Detect ELFOSABI_ARM.
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998
3 Free Software Foundation, Inc.
4 Contributed by Cygnus Support, using pieces from other GDB modules.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "target.h"
29 #include "value.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdbcmd.h"
33 #include "breakpoint.h"
34 #include "language.h"
35 #include "complaints.h"
36 #include "demangle.h"
37 #include "inferior.h" /* for write_pc */
38 #include "gdb-stabs.h"
39 #include "obstack.h"
40
41 #include <assert.h>
42 #include <sys/types.h>
43 #include <fcntl.h>
44 #include "gdb_string.h"
45 #include "gdb_stat.h"
46 #include <ctype.h>
47 #include <time.h>
48
49 #ifndef O_BINARY
50 #define O_BINARY 0
51 #endif
52
53 #ifdef HPUXHPPA
54
55 /* Some HP-UX related globals to clear when a new "main"
56 symbol file is loaded. HP-specific. */
57
58 extern int hp_som_som_object_present;
59 extern int hp_cxx_exception_support_initialized;
60 #define RESET_HP_UX_GLOBALS() do {\
61 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
62 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
63 } while (0)
64 #endif
65
66 int (*ui_load_progress_hook) (const char *section, unsigned long num);
67 void (*show_load_progress) (const char *section,
68 unsigned long section_sent,
69 unsigned long section_size,
70 unsigned long total_sent,
71 unsigned long total_size);
72 void (*pre_add_symbol_hook) PARAMS ((char *));
73 void (*post_add_symbol_hook) PARAMS ((void));
74 void (*target_new_objfile_hook) PARAMS ((struct objfile *));
75
76 /* Global variables owned by this file */
77 int readnow_symbol_files; /* Read full symbols immediately */
78
79 struct complaint oldsyms_complaint =
80 {
81 "Replacing old symbols for `%s'", 0, 0
82 };
83
84 struct complaint empty_symtab_complaint =
85 {
86 "Empty symbol table found for `%s'", 0, 0
87 };
88
89 struct complaint unknown_option_complaint =
90 {
91 "Unknown option `%s' ignored", 0, 0
92 };
93
94 /* External variables and functions referenced. */
95
96 extern int info_verbose;
97
98 extern void report_transfer_performance PARAMS ((unsigned long,
99 time_t, time_t));
100
101 /* Functions this file defines */
102
103 #if 0
104 static int simple_read_overlay_region_table PARAMS ((void));
105 static void simple_free_overlay_region_table PARAMS ((void));
106 #endif
107
108 static void set_initial_language PARAMS ((void));
109
110 static void load_command PARAMS ((char *, int));
111
112 static void add_symbol_file_command PARAMS ((char *, int));
113
114 static void add_shared_symbol_files_command PARAMS ((char *, int));
115
116 static void cashier_psymtab PARAMS ((struct partial_symtab *));
117
118 static int compare_psymbols PARAMS ((const void *, const void *));
119
120 static int compare_symbols PARAMS ((const void *, const void *));
121
122 bfd *symfile_bfd_open PARAMS ((char *));
123
124 static void find_sym_fns PARAMS ((struct objfile *));
125
126 static void decrement_reading_symtab PARAMS ((void *));
127
128 static void overlay_invalidate_all PARAMS ((void));
129
130 static int overlay_is_mapped PARAMS ((struct obj_section *));
131
132 void list_overlays_command PARAMS ((char *, int));
133
134 void map_overlay_command PARAMS ((char *, int));
135
136 void unmap_overlay_command PARAMS ((char *, int));
137
138 static void overlay_auto_command PARAMS ((char *, int));
139
140 static void overlay_manual_command PARAMS ((char *, int));
141
142 static void overlay_off_command PARAMS ((char *, int));
143
144 static void overlay_load_command PARAMS ((char *, int));
145
146 static void overlay_command PARAMS ((char *, int));
147
148 static void simple_free_overlay_table PARAMS ((void));
149
150 static void read_target_long_array PARAMS ((CORE_ADDR, unsigned int *, int));
151
152 static int simple_read_overlay_table PARAMS ((void));
153
154 static int simple_overlay_update_1 PARAMS ((struct obj_section *));
155
156 static void add_filename_language PARAMS ((char *ext, enum language lang));
157
158 static void set_ext_lang_command PARAMS ((char *args, int from_tty));
159
160 static void info_ext_lang_command PARAMS ((char *args, int from_tty));
161
162 static void init_filename_language_table PARAMS ((void));
163
164 void _initialize_symfile PARAMS ((void));
165
166 /* List of all available sym_fns. On gdb startup, each object file reader
167 calls add_symtab_fns() to register information on each format it is
168 prepared to read. */
169
170 static struct sym_fns *symtab_fns = NULL;
171
172 /* Flag for whether user will be reloading symbols multiple times.
173 Defaults to ON for VxWorks, otherwise OFF. */
174
175 #ifdef SYMBOL_RELOADING_DEFAULT
176 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
177 #else
178 int symbol_reloading = 0;
179 #endif
180
181 /* If non-zero, then on HP-UX (i.e., platforms that use somsolib.c),
182 this variable is interpreted as a threshhold. If adding a new
183 library's symbol table to those already known to the debugger would
184 exceed this threshhold, then the shlib's symbols are not added.
185
186 If non-zero on other platforms, shared library symbols will be added
187 automatically when the inferior is created, new libraries are loaded,
188 or when attaching to the inferior. This is almost always what users
189 will want to have happen; but for very large programs, the startup
190 time will be excessive, and so if this is a problem, the user can
191 clear this flag and then add the shared library symbols as needed.
192 Note that there is a potential for confusion, since if the shared
193 library symbols are not loaded, commands like "info fun" will *not*
194 report all the functions that are actually present.
195
196 Note that HP-UX interprets this variable to mean, "threshhold size
197 in megabytes, where zero means never add". Other platforms interpret
198 this variable to mean, "always add if non-zero, never add if zero."
199 */
200
201 int auto_solib_add = 1;
202 \f
203
204 /* Since this function is called from within qsort, in an ANSI environment
205 it must conform to the prototype for qsort, which specifies that the
206 comparison function takes two "void *" pointers. */
207
208 static int
209 compare_symbols (s1p, s2p)
210 const PTR s1p;
211 const PTR s2p;
212 {
213 register struct symbol **s1, **s2;
214
215 s1 = (struct symbol **) s1p;
216 s2 = (struct symbol **) s2p;
217
218 return (STRCMP (SYMBOL_NAME (*s1), SYMBOL_NAME (*s2)));
219 }
220
221 /*
222
223 LOCAL FUNCTION
224
225 compare_psymbols -- compare two partial symbols by name
226
227 DESCRIPTION
228
229 Given pointers to pointers to two partial symbol table entries,
230 compare them by name and return -N, 0, or +N (ala strcmp).
231 Typically used by sorting routines like qsort().
232
233 NOTES
234
235 Does direct compare of first two characters before punting
236 and passing to strcmp for longer compares. Note that the
237 original version had a bug whereby two null strings or two
238 identically named one character strings would return the
239 comparison of memory following the null byte.
240
241 */
242
243 static int
244 compare_psymbols (s1p, s2p)
245 const PTR s1p;
246 const PTR s2p;
247 {
248 register char *st1 = SYMBOL_NAME (*(struct partial_symbol **) s1p);
249 register char *st2 = SYMBOL_NAME (*(struct partial_symbol **) s2p);
250
251 if ((st1[0] - st2[0]) || !st1[0])
252 {
253 return (st1[0] - st2[0]);
254 }
255 else if ((st1[1] - st2[1]) || !st1[1])
256 {
257 return (st1[1] - st2[1]);
258 }
259 else
260 {
261 /* Note: I replaced the STRCMP line (commented out below)
262 * with a simpler "strcmp()" which compares the 2 strings
263 * from the beginning. (STRCMP is a macro which first compares
264 * the initial characters, then falls back on strcmp).
265 * The reason is that the STRCMP line was tickling a C compiler
266 * bug on HP-UX 10.30, which is avoided with the simpler
267 * code. The performance gain from the more complicated code
268 * is negligible, given that we have already checked the
269 * initial 2 characters above. I reported the compiler bug,
270 * and once it is fixed the original line can be put back. RT
271 */
272 /* return ( STRCMP (st1 + 2, st2 + 2)); */
273 return (strcmp (st1, st2));
274 }
275 }
276
277 void
278 sort_pst_symbols (pst)
279 struct partial_symtab *pst;
280 {
281 /* Sort the global list; don't sort the static list */
282
283 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
284 pst->n_global_syms, sizeof (struct partial_symbol *),
285 compare_psymbols);
286 }
287
288 /* Call sort_block_syms to sort alphabetically the symbols of one block. */
289
290 void
291 sort_block_syms (b)
292 register struct block *b;
293 {
294 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
295 sizeof (struct symbol *), compare_symbols);
296 }
297
298 /* Call sort_symtab_syms to sort alphabetically
299 the symbols of each block of one symtab. */
300
301 void
302 sort_symtab_syms (s)
303 register struct symtab *s;
304 {
305 register struct blockvector *bv;
306 int nbl;
307 int i;
308 register struct block *b;
309
310 if (s == 0)
311 return;
312 bv = BLOCKVECTOR (s);
313 nbl = BLOCKVECTOR_NBLOCKS (bv);
314 for (i = 0; i < nbl; i++)
315 {
316 b = BLOCKVECTOR_BLOCK (bv, i);
317 if (BLOCK_SHOULD_SORT (b))
318 sort_block_syms (b);
319 }
320 }
321
322 /* Make a null terminated copy of the string at PTR with SIZE characters in
323 the obstack pointed to by OBSTACKP . Returns the address of the copy.
324 Note that the string at PTR does not have to be null terminated, I.E. it
325 may be part of a larger string and we are only saving a substring. */
326
327 char *
328 obsavestring (ptr, size, obstackp)
329 char *ptr;
330 int size;
331 struct obstack *obstackp;
332 {
333 register char *p = (char *) obstack_alloc (obstackp, size + 1);
334 /* Open-coded memcpy--saves function call time. These strings are usually
335 short. FIXME: Is this really still true with a compiler that can
336 inline memcpy? */
337 {
338 register char *p1 = ptr;
339 register char *p2 = p;
340 char *end = ptr + size;
341 while (p1 != end)
342 *p2++ = *p1++;
343 }
344 p[size] = 0;
345 return p;
346 }
347
348 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
349 in the obstack pointed to by OBSTACKP. */
350
351 char *
352 obconcat (obstackp, s1, s2, s3)
353 struct obstack *obstackp;
354 const char *s1, *s2, *s3;
355 {
356 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
357 register char *val = (char *) obstack_alloc (obstackp, len);
358 strcpy (val, s1);
359 strcat (val, s2);
360 strcat (val, s3);
361 return val;
362 }
363
364 /* True if we are nested inside psymtab_to_symtab. */
365
366 int currently_reading_symtab = 0;
367
368 static void
369 decrement_reading_symtab (dummy)
370 void *dummy;
371 {
372 currently_reading_symtab--;
373 }
374
375 /* Get the symbol table that corresponds to a partial_symtab.
376 This is fast after the first time you do it. In fact, there
377 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
378 case inline. */
379
380 struct symtab *
381 psymtab_to_symtab (pst)
382 register struct partial_symtab *pst;
383 {
384 /* If it's been looked up before, return it. */
385 if (pst->symtab)
386 return pst->symtab;
387
388 /* If it has not yet been read in, read it. */
389 if (!pst->readin)
390 {
391 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
392 currently_reading_symtab++;
393 (*pst->read_symtab) (pst);
394 do_cleanups (back_to);
395 }
396
397 return pst->symtab;
398 }
399
400 /* Initialize entry point information for this objfile. */
401
402 void
403 init_entry_point_info (objfile)
404 struct objfile *objfile;
405 {
406 /* Save startup file's range of PC addresses to help blockframe.c
407 decide where the bottom of the stack is. */
408
409 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
410 {
411 /* Executable file -- record its entry point so we'll recognize
412 the startup file because it contains the entry point. */
413 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
414 }
415 else
416 {
417 /* Examination of non-executable.o files. Short-circuit this stuff. */
418 objfile->ei.entry_point = INVALID_ENTRY_POINT;
419 }
420 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
421 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
422 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
423 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
424 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
425 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
426 }
427
428 /* Get current entry point address. */
429
430 CORE_ADDR
431 entry_point_address ()
432 {
433 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
434 }
435
436 /* Remember the lowest-addressed loadable section we've seen.
437 This function is called via bfd_map_over_sections.
438
439 In case of equal vmas, the section with the largest size becomes the
440 lowest-addressed loadable section.
