cc515d585d7c22cc71eddcc6ac61daf244891204
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "bfdlink.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcore.h"
29 #include "frame.h"
30 #include "target.h"
31 #include "value.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "source.h"
35 #include "gdbcmd.h"
36 #include "breakpoint.h"
37 #include "language.h"
38 #include "complaints.h"
39 #include "demangle.h"
40 #include "inferior.h" /* for write_pc */
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56
57 #include <sys/types.h>
58 #include <fcntl.h>
59 #include "gdb_string.h"
60 #include "gdb_stat.h"
61 #include <ctype.h>
62 #include <time.h>
63 #include <sys/time.h>
64
65
66 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
67 void (*deprecated_show_load_progress) (const char *section,
68 unsigned long section_sent,
69 unsigned long section_size,
70 unsigned long total_sent,
71 unsigned long total_size);
72 void (*deprecated_pre_add_symbol_hook) (const char *);
73 void (*deprecated_post_add_symbol_hook) (void);
74
75 static void clear_symtab_users_cleanup (void *ignore);
76
77 /* Global variables owned by this file */
78 int readnow_symbol_files; /* Read full symbols immediately */
79
80 /* External variables and functions referenced. */
81
82 extern void report_transfer_performance (unsigned long, time_t, time_t);
83
84 /* Functions this file defines */
85
86 #if 0
87 static int simple_read_overlay_region_table (void);
88 static void simple_free_overlay_region_table (void);
89 #endif
90
91 static void load_command (char *, int);
92
93 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94
95 static void add_symbol_file_command (char *, int);
96
97 static void add_shared_symbol_files_command (char *, int);
98
99 static void reread_separate_symbols (struct objfile *objfile);
100
101 static void cashier_psymtab (struct partial_symtab *);
102
103 bfd *symfile_bfd_open (char *);
104
105 int get_section_index (struct objfile *, char *);
106
107 static struct sym_fns *find_sym_fns (bfd *);
108
109 static void decrement_reading_symtab (void *);
110
111 static void overlay_invalidate_all (void);
112
113 static int overlay_is_mapped (struct obj_section *);
114
115 void list_overlays_command (char *, int);
116
117 void map_overlay_command (char *, int);
118
119 void unmap_overlay_command (char *, int);
120
121 static void overlay_auto_command (char *, int);
122
123 static void overlay_manual_command (char *, int);
124
125 static void overlay_off_command (char *, int);
126
127 static void overlay_load_command (char *, int);
128
129 static void overlay_command (char *, int);
130
131 static void simple_free_overlay_table (void);
132
133 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
134
135 static int simple_read_overlay_table (void);
136
137 static int simple_overlay_update_1 (struct obj_section *);
138
139 static void add_filename_language (char *ext, enum language lang);
140
141 static void info_ext_lang_command (char *args, int from_tty);
142
143 static char *find_separate_debug_file (struct objfile *objfile);
144
145 static void init_filename_language_table (void);
146
147 static void symfile_find_segment_sections (struct objfile *objfile);
148
149 void _initialize_symfile (void);
150
151 /* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155 static struct sym_fns *symtab_fns = NULL;
156
157 /* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160 #ifdef SYMBOL_RELOADING_DEFAULT
161 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162 #else
163 int symbol_reloading = 0;
164 #endif
165 static void
166 show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 fprintf_filtered (file, _("\
170 Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172 }
173
174
175 /* If non-zero, shared library symbols will be added automatically
176 when the inferior is created, new libraries are loaded, or when
177 attaching to the inferior. This is almost always what users will
178 want to have happen; but for very large programs, the startup time
179 will be excessive, and so if this is a problem, the user can clear
180 this flag and then add the shared library symbols as needed. Note
181 that there is a potential for confusion, since if the shared
182 library symbols are not loaded, commands like "info fun" will *not*
183 report all the functions that are actually present. */
184
185 int auto_solib_add = 1;
186
187 /* For systems that support it, a threshold size in megabytes. If
188 automatically adding a new library's symbol table to those already
189 known to the debugger would cause the total shared library symbol
190 size to exceed this threshhold, then the shlib's symbols are not
191 added. The threshold is ignored if the user explicitly asks for a
192 shlib to be added, such as when using the "sharedlibrary"
193 command. */
194
195 int auto_solib_limit;
196 \f
197
198 /* This compares two partial symbols by names, using strcmp_iw_ordered
199 for the comparison. */
200
201 static int
202 compare_psymbols (const void *s1p, const void *s2p)
203 {
204 struct partial_symbol *const *s1 = s1p;
205 struct partial_symbol *const *s2 = s2p;
206
207 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
208 SYMBOL_SEARCH_NAME (*s2));
209 }
210
211 void
212 sort_pst_symbols (struct partial_symtab *pst)
213 {
214 /* Sort the global list; don't sort the static list */
215
216 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
217 pst->n_global_syms, sizeof (struct partial_symbol *),
218 compare_psymbols);
219 }
220
221 /* Make a null terminated copy of the string at PTR with SIZE characters in
222 the obstack pointed to by OBSTACKP . Returns the address of the copy.
223 Note that the string at PTR does not have to be null terminated, I.E. it
224 may be part of a larger string and we are only saving a substring. */
225
226 char *
227 obsavestring (const char *ptr, int size, struct obstack *obstackp)
228 {
229 char *p = (char *) obstack_alloc (obstackp, size + 1);
230 /* Open-coded memcpy--saves function call time. These strings are usually
231 short. FIXME: Is this really still true with a compiler that can
232 inline memcpy? */
233 {
234 const char *p1 = ptr;
235 char *p2 = p;
236 const char *end = ptr + size;
237 while (p1 != end)
238 *p2++ = *p1++;
239 }
240 p[size] = 0;
241 return p;
242 }
243
244 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
245 in the obstack pointed to by OBSTACKP. */
246
247 char *
248 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
249 const char *s3)
250 {
251 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
252 char *val = (char *) obstack_alloc (obstackp, len);
253 strcpy (val, s1);
254 strcat (val, s2);
255 strcat (val, s3);
256 return val;
257 }
258
259 /* True if we are nested inside psymtab_to_symtab. */
260
261 int currently_reading_symtab = 0;
262
263 static void
264 decrement_reading_symtab (void *dummy)
265 {
266 currently_reading_symtab--;
267 }
268
269 /* Get the symbol table that corresponds to a partial_symtab.
270 This is fast after the first time you do it. In fact, there
271 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
272 case inline. */
273
274 struct symtab *
275 psymtab_to_symtab (struct partial_symtab *pst)
276 {
277 /* If it's been looked up before, return it. */
278 if (pst->symtab)
279 return pst->symtab;
280
281 /* If it has not yet been read in, read it. */
282 if (!pst->readin)
283 {
284 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
285 currently_reading_symtab++;
286 (*pst->read_symtab) (pst);
287 do_cleanups (back_to);
288 }
289
290 return pst->symtab;
291 }
292
293 /* Remember the lowest-addressed loadable section we've seen.
294 This function is called via bfd_map_over_sections.
295
296 In case of equal vmas, the section with the largest size becomes the
297 lowest-addressed loadable section.
298
299 If the vmas and sizes are equal, the last section is considered the
300 lowest-addressed loadable section. */
301
302 void
303 find_lowest_section (bfd *abfd, asection *sect, void *obj)
304 {
305 asection **lowest = (asection **) obj;
306
307 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
308 return;
309 if (!*lowest)
310 *lowest = sect; /* First loadable section */
311 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
312 *lowest = sect; /* A lower loadable section */
313 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
314 && (bfd_section_size (abfd, (*lowest))
315 <= bfd_section_size (abfd, sect)))
316 *lowest = sect;
317 }
318
319 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
320
321 struct section_addr_info *
322 alloc_section_addr_info (size_t num_sections)
323 {
324 struct section_addr_info *sap;
325 size_t size;
326
327 size = (sizeof (struct section_addr_info)
328 + sizeof (struct other_sections) * (num_sections - 1));
329 sap = (struct section_addr_info *) xmalloc (size);
330 memset (sap, 0, size);
331 sap->num_sections = num_sections;
332
333 return sap;
334 }
335
336
337 /* Return a freshly allocated copy of ADDRS. The section names, if
338 any, are also freshly allocated copies of those in ADDRS. */
339 struct section_addr_info *
340 copy_section_addr_info (struct section_addr_info *addrs)
341 {
342 struct section_addr_info *copy
343 = alloc_section_addr_info (addrs->num_sections);
344 int i;
345
346 copy->num_sections = addrs->num_sections;
347 for (i = 0; i < addrs->num_sections; i++)
348 {
349 copy->other[i].addr = addrs->other[i].addr;
350 if (addrs->other[i].name)
351 copy->other[i].name = xstrdup (addrs->other[i].name);
352 else
353 copy->other[i].name = NULL;
354 copy->other[i].sectindex = addrs->other[i].sectindex;
355 }
356
357 return copy;
358 }
359
360
361
362 /* Build (allocate and populate) a section_addr_info struct from
363 an existing section table. */
364
365 extern struct section_addr_info *
366 build_section_addr_info_from_section_table (const struct section_table *start,
367 const struct section_table *end)
368 {
369 struct section_addr_info *sap;
370 const struct section_table *stp;
371 int oidx;
372
373 sap = alloc_section_addr_info (end - start);
374
375 for (stp = start, oidx = 0; stp != end; stp++)
376 {
377 if (bfd_get_section_flags (stp->bfd,
378 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
379 && oidx < end - start)
380 {
381 sap->other[oidx].addr = stp->addr;
382 sap->other[oidx].name
383 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
384 sap->other[oidx].sectindex = stp->the_bfd_section->index;
385 oidx++;
386 }
387 }
388
389 return sap;
390 }
391
392
393 /* Free all memory allocated by build_section_addr_info_from_section_table. */
394
395 extern void
396 free_section_addr_info (struct section_addr_info *sap)
397 {
398 int idx;
399
400 for (idx = 0; idx < sap->num_sections; idx++)
401 if (sap->other[idx].name)
402 xfree (sap->other[idx].name);
403 xfree (sap);
404 }
405
406
407 /* Initialize OBJFILE's sect_index_* members. */
408 static void
409 init_objfile_sect_indices (struct objfile *objfile)
410 {
411 asection *sect;
412 int i;
413
414 sect = bfd_get_section_by_name (objfile->obfd, ".text");
415 if (sect)
416 objfile->sect_index_text = sect->index;
417
418 sect = bfd_get_section_by_name (objfile->obfd, ".data");
419 if (sect)
420 objfile->sect_index_data = sect->index;
421
422 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
423 if (sect)
424 objfile->sect_index_bss = sect->index;
425
426 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
427 if (sect)
428 objfile->sect_index_rodata = sect->index;
429
430 /* This is where things get really weird... We MUST have valid
431 indices for the various sect_index_* members or gdb will abort.
432 So if for example, there is no ".text" section, we have to
433 accomodate that. First, check for a file with the standard
434 one or two segments. */
435
436 symfile_find_segment_sections (objfile);
437
438 /* Except when explicitly adding symbol files at some address,
439 section_offsets contains nothing but zeros, so it doesn't matter
440 which slot in section_offsets the individual sect_index_* members
441 index into. So if they are all zero, it is safe to just point
442 all the currently uninitialized indices to the first slot. But
443 beware: if this is the main executable, it may be relocated
444 later, e.g. by the remote qOffsets packet, and then this will
445 be wrong! That's why we try segments first. */
446
447 for (i = 0; i < objfile->num_sections; i++)
448 {
449 if (ANOFFSET (objfile->section_offsets, i) != 0)
450 {
451 break;
452 }
453 }
454 if (i == objfile->num_sections)
455 {
456 if (objfile->sect_index_text == -1)
457 objfile->sect_index_text = 0;
458 if (objfile->sect_index_data == -1)
459 objfile->sect_index_data = 0;
460 if (objfile->sect_index_bss == -1)
461 objfile->sect_index_bss = 0;
462 if (objfile->sect_index_rodata == -1)
463 objfile->sect_index_rodata = 0;
464 }
465 }
466
467 /* The arguments to place_section. */
468
469 struct place_section_arg
470 {
471 struct section_offsets *offsets;
472 CORE_ADDR lowest;
473 };
474
475 /* Find a unique offset to use for loadable section SECT if
476 the user did not provide an offset. */
477
478 void
479 place_section (bfd *abfd, asection *sect, void *obj)
480 {
481 struct place_section_arg *arg = obj;
482 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
483 int done;
484 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
485
486 /* We are only interested in allocated sections. */
487 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
488 return;
489
490 /* If the user specified an offset, honor it. */
491 if (offsets[sect->index] != 0)
492 return;
493
494 /* Otherwise, let's try to find a place for the section. */
495 start_addr = (arg->lowest + align - 1) & -align;
496
497 do {
498 asection *cur_sec;
499
500 done = 1;
501
502 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
503 {
504 int indx = cur_sec->index;
505 CORE_ADDR cur_offset;
506
507 /* We don't need to compare against ourself. */
508 if (cur_sec == sect)
509 continue;
510
511 /* We can only conflict with allocated sections. */
512 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
513 continue;
514
515 /* If the section offset is 0, either the section has not been placed
516 yet, or it was the lowest section placed (in which case LOWEST
517 will be past its end). */
518 if (offsets[indx] == 0)
519 continue;
520
521 /* If this section would overlap us, then we must move up. */
522 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
523 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
524 {
525 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
526 start_addr = (start_addr + align - 1) & -align;
527 done = 0;
528 break;
529 }
530
531 /* Otherwise, we appear to be OK. So far. */
532 }
533 }
534 while (!done);
535
536 offsets[sect->index] = start_addr;
537 arg->lowest = start_addr + bfd_get_section_size (sect);
538 }
539
540 /* Parse the user's idea of an offset for dynamic linking, into our idea
541 of how to represent it for fast symbol reading. This is the default
542 version of the sym_fns.sym_offsets function for symbol readers that
543 don't need to do anything special. It allocates a section_offsets table
544 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
545
546 void
547 default_symfile_offsets (struct objfile *objfile,
548 struct section_addr_info *addrs)
549 {
550 int i;
551
552 objfile->num_sections = bfd_count_sections (objfile->obfd);
553 objfile->section_offsets = (struct section_offsets *)
554 obstack_alloc (&objfile->objfile_obstack,
555 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
556 memset (objfile->section_offsets, 0,
557 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
558
559 /* Now calculate offsets for section that were specified by the
560 caller. */
561 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
562 {
563 struct other_sections *osp ;
564
565 osp = &addrs->other[i] ;
566 if (osp->addr == 0)
567 continue;
568
569 /* Record all sections in offsets */
570 /* The section_offsets in the objfile are here filled in using
571 the BFD index. */
572 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
573 }
574
575 /* For relocatable files, all loadable sections will start at zero.
576 The zero is meaningless, so try to pick arbitrary addresses such
577 that no loadable sections overlap. This algorithm is quadratic,
578 but the number of sections in a single object file is generally
579 small. */
580 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
581 {
582 struct place_section_arg arg;
583 bfd *abfd = objfile->obfd;
584 asection *cur_sec;
585 CORE_ADDR lowest = 0;
586
587 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
588 /* We do not expect this to happen; just skip this step if the
589 relocatable file has a section with an assigned VMA. */
590 if (bfd_section_vma (abfd, cur_sec) != 0)
591 break;
592
593 if (cur_sec == NULL)
594 {
595 CORE_ADDR *offsets = objfile->section_offsets->offsets;
596
597 /* Pick non-overlapping offsets for sections the user did not
598 place explicitly. */
599 arg.offsets = objfile->section_offsets;
600 arg.lowest = 0;
601 bfd_map_over_sections (objfile->obfd, place_section, &arg);
602
603 /* Correctly filling in the section offsets is not quite
604 enough. Relocatable files have two properties that
605 (most) shared objects do not:
606
607 - Their debug information will contain relocations. Some
608 shared libraries do also, but many do not, so this can not
609 be assumed.
610
611 - If there are multiple code sections they will be loaded
612 at different relative addresses in memory than they are
613 in the objfile, since all sections in the file will start
614 at address zero.
615
616 Because GDB has very limited ability to map from an
617 address in debug info to the correct code section,
618 it relies on adding SECT_OFF_TEXT to things which might be
619 code. If we clear all the section offsets, and set the
620 section VMAs instead, then symfile_relocate_debug_section
621 will return meaningful debug information pointing at the
622 correct sections.
