2003-02-01 Andrew Cagney <ac131313@redhat.com>
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h" /* for write_pc */
42 #include "filenames.h" /* for DOSish file names */
43 #include "gdb-stabs.h"
44 #include "gdb_obstack.h"
45 #include "completer.h"
46 #include "bcache.h"
47 #include <readline/readline.h>
48 #include "gdb_assert.h"
49
50 #include <sys/types.h>
51 #include <fcntl.h>
52 #include "gdb_string.h"
53 #include "gdb_stat.h"
54 #include <ctype.h>
55 #include <time.h>
56
57 #ifndef O_BINARY
58 #define O_BINARY 0
59 #endif
60
61 #ifdef HPUXHPPA
62
63 /* Some HP-UX related globals to clear when a new "main"
64 symbol file is loaded. HP-specific. */
65
66 extern int hp_som_som_object_present;
67 extern int hp_cxx_exception_support_initialized;
68 #define RESET_HP_UX_GLOBALS() do {\
69 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
70 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
71 } while (0)
72 #endif
73
74 int (*ui_load_progress_hook) (const char *section, unsigned long num);
75 void (*show_load_progress) (const char *section,
76 unsigned long section_sent,
77 unsigned long section_size,
78 unsigned long total_sent,
79 unsigned long total_size);
80 void (*pre_add_symbol_hook) (char *);
81 void (*post_add_symbol_hook) (void);
82 void (*target_new_objfile_hook) (struct objfile *);
83
84 static void clear_symtab_users_cleanup (void *ignore);
85
86 /* Global variables owned by this file */
87 int readnow_symbol_files; /* Read full symbols immediately */
88
89 /* External variables and functions referenced. */
90
91 extern void report_transfer_performance (unsigned long, time_t, time_t);
92
93 /* Functions this file defines */
94
95 #if 0
96 static int simple_read_overlay_region_table (void);
97 static void simple_free_overlay_region_table (void);
98 #endif
99
100 static void set_initial_language (void);
101
102 static void load_command (char *, int);
103
104 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
105
106 static void add_symbol_file_command (char *, int);
107
108 static void add_shared_symbol_files_command (char *, int);
109
110 static void reread_separate_symbols (struct objfile *objfile);
111
112 static void cashier_psymtab (struct partial_symtab *);
113
114 bfd *symfile_bfd_open (char *);
115
116 int get_section_index (struct objfile *, char *);
117
118 static void find_sym_fns (struct objfile *);
119
120 static void decrement_reading_symtab (void *);
121
122 static void overlay_invalidate_all (void);
123
124 static int overlay_is_mapped (struct obj_section *);
125
126 void list_overlays_command (char *, int);
127
128 void map_overlay_command (char *, int);
129
130 void unmap_overlay_command (char *, int);
131
132 static void overlay_auto_command (char *, int);
133
134 static void overlay_manual_command (char *, int);
135
136 static void overlay_off_command (char *, int);
137
138 static void overlay_load_command (char *, int);
139
140 static void overlay_command (char *, int);
141
142 static void simple_free_overlay_table (void);
143
144 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
145
146 static int simple_read_overlay_table (void);
147
148 static int simple_overlay_update_1 (struct obj_section *);
149
150 static void add_filename_language (char *ext, enum language lang);
151
152 static void set_ext_lang_command (char *args, int from_tty);
153
154 static void info_ext_lang_command (char *args, int from_tty);
155
156 static char *find_separate_debug_file (struct objfile *objfile);
157
158 static void init_filename_language_table (void);
159
160 void _initialize_symfile (void);
161
162 /* List of all available sym_fns. On gdb startup, each object file reader
163 calls add_symtab_fns() to register information on each format it is
164 prepared to read. */
165
166 static struct sym_fns *symtab_fns = NULL;
167
168 /* Flag for whether user will be reloading symbols multiple times.
169 Defaults to ON for VxWorks, otherwise OFF. */
170
171 #ifdef SYMBOL_RELOADING_DEFAULT
172 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
173 #else
174 int symbol_reloading = 0;
175 #endif
176
177 /* If non-zero, shared library symbols will be added automatically
178 when the inferior is created, new libraries are loaded, or when
179 attaching to the inferior. This is almost always what users will
180 want to have happen; but for very large programs, the startup time
181 will be excessive, and so if this is a problem, the user can clear
182 this flag and then add the shared library symbols as needed. Note
183 that there is a potential for confusion, since if the shared
184 library symbols are not loaded, commands like "info fun" will *not*
185 report all the functions that are actually present. */
186
187 int auto_solib_add = 1;
188
189 /* For systems that support it, a threshold size in megabytes. If
190 automatically adding a new library's symbol table to those already
191 known to the debugger would cause the total shared library symbol
192 size to exceed this threshhold, then the shlib's symbols are not
193 added. The threshold is ignored if the user explicitly asks for a
194 shlib to be added, such as when using the "sharedlibrary"
195 command. */
196
197 int auto_solib_limit;
198 \f
199
200 /* Since this function is called from within qsort, in an ANSI environment
201 it must conform to the prototype for qsort, which specifies that the
202 comparison function takes two "void *" pointers. */
203
204 static int
205 compare_symbols (const void *s1p, const void *s2p)
206 {
207 register struct symbol **s1, **s2;
208
209 s1 = (struct symbol **) s1p;
210 s2 = (struct symbol **) s2p;
211 return (strcmp (SYMBOL_SOURCE_NAME (*s1), SYMBOL_SOURCE_NAME (*s2)));
212 }
213
214 /*
215
216 LOCAL FUNCTION
217
218 compare_psymbols -- compare two partial symbols by name
219
220 DESCRIPTION
221
222 Given pointers to pointers to two partial symbol table entries,
223 compare them by name and return -N, 0, or +N (ala strcmp).
224 Typically used by sorting routines like qsort().
225
226 NOTES
227
228 Does direct compare of first two characters before punting
229 and passing to strcmp for longer compares. Note that the
230 original version had a bug whereby two null strings or two
231 identically named one character strings would return the
232 comparison of memory following the null byte.
233
234 */
235
236 static int
237 compare_psymbols (const void *s1p, const void *s2p)
238 {
239 register struct partial_symbol **s1, **s2;
240 register char *st1, *st2;
241
242 s1 = (struct partial_symbol **) s1p;
243 s2 = (struct partial_symbol **) s2p;
244 st1 = SYMBOL_SOURCE_NAME (*s1);
245 st2 = SYMBOL_SOURCE_NAME (*s2);
246
247
248 if ((st1[0] - st2[0]) || !st1[0])
249 {
250 return (st1[0] - st2[0]);
251 }
252 else if ((st1[1] - st2[1]) || !st1[1])
253 {
254 return (st1[1] - st2[1]);
255 }
256 else
257 {
258 return (strcmp (st1, st2));
259 }
260 }
261
262 void
263 sort_pst_symbols (struct partial_symtab *pst)
264 {
265 /* Sort the global list; don't sort the static list */
266
267 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
268 pst->n_global_syms, sizeof (struct partial_symbol *),
269 compare_psymbols);
270 }
271
272 /* Call sort_block_syms to sort alphabetically the symbols of one block. */
273
274 void
275 sort_block_syms (register struct block *b)
276 {
277 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
278 sizeof (struct symbol *), compare_symbols);
279 }
280
281 /* Call sort_symtab_syms to sort alphabetically
282 the symbols of each block of one symtab. */
283
284 void
285 sort_symtab_syms (register struct symtab *s)
286 {
287 register struct blockvector *bv;
288 int nbl;
289 int i;
290 register struct block *b;
291
292 if (s == 0)
293 return;
294 bv = BLOCKVECTOR (s);
295 nbl = BLOCKVECTOR_NBLOCKS (bv);
296 for (i = 0; i < nbl; i++)
297 {
298 b = BLOCKVECTOR_BLOCK (bv, i);
299 if (BLOCK_SHOULD_SORT (b))
300 sort_block_syms (b);
301 }
302 }
303
304 /* Make a null terminated copy of the string at PTR with SIZE characters in
305 the obstack pointed to by OBSTACKP . Returns the address of the copy.
306 Note that the string at PTR does not have to be null terminated, I.E. it
307 may be part of a larger string and we are only saving a substring. */
308
309 char *
310 obsavestring (const char *ptr, int size, struct obstack *obstackp)
311 {
312 register char *p = (char *) obstack_alloc (obstackp, size + 1);
313 /* Open-coded memcpy--saves function call time. These strings are usually
314 short. FIXME: Is this really still true with a compiler that can
315 inline memcpy? */
316 {
317 register const char *p1 = ptr;
318 register char *p2 = p;
319 const char *end = ptr + size;
320 while (p1 != end)
321 *p2++ = *p1++;
322 }
323 p[size] = 0;
324 return p;
325 }
326
327 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
328 in the obstack pointed to by OBSTACKP. */
329
330 char *
331 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
332 const char *s3)
333 {
334 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
335 register char *val = (char *) obstack_alloc (obstackp, len);
336 strcpy (val, s1);
337 strcat (val, s2);
338 strcat (val, s3);
339 return val;
340 }
341
342 /* True if we are nested inside psymtab_to_symtab. */
343
344 int currently_reading_symtab = 0;
345
346 static void
347 decrement_reading_symtab (void *dummy)
348 {
349 currently_reading_symtab--;
350 }
351
352 /* Get the symbol table that corresponds to a partial_symtab.
353 This is fast after the first time you do it. In fact, there
354 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
355 case inline. */
356
357 struct symtab *
358 psymtab_to_symtab (register struct partial_symtab *pst)
359 {
360 /* If it's been looked up before, return it. */
361 if (pst->symtab)
362 return pst->symtab;
363
364 /* If it has not yet been read in, read it. */
365 if (!pst->readin)
366 {
367 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
368 currently_reading_symtab++;
369 (*pst->read_symtab) (pst);
370 do_cleanups (back_to);
371 }
372
373 return pst->symtab;
374 }
375
376 /* Initialize entry point information for this objfile. */
377
378 void
379 init_entry_point_info (struct objfile *objfile)
380 {
381 /* Save startup file's range of PC addresses to help blockframe.c
382 decide where the bottom of the stack is. */
383
384 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
385 {
386 /* Executable file -- record its entry point so we'll recognize
387 the startup file because it contains the entry point. */
388 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
389 }
390 else
391 {
392 /* Examination of non-executable.o files. Short-circuit this stuff. */
393 objfile->ei.entry_point = INVALID_ENTRY_POINT;
394 }
395 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
396 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
397 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
398 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
399 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
400 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
401 }
402
403 /* Get current entry point address. */
404
405 CORE_ADDR
406 entry_point_address (void)
407 {
408 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
409 }
410
411 /* Remember the lowest-addressed loadable section we've seen.
412 This function is called via bfd_map_over_sections.
413
414 In case of equal vmas, the section with the largest size becomes the
415 lowest-addressed loadable section.
416
417 If the vmas and sizes are equal, the last section is considered the
418 lowest-addressed loadable section. */
419
420 void
421 find_lowest_section (bfd *abfd, asection *sect, void *obj)
422 {
423 asection **lowest = (asection **) obj;
424
425 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
426 return;
427 if (!*lowest)
428 *lowest = sect; /* First loadable section */
429 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
430 *lowest = sect; /* A lower loadable section */
431 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
432 && (bfd_section_size (abfd, (*lowest))
433 <= bfd_section_size (abfd, sect)))
434 *lowest = sect;
435 }
436
437
438 /* Build (allocate and populate) a section_addr_info struct from
439 an existing section table. */
440
441 extern struct section_addr_info *
442 build_section_addr_info_from_section_table (const struct section_table *start,
443 const struct section_table *end)
444 {
445 struct section_addr_info *sap;
446 const struct section_table *stp;
447 int oidx;
448
449 sap = xmalloc (sizeof (struct section_addr_info));
450 memset (sap, 0, sizeof (struct section_addr_info));
451
452 for (stp = start, oidx = 0; stp != end; stp++)
453 {
454 if (bfd_get_section_flags (stp->bfd,
455 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
456 && oidx < MAX_SECTIONS)
457 {
458 sap->other[oidx].addr = stp->addr;
459 sap->other[oidx].name
460 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
461 sap->other[oidx].sectindex = stp->the_bfd_section->index;
462 oidx++;
463 }
464 }
465
466 return sap;
467 }
468
469
470 /* Free all memory allocated by build_section_addr_info_from_section_table. */
471
472 extern void
473 free_section_addr_info (struct section_addr_info *sap)
474 {
475 int idx;
476
477 for (idx = 0; idx < MAX_SECTIONS; idx++)
478 if (sap->other[idx].name)
479 xfree (sap->other[idx].name);
480 xfree (sap);
481 }
482
483
484 /* Initialize OBJFILE's sect_index_* members. */
485 static void
486 init_objfile_sect_indices (struct objfile *objfile)
487 {
488 asection *sect;
489 int i;
490
491 sect = bfd_get_section_by_name (objfile->obfd, ".text");
492 if (sect)
493 objfile->sect_index_text = sect->index;
494
495 sect = bfd_get_section_by_name (objfile->obfd, ".data");
496 if (sect)
497 objfile->sect_index_data = sect->index;
498
499 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
500 if (sect)
501 objfile->sect_index_bss = sect->index;
502
503 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
504 if (sect)
505 objfile->sect_index_rodata = sect->index;
506
507 /* This is where things get really weird... We MUST have valid
508 indices for the various sect_index_* members or gdb will abort.
509 So if for example, there is no ".text" section, we have to
510 accomodate that. Except when explicitly adding symbol files at
511 some address, section_offsets contains nothing but zeros, so it
512 doesn't matter which slot in section_offsets the individual
513 sect_index_* members index into. So if they are all zero, it is
514 safe to just point all the currently uninitialized indices to the
515 first slot. */
516
517 for (i = 0; i < objfile->num_sections; i++)
518 {
519 if (ANOFFSET (objfile->section_offsets, i) != 0)
520 {
521 break;
522 }
523 }
524 if (i == objfile->num_sections)
525 {
526 if (objfile->sect_index_text == -1)
527 objfile->sect_index_text = 0;
528 if (objfile->sect_index_data == -1)
529 objfile->sect_index_data = 0;
530 if (objfile->sect_index_bss == -1)
531 objfile->sect_index_bss = 0;
532 if (objfile->sect_index_rodata == -1)
533 objfile->sect_index_rodata = 0;
534 }
535 }
536
537
538 /* Parse the user's idea of an offset for dynamic linking, into our idea
539 of how to represent it for fast symbol reading. This is the default
540 version of the sym_fns.sym_offsets function for symbol readers that
541 don't need to do anything special. It allocates a section_offsets table
542 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
543
544 void
545 default_symfile_offsets (struct objfile *objfile,
546 struct section_addr_info *addrs)
547 {
548 int i;
549
550 objfile->num_sections = SECT_OFF_MAX;
551 objfile->section_offsets = (struct section_offsets *)
552 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
553 memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
554
555 /* Now calculate offsets for section that were specified by the
556 caller. */
557 for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
558 {
559 struct other_sections *osp ;
560
561 osp = &addrs->other[i] ;
562 if (osp->addr == 0)
563 continue;
564
565 /* Record all sections in offsets */
566 /* The section_offsets in the objfile are here filled in using
567 the BFD index. */
568 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
569 }
570
571 /* Remember the bfd indexes for the .text, .data, .bss and
572 .rodata sections. */
573 init_objfile_sect_indices (objfile);
574 }
575
576
577 /* Process a symbol file, as either the main file or as a dynamically
578 loaded file.
