Import new turkish translations from Translation Project's website.
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001 Free Software Foundation, Inc.
4 Contributed by Cygnus Support, using pieces from other GDB modules.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "target.h"
29 #include "value.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdbcmd.h"
33 #include "breakpoint.h"
34 #include "language.h"
35 #include "complaints.h"
36 #include "demangle.h"
37 #include "inferior.h" /* for write_pc */
38 #include "gdb-stabs.h"
39 #include "obstack.h"
40 #include "completer.h"
41
42 #include <sys/types.h>
43 #include <fcntl.h>
44 #include "gdb_string.h"
45 #include "gdb_stat.h"
46 #include <ctype.h>
47 #include <time.h>
48
49 #ifndef O_BINARY
50 #define O_BINARY 0
51 #endif
52
53 #ifdef HPUXHPPA
54
55 /* Some HP-UX related globals to clear when a new "main"
56 symbol file is loaded. HP-specific. */
57
58 extern int hp_som_som_object_present;
59 extern int hp_cxx_exception_support_initialized;
60 #define RESET_HP_UX_GLOBALS() do {\
61 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
62 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
63 } while (0)
64 #endif
65
66 int (*ui_load_progress_hook) (const char *section, unsigned long num);
67 void (*show_load_progress) (const char *section,
68 unsigned long section_sent,
69 unsigned long section_size,
70 unsigned long total_sent,
71 unsigned long total_size);
72 void (*pre_add_symbol_hook) (char *);
73 void (*post_add_symbol_hook) (void);
74 void (*target_new_objfile_hook) (struct objfile *);
75
76 static void clear_symtab_users_cleanup (void *ignore);
77
78 /* Global variables owned by this file */
79 int readnow_symbol_files; /* Read full symbols immediately */
80
81 struct complaint oldsyms_complaint =
82 {
83 "Replacing old symbols for `%s'", 0, 0
84 };
85
86 struct complaint empty_symtab_complaint =
87 {
88 "Empty symbol table found for `%s'", 0, 0
89 };
90
91 struct complaint unknown_option_complaint =
92 {
93 "Unknown option `%s' ignored", 0, 0
94 };
95
96 /* External variables and functions referenced. */
97
98 extern void report_transfer_performance (unsigned long, time_t, time_t);
99
100 /* Functions this file defines */
101
102 #if 0
103 static int simple_read_overlay_region_table (void);
104 static void simple_free_overlay_region_table (void);
105 #endif
106
107 static void set_initial_language (void);
108
109 static void load_command (char *, int);
110
111 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
112
113 static void add_symbol_file_command (char *, int);
114
115 static void add_shared_symbol_files_command (char *, int);
116
117 static void cashier_psymtab (struct partial_symtab *);
118
119 bfd *symfile_bfd_open (char *);
120
121 static void find_sym_fns (struct objfile *);
122
123 static void decrement_reading_symtab (void *);
124
125 static void overlay_invalidate_all (void);
126
127 static int overlay_is_mapped (struct obj_section *);
128
129 void list_overlays_command (char *, int);
130
131 void map_overlay_command (char *, int);
132
133 void unmap_overlay_command (char *, int);
134
135 static void overlay_auto_command (char *, int);
136
137 static void overlay_manual_command (char *, int);
138
139 static void overlay_off_command (char *, int);
140
141 static void overlay_load_command (char *, int);
142
143 static void overlay_command (char *, int);
144
145 static void simple_free_overlay_table (void);
146
147 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
148
149 static int simple_read_overlay_table (void);
150
151 static int simple_overlay_update_1 (struct obj_section *);
152
153 static void add_filename_language (char *ext, enum language lang);
154
155 static void set_ext_lang_command (char *args, int from_tty);
156
157 static void info_ext_lang_command (char *args, int from_tty);
158
159 static void init_filename_language_table (void);
160
161 void _initialize_symfile (void);
162
163 /* List of all available sym_fns. On gdb startup, each object file reader
164 calls add_symtab_fns() to register information on each format it is
165 prepared to read. */
166
167 static struct sym_fns *symtab_fns = NULL;
168
169 /* Flag for whether user will be reloading symbols multiple times.
170 Defaults to ON for VxWorks, otherwise OFF. */
171
172 #ifdef SYMBOL_RELOADING_DEFAULT
173 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
174 #else
175 int symbol_reloading = 0;
176 #endif
177
178 /* If non-zero, shared library symbols will be added automatically
179 when the inferior is created, new libraries are loaded, or when
180 attaching to the inferior. This is almost always what users will
181 want to have happen; but for very large programs, the startup time
182 will be excessive, and so if this is a problem, the user can clear
183 this flag and then add the shared library symbols as needed. Note
184 that there is a potential for confusion, since if the shared
185 library symbols are not loaded, commands like "info fun" will *not*
186 report all the functions that are actually present. */
187
188 int auto_solib_add = 1;
189
190 /* For systems that support it, a threshold size in megabytes. If
191 automatically adding a new library's symbol table to those already
192 known to the debugger would cause the total shared library symbol
193 size to exceed this threshhold, then the shlib's symbols are not
194 added. The threshold is ignored if the user explicitly asks for a
195 shlib to be added, such as when using the "sharedlibrary"
196 command. */
197
198 int auto_solib_limit;
199 \f
200
201 /* Since this function is called from within qsort, in an ANSI environment
202 it must conform to the prototype for qsort, which specifies that the
203 comparison function takes two "void *" pointers. */
204
205 static int
206 compare_symbols (const void *s1p, const void *s2p)
207 {
208 register struct symbol **s1, **s2;
209
210 s1 = (struct symbol **) s1p;
211 s2 = (struct symbol **) s2p;
212 return (strcmp (SYMBOL_SOURCE_NAME (*s1), SYMBOL_SOURCE_NAME (*s2)));
213 }
214
215 /*
216
217 LOCAL FUNCTION
218
219 compare_psymbols -- compare two partial symbols by name
220
221 DESCRIPTION
222
223 Given pointers to pointers to two partial symbol table entries,
224 compare them by name and return -N, 0, or +N (ala strcmp).
225 Typically used by sorting routines like qsort().
226
227 NOTES
228
229 Does direct compare of first two characters before punting
230 and passing to strcmp for longer compares. Note that the
231 original version had a bug whereby two null strings or two
232 identically named one character strings would return the
233 comparison of memory following the null byte.
234
235 */
236
237 static int
238 compare_psymbols (const void *s1p, const void *s2p)
239 {
240 register struct partial_symbol **s1, **s2;
241 register char *st1, *st2;
242
243 s1 = (struct partial_symbol **) s1p;
244 s2 = (struct partial_symbol **) s2p;
245 st1 = SYMBOL_SOURCE_NAME (*s1);
246 st2 = SYMBOL_SOURCE_NAME (*s2);
247
248
249 if ((st1[0] - st2[0]) || !st1[0])
250 {
251 return (st1[0] - st2[0]);
252 }
253 else if ((st1[1] - st2[1]) || !st1[1])
254 {
255 return (st1[1] - st2[1]);
256 }
257 else
258 {
259 return (strcmp (st1, st2));
260 }
261 }
262
263 void
264 sort_pst_symbols (struct partial_symtab *pst)
265 {
266 /* Sort the global list; don't sort the static list */
267
268 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
269 pst->n_global_syms, sizeof (struct partial_symbol *),
270 compare_psymbols);
271 }
272
273 /* Call sort_block_syms to sort alphabetically the symbols of one block. */
274
275 void
276 sort_block_syms (register struct block *b)
277 {
278 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
279 sizeof (struct symbol *), compare_symbols);
280 }
281
282 /* Call sort_symtab_syms to sort alphabetically
283 the symbols of each block of one symtab. */
284
285 void
286 sort_symtab_syms (register struct symtab *s)
287 {
288 register struct blockvector *bv;
289 int nbl;
290 int i;
291 register struct block *b;
292
293 if (s == 0)
294 return;
295 bv = BLOCKVECTOR (s);
296 nbl = BLOCKVECTOR_NBLOCKS (bv);
297 for (i = 0; i < nbl; i++)
298 {
299 b = BLOCKVECTOR_BLOCK (bv, i);
300 if (BLOCK_SHOULD_SORT (b))
301 sort_block_syms (b);
302 }
303 }
304
305 /* Make a null terminated copy of the string at PTR with SIZE characters in
306 the obstack pointed to by OBSTACKP . Returns the address of the copy.
307 Note that the string at PTR does not have to be null terminated, I.E. it
308 may be part of a larger string and we are only saving a substring. */
309
310 char *
311 obsavestring (char *ptr, int size, struct obstack *obstackp)
312 {
313 register char *p = (char *) obstack_alloc (obstackp, size + 1);
314 /* Open-coded memcpy--saves function call time. These strings are usually
315 short. FIXME: Is this really still true with a compiler that can
316 inline memcpy? */
317 {
318 register char *p1 = ptr;
319 register char *p2 = p;
320 char *end = ptr + size;
321 while (p1 != end)
322 *p2++ = *p1++;
323 }
324 p[size] = 0;
325 return p;
326 }
327
328 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
329 in the obstack pointed to by OBSTACKP. */
330
331 char *
332 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
333 const char *s3)
334 {
335 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
336 register char *val = (char *) obstack_alloc (obstackp, len);
337 strcpy (val, s1);
338 strcat (val, s2);
339 strcat (val, s3);
340 return val;
341 }
342
343 /* True if we are nested inside psymtab_to_symtab. */
344
345 int currently_reading_symtab = 0;
346
347 static void
348 decrement_reading_symtab (void *dummy)
349 {
350 currently_reading_symtab--;
351 }
352
353 /* Get the symbol table that corresponds to a partial_symtab.
354 This is fast after the first time you do it. In fact, there
355 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
356 case inline. */
357
358 struct symtab *
359 psymtab_to_symtab (register struct partial_symtab *pst)
360 {
361 /* If it's been looked up before, return it. */
362 if (pst->symtab)
363 return pst->symtab;
364
365 /* If it has not yet been read in, read it. */
366 if (!pst->readin)
367 {
368 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
369 currently_reading_symtab++;
370 (*pst->read_symtab) (pst);
371 do_cleanups (back_to);
372 }
373
374 return pst->symtab;
375 }
376
377 /* Initialize entry point information for this objfile. */
378
379 void
380 init_entry_point_info (struct objfile *objfile)
381 {
382 /* Save startup file's range of PC addresses to help blockframe.c
383 decide where the bottom of the stack is. */
384
385 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
386 {
387 /* Executable file -- record its entry point so we'll recognize
388 the startup file because it contains the entry point. */
389 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
390 }
391 else
392 {
393 /* Examination of non-executable.o files. Short-circuit this stuff. */
394 objfile->ei.entry_point = INVALID_ENTRY_POINT;
395 }
396 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
397 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
398 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
399 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
400 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
401 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
402 }
403
404 /* Get current entry point address. */
405
406 CORE_ADDR
407 entry_point_address (void)
408 {
409 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
410 }
411
412 /* Remember the lowest-addressed loadable section we've seen.
413 This function is called via bfd_map_over_sections.
414
415 In case of equal vmas, the section with the largest size becomes the
416 lowest-addressed loadable section.
417
418 If the vmas and sizes are equal, the last section is considered the
419 lowest-addressed loadable section. */
420
421 void
422 find_lowest_section (bfd *abfd, asection *sect, PTR obj)
423 {
424 asection **lowest = (asection **) obj;
425
426 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
427 return;
428 if (!*lowest)
429 *lowest = sect; /* First loadable section */
430 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
431 *lowest = sect; /* A lower loadable section */
432 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
433 && (bfd_section_size (abfd, (*lowest))
434 <= bfd_section_size (abfd, sect)))
435 *lowest = sect;
436 }
437
438
439 /* Build (allocate and populate) a section_addr_info struct from
440 an existing section table. */
441
442 extern struct section_addr_info *
443 build_section_addr_info_from_section_table (const struct section_table *start,
444 const struct section_table *end)
445 {
446 struct section_addr_info *sap;
447 const struct section_table *stp;
448 int oidx;
449
450 sap = xmalloc (sizeof (struct section_addr_info));
451 memset (sap, 0, sizeof (struct section_addr_info));
452
453 for (stp = start, oidx = 0; stp != end; stp++)
454 {
455 if (stp->the_bfd_section->flags & (SEC_ALLOC | SEC_LOAD)
456 && oidx < MAX_SECTIONS)
457 {
458 sap->other[oidx].addr = stp->addr;
459 sap->other[oidx].name = xstrdup (stp->the_bfd_section->name);
460 sap->other[oidx].sectindex = stp->the_bfd_section->index;
461 oidx++;
462 }
463 }
464
465 return sap;
466 }
467
468
469 /* Free all memory allocated by build_section_addr_info_from_section_table. */
470
471 extern void
472 free_section_addr_info (struct section_addr_info *sap)
473 {
474 int idx;
475
476 for (idx = 0; idx < MAX_SECTIONS; idx++)
477 if (sap->other[idx].name)
478 xfree (sap->other[idx].name);
479 xfree (sap);
480 }
481
482
483 /* Parse the user's idea of an offset for dynamic linking, into our idea
484 of how to represent it for fast symbol reading. This is the default
485 version of the sym_fns.sym_offsets function for symbol readers that
486 don't need to do anything special. It allocates a section_offsets table
487 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
488
489 void
490 default_symfile_offsets (struct objfile *objfile,
491 struct section_addr_info *addrs)
492 {
493 int i;
494 asection *sect = NULL;
495
496 objfile->num_sections = SECT_OFF_MAX;
497 objfile->section_offsets = (struct section_offsets *)
498 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
499 memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
500
501 /* Now calculate offsets for section that were specified by the
502 caller. */
503 for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
504 {
505 struct other_sections *osp ;
506
507 osp = &addrs->other[i] ;
508 if (osp->addr == 0)
509 continue;
510
511 /* Record all sections in offsets */
512 /* The section_offsets in the objfile are here filled in using
513 the BFD index. */
514 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
515 }
516
517 /* Remember the bfd indexes for the .text, .data, .bss and
518 .rodata sections. */
519
520 sect = bfd_get_section_by_name (objfile->obfd, ".text");
521 if (sect)
522 objfile->sect_index_text = sect->index;
523
524 sect = bfd_get_section_by_name (objfile->obfd, ".data");
525 if (sect)
526 objfile->sect_index_data = sect->index;
527
528 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
529 if (sect)
530 objfile->sect_index_bss = sect->index;
531
532 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
533 if (sect)
534 objfile->sect_index_rodata = sect->index;
535
536 }
537
538 /* Process a symbol file, as either the main file or as a dynamically
539 loaded file.