441
442 If the vmas and sizes are equal, the last section is considered the
443 lowest-addressed loadable section. */
444
445 void
446 find_lowest_section (abfd, sect, obj)
447 bfd *abfd;
448 asection *sect;
449 PTR obj;
450 {
451 asection **lowest = (asection **) obj;
452
453 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
454 return;
455 if (!*lowest)
456 *lowest = sect; /* First loadable section */
457 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
458 *lowest = sect; /* A lower loadable section */
459 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
460 && (bfd_section_size (abfd, (*lowest))
461 <= bfd_section_size (abfd, sect)))
462 *lowest = sect;
463 }
464
465 /* Parse the user's idea of an offset for dynamic linking, into our idea
466 of how to represent it for fast symbol reading. This is the default
467 version of the sym_fns.sym_offsets function for symbol readers that
468 don't need to do anything special. It allocates a section_offsets table
469 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
470
471 void
472 default_symfile_offsets (objfile, addrs)
473 struct objfile *objfile;
474 struct section_addr_info *addrs;
475 {
476 int i;
477
478 objfile->num_sections = SECT_OFF_MAX;
479 objfile->section_offsets = (struct section_offsets *)
480 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
481 memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
482
483 /* If user explicitly specified values for data and bss, set them here. */
484
485 if (addrs->text_addr)
486 ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT) = addrs->text_addr;
487 if (addrs->data_addr)
488 ANOFFSET (objfile->section_offsets, SECT_OFF_DATA) = addrs->data_addr;
489 if (addrs->bss_addr)
490 ANOFFSET (objfile->section_offsets, SECT_OFF_BSS) = addrs->bss_addr;
491
492 /* Now calculate offsets for other sections. */
493 for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
494 {
495 struct other_sections *osp ;
496
497 osp = &addrs->other[i] ;
498 if (addrs->other[i].addr == 0)
499 continue;
500 #if 0
501 if (strcmp (".text", osp->name) == 0)
502 SECT_OFF_TEXT = osp->sectindex ;
503 else if (strcmp (".data", osp->name) == 0)
504 SECT_OFF_DATA = osp->sectindex ;
505 else if (strcmp (".bss", osp->name) == 0)
506 SECT_OFF_BSS = osp->sectindex ;
507 #endif
508 /* Record all sections in offsets */
509 ANOFFSET (objfile->section_offsets, osp->sectindex) = osp->addr;
510 }
511 }
512
513
514 /* Process a symbol file, as either the main file or as a dynamically
515 loaded file.
516
517 OBJFILE is where the symbols are to be read from.
518
519 ADDR is the address where the text segment was loaded, unless the
520 objfile is the main symbol file, in which case it is zero.
521
522 MAINLINE is nonzero if this is the main symbol file, or zero if
523 it's an extra symbol file such as dynamically loaded code.
524
525 VERBO is nonzero if the caller has printed a verbose message about
526 the symbol reading (and complaints can be more terse about it). */
527
528 void
529 syms_from_objfile (objfile, addrs, mainline, verbo)
530 struct objfile *objfile;
531 struct section_addr_info *addrs;
532 int mainline;
533 int verbo;
534 {
535 struct section_offsets *section_offsets;
536 asection *lower_sect;
537 asection *sect;
538 CORE_ADDR lower_offset;
539 struct section_addr_info local_addr;
540 struct cleanup *old_chain;
541 int i;
542
543 /* If ADDRS is NULL, initialize the local section_addr_info struct and
544 point ADDRS to it. We now establish the convention that an addr of
545 zero means no load address was specified. */
546
547 if (addrs == NULL)
548 {
549 memset (&local_addr, 0, sizeof (local_addr));
550 addrs = &local_addr;
551 }
552
553 init_entry_point_info (objfile);
554 find_sym_fns (objfile);
555
556 /* Make sure that partially constructed symbol tables will be cleaned up
557 if an error occurs during symbol reading. */
558 old_chain = make_cleanup ((make_cleanup_func) free_objfile, objfile);
559
560 if (mainline)
561 {
562 /* We will modify the main symbol table, make sure that all its users
563 will be cleaned up if an error occurs during symbol reading. */
564 make_cleanup ((make_cleanup_func) clear_symtab_users, 0);
565
566 /* Since no error yet, throw away the old symbol table. */
567
568 if (symfile_objfile != NULL)
569 {
570 free_objfile (symfile_objfile);
571 symfile_objfile = NULL;
572 }
573
574 /* Currently we keep symbols from the add-symbol-file command.
575 If the user wants to get rid of them, they should do "symbol-file"
576 without arguments first. Not sure this is the best behavior
577 (PR 2207). */
578
579 (*objfile->sf->sym_new_init) (objfile);
580 }
581
582 /* Convert addr into an offset rather than an absolute address.
583 We find the lowest address of a loaded segment in the objfile,
584 and assume that <addr> is where that got loaded.
585
586 We no longer warn if the lowest section is not a text segment (as
587 happens for the PA64 port. */
588 if (mainline)
589 {
590 /* No offset from objfile addresses. */
591 addrs -> text_addr = 0;
592 addrs -> data_addr = 0;
593 addrs -> bss_addr = 0;
594 }
595 else
596 {
597 /* Find lowest loadable section to be used as starting point for
598 continguous sections. FIXME!! won't work without call to find
599 .text first, but this assumes text is lowest section. */
600 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
601 if (lower_sect == NULL)
602 bfd_map_over_sections (objfile->obfd, find_lowest_section,
603 (PTR) &lower_sect);
604 if (lower_sect == NULL)
605 warning ("no loadable sections found in added symbol-file %s",
606 objfile->name);
607 else if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE)
608 == 0)
609 warning ("Lowest section in %s is %s at %s",
610 objfile->name,
611 bfd_section_name (objfile->obfd, lower_sect),
612 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
613 if (lower_sect != NULL)
614 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
615 else
616 lower_offset = 0;
617
618 /* Calculate offsets for the loadable sections.
619 FIXME! Sections must be in order of increasing loadable section
620 so that contiguous sections can use the lower-offset!!!
621
622 Adjust offsets if the segments are not contiguous.
623 If the section is contiguous, its offset should be set to
624 the offset of the highest loadable section lower than it
625 (the loadable section directly below it in memory).
626 this_offset = lower_offset = lower_addr - lower_orig_addr */
627
628 /* FIXME: These sections will not need special treatment because ALL
629 sections are in the other sections table */
630
631 if (addrs->text_addr != 0)
632 {
633 sect = bfd_get_section_by_name (objfile->obfd, ".text");
634 if (sect)
635 {
636 addrs->text_addr -= bfd_section_vma (objfile->obfd, sect);
637 lower_offset = addrs->text_addr;
638 }
639 }
640 else
641 /* ??? who's below me? */
642 addrs->text_addr = lower_offset;
643
644 if (addrs->data_addr != 0)
645 {
646 sect = bfd_get_section_by_name (objfile->obfd, ".data");
647 if (sect)
648 {
649 addrs->data_addr -= bfd_section_vma (objfile->obfd, sect);
650 lower_offset = addrs->data_addr;
651 }
652 }
653 else
654 addrs->data_addr = lower_offset;
655
656 if (addrs->bss_addr != 0)
657 {
658 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
659 if (sect)
660 {
661 addrs->bss_addr -= bfd_section_vma (objfile->obfd, sect);
662 lower_offset = addrs->bss_addr;
663 }
664 }
665 else
666 addrs->bss_addr = lower_offset;
667
668 /* Now calculate offsets for other sections. */
669 for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
670 {
671
672 if (addrs->other[i].addr != 0)
673 {
674 sect=bfd_get_section_by_name(objfile->obfd, addrs->other[i].name);
675 if (sect)
676 {
677 addrs->other[i].addr -= bfd_section_vma (objfile->obfd, sect);
678 lower_offset = addrs->other[i].addr;
679 addrs->other[i].sectindex = sect->index ;
680 }
681 else
682 {
683 warning ("section %s not found in %s", addrs->other[i].name,
684 objfile->name);
685 addrs->other[i].addr = 0;
686 }
687 }
688 else
689 addrs->other[i].addr = lower_offset;
690 }
691 }
692
693 /* Initialize symbol reading routines for this objfile, allow complaints to
694 appear for this new file, and record how verbose to be, then do the
695 initial symbol reading for this file. */
696
697 (*objfile->sf->sym_init) (objfile);
698 clear_complaints (1, verbo);
699
700 (*objfile->sf->sym_offsets) (objfile, addrs);
701
702 #ifndef IBM6000_TARGET
703 /* This is a SVR4/SunOS specific hack, I think. In any event, it
704 screws RS/6000. sym_offsets should be doing this sort of thing,
705 because it knows the mapping between bfd sections and
706 section_offsets. */
707 /* This is a hack. As far as I can tell, section offsets are not
708 target dependent. They are all set to addr with a couple of
709 exceptions. The exceptions are sysvr4 shared libraries, whose
710 offsets are kept in solib structures anyway and rs6000 xcoff
711 which handles shared libraries in a completely unique way.
712
713 Section offsets are built similarly, except that they are built
714 by adding addr in all cases because there is no clear mapping
715 from section_offsets into actual sections. Note that solib.c
716 has a different algorithm for finding section offsets.
717
718 These should probably all be collapsed into some target
719 independent form of shared library support. FIXME. */
720
721 if (addrs)
722 {
723 struct obj_section *s;
724
725 /* Map section offsets in "addr" back to the object's
726 sections by comparing the section names with bfd's
727 section names. Then adjust the section address by
728 the offset. */ /* for gdb/13815 */
729
730 ALL_OBJFILE_OSECTIONS (objfile, s)
731 {
732 CORE_ADDR s_addr = 0;
733 int i;
734
735 if (strcmp (s->the_bfd_section->name, ".text") == 0)
736 s_addr = addrs->text_addr;
737 else if (strcmp (s->the_bfd_section->name, ".data") == 0)
738 s_addr = addrs->data_addr;
739 else if (strcmp (s->the_bfd_section->name, ".bss") == 0)
740 s_addr = addrs->bss_addr;
741 else
742 for (i = 0; !s_addr && addrs->other[i].name; i++)
743 if (strcmp (s->the_bfd_section->name, addrs->other[i].name) == 0)
744 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
745
746 s->addr -= s->offset;
747 s->addr += s_addr;
748 s->endaddr -= s->offset;
749 s->endaddr += s_addr;
750 s->offset += s_addr;
751 }
752 }
753 #endif /* not IBM6000_TARGET */
754
755 (*objfile->sf->sym_read) (objfile, mainline);
756
757 if (!have_partial_symbols () && !have_full_symbols ())
758 {
759 wrap_here ("");
760 printf_filtered ("(no debugging symbols found)...");
761 wrap_here ("");
762 }
763
764 /* Don't allow char * to have a typename (else would get caddr_t).
765 Ditto void *. FIXME: Check whether this is now done by all the
766 symbol readers themselves (many of them now do), and if so remove
767 it from here. */
768
769 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
770 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
771
772 /* Mark the objfile has having had initial symbol read attempted. Note
773 that this does not mean we found any symbols... */
774
775 objfile->flags |= OBJF_SYMS;
776
777 /* Discard cleanups as symbol reading was successful. */
778
779 discard_cleanups (old_chain);
780
781 /* Call this after reading in a new symbol table to give target
782 dependant code a crack at the new symbols. For instance, this
783 could be used to update the values of target-specific symbols GDB
784 needs to keep track of (such as _sigtramp, or whatever). */
785
786 TARGET_SYMFILE_POSTREAD (objfile);
787 }
788
789 /* Perform required actions after either reading in the initial
790 symbols for a new objfile, or mapping in the symbols from a reusable
791 objfile. */
792
793 void
794 new_symfile_objfile (objfile, mainline, verbo)
795 struct objfile *objfile;
796 int mainline;
797 int verbo;
798 {
799
800 /* If this is the main symbol file we have to clean up all users of the
801 old main symbol file. Otherwise it is sufficient to fixup all the
802 breakpoints that may have been redefined by this symbol file. */
803 if (mainline)
804 {
805 /* OK, make it the "real" symbol file. */
806 symfile_objfile = objfile;
807
808 clear_symtab_users ();
809 }
810 else
811 {
812 breakpoint_re_set ();
813 }
814
815 /* We're done reading the symbol file; finish off complaints. */
816 clear_complaints (0, verbo);
817 }
818
819 /* Process a symbol file, as either the main file or as a dynamically
820 loaded file.
821
822 NAME is the file name (which will be tilde-expanded and made
823 absolute herein) (but we don't free or modify NAME itself).
824 FROM_TTY says how verbose to be. MAINLINE specifies whether this
825 is the main symbol file, or whether it's an extra symbol file such
826 as dynamically loaded code. If !mainline, ADDR is the address
827 where the text segment was loaded.
828
829 Upon success, returns a pointer to the objfile that was added.
830 Upon failure, jumps back to command level (never returns). */
831
832 struct objfile *
833 symbol_file_add (name, from_tty, addrs, mainline, flags)
834 char *name;
835 int from_tty;
836 struct section_addr_info *addrs;
837 int mainline;
838 int flags;
839 {
840 struct objfile *objfile;
841 struct partial_symtab *psymtab;
842 bfd *abfd;
843
844 /* Open a bfd for the file, and give user a chance to burp if we'd be
845 interactively wiping out any existing symbols. */
846
847 abfd = symfile_bfd_open (name);
848
849 if ((have_full_symbols () || have_partial_symbols ())
850 && mainline
851 && from_tty
852 && !query ("Load new symbol table from \"%s\"? ", name))
853 error ("Not confirmed.");
854
855 objfile = allocate_objfile (abfd, flags);
856
857 /* If the objfile uses a mapped symbol file, and we have a psymtab for
858 it, then skip reading any symbols at this time. */
859
860 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
861 {
862 /* We mapped in an existing symbol table file that already has had
863 initial symbol reading performed, so we can skip that part. Notify
864 the user that instead of reading the symbols, they have been mapped.