579
580 OBJFILE is where the symbols are to be read from.
581
582 ADDRS is the list of section load addresses. If the user has given
583 an 'add-symbol-file' command, then this is the list of offsets and
584 addresses he or she provided as arguments to the command; or, if
585 we're handling a shared library, these are the actual addresses the
586 sections are loaded at, according to the inferior's dynamic linker
587 (as gleaned by GDB's shared library code). We convert each address
588 into an offset from the section VMA's as it appears in the object
589 file, and then call the file's sym_offsets function to convert this
590 into a format-specific offset table --- a `struct section_offsets'.
591 If ADDRS is non-zero, OFFSETS must be zero.
592
593 OFFSETS is a table of section offsets already in the right
594 format-specific representation. NUM_OFFSETS is the number of
595 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
596 assume this is the proper table the call to sym_offsets described
597 above would produce. Instead of calling sym_offsets, we just dump
598 it right into objfile->section_offsets. (When we're re-reading
599 symbols from an objfile, we don't have the original load address
600 list any more; all we have is the section offset table.) If
601 OFFSETS is non-zero, ADDRS must be zero.
602
603 MAINLINE is nonzero if this is the main symbol file, or zero if
604 it's an extra symbol file such as dynamically loaded code.
605
606 VERBO is nonzero if the caller has printed a verbose message about
607 the symbol reading (and complaints can be more terse about it). */
608
609 void
610 syms_from_objfile (struct objfile *objfile,
611 struct section_addr_info *addrs,
612 struct section_offsets *offsets,
613 int num_offsets,
614 int mainline,
615 int verbo)
616 {
617 asection *lower_sect;
618 asection *sect;
619 CORE_ADDR lower_offset;
620 struct section_addr_info local_addr;
621 struct cleanup *old_chain;
622 int i;
623
624 gdb_assert (! (addrs && offsets));
625
626 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
627 list. We now establish the convention that an addr of zero means
628 no load address was specified. */
629 if (! addrs && ! offsets)
630 {
631 memset (&local_addr, 0, sizeof (local_addr));
632 addrs = &local_addr;
633 }
634
635 /* Now either addrs or offsets is non-zero. */
636
637 init_entry_point_info (objfile);
638 find_sym_fns (objfile);
639
640 if (objfile->sf == NULL)
641 return; /* No symbols. */
642
643 /* Make sure that partially constructed symbol tables will be cleaned up
644 if an error occurs during symbol reading. */
645 old_chain = make_cleanup_free_objfile (objfile);
646
647 if (mainline)
648 {
649 /* We will modify the main symbol table, make sure that all its users
650 will be cleaned up if an error occurs during symbol reading. */
651 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
652
653 /* Since no error yet, throw away the old symbol table. */
654
655 if (symfile_objfile != NULL)
656 {
657 free_objfile (symfile_objfile);
658 symfile_objfile = NULL;
659 }
660
661 /* Currently we keep symbols from the add-symbol-file command.
662 If the user wants to get rid of them, they should do "symbol-file"
663 without arguments first. Not sure this is the best behavior
664 (PR 2207). */
665
666 (*objfile->sf->sym_new_init) (objfile);
667 }
668
669 /* Convert addr into an offset rather than an absolute address.
670 We find the lowest address of a loaded segment in the objfile,
671 and assume that <addr> is where that got loaded.
672
673 We no longer warn if the lowest section is not a text segment (as
674 happens for the PA64 port. */
675 if (!mainline)
676 {
677 /* Find lowest loadable section to be used as starting point for
678 continguous sections. FIXME!! won't work without call to find
679 .text first, but this assumes text is lowest section. */
680 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
681 if (lower_sect == NULL)
682 bfd_map_over_sections (objfile->obfd, find_lowest_section,
683 &lower_sect);
684 if (lower_sect == NULL)
685 warning ("no loadable sections found in added symbol-file %s",
686 objfile->name);
687 else
688 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
689 warning ("Lowest section in %s is %s at %s",
690 objfile->name,
691 bfd_section_name (objfile->obfd, lower_sect),
692 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
693 if (lower_sect != NULL)
694 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
695 else
696 lower_offset = 0;
697
698 /* Calculate offsets for the loadable sections.
699 FIXME! Sections must be in order of increasing loadable section
700 so that contiguous sections can use the lower-offset!!!
701
702 Adjust offsets if the segments are not contiguous.
703 If the section is contiguous, its offset should be set to
704 the offset of the highest loadable section lower than it
705 (the loadable section directly below it in memory).
706 this_offset = lower_offset = lower_addr - lower_orig_addr */
707
708 /* Calculate offsets for sections. */
709 if (addrs)
710 for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
711 {
712 if (addrs->other[i].addr != 0)
713 {
714 sect = bfd_get_section_by_name (objfile->obfd,
715 addrs->other[i].name);
716 if (sect)
717 {
718 addrs->other[i].addr
719 -= bfd_section_vma (objfile->obfd, sect);
720 lower_offset = addrs->other[i].addr;
721 /* This is the index used by BFD. */
722 addrs->other[i].sectindex = sect->index ;
723 }
724 else
725 {
726 warning ("section %s not found in %s",
727 addrs->other[i].name,
728 objfile->name);
729 addrs->other[i].addr = 0;
730 }
731 }
732 else
733 addrs->other[i].addr = lower_offset;
734 }
735 }
736
737 /* Initialize symbol reading routines for this objfile, allow complaints to
738 appear for this new file, and record how verbose to be, then do the
739 initial symbol reading for this file. */
740
741 (*objfile->sf->sym_init) (objfile);
742 clear_complaints (&symfile_complaints, 1, verbo);
743
744 if (addrs)
745 (*objfile->sf->sym_offsets) (objfile, addrs);
746 else
747 {
748 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
749
750 /* Just copy in the offset table directly as given to us. */
751 objfile->num_sections = num_offsets;
752 objfile->section_offsets
753 = ((struct section_offsets *)
754 obstack_alloc (&objfile->psymbol_obstack, size));
755 memcpy (objfile->section_offsets, offsets, size);
756
757 init_objfile_sect_indices (objfile);
758 }
759
760 #ifndef IBM6000_TARGET
761 /* This is a SVR4/SunOS specific hack, I think. In any event, it
762 screws RS/6000. sym_offsets should be doing this sort of thing,
763 because it knows the mapping between bfd sections and
764 section_offsets. */
765 /* This is a hack. As far as I can tell, section offsets are not
766 target dependent. They are all set to addr with a couple of
767 exceptions. The exceptions are sysvr4 shared libraries, whose
768 offsets are kept in solib structures anyway and rs6000 xcoff
769 which handles shared libraries in a completely unique way.
770
771 Section offsets are built similarly, except that they are built
772 by adding addr in all cases because there is no clear mapping
773 from section_offsets into actual sections. Note that solib.c
774 has a different algorithm for finding section offsets.
775
776 These should probably all be collapsed into some target
777 independent form of shared library support. FIXME. */
778
779 if (addrs)
780 {
781 struct obj_section *s;
782
783 /* Map section offsets in "addr" back to the object's
784 sections by comparing the section names with bfd's
785 section names. Then adjust the section address by
786 the offset. */ /* for gdb/13815 */
787
788 ALL_OBJFILE_OSECTIONS (objfile, s)
789 {
790 CORE_ADDR s_addr = 0;
791 int i;
792
793 for (i = 0;
794 !s_addr && i < MAX_SECTIONS && addrs->other[i].name;
795 i++)
796 if (strcmp (bfd_section_name (s->objfile->obfd,
797 s->the_bfd_section),
798 addrs->other[i].name) == 0)
799 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
800
801 s->addr -= s->offset;
802 s->addr += s_addr;
803 s->endaddr -= s->offset;
804 s->endaddr += s_addr;
805 s->offset += s_addr;
806 }
807 }
808 #endif /* not IBM6000_TARGET */
809
810 (*objfile->sf->sym_read) (objfile, mainline);
811
812 /* Don't allow char * to have a typename (else would get caddr_t).
813 Ditto void *. FIXME: Check whether this is now done by all the
814 symbol readers themselves (many of them now do), and if so remove
815 it from here. */
816
817 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
818 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
819
820 /* Mark the objfile has having had initial symbol read attempted. Note
821 that this does not mean we found any symbols... */
822
823 objfile->flags |= OBJF_SYMS;
824
825 /* Discard cleanups as symbol reading was successful. */
826
827 discard_cleanups (old_chain);
828
829 /* Call this after reading in a new symbol table to give target
830 dependent code a crack at the new symbols. For instance, this
831 could be used to update the values of target-specific symbols GDB
832 needs to keep track of (such as _sigtramp, or whatever). */
833
834 TARGET_SYMFILE_POSTREAD (objfile);
835 }
836
837 /* Perform required actions after either reading in the initial
838 symbols for a new objfile, or mapping in the symbols from a reusable
839 objfile. */
840
841 void
842 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
843 {
844
845 /* If this is the main symbol file we have to clean up all users of the
846 old main symbol file. Otherwise it is sufficient to fixup all the
847 breakpoints that may have been redefined by this symbol file. */
848 if (mainline)
849 {
850 /* OK, make it the "real" symbol file. */
851 symfile_objfile = objfile;
852
853 clear_symtab_users ();
854 }
855 else
856 {
857 breakpoint_re_set ();
858 }
859
860 /* We're done reading the symbol file; finish off complaints. */
861 clear_complaints (&symfile_complaints, 0, verbo);
862 }
863
864 /* Process a symbol file, as either the main file or as a dynamically
865 loaded file.
866
867 NAME is the file name (which will be tilde-expanded and made
868 absolute herein) (but we don't free or modify NAME itself).
869
870 FROM_TTY says how verbose to be.
871
872 MAINLINE specifies whether this is the main symbol file, or whether
873 it's an extra symbol file such as dynamically loaded code.
874
875 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
876 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
877 non-zero.
878
879 Upon success, returns a pointer to the objfile that was added.
880 Upon failure, jumps back to command level (never returns). */
881 static struct objfile *
882 symbol_file_add_with_addrs_or_offsets (char *name, int from_tty,
883 struct section_addr_info *addrs,
884 struct section_offsets *offsets,
885 int num_offsets,
886 int mainline, int flags)
887 {
888 struct objfile *objfile;
889 struct partial_symtab *psymtab;
890 char *debugfile;
891 bfd *abfd;
892 struct section_addr_info orig_addrs;
893
894 if (addrs)
895 orig_addrs = *addrs;
896
897 /* Open a bfd for the file, and give user a chance to burp if we'd be
898 interactively wiping out any existing symbols. */
899
900 abfd = symfile_bfd_open (name);
901
902 if ((have_full_symbols () || have_partial_symbols ())
903 && mainline
904 && from_tty
905 && !query ("Load new symbol table from \"%s\"? ", name))
906 error ("Not confirmed.");
907
908 objfile = allocate_objfile (abfd, flags);
909
910 /* If the objfile uses a mapped symbol file, and we have a psymtab for
911 it, then skip reading any symbols at this time. */
912
913 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
914 {
915 /* We mapped in an existing symbol table file that already has had
916 initial symbol reading performed, so we can skip that part. Notify
917 the user that instead of reading the symbols, they have been mapped.
918 */
919 if (from_tty || info_verbose)
920 {
921 printf_filtered ("Mapped symbols for %s...", name);
922 wrap_here ("");
923 gdb_flush (gdb_stdout);
924 }
925 init_entry_point_info (objfile);
926 find_sym_fns (objfile);
927 }
928 else
929 {
930 /* We either created a new mapped symbol table, mapped an existing
931 symbol table file which has not had initial symbol reading
932 performed, or need to read an unmapped symbol table. */
933 if (from_tty || info_verbose)
934 {
935 if (pre_add_symbol_hook)
936 pre_add_symbol_hook (name);
937 else
938 {
939 printf_filtered ("Reading symbols from %s...", name);
940 wrap_here ("");
941 gdb_flush (gdb_stdout);
942 }
943 }
944 syms_from_objfile (objfile, addrs, offsets, num_offsets,
945 mainline, from_tty);
946 }
947
948 /* We now have at least a partial symbol table. Check to see if the
949 user requested that all symbols be read on initial access via either
950 the gdb startup command line or on a per symbol file basis. Expand
951 all partial symbol tables for this objfile if so. */
952
953 if ((flags & OBJF_READNOW) || readnow_symbol_files)
954 {
955 if (from_tty || info_verbose)
956 {
957 printf_filtered ("expanding to full symbols...");
958 wrap_here ("");
959 gdb_flush (gdb_stdout);
960 }
961
962 for (psymtab = objfile->psymtabs;
963 psymtab != NULL;
964 psymtab = psymtab->next)
965 {
966 psymtab_to_symtab (psymtab);
967 }
968 }
969
970 debugfile = find_separate_debug_file (objfile);
971 if (debugfile)
972 {
973 if (addrs != NULL)
974 {
975 objfile->separate_debug_objfile
976 = symbol_file_add (debugfile, from_tty, &orig_addrs, 0, flags);
977 }
978 else
979 {
980 objfile->separate_debug_objfile
981 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
982 }
983 objfile->separate_debug_objfile->separate_debug_objfile_backlink
984 = objfile;
985
986 /* Put the separate debug object before the normal one, this is so that
987 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
988 put_objfile_before (objfile->separate_debug_objfile, objfile);
989
990 xfree (debugfile);
991 }
992
993 if (!have_partial_symbols () && !have_full_symbols ())
994 {
995 wrap_here ("");
996 printf_filtered ("(no debugging symbols found)...");
997 wrap_here ("");
998 }
999
1000 if (from_tty || info_verbose)
1001 {
1002 if (post_add_symbol_hook)
1003 post_add_symbol_hook ();
1004 else
1005 {
1006 printf_filtered ("done.\n");
1007 }
1008 }
1009
1010 /* We print some messages regardless of whether 'from_tty ||
1011 info_verbose' is true, so make sure they go out at the right
1012 time. */
1013 gdb_flush (gdb_stdout);
1014
1015 if (objfile->sf == NULL)
1016 return objfile; /* No symbols. */
1017
1018 new_symfile_objfile (objfile, mainline, from_tty);
1019
1020 if (target_new_objfile_hook)
1021 target_new_objfile_hook (objfile);
1022
1023 return (objfile);
1024 }
1025
1026
1027 /* Process a symbol file, as either the main file or as a dynamically
1028 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1029 for details. */
1030 struct objfile *
1031 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1032 int mainline, int flags)
1033 {
1034 return symbol_file_add_with_addrs_or_offsets (name, from_tty, addrs, 0, 0,
1035 mainline, flags);
1036 }
1037
1038
1039 /* Call symbol_file_add() with default values and update whatever is
1040 affected by the loading of a new main().
