* gdb.ada/Makefile.in (EXECUTABLES): Bring up to date.
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "bfdlink.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcore.h"
29 #include "frame.h"
30 #include "target.h"
31 #include "value.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "source.h"
35 #include "gdbcmd.h"
36 #include "breakpoint.h"
37 #include "language.h"
38 #include "complaints.h"
39 #include "demangle.h"
40 #include "inferior.h" /* for write_pc */
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57
58 #include <sys/types.h>
59 #include <fcntl.h>
60 #include "gdb_string.h"
61 #include "gdb_stat.h"
62 #include <ctype.h>
63 #include <time.h>
64 #include <sys/time.h>
65
66
67 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
68 void (*deprecated_show_load_progress) (const char *section,
69 unsigned long section_sent,
70 unsigned long section_size,
71 unsigned long total_sent,
72 unsigned long total_size);
73 void (*deprecated_pre_add_symbol_hook) (const char *);
74 void (*deprecated_post_add_symbol_hook) (void);
75
76 static void clear_symtab_users_cleanup (void *ignore);
77
78 /* Global variables owned by this file */
79 int readnow_symbol_files; /* Read full symbols immediately */
80
81 /* External variables and functions referenced. */
82
83 extern void report_transfer_performance (unsigned long, time_t, time_t);
84
85 /* Functions this file defines */
86
87 #if 0
88 static int simple_read_overlay_region_table (void);
89 static void simple_free_overlay_region_table (void);
90 #endif
91
92 static void load_command (char *, int);
93
94 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
95
96 static void add_symbol_file_command (char *, int);
97
98 static void add_shared_symbol_files_command (char *, int);
99
100 static void reread_separate_symbols (struct objfile *objfile);
101
102 static void cashier_psymtab (struct partial_symtab *);
103
104 bfd *symfile_bfd_open (char *);
105
106 int get_section_index (struct objfile *, char *);
107
108 static struct sym_fns *find_sym_fns (bfd *);
109
110 static void decrement_reading_symtab (void *);
111
112 static void overlay_invalidate_all (void);
113
114 void list_overlays_command (char *, int);
115
116 void map_overlay_command (char *, int);
117
118 void unmap_overlay_command (char *, int);
119
120 static void overlay_auto_command (char *, int);
121
122 static void overlay_manual_command (char *, int);
123
124 static void overlay_off_command (char *, int);
125
126 static void overlay_load_command (char *, int);
127
128 static void overlay_command (char *, int);
129
130 static void simple_free_overlay_table (void);
131
132 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
133
134 static int simple_read_overlay_table (void);
135
136 static int simple_overlay_update_1 (struct obj_section *);
137
138 static void add_filename_language (char *ext, enum language lang);
139
140 static void info_ext_lang_command (char *args, int from_tty);
141
142 static char *find_separate_debug_file (struct objfile *objfile);
143
144 static void init_filename_language_table (void);
145
146 static void symfile_find_segment_sections (struct objfile *objfile);
147
148 void _initialize_symfile (void);
149
150 /* List of all available sym_fns. On gdb startup, each object file reader
151 calls add_symtab_fns() to register information on each format it is
152 prepared to read. */
153
154 static struct sym_fns *symtab_fns = NULL;
155
156 /* Flag for whether user will be reloading symbols multiple times.
157 Defaults to ON for VxWorks, otherwise OFF. */
158
159 #ifdef SYMBOL_RELOADING_DEFAULT
160 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
161 #else
162 int symbol_reloading = 0;
163 #endif
164 static void
165 show_symbol_reloading (struct ui_file *file, int from_tty,
166 struct cmd_list_element *c, const char *value)
167 {
168 fprintf_filtered (file, _("\
169 Dynamic symbol table reloading multiple times in one run is %s.\n"),
170 value);
171 }
172
173 /* If non-zero, gdb will notify the user when it is loading symbols
174 from a file. This is almost always what users will want to have happen;
175 but for programs with lots of dynamically linked libraries, the output
176 can be more noise than signal. */
177
178 int print_symbol_loading = 1;
179
180 /* If non-zero, shared library symbols will be added automatically
181 when the inferior is created, new libraries are loaded, or when
182 attaching to the inferior. This is almost always what users will
183 want to have happen; but for very large programs, the startup time
184 will be excessive, and so if this is a problem, the user can clear
185 this flag and then add the shared library symbols as needed. Note
186 that there is a potential for confusion, since if the shared
187 library symbols are not loaded, commands like "info fun" will *not*
188 report all the functions that are actually present. */
189
190 int auto_solib_add = 1;
191
192 /* For systems that support it, a threshold size in megabytes. If
193 automatically adding a new library's symbol table to those already
194 known to the debugger would cause the total shared library symbol
195 size to exceed this threshhold, then the shlib's symbols are not
196 added. The threshold is ignored if the user explicitly asks for a
197 shlib to be added, such as when using the "sharedlibrary"
198 command. */
199
200 int auto_solib_limit;
201 \f
202
203 /* This compares two partial symbols by names, using strcmp_iw_ordered
204 for the comparison. */
205
206 static int
207 compare_psymbols (const void *s1p, const void *s2p)
208 {
209 struct partial_symbol *const *s1 = s1p;
210 struct partial_symbol *const *s2 = s2p;
211
212 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
213 SYMBOL_SEARCH_NAME (*s2));
214 }
215
216 void
217 sort_pst_symbols (struct partial_symtab *pst)
218 {
219 /* Sort the global list; don't sort the static list */
220
221 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
222 pst->n_global_syms, sizeof (struct partial_symbol *),
223 compare_psymbols);
224 }
225
226 /* Make a null terminated copy of the string at PTR with SIZE characters in
227 the obstack pointed to by OBSTACKP . Returns the address of the copy.
228 Note that the string at PTR does not have to be null terminated, I.E. it
229 may be part of a larger string and we are only saving a substring. */
230
231 char *
232 obsavestring (const char *ptr, int size, struct obstack *obstackp)
233 {
234 char *p = (char *) obstack_alloc (obstackp, size + 1);
235 /* Open-coded memcpy--saves function call time. These strings are usually
236 short. FIXME: Is this really still true with a compiler that can
237 inline memcpy? */
238 {
239 const char *p1 = ptr;
240 char *p2 = p;
241 const char *end = ptr + size;
242 while (p1 != end)
243 *p2++ = *p1++;
244 }
245 p[size] = 0;
246 return p;
247 }
248
249 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
250 in the obstack pointed to by OBSTACKP. */
251
252 char *
253 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
254 const char *s3)
255 {
256 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
257 char *val = (char *) obstack_alloc (obstackp, len);
258 strcpy (val, s1);
259 strcat (val, s2);
260 strcat (val, s3);
261 return val;
262 }
263
264 /* True if we are nested inside psymtab_to_symtab. */
265
266 int currently_reading_symtab = 0;
267
268 static void
269 decrement_reading_symtab (void *dummy)
270 {
271 currently_reading_symtab--;
272 }
273
274 /* Get the symbol table that corresponds to a partial_symtab.
275 This is fast after the first time you do it. In fact, there
276 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
277 case inline. */
278
279 struct symtab *
280 psymtab_to_symtab (struct partial_symtab *pst)
281 {
282 /* If it's been looked up before, return it. */
283 if (pst->symtab)
284 return pst->symtab;
285
286 /* If it has not yet been read in, read it. */
287 if (!pst->readin)
288 {
289 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
290 currently_reading_symtab++;
291 (*pst->read_symtab) (pst);
292 do_cleanups (back_to);
293 }
294
295 return pst->symtab;
296 }
297
298 /* Remember the lowest-addressed loadable section we've seen.
299 This function is called via bfd_map_over_sections.
300
301 In case of equal vmas, the section with the largest size becomes the
302 lowest-addressed loadable section.
303
304 If the vmas and sizes are equal, the last section is considered the
305 lowest-addressed loadable section. */
306
307 void
308 find_lowest_section (bfd *abfd, asection *sect, void *obj)
309 {
310 asection **lowest = (asection **) obj;
311
312 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
313 return;
314 if (!*lowest)
315 *lowest = sect; /* First loadable section */
316 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
317 *lowest = sect; /* A lower loadable section */
318 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
319 && (bfd_section_size (abfd, (*lowest))
320 <= bfd_section_size (abfd, sect)))
321 *lowest = sect;
322 }
323
324 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
325
326 struct section_addr_info *
327 alloc_section_addr_info (size_t num_sections)
328 {
329 struct section_addr_info *sap;
330 size_t size;
331
332 size = (sizeof (struct section_addr_info)
333 + sizeof (struct other_sections) * (num_sections - 1));
334 sap = (struct section_addr_info *) xmalloc (size);
335 memset (sap, 0, size);
336 sap->num_sections = num_sections;
337
338 return sap;
339 }
340
341
342 /* Return a freshly allocated copy of ADDRS. The section names, if
343 any, are also freshly allocated copies of those in ADDRS. */
344 struct section_addr_info *
345 copy_section_addr_info (struct section_addr_info *addrs)
346 {
347 struct section_addr_info *copy
348 = alloc_section_addr_info (addrs->num_sections);
349 int i;
350
351 copy->num_sections = addrs->num_sections;
352 for (i = 0; i < addrs->num_sections; i++)
353 {
354 copy->other[i].addr = addrs->other[i].addr;
355 if (addrs->other[i].name)
356 copy->other[i].name = xstrdup (addrs->other[i].name);
357 else
358 copy->other[i].name = NULL;
359 copy->other[i].sectindex = addrs->other[i].sectindex;
360 }
361
362 return copy;
363 }
364
365
366
367 /* Build (allocate and populate) a section_addr_info struct from
368 an existing section table. */
369
370 extern struct section_addr_info *
371 build_section_addr_info_from_section_table (const struct section_table *start,
372 const struct section_table *end)
373 {
374 struct section_addr_info *sap;
375 const struct section_table *stp;
376 int oidx;
377
378 sap = alloc_section_addr_info (end - start);
379
380 for (stp = start, oidx = 0; stp != end; stp++)
381 {
382 if (bfd_get_section_flags (stp->bfd,
383 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
384 && oidx < end - start)
385 {
386 sap->other[oidx].addr = stp->addr;
387 sap->other[oidx].name
388 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
389 sap->other[oidx].sectindex = stp->the_bfd_section->index;
390 oidx++;
391 }
392 }
393
394 return sap;
395 }
396
397
398 /* Free all memory allocated by build_section_addr_info_from_section_table. */
399
400 extern void
401 free_section_addr_info (struct section_addr_info *sap)
402 {
403 int idx;
404
405 for (idx = 0; idx < sap->num_sections; idx++)
406 if (sap->other[idx].name)
407 xfree (sap->other[idx].name);
408 xfree (sap);
409 }
410
411
412 /* Initialize OBJFILE's sect_index_* members. */
413 static void
414 init_objfile_sect_indices (struct objfile *objfile)
415 {
416 asection *sect;
417 int i;
418
419 sect = bfd_get_section_by_name (objfile->obfd, ".text");
420 if (sect)
421 objfile->sect_index_text = sect->index;
422
423 sect = bfd_get_section_by_name (objfile->obfd, ".data");
424 if (sect)
425 objfile->sect_index_data = sect->index;
426
427 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
428 if (sect)
429 objfile->sect_index_bss = sect->index;
430
431 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
432 if (sect)
433 objfile->sect_index_rodata = sect->index;
434
435 /* This is where things get really weird... We MUST have valid
436 indices for the various sect_index_* members or gdb will abort.
437 So if for example, there is no ".text" section, we have to
438 accomodate that. First, check for a file with the standard
439 one or two segments. */
440
441 symfile_find_segment_sections (objfile);
442
443 /* Except when explicitly adding symbol files at some address,
444 section_offsets contains nothing but zeros, so it doesn't matter
445 which slot in section_offsets the individual sect_index_* members
446 index into. So if they are all zero, it is safe to just point
447 all the currently uninitialized indices to the first slot. But
448 beware: if this is the main executable, it may be relocated
449 later, e.g. by the remote qOffsets packet, and then this will
450 be wrong! That's why we try segments first. */
451
452 for (i = 0; i < objfile->num_sections; i++)
453 {
454 if (ANOFFSET (objfile->section_offsets, i) != 0)
455 {
456 break;
457 }
458 }
459 if (i == objfile->num_sections)
460 {
461 if (objfile->sect_index_text == -1)
462 objfile->sect_index_text = 0;
463 if (objfile->sect_index_data == -1)
464 objfile->sect_index_data = 0;
465 if (objfile->sect_index_bss == -1)
466 objfile->sect_index_bss = 0;
467 if (objfile->sect_index_rodata == -1)
468 objfile->sect_index_rodata = 0;
469 }
470 }
471
472 /* The arguments to place_section. */
473
474 struct place_section_arg
475 {
476 struct section_offsets *offsets;
477 CORE_ADDR lowest;
478 };
479
480 /* Find a unique offset to use for loadable section SECT if
481 the user did not provide an offset. */
482
483 void
484 place_section (bfd *abfd, asection *sect, void *obj)
485 {
486 struct place_section_arg *arg = obj;
487 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
488 int done;
489 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
490
491 /* We are only interested in allocated sections. */
492 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
493 return;
494
495 /* If the user specified an offset, honor it. */
496 if (offsets[sect->index] != 0)
497 return;
498
499 /* Otherwise, let's try to find a place for the section. */
500 start_addr = (arg->lowest + align - 1) & -align;
501
502 do {
503 asection *cur_sec;
504
505 done = 1;
506
507 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
508 {
509 int indx = cur_sec->index;
510 CORE_ADDR cur_offset;
511
512 /* We don't need to compare against ourself. */
513 if (cur_sec == sect)
514 continue;
515
516 /* We can only conflict with allocated sections. */
517 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
518 continue;
519
520 /* If the section offset is 0, either the section has not been placed
521 yet, or it was the lowest section placed (in which case LOWEST
522 will be past its end). */
523 if (offsets[indx] == 0)
524 continue;
525
526 /* If this section would overlap us, then we must move up. */
527 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
528 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
529 {
530 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
531 start_addr = (start_addr + align - 1) & -align;
532 done = 0;
533 break;
534 }
535
536 /* Otherwise, we appear to be OK. So far. */
537 }
538 }
539 while (!done);
540
541 offsets[sect->index] = start_addr;
542 arg->lowest = start_addr + bfd_get_section_size (sect);
543 }
544
545 /* Parse the user's idea of an offset for dynamic linking, into our idea
546 of how to represent it for fast symbol reading. This is the default
547 version of the sym_fns.sym_offsets function for symbol readers that
548 don't need to do anything special. It allocates a section_offsets table
549 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
550
551 void
552 default_symfile_offsets (struct objfile *objfile,
553 struct section_addr_info *addrs)
554 {
555 int i;
556
557 objfile->num_sections = bfd_count_sections (objfile->obfd);
558 objfile->section_offsets = (struct section_offsets *)
559 obstack_alloc (&objfile->objfile_obstack,
560 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
561 memset (objfile->section_offsets, 0,
562 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
563
564 /* Now calculate offsets for section that were specified by the
565 caller. */
566 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
567 {
568 struct other_sections *osp ;
569
570 osp = &addrs->other[i] ;
571 if (osp->addr == 0)
572 continue;
573
574 /* Record all sections in offsets */
575 /* The section_offsets in the objfile are here filled in using
576 the BFD index. */
577 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
578 }
579
580 /* For relocatable files, all loadable sections will start at zero.