865 */
866 if (from_tty || info_verbose)
867 {
868 printf_filtered ("Mapped symbols for %s...", name);
869 wrap_here ("");
870 gdb_flush (gdb_stdout);
871 }
872 init_entry_point_info (objfile);
873 find_sym_fns (objfile);
874 }
875 else
876 {
877 /* We either created a new mapped symbol table, mapped an existing
878 symbol table file which has not had initial symbol reading
879 performed, or need to read an unmapped symbol table. */
880 if (from_tty || info_verbose)
881 {
882 if (pre_add_symbol_hook)
883 pre_add_symbol_hook (name);
884 else
885 {
886 printf_filtered ("Reading symbols from %s...", name);
887 wrap_here ("");
888 gdb_flush (gdb_stdout);
889 }
890 }
891 syms_from_objfile (objfile, addrs, mainline, from_tty);
892 }
893
894 /* We now have at least a partial symbol table. Check to see if the
895 user requested that all symbols be read on initial access via either
896 the gdb startup command line or on a per symbol file basis. Expand
897 all partial symbol tables for this objfile if so. */
898
899 if ((flags & OBJF_READNOW) || readnow_symbol_files)
900 {
901 if (from_tty || info_verbose)
902 {
903 printf_filtered ("expanding to full symbols...");
904 wrap_here ("");
905 gdb_flush (gdb_stdout);
906 }
907
908 for (psymtab = objfile->psymtabs;
909 psymtab != NULL;
910 psymtab = psymtab->next)
911 {
912 psymtab_to_symtab (psymtab);
913 }
914 }
915
916 if (from_tty || info_verbose)
917 {
918 if (post_add_symbol_hook)
919 post_add_symbol_hook ();
920 else
921 {
922 printf_filtered ("done.\n");
923 gdb_flush (gdb_stdout);
924 }
925 }
926
927 new_symfile_objfile (objfile, mainline, from_tty);
928
929 if (target_new_objfile_hook)
930 target_new_objfile_hook (objfile);
931
932 return (objfile);
933 }
934
935 /* This is the symbol-file command. Read the file, analyze its
936 symbols, and add a struct symtab to a symtab list. The syntax of
937 the command is rather bizarre--(1) buildargv implements various
938 quoting conventions which are undocumented and have little or
939 nothing in common with the way things are quoted (or not quoted)
940 elsewhere in GDB, (2) options are used, which are not generally
941 used in GDB (perhaps "set mapped on", "set readnow on" would be
942 better), (3) the order of options matters, which is contrary to GNU
943 conventions (because it is confusing and inconvenient). */
944
945 void
946 symbol_file_command (args, from_tty)
947 char *args;
948 int from_tty;
949 {
950 char **argv;
951 char *name = NULL;
952 CORE_ADDR text_relocation = 0; /* text_relocation */
953 struct cleanup *cleanups;
954 int flags = OBJF_USERLOADED;
955
956 dont_repeat ();
957
958 if (args == NULL)
959 {
960 if ((have_full_symbols () || have_partial_symbols ())
961 && from_tty
962 && !query ("Discard symbol table from `%s'? ",
963 symfile_objfile->name))
964 error ("Not confirmed.");
965 free_all_objfiles ();
966
967 /* solib descriptors may have handles to objfiles. Since their
968 storage has just been released, we'd better wipe the solib
969 descriptors as well.
970 */
971 #if defined(SOLIB_RESTART)
972 SOLIB_RESTART ();
973 #endif
974
975 symfile_objfile = NULL;
976 if (from_tty)
977 {
978 printf_unfiltered ("No symbol file now.\n");
979 }
980 #ifdef HPUXHPPA
981 RESET_HP_UX_GLOBALS ();
982 #endif
983 }
984 else
985 {
986 if ((argv = buildargv (args)) == NULL)
987 {
988 nomem (0);
989 }
990 cleanups = make_cleanup_freeargv (argv);
991 while (*argv != NULL)
992 {
993 if (STREQ (*argv, "-mapped"))
994 {
995 flags |= OBJF_MAPPED;
996 }
997 else if (STREQ (*argv, "-readnow"))
998 {
999 flags |= OBJF_READNOW;
1000 }
1001 else if (**argv == '-')
1002 {
1003 error ("unknown option `%s'", *argv);
1004 }
1005 else
1006 {
1007 char *p;
1008
1009 name = *argv;
1010
1011 /* this is for rombug remote only, to get the text relocation by
1012 using link command */
1013 p = strrchr (name, '/');
1014 if (p != NULL)
1015 p++;
1016 else
1017 p = name;
1018
1019 target_link (p, &text_relocation);
1020
1021 if (text_relocation == (CORE_ADDR) 0)
1022 return;
1023 else if (text_relocation == (CORE_ADDR) -1)
1024 {
1025 symbol_file_add (name, from_tty, NULL, 1, flags);
1026 #ifdef HPUXHPPA
1027 RESET_HP_UX_GLOBALS ();
1028 #endif
1029 }
1030 else
1031 {
1032 struct section_addr_info section_addrs;
1033 memset (&section_addrs, 0, sizeof (section_addrs));
1034 section_addrs.text_addr = (CORE_ADDR) text_relocation;
1035 symbol_file_add (name, from_tty, &section_addrs, 0, flags);
1036 }
1037
1038 /* Getting new symbols may change our opinion about what is
1039 frameless. */
1040 reinit_frame_cache ();
1041
1042 set_initial_language ();
1043 }
1044 argv++;
1045 }
1046
1047 if (name == NULL)
1048 {
1049 error ("no symbol file name was specified");
1050 }
1051 TUIDO (((TuiOpaqueFuncPtr) tuiDisplayMainFunction));
1052 do_cleanups (cleanups);
1053 }
1054 }
1055
1056 /* Set the initial language.
1057
1058 A better solution would be to record the language in the psymtab when reading
1059 partial symbols, and then use it (if known) to set the language. This would
1060 be a win for formats that encode the language in an easily discoverable place,
1061 such as DWARF. For stabs, we can jump through hoops looking for specially
1062 named symbols or try to intuit the language from the specific type of stabs
1063 we find, but we can't do that until later when we read in full symbols.
1064 FIXME. */
1065
1066 static void
1067 set_initial_language ()
1068 {
1069 struct partial_symtab *pst;
1070 enum language lang = language_unknown;
1071
1072 pst = find_main_psymtab ();
1073 if (pst != NULL)
1074 {
1075 if (pst->filename != NULL)
1076 {
1077 lang = deduce_language_from_filename (pst->filename);
1078 }
1079 if (lang == language_unknown)
1080 {
1081 /* Make C the default language */
1082 lang = language_c;
1083 }
1084 set_language (lang);
1085 expected_language = current_language; /* Don't warn the user */
1086 }
1087 }
1088
1089 /* Open file specified by NAME and hand it off to BFD for preliminary
1090 analysis. Result is a newly initialized bfd *, which includes a newly
1091 malloc'd` copy of NAME (tilde-expanded and made absolute).
1092 In case of trouble, error() is called. */
1093
1094 bfd *
1095 symfile_bfd_open (name)
1096 char *name;
1097 {
1098 bfd *sym_bfd;
1099 int desc;
1100 char *absolute_name;
1101
1102
1103
1104 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1105
1106 /* Look down path for it, allocate 2nd new malloc'd copy. */
1107 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1108 #if defined(__GO32__) || defined(_WIN32)
1109 if (desc < 0)
1110 {
1111 char *exename = alloca (strlen (name) + 5);
1112 strcat (strcpy (exename, name), ".exe");
1113 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1114 0, &absolute_name);
1115 }
1116 #endif
1117 if (desc < 0)
1118 {
1119 make_cleanup (free, name);
1120 perror_with_name (name);
1121 }
1122 free (name); /* Free 1st new malloc'd copy */
1123 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1124 /* It'll be freed in free_objfile(). */
1125
1126 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1127 if (!sym_bfd)
1128 {
1129 close (desc);
1130 make_cleanup (free, name);
1131 error ("\"%s\": can't open to read symbols: %s.", name,
1132 bfd_errmsg (bfd_get_error ()));
1133 }
1134 sym_bfd->cacheable = true;
1135
1136 if (!bfd_check_format (sym_bfd, bfd_object))
1137 {
1138 /* FIXME: should be checking for errors from bfd_close (for one thing,
1139 on error it does not free all the storage associated with the
1140 bfd). */
1141 bfd_close (sym_bfd); /* This also closes desc */
1142 make_cleanup (free, name);
1143 error ("\"%s\": can't read symbols: %s.", name,
1144 bfd_errmsg (bfd_get_error ()));
1145 }
1146 return (sym_bfd);
1147 }
1148
1149 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1150 startup by the _initialize routine in each object file format reader,
1151 to register information about each format the the reader is prepared
1152 to handle. */
1153
1154 void
1155 add_symtab_fns (sf)
1156 struct sym_fns *sf;
1157 {
1158 sf->next = symtab_fns;
1159 symtab_fns = sf;
1160 }
1161
1162
1163 /* Initialize to read symbols from the symbol file sym_bfd. It either
1164 returns or calls error(). The result is an initialized struct sym_fns
1165 in the objfile structure, that contains cached information about the
1166 symbol file. */
1167
1168 static void
1169 find_sym_fns (objfile)
1170 struct objfile *objfile;
1171 {
1172 struct sym_fns *sf;
1173 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1174 char *our_target = bfd_get_target (objfile->obfd);
1175
1176 /* Special kludge for RS/6000 and PowerMac. See xcoffread.c. */
1177 if (STREQ (our_target, "aixcoff-rs6000") ||
1178 STREQ (our_target, "xcoff-powermac"))
1179 our_flavour = (enum bfd_flavour) -1;
1180
1181 /* Special kludge for apollo. See dstread.c. */
1182 if (STREQN (our_target, "apollo", 6))
1183 our_flavour = (enum bfd_flavour) -2;
1184
1185 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1186 {
1187 if (our_flavour == sf->sym_flavour)
1188 {
1189 objfile->sf = sf;
1190 return;
1191 }
1192 }
1193 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1194 bfd_get_target (objfile->obfd));
1195 }
1196 \f
1197 /* This function runs the load command of our current target. */
1198
1199 static void
1200 load_command (arg, from_tty)
1201 char *arg;
1202 int from_tty;
1203 {
1204 if (arg == NULL)
1205 arg = get_exec_file (1);
1206 target_load (arg, from_tty);
1207 }
1208
1209 /* This version of "load" should be usable for any target. Currently
1210 it is just used for remote targets, not inftarg.c or core files,
1211 on the theory that only in that case is it useful.
1212
1213 Avoiding xmodem and the like seems like a win (a) because we don't have
1214 to worry about finding it, and (b) On VMS, fork() is very slow and so
1215 we don't want to run a subprocess. On the other hand, I'm not sure how
1216 performance compares. */
1217
1218 static int download_write_size = 512;
1219 static int validate_download = 0;
1220
1221 void
1222 generic_load (char *args, int from_tty)
1223 {
1224 asection *s;
1225 bfd *loadfile_bfd;
1226 time_t start_time, end_time; /* Start and end times of download */
1227 unsigned long data_count = 0; /* Number of bytes transferred to memory */
1228 unsigned long write_count = 0; /* Number of writes needed. */
1229 unsigned long load_offset; /* offset to add to vma for each section */
1230 char *filename;
1231 struct cleanup *old_cleanups;
1232 char *offptr;
1233 CORE_ADDR total_size = 0;
1234 CORE_ADDR total_sent = 0;
1235
1236 /* Parse the input argument - the user can specify a load offset as
1237 a second argument. */
1238 filename = xmalloc (strlen (args) + 1);
1239 old_cleanups = make_cleanup (free, filename);
1240 strcpy (filename, args);
1241 offptr = strchr (filename, ' ');
1242 if (offptr != NULL)
1243 {
1244 char *endptr;
1245 load_offset = strtoul (offptr, &endptr, 0);
1246 if (offptr == endptr)
1247 error ("Invalid download offset:%s\n", offptr);
1248 *offptr = '\0';
1249 }
1250 else
1251 load_offset = 0;
1252
1253 /* Open the file for loading. */
1254 loadfile_bfd = bfd_openr (filename, gnutarget);
1255 if (loadfile_bfd == NULL)
1256 {
1257 perror_with_name (filename);
1258 return;
1259 }
1260
1261 /* FIXME: should be checking for errors from bfd_close (for one thing,
1262 on error it does not free all the storage associated with the
1263 bfd). */
1264 make_cleanup ((make_cleanup_func) bfd_close, loadfile_bfd);
1265
1266 if (!bfd_check_format (loadfile_bfd, bfd_object))
1267 {
1268 error ("\"%s\" is not an object file: %s", filename,
1269 bfd_errmsg (bfd_get_error ()));
1270 }
1271
1272 for (s = loadfile_bfd->sections; s; s = s->next)
1273 if (s->flags & SEC_LOAD)
1274 total_size += bfd_get_section_size_before_reloc (s);
1275
1276 start_time = time (NULL);
1277
1278 for (s = loadfile_bfd->sections; s; s = s->next)
1279 {
1280 if (s->flags & SEC_LOAD)
1281 {
1282 CORE_ADDR size = bfd_get_section_size_before_reloc (s);
1283 if (size > 0)
1284 {
1285 char *buffer;
1286 struct cleanup *old_chain;
1287 CORE_ADDR lma = s->lma + load_offset;
1288 CORE_ADDR block_size;
1289 int err;
1290 const char *sect_name = bfd_get_section_name (loadfile_bfd, s);
1291 CORE_ADDR sent;
1292
1293 if (download_write_size > 0 && size > download_write_size)
1294 block_size = download_write_size;
1295 else
1296 block_size = size;
1297
1298 buffer = xmalloc (size);
1299 old_chain = make_cleanup (free, buffer);
1300
1301 /* Is this really necessary? I guess it gives the user something
1302 to look at during a long download. */
1303 fprintf_unfiltered (gdb_stdout,
1304 "Loading section %s, size 0x%s lma 0x%s\n",
1305 sect_name, paddr_nz (size), paddr_nz (lma));
1306
1307 bfd_get_section_contents (loadfile_bfd, s, buffer, 0, size);
1308
1309 sent = 0;
1310 do
1311 {
1312 CORE_ADDR len;
1313 CORE_ADDR this_transfer = size - sent;
1314 if (this_transfer >= block_size)
1315 this_transfer = block_size;
1316 len = target_write_memory_partial (lma, buffer,
1317 this_transfer, &err);
1318 if (err)
1319 break;
1320 if (validate_download)
1321 {
1322 /* Broken memories and broken monitors manifest
1323 themselves here when bring new computers to
1324 life. This doubles already slow downloads. */
1325 /* NOTE: cagney/1999-10-18: A more efficient
1326 implementation might add a verify_memory()
1327 method to the target vector and then use
1328 that. remote.c could implement that method
1329 using the ``qCRC'' packet. */
1330 char *check = xmalloc (len);
1331 struct cleanup *verify_cleanups = make_cleanup (free, check);
1332 if (target_read_memory (lma, check, len) != 0)
1333 error ("Download verify read failed at 0x%s",
1334 paddr (lma));
1335 if (memcmp (buffer, check, len) != 0)
1336 error ("Download verify compare failed at 0x%s",
1337 paddr (lma));
1338 do_cleanups (verify_cleanups);
1339 }
1340 data_count += len;
1341 lma += len;
1342 buffer += len;
1343 write_count += 1;
1344 sent += len;
1345 total_sent += len;
1346 if (quit_flag
1347 || (ui_load_progress_hook != NULL
1348 && ui_load_progress_hook (sect_name, sent)))
1349 error ("Canceled the download");
1350
1351 if (show_load_progress != NULL)
1352 show_load_progress (sect_name, sent, size, total_sent, total_size);
1353 }
1354 while (sent < size);
1355
1356 if (err != 0)
1357 error ("Memory access error while loading section %s.", sect_name);
1358
1359 do_cleanups (old_chain);
1360 }
1361 }
1362 }
1363
1364 end_time = time (NULL);
1365 {
1366 CORE_ADDR entry;
1367 entry = bfd_get_start_address (loadfile_bfd);
1368 fprintf_unfiltered (gdb_stdout,
1369 "Start address 0x%s , load size %ld\n",
1370 paddr_nz (entry), data_count);
1371 /* We were doing this in remote-mips.c, I suspect it is right
1372 for other targets too. */
1373 write_pc (entry);
1374 }
1375
1376 /* FIXME: are we supposed to call symbol_file_add or not? According to
1377 a comment from remote-mips.c (where a call to symbol_file_add was
1378 commented out), making the call confuses GDB if more than one file is
1379 loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
1380 does. */
1381
1382 print_transfer_performance (gdb_stdout, data_count, write_count,
1383 end_time - start_time);
1384
1385 do_cleanups (old_cleanups);
1386 }
1387
1388 /* Report how fast the transfer went. */
1389
1390 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1391 replaced by print_transfer_performance (with a very different
1392 function signature). */
1393
1394 void
1395 report_transfer_performance (data_count, start_time, end_time)
1396 unsigned long data_count;
1397 time_t start_time, end_time;
1398 {
1399 print_transfer_performance (gdb_stdout, data_count, end_time - start_time, 0);
1400 }
1401
1402 void
1403 print_transfer_performance (struct gdb_file *stream,
1404 unsigned long data_count,
1405 unsigned long write_count,
1406 unsigned long time_count)
1407 {
1408 fprintf_unfiltered (stream, "Transfer rate: ");
1409 if (time_count > 0)
1410 fprintf_unfiltered (stream, "%ld bits/sec", (data_count * 8) / time_count);
1411 else
1412 fprintf_unfiltered (stream, "%ld bits in <1 sec", (data_count * 8));
1413 if (write_count > 0)
1414 fprintf_unfiltered (stream, ", %ld bytes/write", data_count / write_count);
1415 fprintf_unfiltered (stream, ".\n");
1416 }
1417
1418 /* This function allows the addition of incrementally linked object files.