1041 Used when the file is supplied in the gdb command line
1042 and by some targets with special loading requirements.
1043 The auxiliary function, symbol_file_add_main_1(), has the flags
1044 argument for the switches that can only be specified in the symbol_file
1045 command itself. */
1046
1047 void
1048 symbol_file_add_main (char *args, int from_tty)
1049 {
1050 symbol_file_add_main_1 (args, from_tty, 0);
1051 }
1052
1053 static void
1054 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1055 {
1056 symbol_file_add (args, from_tty, NULL, 1, flags);
1057
1058 #ifdef HPUXHPPA
1059 RESET_HP_UX_GLOBALS ();
1060 #endif
1061
1062 /* Getting new symbols may change our opinion about
1063 what is frameless. */
1064 reinit_frame_cache ();
1065
1066 set_initial_language ();
1067 }
1068
1069 void
1070 symbol_file_clear (int from_tty)
1071 {
1072 if ((have_full_symbols () || have_partial_symbols ())
1073 && from_tty
1074 && !query ("Discard symbol table from `%s'? ",
1075 symfile_objfile->name))
1076 error ("Not confirmed.");
1077 free_all_objfiles ();
1078
1079 /* solib descriptors may have handles to objfiles. Since their
1080 storage has just been released, we'd better wipe the solib
1081 descriptors as well.
1082 */
1083 #if defined(SOLIB_RESTART)
1084 SOLIB_RESTART ();
1085 #endif
1086
1087 symfile_objfile = NULL;
1088 if (from_tty)
1089 printf_unfiltered ("No symbol file now.\n");
1090 #ifdef HPUXHPPA
1091 RESET_HP_UX_GLOBALS ();
1092 #endif
1093 }
1094
1095 static char *
1096 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1097 {
1098 asection *sect;
1099 bfd_size_type debuglink_size;
1100 unsigned long crc32;
1101 char *contents;
1102 int crc_offset;
1103 unsigned char *p;
1104
1105 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1106
1107 if (sect == NULL)
1108 return NULL;
1109
1110 debuglink_size = bfd_section_size (objfile->obfd, sect);
1111
1112 contents = xmalloc (debuglink_size);
1113 bfd_get_section_contents (objfile->obfd, sect, contents,
1114 (file_ptr)0, (bfd_size_type)debuglink_size);
1115
1116 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1117 crc_offset = strlen (contents) + 1;
1118 crc_offset = (crc_offset + 3) & ~3;
1119
1120 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1121
1122 *crc32_out = crc32;
1123 return contents;
1124 }
1125
1126 static int
1127 separate_debug_file_exists (const char *name, unsigned long crc)
1128 {
1129 unsigned long file_crc = 0;
1130 int fd;
1131 char buffer[8*1024];
1132 int count;
1133
1134 fd = open (name, O_RDONLY | O_BINARY);
1135 if (fd < 0)
1136 return 0;
1137
1138 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1139 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1140
1141 close (fd);
1142
1143 return crc == file_crc;
1144 }
1145
1146 static char *debug_file_directory = NULL;
1147
1148 #if ! defined (DEBUG_SUBDIRECTORY)
1149 #define DEBUG_SUBDIRECTORY ".debug"
1150 #endif
1151
1152 static char *
1153 find_separate_debug_file (struct objfile *objfile)
1154 {
1155 asection *sect;
1156 char *basename;
1157 char *dir;
1158 char *debugfile;
1159 char *name_copy;
1160 bfd_size_type debuglink_size;
1161 unsigned long crc32;
1162 int i;
1163
1164 basename = get_debug_link_info (objfile, &crc32);
1165
1166 if (basename == NULL)
1167 return NULL;
1168
1169 dir = xstrdup (objfile->name);
1170
1171 /* Strip off the final filename part, leaving the directory name,
1172 followed by a slash. Objfile names should always be absolute and
1173 tilde-expanded, so there should always be a slash in there
1174 somewhere. */
1175 for (i = strlen(dir) - 1; i >= 0; i--)
1176 {
1177 if (IS_DIR_SEPARATOR (dir[i]))
1178 break;
1179 }
1180 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1181 dir[i+1] = '\0';
1182
1183 debugfile = alloca (strlen (debug_file_directory) + 1
1184 + strlen (dir)
1185 + strlen (DEBUG_SUBDIRECTORY)
1186 + strlen ("/")
1187 + strlen (basename)
1188 + 1);
1189
1190 /* First try in the same directory as the original file. */
1191 strcpy (debugfile, dir);
1192 strcat (debugfile, basename);
1193
1194 if (separate_debug_file_exists (debugfile, crc32))
1195 {
1196 xfree (basename);
1197 xfree (dir);
1198 return xstrdup (debugfile);
1199 }
1200
1201 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1202 strcpy (debugfile, dir);
1203 strcat (debugfile, DEBUG_SUBDIRECTORY);
1204 strcat (debugfile, "/");
1205 strcat (debugfile, basename);
1206
1207 if (separate_debug_file_exists (debugfile, crc32))
1208 {
1209 xfree (basename);
1210 xfree (dir);
1211 return xstrdup (debugfile);
1212 }
1213
1214 /* Then try in the global debugfile directory. */
1215 strcpy (debugfile, debug_file_directory);
1216 strcat (debugfile, "/");
1217 strcat (debugfile, dir);
1218 strcat (debugfile, basename);
1219
1220 if (separate_debug_file_exists (debugfile, crc32))
1221 {
1222 xfree (basename);
1223 xfree (dir);
1224 return xstrdup (debugfile);
1225 }
1226
1227 xfree (basename);
1228 xfree (dir);
1229 return NULL;
1230 }
1231
1232
1233 /* This is the symbol-file command. Read the file, analyze its
1234 symbols, and add a struct symtab to a symtab list. The syntax of
1235 the command is rather bizarre--(1) buildargv implements various
1236 quoting conventions which are undocumented and have little or
1237 nothing in common with the way things are quoted (or not quoted)
1238 elsewhere in GDB, (2) options are used, which are not generally
1239 used in GDB (perhaps "set mapped on", "set readnow on" would be
1240 better), (3) the order of options matters, which is contrary to GNU
1241 conventions (because it is confusing and inconvenient). */
1242 /* Note: ezannoni 2000-04-17. This function used to have support for
1243 rombug (see remote-os9k.c). It consisted of a call to target_link()
1244 (target.c) to get the address of the text segment from the target,
1245 and pass that to symbol_file_add(). This is no longer supported. */
1246
1247 void
1248 symbol_file_command (char *args, int from_tty)
1249 {
1250 char **argv;
1251 char *name = NULL;
1252 struct cleanup *cleanups;
1253 int flags = OBJF_USERLOADED;
1254
1255 dont_repeat ();
1256
1257 if (args == NULL)
1258 {
1259 symbol_file_clear (from_tty);
1260 }
1261 else
1262 {
1263 if ((argv = buildargv (args)) == NULL)
1264 {
1265 nomem (0);
1266 }
1267 cleanups = make_cleanup_freeargv (argv);
1268 while (*argv != NULL)
1269 {
1270 if (STREQ (*argv, "-mapped"))
1271 flags |= OBJF_MAPPED;
1272 else
1273 if (STREQ (*argv, "-readnow"))
1274 flags |= OBJF_READNOW;
1275 else
1276 if (**argv == '-')
1277 error ("unknown option `%s'", *argv);
1278 else
1279 {
1280 name = *argv;
1281
1282 symbol_file_add_main_1 (name, from_tty, flags);
1283 }
1284 argv++;
1285 }
1286
1287 if (name == NULL)
1288 {
1289 error ("no symbol file name was specified");
1290 }
1291 do_cleanups (cleanups);
1292 }
1293 }
1294
1295 /* Set the initial language.
1296
1297 A better solution would be to record the language in the psymtab when reading
1298 partial symbols, and then use it (if known) to set the language. This would
1299 be a win for formats that encode the language in an easily discoverable place,
1300 such as DWARF. For stabs, we can jump through hoops looking for specially
1301 named symbols or try to intuit the language from the specific type of stabs
1302 we find, but we can't do that until later when we read in full symbols.
1303 FIXME. */
1304
1305 static void
1306 set_initial_language (void)
1307 {
1308 struct partial_symtab *pst;
1309 enum language lang = language_unknown;
1310
1311 pst = find_main_psymtab ();
1312 if (pst != NULL)
1313 {
1314 if (pst->filename != NULL)
1315 {
1316 lang = deduce_language_from_filename (pst->filename);
1317 }
1318 if (lang == language_unknown)
1319 {
1320 /* Make C the default language */
1321 lang = language_c;
1322 }
1323 set_language (lang);
1324 expected_language = current_language; /* Don't warn the user */
1325 }
1326 }
1327
1328 /* Open file specified by NAME and hand it off to BFD for preliminary
1329 analysis. Result is a newly initialized bfd *, which includes a newly
1330 malloc'd` copy of NAME (tilde-expanded and made absolute).
1331 In case of trouble, error() is called. */
1332
1333 bfd *
1334 symfile_bfd_open (char *name)
1335 {
1336 bfd *sym_bfd;
1337 int desc;
1338 char *absolute_name;
1339
1340
1341
1342 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1343
1344 /* Look down path for it, allocate 2nd new malloc'd copy. */
1345 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1346 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1347 if (desc < 0)
1348 {
1349 char *exename = alloca (strlen (name) + 5);
1350 strcat (strcpy (exename, name), ".exe");
1351 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1352 0, &absolute_name);
1353 }
1354 #endif
1355 if (desc < 0)
1356 {
1357 make_cleanup (xfree, name);
1358 perror_with_name (name);
1359 }
1360 xfree (name); /* Free 1st new malloc'd copy */
1361 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1362 /* It'll be freed in free_objfile(). */
1363
1364 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1365 if (!sym_bfd)
1366 {
1367 close (desc);
1368 make_cleanup (xfree, name);
1369 error ("\"%s\": can't open to read symbols: %s.", name,
1370 bfd_errmsg (bfd_get_error ()));
1371 }
1372 sym_bfd->cacheable = 1;
1373
1374 if (!bfd_check_format (sym_bfd, bfd_object))
1375 {
1376 /* FIXME: should be checking for errors from bfd_close (for one thing,
1377 on error it does not free all the storage associated with the
1378 bfd). */
1379 bfd_close (sym_bfd); /* This also closes desc */
1380 make_cleanup (xfree, name);
1381 error ("\"%s\": can't read symbols: %s.", name,
1382 bfd_errmsg (bfd_get_error ()));
1383 }
1384 return (sym_bfd);
1385 }
1386
1387 /* Return the section index for the given section name. Return -1 if
1388 the section was not found. */
1389 int
1390 get_section_index (struct objfile *objfile, char *section_name)
1391 {
1392 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1393 if (sect)
1394 return sect->index;
1395 else
1396 return -1;
1397 }
1398
1399 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1400 startup by the _initialize routine in each object file format reader,
1401 to register information about each format the the reader is prepared
1402 to handle. */
1403
1404 void
1405 add_symtab_fns (struct sym_fns *sf)
1406 {
1407 sf->next = symtab_fns;
1408 symtab_fns = sf;
1409 }
1410
1411
1412 /* Initialize to read symbols from the symbol file sym_bfd. It either
1413 returns or calls error(). The result is an initialized struct sym_fns
1414 in the objfile structure, that contains cached information about the
1415 symbol file. */
1416
1417 static void
1418 find_sym_fns (struct objfile *objfile)
1419 {
1420 struct sym_fns *sf;
1421 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1422 char *our_target = bfd_get_target (objfile->obfd);
1423
1424 if (our_flavour == bfd_target_srec_flavour
1425 || our_flavour == bfd_target_ihex_flavour
1426 || our_flavour == bfd_target_tekhex_flavour)
1427 return; /* No symbols. */
1428
1429 /* Special kludge for apollo. See dstread.c. */
1430 if (STREQN (our_target, "apollo", 6))
1431 our_flavour = (enum bfd_flavour) -2;
1432
1433 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1434 {
1435 if (our_flavour == sf->sym_flavour)
1436 {
1437 objfile->sf = sf;
1438 return;
1439 }
1440 }
1441 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1442 bfd_get_target (objfile->obfd));
1443 }
1444 \f
1445 /* This function runs the load command of our current target. */
1446
1447 static void
1448 load_command (char *arg, int from_tty)
1449 {
1450 if (arg == NULL)
1451 arg = get_exec_file (1);
1452 target_load (arg, from_tty);
1453
1454 /* After re-loading the executable, we don't really know which
1455 overlays are mapped any more. */
1456 overlay_cache_invalid = 1;
1457 }
1458
1459 /* This version of "load" should be usable for any target. Currently
1460 it is just used for remote targets, not inftarg.c or core files,
1461 on the theory that only in that case is it useful.