581 The zero is meaningless, so try to pick arbitrary addresses such
582 that no loadable sections overlap. This algorithm is quadratic,
583 but the number of sections in a single object file is generally
584 small. */
585 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
586 {
587 struct place_section_arg arg;
588 bfd *abfd = objfile->obfd;
589 asection *cur_sec;
590 CORE_ADDR lowest = 0;
591
592 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
593 /* We do not expect this to happen; just skip this step if the
594 relocatable file has a section with an assigned VMA. */
595 if (bfd_section_vma (abfd, cur_sec) != 0)
596 break;
597
598 if (cur_sec == NULL)
599 {
600 CORE_ADDR *offsets = objfile->section_offsets->offsets;
601
602 /* Pick non-overlapping offsets for sections the user did not
603 place explicitly. */
604 arg.offsets = objfile->section_offsets;
605 arg.lowest = 0;
606 bfd_map_over_sections (objfile->obfd, place_section, &arg);
607
608 /* Correctly filling in the section offsets is not quite
609 enough. Relocatable files have two properties that
610 (most) shared objects do not:
611
612 - Their debug information will contain relocations. Some
613 shared libraries do also, but many do not, so this can not
614 be assumed.
615
616 - If there are multiple code sections they will be loaded
617 at different relative addresses in memory than they are
618 in the objfile, since all sections in the file will start
619 at address zero.
620
621 Because GDB has very limited ability to map from an
622 address in debug info to the correct code section,
623 it relies on adding SECT_OFF_TEXT to things which might be
624 code. If we clear all the section offsets, and set the
625 section VMAs instead, then symfile_relocate_debug_section
626 will return meaningful debug information pointing at the
627 correct sections.
628
629 GDB has too many different data structures for section
630 addresses - a bfd, objfile, and so_list all have section
631 tables, as does exec_ops. Some of these could probably
632 be eliminated. */
633
634 for (cur_sec = abfd->sections; cur_sec != NULL;
635 cur_sec = cur_sec->next)
636 {
637 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
638 continue;
639
640 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
641 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
642 offsets[cur_sec->index]);
643 offsets[cur_sec->index] = 0;
644 }
645 }
646 }
647
648 /* Remember the bfd indexes for the .text, .data, .bss and
649 .rodata sections. */
650 init_objfile_sect_indices (objfile);
651 }
652
653
654 /* Divide the file into segments, which are individual relocatable units.
655 This is the default version of the sym_fns.sym_segments function for
656 symbol readers that do not have an explicit representation of segments.
657 It assumes that object files do not have segments, and fully linked
658 files have a single segment. */
659
660 struct symfile_segment_data *
661 default_symfile_segments (bfd *abfd)
662 {
663 int num_sections, i;
664 asection *sect;
665 struct symfile_segment_data *data;
666 CORE_ADDR low, high;
667
668 /* Relocatable files contain enough information to position each
669 loadable section independently; they should not be relocated
670 in segments. */
671 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
672 return NULL;
673
674 /* Make sure there is at least one loadable section in the file. */
675 for (sect = abfd->sections; sect != NULL; sect = sect->next)
676 {
677 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
678 continue;
679
680 break;
681 }
682 if (sect == NULL)
683 return NULL;
684
685 low = bfd_get_section_vma (abfd, sect);
686 high = low + bfd_get_section_size (sect);
687
688 data = XZALLOC (struct symfile_segment_data);
689 data->num_segments = 1;
690 data->segment_bases = XCALLOC (1, CORE_ADDR);
691 data->segment_sizes = XCALLOC (1, CORE_ADDR);
692
693 num_sections = bfd_count_sections (abfd);
694 data->segment_info = XCALLOC (num_sections, int);
695
696 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
697 {
698 CORE_ADDR vma;
699
700 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
701 continue;
702
703 vma = bfd_get_section_vma (abfd, sect);
704 if (vma < low)
705 low = vma;
706 if (vma + bfd_get_section_size (sect) > high)
707 high = vma + bfd_get_section_size (sect);
708
709 data->segment_info[i] = 1;
710 }
711
712 data->segment_bases[0] = low;
713 data->segment_sizes[0] = high - low;
714
715 return data;
716 }
717
718 /* Process a symbol file, as either the main file or as a dynamically
719 loaded file.
720
721 OBJFILE is where the symbols are to be read from.
722
723 ADDRS is the list of section load addresses. If the user has given
724 an 'add-symbol-file' command, then this is the list of offsets and
725 addresses he or she provided as arguments to the command; or, if
726 we're handling a shared library, these are the actual addresses the
727 sections are loaded at, according to the inferior's dynamic linker
728 (as gleaned by GDB's shared library code). We convert each address
729 into an offset from the section VMA's as it appears in the object
730 file, and then call the file's sym_offsets function to convert this
731 into a format-specific offset table --- a `struct section_offsets'.
732 If ADDRS is non-zero, OFFSETS must be zero.
733
734 OFFSETS is a table of section offsets already in the right
735 format-specific representation. NUM_OFFSETS is the number of
736 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
737 assume this is the proper table the call to sym_offsets described
738 above would produce. Instead of calling sym_offsets, we just dump
739 it right into objfile->section_offsets. (When we're re-reading
740 symbols from an objfile, we don't have the original load address
741 list any more; all we have is the section offset table.) If
742 OFFSETS is non-zero, ADDRS must be zero.
743
744 MAINLINE is nonzero if this is the main symbol file, or zero if
745 it's an extra symbol file such as dynamically loaded code.
746
747 VERBO is nonzero if the caller has printed a verbose message about
748 the symbol reading (and complaints can be more terse about it). */
749
750 void
751 syms_from_objfile (struct objfile *objfile,
752 struct section_addr_info *addrs,
753 struct section_offsets *offsets,
754 int num_offsets,
755 int mainline,
756 int verbo)
757 {
758 struct section_addr_info *local_addr = NULL;
759 struct cleanup *old_chain;
760
761 gdb_assert (! (addrs && offsets));
762
763 init_entry_point_info (objfile);
764 objfile->sf = find_sym_fns (objfile->obfd);
765
766 if (objfile->sf == NULL)
767 return; /* No symbols. */
768
769 /* Make sure that partially constructed symbol tables will be cleaned up
770 if an error occurs during symbol reading. */
771 old_chain = make_cleanup_free_objfile (objfile);
772
773 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
774 list. We now establish the convention that an addr of zero means
775 no load address was specified. */
776 if (! addrs && ! offsets)
777 {
778 local_addr
779 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
780 make_cleanup (xfree, local_addr);
781 addrs = local_addr;
782 }
783
784 /* Now either addrs or offsets is non-zero. */
785
786 if (mainline)
787 {
788 /* We will modify the main symbol table, make sure that all its users
789 will be cleaned up if an error occurs during symbol reading. */
790 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
791
792 /* Since no error yet, throw away the old symbol table. */
793
794 if (symfile_objfile != NULL)
795 {
796 free_objfile (symfile_objfile);
797 symfile_objfile = NULL;
798 }
799
800 /* Currently we keep symbols from the add-symbol-file command.
801 If the user wants to get rid of them, they should do "symbol-file"
802 without arguments first. Not sure this is the best behavior
803 (PR 2207). */
804
805 (*objfile->sf->sym_new_init) (objfile);
806 }
807
808 /* Convert addr into an offset rather than an absolute address.
809 We find the lowest address of a loaded segment in the objfile,
810 and assume that <addr> is where that got loaded.
811
812 We no longer warn if the lowest section is not a text segment (as
813 happens for the PA64 port. */
814 if (!mainline && addrs && addrs->other[0].name)
815 {
816 asection *lower_sect;
817 asection *sect;
818 CORE_ADDR lower_offset;
819 int i;
820
821 /* Find lowest loadable section to be used as starting point for
822 continguous sections. FIXME!! won't work without call to find
823 .text first, but this assumes text is lowest section. */
824 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
825 if (lower_sect == NULL)
826 bfd_map_over_sections (objfile->obfd, find_lowest_section,
827 &lower_sect);
828 if (lower_sect == NULL)
829 {
830 warning (_("no loadable sections found in added symbol-file %s"),
831 objfile->name);
832 lower_offset = 0;
833 }
834 else
835 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
836
837 /* Calculate offsets for the loadable sections.
838 FIXME! Sections must be in order of increasing loadable section
839 so that contiguous sections can use the lower-offset!!!
840
841 Adjust offsets if the segments are not contiguous.
842 If the section is contiguous, its offset should be set to
843 the offset of the highest loadable section lower than it
844 (the loadable section directly below it in memory).
845 this_offset = lower_offset = lower_addr - lower_orig_addr */
846
847 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
848 {
849 if (addrs->other[i].addr != 0)
850 {
851 sect = bfd_get_section_by_name (objfile->obfd,
852 addrs->other[i].name);
853 if (sect)
854 {
855 addrs->other[i].addr
856 -= bfd_section_vma (objfile->obfd, sect);
857 lower_offset = addrs->other[i].addr;
858 /* This is the index used by BFD. */
859 addrs->other[i].sectindex = sect->index ;
860 }
861 else
862 {
863 warning (_("section %s not found in %s"),
864 addrs->other[i].name,
865 objfile->name);
866 addrs->other[i].addr = 0;
867 }
868 }
869 else
870 addrs->other[i].addr = lower_offset;
871 }
872 }
873
874 /* Initialize symbol reading routines for this objfile, allow complaints to
875 appear for this new file, and record how verbose to be, then do the
876 initial symbol reading for this file. */
877
878 (*objfile->sf->sym_init) (objfile);
879 clear_complaints (&symfile_complaints, 1, verbo);
880
881 if (addrs)
882 (*objfile->sf->sym_offsets) (objfile, addrs);
883 else
884 {
885 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
886
887 /* Just copy in the offset table directly as given to us. */
888 objfile->num_sections = num_offsets;
889 objfile->section_offsets
890 = ((struct section_offsets *)
891 obstack_alloc (&objfile->objfile_obstack, size));
892 memcpy (objfile->section_offsets, offsets, size);
893
894 init_objfile_sect_indices (objfile);
895 }
896
897 (*objfile->sf->sym_read) (objfile, mainline);
898
899 /* Don't allow char * to have a typename (else would get caddr_t).
900 Ditto void *. FIXME: Check whether this is now done by all the
901 symbol readers themselves (many of them now do), and if so remove
902 it from here. */
903
904 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
905 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
906
907 /* Mark the objfile has having had initial symbol read attempted. Note
908 that this does not mean we found any symbols... */
909
910 objfile->flags |= OBJF_SYMS;
911
912 /* Discard cleanups as symbol reading was successful. */
913
914 discard_cleanups (old_chain);
915 }
916
917 /* Perform required actions after either reading in the initial
918 symbols for a new objfile, or mapping in the symbols from a reusable
919 objfile. */
920
921 void
922 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
923 {
924
925 /* If this is the main symbol file we have to clean up all users of the
926 old main symbol file. Otherwise it is sufficient to fixup all the
927 breakpoints that may have been redefined by this symbol file. */
928 if (mainline)
929 {
930 /* OK, make it the "real" symbol file. */
931 symfile_objfile = objfile;
932
933 clear_symtab_users ();
934 }
935 else
936 {
937 breakpoint_re_set ();
938 }
939
940 /* We're done reading the symbol file; finish off complaints. */
941 clear_complaints (&symfile_complaints, 0, verbo);
942 }
943
944 /* Process a symbol file, as either the main file or as a dynamically
945 loaded file.
946
947 ABFD is a BFD already open on the file, as from symfile_bfd_open.
948 This BFD will be closed on error, and is always consumed by this function.
949
950 FROM_TTY says how verbose to be.
951
952 MAINLINE specifies whether this is the main symbol file, or whether
953 it's an extra symbol file such as dynamically loaded code.
954
955 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
956 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
957 non-zero.
958
959 Upon success, returns a pointer to the objfile that was added.
960 Upon failure, jumps back to command level (never returns). */
961 static struct objfile *
962 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
963 struct section_addr_info *addrs,
964 struct section_offsets *offsets,
965 int num_offsets,
966 int mainline, int flags)
967 {
968 struct objfile *objfile;
969 struct partial_symtab *psymtab;
970 char *debugfile = NULL;
971 struct section_addr_info *orig_addrs = NULL;
972 struct cleanup *my_cleanups;
973 const char *name = bfd_get_filename (abfd);
974
975 my_cleanups = make_cleanup_bfd_close (abfd);
976
977 /* Give user a chance to burp if we'd be
978 interactively wiping out any existing symbols. */
979
980 if ((have_full_symbols () || have_partial_symbols ())
981 && mainline
982 && from_tty
983 && !query ("Load new symbol table from \"%s\"? ", name))
984 error (_("Not confirmed."));
985
986 objfile = allocate_objfile (abfd, flags);
987 discard_cleanups (my_cleanups);
988
989 if (addrs)
990 {
991 orig_addrs = copy_section_addr_info (addrs);
992 make_cleanup_free_section_addr_info (orig_addrs);
993 }
994
995 /* We either created a new mapped symbol table, mapped an existing
996 symbol table file which has not had initial symbol reading
997 performed, or need to read an unmapped symbol table. */
998 if (from_tty || info_verbose)
999 {
1000 if (deprecated_pre_add_symbol_hook)
1001 deprecated_pre_add_symbol_hook (name);
1002 else
1003 {
1004 if (print_symbol_loading)
1005 {
1006 printf_unfiltered (_("Reading symbols from %s..."), name);
1007 wrap_here ("");
1008 gdb_flush (gdb_stdout);
1009 }
1010 }
1011 }
1012 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1013 mainline, from_tty);
1014
1015 /* We now have at least a partial symbol table. Check to see if the
1016 user requested that all symbols be read on initial access via either
1017 the gdb startup command line or on a per symbol file basis. Expand
1018 all partial symbol tables for this objfile if so. */
1019
1020 if ((flags & OBJF_READNOW) || readnow_symbol_files)
1021 {
1022 if ((from_tty || info_verbose) && print_symbol_loading)
1023 {
1024 printf_unfiltered (_("expanding to full symbols..."));
1025 wrap_here ("");
1026 gdb_flush (gdb_stdout);
1027 }
1028
1029 for (psymtab = objfile->psymtabs;
1030 psymtab != NULL;
1031 psymtab = psymtab->next)
1032 {
1033 psymtab_to_symtab (psymtab);
1034 }
1035 }
1036
1037 /* If the file has its own symbol tables it has no separate debug info.