623
624 GDB has too many different data structures for section
625 addresses - a bfd, objfile, and so_list all have section
626 tables, as does exec_ops. Some of these could probably
627 be eliminated. */
628
629 for (cur_sec = abfd->sections; cur_sec != NULL;
630 cur_sec = cur_sec->next)
631 {
632 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
633 continue;
634
635 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
636 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
637 offsets[cur_sec->index]);
638 offsets[cur_sec->index] = 0;
639 }
640 }
641 }
642
643 /* Remember the bfd indexes for the .text, .data, .bss and
644 .rodata sections. */
645 init_objfile_sect_indices (objfile);
646 }
647
648
649 /* Divide the file into segments, which are individual relocatable units.
650 This is the default version of the sym_fns.sym_segments function for
651 symbol readers that do not have an explicit representation of segments.
652 It assumes that object files do not have segments, and fully linked
653 files have a single segment. */
654
655 struct symfile_segment_data *
656 default_symfile_segments (bfd *abfd)
657 {
658 int num_sections, i;
659 asection *sect;
660 struct symfile_segment_data *data;
661 CORE_ADDR low, high;
662
663 /* Relocatable files contain enough information to position each
664 loadable section independently; they should not be relocated
665 in segments. */
666 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
667 return NULL;
668
669 /* Make sure there is at least one loadable section in the file. */
670 for (sect = abfd->sections; sect != NULL; sect = sect->next)
671 {
672 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
673 continue;
674
675 break;
676 }
677 if (sect == NULL)
678 return NULL;
679
680 low = bfd_get_section_vma (abfd, sect);
681 high = low + bfd_get_section_size (sect);
682
683 data = XZALLOC (struct symfile_segment_data);
684 data->num_segments = 1;
685 data->segment_bases = XCALLOC (1, CORE_ADDR);
686 data->segment_sizes = XCALLOC (1, CORE_ADDR);
687
688 num_sections = bfd_count_sections (abfd);
689 data->segment_info = XCALLOC (num_sections, int);
690
691 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
692 {
693 CORE_ADDR vma;
694
695 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
696 continue;
697
698 vma = bfd_get_section_vma (abfd, sect);
699 if (vma < low)
700 low = vma;
701 if (vma + bfd_get_section_size (sect) > high)
702 high = vma + bfd_get_section_size (sect);
703
704 data->segment_info[i] = 1;
705 }
706
707 data->segment_bases[0] = low;
708 data->segment_sizes[0] = high - low;
709
710 return data;
711 }
712
713 /* Process a symbol file, as either the main file or as a dynamically
714 loaded file.
715
716 OBJFILE is where the symbols are to be read from.
717
718 ADDRS is the list of section load addresses. If the user has given
719 an 'add-symbol-file' command, then this is the list of offsets and
720 addresses he or she provided as arguments to the command; or, if
721 we're handling a shared library, these are the actual addresses the
722 sections are loaded at, according to the inferior's dynamic linker
723 (as gleaned by GDB's shared library code). We convert each address
724 into an offset from the section VMA's as it appears in the object
725 file, and then call the file's sym_offsets function to convert this
726 into a format-specific offset table --- a `struct section_offsets'.
727 If ADDRS is non-zero, OFFSETS must be zero.
728
729 OFFSETS is a table of section offsets already in the right
730 format-specific representation. NUM_OFFSETS is the number of
731 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
732 assume this is the proper table the call to sym_offsets described
733 above would produce. Instead of calling sym_offsets, we just dump
734 it right into objfile->section_offsets. (When we're re-reading
735 symbols from an objfile, we don't have the original load address
736 list any more; all we have is the section offset table.) If
737 OFFSETS is non-zero, ADDRS must be zero.
738
739 MAINLINE is nonzero if this is the main symbol file, or zero if
740 it's an extra symbol file such as dynamically loaded code.
741
742 VERBO is nonzero if the caller has printed a verbose message about
743 the symbol reading (and complaints can be more terse about it). */
744
745 void
746 syms_from_objfile (struct objfile *objfile,
747 struct section_addr_info *addrs,
748 struct section_offsets *offsets,
749 int num_offsets,
750 int mainline,
751 int verbo)
752 {
753 struct section_addr_info *local_addr = NULL;
754 struct cleanup *old_chain;
755
756 gdb_assert (! (addrs && offsets));
757
758 init_entry_point_info (objfile);
759 objfile->sf = find_sym_fns (objfile->obfd);
760
761 if (objfile->sf == NULL)
762 return; /* No symbols. */
763
764 /* Make sure that partially constructed symbol tables will be cleaned up
765 if an error occurs during symbol reading. */
766 old_chain = make_cleanup_free_objfile (objfile);
767
768 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
769 list. We now establish the convention that an addr of zero means
770 no load address was specified. */
771 if (! addrs && ! offsets)
772 {
773 local_addr
774 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
775 make_cleanup (xfree, local_addr);
776 addrs = local_addr;
777 }
778
779 /* Now either addrs or offsets is non-zero. */
780
781 if (mainline)
782 {
783 /* We will modify the main symbol table, make sure that all its users
784 will be cleaned up if an error occurs during symbol reading. */
785 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
786
787 /* Since no error yet, throw away the old symbol table. */
788
789 if (symfile_objfile != NULL)
790 {
791 free_objfile (symfile_objfile);
792 symfile_objfile = NULL;
793 }
794
795 /* Currently we keep symbols from the add-symbol-file command.
796 If the user wants to get rid of them, they should do "symbol-file"
797 without arguments first. Not sure this is the best behavior
798 (PR 2207). */
799
800 (*objfile->sf->sym_new_init) (objfile);
801 }
802
803 /* Convert addr into an offset rather than an absolute address.
804 We find the lowest address of a loaded segment in the objfile,
805 and assume that <addr> is where that got loaded.
806
807 We no longer warn if the lowest section is not a text segment (as
808 happens for the PA64 port. */
809 if (!mainline && addrs && addrs->other[0].name)
810 {
811 asection *lower_sect;
812 asection *sect;
813 CORE_ADDR lower_offset;
814 int i;
815
816 /* Find lowest loadable section to be used as starting point for
817 continguous sections. FIXME!! won't work without call to find
818 .text first, but this assumes text is lowest section. */
819 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
820 if (lower_sect == NULL)
821 bfd_map_over_sections (objfile->obfd, find_lowest_section,
822 &lower_sect);
823 if (lower_sect == NULL)
824 {
825 warning (_("no loadable sections found in added symbol-file %s"),
826 objfile->name);
827 lower_offset = 0;
828 }
829 else
830 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
831
832 /* Calculate offsets for the loadable sections.
833 FIXME! Sections must be in order of increasing loadable section
834 so that contiguous sections can use the lower-offset!!!
835
836 Adjust offsets if the segments are not contiguous.
837 If the section is contiguous, its offset should be set to
838 the offset of the highest loadable section lower than it
839 (the loadable section directly below it in memory).
840 this_offset = lower_offset = lower_addr - lower_orig_addr */
841
842 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
843 {
844 if (addrs->other[i].addr != 0)
845 {
846 sect = bfd_get_section_by_name (objfile->obfd,
847 addrs->other[i].name);
848 if (sect)
849 {
850 addrs->other[i].addr
851 -= bfd_section_vma (objfile->obfd, sect);
852 lower_offset = addrs->other[i].addr;
853 /* This is the index used by BFD. */
854 addrs->other[i].sectindex = sect->index ;
855 }
856 else
857 {
858 warning (_("section %s not found in %s"),
859 addrs->other[i].name,
860 objfile->name);
861 addrs->other[i].addr = 0;
862 }
863 }
864 else
865 addrs->other[i].addr = lower_offset;
866 }
867 }
868
869 /* Initialize symbol reading routines for this objfile, allow complaints to
870 appear for this new file, and record how verbose to be, then do the
871 initial symbol reading for this file. */
872
873 (*objfile->sf->sym_init) (objfile);
874 clear_complaints (&symfile_complaints, 1, verbo);
875
876 if (addrs)
877 (*objfile->sf->sym_offsets) (objfile, addrs);
878 else
879 {
880 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
881
882 /* Just copy in the offset table directly as given to us. */
883 objfile->num_sections = num_offsets;
884 objfile->section_offsets
885 = ((struct section_offsets *)
886 obstack_alloc (&objfile->objfile_obstack, size));
887 memcpy (objfile->section_offsets, offsets, size);
888
889 init_objfile_sect_indices (objfile);
890 }
891
892 #ifndef DEPRECATED_IBM6000_TARGET
893 /* This is a SVR4/SunOS specific hack, I think. In any event, it
894 screws RS/6000. sym_offsets should be doing this sort of thing,
895 because it knows the mapping between bfd sections and
896 section_offsets. */
897 /* This is a hack. As far as I can tell, section offsets are not
898 target dependent. They are all set to addr with a couple of
899 exceptions. The exceptions are sysvr4 shared libraries, whose
900 offsets are kept in solib structures anyway and rs6000 xcoff
901 which handles shared libraries in a completely unique way.
902
903 Section offsets are built similarly, except that they are built
904 by adding addr in all cases because there is no clear mapping
905 from section_offsets into actual sections. Note that solib.c
906 has a different algorithm for finding section offsets.
907
908 These should probably all be collapsed into some target
909 independent form of shared library support. FIXME. */
910
911 if (addrs)
912 {
913 struct obj_section *s;
914
915 /* Map section offsets in "addr" back to the object's
916 sections by comparing the section names with bfd's
917 section names. Then adjust the section address by
918 the offset. */ /* for gdb/13815 */
919
920 ALL_OBJFILE_OSECTIONS (objfile, s)
921 {
922 CORE_ADDR s_addr = 0;
923 int i;
924
925 for (i = 0;
926 !s_addr && i < addrs->num_sections && addrs->other[i].name;
927 i++)
928 if (strcmp (bfd_section_name (s->objfile->obfd,
929 s->the_bfd_section),
930 addrs->other[i].name) == 0)
931 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
932
933 s->addr -= s->offset;
934 s->addr += s_addr;
935 s->endaddr -= s->offset;
936 s->endaddr += s_addr;
937 s->offset += s_addr;
938 }
939 }
940 #endif /* not DEPRECATED_IBM6000_TARGET */
941
942 (*objfile->sf->sym_read) (objfile, mainline);
943
944 /* Don't allow char * to have a typename (else would get caddr_t).
945 Ditto void *. FIXME: Check whether this is now done by all the
946 symbol readers themselves (many of them now do), and if so remove
947 it from here. */
948
949 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
950 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
951
952 /* Mark the objfile has having had initial symbol read attempted. Note
953 that this does not mean we found any symbols... */
954
955 objfile->flags |= OBJF_SYMS;
956
957 /* Discard cleanups as symbol reading was successful. */
958
959 discard_cleanups (old_chain);
960 }
961
962 /* Perform required actions after either reading in the initial
963 symbols for a new objfile, or mapping in the symbols from a reusable
964 objfile. */
965
966 void
967 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
968 {
969
970 /* If this is the main symbol file we have to clean up all users of the
971 old main symbol file. Otherwise it is sufficient to fixup all the
972 breakpoints that may have been redefined by this symbol file. */
973 if (mainline)
974 {
975 /* OK, make it the "real" symbol file. */
976 symfile_objfile = objfile;
977
978 clear_symtab_users ();
979 }
980 else
981 {
982 breakpoint_re_set ();
983 }
984
985 /* We're done reading the symbol file; finish off complaints. */
986 clear_complaints (&symfile_complaints, 0, verbo);
987 }
988
989 /* Process a symbol file, as either the main file or as a dynamically
990 loaded file.
991
992 ABFD is a BFD already open on the file, as from symfile_bfd_open.
993 This BFD will be closed on error, and is always consumed by this function.
994
995 FROM_TTY says how verbose to be.
996
997 MAINLINE specifies whether this is the main symbol file, or whether
998 it's an extra symbol file such as dynamically loaded code.
999
1000 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1001 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
1002 non-zero.
1003
1004 Upon success, returns a pointer to the objfile that was added.
1005 Upon failure, jumps back to command level (never returns). */
1006 static struct objfile *
1007 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
1008 struct section_addr_info *addrs,
1009 struct section_offsets *offsets,
1010 int num_offsets,
1011 int mainline, int flags)
1012 {
1013 struct objfile *objfile;
1014 struct partial_symtab *psymtab;
1015 char *debugfile = NULL;
1016 struct section_addr_info *orig_addrs = NULL;
1017 struct cleanup *my_cleanups;
1018 const char *name = bfd_get_filename (abfd);
1019
1020 my_cleanups = make_cleanup_bfd_close (abfd);
1021
1022 /* Give user a chance to burp if we'd be
1023 interactively wiping out any existing symbols. */
1024
1025 if ((have_full_symbols () || have_partial_symbols ())
1026 && mainline
1027 && from_tty
1028 && !query ("Load new symbol table from \"%s\"? ", name))
1029 error (_("Not confirmed."));
1030
1031 objfile = allocate_objfile (abfd, flags);
1032 discard_cleanups (my_cleanups);
1033
1034 if (addrs)
1035 {
1036 orig_addrs = copy_section_addr_info (addrs);
1037 make_cleanup_free_section_addr_info (orig_addrs);
1038 }
1039
1040 /* We either created a new mapped symbol table, mapped an existing
1041 symbol table file which has not had initial symbol reading
1042 performed, or need to read an unmapped symbol table. */
1043 if (from_tty || info_verbose)
1044 {
1045 if (deprecated_pre_add_symbol_hook)
1046 deprecated_pre_add_symbol_hook (name);
1047 else
1048 {
1049 printf_unfiltered (_("Reading symbols from %s..."), name);
1050 wrap_here ("");
1051 gdb_flush (gdb_stdout);
1052 }
1053 }
1054 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1055 mainline, from_tty);
1056
1057 /* We now have at least a partial symbol table. Check to see if the
1058 user requested that all symbols be read on initial access via either
1059 the gdb startup command line or on a per symbol file basis. Expand
1060 all partial symbol tables for this objfile if so. */
1061
1062 if ((flags & OBJF_READNOW) || readnow_symbol_files)
1063 {
1064 if (from_tty || info_verbose)
1065 {
1066 printf_unfiltered (_("expanding to full symbols..."));
1067 wrap_here ("");
1068 gdb_flush (gdb_stdout);
1069 }
1070
1071 for (psymtab = objfile->psymtabs;
1072 psymtab != NULL;
1073 psymtab = psymtab->next)
1074 {
1075 psymtab_to_symtab (psymtab);
1076 }
1077 }
1078
1079 /* If the file has its own symbol tables it has no separate debug info.
1080 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1081 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1082 if (objfile->psymtabs == NULL)
1083 debugfile = find_separate_debug_file (objfile);
1084 if (debugfile)
1085 {
1086 if (addrs != NULL)
1087 {
1088 objfile->separate_debug_objfile
1089 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
1090 }
1091 else
1092 {
1093 objfile->separate_debug_objfile
1094 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
1095 }
1096 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1097 = objfile;
1098
1099 /* Put the separate debug object before the normal one, this is so that
1100 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1101 put_objfile_before (objfile->separate_debug_objfile, objfile);
1102
1103 xfree (debugfile);
1104 }
1105
1106 if (!have_partial_symbols () && !have_full_symbols ())
1107 {
1108 wrap_here ("");
1109 printf_filtered (_("(no debugging symbols found)"));
1110 if (from_tty || info_verbose)
1111 printf_filtered ("...");
1112 else
1113 printf_filtered ("\n");
1114 wrap_here ("");
1115 }
1116
1117 if (from_tty || info_verbose)
1118 {
1119 if (deprecated_post_add_symbol_hook)
1120 deprecated_post_add_symbol_hook ();
1121 else
1122 {
1123 printf_unfiltered (_("done.\n"));
1124 }
1125 }
1126
1127 /* We print some messages regardless of whether 'from_tty ||
1128 info_verbose' is true, so make sure they go out at the right
1129 time. */
1130 gdb_flush (gdb_stdout);
1131
1132 do_cleanups (my_cleanups);
1133
1134 if (objfile->sf == NULL)
1135 return objfile; /* No symbols. */
1136
1137 new_symfile_objfile (objfile, mainline, from_tty);
1138
1139 observer_notify_new_objfile (objfile);
1140
1141 bfd_cache_close_all ();
1142 return (objfile);
1143 }
1144
1145
1146 /* Process the symbol file ABFD, as either the main file or as a
1147 dynamically loaded file.