1462
1463 Avoiding xmodem and the like seems like a win (a) because we don't have
1464 to worry about finding it, and (b) On VMS, fork() is very slow and so
1465 we don't want to run a subprocess. On the other hand, I'm not sure how
1466 performance compares. */
1467
1468 static int download_write_size = 512;
1469 static int validate_download = 0;
1470
1471 /* Callback service function for generic_load (bfd_map_over_sections). */
1472
1473 static void
1474 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1475 {
1476 bfd_size_type *sum = data;
1477
1478 *sum += bfd_get_section_size_before_reloc (asec);
1479 }
1480
1481 /* Opaque data for load_section_callback. */
1482 struct load_section_data {
1483 unsigned long load_offset;
1484 unsigned long write_count;
1485 unsigned long data_count;
1486 bfd_size_type total_size;
1487 };
1488
1489 /* Callback service function for generic_load (bfd_map_over_sections). */
1490
1491 static void
1492 load_section_callback (bfd *abfd, asection *asec, void *data)
1493 {
1494 struct load_section_data *args = data;
1495
1496 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1497 {
1498 bfd_size_type size = bfd_get_section_size_before_reloc (asec);
1499 if (size > 0)
1500 {
1501 char *buffer;
1502 struct cleanup *old_chain;
1503 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1504 bfd_size_type block_size;
1505 int err;
1506 const char *sect_name = bfd_get_section_name (abfd, asec);
1507 bfd_size_type sent;
1508
1509 if (download_write_size > 0 && size > download_write_size)
1510 block_size = download_write_size;
1511 else
1512 block_size = size;
1513
1514 buffer = xmalloc (size);
1515 old_chain = make_cleanup (xfree, buffer);
1516
1517 /* Is this really necessary? I guess it gives the user something
1518 to look at during a long download. */
1519 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1520 sect_name, paddr_nz (size), paddr_nz (lma));
1521
1522 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1523
1524 sent = 0;
1525 do
1526 {
1527 int len;
1528 bfd_size_type this_transfer = size - sent;
1529
1530 if (this_transfer >= block_size)
1531 this_transfer = block_size;
1532 len = target_write_memory_partial (lma, buffer,
1533 this_transfer, &err);
1534 if (err)
1535 break;
1536 if (validate_download)
1537 {
1538 /* Broken memories and broken monitors manifest
1539 themselves here when bring new computers to
1540 life. This doubles already slow downloads. */
1541 /* NOTE: cagney/1999-10-18: A more efficient
1542 implementation might add a verify_memory()
1543 method to the target vector and then use
1544 that. remote.c could implement that method
1545 using the ``qCRC'' packet. */
1546 char *check = xmalloc (len);
1547 struct cleanup *verify_cleanups =
1548 make_cleanup (xfree, check);
1549
1550 if (target_read_memory (lma, check, len) != 0)
1551 error ("Download verify read failed at 0x%s",
1552 paddr (lma));
1553 if (memcmp (buffer, check, len) != 0)
1554 error ("Download verify compare failed at 0x%s",
1555 paddr (lma));
1556 do_cleanups (verify_cleanups);
1557 }
1558 args->data_count += len;
1559 lma += len;
1560 buffer += len;
1561 args->write_count += 1;
1562 sent += len;
1563 if (quit_flag
1564 || (ui_load_progress_hook != NULL
1565 && ui_load_progress_hook (sect_name, sent)))
1566 error ("Canceled the download");
1567
1568 if (show_load_progress != NULL)
1569 show_load_progress (sect_name, sent, size,
1570 args->data_count, args->total_size);
1571 }
1572 while (sent < size);
1573
1574 if (err != 0)
1575 error ("Memory access error while loading section %s.", sect_name);
1576
1577 do_cleanups (old_chain);
1578 }
1579 }
1580 }
1581
1582 void
1583 generic_load (char *args, int from_tty)
1584 {
1585 asection *s;
1586 bfd *loadfile_bfd;
1587 time_t start_time, end_time; /* Start and end times of download */
1588 char *filename;
1589 struct cleanup *old_cleanups;
1590 char *offptr;
1591 struct load_section_data cbdata;
1592 CORE_ADDR entry;
1593
1594 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1595 cbdata.write_count = 0; /* Number of writes needed. */
1596 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1597 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1598
1599 /* Parse the input argument - the user can specify a load offset as
1600 a second argument. */
1601 filename = xmalloc (strlen (args) + 1);
1602 old_cleanups = make_cleanup (xfree, filename);
1603 strcpy (filename, args);
1604 offptr = strchr (filename, ' ');
1605 if (offptr != NULL)
1606 {
1607 char *endptr;
1608
1609 cbdata.load_offset = strtoul (offptr, &endptr, 0);
1610 if (offptr == endptr)
1611 error ("Invalid download offset:%s\n", offptr);
1612 *offptr = '\0';
1613 }
1614 else
1615 cbdata.load_offset = 0;
1616
1617 /* Open the file for loading. */
1618 loadfile_bfd = bfd_openr (filename, gnutarget);
1619 if (loadfile_bfd == NULL)
1620 {
1621 perror_with_name (filename);
1622 return;
1623 }
1624
1625 /* FIXME: should be checking for errors from bfd_close (for one thing,
1626 on error it does not free all the storage associated with the
1627 bfd). */
1628 make_cleanup_bfd_close (loadfile_bfd);
1629
1630 if (!bfd_check_format (loadfile_bfd, bfd_object))
1631 {
1632 error ("\"%s\" is not an object file: %s", filename,
1633 bfd_errmsg (bfd_get_error ()));
1634 }
1635
1636 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1637 (void *) &cbdata.total_size);
1638
1639 start_time = time (NULL);
1640
1641 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1642
1643 end_time = time (NULL);
1644
1645 entry = bfd_get_start_address (loadfile_bfd);
1646 ui_out_text (uiout, "Start address ");
1647 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1648 ui_out_text (uiout, ", load size ");
1649 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1650 ui_out_text (uiout, "\n");
1651 /* We were doing this in remote-mips.c, I suspect it is right
1652 for other targets too. */
1653 write_pc (entry);
1654
1655 /* FIXME: are we supposed to call symbol_file_add or not? According
1656 to a comment from remote-mips.c (where a call to symbol_file_add
1657 was commented out), making the call confuses GDB if more than one
1658 file is loaded in. Some targets do (e.g., remote-vx.c) but
1659 others don't (or didn't - perhaphs they have all been deleted). */
1660
1661 print_transfer_performance (gdb_stdout, cbdata.data_count,
1662 cbdata.write_count, end_time - start_time);
1663
1664 do_cleanups (old_cleanups);
1665 }
1666
1667 /* Report how fast the transfer went. */
1668
1669 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1670 replaced by print_transfer_performance (with a very different
1671 function signature). */
1672
1673 void
1674 report_transfer_performance (unsigned long data_count, time_t start_time,
1675 time_t end_time)
1676 {
1677 print_transfer_performance (gdb_stdout, data_count,
1678 end_time - start_time, 0);
1679 }
1680
1681 void
1682 print_transfer_performance (struct ui_file *stream,
1683 unsigned long data_count,
1684 unsigned long write_count,
1685 unsigned long time_count)
1686 {
1687 ui_out_text (uiout, "Transfer rate: ");
1688 if (time_count > 0)
1689 {
1690 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1691 (data_count * 8) / time_count);
1692 ui_out_text (uiout, " bits/sec");
1693 }
1694 else
1695 {
1696 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1697 ui_out_text (uiout, " bits in <1 sec");
1698 }
1699 if (write_count > 0)
1700 {
1701 ui_out_text (uiout, ", ");
1702 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1703 ui_out_text (uiout, " bytes/write");
1704 }
1705 ui_out_text (uiout, ".\n");
1706 }
1707
1708 /* This function allows the addition of incrementally linked object files.
1709 It does not modify any state in the target, only in the debugger. */
1710 /* Note: ezannoni 2000-04-13 This function/command used to have a
1711 special case syntax for the rombug target (Rombug is the boot
1712 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1713 rombug case, the user doesn't need to supply a text address,
1714 instead a call to target_link() (in target.c) would supply the
1715 value to use. We are now discontinuing this type of ad hoc syntax. */
1716
1717 /* ARGSUSED */
1718 static void
1719 add_symbol_file_command (char *args, int from_tty)
1720 {
1721 char *filename = NULL;
1722 int flags = OBJF_USERLOADED;
1723 char *arg;
1724 int expecting_option = 0;
1725 int section_index = 0;
1726 int argcnt = 0;
1727 int sec_num = 0;
1728 int i;
1729 int expecting_sec_name = 0;
1730 int expecting_sec_addr = 0;
1731
1732 struct
1733 {
1734 char *name;
1735 char *value;
1736 } sect_opts[SECT_OFF_MAX];
1737
1738 struct section_addr_info section_addrs;
1739 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1740
1741 dont_repeat ();
1742
1743 if (args == NULL)
1744 error ("add-symbol-file takes a file name and an address");
1745
1746 /* Make a copy of the string that we can safely write into. */
1747 args = xstrdup (args);
1748
1749 /* Ensure section_addrs is initialized */
1750 memset (&section_addrs, 0, sizeof (section_addrs));
1751
1752 while (*args != '\000')
1753 {
1754 /* Any leading spaces? */
1755 while (isspace (*args))
1756 args++;
1757
1758 /* Point arg to the beginning of the argument. */
1759 arg = args;
1760
1761 /* Move args pointer over the argument. */
1762 while ((*args != '\000') && !isspace (*args))
1763 args++;
1764
1765 /* If there are more arguments, terminate arg and
1766 proceed past it. */
1767 if (*args != '\000')
1768 *args++ = '\000';
1769
1770 /* Now process the argument. */
1771 if (argcnt == 0)
1772 {
1773 /* The first argument is the file name. */
1774 filename = tilde_expand (arg);
1775 make_cleanup (xfree, filename);
1776 }
1777 else
1778 if (argcnt == 1)
1779 {
1780 /* The second argument is always the text address at which
1781 to load the program. */
1782 sect_opts[section_index].name = ".text";
1783 sect_opts[section_index].value = arg;
1784 section_index++;
1785 }
1786 else
1787 {
1788 /* It's an option (starting with '-') or it's an argument
1789 to an option */
1790
1791 if (*arg == '-')
1792 {
1793 if (strcmp (arg, "-mapped") == 0)
1794 flags |= OBJF_MAPPED;
1795 else
1796 if (strcmp (arg, "-readnow") == 0)
1797 flags |= OBJF_READNOW;
1798 else
1799 if (strcmp (arg, "-s") == 0)
1800 {
1801 if (section_index >= SECT_OFF_MAX)
1802 error ("Too many sections specified.");
1803 expecting_sec_name = 1;
1804 expecting_sec_addr = 1;
1805 }
1806 }
1807 else
1808 {
1809 if (expecting_sec_name)
1810 {
1811 sect_opts[section_index].name = arg;
1812 expecting_sec_name = 0;
1813 }
1814 else
1815 if (expecting_sec_addr)
1816 {
1817 sect_opts[section_index].value = arg;
1818 expecting_sec_addr = 0;
1819 section_index++;
1820 }
1821 else
1822 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1823 }
1824 }
1825 argcnt++;
1826 }
1827
1828 /* Print the prompt for the query below. And save the arguments into
1829 a sect_addr_info structure to be passed around to other
1830 functions. We have to split this up into separate print
1831 statements because local_hex_string returns a local static
1832 string. */
1833
1834 printf_filtered ("add symbol table from file \"%s\" at\n", filename);
1835 for (i = 0; i < section_index; i++)
1836 {
1837 CORE_ADDR addr;
1838 char *val = sect_opts[i].value;
1839 char *sec = sect_opts[i].name;
1840
1841 val = sect_opts[i].value;
1842 if (val[0] == '0' && val[1] == 'x')
1843 addr = strtoul (val+2, NULL, 16);
1844 else
1845 addr = strtoul (val, NULL, 10);
1846
1847 /* Here we store the section offsets in the order they were
1848 entered on the command line. */
1849 section_addrs.other[sec_num].name = sec;
1850 section_addrs.other[sec_num].addr = addr;
1851 printf_filtered ("\t%s_addr = %s\n",
1852 sec,
1853 local_hex_string ((unsigned long)addr));
1854 sec_num++;
1855
1856 /* The object's sections are initialized when a
1857 call is made to build_objfile_section_table (objfile).
1858 This happens in reread_symbols.
1859 At this point, we don't know what file type this is,
1860 so we can't determine what section names are valid. */
1861 }
1862
1863 if (from_tty && (!query ("%s", "")))
1864 error ("Not confirmed.");
1865
1866 symbol_file_add (filename, from_tty, &section_addrs, 0, flags);
1867
1868 /* Getting new symbols may change our opinion about what is
1869 frameless. */
1870 reinit_frame_cache ();
1871 do_cleanups (my_cleanups);
1872 }
1873 \f
1874 static void
1875 add_shared_symbol_files_command (char *args, int from_tty)
1876 {
1877 #ifdef ADD_SHARED_SYMBOL_FILES
1878 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1879 #else
1880 error ("This command is not available in this configuration of GDB.");
1881 #endif
1882 }
1883 \f
1884 /* Re-read symbols if a symbol-file has changed. */
1885 void
1886 reread_symbols (void)
1887 {
1888 struct objfile *objfile;
1889 long new_modtime;
1890 int reread_one = 0;
1891 struct stat new_statbuf;
1892 int res;
1893
1894 /* With the addition of shared libraries, this should be modified,
1895 the load time should be saved in the partial symbol tables, since
1896 different tables may come from different source files. FIXME.