1038 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1039 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1040 if (objfile->psymtabs == NULL)
1041 debugfile = find_separate_debug_file (objfile);
1042 if (debugfile)
1043 {
1044 if (addrs != NULL)
1045 {
1046 objfile->separate_debug_objfile
1047 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
1048 }
1049 else
1050 {
1051 objfile->separate_debug_objfile
1052 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
1053 }
1054 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1055 = objfile;
1056
1057 /* Put the separate debug object before the normal one, this is so that
1058 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1059 put_objfile_before (objfile->separate_debug_objfile, objfile);
1060
1061 xfree (debugfile);
1062 }
1063
1064 if (!have_partial_symbols () && !have_full_symbols ()
1065 && print_symbol_loading)
1066 {
1067 wrap_here ("");
1068 printf_filtered (_("(no debugging symbols found)"));
1069 if (from_tty || info_verbose)
1070 printf_filtered ("...");
1071 else
1072 printf_filtered ("\n");
1073 wrap_here ("");
1074 }
1075
1076 if (from_tty || info_verbose)
1077 {
1078 if (deprecated_post_add_symbol_hook)
1079 deprecated_post_add_symbol_hook ();
1080 else
1081 {
1082 if (print_symbol_loading)
1083 printf_unfiltered (_("done.\n"));
1084 }
1085 }
1086
1087 /* We print some messages regardless of whether 'from_tty ||
1088 info_verbose' is true, so make sure they go out at the right
1089 time. */
1090 gdb_flush (gdb_stdout);
1091
1092 do_cleanups (my_cleanups);
1093
1094 if (objfile->sf == NULL)
1095 return objfile; /* No symbols. */
1096
1097 new_symfile_objfile (objfile, mainline, from_tty);
1098
1099 observer_notify_new_objfile (objfile);
1100
1101 bfd_cache_close_all ();
1102 return (objfile);
1103 }
1104
1105
1106 /* Process the symbol file ABFD, as either the main file or as a
1107 dynamically loaded file.
1108
1109 See symbol_file_add_with_addrs_or_offsets's comments for
1110 details. */
1111 struct objfile *
1112 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1113 struct section_addr_info *addrs,
1114 int mainline, int flags)
1115 {
1116 return symbol_file_add_with_addrs_or_offsets (abfd,
1117 from_tty, addrs, 0, 0,
1118 mainline, flags);
1119 }
1120
1121
1122 /* Process a symbol file, as either the main file or as a dynamically
1123 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1124 for details. */
1125 struct objfile *
1126 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1127 int mainline, int flags)
1128 {
1129 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1130 addrs, mainline, flags);
1131 }
1132
1133
1134 /* Call symbol_file_add() with default values and update whatever is
1135 affected by the loading of a new main().
1136 Used when the file is supplied in the gdb command line
1137 and by some targets with special loading requirements.
1138 The auxiliary function, symbol_file_add_main_1(), has the flags
1139 argument for the switches that can only be specified in the symbol_file
1140 command itself. */
1141
1142 void
1143 symbol_file_add_main (char *args, int from_tty)
1144 {
1145 symbol_file_add_main_1 (args, from_tty, 0);
1146 }
1147
1148 static void
1149 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1150 {
1151 symbol_file_add (args, from_tty, NULL, 1, flags);
1152
1153 /* Getting new symbols may change our opinion about
1154 what is frameless. */
1155 reinit_frame_cache ();
1156
1157 set_initial_language ();
1158 }
1159
1160 void
1161 symbol_file_clear (int from_tty)
1162 {
1163 if ((have_full_symbols () || have_partial_symbols ())
1164 && from_tty
1165 && (symfile_objfile
1166 ? !query (_("Discard symbol table from `%s'? "),
1167 symfile_objfile->name)
1168 : !query (_("Discard symbol table? "))))
1169 error (_("Not confirmed."));
1170 free_all_objfiles ();
1171
1172 /* solib descriptors may have handles to objfiles. Since their
1173 storage has just been released, we'd better wipe the solib
1174 descriptors as well.
1175 */
1176 no_shared_libraries (NULL, from_tty);
1177
1178 symfile_objfile = NULL;
1179 if (from_tty)
1180 printf_unfiltered (_("No symbol file now.\n"));
1181 }
1182
1183 struct build_id
1184 {
1185 size_t size;
1186 gdb_byte data[1];
1187 };
1188
1189 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1190
1191 static struct build_id *
1192 build_id_bfd_get (bfd *abfd)
1193 {
1194 struct build_id *retval;
1195
1196 if (!bfd_check_format (abfd, bfd_object)
1197 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1198 || elf_tdata (abfd)->build_id == NULL)
1199 return NULL;
1200
1201 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1202 retval->size = elf_tdata (abfd)->build_id_size;
1203 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1204
1205 return retval;
1206 }
1207
1208 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1209
1210 static int
1211 build_id_verify (const char *filename, struct build_id *check)
1212 {
1213 bfd *abfd;
1214 struct build_id *found = NULL;
1215 int retval = 0;
1216
1217 /* We expect to be silent on the non-existing files. */
1218 if (remote_filename_p (filename))
1219 abfd = remote_bfd_open (filename, gnutarget);
1220 else
1221 abfd = bfd_openr (filename, gnutarget);
1222 if (abfd == NULL)
1223 return 0;
1224
1225 found = build_id_bfd_get (abfd);
1226
1227 if (found == NULL)
1228 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1229 else if (found->size != check->size
1230 || memcmp (found->data, check->data, found->size) != 0)
1231 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1232 else
1233 retval = 1;
1234
1235 if (!bfd_close (abfd))
1236 warning (_("cannot close \"%s\": %s"), filename,
1237 bfd_errmsg (bfd_get_error ()));
1238 return retval;
1239 }
1240
1241 static char *
1242 build_id_to_debug_filename (struct build_id *build_id)
1243 {
1244 char *link, *s, *retval = NULL;
1245 gdb_byte *data = build_id->data;
1246 size_t size = build_id->size;
1247
1248 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1249 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1250 + 2 * size + (sizeof ".debug" - 1) + 1);
1251 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1252 if (size > 0)
1253 {
1254 size--;
1255 s += sprintf (s, "%02x", (unsigned) *data++);
1256 }
1257 if (size > 0)
1258 *s++ = '/';
1259 while (size-- > 0)
1260 s += sprintf (s, "%02x", (unsigned) *data++);
1261 strcpy (s, ".debug");
1262
1263 /* lrealpath() is expensive even for the usually non-existent files. */
1264 if (access (link, F_OK) == 0)
1265 retval = lrealpath (link);
1266 xfree (link);
1267
1268 if (retval != NULL && !build_id_verify (retval, build_id))
1269 {
1270 xfree (retval);
1271 retval = NULL;
1272 }
1273
1274 return retval;
1275 }
1276
1277 static char *
1278 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1279 {
1280 asection *sect;
1281 bfd_size_type debuglink_size;
1282 unsigned long crc32;
1283 char *contents;
1284 int crc_offset;
1285 unsigned char *p;
1286
1287 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1288
1289 if (sect == NULL)
1290 return NULL;
1291
1292 debuglink_size = bfd_section_size (objfile->obfd, sect);
1293
1294 contents = xmalloc (debuglink_size);
1295 bfd_get_section_contents (objfile->obfd, sect, contents,
1296 (file_ptr)0, (bfd_size_type)debuglink_size);
1297
1298 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1299 crc_offset = strlen (contents) + 1;
1300 crc_offset = (crc_offset + 3) & ~3;
1301
1302 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1303
1304 *crc32_out = crc32;
1305 return contents;
1306 }
1307
1308 static int
1309 separate_debug_file_exists (const char *name, unsigned long crc)
1310 {
1311 unsigned long file_crc = 0;
1312 bfd *abfd;
1313 gdb_byte buffer[8*1024];
1314 int count;
1315
1316 if (remote_filename_p (name))
1317 abfd = remote_bfd_open (name, gnutarget);
1318 else
1319 abfd = bfd_openr (name, gnutarget);
1320
1321 if (!abfd)
1322 return 0;
1323
1324 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1325 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1326
1327 bfd_close (abfd);
1328
1329 return crc == file_crc;
1330 }
1331
1332 char *debug_file_directory = NULL;
1333 static void
1334 show_debug_file_directory (struct ui_file *file, int from_tty,
1335 struct cmd_list_element *c, const char *value)
1336 {
1337 fprintf_filtered (file, _("\
1338 The directory where separate debug symbols are searched for is \"%s\".\n"),
1339 value);
1340 }
1341
1342 #if ! defined (DEBUG_SUBDIRECTORY)
1343 #define DEBUG_SUBDIRECTORY ".debug"
1344 #endif
1345
1346 static char *
1347 find_separate_debug_file (struct objfile *objfile)
1348 {
1349 asection *sect;
1350 char *basename;
1351 char *dir;
1352 char *debugfile;
1353 char *name_copy;
1354 char *canon_name;
1355 bfd_size_type debuglink_size;
1356 unsigned long crc32;
1357 int i;
1358 struct build_id *build_id;
1359
1360 build_id = build_id_bfd_get (objfile->obfd);
1361 if (build_id != NULL)
1362 {
1363 char *build_id_name;
1364
1365 build_id_name = build_id_to_debug_filename (build_id);
1366 free (build_id);
1367 /* Prevent looping on a stripped .debug file. */
1368 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1369 {
1370 warning (_("\"%s\": separate debug info file has no debug info"),
1371 build_id_name);
1372 xfree (build_id_name);
1373 }
1374 else if (build_id_name != NULL)
1375 return build_id_name;
1376 }
1377
1378 basename = get_debug_link_info (objfile, &crc32);
1379
1380 if (basename == NULL)
1381 return NULL;
1382
1383 dir = xstrdup (objfile->name);
1384
1385 /* Strip off the final filename part, leaving the directory name,
1386 followed by a slash. Objfile names should always be absolute and
1387 tilde-expanded, so there should always be a slash in there
1388 somewhere. */
1389 for (i = strlen(dir) - 1; i >= 0; i--)
1390 {
1391 if (IS_DIR_SEPARATOR (dir[i]))
1392 break;
1393 }
1394 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1395 dir[i+1] = '\0';
1396
1397 debugfile = alloca (strlen (debug_file_directory) + 1
1398 + strlen (dir)
1399 + strlen (DEBUG_SUBDIRECTORY)
1400 + strlen ("/")
1401 + strlen (basename)
1402 + 1);
1403
1404 /* First try in the same directory as the original file. */
1405 strcpy (debugfile, dir);
1406 strcat (debugfile, basename);
1407
1408 if (separate_debug_file_exists (debugfile, crc32))
1409 {
1410 xfree (basename);
1411 xfree (dir);
1412 return xstrdup (debugfile);
1413 }
1414
1415 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1416 strcpy (debugfile, dir);
1417 strcat (debugfile, DEBUG_SUBDIRECTORY);
1418 strcat (debugfile, "/");
1419 strcat (debugfile, basename);
1420
1421 if (separate_debug_file_exists (debugfile, crc32))
1422 {
1423 xfree (basename);
1424 xfree (dir);
1425 return xstrdup (debugfile);
1426 }
1427
1428 /* Then try in the global debugfile directory. */
1429 strcpy (debugfile, debug_file_directory);
1430 strcat (debugfile, "/");
1431 strcat (debugfile, dir);
1432 strcat (debugfile, basename);
1433
1434 if (separate_debug_file_exists (debugfile, crc32))
1435 {
1436 xfree (basename);
1437 xfree (dir);
1438 return xstrdup (debugfile);
1439 }
1440
1441 /* If the file is in the sysroot, try using its base path in the
1442 global debugfile directory. */
1443 canon_name = lrealpath (dir);
1444 if (canon_name
1445 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1446 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1447 {
1448 strcpy (debugfile, debug_file_directory);
1449 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1450 strcat (debugfile, "/");
1451 strcat (debugfile, basename);
1452
1453 if (separate_debug_file_exists (debugfile, crc32))
1454 {
1455 xfree (canon_name);
1456 xfree (basename);
1457 xfree (dir);
1458 return xstrdup (debugfile);
1459 }
1460 }
1461
1462 if (canon_name)
1463 xfree (canon_name);
1464
1465 xfree (basename);
1466 xfree (dir);
1467 return NULL;
1468 }
1469
1470
1471 /* This is the symbol-file command. Read the file, analyze its
1472 symbols, and add a struct symtab to a symtab list. The syntax of
1473 the command is rather bizarre:
1474
1475 1. The function buildargv implements various quoting conventions
1476 which are undocumented and have little or nothing in common with
1477 the way things are quoted (or not quoted) elsewhere in GDB.
1478
1479 2. Options are used, which are not generally used in GDB (perhaps
1480 "set mapped on", "set readnow on" would be better)
1481
1482 3. The order of options matters, which is contrary to GNU
1483 conventions (because it is confusing and inconvenient). */
1484
1485 void
1486 symbol_file_command (char *args, int from_tty)
1487 {
1488 dont_repeat ();
1489
1490 if (args == NULL)
1491 {
1492 symbol_file_clear (from_tty);
1493 }
1494 else
1495 {
1496 char **argv = buildargv (args);
1497 int flags = OBJF_USERLOADED;
1498 struct cleanup *cleanups;
1499 char *name = NULL;
1500
1501 if (argv == NULL)
1502 nomem (0);
1503
1504 cleanups = make_cleanup_freeargv (argv);
1505 while (*argv != NULL)
1506 {
1507 if (strcmp (*argv, "-readnow") == 0)
1508 flags |= OBJF_READNOW;
1509 else if (**argv == '-')
1510 error (_("unknown option `%s'"), *argv);
1511 else
1512 {
1513 symbol_file_add_main_1 (*argv, from_tty, flags);
1514 name = *argv;
1515 }
1516
1517 argv++;
1518 }
1519
1520 if (name == NULL)
1521 error (_("no symbol file name was specified"));
1522
1523 do_cleanups (cleanups);
1524 }
1525 }
1526
1527 /* Set the initial language.