540
541 OBJFILE is where the symbols are to be read from.
542
543 ADDR is the address where the text segment was loaded, unless the
544 objfile is the main symbol file, in which case it is zero.
545
546 MAINLINE is nonzero if this is the main symbol file, or zero if
547 it's an extra symbol file such as dynamically loaded code.
548
549 VERBO is nonzero if the caller has printed a verbose message about
550 the symbol reading (and complaints can be more terse about it). */
551
552 void
553 syms_from_objfile (struct objfile *objfile, struct section_addr_info *addrs,
554 int mainline, int verbo)
555 {
556 asection *lower_sect;
557 asection *sect;
558 CORE_ADDR lower_offset;
559 struct section_addr_info local_addr;
560 struct cleanup *old_chain;
561 int i;
562
563 /* If ADDRS is NULL, initialize the local section_addr_info struct and
564 point ADDRS to it. We now establish the convention that an addr of
565 zero means no load address was specified. */
566
567 if (addrs == NULL)
568 {
569 memset (&local_addr, 0, sizeof (local_addr));
570 addrs = &local_addr;
571 }
572
573 init_entry_point_info (objfile);
574 find_sym_fns (objfile);
575
576 /* Make sure that partially constructed symbol tables will be cleaned up
577 if an error occurs during symbol reading. */
578 old_chain = make_cleanup_free_objfile (objfile);
579
580 if (mainline)
581 {
582 /* We will modify the main symbol table, make sure that all its users
583 will be cleaned up if an error occurs during symbol reading. */
584 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
585
586 /* Since no error yet, throw away the old symbol table. */
587
588 if (symfile_objfile != NULL)
589 {
590 free_objfile (symfile_objfile);
591 symfile_objfile = NULL;
592 }
593
594 /* Currently we keep symbols from the add-symbol-file command.
595 If the user wants to get rid of them, they should do "symbol-file"
596 without arguments first. Not sure this is the best behavior
597 (PR 2207). */
598
599 (*objfile->sf->sym_new_init) (objfile);
600 }
601
602 /* Convert addr into an offset rather than an absolute address.
603 We find the lowest address of a loaded segment in the objfile,
604 and assume that <addr> is where that got loaded.
605
606 We no longer warn if the lowest section is not a text segment (as
607 happens for the PA64 port. */
608 if (!mainline)
609 {
610 /* Find lowest loadable section to be used as starting point for
611 continguous sections. FIXME!! won't work without call to find
612 .text first, but this assumes text is lowest section. */
613 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
614 if (lower_sect == NULL)
615 bfd_map_over_sections (objfile->obfd, find_lowest_section,
616 (PTR) &lower_sect);
617 if (lower_sect == NULL)
618 warning ("no loadable sections found in added symbol-file %s",
619 objfile->name);
620 else
621 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
622 warning ("Lowest section in %s is %s at %s",
623 objfile->name,
624 bfd_section_name (objfile->obfd, lower_sect),
625 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
626 if (lower_sect != NULL)
627 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
628 else
629 lower_offset = 0;
630
631 /* Calculate offsets for the loadable sections.
632 FIXME! Sections must be in order of increasing loadable section
633 so that contiguous sections can use the lower-offset!!!
634
635 Adjust offsets if the segments are not contiguous.
636 If the section is contiguous, its offset should be set to
637 the offset of the highest loadable section lower than it
638 (the loadable section directly below it in memory).
639 this_offset = lower_offset = lower_addr - lower_orig_addr */
640
641 /* Calculate offsets for sections. */
642 for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
643 {
644 if (addrs->other[i].addr != 0)
645 {
646 sect = bfd_get_section_by_name (objfile->obfd, addrs->other[i].name);
647 if (sect)
648 {
649 addrs->other[i].addr -= bfd_section_vma (objfile->obfd, sect);
650 lower_offset = addrs->other[i].addr;
651 /* This is the index used by BFD. */
652 addrs->other[i].sectindex = sect->index ;
653 }
654 else
655 {
656 warning ("section %s not found in %s", addrs->other[i].name,
657 objfile->name);
658 addrs->other[i].addr = 0;
659 }
660 }
661 else
662 addrs->other[i].addr = lower_offset;
663 }
664 }
665
666 /* Initialize symbol reading routines for this objfile, allow complaints to
667 appear for this new file, and record how verbose to be, then do the
668 initial symbol reading for this file. */
669
670 (*objfile->sf->sym_init) (objfile);
671 clear_complaints (1, verbo);
672
673 (*objfile->sf->sym_offsets) (objfile, addrs);
674
675 #ifndef IBM6000_TARGET
676 /* This is a SVR4/SunOS specific hack, I think. In any event, it
677 screws RS/6000. sym_offsets should be doing this sort of thing,
678 because it knows the mapping between bfd sections and
679 section_offsets. */
680 /* This is a hack. As far as I can tell, section offsets are not
681 target dependent. They are all set to addr with a couple of
682 exceptions. The exceptions are sysvr4 shared libraries, whose
683 offsets are kept in solib structures anyway and rs6000 xcoff
684 which handles shared libraries in a completely unique way.
685
686 Section offsets are built similarly, except that they are built
687 by adding addr in all cases because there is no clear mapping
688 from section_offsets into actual sections. Note that solib.c
689 has a different algorithm for finding section offsets.
690
691 These should probably all be collapsed into some target
692 independent form of shared library support. FIXME. */
693
694 if (addrs)
695 {
696 struct obj_section *s;
697
698 /* Map section offsets in "addr" back to the object's
699 sections by comparing the section names with bfd's
700 section names. Then adjust the section address by
701 the offset. */ /* for gdb/13815 */
702
703 ALL_OBJFILE_OSECTIONS (objfile, s)
704 {
705 CORE_ADDR s_addr = 0;
706 int i;
707
708 for (i = 0;
709 !s_addr && i < MAX_SECTIONS && addrs->other[i].name;
710 i++)
711 if (strcmp (s->the_bfd_section->name, addrs->other[i].name) == 0)
712 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
713
714 s->addr -= s->offset;
715 s->addr += s_addr;
716 s->endaddr -= s->offset;
717 s->endaddr += s_addr;
718 s->offset += s_addr;
719 }
720 }
721 #endif /* not IBM6000_TARGET */
722
723 (*objfile->sf->sym_read) (objfile, mainline);
724
725 if (!have_partial_symbols () && !have_full_symbols ())
726 {
727 wrap_here ("");
728 printf_filtered ("(no debugging symbols found)...");
729 wrap_here ("");
730 }
731
732 /* Don't allow char * to have a typename (else would get caddr_t).
733 Ditto void *. FIXME: Check whether this is now done by all the
734 symbol readers themselves (many of them now do), and if so remove
735 it from here. */
736
737 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
738 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
739
740 /* Mark the objfile has having had initial symbol read attempted. Note
741 that this does not mean we found any symbols... */
742
743 objfile->flags |= OBJF_SYMS;
744
745 /* Discard cleanups as symbol reading was successful. */
746
747 discard_cleanups (old_chain);
748
749 /* Call this after reading in a new symbol table to give target
750 dependent code a crack at the new symbols. For instance, this
751 could be used to update the values of target-specific symbols GDB
752 needs to keep track of (such as _sigtramp, or whatever). */
753
754 TARGET_SYMFILE_POSTREAD (objfile);
755 }
756
757 /* Perform required actions after either reading in the initial
758 symbols for a new objfile, or mapping in the symbols from a reusable
759 objfile. */
760
761 void
762 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
763 {
764
765 /* If this is the main symbol file we have to clean up all users of the
766 old main symbol file. Otherwise it is sufficient to fixup all the
767 breakpoints that may have been redefined by this symbol file. */
768 if (mainline)
769 {
770 /* OK, make it the "real" symbol file. */
771 symfile_objfile = objfile;
772
773 clear_symtab_users ();
774 }
775 else
776 {
777 breakpoint_re_set ();
778 }
779
780 /* We're done reading the symbol file; finish off complaints. */
781 clear_complaints (0, verbo);
782 }
783
784 /* Process a symbol file, as either the main file or as a dynamically
785 loaded file.
786
787 NAME is the file name (which will be tilde-expanded and made
788 absolute herein) (but we don't free or modify NAME itself).
789 FROM_TTY says how verbose to be. MAINLINE specifies whether this
790 is the main symbol file, or whether it's an extra symbol file such
791 as dynamically loaded code. If !mainline, ADDR is the address
792 where the text segment was loaded.
793
794 Upon success, returns a pointer to the objfile that was added.
795 Upon failure, jumps back to command level (never returns). */
796
797 struct objfile *
798 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
799 int mainline, int flags)
800 {
801 struct objfile *objfile;
802 struct partial_symtab *psymtab;
803 bfd *abfd;
804
805 /* Open a bfd for the file, and give user a chance to burp if we'd be
806 interactively wiping out any existing symbols. */
807
808 abfd = symfile_bfd_open (name);
809
810 if ((have_full_symbols () || have_partial_symbols ())
811 && mainline
812 && from_tty
813 && !query ("Load new symbol table from \"%s\"? ", name))
814 error ("Not confirmed.");
815
816 objfile = allocate_objfile (abfd, flags);
817
818 /* If the objfile uses a mapped symbol file, and we have a psymtab for
819 it, then skip reading any symbols at this time. */
820
821 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
822 {
823 /* We mapped in an existing symbol table file that already has had
824 initial symbol reading performed, so we can skip that part. Notify
825 the user that instead of reading the symbols, they have been mapped.
826 */
827 if (from_tty || info_verbose)
828 {
829 printf_filtered ("Mapped symbols for %s...", name);
830 wrap_here ("");
831 gdb_flush (gdb_stdout);
832 }
833 init_entry_point_info (objfile);
834 find_sym_fns (objfile);
835 }
836 else
837 {
838 /* We either created a new mapped symbol table, mapped an existing
839 symbol table file which has not had initial symbol reading
840 performed, or need to read an unmapped symbol table. */
841 if (from_tty || info_verbose)
842 {
843 if (pre_add_symbol_hook)
844 pre_add_symbol_hook (name);
845 else
846 {
847 printf_filtered ("Reading symbols from %s...", name);
848 wrap_here ("");
849 gdb_flush (gdb_stdout);
850 }
851 }
852 syms_from_objfile (objfile, addrs, mainline, from_tty);
853 }
854
855 /* We now have at least a partial symbol table. Check to see if the
856 user requested that all symbols be read on initial access via either
857 the gdb startup command line or on a per symbol file basis. Expand
858 all partial symbol tables for this objfile if so. */
859
860 if ((flags & OBJF_READNOW) || readnow_symbol_files)
861 {
862 if (from_tty || info_verbose)
863 {
864 printf_filtered ("expanding to full symbols...");
865 wrap_here ("");
866 gdb_flush (gdb_stdout);
867 }
868
869 for (psymtab = objfile->psymtabs;
870 psymtab != NULL;
871 psymtab = psymtab->next)
872 {
873 psymtab_to_symtab (psymtab);
874 }
875 }
876
877 if (from_tty || info_verbose)
878 {
879 if (post_add_symbol_hook)
880 post_add_symbol_hook ();
881 else
882 {
883 printf_filtered ("done.\n");
884 gdb_flush (gdb_stdout);
885 }
886 }
887
888 new_symfile_objfile (objfile, mainline, from_tty);
889
890 if (target_new_objfile_hook)
891 target_new_objfile_hook (objfile);
892
893 return (objfile);
894 }
895
896 /* Call symbol_file_add() with default values and update whatever is
897 affected by the loading of a new main().
898 Used when the file is supplied in the gdb command line
899 and by some targets with special loading requirements.