1419 It does not modify any state in the target, only in the debugger. */
1420
1421 /* ARGSUSED */
1422 static void
1423 add_symbol_file_command (args, from_tty)
1424 char *args;
1425 int from_tty;
1426 {
1427 char *name = NULL;
1428 CORE_ADDR text_addr;
1429 int flags = OBJF_USERLOADED;
1430 char *arg;
1431 int expecting_option = 0;
1432 int option_index = 0;
1433 int argcnt = 0;
1434 int sec_num = 0;
1435 int i;
1436 struct
1437 {
1438 enum { OPT_SECTION } type;
1439 char *name;
1440 char *value;
1441 } opt[SECT_OFF_MAX];
1442 struct section_addr_info section_addrs;
1443
1444 dont_repeat ();
1445
1446 if (args == NULL)
1447 {
1448 error ("add-symbol-file takes a file name and an address");
1449 }
1450
1451 /* Make a copy of the string that we can safely write into. */
1452
1453 args = xstrdup (args);
1454 make_cleanup (free, args);
1455
1456 /* Ensure section_addrs is initialized */
1457 memset (&section_addrs, 0, sizeof (section_addrs));
1458
1459 /* Pick off any -option args and the file name. */
1460
1461 while (*args != '\000')
1462 {
1463 while (isspace (*args))
1464 {
1465 args++;
1466 }
1467 arg = args;
1468 while ((*args != '\000') && !isspace (*args))
1469 {
1470 args++;
1471 }
1472 if (*args != '\000')
1473 {
1474 *args++ = '\000';
1475 }
1476 if (*arg != '-')
1477 {
1478 if (expecting_option)
1479 {
1480 opt[option_index++].value = arg;
1481 expecting_option = 0;
1482 }
1483 else
1484 {
1485 switch (argcnt)
1486 {
1487 case 0:
1488 name = arg;
1489 break;
1490 case 1:
1491 opt[option_index].type = OPT_SECTION;
1492 opt[option_index].name = ".text";
1493 opt[option_index++].value = arg;
1494 break;
1495 case 2:
1496 opt[option_index].type = OPT_SECTION;
1497 opt[option_index].name = ".data";
1498 opt[option_index++].value = arg;
1499 break;
1500 case 3:
1501 opt[option_index].type = OPT_SECTION;
1502 opt[option_index].name = ".bss";
1503 opt[option_index++].value = arg;
1504 break;
1505 default:
1506 warning ("Too many arguments entered; see \"help add-symbol-file\" for command syntax.");
1507 }
1508 argcnt++;
1509 }
1510 }
1511 else if (STREQ (arg, "-mapped"))
1512 {
1513 flags |= OBJF_MAPPED;
1514 }
1515 else if (STREQ (arg, "-readnow"))
1516 {
1517 flags |= OBJF_READNOW;
1518 }
1519 else if (STREQN (arg, "-T", 2))
1520 {
1521 if (option_index >= SECT_OFF_MAX)
1522 {
1523 warning ("Number of options exceeds maximum allowed.");
1524 }
1525 else
1526 {
1527 expecting_option = 1;
1528 opt[option_index].type = OPT_SECTION;
1529 opt[option_index].name = arg + 2;
1530 }
1531 }
1532 else
1533 {
1534 error ("Unknown option `%s'", arg);
1535 }
1536 }
1537
1538 if (name == NULL)
1539 {
1540 error ("add-symbol-file takes a file name");
1541 }
1542 name = tilde_expand (name);
1543 make_cleanup (free, name);
1544
1545 if (option_index > 0)
1546 {
1547 /* Print the prompt for the query below.
1548 We have to split this up into 3 print statements because
1549 local_hex_string returns a local static string. */
1550
1551 printf_filtered ("add symbol table from file \"%s\" at\n", name);
1552 for (i = 0; i < option_index; i++)
1553 {
1554 switch (opt[i].type)
1555 {
1556 case OPT_SECTION:
1557 {
1558 CORE_ADDR addr;
1559 char *val = opt[i].value;
1560 char *sec = opt[i].name;
1561
1562 val = opt[i].value;
1563 if (val[0] == '0' && val[1] == 'x')
1564 addr = strtoul (val+2, NULL, 16);
1565 else
1566 addr = strtoul (val, NULL, 10);
1567
1568 if (strcmp (sec, ".text") == 0)
1569 section_addrs.text_addr = addr;
1570 else if (strcmp (sec, ".data") == 0)
1571 section_addrs.data_addr = addr;
1572 else if (strcmp (sec, ".bss") == 0)
1573 section_addrs.bss_addr = addr;
1574 /* Add the section to the others even if it is a
1575 text data or bss section. This is redundent but
1576 eventually, none will be given special treatment */
1577 {
1578 section_addrs.other[sec_num].name = xstrdup (sec);
1579 make_cleanup (free, section_addrs.other[sec_num].name);
1580 section_addrs.other[sec_num++].addr = addr;
1581 printf_filtered ("\t%s_addr = %s\n",
1582 sec,
1583 local_hex_string ((unsigned long)addr));
1584 }
1585
1586 /* The object's sections are initialized when a
1587 call is made to build_objfile_section_table (objfile).
1588 This happens in reread_symbols.
1589 At this point, we don't know what file type this is,
1590 so we can't determine what section names are valid. */
1591 }
1592 break;
1593 default:
1594 complain (&unknown_option_complaint, opt[i].name);
1595 }
1596 }
1597 /* Eventually, these hard coded names will be obsolete */
1598 /* All the addresses will be on the others section */
1599 }
1600 else
1601 {
1602 CORE_ADDR text_addr;
1603 target_link (name, &text_addr);
1604 if (text_addr == (CORE_ADDR) -1)
1605 error("Don't know how to get text start location for this file");
1606 section_addrs.text_addr = text_addr;
1607 section_addrs.data_addr = 0;
1608 section_addrs.bss_addr = 0;
1609 printf_filtered("add symbol table from file \"%s\" at text_addr = %s?\n",
1610 name, local_hex_string ((unsigned long)text_addr));
1611 }
1612 if (from_tty && (!query ("%s", "")))
1613 error ("Not confirmed.");
1614
1615 symbol_file_add (name, from_tty, &section_addrs, 0, flags);
1616
1617 /* Getting new symbols may change our opinion about what is
1618 frameless. */
1619 reinit_frame_cache ();
1620 }
1621 \f
1622 static void
1623 add_shared_symbol_files_command (args, from_tty)
1624 char *args;
1625 int from_tty;
1626 {
1627 #ifdef ADD_SHARED_SYMBOL_FILES
1628 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1629 #else
1630 error ("This command is not available in this configuration of GDB.");
1631 #endif
1632 }
1633 \f
1634 /* Re-read symbols if a symbol-file has changed. */
1635 void
1636 reread_symbols ()
1637 {
1638 struct objfile *objfile;
1639 long new_modtime;
1640 int reread_one = 0;
1641 struct stat new_statbuf;
1642 int res;
1643
1644 /* With the addition of shared libraries, this should be modified,
1645 the load time should be saved in the partial symbol tables, since
1646 different tables may come from different source files. FIXME.
