3963 size = bfd_get_section_size (bsect);
3964 for (i = 0; i < cache_novlys; i++)
3965 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3966 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3967 /* && cache_ovly_table[i][SIZE] == size */ )
3968 { /* obj_section matches i'th entry in ovly_table */
3969 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3970 break; /* finished with inner for loop: break out */
3971 }
3972 }
3973 }
3974
3975 /* Set the output sections and output offsets for section SECTP in
3976 ABFD. The relocation code in BFD will read these offsets, so we
3977 need to be sure they're initialized. We map each section to itself,
3978 with no offset; this means that SECTP->vma will be honored. */
3979
3980 static void
3981 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3982 {
3983 sectp->output_section = sectp;
3984 sectp->output_offset = 0;
3985 }
3986
3987 /* Relocate the contents of a debug section SECTP in ABFD. The
3988 contents are stored in BUF if it is non-NULL, or returned in a
3989 malloc'd buffer otherwise.
3990
3991 For some platforms and debug info formats, shared libraries contain
3992 relocations against the debug sections (particularly for DWARF-2;
3993 one affected platform is PowerPC GNU/Linux, although it depends on
3994 the version of the linker in use). Also, ELF object files naturally
3995 have unresolved relocations for their debug sections. We need to apply
3996 the relocations in order to get the locations of symbols correct.
3997 Another example that may require relocation processing, is the
3998 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3999 debug section. */
4000
4001 bfd_byte *
4002 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
4003 {
4004 /* We're only interested in sections with relocation
4005 information. */
4006 if ((sectp->flags & SEC_RELOC) == 0)
4007 return NULL;
4008
4009 /* We will handle section offsets properly elsewhere, so relocate as if
4010 all sections begin at 0. */
4011 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
4012
4013 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
4014 }
4015
4016 struct symfile_segment_data *
4017 get_symfile_segment_data (bfd *abfd)
4018 {
4019 struct sym_fns *sf = find_sym_fns (abfd);
4020
4021 if (sf == NULL)
4022 return NULL;
4023
4024 return sf->sym_segments (abfd);
4025 }
4026
4027 void
4028 free_symfile_segment_data (struct symfile_segment_data *data)
4029 {
4030 xfree (data->segment_bases);
4031 xfree (data->segment_sizes);
4032 xfree (data->segment_info);
4033 xfree (data);
4034 }
4035
4036
4037 /* Given:
4038 - DATA, containing segment addresses from the object file ABFD, and
4039 the mapping from ABFD's sections onto the segments that own them,
4040 and
4041 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
4042 segment addresses reported by the target,
4043 store the appropriate offsets for each section in OFFSETS.
4044
4045 If there are fewer entries in SEGMENT_BASES than there are segments
4046 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4047
4048 If there are more entries, then ignore the extra. The target may
4049 not be able to distinguish between an empty data segment and a
4050 missing data segment; a missing text segment is less plausible. */
4051 int
4052 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4053 struct section_offsets *offsets,
4054 int num_segment_bases,
4055 const CORE_ADDR *segment_bases)
4056 {
4057 int i;
4058 asection *sect;
4059
4060 /* It doesn't make sense to call this function unless you have some
4061 segment base addresses. */
4062 gdb_assert (segment_bases > 0);
4063
4064 /* If we do not have segment mappings for the object file, we
4065 can not relocate it by segments. */
4066 gdb_assert (data != NULL);
4067 gdb_assert (data->num_segments > 0);
4068
4069 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4070 {
4071 int which = data->segment_info[i];
4072
4073 gdb_assert (0 <= which && which <= data->num_segments);
4074
4075 /* Don't bother computing offsets for sections that aren't
4076 loaded as part of any segment. */
4077 if (! which)
4078 continue;
4079
4080 /* Use the last SEGMENT_BASES entry as the address of any extra
4081 segments mentioned in DATA->segment_info. */
4082 if (which > num_segment_bases)
4083 which = num_segment_bases;
4084
4085 offsets->offsets[i] = (segment_bases[which - 1]
4086 - data->segment_bases[which - 1]);
4087 }
4088
4089 return 1;
4090 }
4091
4092 static void
4093 symfile_find_segment_sections (struct objfile *objfile)
4094 {
4095 bfd *abfd = objfile->obfd;
4096 int i;
4097 asection *sect;
4098 struct symfile_segment_data *data;
4099
4100 data = get_symfile_segment_data (objfile->obfd);