1528
1529 FIXME: A better solution would be to record the language in the
1530 psymtab when reading partial symbols, and then use it (if known) to
1531 set the language. This would be a win for formats that encode the
1532 language in an easily discoverable place, such as DWARF. For
1533 stabs, we can jump through hoops looking for specially named
1534 symbols or try to intuit the language from the specific type of
1535 stabs we find, but we can't do that until later when we read in
1536 full symbols. */
1537
1538 void
1539 set_initial_language (void)
1540 {
1541 struct partial_symtab *pst;
1542 enum language lang = language_unknown;
1543
1544 pst = find_main_psymtab ();
1545 if (pst != NULL)
1546 {
1547 if (pst->filename != NULL)
1548 lang = deduce_language_from_filename (pst->filename);
1549
1550 if (lang == language_unknown)
1551 {
1552 /* Make C the default language */
1553 lang = language_c;
1554 }
1555
1556 set_language (lang);
1557 expected_language = current_language; /* Don't warn the user. */
1558 }
1559 }
1560
1561 /* Open the file specified by NAME and hand it off to BFD for
1562 preliminary analysis. Return a newly initialized bfd *, which
1563 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1564 absolute). In case of trouble, error() is called. */
1565
1566 bfd *
1567 symfile_bfd_open (char *name)
1568 {
1569 bfd *sym_bfd;
1570 int desc;
1571 char *absolute_name;
1572
1573 if (remote_filename_p (name))
1574 {
1575 name = xstrdup (name);
1576 sym_bfd = remote_bfd_open (name, gnutarget);
1577 if (!sym_bfd)
1578 {
1579 make_cleanup (xfree, name);
1580 error (_("`%s': can't open to read symbols: %s."), name,
1581 bfd_errmsg (bfd_get_error ()));
1582 }
1583
1584 if (!bfd_check_format (sym_bfd, bfd_object))
1585 {
1586 bfd_close (sym_bfd);
1587 make_cleanup (xfree, name);
1588 error (_("`%s': can't read symbols: %s."), name,
1589 bfd_errmsg (bfd_get_error ()));
1590 }
1591
1592 return sym_bfd;
1593 }
1594
1595 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1596
1597 /* Look down path for it, allocate 2nd new malloc'd copy. */
1598 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1599 O_RDONLY | O_BINARY, 0, &absolute_name);
1600 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1601 if (desc < 0)
1602 {
1603 char *exename = alloca (strlen (name) + 5);
1604 strcat (strcpy (exename, name), ".exe");
1605 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1606 O_RDONLY | O_BINARY, 0, &absolute_name);
1607 }
1608 #endif
1609 if (desc < 0)
1610 {
1611 make_cleanup (xfree, name);
1612 perror_with_name (name);
1613 }
1614
1615 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1616 bfd. It'll be freed in free_objfile(). */
1617 xfree (name);
1618 name = absolute_name;
1619
1620 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1621 if (!sym_bfd)
1622 {
1623 close (desc);
1624 make_cleanup (xfree, name);
1625 error (_("`%s': can't open to read symbols: %s."), name,
1626 bfd_errmsg (bfd_get_error ()));
1627 }
1628 bfd_set_cacheable (sym_bfd, 1);
1629
1630 if (!bfd_check_format (sym_bfd, bfd_object))
1631 {
1632 /* FIXME: should be checking for errors from bfd_close (for one
1633 thing, on error it does not free all the storage associated
1634 with the bfd). */
1635 bfd_close (sym_bfd); /* This also closes desc. */
1636 make_cleanup (xfree, name);
1637 error (_("`%s': can't read symbols: %s."), name,
1638 bfd_errmsg (bfd_get_error ()));
1639 }
1640
1641 return sym_bfd;
1642 }
1643
1644 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1645 the section was not found. */
1646
1647 int
1648 get_section_index (struct objfile *objfile, char *section_name)
1649 {
1650 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1651
1652 if (sect)
1653 return sect->index;
1654 else
1655 return -1;
1656 }
1657
1658 /* Link SF into the global symtab_fns list. Called on startup by the
1659 _initialize routine in each object file format reader, to register
1660 information about each format the the reader is prepared to
1661 handle. */
1662
1663 void
1664 add_symtab_fns (struct sym_fns *sf)
1665 {
1666 sf->next = symtab_fns;
1667 symtab_fns = sf;
1668 }
1669
1670 /* Initialize OBJFILE to read symbols from its associated BFD. It
1671 either returns or calls error(). The result is an initialized
1672 struct sym_fns in the objfile structure, that contains cached
1673 information about the symbol file. */
1674
1675 static struct sym_fns *
1676 find_sym_fns (bfd *abfd)
1677 {
1678 struct sym_fns *sf;
1679 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1680
1681 if (our_flavour == bfd_target_srec_flavour
1682 || our_flavour == bfd_target_ihex_flavour
1683 || our_flavour == bfd_target_tekhex_flavour)
1684 return NULL; /* No symbols. */
1685
1686 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1687 if (our_flavour == sf->sym_flavour)
1688 return sf;
1689
1690 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1691 bfd_get_target (abfd));
1692 }
1693 \f
1694
1695 /* This function runs the load command of our current target. */
1696
1697 static void
1698 load_command (char *arg, int from_tty)
1699 {
1700 /* The user might be reloading because the binary has changed. Take
1701 this opportunity to check. */
1702 reopen_exec_file ();
1703 reread_symbols ();
1704
1705 if (arg == NULL)
1706 {
1707 char *parg;
1708 int count = 0;
1709
1710 parg = arg = get_exec_file (1);
1711
1712 /* Count how many \ " ' tab space there are in the name. */
1713 while ((parg = strpbrk (parg, "\\\"'\t ")))
1714 {
1715 parg++;
1716 count++;
1717 }
1718
1719 if (count)
1720 {
1721 /* We need to quote this string so buildargv can pull it apart. */
1722 char *temp = xmalloc (strlen (arg) + count + 1 );
1723 char *ptemp = temp;
1724 char *prev;
1725
1726 make_cleanup (xfree, temp);
1727
1728 prev = parg = arg;
1729 while ((parg = strpbrk (parg, "\\\"'\t ")))
1730 {
1731 strncpy (ptemp, prev, parg - prev);
1732 ptemp += parg - prev;
1733 prev = parg++;
1734 *ptemp++ = '\\';
1735 }
1736 strcpy (ptemp, prev);
1737
1738 arg = temp;
1739 }
1740 }
1741
1742 target_load (arg, from_tty);
1743
1744 /* After re-loading the executable, we don't really know which
1745 overlays are mapped any more. */
1746 overlay_cache_invalid = 1;
1747 }
1748
1749 /* This version of "load" should be usable for any target. Currently
1750 it is just used for remote targets, not inftarg.c or core files,
1751 on the theory that only in that case is it useful.
1752
1753 Avoiding xmodem and the like seems like a win (a) because we don't have
1754 to worry about finding it, and (b) On VMS, fork() is very slow and so
1755 we don't want to run a subprocess. On the other hand, I'm not sure how
1756 performance compares. */
1757
1758 static int validate_download = 0;
1759
1760 /* Callback service function for generic_load (bfd_map_over_sections). */
1761
1762 static void
1763 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1764 {
1765 bfd_size_type *sum = data;
1766
1767 *sum += bfd_get_section_size (asec);
1768 }
1769
1770 /* Opaque data for load_section_callback. */
1771 struct load_section_data {
1772 unsigned long load_offset;
1773 struct load_progress_data *progress_data;
1774 VEC(memory_write_request_s) *requests;
1775 };
1776
1777 /* Opaque data for load_progress. */
1778 struct load_progress_data {
1779 /* Cumulative data. */
1780 unsigned long write_count;
1781 unsigned long data_count;
1782 bfd_size_type total_size;
1783 };
1784
1785 /* Opaque data for load_progress for a single section. */
1786 struct load_progress_section_data {
1787 struct load_progress_data *cumulative;
1788
1789 /* Per-section data. */
1790 const char *section_name;
1791 ULONGEST section_sent;
1792 ULONGEST section_size;
1793 CORE_ADDR lma;
1794 gdb_byte *buffer;
1795 };
1796
1797 /* Target write callback routine for progress reporting. */
1798
1799 static void
1800 load_progress (ULONGEST bytes, void *untyped_arg)
1801 {
1802 struct load_progress_section_data *args = untyped_arg;
1803 struct load_progress_data *totals;
1804
1805 if (args == NULL)
1806 /* Writing padding data. No easy way to get at the cumulative
1807 stats, so just ignore this. */
1808 return;
1809
1810 totals = args->cumulative;
1811
1812 if (bytes == 0 && args->section_sent == 0)
1813 {
1814 /* The write is just starting. Let the user know we've started
1815 this section. */
1816 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1817 args->section_name, paddr_nz (args->section_size),
1818 paddr_nz (args->lma));
1819 return;
1820 }
1821
1822 if (validate_download)
1823 {
1824 /* Broken memories and broken monitors manifest themselves here
1825 when bring new computers to life. This doubles already slow
1826 downloads. */
1827 /* NOTE: cagney/1999-10-18: A more efficient implementation
1828 might add a verify_memory() method to the target vector and
1829 then use that. remote.c could implement that method using
1830 the ``qCRC'' packet. */
1831 gdb_byte *check = xmalloc (bytes);
1832 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1833
1834 if (target_read_memory (args->lma, check, bytes) != 0)
1835 error (_("Download verify read failed at 0x%s"),
1836 paddr (args->lma));
1837 if (memcmp (args->buffer, check, bytes) != 0)
1838 error (_("Download verify compare failed at 0x%s"),
1839 paddr (args->lma));
1840 do_cleanups (verify_cleanups);
1841 }
1842 totals->data_count += bytes;
1843 args->lma += bytes;
1844 args->buffer += bytes;
1845 totals->write_count += 1;
1846 args->section_sent += bytes;
1847 if (quit_flag
1848 || (deprecated_ui_load_progress_hook != NULL
1849 && deprecated_ui_load_progress_hook (args->section_name,
1850 args->section_sent)))
1851 error (_("Canceled the download"));
1852
1853 if (deprecated_show_load_progress != NULL)
1854 deprecated_show_load_progress (args->section_name,
1855 args->section_sent,
1856 args->section_size,
1857 totals->data_count,
1858 totals->total_size);
1859 }
1860
1861 /* Callback service function for generic_load (bfd_map_over_sections). */
1862
1863 static void
1864 load_section_callback (bfd *abfd, asection *asec, void *data)
1865 {
1866 struct memory_write_request *new_request;
1867 struct load_section_data *args = data;
1868 struct load_progress_section_data *section_data;
1869 bfd_size_type size = bfd_get_section_size (asec);
1870 gdb_byte *buffer;
1871 const char *sect_name = bfd_get_section_name (abfd, asec);
1872
1873 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1874 return;
1875
1876 if (size == 0)
1877 return;
1878
1879 new_request = VEC_safe_push (memory_write_request_s,
1880 args->requests, NULL);
1881 memset (new_request, 0, sizeof (struct memory_write_request));
1882 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1883 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1884 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1885 new_request->data = xmalloc (size);
1886 new_request->baton = section_data;
1887
1888 buffer = new_request->data;
1889
1890 section_data->cumulative = args->progress_data;
1891 section_data->section_name = sect_name;
1892 section_data->section_size = size;
1893 section_data->lma = new_request->begin;
1894 section_data->buffer = buffer;
1895
1896 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1897 }
1898
1899 /* Clean up an entire memory request vector, including load
1900 data and progress records. */
1901
1902 static void
1903 clear_memory_write_data (void *arg)
1904 {
1905 VEC(memory_write_request_s) **vec_p = arg;
1906 VEC(memory_write_request_s) *vec = *vec_p;
1907 int i;
1908 struct memory_write_request *mr;
1909
1910 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1911 {
1912 xfree (mr->data);
1913 xfree (mr->baton);
1914 }
1915 VEC_free (memory_write_request_s, vec);
1916 }
1917
1918 void
1919 generic_load (char *args, int from_tty)
1920 {
1921 bfd *loadfile_bfd;
1922 struct timeval start_time, end_time;
1923 char *filename;
1924 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1925 struct load_section_data cbdata;
1926 struct load_progress_data total_progress;
1927
1928 CORE_ADDR entry;
1929 char **argv;
1930
1931 memset (&cbdata, 0, sizeof (cbdata));
1932 memset (&total_progress, 0, sizeof (total_progress));
1933 cbdata.progress_data = &total_progress;
1934
1935 make_cleanup (clear_memory_write_data, &cbdata.requests);
1936
1937 argv = buildargv (args);
1938
1939 if (argv == NULL)
1940 nomem(0);
1941
1942 make_cleanup_freeargv (argv);
1943
1944 filename = tilde_expand (argv[0]);
1945 make_cleanup (xfree, filename);
1946
1947 if (argv[1] != NULL)
1948 {
1949 char *endptr;
1950
1951 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1952
1953 /* If the last word was not a valid number then
1954 treat it as a file name with spaces in. */
1955 if (argv[1] == endptr)
1956 error (_("Invalid download offset:%s."), argv[1]);
1957
1958 if (argv[2] != NULL)
1959 error (_("Too many parameters."));
1960 }
1961
1962 /* Open the file for loading. */
1963 loadfile_bfd = bfd_openr (filename, gnutarget);
1964 if (loadfile_bfd == NULL)
1965 {
1966 perror_with_name (filename);
1967 return;
1968 }
1969
1970 /* FIXME: should be checking for errors from bfd_close (for one thing,
1971 on error it does not free all the storage associated with the
1972 bfd). */
1973 make_cleanup_bfd_close (loadfile_bfd);
1974
1975 if (!bfd_check_format (loadfile_bfd, bfd_object))
1976 {
1977 error (_("\"%s\" is not an object file: %s"), filename,
1978 bfd_errmsg (bfd_get_error ()));
1979 }
1980
1981 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1982 (void *) &total_progress.total_size);
1983
1984 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1985
1986 gettimeofday (&start_time, NULL);
1987
1988 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1989 load_progress) != 0)
1990 error (_("Load failed"));
1991
1992 gettimeofday (&end_time, NULL);
1993
1994 entry = bfd_get_start_address (loadfile_bfd);
1995 ui_out_text (uiout, "Start address ");
1996 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1997 ui_out_text (uiout, ", load size ");
1998 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
1999 ui_out_text (uiout, "\n");
2000 /* We were doing this in remote-mips.c, I suspect it is right
2001 for other targets too. */
2002 write_pc (entry);
2003
2004 /* FIXME: are we supposed to call symbol_file_add or not? According
2005 to a comment from remote-mips.c (where a call to symbol_file_add
2006 was commented out), making the call confuses GDB if more than one
2007 file is loaded in. Some targets do (e.g., remote-vx.c) but
2008 others don't (or didn't - perhaps they have all been deleted). */
2009
2010 print_transfer_performance (gdb_stdout, total_progress.data_count,
2011 total_progress.write_count,
2012 &start_time, &end_time);
2013
2014 do_cleanups (old_cleanups);
2015 }
2016
2017 /* Report how fast the transfer went. */
2018
2019 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2020 replaced by print_transfer_performance (with a very different
2021 function signature). */
2022
2023 void
2024 report_transfer_performance (unsigned long data_count, time_t start_time,
2025 time_t end_time)
2026 {
2027 struct timeval start, end;
2028
2029 start.tv_sec = start_time;
2030 start.tv_usec = 0;
2031 end.tv_sec = end_time;
2032 end.tv_usec = 0;
2033
2034 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2035 }
2036
2037 void
2038 print_transfer_performance (struct ui_file *stream,
2039 unsigned long data_count,
2040 unsigned long write_count,
2041 const struct timeval *start_time,
2042 const struct timeval *end_time)
2043 {
2044 ULONGEST time_count;
2045
2046 /* Compute the elapsed time in milliseconds, as a tradeoff between
2047 accuracy and overflow. */
2048 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2049 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2050
2051 ui_out_text (uiout, "Transfer rate: ");
2052 if (time_count > 0)
2053 {
2054 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2055
2056 if (ui_out_is_mi_like_p (uiout))
2057 {
2058 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2059 ui_out_text (uiout, " bits/sec");
2060 }
2061 else if (rate < 1024)
2062 {
2063 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2064 ui_out_text (uiout, " bytes/sec");
2065 }
2066 else
2067 {
2068 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2069 ui_out_text (uiout, " KB/sec");
2070 }
2071 }
2072 else
2073 {
2074 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2075 ui_out_text (uiout, " bits in <1 sec");
2076 }
2077 if (write_count > 0)
2078 {
2079 ui_out_text (uiout, ", ");
2080 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2081 ui_out_text (uiout, " bytes/write");
2082 }
2083 ui_out_text (uiout, ".\n");
2084 }
2085
2086 /* This function allows the addition of incrementally linked object files.