1647 This routine should then walk down each partial symbol table
1648 and see if the symbol table that it originates from has been changed */
1649
1650 for (objfile = object_files; objfile; objfile = objfile->next)
1651 {
1652 if (objfile->obfd)
1653 {
1654 #ifdef IBM6000_TARGET
1655 /* If this object is from a shared library, then you should
1656 stat on the library name, not member name. */
1657
1658 if (objfile->obfd->my_archive)
1659 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1660 else
1661 #endif
1662 res = stat (objfile->name, &new_statbuf);
1663 if (res != 0)
1664 {
1665 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1666 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1667 objfile->name);
1668 continue;
1669 }
1670 new_modtime = new_statbuf.st_mtime;
1671 if (new_modtime != objfile->mtime)
1672 {
1673 struct cleanup *old_cleanups;
1674 struct section_offsets *offsets;
1675 int num_offsets;
1676 char *obfd_filename;
1677
1678 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1679 objfile->name);
1680
1681 /* There are various functions like symbol_file_add,
1682 symfile_bfd_open, syms_from_objfile, etc., which might
1683 appear to do what we want. But they have various other
1684 effects which we *don't* want. So we just do stuff
1685 ourselves. We don't worry about mapped files (for one thing,
1686 any mapped file will be out of date). */
1687
1688 /* If we get an error, blow away this objfile (not sure if
1689 that is the correct response for things like shared
1690 libraries). */
1691 old_cleanups = make_cleanup ((make_cleanup_func) free_objfile,
1692 objfile);
1693 /* We need to do this whenever any symbols go away. */
1694 make_cleanup ((make_cleanup_func) clear_symtab_users, 0);
1695
1696 /* Clean up any state BFD has sitting around. We don't need
1697 to close the descriptor but BFD lacks a way of closing the
1698 BFD without closing the descriptor. */
1699 obfd_filename = bfd_get_filename (objfile->obfd);
1700 if (!bfd_close (objfile->obfd))
1701 error ("Can't close BFD for %s: %s", objfile->name,
1702 bfd_errmsg (bfd_get_error ()));
1703 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1704 if (objfile->obfd == NULL)
1705 error ("Can't open %s to read symbols.", objfile->name);
1706 /* bfd_openr sets cacheable to true, which is what we want. */
1707 if (!bfd_check_format (objfile->obfd, bfd_object))
1708 error ("Can't read symbols from %s: %s.", objfile->name,
1709 bfd_errmsg (bfd_get_error ()));
1710
1711 /* Save the offsets, we will nuke them with the rest of the
1712 psymbol_obstack. */
1713 num_offsets = objfile->num_sections;
1714 offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1715 memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1716
1717 /* Nuke all the state that we will re-read. Much of the following
1718 code which sets things to NULL really is necessary to tell
1719 other parts of GDB that there is nothing currently there. */
1720
1721 /* FIXME: Do we have to free a whole linked list, or is this
1722 enough? */
1723 if (objfile->global_psymbols.list)
1724 mfree (objfile->md, objfile->global_psymbols.list);
1725 memset (&objfile->global_psymbols, 0,
1726 sizeof (objfile->global_psymbols));
1727 if (objfile->static_psymbols.list)
1728 mfree (objfile->md, objfile->static_psymbols.list);
1729 memset (&objfile->static_psymbols, 0,
1730 sizeof (objfile->static_psymbols));
1731
1732 /* Free the obstacks for non-reusable objfiles */
1733 free_bcache (&objfile->psymbol_cache);
1734 obstack_free (&objfile->psymbol_obstack, 0);
1735 obstack_free (&objfile->symbol_obstack, 0);
1736 obstack_free (&objfile->type_obstack, 0);
1737 objfile->sections = NULL;
1738 objfile->symtabs = NULL;
1739 objfile->psymtabs = NULL;
1740 objfile->free_psymtabs = NULL;
1741 objfile->msymbols = NULL;
1742 objfile->minimal_symbol_count = 0;
1743 objfile->fundamental_types = NULL;
1744 if (objfile->sf != NULL)
1745 {
1746 (*objfile->sf->sym_finish) (objfile);
1747 }
1748
1749 /* We never make this a mapped file. */
1750 objfile->md = NULL;
1751 /* obstack_specify_allocation also initializes the obstack so
1752 it is empty. */
1753 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
1754 xmalloc, free);
1755 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
1756 xmalloc, free);
1757 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
1758 xmalloc, free);
1759 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
1760 xmalloc, free);
1761 if (build_objfile_section_table (objfile))
1762 {
1763 error ("Can't find the file sections in `%s': %s",
1764 objfile->name, bfd_errmsg (bfd_get_error ()));
1765 }
1766
1767 /* We use the same section offsets as from last time. I'm not
1768 sure whether that is always correct for shared libraries. */
1769 objfile->section_offsets = (struct section_offsets *)
1770 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
1771 memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
1772 objfile->num_sections = num_offsets;
1773
1774 /* What the hell is sym_new_init for, anyway? The concept of
1775 distinguishing between the main file and additional files
1776 in this way seems rather dubious. */
1777 if (objfile == symfile_objfile)
1778 {
1779 (*objfile->sf->sym_new_init) (objfile);
1780 #ifdef HPUXHPPA
1781 RESET_HP_UX_GLOBALS ();
1782 #endif
1783 }
1784
1785 (*objfile->sf->sym_init) (objfile);
1786 clear_complaints (1, 1);
1787 /* The "mainline" parameter is a hideous hack; I think leaving it
1788 zero is OK since dbxread.c also does what it needs to do if
1789 objfile->global_psymbols.size is 0. */
1790 (*objfile->sf->sym_read) (objfile, 0);
1791 if (!have_partial_symbols () && !have_full_symbols ())
1792 {
1793 wrap_here ("");
1794 printf_filtered ("(no debugging symbols found)\n");
1795 wrap_here ("");
1796 }
1797 objfile->flags |= OBJF_SYMS;
1798
1799 /* We're done reading the symbol file; finish off complaints. */
1800 clear_complaints (0, 1);
1801
1802 /* Getting new symbols may change our opinion about what is
1803 frameless. */
1804
1805 reinit_frame_cache ();
1806
1807 /* Discard cleanups as symbol reading was successful. */
1808 discard_cleanups (old_cleanups);
1809
1810 /* If the mtime has changed between the time we set new_modtime
1811 and now, we *want* this to be out of date, so don't call stat
1812 again now. */
1813 objfile->mtime = new_modtime;
1814 reread_one = 1;
1815
1816 /* Call this after reading in a new symbol table to give target
1817 dependant code a crack at the new symbols. For instance, this
1818 could be used to update the values of target-specific symbols GDB
1819 needs to keep track of (such as _sigtramp, or whatever). */
1820
1821 TARGET_SYMFILE_POSTREAD (objfile);
1822 }
1823 }
1824 }
1825
1826 if (reread_one)
1827 clear_symtab_users ();
1828 }
1829 \f
1830
1831
1832 typedef struct
1833 {
1834 char *ext;
1835 enum language lang;
1836 }
1837 filename_language;
1838
1839 static filename_language *filename_language_table;
1840 static int fl_table_size, fl_table_next;
1841
1842 static void
1843 add_filename_language (ext, lang)
1844 char *ext;
1845 enum language lang;
1846 {
1847 if (fl_table_next >= fl_table_size)
1848 {
1849 fl_table_size += 10;
1850 filename_language_table = realloc (filename_language_table,
1851 fl_table_size);
1852 }
1853
1854 filename_language_table[fl_table_next].ext = strsave (ext);
1855 filename_language_table[fl_table_next].lang = lang;
1856 fl_table_next++;
1857 }
1858
1859 static char *ext_args;
1860
1861 static void
1862 set_ext_lang_command (args, from_tty)
1863 char *args;
1864 int from_tty;
1865 {
1866 int i;
1867 char *cp = ext_args;
1868 enum language lang;
1869
1870 /* First arg is filename extension, starting with '.' */
1871 if (*cp != '.')
1872 error ("'%s': Filename extension must begin with '.'", ext_args);
1873
1874 /* Find end of first arg. */
1875 while (*cp && !isspace (*cp))
1876 cp++;
1877
1878 if (*cp == '\0')
1879 error ("'%s': two arguments required -- filename extension and language",
1880 ext_args);
1881
1882 /* Null-terminate first arg */
1883 *cp++ = '\0';
1884
1885 /* Find beginning of second arg, which should be a source language. */
1886 while (*cp && isspace (*cp))
1887 cp++;
1888
1889 if (*cp == '\0')
1890 error ("'%s': two arguments required -- filename extension and language",
1891 ext_args);
1892
1893 /* Lookup the language from among those we know. */
1894 lang = language_enum (cp);
1895
1896 /* Now lookup the filename extension: do we already know it? */
1897 for (i = 0; i < fl_table_next; i++)
1898 if (0 == strcmp (ext_args, filename_language_table[i].ext))
1899 break;
1900
1901 if (i >= fl_table_next)
1902 {
1903 /* new file extension */
1904 add_filename_language (ext_args, lang);
1905 }
1906 else
1907 {
1908 /* redefining a previously known filename extension */
1909
1910 /* if (from_tty) */
1911 /* query ("Really make files of type %s '%s'?", */
1912 /* ext_args, language_str (lang)); */
1913
1914 free (filename_language_table[i].ext);
1915 filename_language_table[i].ext = strsave (ext_args);
1916 filename_language_table[i].lang = lang;
1917 }
1918 }
1919
1920 static void
1921 info_ext_lang_command (args, from_tty)
1922 char *args;
1923 int from_tty;
1924 {
1925 int i;
1926
1927 printf_filtered ("Filename extensions and the languages they represent:");
1928 printf_filtered ("\n\n");
1929 for (i = 0; i < fl_table_next; i++)
1930 printf_filtered ("\t%s\t- %s\n",
1931 filename_language_table[i].ext,
1932 language_str (filename_language_table[i].lang));
1933 }
1934
1935 static void
1936 init_filename_language_table ()
1937 {
1938 if (fl_table_size == 0) /* protect against repetition */
1939 {
1940 fl_table_size = 20;
1941 fl_table_next = 0;
1942 filename_language_table =
1943 xmalloc (fl_table_size * sizeof (*filename_language_table));
1944 add_filename_language (".c", language_c);
1945 add_filename_language (".C", language_cplus);
1946 add_filename_language (".cc", language_cplus);
1947 add_filename_language (".cp", language_cplus);
1948 add_filename_language (".cpp", language_cplus);
1949 add_filename_language (".cxx", language_cplus);
1950 add_filename_language (".c++", language_cplus);
1951 add_filename_language (".java", language_java);
1952 add_filename_language (".class", language_java);
1953 add_filename_language (".ch", language_chill);
1954 add_filename_language (".c186", language_chill);
1955 add_filename_language (".c286", language_chill);
1956 add_filename_language (".f", language_fortran);
1957 add_filename_language (".F", language_fortran);
1958 add_filename_language (".s", language_asm);
1959 add_filename_language (".S", language_asm);
1960 }
1961 }
1962
1963 enum language
1964 deduce_language_from_filename (filename)
1965 char *filename;
1966 {
1967 int i;
1968 char *cp;
1969
1970 if (filename != NULL)
1971 if ((cp = strrchr (filename, '.')) != NULL)
1972 for (i = 0; i < fl_table_next; i++)
1973 if (strcmp (cp, filename_language_table[i].ext) == 0)
1974 return filename_language_table[i].lang;
1975
1976 return language_unknown;
1977 }
1978 \f
1979 /* allocate_symtab:
1980
1981 Allocate and partly initialize a new symbol table. Return a pointer
1982 to it. error() if no space.
1983
1984 Caller must set these fields:
1985 LINETABLE(symtab)
1986 symtab->blockvector
1987 symtab->dirname
1988 symtab->free_code
1989 symtab->free_ptr
1990 possibly free_named_symtabs (symtab->filename);
1991 */
1992
1993 struct symtab *
1994 allocate_symtab (filename, objfile)
1995 char *filename;
1996 struct objfile *objfile;
1997 {
1998 register struct symtab *symtab;
1999
2000 symtab = (struct symtab *)
2001 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
2002 memset (symtab, 0, sizeof (*symtab));
2003 symtab->filename = obsavestring (filename, strlen (filename),
2004 &objfile->symbol_obstack);
2005 symtab->fullname = NULL;
2006 symtab->language = deduce_language_from_filename (filename);
2007 symtab->debugformat = obsavestring ("unknown", 7,
2008 &objfile->symbol_obstack);
2009
2010 /* Hook it to the objfile it comes from */
2011
2012 symtab->objfile = objfile;
2013 symtab->next = objfile->symtabs;
2014 objfile->symtabs = symtab;
2015
2016 /* FIXME: This should go away. It is only defined for the Z8000,
2017 and the Z8000 definition of this macro doesn't have anything to
2018 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2019 here for convenience. */
2020 #ifdef INIT_EXTRA_SYMTAB_INFO
2021 INIT_EXTRA_SYMTAB_INFO (symtab);
2022 #endif
2023
2024 return (symtab);
2025 }
2026
2027 struct partial_symtab *
2028 allocate_psymtab (filename, objfile)
2029 char *filename;
2030 struct objfile *objfile;
2031 {
2032 struct partial_symtab *psymtab;
2033
2034 if (objfile->free_psymtabs)
2035 {
2036 psymtab = objfile->free_psymtabs;
2037 objfile->free_psymtabs = psymtab->next;
2038 }
2039 else
2040 psymtab = (struct partial_symtab *)
2041 obstack_alloc (&objfile->psymbol_obstack,
2042 sizeof (struct partial_symtab));
2043
2044 memset (psymtab, 0, sizeof (struct partial_symtab));
2045 psymtab->filename = obsavestring (filename, strlen (filename),
2046 &objfile->psymbol_obstack);
2047 psymtab->symtab = NULL;
2048
2049 /* Prepend it to the psymtab list for the objfile it belongs to.
2050 Psymtabs are searched in most recent inserted -> least recent
2051 inserted order. */
2052
2053 psymtab->objfile = objfile;
2054 psymtab->next = objfile->psymtabs;
2055 objfile->psymtabs = psymtab;
2056 #if 0
2057 {
2058 struct partial_symtab **prev_pst;
2059 psymtab->objfile = objfile;
2060 psymtab->next = NULL;
2061 prev_pst = &(objfile->psymtabs);
2062 while ((*prev_pst) != NULL)
2063 prev_pst = &((*prev_pst)->next);
2064 (*prev_pst) = psymtab;
2065 }
2066 #endif
2067
2068 return (psymtab);
2069 }
2070
2071 void
2072 discard_psymtab (pst)
2073 struct partial_symtab *pst;
2074 {
2075 struct partial_symtab **prev_pst;
2076
2077 /* From dbxread.c:
2078 Empty psymtabs happen as a result of header files which don't
2079 have any symbols in them. There can be a lot of them. But this
2080 check is wrong, in that a psymtab with N_SLINE entries but
2081 nothing else is not empty, but we don't realize that. Fixing
2082 that without slowing things down might be tricky. */
2083
2084 /* First, snip it out of the psymtab chain */
2085
2086 prev_pst = &(pst->objfile->psymtabs);
2087 while ((*prev_pst) != pst)
2088 prev_pst = &((*prev_pst)->next);
2089 (*prev_pst) = pst->next;
2090
2091 /* Next, put it on a free list for recycling */
2092
2093 pst->next = pst->objfile->free_psymtabs;
2094 pst->objfile->free_psymtabs = pst;
2095 }
2096 \f
2097
2098 /* Reset all data structures in gdb which may contain references to symbol
2099 table data. */
2100
2101 void
2102 clear_symtab_users ()
2103 {
2104 /* Someday, we should do better than this, by only blowing away
2105 the things that really need to be blown. */
2106 clear_value_history ();
2107 clear_displays ();
2108 clear_internalvars ();
2109 breakpoint_re_set ();
2110 set_default_breakpoint (0, 0, 0, 0);
2111 current_source_symtab = 0;
2112 current_source_line = 0;
2113 clear_pc_function_cache ();
2114 if (target_new_objfile_hook)
2115 target_new_objfile_hook (NULL);
2116 }
2117
2118 /* clear_symtab_users_once:
2119
2120 This function is run after symbol reading, or from a cleanup.
2121 If an old symbol table was obsoleted, the old symbol table
2122 has been blown away, but the other GDB data structures that may
2123 reference it have not yet been cleared or re-directed. (The old
2124 symtab was zapped, and the cleanup queued, in free_named_symtab()
2125 below.)