1148
1149 See symbol_file_add_with_addrs_or_offsets's comments for
1150 details. */
1151 struct objfile *
1152 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1153 struct section_addr_info *addrs,
1154 int mainline, int flags)
1155 {
1156 return symbol_file_add_with_addrs_or_offsets (abfd,
1157 from_tty, addrs, 0, 0,
1158 mainline, flags);
1159 }
1160
1161
1162 /* Process a symbol file, as either the main file or as a dynamically
1163 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1164 for details. */
1165 struct objfile *
1166 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1167 int mainline, int flags)
1168 {
1169 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1170 addrs, mainline, flags);
1171 }
1172
1173
1174 /* Call symbol_file_add() with default values and update whatever is
1175 affected by the loading of a new main().
1176 Used when the file is supplied in the gdb command line
1177 and by some targets with special loading requirements.
1178 The auxiliary function, symbol_file_add_main_1(), has the flags
1179 argument for the switches that can only be specified in the symbol_file
1180 command itself. */
1181
1182 void
1183 symbol_file_add_main (char *args, int from_tty)
1184 {
1185 symbol_file_add_main_1 (args, from_tty, 0);
1186 }
1187
1188 static void
1189 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1190 {
1191 symbol_file_add (args, from_tty, NULL, 1, flags);
1192
1193 /* Getting new symbols may change our opinion about
1194 what is frameless. */
1195 reinit_frame_cache ();
1196
1197 set_initial_language ();
1198 }
1199
1200 void
1201 symbol_file_clear (int from_tty)
1202 {
1203 if ((have_full_symbols () || have_partial_symbols ())
1204 && from_tty
1205 && (symfile_objfile
1206 ? !query (_("Discard symbol table from `%s'? "),
1207 symfile_objfile->name)
1208 : !query (_("Discard symbol table? "))))
1209 error (_("Not confirmed."));
1210 free_all_objfiles ();
1211
1212 /* solib descriptors may have handles to objfiles. Since their
1213 storage has just been released, we'd better wipe the solib
1214 descriptors as well.
1215 */
1216 no_shared_libraries (NULL, from_tty);
1217
1218 symfile_objfile = NULL;
1219 if (from_tty)
1220 printf_unfiltered (_("No symbol file now.\n"));
1221 }
1222
1223 struct build_id
1224 {
1225 size_t size;
1226 gdb_byte data[1];
1227 };
1228
1229 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1230
1231 static struct build_id *
1232 build_id_bfd_get (bfd *abfd)
1233 {
1234 struct build_id *retval;
1235
1236 if (!bfd_check_format (abfd, bfd_object)
1237 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1238 || elf_tdata (abfd)->build_id == NULL)
1239 return NULL;
1240
1241 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1242 retval->size = elf_tdata (abfd)->build_id_size;
1243 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1244
1245 return retval;
1246 }
1247
1248 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1249
1250 static int
1251 build_id_verify (const char *filename, struct build_id *check)
1252 {
1253 bfd *abfd;
1254 struct build_id *found = NULL;
1255 int retval = 0;
1256
1257 /* We expect to be silent on the non-existing files. */
1258 abfd = bfd_openr (filename, gnutarget);
1259 if (abfd == NULL)
1260 return 0;
1261
1262 found = build_id_bfd_get (abfd);
1263
1264 if (found == NULL)
1265 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1266 else if (found->size != check->size
1267 || memcmp (found->data, check->data, found->size) != 0)
1268 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1269 else
1270 retval = 1;
1271
1272 if (!bfd_close (abfd))
1273 warning (_("cannot close \"%s\": %s"), filename,
1274 bfd_errmsg (bfd_get_error ()));
1275 return retval;
1276 }
1277
1278 static char *
1279 build_id_to_debug_filename (struct build_id *build_id)
1280 {
1281 char *link, *s, *retval = NULL;
1282 gdb_byte *data = build_id->data;
1283 size_t size = build_id->size;
1284
1285 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1286 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1287 + 2 * size + (sizeof ".debug" - 1) + 1);
1288 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1289 if (size > 0)
1290 {
1291 size--;
1292 s += sprintf (s, "%02x", (unsigned) *data++);
1293 }
1294 if (size > 0)
1295 *s++ = '/';
1296 while (size-- > 0)
1297 s += sprintf (s, "%02x", (unsigned) *data++);
1298 strcpy (s, ".debug");
1299
1300 /* lrealpath() is expensive even for the usually non-existent files. */
1301 if (access (link, F_OK) == 0)
1302 retval = lrealpath (link);
1303 xfree (link);
1304
1305 if (retval != NULL && !build_id_verify (retval, build_id))
1306 {
1307 xfree (retval);
1308 retval = NULL;
1309 }
1310
1311 return retval;
1312 }
1313
1314 static char *
1315 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1316 {
1317 asection *sect;
1318 bfd_size_type debuglink_size;
1319 unsigned long crc32;
1320 char *contents;
1321 int crc_offset;
1322 unsigned char *p;
1323
1324 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1325
1326 if (sect == NULL)
1327 return NULL;
1328
1329 debuglink_size = bfd_section_size (objfile->obfd, sect);
1330
1331 contents = xmalloc (debuglink_size);
1332 bfd_get_section_contents (objfile->obfd, sect, contents,
1333 (file_ptr)0, (bfd_size_type)debuglink_size);
1334
1335 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1336 crc_offset = strlen (contents) + 1;
1337 crc_offset = (crc_offset + 3) & ~3;
1338
1339 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1340
1341 *crc32_out = crc32;
1342 return contents;
1343 }
1344
1345 static int
1346 separate_debug_file_exists (const char *name, unsigned long crc)
1347 {
1348 unsigned long file_crc = 0;
1349 int fd;
1350 gdb_byte buffer[8*1024];
1351 int count;
1352
1353 fd = open (name, O_RDONLY | O_BINARY);
1354 if (fd < 0)
1355 return 0;
1356
1357 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1358 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1359
1360 close (fd);
1361
1362 return crc == file_crc;
1363 }
1364
1365 char *debug_file_directory = NULL;
1366 static void
1367 show_debug_file_directory (struct ui_file *file, int from_tty,
1368 struct cmd_list_element *c, const char *value)
1369 {
1370 fprintf_filtered (file, _("\
1371 The directory where separate debug symbols are searched for is \"%s\".\n"),
1372 value);
1373 }
1374
1375 #if ! defined (DEBUG_SUBDIRECTORY)
1376 #define DEBUG_SUBDIRECTORY ".debug"
1377 #endif
1378
1379 static char *
1380 find_separate_debug_file (struct objfile *objfile)
1381 {
1382 asection *sect;
1383 char *basename;
1384 char *dir;
1385 char *debugfile;
1386 char *name_copy;
1387 char *canon_name;
1388 bfd_size_type debuglink_size;
1389 unsigned long crc32;
1390 int i;
1391 struct build_id *build_id;
1392
1393 build_id = build_id_bfd_get (objfile->obfd);
1394 if (build_id != NULL)
1395 {
1396 char *build_id_name;
1397
1398 build_id_name = build_id_to_debug_filename (build_id);
1399 free (build_id);
1400 /* Prevent looping on a stripped .debug file. */
1401 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1402 {
1403 warning (_("\"%s\": separate debug info file has no debug info"),
1404 build_id_name);
1405 xfree (build_id_name);
1406 }
1407 else if (build_id_name != NULL)
1408 return build_id_name;
1409 }
1410
1411 basename = get_debug_link_info (objfile, &crc32);
1412
1413 if (basename == NULL)
1414 return NULL;
1415
1416 dir = xstrdup (objfile->name);
1417
1418 /* Strip off the final filename part, leaving the directory name,
1419 followed by a slash. Objfile names should always be absolute and
1420 tilde-expanded, so there should always be a slash in there
1421 somewhere. */
1422 for (i = strlen(dir) - 1; i >= 0; i--)
1423 {
1424 if (IS_DIR_SEPARATOR (dir[i]))
1425 break;
1426 }
1427 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1428 dir[i+1] = '\0';
1429
1430 debugfile = alloca (strlen (debug_file_directory) + 1
1431 + strlen (dir)
1432 + strlen (DEBUG_SUBDIRECTORY)
1433 + strlen ("/")
1434 + strlen (basename)
1435 + 1);
1436
1437 /* First try in the same directory as the original file. */
1438 strcpy (debugfile, dir);
1439 strcat (debugfile, basename);
1440
1441 if (separate_debug_file_exists (debugfile, crc32))
1442 {
1443 xfree (basename);
1444 xfree (dir);
1445 return xstrdup (debugfile);
1446 }
1447
1448 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1449 strcpy (debugfile, dir);
1450 strcat (debugfile, DEBUG_SUBDIRECTORY);
1451 strcat (debugfile, "/");
1452 strcat (debugfile, basename);
1453
1454 if (separate_debug_file_exists (debugfile, crc32))
1455 {
1456 xfree (basename);
1457 xfree (dir);
1458 return xstrdup (debugfile);
1459 }
1460
1461 /* Then try in the global debugfile directory. */
1462 strcpy (debugfile, debug_file_directory);
1463 strcat (debugfile, "/");
1464 strcat (debugfile, dir);
1465 strcat (debugfile, basename);
1466
1467 if (separate_debug_file_exists (debugfile, crc32))
1468 {
1469 xfree (basename);
1470 xfree (dir);
1471 return xstrdup (debugfile);
1472 }
1473
1474 /* If the file is in the sysroot, try using its base path in the
1475 global debugfile directory. */
1476 canon_name = lrealpath (dir);
1477 if (canon_name
1478 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1479 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1480 {
1481 strcpy (debugfile, debug_file_directory);
1482 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1483 strcat (debugfile, "/");
1484 strcat (debugfile, basename);
1485
1486 if (separate_debug_file_exists (debugfile, crc32))
1487 {
1488 xfree (canon_name);
1489 xfree (basename);
1490 xfree (dir);
1491 return xstrdup (debugfile);
1492 }
1493 }
1494
1495 if (canon_name)
1496 xfree (canon_name);
1497
1498 xfree (basename);
1499 xfree (dir);
1500 return NULL;
1501 }
1502
1503
1504 /* This is the symbol-file command. Read the file, analyze its
1505 symbols, and add a struct symtab to a symtab list. The syntax of
1506 the command is rather bizarre:
1507
1508 1. The function buildargv implements various quoting conventions
1509 which are undocumented and have little or nothing in common with
1510 the way things are quoted (or not quoted) elsewhere in GDB.
1511
1512 2. Options are used, which are not generally used in GDB (perhaps
1513 "set mapped on", "set readnow on" would be better)
1514
1515 3. The order of options matters, which is contrary to GNU
1516 conventions (because it is confusing and inconvenient). */
1517
1518 void
1519 symbol_file_command (char *args, int from_tty)
1520 {
1521 dont_repeat ();
1522
1523 if (args == NULL)
1524 {
1525 symbol_file_clear (from_tty);
1526 }
1527 else
1528 {
1529 char **argv = buildargv (args);
1530 int flags = OBJF_USERLOADED;
1531 struct cleanup *cleanups;
1532 char *name = NULL;
1533
1534 if (argv == NULL)
1535 nomem (0);
1536
1537 cleanups = make_cleanup_freeargv (argv);
1538 while (*argv != NULL)
1539 {
1540 if (strcmp (*argv, "-readnow") == 0)
1541 flags |= OBJF_READNOW;
1542 else if (**argv == '-')
1543 error (_("unknown option `%s'"), *argv);
1544 else
1545 {
1546 symbol_file_add_main_1 (*argv, from_tty, flags);
1547 name = *argv;
1548 }
1549
1550 argv++;
1551 }
1552
1553 if (name == NULL)
1554 error (_("no symbol file name was specified"));
1555
1556 do_cleanups (cleanups);
1557 }
1558 }
1559
1560 /* Set the initial language.
1561
1562 FIXME: A better solution would be to record the language in the
1563 psymtab when reading partial symbols, and then use it (if known) to
1564 set the language. This would be a win for formats that encode the
1565 language in an easily discoverable place, such as DWARF. For
1566 stabs, we can jump through hoops looking for specially named
1567 symbols or try to intuit the language from the specific type of
1568 stabs we find, but we can't do that until later when we read in
1569 full symbols. */
1570
1571 void
1572 set_initial_language (void)
1573 {
1574 struct partial_symtab *pst;
1575 enum language lang = language_unknown;
1576
1577 pst = find_main_psymtab ();
1578 if (pst != NULL)
1579 {
1580 if (pst->filename != NULL)
1581 lang = deduce_language_from_filename (pst->filename);
1582
1583 if (lang == language_unknown)
1584 {
1585 /* Make C the default language */
1586 lang = language_c;
1587 }
1588
1589 set_language (lang);
1590 expected_language = current_language; /* Don't warn the user. */
1591 }
1592 }
1593
1594 /* Open the file specified by NAME and hand it off to BFD for
1595 preliminary analysis. Return a newly initialized bfd *, which
1596 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1597 absolute). In case of trouble, error() is called. */
1598
1599 bfd *
1600 symfile_bfd_open (char *name)
1601 {
1602 bfd *sym_bfd;
1603 int desc;
1604 char *absolute_name;
1605
1606 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1607
1608 /* Look down path for it, allocate 2nd new malloc'd copy. */
1609 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1610 O_RDONLY | O_BINARY, 0, &absolute_name);
1611 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1612 if (desc < 0)
1613 {
1614 char *exename = alloca (strlen (name) + 5);
1615 strcat (strcpy (exename, name), ".exe");
1616 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1617 O_RDONLY | O_BINARY, 0, &absolute_name);
1618 }
1619 #endif
1620 if (desc < 0)
1621 {
1622 make_cleanup (xfree, name);
1623 perror_with_name (name);
1624 }
1625
1626 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1627 bfd. It'll be freed in free_objfile(). */
1628 xfree (name);
1629 name = absolute_name;
1630
1631 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1632 if (!sym_bfd)
1633 {
1634 close (desc);
1635 make_cleanup (xfree, name);
1636 error (_("\"%s\": can't open to read symbols: %s."), name,
1637 bfd_errmsg (bfd_get_error ()));
1638 }
1639 bfd_set_cacheable (sym_bfd, 1);
1640
1641 if (!bfd_check_format (sym_bfd, bfd_object))
1642 {
1643 /* FIXME: should be checking for errors from bfd_close (for one
1644 thing, on error it does not free all the storage associated
1645 with the bfd). */
1646 bfd_close (sym_bfd); /* This also closes desc. */
1647 make_cleanup (xfree, name);
1648 error (_("\"%s\": can't read symbols: %s."), name,
1649 bfd_errmsg (bfd_get_error ()));
1650 }
1651
1652 return sym_bfd;
1653 }
1654
1655 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1656 the section was not found. */
1657
1658 int
1659 get_section_index (struct objfile *objfile, char *section_name)
1660 {
1661 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1662
1663 if (sect)
1664 return sect->index;
1665 else
1666 return -1;
1667 }
1668
1669 /* Link SF into the global symtab_fns list. Called on startup by the
1670 _initialize routine in each object file format reader, to register
1671 information about each format the the reader is prepared to
1672 handle. */
1673
1674 void
1675 add_symtab_fns (struct sym_fns *sf)
1676 {
1677 sf->next = symtab_fns;
1678 symtab_fns = sf;
1679 }
1680
1681 /* Initialize OBJFILE to read symbols from its associated BFD. It
1682 either returns or calls error(). The result is an initialized
1683 struct sym_fns in the objfile structure, that contains cached
1684 information about the symbol file. */
1685
1686 static struct sym_fns *
1687 find_sym_fns (bfd *abfd)
1688 {
1689 struct sym_fns *sf;
1690 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1691
1692 if (our_flavour == bfd_target_srec_flavour
1693 || our_flavour == bfd_target_ihex_flavour
1694 || our_flavour == bfd_target_tekhex_flavour)
1695 return NULL; /* No symbols. */
1696
1697 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1698 if (our_flavour == sf->sym_flavour)
1699 return sf;
1700
1701 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1702 bfd_get_target (abfd));
1703 }
1704 \f
1705
1706 /* This function runs the load command of our current target. */
1707
1708 static void
1709 load_command (char *arg, int from_tty)
1710 {
1711 if (arg == NULL)
1712 {
1713 char *parg;
1714 int count = 0;
1715
1716 parg = arg = get_exec_file (1);
1717
1718 /* Count how many \ " ' tab space there are in the name. */
1719 while ((parg = strpbrk (parg, "\\\"'\t ")))
1720 {
1721 parg++;
1722 count++;
1723 }
1724
1725 if (count)
1726 {
1727 /* We need to quote this string so buildargv can pull it apart. */
1728 char *temp = xmalloc (strlen (arg) + count + 1 );
1729 char *ptemp = temp;
1730 char *prev;
1731
1732 make_cleanup (xfree, temp);
1733
1734 prev = parg = arg;
1735 while ((parg = strpbrk (parg, "\\\"'\t ")))
1736 {
1737 strncpy (ptemp, prev, parg - prev);
1738 ptemp += parg - prev;
1739 prev = parg++;
1740 *ptemp++ = '\\';
1741 }
1742 strcpy (ptemp, prev);
1743
1744 arg = temp;
1745 }
1746 }
1747
1748 /* The user might be reloading because the binary has changed. Take
1749 this opportunity to check. */
1750 reopen_exec_file ();
1751 reread_symbols ();
1752
1753 target_load (arg, from_tty);
1754
1755 /* After re-loading the executable, we don't really know which
1756 overlays are mapped any more. */
1757 overlay_cache_invalid = 1;
1758 }
1759
1760 /* This version of "load" should be usable for any target. Currently
1761 it is just used for remote targets, not inftarg.c or core files,
1762 on the theory that only in that case is it useful.