1897 This routine should then walk down each partial symbol table
1898 and see if the symbol table that it originates from has been changed */
1899
1900 for (objfile = object_files; objfile; objfile = objfile->next)
1901 {
1902 if (objfile->obfd)
1903 {
1904 #ifdef IBM6000_TARGET
1905 /* If this object is from a shared library, then you should
1906 stat on the library name, not member name. */
1907
1908 if (objfile->obfd->my_archive)
1909 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1910 else
1911 #endif
1912 res = stat (objfile->name, &new_statbuf);
1913 if (res != 0)
1914 {
1915 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1916 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1917 objfile->name);
1918 continue;
1919 }
1920 new_modtime = new_statbuf.st_mtime;
1921 if (new_modtime != objfile->mtime)
1922 {
1923 struct cleanup *old_cleanups;
1924 struct section_offsets *offsets;
1925 int num_offsets;
1926 char *obfd_filename;
1927
1928 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1929 objfile->name);
1930
1931 /* There are various functions like symbol_file_add,
1932 symfile_bfd_open, syms_from_objfile, etc., which might
1933 appear to do what we want. But they have various other
1934 effects which we *don't* want. So we just do stuff
1935 ourselves. We don't worry about mapped files (for one thing,
1936 any mapped file will be out of date). */
1937
1938 /* If we get an error, blow away this objfile (not sure if
1939 that is the correct response for things like shared
1940 libraries). */
1941 old_cleanups = make_cleanup_free_objfile (objfile);
1942 /* We need to do this whenever any symbols go away. */
1943 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1944
1945 /* Clean up any state BFD has sitting around. We don't need
1946 to close the descriptor but BFD lacks a way of closing the
1947 BFD without closing the descriptor. */
1948 obfd_filename = bfd_get_filename (objfile->obfd);
1949 if (!bfd_close (objfile->obfd))
1950 error ("Can't close BFD for %s: %s", objfile->name,
1951 bfd_errmsg (bfd_get_error ()));
1952 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1953 if (objfile->obfd == NULL)
1954 error ("Can't open %s to read symbols.", objfile->name);
1955 /* bfd_openr sets cacheable to true, which is what we want. */
1956 if (!bfd_check_format (objfile->obfd, bfd_object))
1957 error ("Can't read symbols from %s: %s.", objfile->name,
1958 bfd_errmsg (bfd_get_error ()));
1959
1960 /* Save the offsets, we will nuke them with the rest of the
1961 psymbol_obstack. */
1962 num_offsets = objfile->num_sections;
1963 offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1964 memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1965
1966 /* Nuke all the state that we will re-read. Much of the following
1967 code which sets things to NULL really is necessary to tell
1968 other parts of GDB that there is nothing currently there. */
1969
1970 /* FIXME: Do we have to free a whole linked list, or is this
1971 enough? */
1972 if (objfile->global_psymbols.list)
1973 xmfree (objfile->md, objfile->global_psymbols.list);
1974 memset (&objfile->global_psymbols, 0,
1975 sizeof (objfile->global_psymbols));
1976 if (objfile->static_psymbols.list)
1977 xmfree (objfile->md, objfile->static_psymbols.list);
1978 memset (&objfile->static_psymbols, 0,
1979 sizeof (objfile->static_psymbols));
1980
1981 /* Free the obstacks for non-reusable objfiles */
1982 bcache_xfree (objfile->psymbol_cache);
1983 objfile->psymbol_cache = bcache_xmalloc ();
1984 bcache_xfree (objfile->macro_cache);
1985 objfile->macro_cache = bcache_xmalloc ();
1986 obstack_free (&objfile->psymbol_obstack, 0);
1987 obstack_free (&objfile->symbol_obstack, 0);
1988 obstack_free (&objfile->type_obstack, 0);
1989 objfile->sections = NULL;
1990 objfile->symtabs = NULL;
1991 objfile->psymtabs = NULL;
1992 objfile->free_psymtabs = NULL;
1993 objfile->msymbols = NULL;
1994 objfile->minimal_symbol_count = 0;
1995 memset (&objfile->msymbol_hash, 0,
1996 sizeof (objfile->msymbol_hash));
1997 memset (&objfile->msymbol_demangled_hash, 0,
1998 sizeof (objfile->msymbol_demangled_hash));
1999 objfile->fundamental_types = NULL;
2000 if (objfile->sf != NULL)
2001 {
2002 (*objfile->sf->sym_finish) (objfile);
2003 }
2004
2005 /* We never make this a mapped file. */
2006 objfile->md = NULL;
2007 /* obstack_specify_allocation also initializes the obstack so
2008 it is empty. */
2009 objfile->psymbol_cache = bcache_xmalloc ();
2010 objfile->macro_cache = bcache_xmalloc ();
2011 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
2012 xmalloc, xfree);
2013 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
2014 xmalloc, xfree);
2015 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
2016 xmalloc, xfree);
2017 if (build_objfile_section_table (objfile))
2018 {
2019 error ("Can't find the file sections in `%s': %s",
2020 objfile->name, bfd_errmsg (bfd_get_error ()));
2021 }
2022
2023 /* We use the same section offsets as from last time. I'm not
2024 sure whether that is always correct for shared libraries. */
2025 objfile->section_offsets = (struct section_offsets *)
2026 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
2027 memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
2028 objfile->num_sections = num_offsets;
2029
2030 /* What the hell is sym_new_init for, anyway? The concept of
2031 distinguishing between the main file and additional files
2032 in this way seems rather dubious. */
2033 if (objfile == symfile_objfile)
2034 {
2035 (*objfile->sf->sym_new_init) (objfile);
2036 #ifdef HPUXHPPA
2037 RESET_HP_UX_GLOBALS ();
2038 #endif
2039 }
2040
2041 (*objfile->sf->sym_init) (objfile);
2042 clear_complaints (&symfile_complaints, 1, 1);
2043 /* The "mainline" parameter is a hideous hack; I think leaving it
2044 zero is OK since dbxread.c also does what it needs to do if
2045 objfile->global_psymbols.size is 0. */
2046 (*objfile->sf->sym_read) (objfile, 0);
2047 if (!have_partial_symbols () && !have_full_symbols ())
2048 {
2049 wrap_here ("");
2050 printf_filtered ("(no debugging symbols found)\n");
2051 wrap_here ("");
2052 }
2053 objfile->flags |= OBJF_SYMS;
2054
2055 /* We're done reading the symbol file; finish off complaints. */
2056 clear_complaints (&symfile_complaints, 0, 1);
2057
2058 /* Getting new symbols may change our opinion about what is
2059 frameless. */
2060
2061 reinit_frame_cache ();
2062
2063 /* Discard cleanups as symbol reading was successful. */
2064 discard_cleanups (old_cleanups);
2065
2066 /* If the mtime has changed between the time we set new_modtime
2067 and now, we *want* this to be out of date, so don't call stat
2068 again now. */
2069 objfile->mtime = new_modtime;
2070 reread_one = 1;
2071
2072 /* Call this after reading in a new symbol table to give target
2073 dependent code a crack at the new symbols. For instance, this
2074 could be used to update the values of target-specific symbols GDB
2075 needs to keep track of (such as _sigtramp, or whatever). */
2076
2077 TARGET_SYMFILE_POSTREAD (objfile);
2078
2079 reread_separate_symbols (objfile);
2080 }
2081 }
2082 }
2083
2084 if (reread_one)
2085 clear_symtab_users ();
2086 }
2087
2088
2089 /* Handle separate debug info for OBJFILE, which has just been
2090 re-read:
2091 - If we had separate debug info before, but now we don't, get rid
2092 of the separated objfile.
2093 - If we didn't have separated debug info before, but now we do,
2094 read in the new separated debug info file.
2095 - If the debug link points to a different file, toss the old one
2096 and read the new one.
2097 This function does *not* handle the case where objfile is still
2098 using the same separate debug info file, but that file's timestamp
2099 has changed. That case should be handled by the loop in
2100 reread_symbols already. */
2101 static void
2102 reread_separate_symbols (struct objfile *objfile)
2103 {
2104 char *debug_file;
2105 unsigned long crc32;
2106
2107 /* Does the updated objfile's debug info live in a
2108 separate file? */
2109 debug_file = find_separate_debug_file (objfile);
2110
2111 if (objfile->separate_debug_objfile)
2112 {
2113 /* There are two cases where we need to get rid of
2114 the old separated debug info objfile:
2115 - if the new primary objfile doesn't have
2116 separated debug info, or
2117 - if the new primary objfile has separate debug
2118 info, but it's under a different filename.
2119
2120 If the old and new objfiles both have separate
2121 debug info, under the same filename, then we're
2122 okay --- if the separated file's contents have
2123 changed, we will have caught that when we
2124 visited it in this function's outermost
2125 loop. */
2126 if (! debug_file
2127 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2128 free_objfile (objfile->separate_debug_objfile);
2129 }
2130
2131 /* If the new objfile has separate debug info, and we
2132 haven't loaded it already, do so now. */
2133 if (debug_file
2134 && ! objfile->separate_debug_objfile)
2135 {
2136 /* Use the same section offset table as objfile itself.
2137 Preserve the flags from objfile that make sense. */
2138 objfile->separate_debug_objfile
2139 = (symbol_file_add_with_addrs_or_offsets
2140 (debug_file,
2141 info_verbose, /* from_tty: Don't override the default. */
2142 0, /* No addr table. */
2143 objfile->section_offsets, objfile->num_sections,
2144 0, /* Not mainline. See comments about this above. */
2145 objfile->flags & (OBJF_MAPPED | OBJF_REORDERED
2146 | OBJF_SHARED | OBJF_READNOW
2147 | OBJF_USERLOADED)));
2148 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2149 = objfile;
2150 }
2151 }
2152
2153
2154 \f
2155
2156
2157 typedef struct
2158 {
2159 char *ext;
2160 enum language lang;
2161 }
2162 filename_language;
2163
2164 static filename_language *filename_language_table;
2165 static int fl_table_size, fl_table_next;
2166
2167 static void
2168 add_filename_language (char *ext, enum language lang)
2169 {
2170 if (fl_table_next >= fl_table_size)
2171 {
2172 fl_table_size += 10;
2173 filename_language_table =
2174 xrealloc (filename_language_table,
2175 fl_table_size * sizeof (*filename_language_table));
2176 }
2177
2178 filename_language_table[fl_table_next].ext = xstrdup (ext);
2179 filename_language_table[fl_table_next].lang = lang;
2180 fl_table_next++;
2181 }
2182
2183 static char *ext_args;
2184
2185 static void
2186 set_ext_lang_command (char *args, int from_tty)
2187 {
2188 int i;
2189 char *cp = ext_args;
2190 enum language lang;
2191
2192 /* First arg is filename extension, starting with '.' */
2193 if (*cp != '.')
2194 error ("'%s': Filename extension must begin with '.'", ext_args);
2195
2196 /* Find end of first arg. */
2197 while (*cp && !isspace (*cp))
2198 cp++;
2199
2200 if (*cp == '\0')
2201 error ("'%s': two arguments required -- filename extension and language",
2202 ext_args);
2203
2204 /* Null-terminate first arg */
2205 *cp++ = '\0';
2206
2207 /* Find beginning of second arg, which should be a source language. */
2208 while (*cp && isspace (*cp))
2209 cp++;
2210
2211 if (*cp == '\0')
2212 error ("'%s': two arguments required -- filename extension and language",
2213 ext_args);
2214
2215 /* Lookup the language from among those we know. */
2216 lang = language_enum (cp);
2217
2218 /* Now lookup the filename extension: do we already know it? */
2219 for (i = 0; i < fl_table_next; i++)
2220 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2221 break;
2222
2223 if (i >= fl_table_next)
2224 {
2225 /* new file extension */
2226 add_filename_language (ext_args, lang);
2227 }
2228 else
2229 {
2230 /* redefining a previously known filename extension */
2231
2232 /* if (from_tty) */
2233 /* query ("Really make files of type %s '%s'?", */
2234 /* ext_args, language_str (lang)); */
2235
2236 xfree (filename_language_table[i].ext);
2237 filename_language_table[i].ext = xstrdup (ext_args);
2238 filename_language_table[i].lang = lang;
2239 }
2240 }
2241
2242 static void
2243 info_ext_lang_command (char *args, int from_tty)
2244 {
2245 int i;
2246
2247 printf_filtered ("Filename extensions and the languages they represent:");
2248 printf_filtered ("\n\n");
2249 for (i = 0; i < fl_table_next; i++)
2250 printf_filtered ("\t%s\t- %s\n",
2251 filename_language_table[i].ext,
2252 language_str (filename_language_table[i].lang));
2253 }
2254
2255 static void
2256 init_filename_language_table (void)
2257 {
2258 if (fl_table_size == 0) /* protect against repetition */
2259 {
2260 fl_table_size = 20;
2261 fl_table_next = 0;
2262 filename_language_table =
2263 xmalloc (fl_table_size * sizeof (*filename_language_table));
2264 add_filename_language (".c", language_c);
2265 add_filename_language (".C", language_cplus);
2266 add_filename_language (".cc", language_cplus);
2267 add_filename_language (".cp", language_cplus);
2268 add_filename_language (".cpp", language_cplus);
2269 add_filename_language (".cxx", language_cplus);
2270 add_filename_language (".c++", language_cplus);
2271 add_filename_language (".java", language_java);
2272 add_filename_language (".class", language_java);
2273 add_filename_language (".m", language_objc);
2274 add_filename_language (".f", language_fortran);
2275 add_filename_language (".F", language_fortran);
2276 add_filename_language (".s", language_asm);
2277 add_filename_language (".S", language_asm);
2278 add_filename_language (".pas", language_pascal);
2279 add_filename_language (".p", language_pascal);
2280 add_filename_language (".pp", language_pascal);
2281 }
2282 }
2283
2284 enum language
2285 deduce_language_from_filename (char *filename)
2286 {
2287 int i;
2288 char *cp;
2289
2290 if (filename != NULL)
2291 if ((cp = strrchr (filename, '.')) != NULL)
2292 for (i = 0; i < fl_table_next; i++)
2293 if (strcmp (cp, filename_language_table[i].ext) == 0)
2294 return filename_language_table[i].lang;
2295
2296 return language_unknown;
2297 }
2298 \f
2299 /* allocate_symtab:
2300
2301 Allocate and partly initialize a new symbol table. Return a pointer
2302 to it. error() if no space.
2303
2304 Caller must set these fields:
2305 LINETABLE(symtab)
2306 symtab->blockvector
2307 symtab->dirname
2308 symtab->free_code
2309 symtab->free_ptr
2310 possibly free_named_symtabs (symtab->filename);
2311 */
2312
2313 struct symtab *
2314 allocate_symtab (char *filename, struct objfile *objfile)
2315 {
2316 register struct symtab *symtab;
2317
2318 symtab = (struct symtab *)
2319 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
2320 memset (symtab, 0, sizeof (*symtab));
2321 symtab->filename = obsavestring (filename, strlen (filename),
2322 &objfile->symbol_obstack);
2323 symtab->fullname = NULL;
2324 symtab->language = deduce_language_from_filename (filename);
2325 symtab->debugformat = obsavestring ("unknown", 7,
2326 &objfile->symbol_obstack);
2327
2328 /* Hook it to the objfile it comes from */
2329
2330 symtab->objfile = objfile;
2331 symtab->next = objfile->symtabs;
2332 objfile->symtabs = symtab;
2333
2334 /* FIXME: This should go away. It is only defined for the Z8000,
2335 and the Z8000 definition of this macro doesn't have anything to
2336 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2337 here for convenience. */
2338 #ifdef INIT_EXTRA_SYMTAB_INFO
2339 INIT_EXTRA_SYMTAB_INFO (symtab);
2340 #endif
2341
2342 return (symtab);
2343 }
2344
2345 struct partial_symtab *
2346 allocate_psymtab (char *filename, struct objfile *objfile)
2347 {
2348 struct partial_symtab *psymtab;
2349
2350 if (objfile->free_psymtabs)
2351 {
2352 psymtab = objfile->free_psymtabs;
2353 objfile->free_psymtabs = psymtab->next;
2354 }
2355 else
2356 psymtab = (struct partial_symtab *)
2357 obstack_alloc (&objfile->psymbol_obstack,
2358 sizeof (struct partial_symtab));
2359
2360 memset (psymtab, 0, sizeof (struct partial_symtab));
2361 psymtab->filename = obsavestring (filename, strlen (filename),
2362 &objfile->psymbol_obstack);
2363 psymtab->symtab = NULL;
2364
2365 /* Prepend it to the psymtab list for the objfile it belongs to.