2126
2127 This function can be queued N times as a cleanup, or called
2128 directly; it will do all the work the first time, and then will be a
2129 no-op until the next time it is queued. This works by bumping a
2130 counter at queueing time. Much later when the cleanup is run, or at
2131 the end of symbol processing (in case the cleanup is discarded), if
2132 the queued count is greater than the "done-count", we do the work
2133 and set the done-count to the queued count. If the queued count is
2134 less than or equal to the done-count, we just ignore the call. This
2135 is needed because reading a single .o file will often replace many
2136 symtabs (one per .h file, for example), and we don't want to reset
2137 the breakpoints N times in the user's face.
2138
2139 The reason we both queue a cleanup, and call it directly after symbol
2140 reading, is because the cleanup protects us in case of errors, but is
2141 discarded if symbol reading is successful. */
2142
2143 #if 0
2144 /* FIXME: As free_named_symtabs is currently a big noop this function
2145 is no longer needed. */
2146 static void
2147 clear_symtab_users_once PARAMS ((void));
2148
2149 static int clear_symtab_users_queued;
2150 static int clear_symtab_users_done;
2151
2152 static void
2153 clear_symtab_users_once ()
2154 {
2155 /* Enforce once-per-`do_cleanups'-semantics */
2156 if (clear_symtab_users_queued <= clear_symtab_users_done)
2157 return;
2158 clear_symtab_users_done = clear_symtab_users_queued;
2159
2160 clear_symtab_users ();
2161 }
2162 #endif
2163
2164 /* Delete the specified psymtab, and any others that reference it. */
2165
2166 static void
2167 cashier_psymtab (pst)
2168 struct partial_symtab *pst;
2169 {
2170 struct partial_symtab *ps, *pprev = NULL;
2171 int i;
2172
2173 /* Find its previous psymtab in the chain */
2174 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2175 {
2176 if (ps == pst)
2177 break;
2178 pprev = ps;
2179 }
2180
2181 if (ps)
2182 {
2183 /* Unhook it from the chain. */
2184 if (ps == pst->objfile->psymtabs)
2185 pst->objfile->psymtabs = ps->next;
2186 else
2187 pprev->next = ps->next;
2188
2189 /* FIXME, we can't conveniently deallocate the entries in the
2190 partial_symbol lists (global_psymbols/static_psymbols) that
2191 this psymtab points to. These just take up space until all
2192 the psymtabs are reclaimed. Ditto the dependencies list and
2193 filename, which are all in the psymbol_obstack. */
2194
2195 /* We need to cashier any psymtab that has this one as a dependency... */
2196 again:
2197 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2198 {
2199 for (i = 0; i < ps->number_of_dependencies; i++)
2200 {
2201 if (ps->dependencies[i] == pst)
2202 {
2203 cashier_psymtab (ps);
2204 goto again; /* Must restart, chain has been munged. */
2205 }
2206 }
2207 }
2208 }
2209 }
2210
2211 /* If a symtab or psymtab for filename NAME is found, free it along
2212 with any dependent breakpoints, displays, etc.
2213 Used when loading new versions of object modules with the "add-file"
2214 command. This is only called on the top-level symtab or psymtab's name;
2215 it is not called for subsidiary files such as .h files.
2216
2217 Return value is 1 if we blew away the environment, 0 if not.
2218 FIXME. The return valu appears to never be used.
2219
2220 FIXME. I think this is not the best way to do this. We should
2221 work on being gentler to the environment while still cleaning up
2222 all stray pointers into the freed symtab. */
2223
2224 int
2225 free_named_symtabs (name)
2226 char *name;
2227 {
2228 #if 0
2229 /* FIXME: With the new method of each objfile having it's own
2230 psymtab list, this function needs serious rethinking. In particular,
2231 why was it ever necessary to toss psymtabs with specific compilation
2232 unit filenames, as opposed to all psymtabs from a particular symbol
2233 file? -- fnf
2234 Well, the answer is that some systems permit reloading of particular
2235 compilation units. We want to blow away any old info about these
2236 compilation units, regardless of which objfiles they arrived in. --gnu. */
2237
2238 register struct symtab *s;
2239 register struct symtab *prev;
2240 register struct partial_symtab *ps;
2241 struct blockvector *bv;
2242 int blewit = 0;
2243
2244 /* We only wack things if the symbol-reload switch is set. */
2245 if (!symbol_reloading)
2246 return 0;
2247
2248 /* Some symbol formats have trouble providing file names... */
2249 if (name == 0 || *name == '\0')
2250 return 0;
2251
2252 /* Look for a psymtab with the specified name. */
2253
2254 again2:
2255 for (ps = partial_symtab_list; ps; ps = ps->next)
2256 {
2257 if (STREQ (name, ps->filename))
2258 {
2259 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2260 goto again2; /* Must restart, chain has been munged */
2261 }
2262 }
2263
2264 /* Look for a symtab with the specified name. */
2265
2266 for (s = symtab_list; s; s = s->next)
2267 {
2268 if (STREQ (name, s->filename))
2269 break;
2270 prev = s;
2271 }
2272
2273 if (s)
2274 {
2275 if (s == symtab_list)
2276 symtab_list = s->next;
2277 else
2278 prev->next = s->next;
2279
2280 /* For now, queue a delete for all breakpoints, displays, etc., whether
2281 or not they depend on the symtab being freed. This should be
2282 changed so that only those data structures affected are deleted. */
2283
2284 /* But don't delete anything if the symtab is empty.
2285 This test is necessary due to a bug in "dbxread.c" that
2286 causes empty symtabs to be created for N_SO symbols that
2287 contain the pathname of the object file. (This problem
2288 has been fixed in GDB 3.9x). */
2289
2290 bv = BLOCKVECTOR (s);
2291 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2292 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2293 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2294 {
2295 complain (&oldsyms_complaint, name);
2296
2297 clear_symtab_users_queued++;
2298 make_cleanup (clear_symtab_users_once, 0);
2299 blewit = 1;
2300 }
2301 else
2302 {
2303 complain (&empty_symtab_complaint, name);
2304 }
2305
2306 free_symtab (s);
2307 }
2308 else
2309 {
2310 /* It is still possible that some breakpoints will be affected
2311 even though no symtab was found, since the file might have
2312 been compiled without debugging, and hence not be associated
2313 with a symtab. In order to handle this correctly, we would need
2314 to keep a list of text address ranges for undebuggable files.
2315 For now, we do nothing, since this is a fairly obscure case. */
2316 ;
2317 }
2318
2319 /* FIXME, what about the minimal symbol table? */
2320 return blewit;
2321 #else
2322 return (0);
2323 #endif
2324 }
2325 \f
2326 /* Allocate and partially fill a partial symtab. It will be
2327 completely filled at the end of the symbol list.
2328
2329 FILENAME is the name of the symbol-file we are reading from. */
2330
2331 struct partial_symtab *
2332 start_psymtab_common (objfile, section_offsets,
2333 filename, textlow, global_syms, static_syms)
2334 struct objfile *objfile;
2335 struct section_offsets *section_offsets;
2336 char *filename;
2337 CORE_ADDR textlow;
2338 struct partial_symbol **global_syms;
2339 struct partial_symbol **static_syms;
2340 {
2341 struct partial_symtab *psymtab;
2342
2343 psymtab = allocate_psymtab (filename, objfile);
2344 psymtab->section_offsets = section_offsets;
2345 psymtab->textlow = textlow;
2346 psymtab->texthigh = psymtab->textlow; /* default */
2347 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2348 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2349 return (psymtab);
2350 }
2351 \f
2352 /* Add a symbol with a long value to a psymtab.
2353 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2354
2355 void
2356 add_psymbol_to_list (name, namelength, namespace, class, list, val, coreaddr,
2357 language, objfile)
2358 char *name;
2359 int namelength;
2360 namespace_enum namespace;
2361 enum address_class class;
2362 struct psymbol_allocation_list *list;
2363 long val; /* Value as a long */
2364 CORE_ADDR coreaddr; /* Value as a CORE_ADDR */
2365 enum language language;
2366 struct objfile *objfile;
2367 {
2368 register struct partial_symbol *psym;
2369 char *buf = alloca (namelength + 1);
2370 /* psymbol is static so that there will be no uninitialized gaps in the
2371 structure which might contain random data, causing cache misses in
2372 bcache. */
2373 static struct partial_symbol psymbol;
2374
2375 /* Create local copy of the partial symbol */
2376 memcpy (buf, name, namelength);
2377 buf[namelength] = '\0';
2378 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2379 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2380 if (val != 0)
2381 {
2382 SYMBOL_VALUE (&psymbol) = val;
2383 }
2384 else
2385 {
2386 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2387 }
2388 SYMBOL_SECTION (&psymbol) = 0;
2389 SYMBOL_LANGUAGE (&psymbol) = language;
2390 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2391 PSYMBOL_CLASS (&psymbol) = class;
2392 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2393
2394 /* Stash the partial symbol away in the cache */
2395 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2396
2397 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2398 if (list->next >= list->list + list->size)
2399 {
2400 extend_psymbol_list (list, objfile);
2401 }
2402 *list->next++ = psym;
2403 OBJSTAT (objfile, n_psyms++);
2404 }
2405
2406 /* Add a symbol with a long value to a psymtab. This differs from
2407 * add_psymbol_to_list above in taking both a mangled and a demangled
2408 * name. */
2409
2410 void
2411 add_psymbol_with_dem_name_to_list (name, namelength, dem_name, dem_namelength,
2412 namespace, class, list, val, coreaddr, language, objfile)
2413 char *name;
2414 int namelength;
2415 char *dem_name;
2416 int dem_namelength;
2417 namespace_enum namespace;
2418 enum address_class class;
2419 struct psymbol_allocation_list *list;
2420 long val; /* Value as a long */
2421 CORE_ADDR coreaddr; /* Value as a CORE_ADDR */
2422 enum language language;
2423 struct objfile *objfile;
2424 {
2425 register struct partial_symbol *psym;
2426 char *buf = alloca (namelength + 1);
2427 /* psymbol is static so that there will be no uninitialized gaps in the
2428 structure which might contain random data, causing cache misses in
2429 bcache. */
2430 static struct partial_symbol psymbol;
2431
2432 /* Create local copy of the partial symbol */
2433
2434 memcpy (buf, name, namelength);
2435 buf[namelength] = '\0';
2436 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2437
2438 buf = alloca (dem_namelength + 1);
2439 memcpy (buf, dem_name, dem_namelength);
2440 buf[dem_namelength] = '\0';
2441
2442 switch (language)
2443 {
2444 case language_c:
2445 case language_cplus:
2446 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2447 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2448 break;
2449 case language_chill:
2450 SYMBOL_CHILL_DEMANGLED_NAME (&psymbol) =
2451 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2452
2453 /* FIXME What should be done for the default case? Ignoring for now. */
2454 }
2455
2456 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2457 if (val != 0)
2458 {
2459 SYMBOL_VALUE (&psymbol) = val;
2460 }
2461 else
2462 {
2463 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2464 }
2465 SYMBOL_SECTION (&psymbol) = 0;
2466 SYMBOL_LANGUAGE (&psymbol) = language;
2467 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2468 PSYMBOL_CLASS (&psymbol) = class;
2469 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2470
2471 /* Stash the partial symbol away in the cache */
2472 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2473
2474 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2475 if (list->next >= list->list + list->size)
2476 {
2477 extend_psymbol_list (list, objfile);
2478 }
2479 *list->next++ = psym;
2480 OBJSTAT (objfile, n_psyms++);
2481 }
2482
2483 /* Initialize storage for partial symbols. */
2484
2485 void
2486 init_psymbol_list (objfile, total_symbols)
2487 struct objfile *objfile;
2488 int total_symbols;
2489 {
2490 /* Free any previously allocated psymbol lists. */
2491
2492 if (objfile->global_psymbols.list)
2493 {
2494 mfree (objfile->md, (PTR) objfile->global_psymbols.list);
2495 }
2496 if (objfile->static_psymbols.list)
2497 {
2498 mfree (objfile->md, (PTR) objfile->static_psymbols.list);
2499 }
2500
2501 /* Current best guess is that approximately a twentieth
2502 of the total symbols (in a debugging file) are global or static
2503 oriented symbols */
2504
2505 objfile->global_psymbols.size = total_symbols / 10;
2506 objfile->static_psymbols.size = total_symbols / 10;
2507
2508 if (objfile->global_psymbols.size > 0)
2509 {
2510 objfile->global_psymbols.next =
2511 objfile->global_psymbols.list = (struct partial_symbol **)
2512 xmmalloc (objfile->md, (objfile->global_psymbols.size
2513 * sizeof (struct partial_symbol *)));
2514 }
2515 if (objfile->static_psymbols.size > 0)
2516 {
2517 objfile->static_psymbols.next =
2518 objfile->static_psymbols.list = (struct partial_symbol **)
2519 xmmalloc (objfile->md, (objfile->static_psymbols.size
2520 * sizeof (struct partial_symbol *)));
2521 }
2522 }
2523
2524 /* OVERLAYS:
2525 The following code implements an abstraction for debugging overlay sections.
2526
2527 The target model is as follows:
2528 1) The gnu linker will permit multiple sections to be mapped into the
2529 same VMA, each with its own unique LMA (or load address).
2530 2) It is assumed that some runtime mechanism exists for mapping the
2531 sections, one by one, from the load address into the VMA address.
2532 3) This code provides a mechanism for gdb to keep track of which
2533 sections should be considered to be mapped from the VMA to the LMA.
2534 This information is used for symbol lookup, and memory read/write.
2535 For instance, if a section has been mapped then its contents
2536 should be read from the VMA, otherwise from the LMA.
2537
2538 Two levels of debugger support for overlays are available. One is
2539 "manual", in which the debugger relies on the user to tell it which
2540 overlays are currently mapped. This level of support is
2541 implemented entirely in the core debugger, and the information about
2542 whether a section is mapped is kept in the objfile->obj_section table.