900 The auxiliary function, symbol_file_add_main_1(), has the flags
901 argument for the switches that can only be specified in the symbol_file
902 command itself. */
903
904 void
905 symbol_file_add_main (char *args, int from_tty)
906 {
907 symbol_file_add_main_1 (args, from_tty, 0);
908 }
909
910 static void
911 symbol_file_add_main_1 (char *args, int from_tty, int flags)
912 {
913 symbol_file_add (args, from_tty, NULL, 1, flags);
914
915 #ifdef HPUXHPPA
916 RESET_HP_UX_GLOBALS ();
917 #endif
918
919 /* Getting new symbols may change our opinion about
920 what is frameless. */
921 reinit_frame_cache ();
922
923 set_initial_language ();
924 }
925
926 void
927 symbol_file_clear (int from_tty)
928 {
929 if ((have_full_symbols () || have_partial_symbols ())
930 && from_tty
931 && !query ("Discard symbol table from `%s'? ",
932 symfile_objfile->name))
933 error ("Not confirmed.");
934 free_all_objfiles ();
935
936 /* solib descriptors may have handles to objfiles. Since their
937 storage has just been released, we'd better wipe the solib
938 descriptors as well.
939 */
940 #if defined(SOLIB_RESTART)
941 SOLIB_RESTART ();
942 #endif
943
944 symfile_objfile = NULL;
945 if (from_tty)
946 printf_unfiltered ("No symbol file now.\n");
947 #ifdef HPUXHPPA
948 RESET_HP_UX_GLOBALS ();
949 #endif
950 }
951
952 /* This is the symbol-file command. Read the file, analyze its
953 symbols, and add a struct symtab to a symtab list. The syntax of
954 the command is rather bizarre--(1) buildargv implements various
955 quoting conventions which are undocumented and have little or
956 nothing in common with the way things are quoted (or not quoted)
957 elsewhere in GDB, (2) options are used, which are not generally
958 used in GDB (perhaps "set mapped on", "set readnow on" would be
959 better), (3) the order of options matters, which is contrary to GNU
960 conventions (because it is confusing and inconvenient). */
961 /* Note: ezannoni 2000-04-17. This function used to have support for
962 rombug (see remote-os9k.c). It consisted of a call to target_link()
963 (target.c) to get the address of the text segment from the target,
964 and pass that to symbol_file_add(). This is no longer supported. */
965
966 void
967 symbol_file_command (char *args, int from_tty)
968 {
969 char **argv;
970 char *name = NULL;
971 struct cleanup *cleanups;
972 int flags = OBJF_USERLOADED;
973
974 dont_repeat ();
975
976 if (args == NULL)
977 {
978 symbol_file_clear (from_tty);
979 }
980 else
981 {
982 if ((argv = buildargv (args)) == NULL)
983 {
984 nomem (0);
985 }
986 cleanups = make_cleanup_freeargv (argv);
987 while (*argv != NULL)
988 {
989 if (STREQ (*argv, "-mapped"))
990 flags |= OBJF_MAPPED;
991 else
992 if (STREQ (*argv, "-readnow"))
993 flags |= OBJF_READNOW;
994 else
995 if (**argv == '-')
996 error ("unknown option `%s'", *argv);
997 else
998 {
999 name = *argv;
1000
1001 symbol_file_add_main_1 (name, from_tty, flags);
1002 }
1003 argv++;
1004 }
1005
1006 if (name == NULL)
1007 {
1008 error ("no symbol file name was specified");
1009 }
1010 do_cleanups (cleanups);
1011 }
1012 }
1013
1014 /* Set the initial language.
1015
1016 A better solution would be to record the language in the psymtab when reading
1017 partial symbols, and then use it (if known) to set the language. This would
1018 be a win for formats that encode the language in an easily discoverable place,
1019 such as DWARF. For stabs, we can jump through hoops looking for specially
1020 named symbols or try to intuit the language from the specific type of stabs
1021 we find, but we can't do that until later when we read in full symbols.
1022 FIXME. */
1023
1024 static void
1025 set_initial_language (void)
1026 {
1027 struct partial_symtab *pst;
1028 enum language lang = language_unknown;
1029
1030 pst = find_main_psymtab ();
1031 if (pst != NULL)
1032 {
1033 if (pst->filename != NULL)
1034 {
1035 lang = deduce_language_from_filename (pst->filename);
1036 }
1037 if (lang == language_unknown)
1038 {
1039 /* Make C the default language */
1040 lang = language_c;
1041 }
1042 set_language (lang);
1043 expected_language = current_language; /* Don't warn the user */
1044 }
1045 }
1046
1047 /* Open file specified by NAME and hand it off to BFD for preliminary
1048 analysis. Result is a newly initialized bfd *, which includes a newly
1049 malloc'd` copy of NAME (tilde-expanded and made absolute).
1050 In case of trouble, error() is called. */
1051
1052 bfd *
1053 symfile_bfd_open (char *name)
1054 {
1055 bfd *sym_bfd;
1056 int desc;
1057 char *absolute_name;
1058
1059
1060
1061 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1062
1063 /* Look down path for it, allocate 2nd new malloc'd copy. */
1064 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1065 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1066 if (desc < 0)
1067 {
1068 char *exename = alloca (strlen (name) + 5);
1069 strcat (strcpy (exename, name), ".exe");
1070 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1071 0, &absolute_name);
1072 }
1073 #endif
1074 if (desc < 0)
1075 {
1076 make_cleanup (xfree, name);
1077 perror_with_name (name);
1078 }
1079 xfree (name); /* Free 1st new malloc'd copy */
1080 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1081 /* It'll be freed in free_objfile(). */
1082
1083 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1084 if (!sym_bfd)
1085 {
1086 close (desc);
1087 make_cleanup (xfree, name);
1088 error ("\"%s\": can't open to read symbols: %s.", name,
1089 bfd_errmsg (bfd_get_error ()));
1090 }
1091 sym_bfd->cacheable = true;
1092
1093 if (!bfd_check_format (sym_bfd, bfd_object))
1094 {
1095 /* FIXME: should be checking for errors from bfd_close (for one thing,
1096 on error it does not free all the storage associated with the
1097 bfd). */
1098 bfd_close (sym_bfd); /* This also closes desc */
1099 make_cleanup (xfree, name);
1100 error ("\"%s\": can't read symbols: %s.", name,
1101 bfd_errmsg (bfd_get_error ()));
1102 }
1103 return (sym_bfd);
1104 }
1105
1106 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1107 startup by the _initialize routine in each object file format reader,
1108 to register information about each format the the reader is prepared
1109 to handle. */
1110
1111 void
1112 add_symtab_fns (struct sym_fns *sf)
1113 {
1114 sf->next = symtab_fns;
1115 symtab_fns = sf;
1116 }
1117
1118
1119 /* Initialize to read symbols from the symbol file sym_bfd. It either
1120 returns or calls error(). The result is an initialized struct sym_fns
1121 in the objfile structure, that contains cached information about the
1122 symbol file. */
1123
1124 static void
1125 find_sym_fns (struct objfile *objfile)
1126 {
1127 struct sym_fns *sf;
1128 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1129 char *our_target = bfd_get_target (objfile->obfd);
1130
1131 /* Special kludge for apollo. See dstread.c. */
1132 if (STREQN (our_target, "apollo", 6))
1133 our_flavour = (enum bfd_flavour) -2;
1134
1135 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1136 {
1137 if (our_flavour == sf->sym_flavour)
1138 {
1139 objfile->sf = sf;
1140 return;
1141 }
1142 }
1143 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1144 bfd_get_target (objfile->obfd));
1145 }
1146 \f
1147 /* This function runs the load command of our current target. */
1148
1149 static void
1150 load_command (char *arg, int from_tty)
1151 {
1152 if (arg == NULL)
1153 arg = get_exec_file (1);
1154 target_load (arg, from_tty);
1155
1156 /* After re-loading the executable, we don't really know which
1157 overlays are mapped any more. */
1158 overlay_cache_invalid = 1;
1159 }
1160
1161 /* This version of "load" should be usable for any target. Currently
1162 it is just used for remote targets, not inftarg.c or core files,
1163 on the theory that only in that case is it useful.
1164
1165 Avoiding xmodem and the like seems like a win (a) because we don't have
1166 to worry about finding it, and (b) On VMS, fork() is very slow and so
1167 we don't want to run a subprocess. On the other hand, I'm not sure how
1168 performance compares. */
1169
1170 static int download_write_size = 512;
1171 static int validate_download = 0;
1172
1173 void
1174 generic_load (char *args, int from_tty)
1175 {
1176 asection *s;
1177 bfd *loadfile_bfd;
1178 time_t start_time, end_time; /* Start and end times of download */
1179 unsigned long data_count = 0; /* Number of bytes transferred to memory */
1180 unsigned long write_count = 0; /* Number of writes needed. */
1181 unsigned long load_offset; /* offset to add to vma for each section */
1182 char *filename;
1183 struct cleanup *old_cleanups;
1184 char *offptr;
1185 CORE_ADDR total_size = 0;
1186 CORE_ADDR total_sent = 0;
1187
1188 /* Parse the input argument - the user can specify a load offset as
1189 a second argument. */
1190 filename = xmalloc (strlen (args) + 1);
1191 old_cleanups = make_cleanup (xfree, filename);
1192 strcpy (filename, args);
1193 offptr = strchr (filename, ' ');
1194 if (offptr != NULL)
1195 {
1196 char *endptr;
1197 load_offset = strtoul (offptr, &endptr, 0);
1198 if (offptr == endptr)
1199 error ("Invalid download offset:%s\n", offptr);
1200 *offptr = '\0';
1201 }
1202 else
1203 load_offset = 0;
1204
1205 /* Open the file for loading. */
1206 loadfile_bfd = bfd_openr (filename, gnutarget);
1207 if (loadfile_bfd == NULL)
1208 {
1209 perror_with_name (filename);
1210 return;
1211 }
1212
1213 /* FIXME: should be checking for errors from bfd_close (for one thing,
1214 on error it does not free all the storage associated with the
1215 bfd). */
1216 make_cleanup_bfd_close (loadfile_bfd);
1217
1218 if (!bfd_check_format (loadfile_bfd, bfd_object))
1219 {
1220 error ("\"%s\" is not an object file: %s", filename,
1221 bfd_errmsg (bfd_get_error ()));
1222 }
1223
1224 for (s = loadfile_bfd->sections; s; s = s->next)
1225 if (s->flags & SEC_LOAD)
1226 total_size += bfd_get_section_size_before_reloc (s);
1227
1228 start_time = time (NULL);
1229
1230 for (s = loadfile_bfd->sections; s; s = s->next)
1231 {
1232 if (s->flags & SEC_LOAD)
1233 {
1234 CORE_ADDR size = bfd_get_section_size_before_reloc (s);
1235 if (size > 0)
1236 {
1237 char *buffer;
1238 struct cleanup *old_chain;
1239 CORE_ADDR lma = s->lma + load_offset;
1240 CORE_ADDR block_size;
1241 int err;
1242 const char *sect_name = bfd_get_section_name (loadfile_bfd, s);
1243 CORE_ADDR sent;
1244
1245 if (download_write_size > 0 && size > download_write_size)
1246 block_size = download_write_size;
1247 else
1248 block_size = size;
1249
1250 buffer = xmalloc (size);
1251 old_chain = make_cleanup (xfree, buffer);
1252
1253 /* Is this really necessary? I guess it gives the user something
1254 to look at during a long download. */
1255 #ifdef UI_OUT
1256 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1257 sect_name, paddr_nz (size), paddr_nz (lma));
1258 #else
1259 fprintf_unfiltered (gdb_stdout,
1260 "Loading section %s, size 0x%s lma 0x%s\n",
1261 sect_name, paddr_nz (size), paddr_nz (lma));
1262 #endif
1263
1264 bfd_get_section_contents (loadfile_bfd, s, buffer, 0, size);
1265
1266 sent = 0;
1267 do
1268 {
1269 CORE_ADDR len;
1270 CORE_ADDR this_transfer = size - sent;
1271 if (this_transfer >= block_size)
1272 this_transfer = block_size;
1273 len = target_write_memory_partial (lma, buffer,
1274 this_transfer, &err);
1275 if (err)
1276 break;
1277 if (validate_download)
1278 {
1279 /* Broken memories and broken monitors manifest
1280 themselves here when bring new computers to
1281 life. This doubles already slow downloads. */
1282 /* NOTE: cagney/1999-10-18: A more efficient
1283 implementation might add a verify_memory()
1284 method to the target vector and then use
1285 that. remote.c could implement that method
1286 using the ``qCRC'' packet. */
1287 char *check = xmalloc (len);
1288 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1289 if (target_read_memory (lma, check, len) != 0)
1290 error ("Download verify read failed at 0x%s",
1291 paddr (lma));
1292 if (memcmp (buffer, check, len) != 0)
1293 error ("Download verify compare failed at 0x%s",
1294 paddr (lma));
1295 do_cleanups (verify_cleanups);
1296 }
1297 data_count += len;
1298 lma += len;
1299 buffer += len;
1300 write_count += 1;
1301 sent += len;
1302 total_sent += len;
1303 if (quit_flag
1304 || (ui_load_progress_hook != NULL
1305 && ui_load_progress_hook (sect_name, sent)))
1306 error ("Canceled the download");
1307
1308 if (show_load_progress != NULL)
1309 show_load_progress (sect_name, sent, size, total_sent, total_size);
1310 }
1311 while (sent < size);
1312
1313 if (err != 0)
1314 error ("Memory access error while loading section %s.", sect_name);
1315
1316 do_cleanups (old_chain);
1317 }
1318 }
1319 }
1320
1321 end_time = time (NULL);
1322 {
1323 CORE_ADDR entry;
1324 entry = bfd_get_start_address (loadfile_bfd);
1325 #ifdef UI_OUT
1326 ui_out_text (uiout, "Start address ");
1327 ui_out_field_fmt (uiout, "address", "0x%s" , paddr_nz (entry));
1328 ui_out_text (uiout, ", load size ");
1329 ui_out_field_fmt (uiout, "load-size", "%ld" , data_count);
1330 ui_out_text (uiout, "\n");
1331
1332 #else
1333 fprintf_unfiltered (gdb_stdout,
1334 "Start address 0x%s , load size %ld\n",
1335 paddr_nz (entry), data_count);
1336 #endif
1337 /* We were doing this in remote-mips.c, I suspect it is right
1338 for other targets too. */
1339 write_pc (entry);
1340 }
1341
1342 /* FIXME: are we supposed to call symbol_file_add or not? According to
1343 a comment from remote-mips.c (where a call to symbol_file_add was
1344 commented out), making the call confuses GDB if more than one file is
1345 loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
1346 does. */
1347
1348 print_transfer_performance (gdb_stdout, data_count, write_count,
1349 end_time - start_time);
1350
1351 do_cleanups (old_cleanups);
1352 }
1353
1354 /* Report how fast the transfer went. */
1355
1356 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1357 replaced by print_transfer_performance (with a very different
1358 function signature). */
1359
1360 void
1361 report_transfer_performance (unsigned long data_count, time_t start_time,
1362 time_t end_time)
1363 {
1364 print_transfer_performance (gdb_stdout, data_count, end_time - start_time, 0);
1365 }
1366
1367 void
1368 print_transfer_performance (struct ui_file *stream,
1369 unsigned long data_count,
1370 unsigned long write_count,
1371 unsigned long time_count)
1372 {
1373 #ifdef UI_OUT
1374 ui_out_text (uiout, "Transfer rate: ");
1375 if (time_count > 0)
1376 {
1377 ui_out_field_fmt (uiout, "transfer-rate", "%ld",
1378 (data_count * 8) / time_count);
1379 ui_out_text (uiout, " bits/sec");
1380 }
1381 else
1382 {
1383 ui_out_field_fmt (uiout, "transferred-bits", "%ld", (data_count * 8));
1384 ui_out_text (uiout, " bits in <1 sec");
1385 }
1386 if (write_count > 0)
1387 {
1388 ui_out_text (uiout, ", ");
1389 ui_out_field_fmt (uiout, "write-rate", "%ld", data_count / write_count);
1390 ui_out_text (uiout, " bytes/write");
1391 }
1392 ui_out_text (uiout, ".\n");
1393 #else
1394 fprintf_unfiltered (stream, "Transfer rate: ");
1395 if (time_count > 0)
1396 fprintf_unfiltered (stream, "%ld bits/sec", (data_count * 8) / time_count);
1397 else
1398 fprintf_unfiltered (stream, "%ld bits in <1 sec", (data_count * 8));
1399 if (write_count > 0)
1400 fprintf_unfiltered (stream, ", %ld bytes/write", data_count / write_count);
1401 fprintf_unfiltered (stream, ".\n");
1402 #endif
1403 }
1404
1405 /* This function allows the addition of incrementally linked object files.