2087 It does not modify any state in the target, only in the debugger. */
2088 /* Note: ezannoni 2000-04-13 This function/command used to have a
2089 special case syntax for the rombug target (Rombug is the boot
2090 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2091 rombug case, the user doesn't need to supply a text address,
2092 instead a call to target_link() (in target.c) would supply the
2093 value to use. We are now discontinuing this type of ad hoc syntax. */
2094
2095 static void
2096 add_symbol_file_command (char *args, int from_tty)
2097 {
2098 char *filename = NULL;
2099 int flags = OBJF_USERLOADED;
2100 char *arg;
2101 int expecting_option = 0;
2102 int section_index = 0;
2103 int argcnt = 0;
2104 int sec_num = 0;
2105 int i;
2106 int expecting_sec_name = 0;
2107 int expecting_sec_addr = 0;
2108 char **argv;
2109
2110 struct sect_opt
2111 {
2112 char *name;
2113 char *value;
2114 };
2115
2116 struct section_addr_info *section_addrs;
2117 struct sect_opt *sect_opts = NULL;
2118 size_t num_sect_opts = 0;
2119 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2120
2121 num_sect_opts = 16;
2122 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2123 * sizeof (struct sect_opt));
2124
2125 dont_repeat ();
2126
2127 if (args == NULL)
2128 error (_("add-symbol-file takes a file name and an address"));
2129
2130 argv = buildargv (args);
2131 make_cleanup_freeargv (argv);
2132
2133 if (argv == NULL)
2134 nomem (0);
2135
2136 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2137 {
2138 /* Process the argument. */
2139 if (argcnt == 0)
2140 {
2141 /* The first argument is the file name. */
2142 filename = tilde_expand (arg);
2143 make_cleanup (xfree, filename);
2144 }
2145 else
2146 if (argcnt == 1)
2147 {
2148 /* The second argument is always the text address at which
2149 to load the program. */
2150 sect_opts[section_index].name = ".text";
2151 sect_opts[section_index].value = arg;
2152 if (++section_index >= num_sect_opts)
2153 {
2154 num_sect_opts *= 2;
2155 sect_opts = ((struct sect_opt *)
2156 xrealloc (sect_opts,
2157 num_sect_opts
2158 * sizeof (struct sect_opt)));
2159 }
2160 }
2161 else
2162 {
2163 /* It's an option (starting with '-') or it's an argument
2164 to an option */
2165
2166 if (*arg == '-')
2167 {
2168 if (strcmp (arg, "-readnow") == 0)
2169 flags |= OBJF_READNOW;
2170 else if (strcmp (arg, "-s") == 0)
2171 {
2172 expecting_sec_name = 1;
2173 expecting_sec_addr = 1;
2174 }
2175 }
2176 else
2177 {
2178 if (expecting_sec_name)
2179 {
2180 sect_opts[section_index].name = arg;
2181 expecting_sec_name = 0;
2182 }
2183 else
2184 if (expecting_sec_addr)
2185 {
2186 sect_opts[section_index].value = arg;
2187 expecting_sec_addr = 0;
2188 if (++section_index >= num_sect_opts)
2189 {
2190 num_sect_opts *= 2;
2191 sect_opts = ((struct sect_opt *)
2192 xrealloc (sect_opts,
2193 num_sect_opts
2194 * sizeof (struct sect_opt)));
2195 }
2196 }
2197 else
2198 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2199 }
2200 }
2201 }
2202
2203 /* This command takes at least two arguments. The first one is a
2204 filename, and the second is the address where this file has been
2205 loaded. Abort now if this address hasn't been provided by the
2206 user. */
2207 if (section_index < 1)
2208 error (_("The address where %s has been loaded is missing"), filename);
2209
2210 /* Print the prompt for the query below. And save the arguments into
2211 a sect_addr_info structure to be passed around to other
2212 functions. We have to split this up into separate print
2213 statements because hex_string returns a local static
2214 string. */
2215
2216 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2217 section_addrs = alloc_section_addr_info (section_index);
2218 make_cleanup (xfree, section_addrs);
2219 for (i = 0; i < section_index; i++)
2220 {
2221 CORE_ADDR addr;
2222 char *val = sect_opts[i].value;
2223 char *sec = sect_opts[i].name;
2224
2225 addr = parse_and_eval_address (val);
2226
2227 /* Here we store the section offsets in the order they were
2228 entered on the command line. */
2229 section_addrs->other[sec_num].name = sec;
2230 section_addrs->other[sec_num].addr = addr;
2231 printf_unfiltered ("\t%s_addr = %s\n", sec, paddress (addr));
2232 sec_num++;
2233
2234 /* The object's sections are initialized when a
2235 call is made to build_objfile_section_table (objfile).
2236 This happens in reread_symbols.
2237 At this point, we don't know what file type this is,
2238 so we can't determine what section names are valid. */
2239 }
2240
2241 if (from_tty && (!query ("%s", "")))
2242 error (_("Not confirmed."));
2243
2244 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
2245
2246 /* Getting new symbols may change our opinion about what is
2247 frameless. */
2248 reinit_frame_cache ();
2249 do_cleanups (my_cleanups);
2250 }
2251 \f
2252 static void
2253 add_shared_symbol_files_command (char *args, int from_tty)
2254 {
2255 #ifdef ADD_SHARED_SYMBOL_FILES
2256 ADD_SHARED_SYMBOL_FILES (args, from_tty);
2257 #else
2258 error (_("This command is not available in this configuration of GDB."));
2259 #endif
2260 }
2261 \f
2262 /* Re-read symbols if a symbol-file has changed. */
2263 void
2264 reread_symbols (void)
2265 {
2266 struct objfile *objfile;
2267 long new_modtime;
2268 int reread_one = 0;
2269 struct stat new_statbuf;
2270 int res;
2271
2272 /* With the addition of shared libraries, this should be modified,
2273 the load time should be saved in the partial symbol tables, since
2274 different tables may come from different source files. FIXME.
2275 This routine should then walk down each partial symbol table
2276 and see if the symbol table that it originates from has been changed */
2277
2278 for (objfile = object_files; objfile; objfile = objfile->next)
2279 {
2280 if (objfile->obfd)
2281 {
2282 #ifdef DEPRECATED_IBM6000_TARGET
2283 /* If this object is from a shared library, then you should
2284 stat on the library name, not member name. */
2285
2286 if (objfile->obfd->my_archive)
2287 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2288 else
2289 #endif
2290 res = stat (objfile->name, &new_statbuf);
2291 if (res != 0)
2292 {
2293 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2294 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2295 objfile->name);
2296 continue;
2297 }
2298 new_modtime = new_statbuf.st_mtime;
2299 if (new_modtime != objfile->mtime)
2300 {
2301 struct cleanup *old_cleanups;
2302 struct section_offsets *offsets;
2303 int num_offsets;
2304 char *obfd_filename;
2305
2306 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2307 objfile->name);
2308
2309 /* There are various functions like symbol_file_add,
2310 symfile_bfd_open, syms_from_objfile, etc., which might
2311 appear to do what we want. But they have various other
2312 effects which we *don't* want. So we just do stuff
2313 ourselves. We don't worry about mapped files (for one thing,
2314 any mapped file will be out of date). */
2315
2316 /* If we get an error, blow away this objfile (not sure if
2317 that is the correct response for things like shared
2318 libraries). */
2319 old_cleanups = make_cleanup_free_objfile (objfile);
2320 /* We need to do this whenever any symbols go away. */
2321 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2322
2323 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2324 bfd_get_filename (exec_bfd)) == 0)
2325 {
2326 /* Reload EXEC_BFD without asking anything. */
2327
2328 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2329 }
2330
2331 /* Clean up any state BFD has sitting around. We don't need
2332 to close the descriptor but BFD lacks a way of closing the
2333 BFD without closing the descriptor. */
2334 obfd_filename = bfd_get_filename (objfile->obfd);
2335 if (!bfd_close (objfile->obfd))
2336 error (_("Can't close BFD for %s: %s"), objfile->name,
2337 bfd_errmsg (bfd_get_error ()));
2338 if (remote_filename_p (obfd_filename))
2339 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2340 else
2341 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2342 if (objfile->obfd == NULL)
2343 error (_("Can't open %s to read symbols."), objfile->name);
2344 /* bfd_openr sets cacheable to true, which is what we want. */
2345 if (!bfd_check_format (objfile->obfd, bfd_object))
2346 error (_("Can't read symbols from %s: %s."), objfile->name,
2347 bfd_errmsg (bfd_get_error ()));
2348
2349 /* Save the offsets, we will nuke them with the rest of the
2350 objfile_obstack. */
2351 num_offsets = objfile->num_sections;
2352 offsets = ((struct section_offsets *)
2353 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2354 memcpy (offsets, objfile->section_offsets,
2355 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2356
2357 /* Remove any references to this objfile in the global
2358 value lists. */
2359 preserve_values (objfile);
2360
2361 /* Nuke all the state that we will re-read. Much of the following
2362 code which sets things to NULL really is necessary to tell
2363 other parts of GDB that there is nothing currently there. */
2364
2365 /* FIXME: Do we have to free a whole linked list, or is this
2366 enough? */
2367 if (objfile->global_psymbols.list)
2368 xfree (objfile->global_psymbols.list);
2369 memset (&objfile->global_psymbols, 0,
2370 sizeof (objfile->global_psymbols));
2371 if (objfile->static_psymbols.list)
2372 xfree (objfile->static_psymbols.list);
2373 memset (&objfile->static_psymbols, 0,
2374 sizeof (objfile->static_psymbols));
2375
2376 /* Free the obstacks for non-reusable objfiles */
2377 bcache_xfree (objfile->psymbol_cache);
2378 objfile->psymbol_cache = bcache_xmalloc ();
2379 bcache_xfree (objfile->macro_cache);
2380 objfile->macro_cache = bcache_xmalloc ();
2381 if (objfile->demangled_names_hash != NULL)
2382 {
2383 htab_delete (objfile->demangled_names_hash);
2384 objfile->demangled_names_hash = NULL;
2385 }
2386 obstack_free (&objfile->objfile_obstack, 0);
2387 objfile->sections = NULL;
2388 objfile->symtabs = NULL;
2389 objfile->psymtabs = NULL;
2390 objfile->free_psymtabs = NULL;
2391 objfile->cp_namespace_symtab = NULL;
2392 objfile->msymbols = NULL;
2393 objfile->deprecated_sym_private = NULL;
2394 objfile->minimal_symbol_count = 0;
2395 memset (&objfile->msymbol_hash, 0,
2396 sizeof (objfile->msymbol_hash));
2397 memset (&objfile->msymbol_demangled_hash, 0,
2398 sizeof (objfile->msymbol_demangled_hash));
2399 clear_objfile_data (objfile);
2400 if (objfile->sf != NULL)
2401 {
2402 (*objfile->sf->sym_finish) (objfile);
2403 }
2404
2405 objfile->psymbol_cache = bcache_xmalloc ();
2406 objfile->macro_cache = bcache_xmalloc ();
2407 /* obstack_init also initializes the obstack so it is
2408 empty. We could use obstack_specify_allocation but
2409 gdb_obstack.h specifies the alloc/dealloc
2410 functions. */
2411 obstack_init (&objfile->objfile_obstack);
2412 if (build_objfile_section_table (objfile))
2413 {
2414 error (_("Can't find the file sections in `%s': %s"),
2415 objfile->name, bfd_errmsg (bfd_get_error ()));
2416 }
2417 terminate_minimal_symbol_table (objfile);
2418
2419 /* We use the same section offsets as from last time. I'm not
2420 sure whether that is always correct for shared libraries. */
2421 objfile->section_offsets = (struct section_offsets *)
2422 obstack_alloc (&objfile->objfile_obstack,
2423 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2424 memcpy (objfile->section_offsets, offsets,
2425 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2426 objfile->num_sections = num_offsets;
2427
2428 /* What the hell is sym_new_init for, anyway? The concept of
2429 distinguishing between the main file and additional files
2430 in this way seems rather dubious. */
2431 if (objfile == symfile_objfile)
2432 {
2433 (*objfile->sf->sym_new_init) (objfile);
2434 }
2435
2436 (*objfile->sf->sym_init) (objfile);
2437 clear_complaints (&symfile_complaints, 1, 1);
2438 /* The "mainline" parameter is a hideous hack; I think leaving it
2439 zero is OK since dbxread.c also does what it needs to do if
2440 objfile->global_psymbols.size is 0. */
2441 (*objfile->sf->sym_read) (objfile, 0);
2442 if (!have_partial_symbols () && !have_full_symbols ())
2443 {
2444 wrap_here ("");
2445 printf_unfiltered (_("(no debugging symbols found)\n"));
2446 wrap_here ("");
2447 }
2448 objfile->flags |= OBJF_SYMS;
2449
2450 /* We're done reading the symbol file; finish off complaints. */
2451 clear_complaints (&symfile_complaints, 0, 1);
2452
2453 /* Getting new symbols may change our opinion about what is
2454 frameless. */
2455
2456 reinit_frame_cache ();
2457
2458 /* Discard cleanups as symbol reading was successful. */
2459 discard_cleanups (old_cleanups);
2460
2461 /* If the mtime has changed between the time we set new_modtime
2462 and now, we *want* this to be out of date, so don't call stat
2463 again now. */
2464 objfile->mtime = new_modtime;
2465 reread_one = 1;
2466 reread_separate_symbols (objfile);
2467 init_entry_point_info (objfile);
2468 }
2469 }
2470 }
2471
2472 if (reread_one)
2473 {
2474 clear_symtab_users ();
2475 /* At least one objfile has changed, so we can consider that
2476 the executable we're debugging has changed too. */
2477 observer_notify_executable_changed ();
2478 }
2479
2480 }
2481
2482
2483 /* Handle separate debug info for OBJFILE, which has just been
2484 re-read:
2485 - If we had separate debug info before, but now we don't, get rid
2486 of the separated objfile.