1763
1764 Avoiding xmodem and the like seems like a win (a) because we don't have
1765 to worry about finding it, and (b) On VMS, fork() is very slow and so
1766 we don't want to run a subprocess. On the other hand, I'm not sure how
1767 performance compares. */
1768
1769 static int validate_download = 0;
1770
1771 /* Callback service function for generic_load (bfd_map_over_sections). */
1772
1773 static void
1774 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1775 {
1776 bfd_size_type *sum = data;
1777
1778 *sum += bfd_get_section_size (asec);
1779 }
1780
1781 /* Opaque data for load_section_callback. */
1782 struct load_section_data {
1783 unsigned long load_offset;
1784 struct load_progress_data *progress_data;
1785 VEC(memory_write_request_s) *requests;
1786 };
1787
1788 /* Opaque data for load_progress. */
1789 struct load_progress_data {
1790 /* Cumulative data. */
1791 unsigned long write_count;
1792 unsigned long data_count;
1793 bfd_size_type total_size;
1794 };
1795
1796 /* Opaque data for load_progress for a single section. */
1797 struct load_progress_section_data {
1798 struct load_progress_data *cumulative;
1799
1800 /* Per-section data. */
1801 const char *section_name;
1802 ULONGEST section_sent;
1803 ULONGEST section_size;
1804 CORE_ADDR lma;
1805 gdb_byte *buffer;
1806 };
1807
1808 /* Target write callback routine for progress reporting. */
1809
1810 static void
1811 load_progress (ULONGEST bytes, void *untyped_arg)
1812 {
1813 struct load_progress_section_data *args = untyped_arg;
1814 struct load_progress_data *totals;
1815
1816 if (args == NULL)
1817 /* Writing padding data. No easy way to get at the cumulative
1818 stats, so just ignore this. */
1819 return;
1820
1821 totals = args->cumulative;
1822
1823 if (bytes == 0 && args->section_sent == 0)
1824 {
1825 /* The write is just starting. Let the user know we've started
1826 this section. */
1827 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1828 args->section_name, paddr_nz (args->section_size),
1829 paddr_nz (args->lma));
1830 return;
1831 }
1832
1833 if (validate_download)
1834 {
1835 /* Broken memories and broken monitors manifest themselves here
1836 when bring new computers to life. This doubles already slow
1837 downloads. */
1838 /* NOTE: cagney/1999-10-18: A more efficient implementation
1839 might add a verify_memory() method to the target vector and
1840 then use that. remote.c could implement that method using
1841 the ``qCRC'' packet. */
1842 gdb_byte *check = xmalloc (bytes);
1843 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1844
1845 if (target_read_memory (args->lma, check, bytes) != 0)
1846 error (_("Download verify read failed at 0x%s"),
1847 paddr (args->lma));
1848 if (memcmp (args->buffer, check, bytes) != 0)
1849 error (_("Download verify compare failed at 0x%s"),
1850 paddr (args->lma));
1851 do_cleanups (verify_cleanups);
1852 }
1853 totals->data_count += bytes;
1854 args->lma += bytes;
1855 args->buffer += bytes;
1856 totals->write_count += 1;
1857 args->section_sent += bytes;
1858 if (quit_flag
1859 || (deprecated_ui_load_progress_hook != NULL
1860 && deprecated_ui_load_progress_hook (args->section_name,
1861 args->section_sent)))
1862 error (_("Canceled the download"));
1863
1864 if (deprecated_show_load_progress != NULL)
1865 deprecated_show_load_progress (args->section_name,
1866 args->section_sent,
1867 args->section_size,
1868 totals->data_count,
1869 totals->total_size);
1870 }
1871
1872 /* Callback service function for generic_load (bfd_map_over_sections). */
1873
1874 static void
1875 load_section_callback (bfd *abfd, asection *asec, void *data)
1876 {
1877 struct memory_write_request *new_request;
1878 struct load_section_data *args = data;
1879 struct load_progress_section_data *section_data;
1880 bfd_size_type size = bfd_get_section_size (asec);
1881 gdb_byte *buffer;
1882 const char *sect_name = bfd_get_section_name (abfd, asec);
1883
1884 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1885 return;
1886
1887 if (size == 0)
1888 return;
1889
1890 new_request = VEC_safe_push (memory_write_request_s,
1891 args->requests, NULL);
1892 memset (new_request, 0, sizeof (struct memory_write_request));
1893 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1894 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1895 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1896 new_request->data = xmalloc (size);
1897 new_request->baton = section_data;
1898
1899 buffer = new_request->data;
1900
1901 section_data->cumulative = args->progress_data;
1902 section_data->section_name = sect_name;
1903 section_data->section_size = size;
1904 section_data->lma = new_request->begin;
1905 section_data->buffer = buffer;
1906
1907 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1908 }
1909
1910 /* Clean up an entire memory request vector, including load
1911 data and progress records. */
1912
1913 static void
1914 clear_memory_write_data (void *arg)
1915 {
1916 VEC(memory_write_request_s) **vec_p = arg;
1917 VEC(memory_write_request_s) *vec = *vec_p;
1918 int i;
1919 struct memory_write_request *mr;
1920
1921 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1922 {
1923 xfree (mr->data);
1924 xfree (mr->baton);
1925 }
1926 VEC_free (memory_write_request_s, vec);
1927 }
1928
1929 void
1930 generic_load (char *args, int from_tty)
1931 {
1932 bfd *loadfile_bfd;
1933 struct timeval start_time, end_time;
1934 char *filename;
1935 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1936 struct load_section_data cbdata;
1937 struct load_progress_data total_progress;
1938
1939 CORE_ADDR entry;
1940 char **argv;
1941
1942 memset (&cbdata, 0, sizeof (cbdata));
1943 memset (&total_progress, 0, sizeof (total_progress));
1944 cbdata.progress_data = &total_progress;
1945
1946 make_cleanup (clear_memory_write_data, &cbdata.requests);
1947
1948 argv = buildargv (args);
1949
1950 if (argv == NULL)
1951 nomem(0);
1952
1953 make_cleanup_freeargv (argv);
1954
1955 filename = tilde_expand (argv[0]);
1956 make_cleanup (xfree, filename);
1957
1958 if (argv[1] != NULL)
1959 {
1960 char *endptr;
1961
1962 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1963
1964 /* If the last word was not a valid number then
1965 treat it as a file name with spaces in. */
1966 if (argv[1] == endptr)
1967 error (_("Invalid download offset:%s."), argv[1]);
1968
1969 if (argv[2] != NULL)
1970 error (_("Too many parameters."));
1971 }
1972
1973 /* Open the file for loading. */
1974 loadfile_bfd = bfd_openr (filename, gnutarget);
1975 if (loadfile_bfd == NULL)
1976 {
1977 perror_with_name (filename);
1978 return;
1979 }
1980
1981 /* FIXME: should be checking for errors from bfd_close (for one thing,
1982 on error it does not free all the storage associated with the
1983 bfd). */
1984 make_cleanup_bfd_close (loadfile_bfd);
1985
1986 if (!bfd_check_format (loadfile_bfd, bfd_object))
1987 {
1988 error (_("\"%s\" is not an object file: %s"), filename,
1989 bfd_errmsg (bfd_get_error ()));
1990 }
1991
1992 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1993 (void *) &total_progress.total_size);
1994
1995 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1996
1997 gettimeofday (&start_time, NULL);
1998
1999 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2000 load_progress) != 0)
2001 error (_("Load failed"));
2002
2003 gettimeofday (&end_time, NULL);
2004
2005 entry = bfd_get_start_address (loadfile_bfd);
2006 ui_out_text (uiout, "Start address ");
2007 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
2008 ui_out_text (uiout, ", load size ");
2009 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2010 ui_out_text (uiout, "\n");
2011 /* We were doing this in remote-mips.c, I suspect it is right
2012 for other targets too. */
2013 write_pc (entry);
2014
2015 /* FIXME: are we supposed to call symbol_file_add or not? According
2016 to a comment from remote-mips.c (where a call to symbol_file_add
2017 was commented out), making the call confuses GDB if more than one
2018 file is loaded in. Some targets do (e.g., remote-vx.c) but
2019 others don't (or didn't - perhaps they have all been deleted). */
2020
2021 print_transfer_performance (gdb_stdout, total_progress.data_count,
2022 total_progress.write_count,
2023 &start_time, &end_time);
2024
2025 do_cleanups (old_cleanups);
2026 }
2027
2028 /* Report how fast the transfer went. */
2029
2030 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2031 replaced by print_transfer_performance (with a very different
2032 function signature). */
2033
2034 void
2035 report_transfer_performance (unsigned long data_count, time_t start_time,
2036 time_t end_time)
2037 {
2038 struct timeval start, end;
2039
2040 start.tv_sec = start_time;
2041 start.tv_usec = 0;
2042 end.tv_sec = end_time;
2043 end.tv_usec = 0;
2044
2045 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2046 }
2047
2048 void
2049 print_transfer_performance (struct ui_file *stream,
2050 unsigned long data_count,
2051 unsigned long write_count,
2052 const struct timeval *start_time,
2053 const struct timeval *end_time)
2054 {
2055 ULONGEST time_count;
2056
2057 /* Compute the elapsed time in milliseconds, as a tradeoff between
2058 accuracy and overflow. */
2059 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2060 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2061
2062 ui_out_text (uiout, "Transfer rate: ");
2063 if (time_count > 0)
2064 {
2065 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2066
2067 if (ui_out_is_mi_like_p (uiout))
2068 {
2069 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2070 ui_out_text (uiout, " bits/sec");
2071 }
2072 else if (rate < 1024)
2073 {
2074 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2075 ui_out_text (uiout, " bytes/sec");
2076 }
2077 else
2078 {
2079 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2080 ui_out_text (uiout, " KB/sec");
2081 }
2082 }
2083 else
2084 {
2085 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2086 ui_out_text (uiout, " bits in <1 sec");
2087 }
2088 if (write_count > 0)
2089 {
2090 ui_out_text (uiout, ", ");
2091 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2092 ui_out_text (uiout, " bytes/write");
2093 }
2094 ui_out_text (uiout, ".\n");
2095 }
2096
2097 /* This function allows the addition of incrementally linked object files.
2098 It does not modify any state in the target, only in the debugger. */
2099 /* Note: ezannoni 2000-04-13 This function/command used to have a
2100 special case syntax for the rombug target (Rombug is the boot
2101 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2102 rombug case, the user doesn't need to supply a text address,
2103 instead a call to target_link() (in target.c) would supply the
2104 value to use. We are now discontinuing this type of ad hoc syntax. */
2105
2106 static void
2107 add_symbol_file_command (char *args, int from_tty)
2108 {
2109 char *filename = NULL;
2110 int flags = OBJF_USERLOADED;
2111 char *arg;
2112 int expecting_option = 0;
2113 int section_index = 0;
2114 int argcnt = 0;
2115 int sec_num = 0;
2116 int i;
2117 int expecting_sec_name = 0;
2118 int expecting_sec_addr = 0;
2119 char **argv;
2120
2121 struct sect_opt
2122 {
2123 char *name;
2124 char *value;
2125 };
2126
2127 struct section_addr_info *section_addrs;
2128 struct sect_opt *sect_opts = NULL;
2129 size_t num_sect_opts = 0;
2130 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2131
2132 num_sect_opts = 16;
2133 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2134 * sizeof (struct sect_opt));
2135
2136 dont_repeat ();
2137
2138 if (args == NULL)
2139 error (_("add-symbol-file takes a file name and an address"));
2140
2141 argv = buildargv (args);
2142 make_cleanup_freeargv (argv);
2143
2144 if (argv == NULL)
2145 nomem (0);
2146
2147 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2148 {
2149 /* Process the argument. */
2150 if (argcnt == 0)
2151 {
2152 /* The first argument is the file name. */
2153 filename = tilde_expand (arg);
2154 make_cleanup (xfree, filename);
2155 }
2156 else
2157 if (argcnt == 1)
2158 {
2159 /* The second argument is always the text address at which
2160 to load the program. */
2161 sect_opts[section_index].name = ".text";
2162 sect_opts[section_index].value = arg;
2163 if (++section_index >= num_sect_opts)
2164 {
2165 num_sect_opts *= 2;
2166 sect_opts = ((struct sect_opt *)
2167 xrealloc (sect_opts,
2168 num_sect_opts
2169 * sizeof (struct sect_opt)));
2170 }
2171 }
2172 else
2173 {
2174 /* It's an option (starting with '-') or it's an argument
2175 to an option */
2176
2177 if (*arg == '-')
2178 {
2179 if (strcmp (arg, "-readnow") == 0)
2180 flags |= OBJF_READNOW;
2181 else if (strcmp (arg, "-s") == 0)
2182 {
2183 expecting_sec_name = 1;
2184 expecting_sec_addr = 1;
2185 }
2186 }
2187 else
2188 {
2189 if (expecting_sec_name)
2190 {
2191 sect_opts[section_index].name = arg;
2192 expecting_sec_name = 0;
2193 }
2194 else
2195 if (expecting_sec_addr)
2196 {
2197 sect_opts[section_index].value = arg;
2198 expecting_sec_addr = 0;
2199 if (++section_index >= num_sect_opts)
2200 {
2201 num_sect_opts *= 2;
2202 sect_opts = ((struct sect_opt *)
2203 xrealloc (sect_opts,
2204 num_sect_opts
2205 * sizeof (struct sect_opt)));
2206 }
2207 }
2208 else
2209 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2210 }
2211 }
2212 }
2213
2214 /* This command takes at least two arguments. The first one is a
2215 filename, and the second is the address where this file has been
2216 loaded. Abort now if this address hasn't been provided by the
2217 user. */
2218 if (section_index < 1)
2219 error (_("The address where %s has been loaded is missing"), filename);
2220
2221 /* Print the prompt for the query below. And save the arguments into
2222 a sect_addr_info structure to be passed around to other
2223 functions. We have to split this up into separate print
2224 statements because hex_string returns a local static
2225 string. */
2226
2227 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2228 section_addrs = alloc_section_addr_info (section_index);
2229 make_cleanup (xfree, section_addrs);
2230 for (i = 0; i < section_index; i++)
2231 {
2232 CORE_ADDR addr;
2233 char *val = sect_opts[i].value;
2234 char *sec = sect_opts[i].name;
2235
2236 addr = parse_and_eval_address (val);
2237
2238 /* Here we store the section offsets in the order they were
2239 entered on the command line. */
2240 section_addrs->other[sec_num].name = sec;
2241 section_addrs->other[sec_num].addr = addr;
2242 printf_unfiltered ("\t%s_addr = %s\n", sec, paddress (addr));
2243 sec_num++;
2244
2245 /* The object's sections are initialized when a
2246 call is made to build_objfile_section_table (objfile).