1406 It does not modify any state in the target, only in the debugger. */
1407 /* Note: ezannoni 2000-04-13 This function/command used to have a
1408 special case syntax for the rombug target (Rombug is the boot
1409 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1410 rombug case, the user doesn't need to supply a text address,
1411 instead a call to target_link() (in target.c) would supply the
1412 value to use. We are now discontinuing this type of ad hoc syntax. */
1413
1414 /* ARGSUSED */
1415 static void
1416 add_symbol_file_command (char *args, int from_tty)
1417 {
1418 char *filename = NULL;
1419 int flags = OBJF_USERLOADED;
1420 char *arg;
1421 int expecting_option = 0;
1422 int section_index = 0;
1423 int argcnt = 0;
1424 int sec_num = 0;
1425 int i;
1426 int expecting_sec_name = 0;
1427 int expecting_sec_addr = 0;
1428
1429 struct
1430 {
1431 char *name;
1432 char *value;
1433 } sect_opts[SECT_OFF_MAX];
1434
1435 struct section_addr_info section_addrs;
1436 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1437
1438 dont_repeat ();
1439
1440 if (args == NULL)
1441 error ("add-symbol-file takes a file name and an address");
1442
1443 /* Make a copy of the string that we can safely write into. */
1444 args = xstrdup (args);
1445
1446 /* Ensure section_addrs is initialized */
1447 memset (&section_addrs, 0, sizeof (section_addrs));
1448
1449 while (*args != '\000')
1450 {
1451 /* Any leading spaces? */
1452 while (isspace (*args))
1453 args++;
1454
1455 /* Point arg to the beginning of the argument. */
1456 arg = args;
1457
1458 /* Move args pointer over the argument. */
1459 while ((*args != '\000') && !isspace (*args))
1460 args++;
1461
1462 /* If there are more arguments, terminate arg and
1463 proceed past it. */
1464 if (*args != '\000')
1465 *args++ = '\000';
1466
1467 /* Now process the argument. */
1468 if (argcnt == 0)
1469 {
1470 /* The first argument is the file name. */
1471 filename = tilde_expand (arg);
1472 make_cleanup (xfree, filename);
1473 }
1474 else
1475 if (argcnt == 1)
1476 {
1477 /* The second argument is always the text address at which
1478 to load the program. */
1479 sect_opts[section_index].name = ".text";
1480 sect_opts[section_index].value = arg;
1481 section_index++;
1482 }
1483 else
1484 {
1485 /* It's an option (starting with '-') or it's an argument
1486 to an option */
1487
1488 if (*arg == '-')
1489 {
1490 if (strcmp (arg, "-mapped") == 0)
1491 flags |= OBJF_MAPPED;
1492 else
1493 if (strcmp (arg, "-readnow") == 0)
1494 flags |= OBJF_READNOW;
1495 else
1496 if (strcmp (arg, "-s") == 0)
1497 {
1498 if (section_index >= SECT_OFF_MAX)
1499 error ("Too many sections specified.");
1500 expecting_sec_name = 1;
1501 expecting_sec_addr = 1;
1502 }
1503 }
1504 else
1505 {
1506 if (expecting_sec_name)
1507 {
1508 sect_opts[section_index].name = arg;
1509 expecting_sec_name = 0;
1510 }
1511 else
1512 if (expecting_sec_addr)
1513 {
1514 sect_opts[section_index].value = arg;
1515 expecting_sec_addr = 0;
1516 section_index++;
1517 }
1518 else
1519 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1520 }
1521 }
1522 argcnt++;
1523 }
1524
1525 /* Print the prompt for the query below. And save the arguments into
1526 a sect_addr_info structure to be passed around to other
1527 functions. We have to split this up into separate print
1528 statements because local_hex_string returns a local static
1529 string. */
1530
1531 printf_filtered ("add symbol table from file \"%s\" at\n", filename);
1532 for (i = 0; i < section_index; i++)
1533 {
1534 CORE_ADDR addr;
1535 char *val = sect_opts[i].value;
1536 char *sec = sect_opts[i].name;
1537
1538 val = sect_opts[i].value;
1539 if (val[0] == '0' && val[1] == 'x')
1540 addr = strtoul (val+2, NULL, 16);
1541 else
1542 addr = strtoul (val, NULL, 10);
1543
1544 /* Here we store the section offsets in the order they were
1545 entered on the command line. */
1546 section_addrs.other[sec_num].name = sec;
1547 section_addrs.other[sec_num].addr = addr;
1548 printf_filtered ("\t%s_addr = %s\n",
1549 sec,
1550 local_hex_string ((unsigned long)addr));
1551 sec_num++;
1552
1553 /* The object's sections are initialized when a
1554 call is made to build_objfile_section_table (objfile).
1555 This happens in reread_symbols.
1556 At this point, we don't know what file type this is,
1557 so we can't determine what section names are valid. */
1558 }
1559
1560 if (from_tty && (!query ("%s", "")))
1561 error ("Not confirmed.");
1562
1563 symbol_file_add (filename, from_tty, &section_addrs, 0, flags);
1564
1565 /* Getting new symbols may change our opinion about what is
1566 frameless. */
1567 reinit_frame_cache ();
1568 do_cleanups (my_cleanups);
1569 }
1570 \f
1571 static void
1572 add_shared_symbol_files_command (char *args, int from_tty)
1573 {
1574 #ifdef ADD_SHARED_SYMBOL_FILES
1575 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1576 #else
1577 error ("This command is not available in this configuration of GDB.");
1578 #endif
1579 }
1580 \f
1581 /* Re-read symbols if a symbol-file has changed. */
1582 void
1583 reread_symbols (void)
1584 {
1585 struct objfile *objfile;
1586 long new_modtime;
1587 int reread_one = 0;
1588 struct stat new_statbuf;
1589 int res;
1590
1591 /* With the addition of shared libraries, this should be modified,
1592 the load time should be saved in the partial symbol tables, since
1593 different tables may come from different source files. FIXME.