2487 - If we didn't have separated debug info before, but now we do,
2488 read in the new separated debug info file.
2489 - If the debug link points to a different file, toss the old one
2490 and read the new one.
2491 This function does *not* handle the case where objfile is still
2492 using the same separate debug info file, but that file's timestamp
2493 has changed. That case should be handled by the loop in
2494 reread_symbols already. */
2495 static void
2496 reread_separate_symbols (struct objfile *objfile)
2497 {
2498 char *debug_file;
2499 unsigned long crc32;
2500
2501 /* Does the updated objfile's debug info live in a
2502 separate file? */
2503 debug_file = find_separate_debug_file (objfile);
2504
2505 if (objfile->separate_debug_objfile)
2506 {
2507 /* There are two cases where we need to get rid of
2508 the old separated debug info objfile:
2509 - if the new primary objfile doesn't have
2510 separated debug info, or
2511 - if the new primary objfile has separate debug
2512 info, but it's under a different filename.
2513
2514 If the old and new objfiles both have separate
2515 debug info, under the same filename, then we're
2516 okay --- if the separated file's contents have
2517 changed, we will have caught that when we
2518 visited it in this function's outermost
2519 loop. */
2520 if (! debug_file
2521 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2522 free_objfile (objfile->separate_debug_objfile);
2523 }
2524
2525 /* If the new objfile has separate debug info, and we
2526 haven't loaded it already, do so now. */
2527 if (debug_file
2528 && ! objfile->separate_debug_objfile)
2529 {
2530 /* Use the same section offset table as objfile itself.
2531 Preserve the flags from objfile that make sense. */
2532 objfile->separate_debug_objfile
2533 = (symbol_file_add_with_addrs_or_offsets
2534 (symfile_bfd_open (debug_file),
2535 info_verbose, /* from_tty: Don't override the default. */
2536 0, /* No addr table. */
2537 objfile->section_offsets, objfile->num_sections,
2538 0, /* Not mainline. See comments about this above. */
2539 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2540 | OBJF_USERLOADED)));
2541 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2542 = objfile;
2543 }
2544 if (debug_file)
2545 xfree (debug_file);
2546 }
2547
2548
2549 \f
2550
2551
2552 typedef struct
2553 {
2554 char *ext;
2555 enum language lang;
2556 }
2557 filename_language;
2558
2559 static filename_language *filename_language_table;
2560 static int fl_table_size, fl_table_next;
2561
2562 static void
2563 add_filename_language (char *ext, enum language lang)
2564 {
2565 if (fl_table_next >= fl_table_size)
2566 {
2567 fl_table_size += 10;
2568 filename_language_table =
2569 xrealloc (filename_language_table,
2570 fl_table_size * sizeof (*filename_language_table));
2571 }
2572
2573 filename_language_table[fl_table_next].ext = xstrdup (ext);
2574 filename_language_table[fl_table_next].lang = lang;
2575 fl_table_next++;
2576 }
2577
2578 static char *ext_args;
2579 static void
2580 show_ext_args (struct ui_file *file, int from_tty,
2581 struct cmd_list_element *c, const char *value)
2582 {
2583 fprintf_filtered (file, _("\
2584 Mapping between filename extension and source language is \"%s\".\n"),
2585 value);
2586 }
2587
2588 static void
2589 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2590 {
2591 int i;
2592 char *cp = ext_args;
2593 enum language lang;
2594
2595 /* First arg is filename extension, starting with '.' */
2596 if (*cp != '.')
2597 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2598
2599 /* Find end of first arg. */
2600 while (*cp && !isspace (*cp))
2601 cp++;
2602
2603 if (*cp == '\0')
2604 error (_("'%s': two arguments required -- filename extension and language"),
2605 ext_args);
2606
2607 /* Null-terminate first arg */
2608 *cp++ = '\0';
2609
2610 /* Find beginning of second arg, which should be a source language. */
2611 while (*cp && isspace (*cp))
2612 cp++;
2613
2614 if (*cp == '\0')
2615 error (_("'%s': two arguments required -- filename extension and language"),
2616 ext_args);
2617
2618 /* Lookup the language from among those we know. */
2619 lang = language_enum (cp);
2620
2621 /* Now lookup the filename extension: do we already know it? */
2622 for (i = 0; i < fl_table_next; i++)
2623 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2624 break;
2625
2626 if (i >= fl_table_next)
2627 {
2628 /* new file extension */
2629 add_filename_language (ext_args, lang);
2630 }
2631 else
2632 {
2633 /* redefining a previously known filename extension */
2634
2635 /* if (from_tty) */
2636 /* query ("Really make files of type %s '%s'?", */
2637 /* ext_args, language_str (lang)); */
2638
2639 xfree (filename_language_table[i].ext);
2640 filename_language_table[i].ext = xstrdup (ext_args);
2641 filename_language_table[i].lang = lang;
2642 }
2643 }
2644
2645 static void
2646 info_ext_lang_command (char *args, int from_tty)
2647 {
2648 int i;
2649
2650 printf_filtered (_("Filename extensions and the languages they represent:"));
2651 printf_filtered ("\n\n");
2652 for (i = 0; i < fl_table_next; i++)
2653 printf_filtered ("\t%s\t- %s\n",
2654 filename_language_table[i].ext,
2655 language_str (filename_language_table[i].lang));
2656 }
2657
2658 static void
2659 init_filename_language_table (void)
2660 {
2661 if (fl_table_size == 0) /* protect against repetition */
2662 {
2663 fl_table_size = 20;
2664 fl_table_next = 0;
2665 filename_language_table =
2666 xmalloc (fl_table_size * sizeof (*filename_language_table));
2667 add_filename_language (".c", language_c);
2668 add_filename_language (".C", language_cplus);
2669 add_filename_language (".cc", language_cplus);
2670 add_filename_language (".cp", language_cplus);
2671 add_filename_language (".cpp", language_cplus);
2672 add_filename_language (".cxx", language_cplus);
2673 add_filename_language (".c++", language_cplus);
2674 add_filename_language (".java", language_java);
2675 add_filename_language (".class", language_java);
2676 add_filename_language (".m", language_objc);
2677 add_filename_language (".f", language_fortran);
2678 add_filename_language (".F", language_fortran);
2679 add_filename_language (".s", language_asm);
2680 add_filename_language (".sx", language_asm);
2681 add_filename_language (".S", language_asm);
2682 add_filename_language (".pas", language_pascal);
2683 add_filename_language (".p", language_pascal);
2684 add_filename_language (".pp", language_pascal);
2685 add_filename_language (".adb", language_ada);
2686 add_filename_language (".ads", language_ada);
2687 add_filename_language (".a", language_ada);
2688 add_filename_language (".ada", language_ada);
2689 }
2690 }
2691
2692 enum language
2693 deduce_language_from_filename (char *filename)
2694 {
2695 int i;
2696 char *cp;
2697
2698 if (filename != NULL)
2699 if ((cp = strrchr (filename, '.')) != NULL)
2700 for (i = 0; i < fl_table_next; i++)
2701 if (strcmp (cp, filename_language_table[i].ext) == 0)
2702 return filename_language_table[i].lang;
2703
2704 return language_unknown;
2705 }
2706 \f
2707 /* allocate_symtab:
2708
2709 Allocate and partly initialize a new symbol table. Return a pointer
2710 to it. error() if no space.
2711
2712 Caller must set these fields:
2713 LINETABLE(symtab)
2714 symtab->blockvector
2715 symtab->dirname
2716 symtab->free_code
2717 symtab->free_ptr
2718 possibly free_named_symtabs (symtab->filename);
2719 */
2720
2721 struct symtab *
2722 allocate_symtab (char *filename, struct objfile *objfile)
2723 {
2724 struct symtab *symtab;
2725
2726 symtab = (struct symtab *)
2727 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2728 memset (symtab, 0, sizeof (*symtab));
2729 symtab->filename = obsavestring (filename, strlen (filename),
2730 &objfile->objfile_obstack);
2731 symtab->fullname = NULL;
2732 symtab->language = deduce_language_from_filename (filename);
2733 symtab->debugformat = obsavestring ("unknown", 7,
2734 &objfile->objfile_obstack);
2735
2736 /* Hook it to the objfile it comes from */
2737
2738 symtab->objfile = objfile;
2739 symtab->next = objfile->symtabs;
2740 objfile->symtabs = symtab;
2741
2742 return (symtab);
2743 }
2744
2745 struct partial_symtab *
2746 allocate_psymtab (char *filename, struct objfile *objfile)
2747 {
2748 struct partial_symtab *psymtab;
2749
2750 if (objfile->free_psymtabs)
2751 {
2752 psymtab = objfile->free_psymtabs;
2753 objfile->free_psymtabs = psymtab->next;
2754 }
2755 else
2756 psymtab = (struct partial_symtab *)
2757 obstack_alloc (&objfile->objfile_obstack,
2758 sizeof (struct partial_symtab));
2759
2760 memset (psymtab, 0, sizeof (struct partial_symtab));
2761 psymtab->filename = obsavestring (filename, strlen (filename),
2762 &objfile->objfile_obstack);
2763 psymtab->symtab = NULL;
2764
2765 /* Prepend it to the psymtab list for the objfile it belongs to.
2766 Psymtabs are searched in most recent inserted -> least recent
2767 inserted order. */
2768
2769 psymtab->objfile = objfile;
2770 psymtab->next = objfile->psymtabs;
2771 objfile->psymtabs = psymtab;
2772 #if 0
2773 {
2774 struct partial_symtab **prev_pst;
2775 psymtab->objfile = objfile;
2776 psymtab->next = NULL;
2777 prev_pst = &(objfile->psymtabs);
2778 while ((*prev_pst) != NULL)
2779 prev_pst = &((*prev_pst)->next);
2780 (*prev_pst) = psymtab;
2781 }
2782 #endif
2783
2784 return (psymtab);
2785 }
2786
2787 void
2788 discard_psymtab (struct partial_symtab *pst)
2789 {
2790 struct partial_symtab **prev_pst;
2791
2792 /* From dbxread.c:
2793 Empty psymtabs happen as a result of header files which don't
2794 have any symbols in them. There can be a lot of them. But this
2795 check is wrong, in that a psymtab with N_SLINE entries but
2796 nothing else is not empty, but we don't realize that. Fixing
2797 that without slowing things down might be tricky. */
2798
2799 /* First, snip it out of the psymtab chain */
2800
2801 prev_pst = &(pst->objfile->psymtabs);
2802 while ((*prev_pst) != pst)
2803 prev_pst = &((*prev_pst)->next);
2804 (*prev_pst) = pst->next;
2805
2806 /* Next, put it on a free list for recycling */
2807
2808 pst->next = pst->objfile->free_psymtabs;
2809 pst->objfile->free_psymtabs = pst;
2810 }
2811 \f
2812
2813 /* Reset all data structures in gdb which may contain references to symbol
2814 table data. */
2815
2816 void
2817 clear_symtab_users (void)
2818 {
2819 /* Someday, we should do better than this, by only blowing away
2820 the things that really need to be blown. */
2821
2822 /* Clear the "current" symtab first, because it is no longer valid.
2823 breakpoint_re_set may try to access the current symtab. */
2824 clear_current_source_symtab_and_line ();
2825
2826 clear_displays ();
2827 breakpoint_re_set ();
2828 set_default_breakpoint (0, 0, 0, 0);
2829 clear_pc_function_cache ();
2830 observer_notify_new_objfile (NULL);
2831
2832 /* Clear globals which might have pointed into a removed objfile.