2247 This happens in reread_symbols.
2248 At this point, we don't know what file type this is,
2249 so we can't determine what section names are valid. */
2250 }
2251
2252 if (from_tty && (!query ("%s", "")))
2253 error (_("Not confirmed."));
2254
2255 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
2256
2257 /* Getting new symbols may change our opinion about what is
2258 frameless. */
2259 reinit_frame_cache ();
2260 do_cleanups (my_cleanups);
2261 }
2262 \f
2263 static void
2264 add_shared_symbol_files_command (char *args, int from_tty)
2265 {
2266 #ifdef ADD_SHARED_SYMBOL_FILES
2267 ADD_SHARED_SYMBOL_FILES (args, from_tty);
2268 #else
2269 error (_("This command is not available in this configuration of GDB."));
2270 #endif
2271 }
2272 \f
2273 /* Re-read symbols if a symbol-file has changed. */
2274 void
2275 reread_symbols (void)
2276 {
2277 struct objfile *objfile;
2278 long new_modtime;
2279 int reread_one = 0;
2280 struct stat new_statbuf;
2281 int res;
2282
2283 /* With the addition of shared libraries, this should be modified,
2284 the load time should be saved in the partial symbol tables, since
2285 different tables may come from different source files. FIXME.
2286 This routine should then walk down each partial symbol table
2287 and see if the symbol table that it originates from has been changed */
2288
2289 for (objfile = object_files; objfile; objfile = objfile->next)
2290 {
2291 if (objfile->obfd)
2292 {
2293 #ifdef DEPRECATED_IBM6000_TARGET
2294 /* If this object is from a shared library, then you should
2295 stat on the library name, not member name. */
2296
2297 if (objfile->obfd->my_archive)
2298 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2299 else
2300 #endif
2301 res = stat (objfile->name, &new_statbuf);
2302 if (res != 0)
2303 {
2304 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2305 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2306 objfile->name);
2307 continue;
2308 }
2309 new_modtime = new_statbuf.st_mtime;
2310 if (new_modtime != objfile->mtime)
2311 {
2312 struct cleanup *old_cleanups;
2313 struct section_offsets *offsets;
2314 int num_offsets;
2315 char *obfd_filename;
2316
2317 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2318 objfile->name);
2319
2320 /* There are various functions like symbol_file_add,
2321 symfile_bfd_open, syms_from_objfile, etc., which might
2322 appear to do what we want. But they have various other
2323 effects which we *don't* want. So we just do stuff
2324 ourselves. We don't worry about mapped files (for one thing,
2325 any mapped file will be out of date). */
2326
2327 /* If we get an error, blow away this objfile (not sure if
2328 that is the correct response for things like shared
2329 libraries). */
2330 old_cleanups = make_cleanup_free_objfile (objfile);
2331 /* We need to do this whenever any symbols go away. */
2332 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2333
2334 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2335 bfd_get_filename (exec_bfd)) == 0)
2336 {
2337 /* Reload EXEC_BFD without asking anything. */
2338
2339 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2340 }
2341
2342 /* Clean up any state BFD has sitting around. We don't need
2343 to close the descriptor but BFD lacks a way of closing the
2344 BFD without closing the descriptor. */
2345 obfd_filename = bfd_get_filename (objfile->obfd);
2346 if (!bfd_close (objfile->obfd))
2347 error (_("Can't close BFD for %s: %s"), objfile->name,
2348 bfd_errmsg (bfd_get_error ()));
2349 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2350 if (objfile->obfd == NULL)
2351 error (_("Can't open %s to read symbols."), objfile->name);
2352 /* bfd_openr sets cacheable to true, which is what we want. */
2353 if (!bfd_check_format (objfile->obfd, bfd_object))
2354 error (_("Can't read symbols from %s: %s."), objfile->name,
2355 bfd_errmsg (bfd_get_error ()));
2356
2357 /* Save the offsets, we will nuke them with the rest of the
2358 objfile_obstack. */
2359 num_offsets = objfile->num_sections;
2360 offsets = ((struct section_offsets *)
2361 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2362 memcpy (offsets, objfile->section_offsets,
2363 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2364
2365 /* Remove any references to this objfile in the global
2366 value lists. */
2367 preserve_values (objfile);
2368
2369 /* Nuke all the state that we will re-read. Much of the following
2370 code which sets things to NULL really is necessary to tell
2371 other parts of GDB that there is nothing currently there. */
2372
2373 /* FIXME: Do we have to free a whole linked list, or is this
2374 enough? */
2375 if (objfile->global_psymbols.list)
2376 xfree (objfile->global_psymbols.list);
2377 memset (&objfile->global_psymbols, 0,
2378 sizeof (objfile->global_psymbols));
2379 if (objfile->static_psymbols.list)
2380 xfree (objfile->static_psymbols.list);
2381 memset (&objfile->static_psymbols, 0,
2382 sizeof (objfile->static_psymbols));
2383
2384 /* Free the obstacks for non-reusable objfiles */
2385 bcache_xfree (objfile->psymbol_cache);
2386 objfile->psymbol_cache = bcache_xmalloc ();
2387 bcache_xfree (objfile->macro_cache);
2388 objfile->macro_cache = bcache_xmalloc ();
2389 if (objfile->demangled_names_hash != NULL)
2390 {
2391 htab_delete (objfile->demangled_names_hash);
2392 objfile->demangled_names_hash = NULL;
2393 }
2394 obstack_free (&objfile->objfile_obstack, 0);
2395 objfile->sections = NULL;
2396 objfile->symtabs = NULL;
2397 objfile->psymtabs = NULL;
2398 objfile->free_psymtabs = NULL;
2399 objfile->cp_namespace_symtab = NULL;
2400 objfile->msymbols = NULL;
2401 objfile->deprecated_sym_private = NULL;
2402 objfile->minimal_symbol_count = 0;
2403 memset (&objfile->msymbol_hash, 0,
2404 sizeof (objfile->msymbol_hash));
2405 memset (&objfile->msymbol_demangled_hash, 0,
2406 sizeof (objfile->msymbol_demangled_hash));
2407 clear_objfile_data (objfile);
2408 if (objfile->sf != NULL)
2409 {
2410 (*objfile->sf->sym_finish) (objfile);
2411 }
2412
2413 /* We never make this a mapped file. */
2414 objfile->md = NULL;
2415 objfile->psymbol_cache = bcache_xmalloc ();
2416 objfile->macro_cache = bcache_xmalloc ();
2417 /* obstack_init also initializes the obstack so it is
2418 empty. We could use obstack_specify_allocation but
2419 gdb_obstack.h specifies the alloc/dealloc
2420 functions. */
2421 obstack_init (&objfile->objfile_obstack);
2422 if (build_objfile_section_table (objfile))
2423 {
2424 error (_("Can't find the file sections in `%s': %s"),
2425 objfile->name, bfd_errmsg (bfd_get_error ()));
2426 }
2427 terminate_minimal_symbol_table (objfile);
2428
2429 /* We use the same section offsets as from last time. I'm not
2430 sure whether that is always correct for shared libraries. */
2431 objfile->section_offsets = (struct section_offsets *)
2432 obstack_alloc (&objfile->objfile_obstack,
2433 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2434 memcpy (objfile->section_offsets, offsets,
2435 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2436 objfile->num_sections = num_offsets;
2437
2438 /* What the hell is sym_new_init for, anyway? The concept of
2439 distinguishing between the main file and additional files
2440 in this way seems rather dubious. */
2441 if (objfile == symfile_objfile)
2442 {
2443 (*objfile->sf->sym_new_init) (objfile);
2444 }
2445
2446 (*objfile->sf->sym_init) (objfile);
2447 clear_complaints (&symfile_complaints, 1, 1);
2448 /* The "mainline" parameter is a hideous hack; I think leaving it
2449 zero is OK since dbxread.c also does what it needs to do if
2450 objfile->global_psymbols.size is 0. */
2451 (*objfile->sf->sym_read) (objfile, 0);
2452 if (!have_partial_symbols () && !have_full_symbols ())
2453 {
2454 wrap_here ("");
2455 printf_unfiltered (_("(no debugging symbols found)\n"));
2456 wrap_here ("");
2457 }
2458 objfile->flags |= OBJF_SYMS;
2459
2460 /* We're done reading the symbol file; finish off complaints. */
2461 clear_complaints (&symfile_complaints, 0, 1);
2462
2463 /* Getting new symbols may change our opinion about what is
2464 frameless. */
2465
2466 reinit_frame_cache ();
2467
2468 /* Discard cleanups as symbol reading was successful. */
2469 discard_cleanups (old_cleanups);
2470
2471 /* If the mtime has changed between the time we set new_modtime
2472 and now, we *want* this to be out of date, so don't call stat
2473 again now. */
2474 objfile->mtime = new_modtime;
2475 reread_one = 1;
2476 reread_separate_symbols (objfile);
2477 }
2478 }
2479 }
2480
2481 if (reread_one)
2482 {
2483 clear_symtab_users ();
2484 /* At least one objfile has changed, so we can consider that
2485 the executable we're debugging has changed too. */
2486 observer_notify_executable_changed (NULL);
2487 }
2488
2489 }
2490
2491
2492 /* Handle separate debug info for OBJFILE, which has just been
2493 re-read:
2494 - If we had separate debug info before, but now we don't, get rid
2495 of the separated objfile.
2496 - If we didn't have separated debug info before, but now we do,
2497 read in the new separated debug info file.
2498 - If the debug link points to a different file, toss the old one
2499 and read the new one.
2500 This function does *not* handle the case where objfile is still
2501 using the same separate debug info file, but that file's timestamp
2502 has changed. That case should be handled by the loop in
2503 reread_symbols already. */
2504 static void
2505 reread_separate_symbols (struct objfile *objfile)
2506 {
2507 char *debug_file;
2508 unsigned long crc32;
2509
2510 /* Does the updated objfile's debug info live in a
2511 separate file? */
2512 debug_file = find_separate_debug_file (objfile);
2513
2514 if (objfile->separate_debug_objfile)
2515 {
2516 /* There are two cases where we need to get rid of
2517 the old separated debug info objfile:
2518 - if the new primary objfile doesn't have
2519 separated debug info, or
2520 - if the new primary objfile has separate debug
2521 info, but it's under a different filename.
2522
2523 If the old and new objfiles both have separate
2524 debug info, under the same filename, then we're
2525 okay --- if the separated file's contents have
2526 changed, we will have caught that when we
2527 visited it in this function's outermost
2528 loop. */
2529 if (! debug_file
2530 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2531 free_objfile (objfile->separate_debug_objfile);
2532 }
2533
2534 /* If the new objfile has separate debug info, and we
2535 haven't loaded it already, do so now. */
2536 if (debug_file
2537 && ! objfile->separate_debug_objfile)
2538 {
2539 /* Use the same section offset table as objfile itself.
2540 Preserve the flags from objfile that make sense. */
2541 objfile->separate_debug_objfile
2542 = (symbol_file_add_with_addrs_or_offsets
2543 (symfile_bfd_open (debug_file),
2544 info_verbose, /* from_tty: Don't override the default. */
2545 0, /* No addr table. */
2546 objfile->section_offsets, objfile->num_sections,
2547 0, /* Not mainline. See comments about this above. */
2548 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2549 | OBJF_USERLOADED)));
2550 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2551 = objfile;
2552 }
2553 if (debug_file)
2554 xfree (debug_file);
2555 }
2556
2557
2558 \f
2559
2560
2561 typedef struct
2562 {
2563 char *ext;
2564 enum language lang;
2565 }
2566 filename_language;
2567
2568 static filename_language *filename_language_table;
2569 static int fl_table_size, fl_table_next;
2570
2571 static void
2572 add_filename_language (char *ext, enum language lang)
2573 {
2574 if (fl_table_next >= fl_table_size)
2575 {
2576 fl_table_size += 10;
2577 filename_language_table =
2578 xrealloc (filename_language_table,
2579 fl_table_size * sizeof (*filename_language_table));
2580 }
2581
2582 filename_language_table[fl_table_next].ext = xstrdup (ext);
2583 filename_language_table[fl_table_next].lang = lang;
2584 fl_table_next++;
2585 }
2586
2587 static char *ext_args;
2588 static void
2589 show_ext_args (struct ui_file *file, int from_tty,
2590 struct cmd_list_element *c, const char *value)
2591 {
2592 fprintf_filtered (file, _("\
2593 Mapping between filename extension and source language is \"%s\".\n"),
2594 value);
2595 }
2596
2597 static void
2598 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2599 {
2600 int i;
2601 char *cp = ext_args;
2602 enum language lang;
2603
2604 /* First arg is filename extension, starting with '.' */
2605 if (*cp != '.')
2606 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2607
2608 /* Find end of first arg. */
2609 while (*cp && !isspace (*cp))
2610 cp++;
2611
2612 if (*cp == '\0')
2613 error (_("'%s': two arguments required -- filename extension and language"),
2614 ext_args);
2615
2616 /* Null-terminate first arg */
2617 *cp++ = '\0';
2618
2619 /* Find beginning of second arg, which should be a source language. */
2620 while (*cp && isspace (*cp))
2621 cp++;
2622
2623 if (*cp == '\0')
2624 error (_("'%s': two arguments required -- filename extension and language"),
2625 ext_args);
2626
2627 /* Lookup the language from among those we know. */
2628 lang = language_enum (cp);
2629
2630 /* Now lookup the filename extension: do we already know it? */
2631 for (i = 0; i < fl_table_next; i++)
2632 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2633 break;
2634
2635 if (i >= fl_table_next)
2636 {
2637 /* new file extension */
2638 add_filename_language (ext_args, lang);
2639 }
2640 else
2641 {
2642 /* redefining a previously known filename extension */
2643
2644 /* if (from_tty) */
2645 /* query ("Really make files of type %s '%s'?", */
2646 /* ext_args, language_str (lang)); */
2647
2648 xfree (filename_language_table[i].ext);
2649 filename_language_table[i].ext = xstrdup (ext_args);
2650 filename_language_table[i].lang = lang;
2651 }
2652 }
2653
2654 static void
2655 info_ext_lang_command (char *args, int from_tty)
2656 {
2657 int i;
2658
2659 printf_filtered (_("Filename extensions and the languages they represent:"));
2660 printf_filtered ("\n\n");
2661 for (i = 0; i < fl_table_next; i++)
2662 printf_filtered ("\t%s\t- %s\n",
2663 filename_language_table[i].ext,
2664 language_str (filename_language_table[i].lang));
2665 }
2666
2667 static void
2668 init_filename_language_table (void)
2669 {
2670 if (fl_table_size == 0) /* protect against repetition */
2671 {
2672 fl_table_size = 20;
2673 fl_table_next = 0;
2674 filename_language_table =
2675 xmalloc (fl_table_size * sizeof (*filename_language_table));
2676 add_filename_language (".c", language_c);
2677 add_filename_language (".C", language_cplus);
2678 add_filename_language (".cc", language_cplus);
2679 add_filename_language (".cp", language_cplus);
2680 add_filename_language (".cpp", language_cplus);
2681 add_filename_language (".cxx", language_cplus);
2682 add_filename_language (".c++", language_cplus);
2683 add_filename_language (".java", language_java);
2684 add_filename_language (".class", language_java);
2685 add_filename_language (".m", language_objc);
2686 add_filename_language (".f", language_fortran);
2687 add_filename_language (".F", language_fortran);
2688 add_filename_language (".s", language_asm);
2689 add_filename_language (".sx", language_asm);
2690 add_filename_language (".S", language_asm);
2691 add_filename_language (".pas", language_pascal);
2692 add_filename_language (".p", language_pascal);
2693 add_filename_language (".pp", language_pascal);
2694 add_filename_language (".adb", language_ada);
2695 add_filename_language (".ads", language_ada);
2696 add_filename_language (".a", language_ada);
2697 add_filename_language (".ada", language_ada);
2698 }
2699 }
2700
2701 enum language
2702 deduce_language_from_filename (char *filename)
2703 {
2704 int i;
2705 char *cp;
2706
2707 if (filename != NULL)
2708 if ((cp = strrchr (filename, '.')) != NULL)
2709 for (i = 0; i < fl_table_next; i++)
2710 if (strcmp (cp, filename_language_table[i].ext) == 0)
2711 return filename_language_table[i].lang;
2712
2713 return language_unknown;
2714 }
2715 \f
2716 /* allocate_symtab:
2717
2718 Allocate and partly initialize a new symbol table. Return a pointer
2719 to it. error() if no space.