1594 This routine should then walk down each partial symbol table
1595 and see if the symbol table that it originates from has been changed */
1596
1597 for (objfile = object_files; objfile; objfile = objfile->next)
1598 {
1599 if (objfile->obfd)
1600 {
1601 #ifdef IBM6000_TARGET
1602 /* If this object is from a shared library, then you should
1603 stat on the library name, not member name. */
1604
1605 if (objfile->obfd->my_archive)
1606 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1607 else
1608 #endif
1609 res = stat (objfile->name, &new_statbuf);
1610 if (res != 0)
1611 {
1612 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1613 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1614 objfile->name);
1615 continue;
1616 }
1617 new_modtime = new_statbuf.st_mtime;
1618 if (new_modtime != objfile->mtime)
1619 {
1620 struct cleanup *old_cleanups;
1621 struct section_offsets *offsets;
1622 int num_offsets;
1623 char *obfd_filename;
1624
1625 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1626 objfile->name);
1627
1628 /* There are various functions like symbol_file_add,
1629 symfile_bfd_open, syms_from_objfile, etc., which might
1630 appear to do what we want. But they have various other
1631 effects which we *don't* want. So we just do stuff
1632 ourselves. We don't worry about mapped files (for one thing,
1633 any mapped file will be out of date). */
1634
1635 /* If we get an error, blow away this objfile (not sure if
1636 that is the correct response for things like shared
1637 libraries). */
1638 old_cleanups = make_cleanup_free_objfile (objfile);
1639 /* We need to do this whenever any symbols go away. */
1640 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1641
1642 /* Clean up any state BFD has sitting around. We don't need
1643 to close the descriptor but BFD lacks a way of closing the
1644 BFD without closing the descriptor. */
1645 obfd_filename = bfd_get_filename (objfile->obfd);
1646 if (!bfd_close (objfile->obfd))
1647 error ("Can't close BFD for %s: %s", objfile->name,
1648 bfd_errmsg (bfd_get_error ()));
1649 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1650 if (objfile->obfd == NULL)
1651 error ("Can't open %s to read symbols.", objfile->name);
1652 /* bfd_openr sets cacheable to true, which is what we want. */
1653 if (!bfd_check_format (objfile->obfd, bfd_object))
1654 error ("Can't read symbols from %s: %s.", objfile->name,
1655 bfd_errmsg (bfd_get_error ()));
1656
1657 /* Save the offsets, we will nuke them with the rest of the
1658 psymbol_obstack. */
1659 num_offsets = objfile->num_sections;
1660 offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1661 memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1662
1663 /* Nuke all the state that we will re-read. Much of the following
1664 code which sets things to NULL really is necessary to tell
1665 other parts of GDB that there is nothing currently there. */
1666
1667 /* FIXME: Do we have to free a whole linked list, or is this
1668 enough? */
1669 if (objfile->global_psymbols.list)
1670 xmfree (objfile->md, objfile->global_psymbols.list);
1671 memset (&objfile->global_psymbols, 0,
1672 sizeof (objfile->global_psymbols));
1673 if (objfile->static_psymbols.list)
1674 xmfree (objfile->md, objfile->static_psymbols.list);
1675 memset (&objfile->static_psymbols, 0,
1676 sizeof (objfile->static_psymbols));
1677
1678 /* Free the obstacks for non-reusable objfiles */
1679 free_bcache (&objfile->psymbol_cache);
1680 obstack_free (&objfile->psymbol_obstack, 0);
1681 obstack_free (&objfile->symbol_obstack, 0);
1682 obstack_free (&objfile->type_obstack, 0);
1683 objfile->sections = NULL;
1684 objfile->symtabs = NULL;
1685 objfile->psymtabs = NULL;
1686 objfile->free_psymtabs = NULL;
1687 objfile->msymbols = NULL;
1688 objfile->minimal_symbol_count = 0;
1689 memset (&objfile->msymbol_hash, 0,
1690 sizeof (objfile->msymbol_hash));
1691 memset (&objfile->msymbol_demangled_hash, 0,
1692 sizeof (objfile->msymbol_demangled_hash));
1693 objfile->fundamental_types = NULL;
1694 if (objfile->sf != NULL)
1695 {
1696 (*objfile->sf->sym_finish) (objfile);
1697 }
1698
1699 /* We never make this a mapped file. */
1700 objfile->md = NULL;
1701 /* obstack_specify_allocation also initializes the obstack so
1702 it is empty. */
1703 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
1704 xmalloc, xfree);
1705 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
1706 xmalloc, xfree);
1707 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
1708 xmalloc, xfree);
1709 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
1710 xmalloc, xfree);
1711 if (build_objfile_section_table (objfile))
1712 {
1713 error ("Can't find the file sections in `%s': %s",
1714 objfile->name, bfd_errmsg (bfd_get_error ()));
1715 }
1716
1717 /* We use the same section offsets as from last time. I'm not
1718 sure whether that is always correct for shared libraries. */
1719 objfile->section_offsets = (struct section_offsets *)
1720 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
1721 memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
1722 objfile->num_sections = num_offsets;
1723
1724 /* What the hell is sym_new_init for, anyway? The concept of
1725 distinguishing between the main file and additional files
1726 in this way seems rather dubious. */
1727 if (objfile == symfile_objfile)
1728 {
1729 (*objfile->sf->sym_new_init) (objfile);
1730 #ifdef HPUXHPPA
1731 RESET_HP_UX_GLOBALS ();
1732 #endif
1733 }
1734
1735 (*objfile->sf->sym_init) (objfile);
1736 clear_complaints (1, 1);
1737 /* The "mainline" parameter is a hideous hack; I think leaving it
1738 zero is OK since dbxread.c also does what it needs to do if
1739 objfile->global_psymbols.size is 0. */
1740 (*objfile->sf->sym_read) (objfile, 0);
1741 if (!have_partial_symbols () && !have_full_symbols ())
1742 {
1743 wrap_here ("");
1744 printf_filtered ("(no debugging symbols found)\n");
1745 wrap_here ("");
1746 }
1747 objfile->flags |= OBJF_SYMS;
1748
1749 /* We're done reading the symbol file; finish off complaints. */
1750 clear_complaints (0, 1);
1751
1752 /* Getting new symbols may change our opinion about what is
1753 frameless. */
1754
1755 reinit_frame_cache ();
1756
1757 /* Discard cleanups as symbol reading was successful. */
1758 discard_cleanups (old_cleanups);
1759
1760 /* If the mtime has changed between the time we set new_modtime
1761 and now, we *want* this to be out of date, so don't call stat
1762 again now. */
1763 objfile->mtime = new_modtime;
1764 reread_one = 1;
1765
1766 /* Call this after reading in a new symbol table to give target
1767 dependent code a crack at the new symbols. For instance, this
1768 could be used to update the values of target-specific symbols GDB
1769 needs to keep track of (such as _sigtramp, or whatever). */
1770
1771 TARGET_SYMFILE_POSTREAD (objfile);
1772 }
1773 }
1774 }
1775
1776 if (reread_one)
1777 clear_symtab_users ();
1778 }
1779 \f
1780
1781
1782 typedef struct
1783 {
1784 char *ext;
1785 enum language lang;
1786 }
1787 filename_language;
1788
1789 static filename_language *filename_language_table;
1790 static int fl_table_size, fl_table_next;
1791
1792 static void
1793 add_filename_language (char *ext, enum language lang)
1794 {
1795 if (fl_table_next >= fl_table_size)
1796 {
1797 fl_table_size += 10;
1798 filename_language_table = xrealloc (filename_language_table,
1799 fl_table_size);
1800 }
1801
1802 filename_language_table[fl_table_next].ext = xstrdup (ext);
1803 filename_language_table[fl_table_next].lang = lang;
1804 fl_table_next++;
1805 }
1806
1807 static char *ext_args;
1808
1809 static void
1810 set_ext_lang_command (char *args, int from_tty)
1811 {
1812 int i;
1813 char *cp = ext_args;
1814 enum language lang;
1815
1816 /* First arg is filename extension, starting with '.' */
1817 if (*cp != '.')
1818 error ("'%s': Filename extension must begin with '.'", ext_args);
1819
1820 /* Find end of first arg. */
1821 while (*cp && !isspace (*cp))
1822 cp++;
1823
1824 if (*cp == '\0')
1825 error ("'%s': two arguments required -- filename extension and language",
1826 ext_args);
1827
1828 /* Null-terminate first arg */
1829 *cp++ = '\0';
1830
1831 /* Find beginning of second arg, which should be a source language. */
1832 while (*cp && isspace (*cp))
1833 cp++;
1834
1835 if (*cp == '\0')
1836 error ("'%s': two arguments required -- filename extension and language",
1837 ext_args);
1838
1839 /* Lookup the language from among those we know. */
1840 lang = language_enum (cp);
1841
1842 /* Now lookup the filename extension: do we already know it? */
1843 for (i = 0; i < fl_table_next; i++)
1844 if (0 == strcmp (ext_args, filename_language_table[i].ext))
1845 break;
1846
1847 if (i >= fl_table_next)
1848 {
1849 /* new file extension */
1850 add_filename_language (ext_args, lang);
1851 }
1852 else
1853 {
1854 /* redefining a previously known filename extension */
1855
1856 /* if (from_tty) */
1857 /* query ("Really make files of type %s '%s'?", */
1858 /* ext_args, language_str (lang)); */
1859
1860 xfree (filename_language_table[i].ext);
1861 filename_language_table[i].ext = xstrdup (ext_args);
1862 filename_language_table[i].lang = lang;
1863 }
1864 }
1865
1866 static void
1867 info_ext_lang_command (char *args, int from_tty)
1868 {
1869 int i;
1870
1871 printf_filtered ("Filename extensions and the languages they represent:");
1872 printf_filtered ("\n\n");
1873 for (i = 0; i < fl_table_next; i++)
1874 printf_filtered ("\t%s\t- %s\n",
1875 filename_language_table[i].ext,
1876 language_str (filename_language_table[i].lang));
1877 }
1878
1879 static void
1880 init_filename_language_table (void)
1881 {
1882 if (fl_table_size == 0) /* protect against repetition */
1883 {
1884 fl_table_size = 20;
1885 fl_table_next = 0;
1886 filename_language_table =
1887 xmalloc (fl_table_size * sizeof (*filename_language_table));
1888 add_filename_language (".c", language_c);
1889 add_filename_language (".C", language_cplus);
1890 add_filename_language (".cc", language_cplus);
1891 add_filename_language (".cp", language_cplus);
1892 add_filename_language (".cpp", language_cplus);
1893 add_filename_language (".cxx", language_cplus);
1894 add_filename_language (".c++", language_cplus);
1895 add_filename_language (".java", language_java);
1896 add_filename_language (".class", language_java);
1897 add_filename_language (".ch", language_chill);
1898 add_filename_language (".c186", language_chill);
1899 add_filename_language (".c286", language_chill);
1900 add_filename_language (".f", language_fortran);
1901 add_filename_language (".F", language_fortran);
1902 add_filename_language (".s", language_asm);
1903 add_filename_language (".S", language_asm);
1904 add_filename_language (".pas", language_pascal);
1905 add_filename_language (".p", language_pascal);
1906 add_filename_language (".pp", language_pascal);
1907 }
1908 }
1909
1910 enum language
1911 deduce_language_from_filename (char *filename)
1912 {
1913 int i;
1914 char *cp;
1915
1916 if (filename != NULL)
1917 if ((cp = strrchr (filename, '.')) != NULL)
1918 for (i = 0; i < fl_table_next; i++)
1919 if (strcmp (cp, filename_language_table[i].ext) == 0)
1920 return filename_language_table[i].lang;
1921
1922 return language_unknown;
1923 }
1924 \f
1925 /* allocate_symtab:
1926
1927 Allocate and partly initialize a new symbol table. Return a pointer
1928 to it. error() if no space.
1929
1930 Caller must set these fields:
1931 LINETABLE(symtab)
1932 symtab->blockvector
1933 symtab->dirname
1934 symtab->free_code
1935 symtab->free_ptr
1936 possibly free_named_symtabs (symtab->filename);
1937 */
1938
1939 struct symtab *
1940 allocate_symtab (char *filename, struct objfile *objfile)
1941 {
1942 register struct symtab *symtab;
1943
1944 symtab = (struct symtab *)
1945 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
1946 memset (symtab, 0, sizeof (*symtab));
1947 symtab->filename = obsavestring (filename, strlen (filename),
1948 &objfile->symbol_obstack);
1949 symtab->fullname = NULL;
1950 symtab->language = deduce_language_from_filename (filename);
1951 symtab->debugformat = obsavestring ("unknown", 7,
1952 &objfile->symbol_obstack);
1953
1954 /* Hook it to the objfile it comes from */
1955
1956 symtab->objfile = objfile;
1957 symtab->next = objfile->symtabs;
1958 objfile->symtabs = symtab;
1959
1960 /* FIXME: This should go away. It is only defined for the Z8000,
1961 and the Z8000 definition of this macro doesn't have anything to
1962 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
1963 here for convenience. */
1964 #ifdef INIT_EXTRA_SYMTAB_INFO
1965 INIT_EXTRA_SYMTAB_INFO (symtab);
1966 #endif
1967
1968 return (symtab);
1969 }
1970
1971 struct partial_symtab *
1972 allocate_psymtab (char *filename, struct objfile *objfile)
1973 {
1974 struct partial_symtab *psymtab;
1975
1976 if (objfile->free_psymtabs)
1977 {
1978 psymtab = objfile->free_psymtabs;
1979 objfile->free_psymtabs = psymtab->next;
1980 }
1981 else
1982 psymtab = (struct partial_symtab *)
1983 obstack_alloc (&objfile->psymbol_obstack,
1984 sizeof (struct partial_symtab));
1985
1986 memset (psymtab, 0, sizeof (struct partial_symtab));
1987 psymtab->filename = obsavestring (filename, strlen (filename),
1988 &objfile->psymbol_obstack);
1989 psymtab->symtab = NULL;
1990
1991 /* Prepend it to the psymtab list for the objfile it belongs to.
1992 Psymtabs are searched in most recent inserted -> least recent
1993 inserted order. */
1994
1995 psymtab->objfile = objfile;
1996 psymtab->next = objfile->psymtabs;
1997 objfile->psymtabs = psymtab;
1998 #if 0
1999 {
2000 struct partial_symtab **prev_pst;
2001 psymtab->objfile = objfile;
2002 psymtab->next = NULL;
2003 prev_pst = &(objfile->psymtabs);
2004 while ((*prev_pst) != NULL)
2005 prev_pst = &((*prev_pst)->next);
2006 (*prev_pst) = psymtab;
2007 }
2008 #endif
2009
2010 return (psymtab);
2011 }
2012
2013 void
2014 discard_psymtab (struct partial_symtab *pst)
2015 {
2016 struct partial_symtab **prev_pst;
2017
2018 /* From dbxread.c:
2019 Empty psymtabs happen as a result of header files which don't
2020 have any symbols in them. There can be a lot of them. But this
2021 check is wrong, in that a psymtab with N_SLINE entries but
2022 nothing else is not empty, but we don't realize that. Fixing
2023 that without slowing things down might be tricky. */
2024
2025 /* First, snip it out of the psymtab chain */
2026
2027 prev_pst = &(pst->objfile->psymtabs);
2028 while ((*prev_pst) != pst)
2029 prev_pst = &((*prev_pst)->next);
2030 (*prev_pst) = pst->next;
2031
2032 /* Next, put it on a free list for recycling */
2033
2034 pst->next = pst->objfile->free_psymtabs;
2035 pst->objfile->free_psymtabs = pst;
2036 }
2037 \f
2038
2039 /* Reset all data structures in gdb which may contain references to symbol
2040 table data. */
2041
2042 void
2043 clear_symtab_users (void)
2044 {
2045 /* Someday, we should do better than this, by only blowing away
2046 the things that really need to be blown. */
2047 clear_value_history ();
2048 clear_displays ();
2049 clear_internalvars ();
2050 breakpoint_re_set ();
2051 set_default_breakpoint (0, 0, 0, 0);
2052 current_source_symtab = 0;
2053 current_source_line = 0;
2054 clear_pc_function_cache ();
2055 if (target_new_objfile_hook)
2056 target_new_objfile_hook (NULL);
2057 }
2058
2059 static void
2060 clear_symtab_users_cleanup (void *ignore)
2061 {
2062 clear_symtab_users ();
2063 }
2064
2065 /* clear_symtab_users_once:
2066
2067 This function is run after symbol reading, or from a cleanup.
2068 If an old symbol table was obsoleted, the old symbol table
2069 has been blown away, but the other GDB data structures that may
2070 reference it have not yet been cleared or re-directed. (The old
2071 symtab was zapped, and the cleanup queued, in free_named_symtab()
2072 below.)