2366 Psymtabs are searched in most recent inserted -> least recent
2367 inserted order. */
2368
2369 psymtab->objfile = objfile;
2370 psymtab->next = objfile->psymtabs;
2371 objfile->psymtabs = psymtab;
2372 #if 0
2373 {
2374 struct partial_symtab **prev_pst;
2375 psymtab->objfile = objfile;
2376 psymtab->next = NULL;
2377 prev_pst = &(objfile->psymtabs);
2378 while ((*prev_pst) != NULL)
2379 prev_pst = &((*prev_pst)->next);
2380 (*prev_pst) = psymtab;
2381 }
2382 #endif
2383
2384 return (psymtab);
2385 }
2386
2387 void
2388 discard_psymtab (struct partial_symtab *pst)
2389 {
2390 struct partial_symtab **prev_pst;
2391
2392 /* From dbxread.c:
2393 Empty psymtabs happen as a result of header files which don't
2394 have any symbols in them. There can be a lot of them. But this
2395 check is wrong, in that a psymtab with N_SLINE entries but
2396 nothing else is not empty, but we don't realize that. Fixing
2397 that without slowing things down might be tricky. */
2398
2399 /* First, snip it out of the psymtab chain */
2400
2401 prev_pst = &(pst->objfile->psymtabs);
2402 while ((*prev_pst) != pst)
2403 prev_pst = &((*prev_pst)->next);
2404 (*prev_pst) = pst->next;
2405
2406 /* Next, put it on a free list for recycling */
2407
2408 pst->next = pst->objfile->free_psymtabs;
2409 pst->objfile->free_psymtabs = pst;
2410 }
2411 \f
2412
2413 /* Reset all data structures in gdb which may contain references to symbol
2414 table data. */
2415
2416 void
2417 clear_symtab_users (void)
2418 {
2419 /* Someday, we should do better than this, by only blowing away
2420 the things that really need to be blown. */
2421 clear_value_history ();
2422 clear_displays ();
2423 clear_internalvars ();
2424 breakpoint_re_set ();
2425 set_default_breakpoint (0, 0, 0, 0);
2426 clear_current_source_symtab_and_line ();
2427 clear_pc_function_cache ();
2428 if (target_new_objfile_hook)
2429 target_new_objfile_hook (NULL);
2430 }
2431
2432 static void
2433 clear_symtab_users_cleanup (void *ignore)
2434 {
2435 clear_symtab_users ();
2436 }
2437
2438 /* clear_symtab_users_once:
2439
2440 This function is run after symbol reading, or from a cleanup.
2441 If an old symbol table was obsoleted, the old symbol table
2442 has been blown away, but the other GDB data structures that may
2443 reference it have not yet been cleared or re-directed. (The old
2444 symtab was zapped, and the cleanup queued, in free_named_symtab()
2445 below.)
2446
2447 This function can be queued N times as a cleanup, or called
2448 directly; it will do all the work the first time, and then will be a
2449 no-op until the next time it is queued. This works by bumping a
2450 counter at queueing time. Much later when the cleanup is run, or at
2451 the end of symbol processing (in case the cleanup is discarded), if
2452 the queued count is greater than the "done-count", we do the work
2453 and set the done-count to the queued count. If the queued count is
2454 less than or equal to the done-count, we just ignore the call. This
2455 is needed because reading a single .o file will often replace many
2456 symtabs (one per .h file, for example), and we don't want to reset
2457 the breakpoints N times in the user's face.
2458
2459 The reason we both queue a cleanup, and call it directly after symbol
2460 reading, is because the cleanup protects us in case of errors, but is
2461 discarded if symbol reading is successful. */
2462
2463 #if 0
2464 /* FIXME: As free_named_symtabs is currently a big noop this function
2465 is no longer needed. */
2466 static void clear_symtab_users_once (void);
2467
2468 static int clear_symtab_users_queued;
2469 static int clear_symtab_users_done;
2470
2471 static void
2472 clear_symtab_users_once (void)
2473 {
2474 /* Enforce once-per-`do_cleanups'-semantics */
2475 if (clear_symtab_users_queued <= clear_symtab_users_done)
2476 return;
2477 clear_symtab_users_done = clear_symtab_users_queued;
2478
2479 clear_symtab_users ();
2480 }
2481 #endif
2482
2483 /* Delete the specified psymtab, and any others that reference it. */
2484
2485 static void
2486 cashier_psymtab (struct partial_symtab *pst)
2487 {
2488 struct partial_symtab *ps, *pprev = NULL;
2489 int i;
2490
2491 /* Find its previous psymtab in the chain */
2492 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2493 {
2494 if (ps == pst)
2495 break;
2496 pprev = ps;
2497 }
2498
2499 if (ps)
2500 {
2501 /* Unhook it from the chain. */
2502 if (ps == pst->objfile->psymtabs)
2503 pst->objfile->psymtabs = ps->next;
2504 else
2505 pprev->next = ps->next;
2506
2507 /* FIXME, we can't conveniently deallocate the entries in the
2508 partial_symbol lists (global_psymbols/static_psymbols) that
2509 this psymtab points to. These just take up space until all
2510 the psymtabs are reclaimed. Ditto the dependencies list and
2511 filename, which are all in the psymbol_obstack. */
2512
2513 /* We need to cashier any psymtab that has this one as a dependency... */
2514 again:
2515 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2516 {
2517 for (i = 0; i < ps->number_of_dependencies; i++)
2518 {
2519 if (ps->dependencies[i] == pst)
2520 {
2521 cashier_psymtab (ps);
2522 goto again; /* Must restart, chain has been munged. */
2523 }
2524 }
2525 }
2526 }
2527 }
2528
2529 /* If a symtab or psymtab for filename NAME is found, free it along
2530 with any dependent breakpoints, displays, etc.
2531 Used when loading new versions of object modules with the "add-file"
2532 command. This is only called on the top-level symtab or psymtab's name;
2533 it is not called for subsidiary files such as .h files.
2534
2535 Return value is 1 if we blew away the environment, 0 if not.
2536 FIXME. The return value appears to never be used.
2537
2538 FIXME. I think this is not the best way to do this. We should
2539 work on being gentler to the environment while still cleaning up
2540 all stray pointers into the freed symtab. */
2541
2542 int
2543 free_named_symtabs (char *name)
2544 {
2545 #if 0
2546 /* FIXME: With the new method of each objfile having it's own
2547 psymtab list, this function needs serious rethinking. In particular,
2548 why was it ever necessary to toss psymtabs with specific compilation
2549 unit filenames, as opposed to all psymtabs from a particular symbol
2550 file? -- fnf
2551 Well, the answer is that some systems permit reloading of particular
2552 compilation units. We want to blow away any old info about these
2553 compilation units, regardless of which objfiles they arrived in. --gnu. */
2554
2555 register struct symtab *s;
2556 register struct symtab *prev;
2557 register struct partial_symtab *ps;
2558 struct blockvector *bv;
2559 int blewit = 0;
2560
2561 /* We only wack things if the symbol-reload switch is set. */
2562 if (!symbol_reloading)
2563 return 0;
2564
2565 /* Some symbol formats have trouble providing file names... */
2566 if (name == 0 || *name == '\0')
2567 return 0;
2568
2569 /* Look for a psymtab with the specified name. */
2570
2571 again2:
2572 for (ps = partial_symtab_list; ps; ps = ps->next)
2573 {
2574 if (STREQ (name, ps->filename))
2575 {
2576 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2577 goto again2; /* Must restart, chain has been munged */
2578 }
2579 }
2580
2581 /* Look for a symtab with the specified name. */
2582
2583 for (s = symtab_list; s; s = s->next)
2584 {
2585 if (STREQ (name, s->filename))
2586 break;
2587 prev = s;
2588 }
2589
2590 if (s)
2591 {
2592 if (s == symtab_list)
2593 symtab_list = s->next;
2594 else
2595 prev->next = s->next;
2596
2597 /* For now, queue a delete for all breakpoints, displays, etc., whether
2598 or not they depend on the symtab being freed. This should be
2599 changed so that only those data structures affected are deleted. */
2600
2601 /* But don't delete anything if the symtab is empty.
2602 This test is necessary due to a bug in "dbxread.c" that
2603 causes empty symtabs to be created for N_SO symbols that
2604 contain the pathname of the object file. (This problem
2605 has been fixed in GDB 3.9x). */
2606
2607 bv = BLOCKVECTOR (s);
2608 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2609 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2610 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2611 {
2612 complaint (&symfile_complaints, "Replacing old symbols for `%s'",
2613 name);
2614 clear_symtab_users_queued++;
2615 make_cleanup (clear_symtab_users_once, 0);
2616 blewit = 1;
2617 }
2618 else
2619 {
2620 complaint (&symfile_complaints, "Empty symbol table found for `%s'",
2621 name);
2622 }
2623
2624 free_symtab (s);
2625 }
2626 else
2627 {
2628 /* It is still possible that some breakpoints will be affected
2629 even though no symtab was found, since the file might have
2630 been compiled without debugging, and hence not be associated
2631 with a symtab. In order to handle this correctly, we would need
2632 to keep a list of text address ranges for undebuggable files.
2633 For now, we do nothing, since this is a fairly obscure case. */
2634 ;
2635 }
2636
2637 /* FIXME, what about the minimal symbol table? */
2638 return blewit;
2639 #else
2640 return (0);
2641 #endif
2642 }
2643 \f
2644 /* Allocate and partially fill a partial symtab. It will be
2645 completely filled at the end of the symbol list.
2646
2647 FILENAME is the name of the symbol-file we are reading from. */
2648
2649 struct partial_symtab *
2650 start_psymtab_common (struct objfile *objfile,
2651 struct section_offsets *section_offsets, char *filename,
2652 CORE_ADDR textlow, struct partial_symbol **global_syms,
2653 struct partial_symbol **static_syms)
2654 {
2655 struct partial_symtab *psymtab;
2656
2657 psymtab = allocate_psymtab (filename, objfile);
2658 psymtab->section_offsets = section_offsets;
2659 psymtab->textlow = textlow;
2660 psymtab->texthigh = psymtab->textlow; /* default */
2661 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2662 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2663 return (psymtab);
2664 }
2665 \f
2666 /* Add a symbol with a long value to a psymtab.
2667 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2668
2669 void
2670 add_psymbol_to_list (char *name, int namelength, namespace_enum namespace,
2671 enum address_class class,
2672 struct psymbol_allocation_list *list, long val, /* Value as a long */
2673 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2674 enum language language, struct objfile *objfile)
2675 {
2676 register struct partial_symbol *psym;
2677 char *buf = alloca (namelength + 1);
2678 /* psymbol is static so that there will be no uninitialized gaps in the
2679 structure which might contain random data, causing cache misses in
2680 bcache. */
2681 static struct partial_symbol psymbol;
2682
2683 /* Create local copy of the partial symbol */
2684 memcpy (buf, name, namelength);
2685 buf[namelength] = '\0';
2686 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, objfile->psymbol_cache);
2687 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2688 if (val != 0)
2689 {
2690 SYMBOL_VALUE (&psymbol) = val;
2691 }
2692 else
2693 {
2694 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2695 }
2696 SYMBOL_SECTION (&psymbol) = 0;
2697 SYMBOL_LANGUAGE (&psymbol) = language;
2698 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2699 PSYMBOL_CLASS (&psymbol) = class;
2700 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2701
2702 /* Stash the partial symbol away in the cache */
2703 psym = bcache (&psymbol, sizeof (struct partial_symbol), objfile->psymbol_cache);
2704
2705 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2706 if (list->next >= list->list + list->size)
2707 {
2708 extend_psymbol_list (list, objfile);
2709 }
2710 *list->next++ = psym;
2711 OBJSTAT (objfile, n_psyms++);
2712 }
2713
2714 /* Add a symbol with a long value to a psymtab. This differs from
2715 * add_psymbol_to_list above in taking both a mangled and a demangled
2716 * name. */
2717
2718 void
2719 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2720 int dem_namelength, namespace_enum namespace,
2721 enum address_class class,
2722 struct psymbol_allocation_list *list, long val, /* Value as a long */
2723 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2724 enum language language,
2725 struct objfile *objfile)
2726 {
2727 register struct partial_symbol *psym;
2728 char *buf = alloca (namelength + 1);
2729 /* psymbol is static so that there will be no uninitialized gaps in the
2730 structure which might contain random data, causing cache misses in
2731 bcache. */
2732 static struct partial_symbol psymbol;
2733
2734 /* Create local copy of the partial symbol */
2735
2736 memcpy (buf, name, namelength);
2737 buf[namelength] = '\0';
2738 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, objfile->psymbol_cache);
2739
2740 buf = alloca (dem_namelength + 1);
2741 memcpy (buf, dem_name, dem_namelength);
2742 buf[dem_namelength] = '\0';
2743
2744 switch (language)
2745 {
2746 case language_c:
2747 case language_cplus:
2748 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2749 bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2750 break;
2751 /* FIXME What should be done for the default case? Ignoring for now. */
2752 }
2753
2754 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2755 if (val != 0)
2756 {
2757 SYMBOL_VALUE (&psymbol) = val;
2758 }
2759 else
2760 {
2761 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2762 }
2763 SYMBOL_SECTION (&psymbol) = 0;
2764 SYMBOL_LANGUAGE (&psymbol) = language;
2765 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2766 PSYMBOL_CLASS (&psymbol) = class;
2767 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2768
2769 /* Stash the partial symbol away in the cache */
2770 psym = bcache (&psymbol, sizeof (struct partial_symbol), objfile->psymbol_cache);
2771
2772 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2773 if (list->next >= list->list + list->size)
2774 {
2775 extend_psymbol_list (list, objfile);
2776 }
2777 *list->next++ = psym;
2778 OBJSTAT (objfile, n_psyms++);
2779 }
2780
2781 /* Initialize storage for partial symbols. */
2782
2783 void
2784 init_psymbol_list (struct objfile *objfile, int total_symbols)
2785 {
2786 /* Free any previously allocated psymbol lists. */
2787
2788 if (objfile->global_psymbols.list)
2789 {
2790 xmfree (objfile->md, objfile->global_psymbols.list);
2791 }
2792 if (objfile->static_psymbols.list)
2793 {
2794 xmfree (objfile->md, objfile->static_psymbols.list);
2795 }
2796
2797 /* Current best guess is that approximately a twentieth
2798 of the total symbols (in a debugging file) are global or static
2799 oriented symbols */
2800
2801 objfile->global_psymbols.size = total_symbols / 10;
2802 objfile->static_psymbols.size = total_symbols / 10;
2803
2804 if (objfile->global_psymbols.size > 0)
2805 {
2806 objfile->global_psymbols.next =
2807 objfile->global_psymbols.list = (struct partial_symbol **)
2808 xmmalloc (objfile->md, (objfile->global_psymbols.size
2809 * sizeof (struct partial_symbol *)));
2810 }
2811 if (objfile->static_psymbols.size > 0)
2812 {
2813 objfile->static_psymbols.next =
2814 objfile->static_psymbols.list = (struct partial_symbol **)
2815 xmmalloc (objfile->md, (objfile->static_psymbols.size
2816 * sizeof (struct partial_symbol *)));
2817 }
2818 }
2819
2820 /* OVERLAYS:
2821 The following code implements an abstraction for debugging overlay sections.
2822
2823 The target model is as follows:
2824 1) The gnu linker will permit multiple sections to be mapped into the
2825 same VMA, each with its own unique LMA (or load address).