2543
2544 The second level of support is "automatic", and is only available if
2545 the target-specific code provides functionality to read the target's
2546 overlay mapping table, and translate its contents for the debugger
2547 (by updating the mapped state information in the obj_section tables).
2548
2549 The interface is as follows:
2550 User commands:
2551 overlay map <name> -- tell gdb to consider this section mapped
2552 overlay unmap <name> -- tell gdb to consider this section unmapped
2553 overlay list -- list the sections that GDB thinks are mapped
2554 overlay read-target -- get the target's state of what's mapped
2555 overlay off/manual/auto -- set overlay debugging state
2556 Functional interface:
2557 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2558 section, return that section.
2559 find_pc_overlay(pc): find any overlay section that contains
2560 the pc, either in its VMA or its LMA
2561 overlay_is_mapped(sect): true if overlay is marked as mapped
2562 section_is_overlay(sect): true if section's VMA != LMA
2563 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2564 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2565 overlay_mapped_address(...): map an address from section's LMA to VMA
2566 overlay_unmapped_address(...): map an address from section's VMA to LMA
2567 symbol_overlayed_address(...): Return a "current" address for symbol:
2568 either in VMA or LMA depending on whether
2569 the symbol's section is currently mapped
2570 */
2571
2572 /* Overlay debugging state: */
2573
2574 int overlay_debugging = 0; /* 0 == off, 1 == manual, -1 == auto */
2575 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2576
2577 /* Target vector for refreshing overlay mapped state */
2578 static void simple_overlay_update PARAMS ((struct obj_section *));
2579 void (*target_overlay_update) PARAMS ((struct obj_section *))
2580 = simple_overlay_update;
2581
2582 /* Function: section_is_overlay (SECTION)
2583 Returns true if SECTION has VMA not equal to LMA, ie.
2584 SECTION is loaded at an address different from where it will "run". */
2585
2586 int
2587 section_is_overlay (section)
2588 asection *section;
2589 {
2590 if (overlay_debugging)
2591 if (section && section->lma != 0 &&
2592 section->vma != section->lma)
2593 return 1;
2594
2595 return 0;
2596 }
2597
2598 /* Function: overlay_invalidate_all (void)
2599 Invalidate the mapped state of all overlay sections (mark it as stale). */
2600
2601 static void
2602 overlay_invalidate_all ()
2603 {
2604 struct objfile *objfile;
2605 struct obj_section *sect;
2606
2607 ALL_OBJSECTIONS (objfile, sect)
2608 if (section_is_overlay (sect->the_bfd_section))
2609 sect->ovly_mapped = -1;
2610 }
2611
2612 /* Function: overlay_is_mapped (SECTION)
2613 Returns true if section is an overlay, and is currently mapped.
2614 Private: public access is thru function section_is_mapped.
2615
2616 Access to the ovly_mapped flag is restricted to this function, so
2617 that we can do automatic update. If the global flag
2618 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2619 overlay_invalidate_all. If the mapped state of the particular
2620 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2621
2622 static int
2623 overlay_is_mapped (osect)
2624 struct obj_section *osect;
2625 {
2626 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2627 return 0;
2628
2629 switch (overlay_debugging)
2630 {
2631 default:
2632 case 0:
2633 return 0; /* overlay debugging off */
2634 case -1: /* overlay debugging automatic */
2635 /* Unles there is a target_overlay_update function,
2636 there's really nothing useful to do here (can't really go auto) */
2637 if (target_overlay_update)
2638 {
2639 if (overlay_cache_invalid)
2640 {
2641 overlay_invalidate_all ();
2642 overlay_cache_invalid = 0;
2643 }
2644 if (osect->ovly_mapped == -1)
2645 (*target_overlay_update) (osect);
2646 }
2647 /* fall thru to manual case */
2648 case 1: /* overlay debugging manual */
2649 return osect->ovly_mapped == 1;
2650 }
2651 }
2652
2653 /* Function: section_is_mapped
2654 Returns true if section is an overlay, and is currently mapped. */
2655
2656 int
2657 section_is_mapped (section)
2658 asection *section;
2659 {
2660 struct objfile *objfile;
2661 struct obj_section *osect;
2662
2663 if (overlay_debugging)
2664 if (section && section_is_overlay (section))
2665 ALL_OBJSECTIONS (objfile, osect)
2666 if (osect->the_bfd_section == section)
2667 return overlay_is_mapped (osect);
2668
2669 return 0;
2670 }
2671
2672 /* Function: pc_in_unmapped_range
2673 If PC falls into the lma range of SECTION, return true, else false. */
2674
2675 CORE_ADDR
2676 pc_in_unmapped_range (pc, section)
2677 CORE_ADDR pc;
2678 asection *section;
2679 {
2680 int size;
2681
2682 if (overlay_debugging)
2683 if (section && section_is_overlay (section))
2684 {
2685 size = bfd_get_section_size_before_reloc (section);
2686 if (section->lma <= pc && pc < section->lma + size)
2687 return 1;
2688 }
2689 return 0;
2690 }
2691
2692 /* Function: pc_in_mapped_range
2693 If PC falls into the vma range of SECTION, return true, else false. */
2694
2695 CORE_ADDR
2696 pc_in_mapped_range (pc, section)
2697 CORE_ADDR pc;
2698 asection *section;
2699 {
2700 int size;
2701
2702 if (overlay_debugging)
2703 if (section && section_is_overlay (section))
2704 {
2705 size = bfd_get_section_size_before_reloc (section);
2706 if (section->vma <= pc && pc < section->vma + size)
2707 return 1;
2708 }
2709 return 0;
2710 }
2711
2712 /* Function: overlay_unmapped_address (PC, SECTION)
2713 Returns the address corresponding to PC in the unmapped (load) range.
2714 May be the same as PC. */
2715
2716 CORE_ADDR
2717 overlay_unmapped_address (pc, section)
2718 CORE_ADDR pc;
2719 asection *section;
2720 {
2721 if (overlay_debugging)
2722 if (section && section_is_overlay (section) &&
2723 pc_in_mapped_range (pc, section))
2724 return pc + section->lma - section->vma;
2725
2726 return pc;
2727 }
2728
2729 /* Function: overlay_mapped_address (PC, SECTION)
2730 Returns the address corresponding to PC in the mapped (runtime) range.
2731 May be the same as PC. */
2732
2733 CORE_ADDR
2734 overlay_mapped_address (pc, section)
2735 CORE_ADDR pc;
2736 asection *section;
2737 {
2738 if (overlay_debugging)
2739 if (section && section_is_overlay (section) &&
2740 pc_in_unmapped_range (pc, section))
2741 return pc + section->vma - section->lma;
2742
2743 return pc;
2744 }
2745
2746
2747 /* Function: symbol_overlayed_address
2748 Return one of two addresses (relative to the VMA or to the LMA),
2749 depending on whether the section is mapped or not. */
2750
2751 CORE_ADDR
2752 symbol_overlayed_address (address, section)
2753 CORE_ADDR address;
2754 asection *section;
2755 {
2756 if (overlay_debugging)
2757 {
2758 /* If the symbol has no section, just return its regular address. */
2759 if (section == 0)
2760 return address;
2761 /* If the symbol's section is not an overlay, just return its address */
2762 if (!section_is_overlay (section))
2763 return address;
2764 /* If the symbol's section is mapped, just return its address */
2765 if (section_is_mapped (section))
2766 return address;
2767 /*
2768 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2769 * then return its LOADED address rather than its vma address!!
2770 */
2771 return overlay_unmapped_address (address, section);
2772 }
2773 return address;
2774 }
2775
2776 /* Function: find_pc_overlay (PC)
2777 Return the best-match overlay section for PC:
2778 If PC matches a mapped overlay section's VMA, return that section.
2779 Else if PC matches an unmapped section's VMA, return that section.
2780 Else if PC matches an unmapped section's LMA, return that section. */
2781
2782 asection *
2783 find_pc_overlay (pc)
2784 CORE_ADDR pc;
2785 {
2786 struct objfile *objfile;
2787 struct obj_section *osect, *best_match = NULL;
2788
2789 if (overlay_debugging)
2790 ALL_OBJSECTIONS (objfile, osect)
2791 if (section_is_overlay (osect->the_bfd_section))
2792 {
2793 if (pc_in_mapped_range (pc, osect->the_bfd_section))
2794 {
2795 if (overlay_is_mapped (osect))
2796 return osect->the_bfd_section;
2797 else
2798 best_match = osect;
2799 }
2800 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
2801 best_match = osect;
2802 }
2803 return best_match ? best_match->the_bfd_section : NULL;
2804 }
2805
2806 /* Function: find_pc_mapped_section (PC)
2807 If PC falls into the VMA address range of an overlay section that is
2808 currently marked as MAPPED, return that section. Else return NULL. */
2809
2810 asection *
2811 find_pc_mapped_section (pc)
2812 CORE_ADDR pc;
2813 {
2814 struct objfile *objfile;
2815 struct obj_section *osect;
2816
2817 if (overlay_debugging)
2818 ALL_OBJSECTIONS (objfile, osect)
2819 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
2820 overlay_is_mapped (osect))
2821 return osect->the_bfd_section;
2822
2823 return NULL;
2824 }
2825
2826 /* Function: list_overlays_command
2827 Print a list of mapped sections and their PC ranges */
2828
2829 void
2830 list_overlays_command (args, from_tty)
2831 char *args;
2832 int from_tty;
2833 {
2834 int nmapped = 0;
2835 struct objfile *objfile;
2836 struct obj_section *osect;
2837
2838 if (overlay_debugging)
2839 ALL_OBJSECTIONS (objfile, osect)
2840 if (overlay_is_mapped (osect))
2841 {
2842 const char *name;
2843 bfd_vma lma, vma;
2844 int size;
2845
2846 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
2847 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2848 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2849 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
2850
2851 printf_filtered ("Section %s, loaded at ", name);
2852 print_address_numeric (lma, 1, gdb_stdout);
2853 puts_filtered (" - ");
2854 print_address_numeric (lma + size, 1, gdb_stdout);
2855 printf_filtered (", mapped at ");
2856 print_address_numeric (vma, 1, gdb_stdout);
2857 puts_filtered (" - ");
2858 print_address_numeric (vma + size, 1, gdb_stdout);
2859 puts_filtered ("\n");
2860
2861 nmapped++;
2862 }
2863 if (nmapped == 0)
2864 printf_filtered ("No sections are mapped.\n");
2865 }
2866
2867 /* Function: map_overlay_command
2868 Mark the named section as mapped (ie. residing at its VMA address). */
2869
2870 void
2871 map_overlay_command (args, from_tty)
2872 char *args;
2873 int from_tty;
2874 {
2875 struct objfile *objfile, *objfile2;
2876 struct obj_section *sec, *sec2;
2877 asection *bfdsec;
2878
2879 if (!overlay_debugging)
2880 error ("Overlay debugging not enabled. Use the 'OVERLAY ON' command.");
2881
2882 if (args == 0 || *args == 0)
2883 error ("Argument required: name of an overlay section");
2884
2885 /* First, find a section matching the user supplied argument */
2886 ALL_OBJSECTIONS (objfile, sec)
2887 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2888 {
2889 /* Now, check to see if the section is an overlay. */
2890 bfdsec = sec->the_bfd_section;
2891 if (!section_is_overlay (bfdsec))
2892 continue; /* not an overlay section */
2893
2894 /* Mark the overlay as "mapped" */
2895 sec->ovly_mapped = 1;
2896
2897 /* Next, make a pass and unmap any sections that are
2898 overlapped by this new section: */
2899 ALL_OBJSECTIONS (objfile2, sec2)
2900 if (sec2->ovly_mapped &&
2901 sec != sec2 &&
2902 sec->the_bfd_section != sec2->the_bfd_section &&
2903 (pc_in_mapped_range (sec2->addr, sec->the_bfd_section) ||
2904 pc_in_mapped_range (sec2->endaddr, sec->the_bfd_section)))
2905 {
2906 if (info_verbose)
2907 printf_filtered ("Note: section %s unmapped by overlap\n",
2908 bfd_section_name (objfile->obfd,
2909 sec2->the_bfd_section));
2910 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
2911 }
2912 return;
2913 }
2914 error ("No overlay section called %s", args);
2915 }
2916
2917 /* Function: unmap_overlay_command
2918 Mark the overlay section as unmapped
2919 (ie. resident in its LMA address range, rather than the VMA range). */
2920
2921 void
2922 unmap_overlay_command (args, from_tty)
2923 char *args;
2924 int from_tty;
2925 {
2926 struct objfile *objfile;
2927 struct obj_section *sec;
2928
2929 if (!overlay_debugging)
2930 error ("Overlay debugging not enabled. Use the 'OVERLAY ON' command.");
2931
2932 if (args == 0 || *args == 0)
2933 error ("Argument required: name of an overlay section");
2934
2935 /* First, find a section matching the user supplied argument */
2936 ALL_OBJSECTIONS (objfile, sec)
2937 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2938 {
2939 if (!sec->ovly_mapped)
2940 error ("Section %s is not mapped", args);
2941 sec->ovly_mapped = 0;
2942 return;
2943 }
2944 error ("No overlay section called %s", args);
2945 }
2946
2947 /* Function: overlay_auto_command
2948 A utility command to turn on overlay debugging.
2949 Possibly this should be done via a set/show command. */
2950
2951 static void
2952 overlay_auto_command (args, from_tty)
2953 char *args;
2954 int from_tty;
2955 {
2956 overlay_debugging = -1;
2957 if (info_verbose)
2958 printf_filtered ("Automatic overlay debugging enabled.");
2959 }
2960
2961 /* Function: overlay_manual_command
2962 A utility command to turn on overlay debugging.
2963 Possibly this should be done via a set/show command. */
2964
2965 static void
2966 overlay_manual_command (args, from_tty)
2967 char *args;
2968 int from_tty;
2969 {
2970 overlay_debugging = 1;
2971 if (info_verbose)
2972 printf_filtered ("Overlay debugging enabled.");
2973 }
2974
2975 /* Function: overlay_off_command
2976 A utility command to turn on overlay debugging.
2977 Possibly this should be done via a set/show command. */
2978
2979 static void
2980 overlay_off_command (args, from_tty)
2981 char *args;
2982 int from_tty;
2983 {
2984 overlay_debugging = 0;
2985 if (info_verbose)
2986 printf_filtered ("Overlay debugging disabled.");
2987 }
2988
2989 static void
2990 overlay_load_command (args, from_tty)
2991 char *args;
2992 int from_tty;
2993 {
2994 if (target_overlay_update)
2995 (*target_overlay_update) (NULL);
2996 else
2997 error ("This target does not know how to read its overlay state.");
2998 }
2999
3000 /* Function: overlay_command
3001 A place-holder for a mis-typed command */
3002
3003 /* Command list chain containing all defined "overlay" subcommands. */
3004 struct cmd_list_element *overlaylist;
3005
3006 static void
3007 overlay_command (args, from_tty)
3008 char *args;
3009 int from_tty;
3010 {
3011 printf_unfiltered
3012 ("\"overlay\" must be followed by the name of an overlay command.\n");
3013 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3014 }
3015
3016
3017 /* Target Overlays for the "Simplest" overlay manager:
3018
3019 This is GDB's default target overlay layer. It works with the
3020 minimal overlay manager supplied as an example by Cygnus. The
3021 entry point is via a function pointer "target_overlay_update",
3022 so targets that use a different runtime overlay manager can
3023 substitute their own overlay_update function and take over the
3024 function pointer.