2073
2074 This function can be queued N times as a cleanup, or called
2075 directly; it will do all the work the first time, and then will be a
2076 no-op until the next time it is queued. This works by bumping a
2077 counter at queueing time. Much later when the cleanup is run, or at
2078 the end of symbol processing (in case the cleanup is discarded), if
2079 the queued count is greater than the "done-count", we do the work
2080 and set the done-count to the queued count. If the queued count is
2081 less than or equal to the done-count, we just ignore the call. This
2082 is needed because reading a single .o file will often replace many
2083 symtabs (one per .h file, for example), and we don't want to reset
2084 the breakpoints N times in the user's face.
2085
2086 The reason we both queue a cleanup, and call it directly after symbol
2087 reading, is because the cleanup protects us in case of errors, but is
2088 discarded if symbol reading is successful. */
2089
2090 #if 0
2091 /* FIXME: As free_named_symtabs is currently a big noop this function
2092 is no longer needed. */
2093 static void clear_symtab_users_once (void);
2094
2095 static int clear_symtab_users_queued;
2096 static int clear_symtab_users_done;
2097
2098 static void
2099 clear_symtab_users_once (void)
2100 {
2101 /* Enforce once-per-`do_cleanups'-semantics */
2102 if (clear_symtab_users_queued <= clear_symtab_users_done)
2103 return;
2104 clear_symtab_users_done = clear_symtab_users_queued;
2105
2106 clear_symtab_users ();
2107 }
2108 #endif
2109
2110 /* Delete the specified psymtab, and any others that reference it. */
2111
2112 static void
2113 cashier_psymtab (struct partial_symtab *pst)
2114 {
2115 struct partial_symtab *ps, *pprev = NULL;
2116 int i;
2117
2118 /* Find its previous psymtab in the chain */
2119 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2120 {
2121 if (ps == pst)
2122 break;
2123 pprev = ps;
2124 }
2125
2126 if (ps)
2127 {
2128 /* Unhook it from the chain. */
2129 if (ps == pst->objfile->psymtabs)
2130 pst->objfile->psymtabs = ps->next;
2131 else
2132 pprev->next = ps->next;
2133
2134 /* FIXME, we can't conveniently deallocate the entries in the
2135 partial_symbol lists (global_psymbols/static_psymbols) that
2136 this psymtab points to. These just take up space until all
2137 the psymtabs are reclaimed. Ditto the dependencies list and
2138 filename, which are all in the psymbol_obstack. */
2139
2140 /* We need to cashier any psymtab that has this one as a dependency... */
2141 again:
2142 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2143 {
2144 for (i = 0; i < ps->number_of_dependencies; i++)
2145 {
2146 if (ps->dependencies[i] == pst)
2147 {
2148 cashier_psymtab (ps);
2149 goto again; /* Must restart, chain has been munged. */
2150 }
2151 }
2152 }
2153 }
2154 }
2155
2156 /* If a symtab or psymtab for filename NAME is found, free it along
2157 with any dependent breakpoints, displays, etc.
2158 Used when loading new versions of object modules with the "add-file"
2159 command. This is only called on the top-level symtab or psymtab's name;
2160 it is not called for subsidiary files such as .h files.
2161
2162 Return value is 1 if we blew away the environment, 0 if not.
2163 FIXME. The return value appears to never be used.
2164
2165 FIXME. I think this is not the best way to do this. We should
2166 work on being gentler to the environment while still cleaning up
2167 all stray pointers into the freed symtab. */
2168
2169 int
2170 free_named_symtabs (char *name)
2171 {
2172 #if 0
2173 /* FIXME: With the new method of each objfile having it's own
2174 psymtab list, this function needs serious rethinking. In particular,
2175 why was it ever necessary to toss psymtabs with specific compilation
2176 unit filenames, as opposed to all psymtabs from a particular symbol
2177 file? -- fnf
2178 Well, the answer is that some systems permit reloading of particular
2179 compilation units. We want to blow away any old info about these
2180 compilation units, regardless of which objfiles they arrived in. --gnu. */
2181
2182 register struct symtab *s;
2183 register struct symtab *prev;
2184 register struct partial_symtab *ps;
2185 struct blockvector *bv;
2186 int blewit = 0;
2187
2188 /* We only wack things if the symbol-reload switch is set. */
2189 if (!symbol_reloading)
2190 return 0;
2191
2192 /* Some symbol formats have trouble providing file names... */
2193 if (name == 0 || *name == '\0')
2194 return 0;
2195
2196 /* Look for a psymtab with the specified name. */
2197
2198 again2:
2199 for (ps = partial_symtab_list; ps; ps = ps->next)
2200 {
2201 if (STREQ (name, ps->filename))
2202 {
2203 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2204 goto again2; /* Must restart, chain has been munged */
2205 }
2206 }
2207
2208 /* Look for a symtab with the specified name. */
2209
2210 for (s = symtab_list; s; s = s->next)
2211 {
2212 if (STREQ (name, s->filename))
2213 break;
2214 prev = s;
2215 }
2216
2217 if (s)
2218 {
2219 if (s == symtab_list)
2220 symtab_list = s->next;
2221 else
2222 prev->next = s->next;
2223
2224 /* For now, queue a delete for all breakpoints, displays, etc., whether
2225 or not they depend on the symtab being freed. This should be
2226 changed so that only those data structures affected are deleted. */
2227
2228 /* But don't delete anything if the symtab is empty.
2229 This test is necessary due to a bug in "dbxread.c" that
2230 causes empty symtabs to be created for N_SO symbols that
2231 contain the pathname of the object file. (This problem
2232 has been fixed in GDB 3.9x). */
2233
2234 bv = BLOCKVECTOR (s);
2235 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2236 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2237 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2238 {
2239 complain (&oldsyms_complaint, name);
2240
2241 clear_symtab_users_queued++;
2242 make_cleanup (clear_symtab_users_once, 0);
2243 blewit = 1;
2244 }
2245 else
2246 {
2247 complain (&empty_symtab_complaint, name);
2248 }
2249
2250 free_symtab (s);
2251 }
2252 else
2253 {
2254 /* It is still possible that some breakpoints will be affected
2255 even though no symtab was found, since the file might have
2256 been compiled without debugging, and hence not be associated
2257 with a symtab. In order to handle this correctly, we would need
2258 to keep a list of text address ranges for undebuggable files.
2259 For now, we do nothing, since this is a fairly obscure case. */
2260 ;
2261 }
2262
2263 /* FIXME, what about the minimal symbol table? */
2264 return blewit;
2265 #else
2266 return (0);
2267 #endif
2268 }
2269 \f
2270 /* Allocate and partially fill a partial symtab. It will be
2271 completely filled at the end of the symbol list.
2272
2273 FILENAME is the name of the symbol-file we are reading from. */
2274
2275 struct partial_symtab *
2276 start_psymtab_common (struct objfile *objfile,
2277 struct section_offsets *section_offsets, char *filename,
2278 CORE_ADDR textlow, struct partial_symbol **global_syms,
2279 struct partial_symbol **static_syms)
2280 {
2281 struct partial_symtab *psymtab;
2282
2283 psymtab = allocate_psymtab (filename, objfile);
2284 psymtab->section_offsets = section_offsets;
2285 psymtab->textlow = textlow;
2286 psymtab->texthigh = psymtab->textlow; /* default */
2287 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2288 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2289 return (psymtab);
2290 }
2291 \f
2292 /* Add a symbol with a long value to a psymtab.
2293 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2294
2295 void
2296 add_psymbol_to_list (char *name, int namelength, namespace_enum namespace,
2297 enum address_class class,
2298 struct psymbol_allocation_list *list, long val, /* Value as a long */
2299 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2300 enum language language, struct objfile *objfile)
2301 {
2302 register struct partial_symbol *psym;
2303 char *buf = alloca (namelength + 1);
2304 /* psymbol is static so that there will be no uninitialized gaps in the
2305 structure which might contain random data, causing cache misses in
2306 bcache. */
2307 static struct partial_symbol psymbol;
2308
2309 /* Create local copy of the partial symbol */
2310 memcpy (buf, name, namelength);
2311 buf[namelength] = '\0';
2312 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2313 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2314 if (val != 0)
2315 {
2316 SYMBOL_VALUE (&psymbol) = val;
2317 }
2318 else
2319 {
2320 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2321 }
2322 SYMBOL_SECTION (&psymbol) = 0;
2323 SYMBOL_LANGUAGE (&psymbol) = language;
2324 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2325 PSYMBOL_CLASS (&psymbol) = class;
2326 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2327
2328 /* Stash the partial symbol away in the cache */
2329 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2330
2331 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2332 if (list->next >= list->list + list->size)
2333 {
2334 extend_psymbol_list (list, objfile);
2335 }
2336 *list->next++ = psym;
2337 OBJSTAT (objfile, n_psyms++);
2338 }
2339
2340 /* Add a symbol with a long value to a psymtab. This differs from
2341 * add_psymbol_to_list above in taking both a mangled and a demangled
2342 * name. */
2343
2344 void
2345 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2346 int dem_namelength, namespace_enum namespace,
2347 enum address_class class,
2348 struct psymbol_allocation_list *list, long val, /* Value as a long */
2349 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2350 enum language language,
2351 struct objfile *objfile)
2352 {
2353 register struct partial_symbol *psym;
2354 char *buf = alloca (namelength + 1);
2355 /* psymbol is static so that there will be no uninitialized gaps in the
2356 structure which might contain random data, causing cache misses in
2357 bcache. */
2358 static struct partial_symbol psymbol;
2359
2360 /* Create local copy of the partial symbol */
2361
2362 memcpy (buf, name, namelength);
2363 buf[namelength] = '\0';
2364 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2365
2366 buf = alloca (dem_namelength + 1);
2367 memcpy (buf, dem_name, dem_namelength);
2368 buf[dem_namelength] = '\0';
2369
2370 switch (language)
2371 {
2372 case language_c:
2373 case language_cplus:
2374 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2375 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2376 break;
2377 case language_chill:
2378 SYMBOL_CHILL_DEMANGLED_NAME (&psymbol) =
2379 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2380
2381 /* FIXME What should be done for the default case? Ignoring for now. */
2382 }
2383
2384 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2385 if (val != 0)
2386 {
2387 SYMBOL_VALUE (&psymbol) = val;
2388 }
2389 else
2390 {
2391 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2392 }
2393 SYMBOL_SECTION (&psymbol) = 0;
2394 SYMBOL_LANGUAGE (&psymbol) = language;
2395 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2396 PSYMBOL_CLASS (&psymbol) = class;
2397 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2398
2399 /* Stash the partial symbol away in the cache */
2400 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2401
2402 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2403 if (list->next >= list->list + list->size)
2404 {
2405 extend_psymbol_list (list, objfile);
2406 }
2407 *list->next++ = psym;
2408 OBJSTAT (objfile, n_psyms++);
2409 }
2410
2411 /* Initialize storage for partial symbols. */
2412
2413 void
2414 init_psymbol_list (struct objfile *objfile, int total_symbols)
2415 {
2416 /* Free any previously allocated psymbol lists. */
2417
2418 if (objfile->global_psymbols.list)
2419 {
2420 xmfree (objfile->md, (PTR) objfile->global_psymbols.list);
2421 }
2422 if (objfile->static_psymbols.list)
2423 {
2424 xmfree (objfile->md, (PTR) objfile->static_psymbols.list);
2425 }
2426
2427 /* Current best guess is that approximately a twentieth
2428 of the total symbols (in a debugging file) are global or static
2429 oriented symbols */
2430
2431 objfile->global_psymbols.size = total_symbols / 10;
2432 objfile->static_psymbols.size = total_symbols / 10;
2433
2434 if (objfile->global_psymbols.size > 0)
2435 {
2436 objfile->global_psymbols.next =
2437 objfile->global_psymbols.list = (struct partial_symbol **)
2438 xmmalloc (objfile->md, (objfile->global_psymbols.size
2439 * sizeof (struct partial_symbol *)));
2440 }
2441 if (objfile->static_psymbols.size > 0)
2442 {
2443 objfile->static_psymbols.next =
2444 objfile->static_psymbols.list = (struct partial_symbol **)
2445 xmmalloc (objfile->md, (objfile->static_psymbols.size
2446 * sizeof (struct partial_symbol *)));
2447 }
2448 }
2449
2450 /* OVERLAYS:
2451 The following code implements an abstraction for debugging overlay sections.
2452
2453 The target model is as follows:
2454 1) The gnu linker will permit multiple sections to be mapped into the
2455 same VMA, each with its own unique LMA (or load address).
2456 2) It is assumed that some runtime mechanism exists for mapping the
2457 sections, one by one, from the load address into the VMA address.
2458 3) This code provides a mechanism for gdb to keep track of which
2459 sections should be considered to be mapped from the VMA to the LMA.
2460 This information is used for symbol lookup, and memory read/write.
2461 For instance, if a section has been mapped then its contents
2462 should be read from the VMA, otherwise from the LMA.
2463
2464 Two levels of debugger support for overlays are available. One is
2465 "manual", in which the debugger relies on the user to tell it which
2466 overlays are currently mapped. This level of support is
2467 implemented entirely in the core debugger, and the information about
2468 whether a section is mapped is kept in the objfile->obj_section table.
2469
2470 The second level of support is "automatic", and is only available if
2471 the target-specific code provides functionality to read the target's
2472 overlay mapping table, and translate its contents for the debugger
2473 (by updating the mapped state information in the obj_section tables).