4101 if (data == NULL)
4102 return;
4103
4104 if (data->num_segments != 1 && data->num_segments != 2)
4105 {
4106 free_symfile_segment_data (data);
4107 return;
4108 }
4109
4110 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4111 {
4112 CORE_ADDR vma;
4113 int which = data->segment_info[i];
4114
4115 if (which == 1)
4116 {
4117 if (objfile->sect_index_text == -1)
4118 objfile->sect_index_text = sect->index;
4119
4120 if (objfile->sect_index_rodata == -1)
4121 objfile->sect_index_rodata = sect->index;
4122 }
4123 else if (which == 2)
4124 {
4125 if (objfile->sect_index_data == -1)
4126 objfile->sect_index_data = sect->index;
4127
4128 if (objfile->sect_index_bss == -1)
4129 objfile->sect_index_bss = sect->index;
4130 }
4131 }
4132
4133 free_symfile_segment_data (data);
4134 }
4135
4136 void
4137 _initialize_symfile (void)
4138 {
4139 struct cmd_list_element *c;
4140
4141 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4142 Load symbol table from executable file FILE.\n\
4143 The `file' command can also load symbol tables, as well as setting the file\n\
4144 to execute."), &cmdlist);
4145 set_cmd_completer (c, filename_completer);
4146
4147 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
4148 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
4149 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
4150 ADDR is the starting address of the file's text.\n\
4151 The optional arguments are section-name section-address pairs and\n\
4152 should be specified if the data and bss segments are not contiguous\n\
4153 with the text. SECT is a section name to be loaded at SECT_ADDR."),
4154 &cmdlist);
4155 set_cmd_completer (c, filename_completer);
4156
4157 c = add_cmd ("load", class_files, load_command, _("\
4158 Dynamically load FILE into the running program, and record its symbols\n\
4159 for access from GDB.\n\
4160 A load OFFSET may also be given."), &cmdlist);
4161 set_cmd_completer (c, filename_completer);
4162
4163 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4164 &symbol_reloading, _("\
4165 Set dynamic symbol table reloading multiple times in one run."), _("\
4166 Show dynamic symbol table reloading multiple times in one run."), NULL,
4167 NULL,
4168 show_symbol_reloading,
4169 &setlist, &showlist);
4170
4171 add_prefix_cmd ("overlay", class_support, overlay_command,
4172 _("Commands for debugging overlays."), &overlaylist,
4173 "overlay ", 0, &cmdlist);
4174
4175 add_com_alias ("ovly", "overlay", class_alias, 1);
4176 add_com_alias ("ov", "overlay", class_alias, 1);
4177
4178 add_cmd ("map-overlay", class_support, map_overlay_command,
4179 _("Assert that an overlay section is mapped."), &overlaylist);
4180
4181 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4182 _("Assert that an overlay section is unmapped."), &overlaylist);
4183
4184 add_cmd ("list-overlays", class_support, list_overlays_command,
4185 _("List mappings of overlay sections."), &overlaylist);
4186
4187 add_cmd ("manual", class_support, overlay_manual_command,
4188 _("Enable overlay debugging."), &overlaylist);
4189 add_cmd ("off", class_support, overlay_off_command,
4190 _("Disable overlay debugging."), &overlaylist);
4191 add_cmd ("auto", class_support, overlay_auto_command,
4192 _("Enable automatic overlay debugging."), &overlaylist);
4193 add_cmd ("load-target", class_support, overlay_load_command,
4194 _("Read the overlay mapping state from the target."), &overlaylist);
4195
4196 /* Filename extension to source language lookup table: */
4197 init_filename_language_table ();
4198 add_setshow_string_noescape_cmd ("extension-language", class_files,
4199 &ext_args, _("\
4200 Set mapping between filename extension and source language."), _("\
4201 Show mapping between filename extension and source language."), _("\
4202 Usage: set extension-language .foo bar"),
4203 set_ext_lang_command,
4204 show_ext_args,
4205 &setlist, &showlist);
4206
4207 add_info ("extensions", info_ext_lang_command,
4208 _("All filename extensions associated with a source language."));
4209
4210 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4211 &debug_file_directory, _("\
4212 Set the directories where separate debug symbols are searched for."), _("\
4213 Show the directories where separate debug symbols are searched for."), _("\
4214 Separate debug symbols are first searched for in the same\n\
4215 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4216 and lastly at the path of the directory of the binary with\n\
4217 each global debug-file-directory component prepended."),
4218 NULL,
4219 show_debug_file_directory,
4220 &setlist, &showlist);
4221 }
This page took 0.119111 seconds and 4 git commands to generate.