2720
2721 Caller must set these fields:
2722 LINETABLE(symtab)
2723 symtab->blockvector
2724 symtab->dirname
2725 symtab->free_code
2726 symtab->free_ptr
2727 possibly free_named_symtabs (symtab->filename);
2728 */
2729
2730 struct symtab *
2731 allocate_symtab (char *filename, struct objfile *objfile)
2732 {
2733 struct symtab *symtab;
2734
2735 symtab = (struct symtab *)
2736 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2737 memset (symtab, 0, sizeof (*symtab));
2738 symtab->filename = obsavestring (filename, strlen (filename),
2739 &objfile->objfile_obstack);
2740 symtab->fullname = NULL;
2741 symtab->language = deduce_language_from_filename (filename);
2742 symtab->debugformat = obsavestring ("unknown", 7,
2743 &objfile->objfile_obstack);
2744
2745 /* Hook it to the objfile it comes from */
2746
2747 symtab->objfile = objfile;
2748 symtab->next = objfile->symtabs;
2749 objfile->symtabs = symtab;
2750
2751 return (symtab);
2752 }
2753
2754 struct partial_symtab *
2755 allocate_psymtab (char *filename, struct objfile *objfile)
2756 {
2757 struct partial_symtab *psymtab;
2758
2759 if (objfile->free_psymtabs)
2760 {
2761 psymtab = objfile->free_psymtabs;
2762 objfile->free_psymtabs = psymtab->next;
2763 }
2764 else
2765 psymtab = (struct partial_symtab *)
2766 obstack_alloc (&objfile->objfile_obstack,
2767 sizeof (struct partial_symtab));
2768
2769 memset (psymtab, 0, sizeof (struct partial_symtab));
2770 psymtab->filename = obsavestring (filename, strlen (filename),
2771 &objfile->objfile_obstack);
2772 psymtab->symtab = NULL;
2773
2774 /* Prepend it to the psymtab list for the objfile it belongs to.
2775 Psymtabs are searched in most recent inserted -> least recent
2776 inserted order. */
2777
2778 psymtab->objfile = objfile;
2779 psymtab->next = objfile->psymtabs;
2780 objfile->psymtabs = psymtab;
2781 #if 0
2782 {
2783 struct partial_symtab **prev_pst;
2784 psymtab->objfile = objfile;
2785 psymtab->next = NULL;
2786 prev_pst = &(objfile->psymtabs);
2787 while ((*prev_pst) != NULL)
2788 prev_pst = &((*prev_pst)->next);
2789 (*prev_pst) = psymtab;
2790 }
2791 #endif
2792
2793 return (psymtab);
2794 }
2795
2796 void
2797 discard_psymtab (struct partial_symtab *pst)
2798 {
2799 struct partial_symtab **prev_pst;
2800
2801 /* From dbxread.c:
2802 Empty psymtabs happen as a result of header files which don't
2803 have any symbols in them. There can be a lot of them. But this
2804 check is wrong, in that a psymtab with N_SLINE entries but
2805 nothing else is not empty, but we don't realize that. Fixing
2806 that without slowing things down might be tricky. */
2807
2808 /* First, snip it out of the psymtab chain */
2809
2810 prev_pst = &(pst->objfile->psymtabs);
2811 while ((*prev_pst) != pst)
2812 prev_pst = &((*prev_pst)->next);
2813 (*prev_pst) = pst->next;
2814
2815 /* Next, put it on a free list for recycling */
2816
2817 pst->next = pst->objfile->free_psymtabs;
2818 pst->objfile->free_psymtabs = pst;
2819 }
2820 \f
2821
2822 /* Reset all data structures in gdb which may contain references to symbol
2823 table data. */
2824
2825 void
2826 clear_symtab_users (void)
2827 {
2828 /* Someday, we should do better than this, by only blowing away
2829 the things that really need to be blown. */
2830
2831 /* Clear the "current" symtab first, because it is no longer valid.
2832 breakpoint_re_set may try to access the current symtab. */
2833 clear_current_source_symtab_and_line ();
2834
2835 clear_displays ();
2836 breakpoint_re_set ();
2837 set_default_breakpoint (0, 0, 0, 0);
2838 clear_pc_function_cache ();
2839 observer_notify_new_objfile (NULL);
2840
2841 /* Clear globals which might have pointed into a removed objfile.
2842 FIXME: It's not clear which of these are supposed to persist
2843 between expressions and which ought to be reset each time. */
2844 expression_context_block = NULL;
2845 innermost_block = NULL;
2846
2847 /* Varobj may refer to old symbols, perform a cleanup. */
2848 varobj_invalidate ();
2849
2850 }
2851
2852 static void
2853 clear_symtab_users_cleanup (void *ignore)
2854 {
2855 clear_symtab_users ();
2856 }
2857
2858 /* clear_symtab_users_once:
2859
2860 This function is run after symbol reading, or from a cleanup.
2861 If an old symbol table was obsoleted, the old symbol table
2862 has been blown away, but the other GDB data structures that may
2863 reference it have not yet been cleared or re-directed. (The old
2864 symtab was zapped, and the cleanup queued, in free_named_symtab()
2865 below.)
2866
2867 This function can be queued N times as a cleanup, or called
2868 directly; it will do all the work the first time, and then will be a
2869 no-op until the next time it is queued. This works by bumping a
2870 counter at queueing time. Much later when the cleanup is run, or at
2871 the end of symbol processing (in case the cleanup is discarded), if
2872 the queued count is greater than the "done-count", we do the work
2873 and set the done-count to the queued count. If the queued count is
2874 less than or equal to the done-count, we just ignore the call. This
2875 is needed because reading a single .o file will often replace many
2876 symtabs (one per .h file, for example), and we don't want to reset
2877 the breakpoints N times in the user's face.
2878
2879 The reason we both queue a cleanup, and call it directly after symbol
2880 reading, is because the cleanup protects us in case of errors, but is
2881 discarded if symbol reading is successful. */
2882
2883 #if 0
2884 /* FIXME: As free_named_symtabs is currently a big noop this function
2885 is no longer needed. */
2886 static void clear_symtab_users_once (void);
2887
2888 static int clear_symtab_users_queued;
2889 static int clear_symtab_users_done;
2890
2891 static void
2892 clear_symtab_users_once (void)
2893 {
2894 /* Enforce once-per-`do_cleanups'-semantics */
2895 if (clear_symtab_users_queued <= clear_symtab_users_done)
2896 return;
2897 clear_symtab_users_done = clear_symtab_users_queued;
2898
2899 clear_symtab_users ();
2900 }
2901 #endif
2902
2903 /* Delete the specified psymtab, and any others that reference it. */
2904
2905 static void
2906 cashier_psymtab (struct partial_symtab *pst)
2907 {
2908 struct partial_symtab *ps, *pprev = NULL;
2909 int i;
2910
2911 /* Find its previous psymtab in the chain */
2912 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2913 {
2914 if (ps == pst)
2915 break;
2916 pprev = ps;
2917 }
2918
2919 if (ps)
2920 {
2921 /* Unhook it from the chain. */
2922 if (ps == pst->objfile->psymtabs)
2923 pst->objfile->psymtabs = ps->next;
2924 else
2925 pprev->next = ps->next;
2926
2927 /* FIXME, we can't conveniently deallocate the entries in the
2928 partial_symbol lists (global_psymbols/static_psymbols) that
2929 this psymtab points to. These just take up space until all
2930 the psymtabs are reclaimed. Ditto the dependencies list and
2931 filename, which are all in the objfile_obstack. */
2932
2933 /* We need to cashier any psymtab that has this one as a dependency... */
2934 again:
2935 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2936 {
2937 for (i = 0; i < ps->number_of_dependencies; i++)
2938 {
2939 if (ps->dependencies[i] == pst)
2940 {
2941 cashier_psymtab (ps);
2942 goto again; /* Must restart, chain has been munged. */
2943 }
2944 }
2945 }
2946 }
2947 }
2948
2949 /* If a symtab or psymtab for filename NAME is found, free it along
2950 with any dependent breakpoints, displays, etc.
2951 Used when loading new versions of object modules with the "add-file"
2952 command. This is only called on the top-level symtab or psymtab's name;
2953 it is not called for subsidiary files such as .h files.
2954
2955 Return value is 1 if we blew away the environment, 0 if not.
2956 FIXME. The return value appears to never be used.
2957
2958 FIXME. I think this is not the best way to do this. We should
2959 work on being gentler to the environment while still cleaning up
2960 all stray pointers into the freed symtab. */
2961
2962 int
2963 free_named_symtabs (char *name)
2964 {
2965 #if 0
2966 /* FIXME: With the new method of each objfile having it's own
2967 psymtab list, this function needs serious rethinking. In particular,
2968 why was it ever necessary to toss psymtabs with specific compilation
2969 unit filenames, as opposed to all psymtabs from a particular symbol
2970 file? -- fnf
2971 Well, the answer is that some systems permit reloading of particular
2972 compilation units. We want to blow away any old info about these
2973 compilation units, regardless of which objfiles they arrived in. --gnu. */
2974
2975 struct symtab *s;
2976 struct symtab *prev;
2977 struct partial_symtab *ps;
2978 struct blockvector *bv;
2979 int blewit = 0;
2980
2981 /* We only wack things if the symbol-reload switch is set. */
2982 if (!symbol_reloading)
2983 return 0;
2984
2985 /* Some symbol formats have trouble providing file names... */
2986 if (name == 0 || *name == '\0')
2987 return 0;
2988
2989 /* Look for a psymtab with the specified name. */
2990
2991 again2:
2992 for (ps = partial_symtab_list; ps; ps = ps->next)
2993 {
2994 if (strcmp (name, ps->filename) == 0)
2995 {
2996 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2997 goto again2; /* Must restart, chain has been munged */
2998 }
2999 }
3000
3001 /* Look for a symtab with the specified name. */
3002
3003 for (s = symtab_list; s; s = s->next)
3004 {
3005 if (strcmp (name, s->filename) == 0)
3006 break;
3007 prev = s;
3008 }
3009
3010 if (s)
3011 {
3012 if (s == symtab_list)
3013 symtab_list = s->next;
3014 else
3015 prev->next = s->next;
3016
3017 /* For now, queue a delete for all breakpoints, displays, etc., whether
3018 or not they depend on the symtab being freed. This should be
3019 changed so that only those data structures affected are deleted. */
3020
3021 /* But don't delete anything if the symtab is empty.
3022 This test is necessary due to a bug in "dbxread.c" that
3023 causes empty symtabs to be created for N_SO symbols that
3024 contain the pathname of the object file. (This problem
3025 has been fixed in GDB 3.9x). */
3026
3027 bv = BLOCKVECTOR (s);
3028 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3029 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3030 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3031 {
3032 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
3033 name);
3034 clear_symtab_users_queued++;
3035 make_cleanup (clear_symtab_users_once, 0);
3036 blewit = 1;
3037 }
3038 else
3039 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3040 name);
3041
3042 free_symtab (s);
3043 }
3044 else
3045 {
3046 /* It is still possible that some breakpoints will be affected
3047 even though no symtab was found, since the file might have
3048 been compiled without debugging, and hence not be associated
3049 with a symtab. In order to handle this correctly, we would need
3050 to keep a list of text address ranges for undebuggable files.
3051 For now, we do nothing, since this is a fairly obscure case. */
3052 ;
3053 }
3054
3055 /* FIXME, what about the minimal symbol table? */
3056 return blewit;
3057 #else
3058 return (0);
3059 #endif
3060 }
3061 \f
3062 /* Allocate and partially fill a partial symtab. It will be
3063 completely filled at the end of the symbol list.
3064
3065 FILENAME is the name of the symbol-file we are reading from. */
3066
3067 struct partial_symtab *
3068 start_psymtab_common (struct objfile *objfile,
3069 struct section_offsets *section_offsets, char *filename,
3070 CORE_ADDR textlow, struct partial_symbol **global_syms,
3071 struct partial_symbol **static_syms)
3072 {
3073 struct partial_symtab *psymtab;
3074
3075 psymtab = allocate_psymtab (filename, objfile);
3076 psymtab->section_offsets = section_offsets;
3077 psymtab->textlow = textlow;
3078 psymtab->texthigh = psymtab->textlow; /* default */
3079 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3080 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
3081 return (psymtab);
3082 }
3083 \f
3084 /* Add a symbol with a long value to a psymtab.
3085 Since one arg is a struct, we pass in a ptr and deref it (sigh).
3086 Return the partial symbol that has been added. */
3087
3088 /* NOTE: carlton/2003-09-11: The reason why we return the partial
3089 symbol is so that callers can get access to the symbol's demangled
3090 name, which they don't have any cheap way to determine otherwise.
3091 (Currenly, dwarf2read.c is the only file who uses that information,
3092 though it's possible that other readers might in the future.)
3093 Elena wasn't thrilled about that, and I don't blame her, but we
3094 couldn't come up with a better way to get that information. If
3095 it's needed in other situations, we could consider breaking up
3096 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3097 cache. */
3098
3099 const struct partial_symbol *
3100 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
3101 enum address_class class,
3102 struct psymbol_allocation_list *list, long val, /* Value as a long */
3103 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3104 enum language language, struct objfile *objfile)
3105 {
3106 struct partial_symbol *psym;
3107 char *buf = alloca (namelength + 1);
3108 /* psymbol is static so that there will be no uninitialized gaps in the
3109 structure which might contain random data, causing cache misses in
3110 bcache. */
3111 static struct partial_symbol psymbol;
3112
3113 /* Create local copy of the partial symbol */
3114 memcpy (buf, name, namelength);
3115 buf[namelength] = '\0';
3116 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3117 if (val != 0)
3118 {
3119 SYMBOL_VALUE (&psymbol) = val;
3120 }
3121 else
3122 {
3123 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3124 }
3125 SYMBOL_SECTION (&psymbol) = 0;
3126 SYMBOL_LANGUAGE (&psymbol) = language;
3127 PSYMBOL_DOMAIN (&psymbol) = domain;
3128 PSYMBOL_CLASS (&psymbol) = class;
3129
3130 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3131
3132 /* Stash the partial symbol away in the cache */
3133 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
3134 objfile->psymbol_cache);
3135
3136 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3137 if (list->next >= list->list + list->size)
3138 {
3139 extend_psymbol_list (list, objfile);
3140 }
3141 *list->next++ = psym;
3142 OBJSTAT (objfile, n_psyms++);
3143
3144 return psym;
3145 }
3146
3147 /* Initialize storage for partial symbols. */
3148
3149 void
3150 init_psymbol_list (struct objfile *objfile, int total_symbols)
3151 {
3152 /* Free any previously allocated psymbol lists. */
3153
3154 if (objfile->global_psymbols.list)
3155 {
3156 xfree (objfile->global_psymbols.list);
3157 }
3158 if (objfile->static_psymbols.list)
3159 {
3160 xfree (objfile->static_psymbols.list);
3161 }
3162
3163 /* Current best guess is that approximately a twentieth
3164 of the total symbols (in a debugging file) are global or static
3165 oriented symbols */
3166
3167 objfile->global_psymbols.size = total_symbols / 10;
3168 objfile->static_psymbols.size = total_symbols / 10;
3169
3170 if (objfile->global_psymbols.size > 0)
3171 {
3172 objfile->global_psymbols.next =
3173 objfile->global_psymbols.list = (struct partial_symbol **)
3174 xmalloc ((objfile->global_psymbols.size
3175 * sizeof (struct partial_symbol *)));
3176 }
3177 if (objfile->static_psymbols.size > 0)
3178 {
3179 objfile->static_psymbols.next =
3180 objfile->static_psymbols.list = (struct partial_symbol **)
3181 xmalloc ((objfile->static_psymbols.size
3182 * sizeof (struct partial_symbol *)));
3183 }
3184 }
3185
3186 /* OVERLAYS:
3187 The following code implements an abstraction for debugging overlay sections.
3188
3189 The target model is as follows:
3190 1) The gnu linker will permit multiple sections to be mapped into the
3191 same VMA, each with its own unique LMA (or load address).
3192 2) It is assumed that some runtime mechanism exists for mapping the
3193 sections, one by one, from the load address into the VMA address.
3194 3) This code provides a mechanism for gdb to keep track of which
3195 sections should be considered to be mapped from the VMA to the LMA.