2474
2475 The interface is as follows:
2476 User commands:
2477 overlay map <name> -- tell gdb to consider this section mapped
2478 overlay unmap <name> -- tell gdb to consider this section unmapped
2479 overlay list -- list the sections that GDB thinks are mapped
2480 overlay read-target -- get the target's state of what's mapped
2481 overlay off/manual/auto -- set overlay debugging state
2482 Functional interface:
2483 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2484 section, return that section.
2485 find_pc_overlay(pc): find any overlay section that contains
2486 the pc, either in its VMA or its LMA
2487 overlay_is_mapped(sect): true if overlay is marked as mapped
2488 section_is_overlay(sect): true if section's VMA != LMA
2489 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2490 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2491 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2492 overlay_mapped_address(...): map an address from section's LMA to VMA
2493 overlay_unmapped_address(...): map an address from section's VMA to LMA
2494 symbol_overlayed_address(...): Return a "current" address for symbol:
2495 either in VMA or LMA depending on whether
2496 the symbol's section is currently mapped
2497 */
2498
2499 /* Overlay debugging state: */
2500
2501 int overlay_debugging = 0; /* 0 == off, 1 == manual, -1 == auto */
2502 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2503
2504 /* Target vector for refreshing overlay mapped state */
2505 static void simple_overlay_update (struct obj_section *);
2506 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2507
2508 /* Function: section_is_overlay (SECTION)
2509 Returns true if SECTION has VMA not equal to LMA, ie.
2510 SECTION is loaded at an address different from where it will "run". */
2511
2512 int
2513 section_is_overlay (asection *section)
2514 {
2515 if (overlay_debugging)
2516 if (section && section->lma != 0 &&
2517 section->vma != section->lma)
2518 return 1;
2519
2520 return 0;
2521 }
2522
2523 /* Function: overlay_invalidate_all (void)
2524 Invalidate the mapped state of all overlay sections (mark it as stale). */
2525
2526 static void
2527 overlay_invalidate_all (void)
2528 {
2529 struct objfile *objfile;
2530 struct obj_section *sect;
2531
2532 ALL_OBJSECTIONS (objfile, sect)
2533 if (section_is_overlay (sect->the_bfd_section))
2534 sect->ovly_mapped = -1;
2535 }
2536
2537 /* Function: overlay_is_mapped (SECTION)
2538 Returns true if section is an overlay, and is currently mapped.
2539 Private: public access is thru function section_is_mapped.
2540
2541 Access to the ovly_mapped flag is restricted to this function, so
2542 that we can do automatic update. If the global flag
2543 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2544 overlay_invalidate_all. If the mapped state of the particular
2545 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2546
2547 static int
2548 overlay_is_mapped (struct obj_section *osect)
2549 {
2550 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2551 return 0;
2552
2553 switch (overlay_debugging)
2554 {
2555 default:
2556 case 0:
2557 return 0; /* overlay debugging off */
2558 case -1: /* overlay debugging automatic */
2559 /* Unles there is a target_overlay_update function,
2560 there's really nothing useful to do here (can't really go auto) */
2561 if (target_overlay_update)
2562 {
2563 if (overlay_cache_invalid)
2564 {
2565 overlay_invalidate_all ();
2566 overlay_cache_invalid = 0;
2567 }
2568 if (osect->ovly_mapped == -1)
2569 (*target_overlay_update) (osect);
2570 }
2571 /* fall thru to manual case */
2572 case 1: /* overlay debugging manual */
2573 return osect->ovly_mapped == 1;
2574 }
2575 }
2576
2577 /* Function: section_is_mapped
2578 Returns true if section is an overlay, and is currently mapped. */
2579
2580 int
2581 section_is_mapped (asection *section)
2582 {
2583 struct objfile *objfile;
2584 struct obj_section *osect;
2585
2586 if (overlay_debugging)
2587 if (section && section_is_overlay (section))
2588 ALL_OBJSECTIONS (objfile, osect)
2589 if (osect->the_bfd_section == section)
2590 return overlay_is_mapped (osect);
2591
2592 return 0;
2593 }
2594
2595 /* Function: pc_in_unmapped_range
2596 If PC falls into the lma range of SECTION, return true, else false. */
2597
2598 CORE_ADDR
2599 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
2600 {
2601 int size;
2602
2603 if (overlay_debugging)
2604 if (section && section_is_overlay (section))
2605 {
2606 size = bfd_get_section_size_before_reloc (section);
2607 if (section->lma <= pc && pc < section->lma + size)
2608 return 1;
2609 }
2610 return 0;
2611 }
2612
2613 /* Function: pc_in_mapped_range
2614 If PC falls into the vma range of SECTION, return true, else false. */
2615
2616 CORE_ADDR
2617 pc_in_mapped_range (CORE_ADDR pc, asection *section)
2618 {
2619 int size;
2620
2621 if (overlay_debugging)
2622 if (section && section_is_overlay (section))
2623 {
2624 size = bfd_get_section_size_before_reloc (section);
2625 if (section->vma <= pc && pc < section->vma + size)
2626 return 1;
2627 }
2628 return 0;
2629 }
2630
2631
2632 /* Return true if the mapped ranges of sections A and B overlap, false
2633 otherwise. */
2634 int
2635 sections_overlap (asection *a, asection *b)
2636 {
2637 CORE_ADDR a_start = a->vma;
2638 CORE_ADDR a_end = a->vma + bfd_get_section_size_before_reloc (a);
2639 CORE_ADDR b_start = b->vma;
2640 CORE_ADDR b_end = b->vma + bfd_get_section_size_before_reloc (b);
2641
2642 return (a_start < b_end && b_start < a_end);
2643 }
2644
2645 /* Function: overlay_unmapped_address (PC, SECTION)
2646 Returns the address corresponding to PC in the unmapped (load) range.
2647 May be the same as PC. */
2648
2649 CORE_ADDR
2650 overlay_unmapped_address (CORE_ADDR pc, asection *section)
2651 {
2652 if (overlay_debugging)
2653 if (section && section_is_overlay (section) &&
2654 pc_in_mapped_range (pc, section))
2655 return pc + section->lma - section->vma;
2656
2657 return pc;
2658 }
2659
2660 /* Function: overlay_mapped_address (PC, SECTION)
2661 Returns the address corresponding to PC in the mapped (runtime) range.
2662 May be the same as PC. */
2663
2664 CORE_ADDR
2665 overlay_mapped_address (CORE_ADDR pc, asection *section)
2666 {
2667 if (overlay_debugging)
2668 if (section && section_is_overlay (section) &&
2669 pc_in_unmapped_range (pc, section))
2670 return pc + section->vma - section->lma;
2671
2672 return pc;
2673 }
2674
2675
2676 /* Function: symbol_overlayed_address
2677 Return one of two addresses (relative to the VMA or to the LMA),
2678 depending on whether the section is mapped or not. */
2679
2680 CORE_ADDR
2681 symbol_overlayed_address (CORE_ADDR address, asection *section)
2682 {
2683 if (overlay_debugging)
2684 {
2685 /* If the symbol has no section, just return its regular address. */
2686 if (section == 0)
2687 return address;
2688 /* If the symbol's section is not an overlay, just return its address */
2689 if (!section_is_overlay (section))
2690 return address;
2691 /* If the symbol's section is mapped, just return its address */
2692 if (section_is_mapped (section))
2693 return address;
2694 /*
2695 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2696 * then return its LOADED address rather than its vma address!!
2697 */
2698 return overlay_unmapped_address (address, section);
2699 }
2700 return address;
2701 }
2702
2703 /* Function: find_pc_overlay (PC)
2704 Return the best-match overlay section for PC:
2705 If PC matches a mapped overlay section's VMA, return that section.
2706 Else if PC matches an unmapped section's VMA, return that section.
2707 Else if PC matches an unmapped section's LMA, return that section. */
2708
2709 asection *
2710 find_pc_overlay (CORE_ADDR pc)
2711 {
2712 struct objfile *objfile;
2713 struct obj_section *osect, *best_match = NULL;
2714
2715 if (overlay_debugging)
2716 ALL_OBJSECTIONS (objfile, osect)
2717 if (section_is_overlay (osect->the_bfd_section))
2718 {
2719 if (pc_in_mapped_range (pc, osect->the_bfd_section))
2720 {
2721 if (overlay_is_mapped (osect))
2722 return osect->the_bfd_section;
2723 else
2724 best_match = osect;
2725 }
2726 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
2727 best_match = osect;
2728 }
2729 return best_match ? best_match->the_bfd_section : NULL;
2730 }
2731
2732 /* Function: find_pc_mapped_section (PC)
2733 If PC falls into the VMA address range of an overlay section that is
2734 currently marked as MAPPED, return that section. Else return NULL. */
2735
2736 asection *
2737 find_pc_mapped_section (CORE_ADDR pc)
2738 {
2739 struct objfile *objfile;
2740 struct obj_section *osect;
2741
2742 if (overlay_debugging)
2743 ALL_OBJSECTIONS (objfile, osect)
2744 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
2745 overlay_is_mapped (osect))
2746 return osect->the_bfd_section;
2747
2748 return NULL;
2749 }
2750
2751 /* Function: list_overlays_command
2752 Print a list of mapped sections and their PC ranges */
2753
2754 void
2755 list_overlays_command (char *args, int from_tty)
2756 {
2757 int nmapped = 0;
2758 struct objfile *objfile;
2759 struct obj_section *osect;
2760
2761 if (overlay_debugging)
2762 ALL_OBJSECTIONS (objfile, osect)
2763 if (overlay_is_mapped (osect))
2764 {
2765 const char *name;
2766 bfd_vma lma, vma;
2767 int size;
2768
2769 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
2770 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2771 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2772 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
2773
2774 printf_filtered ("Section %s, loaded at ", name);
2775 print_address_numeric (lma, 1, gdb_stdout);
2776 puts_filtered (" - ");
2777 print_address_numeric (lma + size, 1, gdb_stdout);
2778 printf_filtered (", mapped at ");
2779 print_address_numeric (vma, 1, gdb_stdout);
2780 puts_filtered (" - ");
2781 print_address_numeric (vma + size, 1, gdb_stdout);
2782 puts_filtered ("\n");
2783
2784 nmapped++;
2785 }
2786 if (nmapped == 0)
2787 printf_filtered ("No sections are mapped.\n");
2788 }
2789
2790 /* Function: map_overlay_command
2791 Mark the named section as mapped (ie. residing at its VMA address). */
2792
2793 void
2794 map_overlay_command (char *args, int from_tty)
2795 {
2796 struct objfile *objfile, *objfile2;
2797 struct obj_section *sec, *sec2;
2798 asection *bfdsec;
2799
2800 if (!overlay_debugging)
2801 error ("\
2802 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2803 the 'overlay manual' command.");
2804
2805 if (args == 0 || *args == 0)
2806 error ("Argument required: name of an overlay section");
2807
2808 /* First, find a section matching the user supplied argument */
2809 ALL_OBJSECTIONS (objfile, sec)
2810 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2811 {
2812 /* Now, check to see if the section is an overlay. */
2813 bfdsec = sec->the_bfd_section;
2814 if (!section_is_overlay (bfdsec))
2815 continue; /* not an overlay section */
2816
2817 /* Mark the overlay as "mapped" */
2818 sec->ovly_mapped = 1;
2819
2820 /* Next, make a pass and unmap any sections that are
2821 overlapped by this new section: */
2822 ALL_OBJSECTIONS (objfile2, sec2)
2823 if (sec2->ovly_mapped
2824 && sec != sec2
2825 && sec->the_bfd_section != sec2->the_bfd_section
2826 && sections_overlap (sec->the_bfd_section,
2827 sec2->the_bfd_section))
2828 {
2829 if (info_verbose)
2830 printf_filtered ("Note: section %s unmapped by overlap\n",
2831 bfd_section_name (objfile->obfd,
2832 sec2->the_bfd_section));
2833 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
2834 }
2835 return;
2836 }
2837 error ("No overlay section called %s", args);
2838 }
2839
2840 /* Function: unmap_overlay_command
2841 Mark the overlay section as unmapped
2842 (ie. resident in its LMA address range, rather than the VMA range). */
2843
2844 void
2845 unmap_overlay_command (char *args, int from_tty)
2846 {
2847 struct objfile *objfile;
2848 struct obj_section *sec;
2849
2850 if (!overlay_debugging)
2851 error ("\
2852 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2853 the 'overlay manual' command.");
2854
2855 if (args == 0 || *args == 0)
2856 error ("Argument required: name of an overlay section");
2857
2858 /* First, find a section matching the user supplied argument */
2859 ALL_OBJSECTIONS (objfile, sec)
2860 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2861 {
2862 if (!sec->ovly_mapped)
2863 error ("Section %s is not mapped", args);
2864 sec->ovly_mapped = 0;
2865 return;
2866 }
2867 error ("No overlay section called %s", args);
2868 }
2869
2870 /* Function: overlay_auto_command
2871 A utility command to turn on overlay debugging.
2872 Possibly this should be done via a set/show command. */
2873
2874 static void
2875 overlay_auto_command (char *args, int from_tty)
2876 {
2877 overlay_debugging = -1;
2878 if (info_verbose)
2879 printf_filtered ("Automatic overlay debugging enabled.");
2880 }
2881
2882 /* Function: overlay_manual_command
2883 A utility command to turn on overlay debugging.
2884 Possibly this should be done via a set/show command. */
2885
2886 static void
2887 overlay_manual_command (char *args, int from_tty)
2888 {
2889 overlay_debugging = 1;
2890 if (info_verbose)
2891 printf_filtered ("Overlay debugging enabled.");
2892 }
2893
2894 /* Function: overlay_off_command
2895 A utility command to turn on overlay debugging.
2896 Possibly this should be done via a set/show command. */
2897
2898 static void
2899 overlay_off_command (char *args, int from_tty)
2900 {
2901 overlay_debugging = 0;
2902 if (info_verbose)
2903 printf_filtered ("Overlay debugging disabled.");
2904 }
2905
2906 static void
2907 overlay_load_command (char *args, int from_tty)
2908 {
2909 if (target_overlay_update)
2910 (*target_overlay_update) (NULL);
2911 else
2912 error ("This target does not know how to read its overlay state.");
2913 }
2914
2915 /* Function: overlay_command
2916 A place-holder for a mis-typed command */
2917
2918 /* Command list chain containing all defined "overlay" subcommands. */
2919 struct cmd_list_element *overlaylist;
2920
2921 static void
2922 overlay_command (char *args, int from_tty)
2923 {
2924 printf_unfiltered
2925 ("\"overlay\" must be followed by the name of an overlay command.\n");
2926 help_list (overlaylist, "overlay ", -1, gdb_stdout);
2927 }
2928
2929
2930 /* Target Overlays for the "Simplest" overlay manager:
2931
2932 This is GDB's default target overlay layer. It works with the
2933 minimal overlay manager supplied as an example by Cygnus. The
2934 entry point is via a function pointer "target_overlay_update",
2935 so targets that use a different runtime overlay manager can
2936 substitute their own overlay_update function and take over the
2937 function pointer.