2826 2) It is assumed that some runtime mechanism exists for mapping the
2827 sections, one by one, from the load address into the VMA address.
2828 3) This code provides a mechanism for gdb to keep track of which
2829 sections should be considered to be mapped from the VMA to the LMA.
2830 This information is used for symbol lookup, and memory read/write.
2831 For instance, if a section has been mapped then its contents
2832 should be read from the VMA, otherwise from the LMA.
2833
2834 Two levels of debugger support for overlays are available. One is
2835 "manual", in which the debugger relies on the user to tell it which
2836 overlays are currently mapped. This level of support is
2837 implemented entirely in the core debugger, and the information about
2838 whether a section is mapped is kept in the objfile->obj_section table.
2839
2840 The second level of support is "automatic", and is only available if
2841 the target-specific code provides functionality to read the target's
2842 overlay mapping table, and translate its contents for the debugger
2843 (by updating the mapped state information in the obj_section tables).
2844
2845 The interface is as follows:
2846 User commands:
2847 overlay map <name> -- tell gdb to consider this section mapped
2848 overlay unmap <name> -- tell gdb to consider this section unmapped
2849 overlay list -- list the sections that GDB thinks are mapped
2850 overlay read-target -- get the target's state of what's mapped
2851 overlay off/manual/auto -- set overlay debugging state
2852 Functional interface:
2853 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2854 section, return that section.
2855 find_pc_overlay(pc): find any overlay section that contains
2856 the pc, either in its VMA or its LMA
2857 overlay_is_mapped(sect): true if overlay is marked as mapped
2858 section_is_overlay(sect): true if section's VMA != LMA
2859 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2860 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2861 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2862 overlay_mapped_address(...): map an address from section's LMA to VMA
2863 overlay_unmapped_address(...): map an address from section's VMA to LMA
2864 symbol_overlayed_address(...): Return a "current" address for symbol:
2865 either in VMA or LMA depending on whether
2866 the symbol's section is currently mapped
2867 */
2868
2869 /* Overlay debugging state: */
2870
2871 enum overlay_debugging_state overlay_debugging = ovly_off;
2872 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2873
2874 /* Target vector for refreshing overlay mapped state */
2875 static void simple_overlay_update (struct obj_section *);
2876 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2877
2878 /* Function: section_is_overlay (SECTION)
2879 Returns true if SECTION has VMA not equal to LMA, ie.
2880 SECTION is loaded at an address different from where it will "run". */
2881
2882 int
2883 section_is_overlay (asection *section)
2884 {
2885 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2886
2887 if (overlay_debugging)
2888 if (section && section->lma != 0 &&
2889 section->vma != section->lma)
2890 return 1;
2891
2892 return 0;
2893 }
2894
2895 /* Function: overlay_invalidate_all (void)
2896 Invalidate the mapped state of all overlay sections (mark it as stale). */
2897
2898 static void
2899 overlay_invalidate_all (void)
2900 {
2901 struct objfile *objfile;
2902 struct obj_section *sect;
2903
2904 ALL_OBJSECTIONS (objfile, sect)
2905 if (section_is_overlay (sect->the_bfd_section))
2906 sect->ovly_mapped = -1;
2907 }
2908
2909 /* Function: overlay_is_mapped (SECTION)
2910 Returns true if section is an overlay, and is currently mapped.
2911 Private: public access is thru function section_is_mapped.
2912
2913 Access to the ovly_mapped flag is restricted to this function, so
2914 that we can do automatic update. If the global flag
2915 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2916 overlay_invalidate_all. If the mapped state of the particular
2917 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2918
2919 static int
2920 overlay_is_mapped (struct obj_section *osect)
2921 {
2922 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2923 return 0;
2924
2925 switch (overlay_debugging)
2926 {
2927 default:
2928 case ovly_off:
2929 return 0; /* overlay debugging off */
2930 case ovly_auto: /* overlay debugging automatic */
2931 /* Unles there is a target_overlay_update function,
2932 there's really nothing useful to do here (can't really go auto) */
2933 if (target_overlay_update)
2934 {
2935 if (overlay_cache_invalid)
2936 {
2937 overlay_invalidate_all ();
2938 overlay_cache_invalid = 0;
2939 }
2940 if (osect->ovly_mapped == -1)
2941 (*target_overlay_update) (osect);
2942 }
2943 /* fall thru to manual case */
2944 case ovly_on: /* overlay debugging manual */
2945 return osect->ovly_mapped == 1;
2946 }
2947 }
2948
2949 /* Function: section_is_mapped
2950 Returns true if section is an overlay, and is currently mapped. */
2951
2952 int
2953 section_is_mapped (asection *section)
2954 {
2955 struct objfile *objfile;
2956 struct obj_section *osect;
2957
2958 if (overlay_debugging)
2959 if (section && section_is_overlay (section))
2960 ALL_OBJSECTIONS (objfile, osect)
2961 if (osect->the_bfd_section == section)
2962 return overlay_is_mapped (osect);
2963
2964 return 0;
2965 }
2966
2967 /* Function: pc_in_unmapped_range
2968 If PC falls into the lma range of SECTION, return true, else false. */
2969
2970 CORE_ADDR
2971 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
2972 {
2973 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2974
2975 int size;
2976
2977 if (overlay_debugging)
2978 if (section && section_is_overlay (section))
2979 {
2980 size = bfd_get_section_size_before_reloc (section);
2981 if (section->lma <= pc && pc < section->lma + size)
2982 return 1;
2983 }
2984 return 0;
2985 }
2986
2987 /* Function: pc_in_mapped_range
2988 If PC falls into the vma range of SECTION, return true, else false. */
2989
2990 CORE_ADDR
2991 pc_in_mapped_range (CORE_ADDR pc, asection *section)
2992 {
2993 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2994
2995 int size;
2996
2997 if (overlay_debugging)
2998 if (section && section_is_overlay (section))
2999 {
3000 size = bfd_get_section_size_before_reloc (section);
3001 if (section->vma <= pc && pc < section->vma + size)
3002 return 1;
3003 }
3004 return 0;
3005 }
3006
3007
3008 /* Return true if the mapped ranges of sections A and B overlap, false
3009 otherwise. */
3010 int
3011 sections_overlap (asection *a, asection *b)
3012 {
3013 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3014
3015 CORE_ADDR a_start = a->vma;
3016 CORE_ADDR a_end = a->vma + bfd_get_section_size_before_reloc (a);
3017 CORE_ADDR b_start = b->vma;
3018 CORE_ADDR b_end = b->vma + bfd_get_section_size_before_reloc (b);
3019
3020 return (a_start < b_end && b_start < a_end);
3021 }
3022
3023 /* Function: overlay_unmapped_address (PC, SECTION)
3024 Returns the address corresponding to PC in the unmapped (load) range.
3025 May be the same as PC. */
3026
3027 CORE_ADDR
3028 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3029 {
3030 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3031
3032 if (overlay_debugging)
3033 if (section && section_is_overlay (section) &&
3034 pc_in_mapped_range (pc, section))
3035 return pc + section->lma - section->vma;
3036
3037 return pc;
3038 }
3039
3040 /* Function: overlay_mapped_address (PC, SECTION)
3041 Returns the address corresponding to PC in the mapped (runtime) range.
3042 May be the same as PC. */
3043
3044 CORE_ADDR
3045 overlay_mapped_address (CORE_ADDR pc, asection *section)
3046 {
3047 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3048
3049 if (overlay_debugging)
3050 if (section && section_is_overlay (section) &&
3051 pc_in_unmapped_range (pc, section))
3052 return pc + section->vma - section->lma;
3053
3054 return pc;
3055 }
3056
3057
3058 /* Function: symbol_overlayed_address
3059 Return one of two addresses (relative to the VMA or to the LMA),
3060 depending on whether the section is mapped or not. */
3061
3062 CORE_ADDR
3063 symbol_overlayed_address (CORE_ADDR address, asection *section)
3064 {
3065 if (overlay_debugging)
3066 {
3067 /* If the symbol has no section, just return its regular address. */
3068 if (section == 0)
3069 return address;
3070 /* If the symbol's section is not an overlay, just return its address */
3071 if (!section_is_overlay (section))
3072 return address;
3073 /* If the symbol's section is mapped, just return its address */
3074 if (section_is_mapped (section))
3075 return address;
3076 /*
3077 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3078 * then return its LOADED address rather than its vma address!!
3079 */
3080 return overlay_unmapped_address (address, section);
3081 }
3082 return address;
3083 }
3084
3085 /* Function: find_pc_overlay (PC)
3086 Return the best-match overlay section for PC:
3087 If PC matches a mapped overlay section's VMA, return that section.
3088 Else if PC matches an unmapped section's VMA, return that section.
3089 Else if PC matches an unmapped section's LMA, return that section. */
3090
3091 asection *
3092 find_pc_overlay (CORE_ADDR pc)
3093 {
3094 struct objfile *objfile;
3095 struct obj_section *osect, *best_match = NULL;
3096
3097 if (overlay_debugging)
3098 ALL_OBJSECTIONS (objfile, osect)
3099 if (section_is_overlay (osect->the_bfd_section))
3100 {
3101 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3102 {
3103 if (overlay_is_mapped (osect))
3104 return osect->the_bfd_section;
3105 else
3106 best_match = osect;
3107 }
3108 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3109 best_match = osect;
3110 }
3111 return best_match ? best_match->the_bfd_section : NULL;
3112 }
3113
3114 /* Function: find_pc_mapped_section (PC)
3115 If PC falls into the VMA address range of an overlay section that is
3116 currently marked as MAPPED, return that section. Else return NULL. */
3117
3118 asection *
3119 find_pc_mapped_section (CORE_ADDR pc)
3120 {
3121 struct objfile *objfile;
3122 struct obj_section *osect;
3123
3124 if (overlay_debugging)
3125 ALL_OBJSECTIONS (objfile, osect)
3126 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3127 overlay_is_mapped (osect))
3128 return osect->the_bfd_section;
3129
3130 return NULL;
3131 }
3132
3133 /* Function: list_overlays_command
3134 Print a list of mapped sections and their PC ranges */
3135
3136 void
3137 list_overlays_command (char *args, int from_tty)
3138 {
3139 int nmapped = 0;
3140 struct objfile *objfile;
3141 struct obj_section *osect;
3142
3143 if (overlay_debugging)
3144 ALL_OBJSECTIONS (objfile, osect)
3145 if (overlay_is_mapped (osect))
3146 {
3147 const char *name;
3148 bfd_vma lma, vma;
3149 int size;
3150
3151 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3152 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3153 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3154 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3155
3156 printf_filtered ("Section %s, loaded at ", name);
3157 print_address_numeric (lma, 1, gdb_stdout);
3158 puts_filtered (" - ");
3159 print_address_numeric (lma + size, 1, gdb_stdout);
3160 printf_filtered (", mapped at ");
3161 print_address_numeric (vma, 1, gdb_stdout);
3162 puts_filtered (" - ");
3163 print_address_numeric (vma + size, 1, gdb_stdout);
3164 puts_filtered ("\n");
3165
3166 nmapped++;
3167 }
3168 if (nmapped == 0)
3169 printf_filtered ("No sections are mapped.\n");
3170 }
3171
3172 /* Function: map_overlay_command
3173 Mark the named section as mapped (ie. residing at its VMA address). */
3174
3175 void
3176 map_overlay_command (char *args, int from_tty)
3177 {
3178 struct objfile *objfile, *objfile2;
3179 struct obj_section *sec, *sec2;
3180 asection *bfdsec;
3181
3182 if (!overlay_debugging)
3183 error ("\
3184 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3185 the 'overlay manual' command.");
3186
3187 if (args == 0 || *args == 0)
3188 error ("Argument required: name of an overlay section");
3189
3190 /* First, find a section matching the user supplied argument */
3191 ALL_OBJSECTIONS (objfile, sec)
3192 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3193 {
3194 /* Now, check to see if the section is an overlay. */
3195 bfdsec = sec->the_bfd_section;
3196 if (!section_is_overlay (bfdsec))
3197 continue; /* not an overlay section */
3198
3199 /* Mark the overlay as "mapped" */
3200 sec->ovly_mapped = 1;
3201
3202 /* Next, make a pass and unmap any sections that are
3203 overlapped by this new section: */
3204 ALL_OBJSECTIONS (objfile2, sec2)
3205 if (sec2->ovly_mapped
3206 && sec != sec2
3207 && sec->the_bfd_section != sec2->the_bfd_section
3208 && sections_overlap (sec->the_bfd_section,
3209 sec2->the_bfd_section))
3210 {
3211 if (info_verbose)
3212 printf_filtered ("Note: section %s unmapped by overlap\n",
3213 bfd_section_name (objfile->obfd,
3214 sec2->the_bfd_section));
3215 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3216 }
3217 return;
3218 }
3219 error ("No overlay section called %s", args);
3220 }
3221
3222 /* Function: unmap_overlay_command
3223 Mark the overlay section as unmapped
3224 (ie. resident in its LMA address range, rather than the VMA range). */
3225
3226 void
3227 unmap_overlay_command (char *args, int from_tty)
3228 {
3229 struct objfile *objfile;
3230 struct obj_section *sec;
3231
3232 if (!overlay_debugging)
3233 error ("\
3234 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3235 the 'overlay manual' command.");
3236
3237 if (args == 0 || *args == 0)
3238 error ("Argument required: name of an overlay section");
3239
3240 /* First, find a section matching the user supplied argument */
3241 ALL_OBJSECTIONS (objfile, sec)
3242 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3243 {
3244 if (!sec->ovly_mapped)
3245 error ("Section %s is not mapped", args);
3246 sec->ovly_mapped = 0;
3247 return;
3248 }
3249 error ("No overlay section called %s", args);
3250 }
3251
3252 /* Function: overlay_auto_command
3253 A utility command to turn on overlay debugging.
3254 Possibly this should be done via a set/show command. */
3255
3256 static void
3257 overlay_auto_command (char *args, int from_tty)
3258 {
3259 overlay_debugging = ovly_auto;
3260 enable_overlay_breakpoints ();
3261 if (info_verbose)
3262 printf_filtered ("Automatic overlay debugging enabled.");
3263 }
3264
3265 /* Function: overlay_manual_command
3266 A utility command to turn on overlay debugging.
3267 Possibly this should be done via a set/show command. */
3268
3269 static void
3270 overlay_manual_command (char *args, int from_tty)
3271 {
3272 overlay_debugging = ovly_on;
3273 disable_overlay_breakpoints ();
3274 if (info_verbose)
3275 printf_filtered ("Overlay debugging enabled.");
3276 }
3277
3278 /* Function: overlay_off_command
3279 A utility command to turn on overlay debugging.
3280 Possibly this should be done via a set/show command. */
3281
3282 static void
3283 overlay_off_command (char *args, int from_tty)
3284 {
3285 overlay_debugging = ovly_off;
3286 disable_overlay_breakpoints ();
3287 if (info_verbose)
3288 printf_filtered ("Overlay debugging disabled.");
3289 }
3290
3291 static void
3292 overlay_load_command (char *args, int from_tty)
3293 {
3294 if (target_overlay_update)
3295 (*target_overlay_update) (NULL);
3296 else
3297 error ("This target does not know how to read its overlay state.");
3298 }
3299
3300 /* Function: overlay_command
3301 A place-holder for a mis-typed command */
3302
3303 /* Command list chain containing all defined "overlay" subcommands. */
3304 struct cmd_list_element *overlaylist;
3305
3306 static void
3307 overlay_command (char *args, int from_tty)
3308 {
3309 printf_unfiltered
3310 ("\"overlay\" must be followed by the name of an overlay command.\n");
3311 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3312 }
3313
3314
3315 /* Target Overlays for the "Simplest" overlay manager:
3316
3317 This is GDB's default target overlay layer. It works with the
3318 minimal overlay manager supplied as an example by Cygnus. The
3319 entry point is via a function pointer "target_overlay_update",
3320 so targets that use a different runtime overlay manager can
3321 substitute their own overlay_update function and take over the
3322 function pointer.