3196 This information is used for symbol lookup, and memory read/write.
3197 For instance, if a section has been mapped then its contents
3198 should be read from the VMA, otherwise from the LMA.
3199
3200 Two levels of debugger support for overlays are available. One is
3201 "manual", in which the debugger relies on the user to tell it which
3202 overlays are currently mapped. This level of support is
3203 implemented entirely in the core debugger, and the information about
3204 whether a section is mapped is kept in the objfile->obj_section table.
3205
3206 The second level of support is "automatic", and is only available if
3207 the target-specific code provides functionality to read the target's
3208 overlay mapping table, and translate its contents for the debugger
3209 (by updating the mapped state information in the obj_section tables).
3210
3211 The interface is as follows:
3212 User commands:
3213 overlay map <name> -- tell gdb to consider this section mapped
3214 overlay unmap <name> -- tell gdb to consider this section unmapped
3215 overlay list -- list the sections that GDB thinks are mapped
3216 overlay read-target -- get the target's state of what's mapped
3217 overlay off/manual/auto -- set overlay debugging state
3218 Functional interface:
3219 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3220 section, return that section.
3221 find_pc_overlay(pc): find any overlay section that contains
3222 the pc, either in its VMA or its LMA
3223 overlay_is_mapped(sect): true if overlay is marked as mapped
3224 section_is_overlay(sect): true if section's VMA != LMA
3225 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3226 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3227 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3228 overlay_mapped_address(...): map an address from section's LMA to VMA
3229 overlay_unmapped_address(...): map an address from section's VMA to LMA
3230 symbol_overlayed_address(...): Return a "current" address for symbol:
3231 either in VMA or LMA depending on whether
3232 the symbol's section is currently mapped
3233 */
3234
3235 /* Overlay debugging state: */
3236
3237 enum overlay_debugging_state overlay_debugging = ovly_off;
3238 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3239
3240 /* Function: section_is_overlay (SECTION)
3241 Returns true if SECTION has VMA not equal to LMA, ie.
3242 SECTION is loaded at an address different from where it will "run". */
3243
3244 int
3245 section_is_overlay (asection *section)
3246 {
3247 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3248
3249 if (overlay_debugging)
3250 if (section && section->lma != 0 &&
3251 section->vma != section->lma)
3252 return 1;
3253
3254 return 0;
3255 }
3256
3257 /* Function: overlay_invalidate_all (void)
3258 Invalidate the mapped state of all overlay sections (mark it as stale). */
3259
3260 static void
3261 overlay_invalidate_all (void)
3262 {
3263 struct objfile *objfile;
3264 struct obj_section *sect;
3265
3266 ALL_OBJSECTIONS (objfile, sect)
3267 if (section_is_overlay (sect->the_bfd_section))
3268 sect->ovly_mapped = -1;
3269 }
3270
3271 /* Function: overlay_is_mapped (SECTION)
3272 Returns true if section is an overlay, and is currently mapped.
3273 Private: public access is thru function section_is_mapped.
3274
3275 Access to the ovly_mapped flag is restricted to this function, so
3276 that we can do automatic update. If the global flag
3277 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3278 overlay_invalidate_all. If the mapped state of the particular
3279 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3280
3281 static int
3282 overlay_is_mapped (struct obj_section *osect)
3283 {
3284 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3285 return 0;
3286
3287 switch (overlay_debugging)
3288 {
3289 default:
3290 case ovly_off:
3291 return 0; /* overlay debugging off */
3292 case ovly_auto: /* overlay debugging automatic */
3293 /* Unles there is a gdbarch_overlay_update function,
3294 there's really nothing useful to do here (can't really go auto) */
3295 if (gdbarch_overlay_update_p (current_gdbarch))
3296 {
3297 if (overlay_cache_invalid)
3298 {
3299 overlay_invalidate_all ();
3300 overlay_cache_invalid = 0;
3301 }
3302 if (osect->ovly_mapped == -1)
3303 gdbarch_overlay_update (current_gdbarch, osect);
3304 }
3305 /* fall thru to manual case */
3306 case ovly_on: /* overlay debugging manual */
3307 return osect->ovly_mapped == 1;
3308 }
3309 }
3310
3311 /* Function: section_is_mapped
3312 Returns true if section is an overlay, and is currently mapped. */
3313
3314 int
3315 section_is_mapped (asection *section)
3316 {
3317 struct objfile *objfile;
3318 struct obj_section *osect;
3319
3320 if (overlay_debugging)
3321 if (section && section_is_overlay (section))
3322 ALL_OBJSECTIONS (objfile, osect)
3323 if (osect->the_bfd_section == section)
3324 return overlay_is_mapped (osect);
3325
3326 return 0;
3327 }
3328
3329 /* Function: pc_in_unmapped_range
3330 If PC falls into the lma range of SECTION, return true, else false. */
3331
3332 CORE_ADDR
3333 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
3334 {
3335 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3336
3337 int size;
3338
3339 if (overlay_debugging)
3340 if (section && section_is_overlay (section))
3341 {
3342 size = bfd_get_section_size (section);
3343 if (section->lma <= pc && pc < section->lma + size)
3344 return 1;
3345 }
3346 return 0;
3347 }
3348
3349 /* Function: pc_in_mapped_range
3350 If PC falls into the vma range of SECTION, return true, else false. */
3351
3352 CORE_ADDR
3353 pc_in_mapped_range (CORE_ADDR pc, asection *section)
3354 {
3355 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3356
3357 int size;
3358
3359 if (overlay_debugging)
3360 if (section && section_is_overlay (section))
3361 {
3362 size = bfd_get_section_size (section);
3363 if (section->vma <= pc && pc < section->vma + size)
3364 return 1;
3365 }
3366 return 0;
3367 }
3368
3369
3370 /* Return true if the mapped ranges of sections A and B overlap, false
3371 otherwise. */
3372 static int
3373 sections_overlap (asection *a, asection *b)
3374 {
3375 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3376
3377 CORE_ADDR a_start = a->vma;
3378 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
3379 CORE_ADDR b_start = b->vma;
3380 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
3381
3382 return (a_start < b_end && b_start < a_end);
3383 }
3384
3385 /* Function: overlay_unmapped_address (PC, SECTION)
3386 Returns the address corresponding to PC in the unmapped (load) range.
3387 May be the same as PC. */
3388
3389 CORE_ADDR
3390 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3391 {
3392 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3393
3394 if (overlay_debugging)
3395 if (section && section_is_overlay (section) &&
3396 pc_in_mapped_range (pc, section))
3397 return pc + section->lma - section->vma;
3398
3399 return pc;
3400 }
3401
3402 /* Function: overlay_mapped_address (PC, SECTION)
3403 Returns the address corresponding to PC in the mapped (runtime) range.
3404 May be the same as PC. */
3405
3406 CORE_ADDR
3407 overlay_mapped_address (CORE_ADDR pc, asection *section)
3408 {
3409 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3410
3411 if (overlay_debugging)
3412 if (section && section_is_overlay (section) &&
3413 pc_in_unmapped_range (pc, section))
3414 return pc + section->vma - section->lma;
3415
3416 return pc;
3417 }
3418
3419
3420 /* Function: symbol_overlayed_address
3421 Return one of two addresses (relative to the VMA or to the LMA),
3422 depending on whether the section is mapped or not. */
3423
3424 CORE_ADDR
3425 symbol_overlayed_address (CORE_ADDR address, asection *section)
3426 {
3427 if (overlay_debugging)
3428 {
3429 /* If the symbol has no section, just return its regular address. */
3430 if (section == 0)
3431 return address;
3432 /* If the symbol's section is not an overlay, just return its address */
3433 if (!section_is_overlay (section))
3434 return address;
3435 /* If the symbol's section is mapped, just return its address */
3436 if (section_is_mapped (section))
3437 return address;
3438 /*
3439 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3440 * then return its LOADED address rather than its vma address!!
3441 */
3442 return overlay_unmapped_address (address, section);
3443 }
3444 return address;
3445 }
3446
3447 /* Function: find_pc_overlay (PC)
3448 Return the best-match overlay section for PC:
3449 If PC matches a mapped overlay section's VMA, return that section.
3450 Else if PC matches an unmapped section's VMA, return that section.
3451 Else if PC matches an unmapped section's LMA, return that section. */
3452
3453 asection *
3454 find_pc_overlay (CORE_ADDR pc)
3455 {
3456 struct objfile *objfile;
3457 struct obj_section *osect, *best_match = NULL;
3458
3459 if (overlay_debugging)
3460 ALL_OBJSECTIONS (objfile, osect)
3461 if (section_is_overlay (osect->the_bfd_section))
3462 {
3463 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3464 {
3465 if (overlay_is_mapped (osect))
3466 return osect->the_bfd_section;
3467 else
3468 best_match = osect;
3469 }
3470 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3471 best_match = osect;
3472 }
3473 return best_match ? best_match->the_bfd_section : NULL;
3474 }
3475
3476 /* Function: find_pc_mapped_section (PC)
3477 If PC falls into the VMA address range of an overlay section that is
3478 currently marked as MAPPED, return that section. Else return NULL. */
3479
3480 asection *
3481 find_pc_mapped_section (CORE_ADDR pc)
3482 {
3483 struct objfile *objfile;
3484 struct obj_section *osect;
3485
3486 if (overlay_debugging)
3487 ALL_OBJSECTIONS (objfile, osect)
3488 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3489 overlay_is_mapped (osect))
3490 return osect->the_bfd_section;
3491
3492 return NULL;
3493 }
3494
3495 /* Function: list_overlays_command
3496 Print a list of mapped sections and their PC ranges */
3497
3498 void
3499 list_overlays_command (char *args, int from_tty)
3500 {
3501 int nmapped = 0;
3502 struct objfile *objfile;
3503 struct obj_section *osect;
3504
3505 if (overlay_debugging)
3506 ALL_OBJSECTIONS (objfile, osect)
3507 if (overlay_is_mapped (osect))
3508 {
3509 const char *name;
3510 bfd_vma lma, vma;
3511 int size;
3512
3513 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3514 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3515 size = bfd_get_section_size (osect->the_bfd_section);
3516 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3517
3518 printf_filtered ("Section %s, loaded at ", name);
3519 fputs_filtered (paddress (lma), gdb_stdout);
3520 puts_filtered (" - ");
3521 fputs_filtered (paddress (lma + size), gdb_stdout);
3522 printf_filtered (", mapped at ");
3523 fputs_filtered (paddress (vma), gdb_stdout);
3524 puts_filtered (" - ");
3525 fputs_filtered (paddress (vma + size), gdb_stdout);
3526 puts_filtered ("\n");
3527
3528 nmapped++;
3529 }
3530 if (nmapped == 0)
3531 printf_filtered (_("No sections are mapped.\n"));
3532 }
3533
3534 /* Function: map_overlay_command
3535 Mark the named section as mapped (ie. residing at its VMA address). */
3536
3537 void
3538 map_overlay_command (char *args, int from_tty)
3539 {
3540 struct objfile *objfile, *objfile2;
3541 struct obj_section *sec, *sec2;
3542 asection *bfdsec;
3543
3544 if (!overlay_debugging)
3545 error (_("\
3546 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3547 the 'overlay manual' command."));
3548
3549 if (args == 0 || *args == 0)
3550 error (_("Argument required: name of an overlay section"));
3551
3552 /* First, find a section matching the user supplied argument */
3553 ALL_OBJSECTIONS (objfile, sec)
3554 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3555 {
3556 /* Now, check to see if the section is an overlay. */
3557 bfdsec = sec->the_bfd_section;
3558 if (!section_is_overlay (bfdsec))
3559 continue; /* not an overlay section */
3560
3561 /* Mark the overlay as "mapped" */
3562 sec->ovly_mapped = 1;
3563
3564 /* Next, make a pass and unmap any sections that are
3565 overlapped by this new section: */
3566 ALL_OBJSECTIONS (objfile2, sec2)
3567 if (sec2->ovly_mapped
3568 && sec != sec2
3569 && sec->the_bfd_section != sec2->the_bfd_section
3570 && sections_overlap (sec->the_bfd_section,
3571 sec2->the_bfd_section))
3572 {
3573 if (info_verbose)
3574 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3575 bfd_section_name (objfile->obfd,
3576 sec2->the_bfd_section));
3577 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3578 }
3579 return;
3580 }
3581 error (_("No overlay section called %s"), args);
3582 }
3583
3584 /* Function: unmap_overlay_command
3585 Mark the overlay section as unmapped
3586 (ie. resident in its LMA address range, rather than the VMA range). */
3587
3588 void
3589 unmap_overlay_command (char *args, int from_tty)
3590 {
3591 struct objfile *objfile;
3592 struct obj_section *sec;
3593
3594 if (!overlay_debugging)
3595 error (_("\
3596 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3597 the 'overlay manual' command."));
3598
3599 if (args == 0 || *args == 0)
3600 error (_("Argument required: name of an overlay section"));
3601
3602 /* First, find a section matching the user supplied argument */
3603 ALL_OBJSECTIONS (objfile, sec)
3604 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3605 {
3606 if (!sec->ovly_mapped)
3607 error (_("Section %s is not mapped"), args);
3608 sec->ovly_mapped = 0;
3609 return;
3610 }
3611 error (_("No overlay section called %s"), args);
3612 }
3613
3614 /* Function: overlay_auto_command
3615 A utility command to turn on overlay debugging.
3616 Possibly this should be done via a set/show command. */
3617
3618 static void
3619 overlay_auto_command (char *args, int from_tty)
3620 {
3621 overlay_debugging = ovly_auto;
3622 enable_overlay_breakpoints ();
3623 if (info_verbose)
3624 printf_unfiltered (_("Automatic overlay debugging enabled."));
3625 }
3626
3627 /* Function: overlay_manual_command
3628 A utility command to turn on overlay debugging.
3629 Possibly this should be done via a set/show command. */
3630
3631 static void
3632 overlay_manual_command (char *args, int from_tty)
3633 {
3634 overlay_debugging = ovly_on;
3635 disable_overlay_breakpoints ();
3636 if (info_verbose)
3637 printf_unfiltered (_("Overlay debugging enabled."));
3638 }
3639
3640 /* Function: overlay_off_command
3641 A utility command to turn on overlay debugging.
3642 Possibly this should be done via a set/show command. */
3643
3644 static void
3645 overlay_off_command (char *args, int from_tty)
3646 {
3647 overlay_debugging = ovly_off;
3648 disable_overlay_breakpoints ();
3649 if (info_verbose)
3650 printf_unfiltered (_("Overlay debugging disabled."));
3651 }
3652
3653 static void
3654 overlay_load_command (char *args, int from_tty)
3655 {
3656 if (gdbarch_overlay_update_p (current_gdbarch))
3657 gdbarch_overlay_update (current_gdbarch, NULL);
3658 else
3659 error (_("This target does not know how to read its overlay state."));
3660 }
3661
3662 /* Function: overlay_command
3663 A place-holder for a mis-typed command */
3664
3665 /* Command list chain containing all defined "overlay" subcommands. */
3666 struct cmd_list_element *overlaylist;
3667
3668 static void
3669 overlay_command (char *args, int from_tty)
3670 {
3671 printf_unfiltered
3672 ("\"overlay\" must be followed by the name of an overlay command.\n");
3673 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3674 }
3675
3676
3677 /* Target Overlays for the "Simplest" overlay manager:
3678
3679 This is GDB's default target overlay layer. It works with the
3680 minimal overlay manager supplied as an example by Cygnus. The
3681 entry point is via a function pointer "gdbarch_overlay_update",
3682 so targets that use a different runtime overlay manager can
3683 substitute their own overlay_update function and take over the
3684 function pointer.
3685
3686 The overlay_update function pokes around in the target's data structures
3687 to see what overlays are mapped, and updates GDB's overlay mapping with
3688 this information.
3689
3690 In this simple implementation, the target data structures are as follows:
3691 unsigned _novlys; /# number of overlay sections #/
3692 unsigned _ovly_table[_novlys][4] = {
3693 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3694 {..., ..., ..., ...},
3695 }
3696 unsigned _novly_regions; /# number of overlay regions #/
3697 unsigned _ovly_region_table[_novly_regions][3] = {
3698 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3699 {..., ..., ...},
3700 }
3701 These functions will attempt to update GDB's mappedness state in the
3702 symbol section table, based on the target's mappedness state.