2938
2939 The overlay_update function pokes around in the target's data structures
2940 to see what overlays are mapped, and updates GDB's overlay mapping with
2941 this information.
2942
2943 In this simple implementation, the target data structures are as follows:
2944 unsigned _novlys; /# number of overlay sections #/
2945 unsigned _ovly_table[_novlys][4] = {
2946 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
2947 {..., ..., ..., ...},
2948 }
2949 unsigned _novly_regions; /# number of overlay regions #/
2950 unsigned _ovly_region_table[_novly_regions][3] = {
2951 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
2952 {..., ..., ...},
2953 }
2954 These functions will attempt to update GDB's mappedness state in the
2955 symbol section table, based on the target's mappedness state.
2956
2957 To do this, we keep a cached copy of the target's _ovly_table, and
2958 attempt to detect when the cached copy is invalidated. The main
2959 entry point is "simple_overlay_update(SECT), which looks up SECT in
2960 the cached table and re-reads only the entry for that section from
2961 the target (whenever possible).
2962 */
2963
2964 /* Cached, dynamically allocated copies of the target data structures: */
2965 static unsigned (*cache_ovly_table)[4] = 0;
2966 #if 0
2967 static unsigned (*cache_ovly_region_table)[3] = 0;
2968 #endif
2969 static unsigned cache_novlys = 0;
2970 #if 0
2971 static unsigned cache_novly_regions = 0;
2972 #endif
2973 static CORE_ADDR cache_ovly_table_base = 0;
2974 #if 0
2975 static CORE_ADDR cache_ovly_region_table_base = 0;
2976 #endif
2977 enum ovly_index
2978 {
2979 VMA, SIZE, LMA, MAPPED
2980 };
2981 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
2982
2983 /* Throw away the cached copy of _ovly_table */
2984 static void
2985 simple_free_overlay_table (void)
2986 {
2987 if (cache_ovly_table)
2988 xfree (cache_ovly_table);
2989 cache_novlys = 0;
2990 cache_ovly_table = NULL;
2991 cache_ovly_table_base = 0;
2992 }
2993
2994 #if 0
2995 /* Throw away the cached copy of _ovly_region_table */
2996 static void
2997 simple_free_overlay_region_table (void)
2998 {
2999 if (cache_ovly_region_table)
3000 xfree (cache_ovly_region_table);
3001 cache_novly_regions = 0;
3002 cache_ovly_region_table = NULL;
3003 cache_ovly_region_table_base = 0;
3004 }
3005 #endif
3006
3007 /* Read an array of ints from the target into a local buffer.
3008 Convert to host order. int LEN is number of ints */
3009 static void
3010 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3011 {
3012 char *buf = alloca (len * TARGET_LONG_BYTES);
3013 int i;
3014
3015 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3016 for (i = 0; i < len; i++)
3017 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3018 TARGET_LONG_BYTES);
3019 }
3020
3021 /* Find and grab a copy of the target _ovly_table
3022 (and _novlys, which is needed for the table's size) */
3023 static int
3024 simple_read_overlay_table (void)
3025 {
3026 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3027
3028 simple_free_overlay_table ();
3029 novlys_msym = lookup_minimal_symbol ("_novlys", 0, 0);
3030 if (! novlys_msym)
3031 {
3032 error ("Error reading inferior's overlay table: "
3033 "couldn't find `_novlys' variable\n"
3034 "in inferior. Use `overlay manual' mode.");
3035 return 0;
3036 }
3037
3038 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", 0, 0);
3039 if (! ovly_table_msym)
3040 {
3041 error ("Error reading inferior's overlay table: couldn't find "
3042 "`_ovly_table' array\n"
3043 "in inferior. Use `overlay manual' mode.");
3044 return 0;
3045 }
3046
3047 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3048 cache_ovly_table
3049 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3050 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3051 read_target_long_array (cache_ovly_table_base,
3052 (int *) cache_ovly_table,
3053 cache_novlys * 4);
3054
3055 return 1; /* SUCCESS */
3056 }
3057
3058 #if 0
3059 /* Find and grab a copy of the target _ovly_region_table
3060 (and _novly_regions, which is needed for the table's size) */
3061 static int
3062 simple_read_overlay_region_table (void)
3063 {
3064 struct minimal_symbol *msym;
3065
3066 simple_free_overlay_region_table ();
3067 msym = lookup_minimal_symbol ("_novly_regions", 0, 0);
3068 if (msym != NULL)
3069 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3070 else
3071 return 0; /* failure */
3072 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3073 if (cache_ovly_region_table != NULL)
3074 {
3075 msym = lookup_minimal_symbol ("_ovly_region_table", 0, 0);
3076 if (msym != NULL)
3077 {
3078 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3079 read_target_long_array (cache_ovly_region_table_base,
3080 (int *) cache_ovly_region_table,
3081 cache_novly_regions * 3);
3082 }
3083 else
3084 return 0; /* failure */
3085 }
3086 else
3087 return 0; /* failure */
3088 return 1; /* SUCCESS */
3089 }
3090 #endif
3091
3092 /* Function: simple_overlay_update_1
3093 A helper function for simple_overlay_update. Assuming a cached copy
3094 of _ovly_table exists, look through it to find an entry whose vma,
3095 lma and size match those of OSECT. Re-read the entry and make sure
3096 it still matches OSECT (else the table may no longer be valid).
3097 Set OSECT's mapped state to match the entry. Return: 1 for
3098 success, 0 for failure. */
3099
3100 static int
3101 simple_overlay_update_1 (struct obj_section *osect)
3102 {
3103 int i, size;
3104
3105 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3106 for (i = 0; i < cache_novlys; i++)
3107 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3108 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3109 cache_ovly_table[i][SIZE] == size */ )
3110 {
3111 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3112 (int *) cache_ovly_table[i], 4);
3113 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3114 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3115 cache_ovly_table[i][SIZE] == size */ )
3116 {
3117 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3118 return 1;
3119 }
3120 else /* Warning! Warning! Target's ovly table has changed! */
3121 return 0;
3122 }
3123 return 0;
3124 }
3125
3126 /* Function: simple_overlay_update
3127 If OSECT is NULL, then update all sections' mapped state
3128 (after re-reading the entire target _ovly_table).
3129 If OSECT is non-NULL, then try to find a matching entry in the
3130 cached ovly_table and update only OSECT's mapped state.
3131 If a cached entry can't be found or the cache isn't valid, then
3132 re-read the entire cache, and go ahead and update all sections. */
3133
3134 static void
3135 simple_overlay_update (struct obj_section *osect)
3136 {
3137 struct objfile *objfile;
3138
3139 /* Were we given an osect to look up? NULL means do all of them. */
3140 if (osect)
3141 /* Have we got a cached copy of the target's overlay table? */
3142 if (cache_ovly_table != NULL)
3143 /* Does its cached location match what's currently in the symtab? */
3144 if (cache_ovly_table_base ==
3145 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", 0, 0)))
3146 /* Then go ahead and try to look up this single section in the cache */
3147 if (simple_overlay_update_1 (osect))
3148 /* Found it! We're done. */
3149 return;
3150
3151 /* Cached table no good: need to read the entire table anew.
3152 Or else we want all the sections, in which case it's actually
3153 more efficient to read the whole table in one block anyway. */
3154
3155 if (! simple_read_overlay_table ())
3156 return;
3157
3158 /* Now may as well update all sections, even if only one was requested. */
3159 ALL_OBJSECTIONS (objfile, osect)
3160 if (section_is_overlay (osect->the_bfd_section))
3161 {
3162 int i, size;
3163
3164 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3165 for (i = 0; i < cache_novlys; i++)
3166 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3167 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3168 cache_ovly_table[i][SIZE] == size */ )
3169 { /* obj_section matches i'th entry in ovly_table */
3170 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3171 break; /* finished with inner for loop: break out */
3172 }
3173 }
3174 }
3175
3176
3177 void
3178 _initialize_symfile (void)
3179 {
3180 struct cmd_list_element *c;
3181
3182 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3183 "Load symbol table from executable file FILE.\n\
3184 The `file' command can also load symbol tables, as well as setting the file\n\
3185 to execute.", &cmdlist);
3186 c->completer = filename_completer;
3187
3188 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3189 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3190 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3191 ADDR is the starting address of the file's text.\n\
3192 The optional arguments are section-name section-address pairs and\n\
3193 should be specified if the data and bss segments are not contiguous\n\
3194 with the text. SECT is a section name to be loaded at SECT_ADDR.",
3195 &cmdlist);
3196 c->completer = filename_completer;
3197
3198 c = add_cmd ("add-shared-symbol-files", class_files,
3199 add_shared_symbol_files_command,
3200 "Load the symbols from shared objects in the dynamic linker's link map.",
3201 &cmdlist);
3202 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3203 &cmdlist);
3204
3205 c = add_cmd ("load", class_files, load_command,
3206 "Dynamically load FILE into the running program, and record its symbols\n\
3207 for access from GDB.", &cmdlist);
3208 c->completer = filename_completer;
3209
3210 add_show_from_set
3211 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3212 (char *) &symbol_reloading,
3213 "Set dynamic symbol table reloading multiple times in one run.",
3214 &setlist),
3215 &showlist);
3216
3217 add_prefix_cmd ("overlay", class_support, overlay_command,
3218 "Commands for debugging overlays.", &overlaylist,
3219 "overlay ", 0, &cmdlist);
3220
3221 add_com_alias ("ovly", "overlay", class_alias, 1);
3222 add_com_alias ("ov", "overlay", class_alias, 1);
3223
3224 add_cmd ("map-overlay", class_support, map_overlay_command,
3225 "Assert that an overlay section is mapped.", &overlaylist);
3226
3227 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3228 "Assert that an overlay section is unmapped.", &overlaylist);
3229
3230 add_cmd ("list-overlays", class_support, list_overlays_command,
3231 "List mappings of overlay sections.", &overlaylist);
3232
3233 add_cmd ("manual", class_support, overlay_manual_command,
3234 "Enable overlay debugging.", &overlaylist);
3235 add_cmd ("off", class_support, overlay_off_command,
3236 "Disable overlay debugging.", &overlaylist);
3237 add_cmd ("auto", class_support, overlay_auto_command,
3238 "Enable automatic overlay debugging.", &overlaylist);
3239 add_cmd ("load-target", class_support, overlay_load_command,
3240 "Read the overlay mapping state from the target.", &overlaylist);
3241
3242 /* Filename extension to source language lookup table: */
3243 init_filename_language_table ();
3244 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3245 (char *) &ext_args,
3246 "Set mapping between filename extension and source language.\n\
3247 Usage: set extension-language .foo bar",
3248 &setlist);
3249 c->function.cfunc = set_ext_lang_command;
3250
3251 add_info ("extensions", info_ext_lang_command,
3252 "All filename extensions associated with a source language.");
3253
3254 add_show_from_set
3255 (add_set_cmd ("download-write-size", class_obscure,
3256 var_integer, (char *) &download_write_size,
3257 "Set the write size used when downloading a program.\n"
3258 "Only used when downloading a program onto a remote\n"
3259 "target. Specify zero, or a negative value, to disable\n"
3260 "blocked writes. The actual size of each transfer is also\n"
3261 "limited by the size of the target packet and the memory\n"
3262 "cache.\n",
3263 &setlist),
3264 &showlist);
3265 }
This page took 0.095236 seconds and 4 git commands to generate.