2833 FIXME: It's not clear which of these are supposed to persist
2834 between expressions and which ought to be reset each time. */
2835 expression_context_block = NULL;
2836 innermost_block = NULL;
2837
2838 /* Varobj may refer to old symbols, perform a cleanup. */
2839 varobj_invalidate ();
2840
2841 }
2842
2843 static void
2844 clear_symtab_users_cleanup (void *ignore)
2845 {
2846 clear_symtab_users ();
2847 }
2848
2849 /* clear_symtab_users_once:
2850
2851 This function is run after symbol reading, or from a cleanup.
2852 If an old symbol table was obsoleted, the old symbol table
2853 has been blown away, but the other GDB data structures that may
2854 reference it have not yet been cleared or re-directed. (The old
2855 symtab was zapped, and the cleanup queued, in free_named_symtab()
2856 below.)
2857
2858 This function can be queued N times as a cleanup, or called
2859 directly; it will do all the work the first time, and then will be a
2860 no-op until the next time it is queued. This works by bumping a
2861 counter at queueing time. Much later when the cleanup is run, or at
2862 the end of symbol processing (in case the cleanup is discarded), if
2863 the queued count is greater than the "done-count", we do the work
2864 and set the done-count to the queued count. If the queued count is
2865 less than or equal to the done-count, we just ignore the call. This
2866 is needed because reading a single .o file will often replace many
2867 symtabs (one per .h file, for example), and we don't want to reset
2868 the breakpoints N times in the user's face.
2869
2870 The reason we both queue a cleanup, and call it directly after symbol
2871 reading, is because the cleanup protects us in case of errors, but is
2872 discarded if symbol reading is successful. */
2873
2874 #if 0
2875 /* FIXME: As free_named_symtabs is currently a big noop this function
2876 is no longer needed. */
2877 static void clear_symtab_users_once (void);
2878
2879 static int clear_symtab_users_queued;
2880 static int clear_symtab_users_done;
2881
2882 static void
2883 clear_symtab_users_once (void)
2884 {
2885 /* Enforce once-per-`do_cleanups'-semantics */
2886 if (clear_symtab_users_queued <= clear_symtab_users_done)
2887 return;
2888 clear_symtab_users_done = clear_symtab_users_queued;
2889
2890 clear_symtab_users ();
2891 }
2892 #endif
2893
2894 /* Delete the specified psymtab, and any others that reference it. */
2895
2896 static void
2897 cashier_psymtab (struct partial_symtab *pst)
2898 {
2899 struct partial_symtab *ps, *pprev = NULL;
2900 int i;
2901
2902 /* Find its previous psymtab in the chain */
2903 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2904 {
2905 if (ps == pst)
2906 break;
2907 pprev = ps;
2908 }
2909
2910 if (ps)
2911 {
2912 /* Unhook it from the chain. */
2913 if (ps == pst->objfile->psymtabs)
2914 pst->objfile->psymtabs = ps->next;
2915 else
2916 pprev->next = ps->next;
2917
2918 /* FIXME, we can't conveniently deallocate the entries in the
2919 partial_symbol lists (global_psymbols/static_psymbols) that
2920 this psymtab points to. These just take up space until all
2921 the psymtabs are reclaimed. Ditto the dependencies list and
2922 filename, which are all in the objfile_obstack. */
2923
2924 /* We need to cashier any psymtab that has this one as a dependency... */
2925 again:
2926 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2927 {
2928 for (i = 0; i < ps->number_of_dependencies; i++)
2929 {
2930 if (ps->dependencies[i] == pst)
2931 {
2932 cashier_psymtab (ps);
2933 goto again; /* Must restart, chain has been munged. */
2934 }
2935 }
2936 }
2937 }
2938 }
2939
2940 /* If a symtab or psymtab for filename NAME is found, free it along
2941 with any dependent breakpoints, displays, etc.
2942 Used when loading new versions of object modules with the "add-file"
2943 command. This is only called on the top-level symtab or psymtab's name;
2944 it is not called for subsidiary files such as .h files.
2945
2946 Return value is 1 if we blew away the environment, 0 if not.
2947 FIXME. The return value appears to never be used.
2948
2949 FIXME. I think this is not the best way to do this. We should
2950 work on being gentler to the environment while still cleaning up
2951 all stray pointers into the freed symtab. */
2952
2953 int
2954 free_named_symtabs (char *name)
2955 {
2956 #if 0
2957 /* FIXME: With the new method of each objfile having it's own
2958 psymtab list, this function needs serious rethinking. In particular,
2959 why was it ever necessary to toss psymtabs with specific compilation
2960 unit filenames, as opposed to all psymtabs from a particular symbol
2961 file? -- fnf
2962 Well, the answer is that some systems permit reloading of particular
2963 compilation units. We want to blow away any old info about these
2964 compilation units, regardless of which objfiles they arrived in. --gnu. */
2965
2966 struct symtab *s;
2967 struct symtab *prev;
2968 struct partial_symtab *ps;
2969 struct blockvector *bv;
2970 int blewit = 0;
2971
2972 /* We only wack things if the symbol-reload switch is set. */
2973 if (!symbol_reloading)
2974 return 0;
2975
2976 /* Some symbol formats have trouble providing file names... */
2977 if (name == 0 || *name == '\0')
2978 return 0;
2979
2980 /* Look for a psymtab with the specified name. */
2981
2982 again2:
2983 for (ps = partial_symtab_list; ps; ps = ps->next)
2984 {
2985 if (strcmp (name, ps->filename) == 0)
2986 {
2987 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2988 goto again2; /* Must restart, chain has been munged */
2989 }
2990 }
2991
2992 /* Look for a symtab with the specified name. */
2993
2994 for (s = symtab_list; s; s = s->next)
2995 {
2996 if (strcmp (name, s->filename) == 0)
2997 break;
2998 prev = s;
2999 }
3000
3001 if (s)
3002 {
3003 if (s == symtab_list)
3004 symtab_list = s->next;
3005 else
3006 prev->next = s->next;
3007
3008 /* For now, queue a delete for all breakpoints, displays, etc., whether
3009 or not they depend on the symtab being freed. This should be
3010 changed so that only those data structures affected are deleted. */
3011
3012 /* But don't delete anything if the symtab is empty.
3013 This test is necessary due to a bug in "dbxread.c" that
3014 causes empty symtabs to be created for N_SO symbols that
3015 contain the pathname of the object file. (This problem
3016 has been fixed in GDB 3.9x). */
3017
3018 bv = BLOCKVECTOR (s);
3019 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3020 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3021 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3022 {
3023 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
3024 name);
3025 clear_symtab_users_queued++;
3026 make_cleanup (clear_symtab_users_once, 0);
3027 blewit = 1;
3028 }
3029 else
3030 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3031 name);
3032
3033 free_symtab (s);
3034 }
3035 else
3036 {
3037 /* It is still possible that some breakpoints will be affected
3038 even though no symtab was found, since the file might have
3039 been compiled without debugging, and hence not be associated
3040 with a symtab. In order to handle this correctly, we would need
3041 to keep a list of text address ranges for undebuggable files.
3042 For now, we do nothing, since this is a fairly obscure case. */
3043 ;
3044 }
3045
3046 /* FIXME, what about the minimal symbol table? */
3047 return blewit;
3048 #else
3049 return (0);
3050 #endif
3051 }
3052 \f
3053 /* Allocate and partially fill a partial symtab. It will be
3054 completely filled at the end of the symbol list.
3055
3056 FILENAME is the name of the symbol-file we are reading from. */
3057
3058 struct partial_symtab *
3059 start_psymtab_common (struct objfile *objfile,
3060 struct section_offsets *section_offsets, char *filename,
3061 CORE_ADDR textlow, struct partial_symbol **global_syms,
3062 struct partial_symbol **static_syms)
3063 {
3064 struct partial_symtab *psymtab;
3065
3066 psymtab = allocate_psymtab (filename, objfile);
3067 psymtab->section_offsets = section_offsets;
3068 psymtab->textlow = textlow;
3069 psymtab->texthigh = psymtab->textlow; /* default */
3070 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3071 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
3072 return (psymtab);
3073 }
3074 \f
3075 /* Helper function, initialises partial symbol structure and stashes
3076 it into objfile's bcache. Note that our caching mechanism will
3077 use all fields of struct partial_symbol to determine hash value of the
3078 structure. In other words, having two symbols with the same name but
3079 different domain (or address) is possible and correct. */
3080
3081 static const struct partial_symbol *
3082 add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3083 enum address_class class,
3084 long val, /* Value as a long */
3085 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3086 enum language language, struct objfile *objfile,
3087 int *added)
3088 {
3089 char *buf = name;
3090 /* psymbol is static so that there will be no uninitialized gaps in the
3091 structure which might contain random data, causing cache misses in
3092 bcache. */
3093 static struct partial_symbol psymbol;
3094
3095 if (name[namelength] != '\0')
3096 {
3097 buf = alloca (namelength + 1);
3098 /* Create local copy of the partial symbol */
3099 memcpy (buf, name, namelength);
3100 buf[namelength] = '\0';
3101 }
3102 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3103 if (val != 0)
3104 {
3105 SYMBOL_VALUE (&psymbol) = val;
3106 }
3107 else
3108 {
3109 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3110 }
3111 SYMBOL_SECTION (&psymbol) = 0;
3112 SYMBOL_LANGUAGE (&psymbol) = language;
3113 PSYMBOL_DOMAIN (&psymbol) = domain;
3114 PSYMBOL_CLASS (&psymbol) = class;
3115
3116 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3117
3118 /* Stash the partial symbol away in the cache */
3119 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3120 objfile->psymbol_cache, added);
3121 }
3122
3123 /* Helper function, adds partial symbol to the given partial symbol
3124 list. */
3125
3126 static void
3127 append_psymbol_to_list (struct psymbol_allocation_list *list,
3128 const struct partial_symbol *psym,
3129 struct objfile *objfile)
3130 {
3131 if (list->next >= list->list + list->size)
3132 extend_psymbol_list (list, objfile);
3133 *list->next++ = (struct partial_symbol *) psym;
3134 OBJSTAT (objfile, n_psyms++);
3135 }
3136
3137 /* Add a symbol with a long value to a psymtab.
3138 Since one arg is a struct, we pass in a ptr and deref it (sigh).
3139 Return the partial symbol that has been added. */
3140
3141 /* NOTE: carlton/2003-09-11: The reason why we return the partial
3142 symbol is so that callers can get access to the symbol's demangled
3143 name, which they don't have any cheap way to determine otherwise.
3144 (Currenly, dwarf2read.c is the only file who uses that information,
3145 though it's possible that other readers might in the future.)
3146 Elena wasn't thrilled about that, and I don't blame her, but we
3147 couldn't come up with a better way to get that information. If
3148 it's needed in other situations, we could consider breaking up
3149 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3150 cache. */
3151
3152 const struct partial_symbol *
3153 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
3154 enum address_class class,
3155 struct psymbol_allocation_list *list,
3156 long val, /* Value as a long */
3157 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3158 enum language language, struct objfile *objfile)
3159 {
3160 const struct partial_symbol *psym;
3161
3162 int added;
3163
3164 /* Stash the partial symbol away in the cache */
3165 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3166 val, coreaddr, language, objfile, &added);
3167
3168 /* Do not duplicate global partial symbols. */
3169 if (list == &objfile->global_psymbols
3170 && !added)
3171 return psym;
3172
3173 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3174 append_psymbol_to_list (list, psym, objfile);
3175 return psym;
3176 }
3177
3178 /* Initialize storage for partial symbols. */
3179
3180 void
3181 init_psymbol_list (struct objfile *objfile, int total_symbols)
3182 {
3183 /* Free any previously allocated psymbol lists. */
3184
3185 if (objfile->global_psymbols.list)
3186 {
3187 xfree (objfile->global_psymbols.list);
3188 }
3189 if (objfile->static_psymbols.list)
3190 {
3191 xfree (objfile->static_psymbols.list);
3192 }
3193
3194 /* Current best guess is that approximately a twentieth
3195 of the total symbols (in a debugging file) are global or static
3196 oriented symbols */
3197
3198 objfile->global_psymbols.size = total_symbols / 10;
3199 objfile->static_psymbols.size = total_symbols / 10;
3200
3201 if (objfile->global_psymbols.size > 0)
3202 {
3203 objfile->global_psymbols.next =
3204 objfile->global_psymbols.list = (struct partial_symbol **)
3205 xmalloc ((objfile->global_psymbols.size
3206 * sizeof (struct partial_symbol *)));
3207 }
3208 if (objfile->static_psymbols.size > 0)
3209 {
3210 objfile->static_psymbols.next =
3211 objfile->static_psymbols.list = (struct partial_symbol **)
3212 xmalloc ((objfile->static_psymbols.size
3213 * sizeof (struct partial_symbol *)));
3214 }
3215 }
3216
3217 /* OVERLAYS:
3218 The following code implements an abstraction for debugging overlay sections.
3219
3220 The target model is as follows:
3221 1) The gnu linker will permit multiple sections to be mapped into the
3222 same VMA, each with its own unique LMA (or load address).
3223 2) It is assumed that some runtime mechanism exists for mapping the
3224 sections, one by one, from the load address into the VMA address.
3225 3) This code provides a mechanism for gdb to keep track of which
3226 sections should be considered to be mapped from the VMA to the LMA.
3227 This information is used for symbol lookup, and memory read/write.
3228 For instance, if a section has been mapped then its contents
3229 should be read from the VMA, otherwise from the LMA.
3230
3231 Two levels of debugger support for overlays are available. One is
3232 "manual", in which the debugger relies on the user to tell it which
3233 overlays are currently mapped. This level of support is
3234 implemented entirely in the core debugger, and the information about
3235 whether a section is mapped is kept in the objfile->obj_section table.
3236
3237 The second level of support is "automatic", and is only available if
3238 the target-specific code provides functionality to read the target's
3239 overlay mapping table, and translate its contents for the debugger
3240 (by updating the mapped state information in the obj_section tables).
3241
3242 The interface is as follows:
3243 User commands:
3244 overlay map <name> -- tell gdb to consider this section mapped
3245 overlay unmap <name> -- tell gdb to consider this section unmapped
3246 overlay list -- list the sections that GDB thinks are mapped
3247 overlay read-target -- get the target's state of what's mapped
3248 overlay off/manual/auto -- set overlay debugging state
3249 Functional interface:
3250 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3251 section, return that section.