3025
3026 The overlay_update function pokes around in the target's data structures
3027 to see what overlays are mapped, and updates GDB's overlay mapping with
3028 this information.
3029
3030 In this simple implementation, the target data structures are as follows:
3031 unsigned _novlys; /# number of overlay sections #/
3032 unsigned _ovly_table[_novlys][4] = {
3033 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3034 {..., ..., ..., ...},
3035 }
3036 unsigned _novly_regions; /# number of overlay regions #/
3037 unsigned _ovly_region_table[_novly_regions][3] = {
3038 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3039 {..., ..., ...},
3040 }
3041 These functions will attempt to update GDB's mappedness state in the
3042 symbol section table, based on the target's mappedness state.
3043
3044 To do this, we keep a cached copy of the target's _ovly_table, and
3045 attempt to detect when the cached copy is invalidated. The main
3046 entry point is "simple_overlay_update(SECT), which looks up SECT in
3047 the cached table and re-reads only the entry for that section from
3048 the target (whenever possible).
3049 */
3050
3051 /* Cached, dynamically allocated copies of the target data structures: */
3052 static unsigned (*cache_ovly_table)[4] = 0;
3053 #if 0
3054 static unsigned (*cache_ovly_region_table)[3] = 0;
3055 #endif
3056 static unsigned cache_novlys = 0;
3057 #if 0
3058 static unsigned cache_novly_regions = 0;
3059 #endif
3060 static CORE_ADDR cache_ovly_table_base = 0;
3061 #if 0
3062 static CORE_ADDR cache_ovly_region_table_base = 0;
3063 #endif
3064 enum ovly_index
3065 {
3066 VMA, SIZE, LMA, MAPPED
3067 };
3068 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3069
3070 /* Throw away the cached copy of _ovly_table */
3071 static void
3072 simple_free_overlay_table ()
3073 {
3074 if (cache_ovly_table)
3075 free (cache_ovly_table);
3076 cache_novlys = 0;
3077 cache_ovly_table = NULL;
3078 cache_ovly_table_base = 0;
3079 }
3080
3081 #if 0
3082 /* Throw away the cached copy of _ovly_region_table */
3083 static void
3084 simple_free_overlay_region_table ()
3085 {
3086 if (cache_ovly_region_table)
3087 free (cache_ovly_region_table);
3088 cache_novly_regions = 0;
3089 cache_ovly_region_table = NULL;
3090 cache_ovly_region_table_base = 0;
3091 }
3092 #endif
3093
3094 /* Read an array of ints from the target into a local buffer.
3095 Convert to host order. int LEN is number of ints */
3096 static void
3097 read_target_long_array (memaddr, myaddr, len)
3098 CORE_ADDR memaddr;
3099 unsigned int *myaddr;
3100 int len;
3101 {
3102 char *buf = alloca (len * TARGET_LONG_BYTES);
3103 int i;
3104
3105 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3106 for (i = 0; i < len; i++)
3107 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3108 TARGET_LONG_BYTES);
3109 }
3110
3111 /* Find and grab a copy of the target _ovly_table
3112 (and _novlys, which is needed for the table's size) */
3113 static int
3114 simple_read_overlay_table ()
3115 {
3116 struct minimal_symbol *msym;
3117
3118 simple_free_overlay_table ();
3119 msym = lookup_minimal_symbol ("_novlys", 0, 0);
3120 if (msym != NULL)
3121 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3122 else
3123 return 0; /* failure */
3124 cache_ovly_table = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3125 if (cache_ovly_table != NULL)
3126 {
3127 msym = lookup_minimal_symbol ("_ovly_table", 0, 0);
3128 if (msym != NULL)
3129 {
3130 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (msym);
3131 read_target_long_array (cache_ovly_table_base,
3132 (int *) cache_ovly_table,
3133 cache_novlys * 4);
3134 }
3135 else
3136 return 0; /* failure */
3137 }
3138 else
3139 return 0; /* failure */
3140 return 1; /* SUCCESS */
3141 }
3142
3143 #if 0
3144 /* Find and grab a copy of the target _ovly_region_table
3145 (and _novly_regions, which is needed for the table's size) */
3146 static int
3147 simple_read_overlay_region_table ()
3148 {
3149 struct minimal_symbol *msym;
3150
3151 simple_free_overlay_region_table ();
3152 msym = lookup_minimal_symbol ("_novly_regions", 0, 0);
3153 if (msym != NULL)
3154 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3155 else
3156 return 0; /* failure */
3157 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3158 if (cache_ovly_region_table != NULL)
3159 {
3160 msym = lookup_minimal_symbol ("_ovly_region_table", 0, 0);
3161 if (msym != NULL)
3162 {
3163 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3164 read_target_long_array (cache_ovly_region_table_base,
3165 (int *) cache_ovly_region_table,
3166 cache_novly_regions * 3);
3167 }
3168 else
3169 return 0; /* failure */
3170 }
3171 else
3172 return 0; /* failure */
3173 return 1; /* SUCCESS */
3174 }
3175 #endif
3176
3177 /* Function: simple_overlay_update_1
3178 A helper function for simple_overlay_update. Assuming a cached copy
3179 of _ovly_table exists, look through it to find an entry whose vma,
3180 lma and size match those of OSECT. Re-read the entry and make sure
3181 it still matches OSECT (else the table may no longer be valid).
3182 Set OSECT's mapped state to match the entry. Return: 1 for
3183 success, 0 for failure. */
3184
3185 static int
3186 simple_overlay_update_1 (osect)
3187 struct obj_section *osect;
3188 {
3189 int i, size;
3190
3191 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3192 for (i = 0; i < cache_novlys; i++)
3193 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3194 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3195 cache_ovly_table[i][SIZE] == size */ )
3196 {
3197 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3198 (int *) cache_ovly_table[i], 4);
3199 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3200 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3201 cache_ovly_table[i][SIZE] == size */ )
3202 {
3203 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3204 return 1;
3205 }
3206 else /* Warning! Warning! Target's ovly table has changed! */
3207 return 0;
3208 }
3209 return 0;
3210 }
3211
3212 /* Function: simple_overlay_update
3213 If OSECT is NULL, then update all sections' mapped state
3214 (after re-reading the entire target _ovly_table).
3215 If OSECT is non-NULL, then try to find a matching entry in the
3216 cached ovly_table and update only OSECT's mapped state.
3217 If a cached entry can't be found or the cache isn't valid, then
3218 re-read the entire cache, and go ahead and update all sections. */
3219
3220 static void
3221 simple_overlay_update (osect)
3222 struct obj_section *osect;
3223 {
3224 struct objfile *objfile;
3225
3226 /* Were we given an osect to look up? NULL means do all of them. */
3227 if (osect)
3228 /* Have we got a cached copy of the target's overlay table? */
3229 if (cache_ovly_table != NULL)
3230 /* Does its cached location match what's currently in the symtab? */
3231 if (cache_ovly_table_base ==
3232 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", 0, 0)))
3233 /* Then go ahead and try to look up this single section in the cache */
3234 if (simple_overlay_update_1 (osect))
3235 /* Found it! We're done. */
3236 return;
3237
3238 /* Cached table no good: need to read the entire table anew.
3239 Or else we want all the sections, in which case it's actually
3240 more efficient to read the whole table in one block anyway. */
3241
3242 if (simple_read_overlay_table () == 0) /* read failed? No table? */
3243 {
3244 warning ("Failed to read the target overlay mapping table.");
3245 return;
3246 }
3247 /* Now may as well update all sections, even if only one was requested. */
3248 ALL_OBJSECTIONS (objfile, osect)
3249 if (section_is_overlay (osect->the_bfd_section))
3250 {
3251 int i, size;
3252
3253 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3254 for (i = 0; i < cache_novlys; i++)
3255 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3256 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3257 cache_ovly_table[i][SIZE] == size */ )
3258 { /* obj_section matches i'th entry in ovly_table */
3259 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3260 break; /* finished with inner for loop: break out */
3261 }
3262 }
3263 }
3264
3265
3266 void
3267 _initialize_symfile ()
3268 {
3269 struct cmd_list_element *c;
3270
3271 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3272 "Load symbol table from executable file FILE.\n\
3273 The `file' command can also load symbol tables, as well as setting the file\n\
3274 to execute.", &cmdlist);
3275 c->completer = filename_completer;
3276
3277 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3278 "Usage: add-symbol-file FILE ADDR [DATA_ADDR [BSS_ADDR]]\n\
3279 or: add-symbol-file FILE -T<SECT> <SECT_ADDR> -T<SECT> <SECT_ADDR> ...\n\
3280 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3281 ADDR is the starting address of the file's text.\n\
3282 The optional arguments, DATA_ADDR and BSS_ADDR, should be specified\n\
3283 if the data and bss segments are not contiguous with the text.\n\
3284 For complicated cases, SECT is a section name to be loaded at SECT_ADDR.",
3285 &cmdlist);
3286 c->completer = filename_completer;
3287
3288 c = add_cmd ("add-shared-symbol-files", class_files,
3289 add_shared_symbol_files_command,
3290 "Load the symbols from shared objects in the dynamic linker's link map.",
3291 &cmdlist);
3292 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3293 &cmdlist);
3294
3295 c = add_cmd ("load", class_files, load_command,
3296 "Dynamically load FILE into the running program, and record its symbols\n\
3297 for access from GDB.", &cmdlist);
3298 c->completer = filename_completer;
3299
3300 add_show_from_set
3301 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3302 (char *) &symbol_reloading,
3303 "Set dynamic symbol table reloading multiple times in one run.",
3304 &setlist),
3305 &showlist);
3306
3307 add_prefix_cmd ("overlay", class_support, overlay_command,
3308 "Commands for debugging overlays.", &overlaylist,
3309 "overlay ", 0, &cmdlist);
3310
3311 add_com_alias ("ovly", "overlay", class_alias, 1);
3312 add_com_alias ("ov", "overlay", class_alias, 1);
3313
3314 add_cmd ("map-overlay", class_support, map_overlay_command,
3315 "Assert that an overlay section is mapped.", &overlaylist);
3316
3317 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3318 "Assert that an overlay section is unmapped.", &overlaylist);
3319
3320 add_cmd ("list-overlays", class_support, list_overlays_command,
3321 "List mappings of overlay sections.", &overlaylist);
3322
3323 add_cmd ("manual", class_support, overlay_manual_command,
3324 "Enable overlay debugging.", &overlaylist);
3325 add_cmd ("off", class_support, overlay_off_command,
3326 "Disable overlay debugging.", &overlaylist);
3327 add_cmd ("auto", class_support, overlay_auto_command,
3328 "Enable automatic overlay debugging.", &overlaylist);
3329 add_cmd ("load-target", class_support, overlay_load_command,
3330 "Read the overlay mapping state from the target.", &overlaylist);
3331
3332 /* Filename extension to source language lookup table: */
3333 init_filename_language_table ();
3334 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3335 (char *) &ext_args,
3336 "Set mapping between filename extension and source language.\n\
3337 Usage: set extension-language .foo bar",
3338 &setlist);
3339 c->function.cfunc = set_ext_lang_command;
3340
3341 add_info ("extensions", info_ext_lang_command,
3342 "All filename extensions associated with a source language.");
3343
3344 add_show_from_set
3345 (add_set_cmd ("download-write-size", class_obscure,
3346 var_integer, (char *) &download_write_size,
3347 "Set the write size used when downloading a program.\n"
3348 "Only used when downloading a program onto a remote\n"
3349 "target. Specify zero, or a negative value, to disable\n"
3350 "blocked writes. The actual size of each transfer is also\n"
3351 "limited by the size of the target packet and the memory\n"
3352 "cache.\n",
3353 &setlist),
3354 &showlist);
3355 }
This page took 0.098755 seconds and 4 git commands to generate.