3703
3704 To do this, we keep a cached copy of the target's _ovly_table, and
3705 attempt to detect when the cached copy is invalidated. The main
3706 entry point is "simple_overlay_update(SECT), which looks up SECT in
3707 the cached table and re-reads only the entry for that section from
3708 the target (whenever possible).
3709 */
3710
3711 /* Cached, dynamically allocated copies of the target data structures: */
3712 static unsigned (*cache_ovly_table)[4] = 0;
3713 #if 0
3714 static unsigned (*cache_ovly_region_table)[3] = 0;
3715 #endif
3716 static unsigned cache_novlys = 0;
3717 #if 0
3718 static unsigned cache_novly_regions = 0;
3719 #endif
3720 static CORE_ADDR cache_ovly_table_base = 0;
3721 #if 0
3722 static CORE_ADDR cache_ovly_region_table_base = 0;
3723 #endif
3724 enum ovly_index
3725 {
3726 VMA, SIZE, LMA, MAPPED
3727 };
3728 #define TARGET_LONG_BYTES (gdbarch_long_bit (current_gdbarch) \
3729 / TARGET_CHAR_BIT)
3730
3731 /* Throw away the cached copy of _ovly_table */
3732 static void
3733 simple_free_overlay_table (void)
3734 {
3735 if (cache_ovly_table)
3736 xfree (cache_ovly_table);
3737 cache_novlys = 0;
3738 cache_ovly_table = NULL;
3739 cache_ovly_table_base = 0;
3740 }
3741
3742 #if 0
3743 /* Throw away the cached copy of _ovly_region_table */
3744 static void
3745 simple_free_overlay_region_table (void)
3746 {
3747 if (cache_ovly_region_table)
3748 xfree (cache_ovly_region_table);
3749 cache_novly_regions = 0;
3750 cache_ovly_region_table = NULL;
3751 cache_ovly_region_table_base = 0;
3752 }
3753 #endif
3754
3755 /* Read an array of ints from the target into a local buffer.
3756 Convert to host order. int LEN is number of ints */
3757 static void
3758 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3759 {
3760 /* FIXME (alloca): Not safe if array is very large. */
3761 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3762 int i;
3763
3764 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3765 for (i = 0; i < len; i++)
3766 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3767 TARGET_LONG_BYTES);
3768 }
3769
3770 /* Find and grab a copy of the target _ovly_table
3771 (and _novlys, which is needed for the table's size) */
3772 static int
3773 simple_read_overlay_table (void)
3774 {
3775 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3776
3777 simple_free_overlay_table ();
3778 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3779 if (! novlys_msym)
3780 {
3781 error (_("Error reading inferior's overlay table: "
3782 "couldn't find `_novlys' variable\n"
3783 "in inferior. Use `overlay manual' mode."));
3784 return 0;
3785 }
3786
3787 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3788 if (! ovly_table_msym)
3789 {
3790 error (_("Error reading inferior's overlay table: couldn't find "
3791 "`_ovly_table' array\n"
3792 "in inferior. Use `overlay manual' mode."));
3793 return 0;
3794 }
3795
3796 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3797 cache_ovly_table
3798 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3799 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3800 read_target_long_array (cache_ovly_table_base,
3801 (unsigned int *) cache_ovly_table,
3802 cache_novlys * 4);
3803
3804 return 1; /* SUCCESS */
3805 }
3806
3807 #if 0
3808 /* Find and grab a copy of the target _ovly_region_table
3809 (and _novly_regions, which is needed for the table's size) */
3810 static int
3811 simple_read_overlay_region_table (void)
3812 {
3813 struct minimal_symbol *msym;
3814
3815 simple_free_overlay_region_table ();
3816 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3817 if (msym != NULL)
3818 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3819 else
3820 return 0; /* failure */
3821 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3822 if (cache_ovly_region_table != NULL)
3823 {
3824 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3825 if (msym != NULL)
3826 {
3827 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3828 read_target_long_array (cache_ovly_region_table_base,
3829 (unsigned int *) cache_ovly_region_table,
3830 cache_novly_regions * 3);
3831 }
3832 else
3833 return 0; /* failure */
3834 }
3835 else
3836 return 0; /* failure */
3837 return 1; /* SUCCESS */
3838 }
3839 #endif
3840
3841 /* Function: simple_overlay_update_1
3842 A helper function for simple_overlay_update. Assuming a cached copy
3843 of _ovly_table exists, look through it to find an entry whose vma,
3844 lma and size match those of OSECT. Re-read the entry and make sure
3845 it still matches OSECT (else the table may no longer be valid).
3846 Set OSECT's mapped state to match the entry. Return: 1 for
3847 success, 0 for failure. */
3848
3849 static int
3850 simple_overlay_update_1 (struct obj_section *osect)
3851 {
3852 int i, size;
3853 bfd *obfd = osect->objfile->obfd;
3854 asection *bsect = osect->the_bfd_section;
3855
3856 size = bfd_get_section_size (osect->the_bfd_section);
3857 for (i = 0; i < cache_novlys; i++)
3858 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3859 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3860 /* && cache_ovly_table[i][SIZE] == size */ )
3861 {
3862 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3863 (unsigned int *) cache_ovly_table[i], 4);
3864 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3865 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3866 /* && cache_ovly_table[i][SIZE] == size */ )
3867 {
3868 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3869 return 1;
3870 }
3871 else /* Warning! Warning! Target's ovly table has changed! */
3872 return 0;
3873 }
3874 return 0;
3875 }
3876
3877 /* Function: simple_overlay_update
3878 If OSECT is NULL, then update all sections' mapped state
3879 (after re-reading the entire target _ovly_table).
3880 If OSECT is non-NULL, then try to find a matching entry in the
3881 cached ovly_table and update only OSECT's mapped state.
3882 If a cached entry can't be found or the cache isn't valid, then
3883 re-read the entire cache, and go ahead and update all sections. */
3884
3885 void
3886 simple_overlay_update (struct obj_section *osect)
3887 {
3888 struct objfile *objfile;
3889
3890 /* Were we given an osect to look up? NULL means do all of them. */
3891 if (osect)
3892 /* Have we got a cached copy of the target's overlay table? */
3893 if (cache_ovly_table != NULL)
3894 /* Does its cached location match what's currently in the symtab? */
3895 if (cache_ovly_table_base ==
3896 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3897 /* Then go ahead and try to look up this single section in the cache */
3898 if (simple_overlay_update_1 (osect))
3899 /* Found it! We're done. */
3900 return;
3901
3902 /* Cached table no good: need to read the entire table anew.
3903 Or else we want all the sections, in which case it's actually
3904 more efficient to read the whole table in one block anyway. */
3905
3906 if (! simple_read_overlay_table ())
3907 return;
3908
3909 /* Now may as well update all sections, even if only one was requested. */
3910 ALL_OBJSECTIONS (objfile, osect)
3911 if (section_is_overlay (osect->the_bfd_section))
3912 {
3913 int i, size;
3914 bfd *obfd = osect->objfile->obfd;
3915 asection *bsect = osect->the_bfd_section;
3916
3917 size = bfd_get_section_size (bsect);
3918 for (i = 0; i < cache_novlys; i++)
3919 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3920 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3921 /* && cache_ovly_table[i][SIZE] == size */ )
3922 { /* obj_section matches i'th entry in ovly_table */
3923 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3924 break; /* finished with inner for loop: break out */
3925 }
3926 }
3927 }
3928
3929 /* Set the output sections and output offsets for section SECTP in
3930 ABFD. The relocation code in BFD will read these offsets, so we
3931 need to be sure they're initialized. We map each section to itself,
3932 with no offset; this means that SECTP->vma will be honored. */
3933
3934 static void
3935 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3936 {
3937 sectp->output_section = sectp;
3938 sectp->output_offset = 0;
3939 }
3940
3941 /* Relocate the contents of a debug section SECTP in ABFD. The
3942 contents are stored in BUF if it is non-NULL, or returned in a
3943 malloc'd buffer otherwise.
3944
3945 For some platforms and debug info formats, shared libraries contain
3946 relocations against the debug sections (particularly for DWARF-2;
3947 one affected platform is PowerPC GNU/Linux, although it depends on
3948 the version of the linker in use). Also, ELF object files naturally
3949 have unresolved relocations for their debug sections. We need to apply
3950 the relocations in order to get the locations of symbols correct. */
3951
3952 bfd_byte *
3953 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3954 {
3955 /* We're only interested in debugging sections with relocation
3956 information. */
3957 if ((sectp->flags & SEC_RELOC) == 0)
3958 return NULL;
3959 if ((sectp->flags & SEC_DEBUGGING) == 0)
3960 return NULL;
3961
3962 /* We will handle section offsets properly elsewhere, so relocate as if
3963 all sections begin at 0. */
3964 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3965
3966 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3967 }
3968
3969 struct symfile_segment_data *
3970 get_symfile_segment_data (bfd *abfd)
3971 {
3972 struct sym_fns *sf = find_sym_fns (abfd);
3973
3974 if (sf == NULL)
3975 return NULL;
3976
3977 return sf->sym_segments (abfd);
3978 }
3979
3980 void
3981 free_symfile_segment_data (struct symfile_segment_data *data)
3982 {
3983 xfree (data->segment_bases);
3984 xfree (data->segment_sizes);
3985 xfree (data->segment_info);
3986 xfree (data);
3987 }
3988
3989
3990 /* Given:
3991 - DATA, containing segment addresses from the object file ABFD, and
3992 the mapping from ABFD's sections onto the segments that own them,
3993 and
3994 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3995 segment addresses reported by the target,
3996 store the appropriate offsets for each section in OFFSETS.
3997
3998 If there are fewer entries in SEGMENT_BASES than there are segments
3999 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4000
4001 If there are more, then verify that all the excess addresses are
4002 the same as the last legitimate one, and then ignore them. This
4003 allows "TextSeg=X;DataSeg=X" qOffset replies for files which have
4004 only a single segment. */
4005 int
4006 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4007 struct section_offsets *offsets,
4008 int num_segment_bases,
4009 const CORE_ADDR *segment_bases)
4010 {
4011 int i;
4012 asection *sect;
4013
4014 /* It doesn't make sense to call this function unless you have some
4015 segment base addresses. */
4016 gdb_assert (segment_bases > 0);
4017
4018 /* If we do not have segment mappings for the object file, we
4019 can not relocate it by segments. */
4020 gdb_assert (data != NULL);
4021 gdb_assert (data->num_segments > 0);
4022
4023 /* Check any extra SEGMENT_BASES entries. */
4024 if (num_segment_bases > data->num_segments)
4025 for (i = data->num_segments; i < num_segment_bases; i++)
4026 if (segment_bases[i] != segment_bases[data->num_segments - 1])
4027 return 0;
4028
4029 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4030 {
4031 int which = data->segment_info[i];
4032
4033 gdb_assert (0 <= which && which <= data->num_segments);
4034
4035 /* Don't bother computing offsets for sections that aren't
4036 loaded as part of any segment. */
4037 if (! which)
4038 continue;
4039
4040 /* Use the last SEGMENT_BASES entry as the address of any extra
4041 segments mentioned in DATA->segment_info. */
4042 if (which > num_segment_bases)
4043 which = num_segment_bases;
4044
4045 offsets->offsets[i] = (segment_bases[which - 1]
4046 - data->segment_bases[which - 1]);
4047 }
4048
4049 return 1;
4050 }
4051
4052 static void
4053 symfile_find_segment_sections (struct objfile *objfile)
4054 {
4055 bfd *abfd = objfile->obfd;
4056 int i;
4057 asection *sect;
4058 struct symfile_segment_data *data;
4059
4060 data = get_symfile_segment_data (objfile->obfd);
4061 if (data == NULL)
4062 return;
4063
4064 if (data->num_segments != 1 && data->num_segments != 2)
4065 {
4066 free_symfile_segment_data (data);
4067 return;
4068 }
4069
4070 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4071 {
4072 CORE_ADDR vma;
4073 int which = data->segment_info[i];
4074
4075 if (which == 1)
4076 {
4077 if (objfile->sect_index_text == -1)
4078 objfile->sect_index_text = sect->index;
4079
4080 if (objfile->sect_index_rodata == -1)
4081 objfile->sect_index_rodata = sect->index;
4082 }
4083 else if (which == 2)
4084 {
4085 if (objfile->sect_index_data == -1)
4086 objfile->sect_index_data = sect->index;
4087
4088 if (objfile->sect_index_bss == -1)
4089 objfile->sect_index_bss = sect->index;
4090 }
4091 }
4092
4093 free_symfile_segment_data (data);
4094 }
4095
4096 void
4097 _initialize_symfile (void)
4098 {
4099 struct cmd_list_element *c;
4100
4101 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4102 Load symbol table from executable file FILE.\n\
4103 The `file' command can also load symbol tables, as well as setting the file\n\
4104 to execute."), &cmdlist);
4105 set_cmd_completer (c, filename_completer);
4106
4107 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
4108 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
4109 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
4110 ADDR is the starting address of the file's text.\n\
4111 The optional arguments are section-name section-address pairs and\n\
4112 should be specified if the data and bss segments are not contiguous\n\
4113 with the text. SECT is a section name to be loaded at SECT_ADDR."),
4114 &cmdlist);
4115 set_cmd_completer (c, filename_completer);
4116
4117 c = add_cmd ("add-shared-symbol-files", class_files,
4118 add_shared_symbol_files_command, _("\
4119 Load the symbols from shared objects in the dynamic linker's link map."),
4120 &cmdlist);
4121 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
4122 &cmdlist);
4123
4124 c = add_cmd ("load", class_files, load_command, _("\
4125 Dynamically load FILE into the running program, and record its symbols\n\
4126 for access from GDB.\n\
4127 A load OFFSET may also be given."), &cmdlist);
4128 set_cmd_completer (c, filename_completer);
4129
4130 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4131 &symbol_reloading, _("\
4132 Set dynamic symbol table reloading multiple times in one run."), _("\
4133 Show dynamic symbol table reloading multiple times in one run."), NULL,
4134 NULL,
4135 show_symbol_reloading,
4136 &setlist, &showlist);
4137
4138 add_prefix_cmd ("overlay", class_support, overlay_command,
4139 _("Commands for debugging overlays."), &overlaylist,
4140 "overlay ", 0, &cmdlist);
4141
4142 add_com_alias ("ovly", "overlay", class_alias, 1);
4143 add_com_alias ("ov", "overlay", class_alias, 1);
4144
4145 add_cmd ("map-overlay", class_support, map_overlay_command,
4146 _("Assert that an overlay section is mapped."), &overlaylist);
4147
4148 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4149 _("Assert that an overlay section is unmapped."), &overlaylist);
4150
4151 add_cmd ("list-overlays", class_support, list_overlays_command,
4152 _("List mappings of overlay sections."), &overlaylist);
4153
4154 add_cmd ("manual", class_support, overlay_manual_command,
4155 _("Enable overlay debugging."), &overlaylist);
4156 add_cmd ("off", class_support, overlay_off_command,
4157 _("Disable overlay debugging."), &overlaylist);
4158 add_cmd ("auto", class_support, overlay_auto_command,
4159 _("Enable automatic overlay debugging."), &overlaylist);
4160 add_cmd ("load-target", class_support, overlay_load_command,
4161 _("Read the overlay mapping state from the target."), &overlaylist);
4162
4163 /* Filename extension to source language lookup table: */
4164 init_filename_language_table ();
4165 add_setshow_string_noescape_cmd ("extension-language", class_files,
4166 &ext_args, _("\
4167 Set mapping between filename extension and source language."), _("\
4168 Show mapping between filename extension and source language."), _("\
4169 Usage: set extension-language .foo bar"),
4170 set_ext_lang_command,
4171 show_ext_args,
4172 &setlist, &showlist);
4173
4174 add_info ("extensions", info_ext_lang_command,
4175 _("All filename extensions associated with a source language."));
4176
4177 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4178 &debug_file_directory, _("\
4179 Set the directory where separate debug symbols are searched for."), _("\
4180 Show the directory where separate debug symbols are searched for."), _("\
4181 Separate debug symbols are first searched for in the same\n\
4182 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4183 and lastly at the path of the directory of the binary with\n\
4184 the global debug-file directory prepended."),
4185 NULL,
4186 show_debug_file_directory,
4187 &setlist, &showlist);
4188 }
This page took 0.363657 seconds and 4 git commands to generate.