3323
3324 The overlay_update function pokes around in the target's data structures
3325 to see what overlays are mapped, and updates GDB's overlay mapping with
3326 this information.
3327
3328 In this simple implementation, the target data structures are as follows:
3329 unsigned _novlys; /# number of overlay sections #/
3330 unsigned _ovly_table[_novlys][4] = {
3331 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3332 {..., ..., ..., ...},
3333 }
3334 unsigned _novly_regions; /# number of overlay regions #/
3335 unsigned _ovly_region_table[_novly_regions][3] = {
3336 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3337 {..., ..., ...},
3338 }
3339 These functions will attempt to update GDB's mappedness state in the
3340 symbol section table, based on the target's mappedness state.
3341
3342 To do this, we keep a cached copy of the target's _ovly_table, and
3343 attempt to detect when the cached copy is invalidated. The main
3344 entry point is "simple_overlay_update(SECT), which looks up SECT in
3345 the cached table and re-reads only the entry for that section from
3346 the target (whenever possible).
3347 */
3348
3349 /* Cached, dynamically allocated copies of the target data structures: */
3350 static unsigned (*cache_ovly_table)[4] = 0;
3351 #if 0
3352 static unsigned (*cache_ovly_region_table)[3] = 0;
3353 #endif
3354 static unsigned cache_novlys = 0;
3355 #if 0
3356 static unsigned cache_novly_regions = 0;
3357 #endif
3358 static CORE_ADDR cache_ovly_table_base = 0;
3359 #if 0
3360 static CORE_ADDR cache_ovly_region_table_base = 0;
3361 #endif
3362 enum ovly_index
3363 {
3364 VMA, SIZE, LMA, MAPPED
3365 };
3366 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3367
3368 /* Throw away the cached copy of _ovly_table */
3369 static void
3370 simple_free_overlay_table (void)
3371 {
3372 if (cache_ovly_table)
3373 xfree (cache_ovly_table);
3374 cache_novlys = 0;
3375 cache_ovly_table = NULL;
3376 cache_ovly_table_base = 0;
3377 }
3378
3379 #if 0
3380 /* Throw away the cached copy of _ovly_region_table */
3381 static void
3382 simple_free_overlay_region_table (void)
3383 {
3384 if (cache_ovly_region_table)
3385 xfree (cache_ovly_region_table);
3386 cache_novly_regions = 0;
3387 cache_ovly_region_table = NULL;
3388 cache_ovly_region_table_base = 0;
3389 }
3390 #endif
3391
3392 /* Read an array of ints from the target into a local buffer.
3393 Convert to host order. int LEN is number of ints */
3394 static void
3395 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3396 {
3397 /* FIXME (alloca): Not safe if array is very large. */
3398 char *buf = alloca (len * TARGET_LONG_BYTES);
3399 int i;
3400
3401 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3402 for (i = 0; i < len; i++)
3403 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3404 TARGET_LONG_BYTES);
3405 }
3406
3407 /* Find and grab a copy of the target _ovly_table
3408 (and _novlys, which is needed for the table's size) */
3409 static int
3410 simple_read_overlay_table (void)
3411 {
3412 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3413
3414 simple_free_overlay_table ();
3415 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3416 if (! novlys_msym)
3417 {
3418 error ("Error reading inferior's overlay table: "
3419 "couldn't find `_novlys' variable\n"
3420 "in inferior. Use `overlay manual' mode.");
3421 return 0;
3422 }
3423
3424 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3425 if (! ovly_table_msym)
3426 {
3427 error ("Error reading inferior's overlay table: couldn't find "
3428 "`_ovly_table' array\n"
3429 "in inferior. Use `overlay manual' mode.");
3430 return 0;
3431 }
3432
3433 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3434 cache_ovly_table
3435 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3436 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3437 read_target_long_array (cache_ovly_table_base,
3438 (int *) cache_ovly_table,
3439 cache_novlys * 4);
3440
3441 return 1; /* SUCCESS */
3442 }
3443
3444 #if 0
3445 /* Find and grab a copy of the target _ovly_region_table
3446 (and _novly_regions, which is needed for the table's size) */
3447 static int
3448 simple_read_overlay_region_table (void)
3449 {
3450 struct minimal_symbol *msym;
3451
3452 simple_free_overlay_region_table ();
3453 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3454 if (msym != NULL)
3455 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3456 else
3457 return 0; /* failure */
3458 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3459 if (cache_ovly_region_table != NULL)
3460 {
3461 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3462 if (msym != NULL)
3463 {
3464 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3465 read_target_long_array (cache_ovly_region_table_base,
3466 (int *) cache_ovly_region_table,
3467 cache_novly_regions * 3);
3468 }
3469 else
3470 return 0; /* failure */
3471 }
3472 else
3473 return 0; /* failure */
3474 return 1; /* SUCCESS */
3475 }
3476 #endif
3477
3478 /* Function: simple_overlay_update_1
3479 A helper function for simple_overlay_update. Assuming a cached copy
3480 of _ovly_table exists, look through it to find an entry whose vma,
3481 lma and size match those of OSECT. Re-read the entry and make sure
3482 it still matches OSECT (else the table may no longer be valid).
3483 Set OSECT's mapped state to match the entry. Return: 1 for
3484 success, 0 for failure. */
3485
3486 static int
3487 simple_overlay_update_1 (struct obj_section *osect)
3488 {
3489 int i, size;
3490 bfd *obfd = osect->objfile->obfd;
3491 asection *bsect = osect->the_bfd_section;
3492
3493 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3494 for (i = 0; i < cache_novlys; i++)
3495 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3496 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3497 /* && cache_ovly_table[i][SIZE] == size */ )
3498 {
3499 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3500 (int *) cache_ovly_table[i], 4);
3501 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3502 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3503 /* && cache_ovly_table[i][SIZE] == size */ )
3504 {
3505 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3506 return 1;
3507 }
3508 else /* Warning! Warning! Target's ovly table has changed! */
3509 return 0;
3510 }
3511 return 0;
3512 }
3513
3514 /* Function: simple_overlay_update
3515 If OSECT is NULL, then update all sections' mapped state
3516 (after re-reading the entire target _ovly_table).
3517 If OSECT is non-NULL, then try to find a matching entry in the
3518 cached ovly_table and update only OSECT's mapped state.
3519 If a cached entry can't be found or the cache isn't valid, then
3520 re-read the entire cache, and go ahead and update all sections. */
3521
3522 static void
3523 simple_overlay_update (struct obj_section *osect)
3524 {
3525 struct objfile *objfile;
3526
3527 /* Were we given an osect to look up? NULL means do all of them. */
3528 if (osect)
3529 /* Have we got a cached copy of the target's overlay table? */
3530 if (cache_ovly_table != NULL)
3531 /* Does its cached location match what's currently in the symtab? */
3532 if (cache_ovly_table_base ==
3533 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3534 /* Then go ahead and try to look up this single section in the cache */
3535 if (simple_overlay_update_1 (osect))
3536 /* Found it! We're done. */
3537 return;
3538
3539 /* Cached table no good: need to read the entire table anew.
3540 Or else we want all the sections, in which case it's actually
3541 more efficient to read the whole table in one block anyway. */
3542
3543 if (! simple_read_overlay_table ())
3544 return;
3545
3546 /* Now may as well update all sections, even if only one was requested. */
3547 ALL_OBJSECTIONS (objfile, osect)
3548 if (section_is_overlay (osect->the_bfd_section))
3549 {
3550 int i, size;
3551 bfd *obfd = osect->objfile->obfd;
3552 asection *bsect = osect->the_bfd_section;
3553
3554 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3555 for (i = 0; i < cache_novlys; i++)
3556 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3557 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3558 /* && cache_ovly_table[i][SIZE] == size */ )
3559 { /* obj_section matches i'th entry in ovly_table */
3560 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3561 break; /* finished with inner for loop: break out */
3562 }
3563 }
3564 }
3565
3566 /* Set the output sections and output offsets for section SECTP in
3567 ABFD. The relocation code in BFD will read these offsets, so we
3568 need to be sure they're initialized. We map each section to itself,
3569 with no offset; this means that SECTP->vma will be honored. */
3570
3571 static void
3572 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3573 {
3574 sectp->output_section = sectp;
3575 sectp->output_offset = 0;
3576 }
3577
3578 /* Relocate the contents of a debug section SECTP in ABFD. The
3579 contents are stored in BUF if it is non-NULL, or returned in a
3580 malloc'd buffer otherwise.
3581
3582 For some platforms and debug info formats, shared libraries contain
3583 relocations against the debug sections (particularly for DWARF-2;
3584 one affected platform is PowerPC GNU/Linux, although it depends on
3585 the version of the linker in use). Also, ELF object files naturally
3586 have unresolved relocations for their debug sections. We need to apply
3587 the relocations in order to get the locations of symbols correct. */
3588
3589 bfd_byte *
3590 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3591 {
3592 /* We're only interested in debugging sections with relocation
3593 information. */
3594 if ((sectp->flags & SEC_RELOC) == 0)
3595 return NULL;
3596 if ((sectp->flags & SEC_DEBUGGING) == 0)
3597 return NULL;
3598
3599 /* We will handle section offsets properly elsewhere, so relocate as if
3600 all sections begin at 0. */
3601 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3602
3603 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf);
3604 }
3605
3606 void
3607 _initialize_symfile (void)
3608 {
3609 struct cmd_list_element *c;
3610
3611 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3612 "Load symbol table from executable file FILE.\n\
3613 The `file' command can also load symbol tables, as well as setting the file\n\
3614 to execute.", &cmdlist);
3615 set_cmd_completer (c, filename_completer);
3616
3617 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3618 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3619 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3620 ADDR is the starting address of the file's text.\n\
3621 The optional arguments are section-name section-address pairs and\n\
3622 should be specified if the data and bss segments are not contiguous\n\
3623 with the text. SECT is a section name to be loaded at SECT_ADDR.",
3624 &cmdlist);
3625 set_cmd_completer (c, filename_completer);
3626
3627 c = add_cmd ("add-shared-symbol-files", class_files,
3628 add_shared_symbol_files_command,
3629 "Load the symbols from shared objects in the dynamic linker's link map.",
3630 &cmdlist);
3631 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3632 &cmdlist);
3633
3634 c = add_cmd ("load", class_files, load_command,
3635 "Dynamically load FILE into the running program, and record its symbols\n\
3636 for access from GDB.", &cmdlist);
3637 set_cmd_completer (c, filename_completer);
3638
3639 add_show_from_set
3640 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3641 (char *) &symbol_reloading,
3642 "Set dynamic symbol table reloading multiple times in one run.",
3643 &setlist),
3644 &showlist);
3645
3646 add_prefix_cmd ("overlay", class_support, overlay_command,
3647 "Commands for debugging overlays.", &overlaylist,
3648 "overlay ", 0, &cmdlist);
3649
3650 add_com_alias ("ovly", "overlay", class_alias, 1);
3651 add_com_alias ("ov", "overlay", class_alias, 1);
3652
3653 add_cmd ("map-overlay", class_support, map_overlay_command,
3654 "Assert that an overlay section is mapped.", &overlaylist);
3655
3656 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3657 "Assert that an overlay section is unmapped.", &overlaylist);
3658
3659 add_cmd ("list-overlays", class_support, list_overlays_command,
3660 "List mappings of overlay sections.", &overlaylist);
3661
3662 add_cmd ("manual", class_support, overlay_manual_command,
3663 "Enable overlay debugging.", &overlaylist);
3664 add_cmd ("off", class_support, overlay_off_command,
3665 "Disable overlay debugging.", &overlaylist);
3666 add_cmd ("auto", class_support, overlay_auto_command,
3667 "Enable automatic overlay debugging.", &overlaylist);
3668 add_cmd ("load-target", class_support, overlay_load_command,
3669 "Read the overlay mapping state from the target.", &overlaylist);
3670
3671 /* Filename extension to source language lookup table: */
3672 init_filename_language_table ();
3673 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3674 (char *) &ext_args,
3675 "Set mapping between filename extension and source language.\n\
3676 Usage: set extension-language .foo bar",
3677 &setlist);
3678 set_cmd_cfunc (c, set_ext_lang_command);
3679
3680 add_info ("extensions", info_ext_lang_command,
3681 "All filename extensions associated with a source language.");
3682
3683 add_show_from_set
3684 (add_set_cmd ("download-write-size", class_obscure,
3685 var_integer, (char *) &download_write_size,
3686 "Set the write size used when downloading a program.\n"
3687 "Only used when downloading a program onto a remote\n"
3688 "target. Specify zero, or a negative value, to disable\n"
3689 "blocked writes. The actual size of each transfer is also\n"
3690 "limited by the size of the target packet and the memory\n"
3691 "cache.\n",
3692 &setlist),
3693 &showlist);
3694
3695 debug_file_directory = xstrdup (DEBUGDIR);
3696 c = (add_set_cmd
3697 ("debug-file-directory", class_support, var_string,
3698 (char *) &debug_file_directory,
3699 "Set the directory where separate debug symbols are searched for.\n"
3700 "Separate debug symbols are first searched for in the same\n"
3701 "directory as the binary, then in the `" DEBUG_SUBDIRECTORY
3702 "' subdirectory,\n"
3703 "and lastly at the path of the directory of the binary with\n"
3704 "the global debug-file directory prepended\n",
3705 &setlist));
3706 add_show_from_set (c, &showlist);
3707 set_cmd_completer (c, filename_completer);
3708
3709 }
This page took 0.146657 seconds and 4 git commands to generate.