3252 find_pc_overlay(pc): find any overlay section that contains
3253 the pc, either in its VMA or its LMA
3254 section_is_mapped(sect): true if overlay is marked as mapped
3255 section_is_overlay(sect): true if section's VMA != LMA
3256 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3257 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3258 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3259 overlay_mapped_address(...): map an address from section's LMA to VMA
3260 overlay_unmapped_address(...): map an address from section's VMA to LMA
3261 symbol_overlayed_address(...): Return a "current" address for symbol:
3262 either in VMA or LMA depending on whether
3263 the symbol's section is currently mapped
3264 */
3265
3266 /* Overlay debugging state: */
3267
3268 enum overlay_debugging_state overlay_debugging = ovly_off;
3269 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3270
3271 /* Function: section_is_overlay (SECTION)
3272 Returns true if SECTION has VMA not equal to LMA, ie.
3273 SECTION is loaded at an address different from where it will "run". */
3274
3275 int
3276 section_is_overlay (struct obj_section *section)
3277 {
3278 if (overlay_debugging && section)
3279 {
3280 bfd *abfd = section->objfile->obfd;
3281 asection *bfd_section = section->the_bfd_section;
3282
3283 if (bfd_section_lma (abfd, bfd_section) != 0
3284 && bfd_section_lma (abfd, bfd_section)
3285 != bfd_section_vma (abfd, bfd_section))
3286 return 1;
3287 }
3288
3289 return 0;
3290 }
3291
3292 /* Function: overlay_invalidate_all (void)
3293 Invalidate the mapped state of all overlay sections (mark it as stale). */
3294
3295 static void
3296 overlay_invalidate_all (void)
3297 {
3298 struct objfile *objfile;
3299 struct obj_section *sect;
3300
3301 ALL_OBJSECTIONS (objfile, sect)
3302 if (section_is_overlay (sect))
3303 sect->ovly_mapped = -1;
3304 }
3305
3306 /* Function: section_is_mapped (SECTION)
3307 Returns true if section is an overlay, and is currently mapped.
3308
3309 Access to the ovly_mapped flag is restricted to this function, so
3310 that we can do automatic update. If the global flag
3311 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3312 overlay_invalidate_all. If the mapped state of the particular
3313 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3314
3315 int
3316 section_is_mapped (struct obj_section *osect)
3317 {
3318 if (osect == 0 || !section_is_overlay (osect))
3319 return 0;
3320
3321 switch (overlay_debugging)
3322 {
3323 default:
3324 case ovly_off:
3325 return 0; /* overlay debugging off */
3326 case ovly_auto: /* overlay debugging automatic */
3327 /* Unles there is a gdbarch_overlay_update function,
3328 there's really nothing useful to do here (can't really go auto) */
3329 if (gdbarch_overlay_update_p (current_gdbarch))
3330 {
3331 if (overlay_cache_invalid)
3332 {
3333 overlay_invalidate_all ();
3334 overlay_cache_invalid = 0;
3335 }
3336 if (osect->ovly_mapped == -1)
3337 gdbarch_overlay_update (current_gdbarch, osect);
3338 }
3339 /* fall thru to manual case */
3340 case ovly_on: /* overlay debugging manual */
3341 return osect->ovly_mapped == 1;
3342 }
3343 }
3344
3345 /* Function: pc_in_unmapped_range
3346 If PC falls into the lma range of SECTION, return true, else false. */
3347
3348 CORE_ADDR
3349 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3350 {
3351 if (section_is_overlay (section))
3352 {
3353 bfd *abfd = section->objfile->obfd;
3354 asection *bfd_section = section->the_bfd_section;
3355
3356 /* We assume the LMA is relocated by the same offset as the VMA. */
3357 bfd_vma size = bfd_get_section_size (bfd_section);
3358 CORE_ADDR offset = obj_section_offset (section);
3359
3360 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3361 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3362 return 1;
3363 }
3364
3365 return 0;
3366 }
3367
3368 /* Function: pc_in_mapped_range
3369 If PC falls into the vma range of SECTION, return true, else false. */
3370
3371 CORE_ADDR
3372 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3373 {
3374 if (section_is_overlay (section))
3375 {
3376 if (obj_section_addr (section) <= pc
3377 && pc < obj_section_endaddr (section))
3378 return 1;
3379 }
3380
3381 return 0;
3382 }
3383
3384
3385 /* Return true if the mapped ranges of sections A and B overlap, false
3386 otherwise. */
3387 static int
3388 sections_overlap (struct obj_section *a, struct obj_section *b)
3389 {
3390 CORE_ADDR a_start = obj_section_addr (a);
3391 CORE_ADDR a_end = obj_section_endaddr (a);
3392 CORE_ADDR b_start = obj_section_addr (b);
3393 CORE_ADDR b_end = obj_section_endaddr (b);
3394
3395 return (a_start < b_end && b_start < a_end);
3396 }
3397
3398 /* Function: overlay_unmapped_address (PC, SECTION)
3399 Returns the address corresponding to PC in the unmapped (load) range.
3400 May be the same as PC. */
3401
3402 CORE_ADDR
3403 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3404 {
3405 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3406 {
3407 bfd *abfd = section->objfile->obfd;
3408 asection *bfd_section = section->the_bfd_section;
3409
3410 return pc + bfd_section_lma (abfd, bfd_section)
3411 - bfd_section_vma (abfd, bfd_section);
3412 }
3413
3414 return pc;
3415 }
3416
3417 /* Function: overlay_mapped_address (PC, SECTION)
3418 Returns the address corresponding to PC in the mapped (runtime) range.
3419 May be the same as PC. */
3420
3421 CORE_ADDR
3422 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3423 {
3424 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3425 {
3426 bfd *abfd = section->objfile->obfd;
3427 asection *bfd_section = section->the_bfd_section;
3428
3429 return pc + bfd_section_vma (abfd, bfd_section)
3430 - bfd_section_lma (abfd, bfd_section);
3431 }
3432
3433 return pc;
3434 }
3435
3436
3437 /* Function: symbol_overlayed_address
3438 Return one of two addresses (relative to the VMA or to the LMA),
3439 depending on whether the section is mapped or not. */
3440
3441 CORE_ADDR
3442 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3443 {
3444 if (overlay_debugging)
3445 {
3446 /* If the symbol has no section, just return its regular address. */
3447 if (section == 0)
3448 return address;
3449 /* If the symbol's section is not an overlay, just return its address */
3450 if (!section_is_overlay (section))
3451 return address;
3452 /* If the symbol's section is mapped, just return its address */
3453 if (section_is_mapped (section))
3454 return address;
3455 /*
3456 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3457 * then return its LOADED address rather than its vma address!!
3458 */
3459 return overlay_unmapped_address (address, section);
3460 }
3461 return address;
3462 }
3463
3464 /* Function: find_pc_overlay (PC)
3465 Return the best-match overlay section for PC:
3466 If PC matches a mapped overlay section's VMA, return that section.
3467 Else if PC matches an unmapped section's VMA, return that section.
3468 Else if PC matches an unmapped section's LMA, return that section. */
3469
3470 struct obj_section *
3471 find_pc_overlay (CORE_ADDR pc)
3472 {
3473 struct objfile *objfile;
3474 struct obj_section *osect, *best_match = NULL;
3475
3476 if (overlay_debugging)
3477 ALL_OBJSECTIONS (objfile, osect)
3478 if (section_is_overlay (osect))
3479 {
3480 if (pc_in_mapped_range (pc, osect))
3481 {
3482 if (section_is_mapped (osect))
3483 return osect;
3484 else
3485 best_match = osect;
3486 }
3487 else if (pc_in_unmapped_range (pc, osect))
3488 best_match = osect;
3489 }
3490 return best_match;
3491 }
3492
3493 /* Function: find_pc_mapped_section (PC)
3494 If PC falls into the VMA address range of an overlay section that is
3495 currently marked as MAPPED, return that section. Else return NULL. */
3496
3497 struct obj_section *
3498 find_pc_mapped_section (CORE_ADDR pc)
3499 {
3500 struct objfile *objfile;
3501 struct obj_section *osect;
3502
3503 if (overlay_debugging)
3504 ALL_OBJSECTIONS (objfile, osect)
3505 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3506 return osect;
3507
3508 return NULL;
3509 }
3510
3511 /* Function: list_overlays_command
3512 Print a list of mapped sections and their PC ranges */
3513
3514 void
3515 list_overlays_command (char *args, int from_tty)
3516 {
3517 int nmapped = 0;
3518 struct objfile *objfile;
3519 struct obj_section *osect;
3520
3521 if (overlay_debugging)
3522 ALL_OBJSECTIONS (objfile, osect)
3523 if (section_is_mapped (osect))
3524 {
3525 const char *name;
3526 bfd_vma lma, vma;
3527 int size;
3528
3529 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3530 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3531 size = bfd_get_section_size (osect->the_bfd_section);
3532 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3533
3534 printf_filtered ("Section %s, loaded at ", name);
3535 fputs_filtered (paddress (lma), gdb_stdout);
3536 puts_filtered (" - ");
3537 fputs_filtered (paddress (lma + size), gdb_stdout);
3538 printf_filtered (", mapped at ");
3539 fputs_filtered (paddress (vma), gdb_stdout);
3540 puts_filtered (" - ");
3541 fputs_filtered (paddress (vma + size), gdb_stdout);
3542 puts_filtered ("\n");
3543
3544 nmapped++;
3545 }
3546 if (nmapped == 0)
3547 printf_filtered (_("No sections are mapped.\n"));
3548 }
3549
3550 /* Function: map_overlay_command
3551 Mark the named section as mapped (ie. residing at its VMA address). */
3552
3553 void
3554 map_overlay_command (char *args, int from_tty)
3555 {
3556 struct objfile *objfile, *objfile2;
3557 struct obj_section *sec, *sec2;
3558
3559 if (!overlay_debugging)
3560 error (_("\
3561 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3562 the 'overlay manual' command."));
3563
3564 if (args == 0 || *args == 0)
3565 error (_("Argument required: name of an overlay section"));
3566
3567 /* First, find a section matching the user supplied argument */
3568 ALL_OBJSECTIONS (objfile, sec)
3569 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3570 {
3571 /* Now, check to see if the section is an overlay. */
3572 if (!section_is_overlay (sec))
3573 continue; /* not an overlay section */
3574
3575 /* Mark the overlay as "mapped" */
3576 sec->ovly_mapped = 1;
3577
3578 /* Next, make a pass and unmap any sections that are
3579 overlapped by this new section: */
3580 ALL_OBJSECTIONS (objfile2, sec2)
3581 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3582 {
3583 if (info_verbose)
3584 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3585 bfd_section_name (objfile->obfd,
3586 sec2->the_bfd_section));
3587 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3588 }
3589 return;
3590 }
3591 error (_("No overlay section called %s"), args);
3592 }
3593
3594 /* Function: unmap_overlay_command
3595 Mark the overlay section as unmapped
3596 (ie. resident in its LMA address range, rather than the VMA range). */
3597
3598 void
3599 unmap_overlay_command (char *args, int from_tty)
3600 {
3601 struct objfile *objfile;
3602 struct obj_section *sec;
3603
3604 if (!overlay_debugging)
3605 error (_("\
3606 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3607 the 'overlay manual' command."));
3608
3609 if (args == 0 || *args == 0)
3610 error (_("Argument required: name of an overlay section"));
3611
3612 /* First, find a section matching the user supplied argument */
3613 ALL_OBJSECTIONS (objfile, sec)
3614 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3615 {
3616 if (!sec->ovly_mapped)
3617 error (_("Section %s is not mapped"), args);
3618 sec->ovly_mapped = 0;
3619 return;
3620 }
3621 error (_("No overlay section called %s"), args);
3622 }
3623
3624 /* Function: overlay_auto_command
3625 A utility command to turn on overlay debugging.
3626 Possibly this should be done via a set/show command. */
3627
3628 static void
3629 overlay_auto_command (char *args, int from_tty)
3630 {
3631 overlay_debugging = ovly_auto;
3632 enable_overlay_breakpoints ();
3633 if (info_verbose)
3634 printf_unfiltered (_("Automatic overlay debugging enabled."));
3635 }
3636
3637 /* Function: overlay_manual_command
3638 A utility command to turn on overlay debugging.
3639 Possibly this should be done via a set/show command. */
3640
3641 static void
3642 overlay_manual_command (char *args, int from_tty)
3643 {
3644 overlay_debugging = ovly_on;
3645 disable_overlay_breakpoints ();
3646 if (info_verbose)
3647 printf_unfiltered (_("Overlay debugging enabled."));
3648 }
3649
3650 /* Function: overlay_off_command
3651 A utility command to turn on overlay debugging.
3652 Possibly this should be done via a set/show command. */
3653
3654 static void
3655 overlay_off_command (char *args, int from_tty)
3656 {
3657 overlay_debugging = ovly_off;
3658 disable_overlay_breakpoints ();
3659 if (info_verbose)
3660 printf_unfiltered (_("Overlay debugging disabled."));
3661 }
3662
3663 static void
3664 overlay_load_command (char *args, int from_tty)
3665 {
3666 if (gdbarch_overlay_update_p (current_gdbarch))
3667 gdbarch_overlay_update (current_gdbarch, NULL);
3668 else
3669 error (_("This target does not know how to read its overlay state."));
3670 }
3671
3672 /* Function: overlay_command
3673 A place-holder for a mis-typed command */
3674
3675 /* Command list chain containing all defined "overlay" subcommands. */
3676 struct cmd_list_element *overlaylist;
3677
3678 static void
3679 overlay_command (char *args, int from_tty)
3680 {
3681 printf_unfiltered
3682 ("\"overlay\" must be followed by the name of an overlay command.\n");
3683 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3684 }
3685
3686
3687 /* Target Overlays for the "Simplest" overlay manager:
3688
3689 This is GDB's default target overlay layer. It works with the
3690 minimal overlay manager supplied as an example by Cygnus. The
3691 entry point is via a function pointer "gdbarch_overlay_update",
3692 so targets that use a different runtime overlay manager can
3693 substitute their own overlay_update function and take over the
3694 function pointer.
3695
3696 The overlay_update function pokes around in the target's data structures
3697 to see what overlays are mapped, and updates GDB's overlay mapping with
3698 this information.
3699
3700 In this simple implementation, the target data structures are as follows:
3701 unsigned _novlys; /# number of overlay sections #/
3702 unsigned _ovly_table[_novlys][4] = {
3703 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3704 {..., ..., ..., ...},
3705 }
3706 unsigned _novly_regions; /# number of overlay regions #/
3707 unsigned _ovly_region_table[_novly_regions][3] = {
3708 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3709 {..., ..., ...},
3710 }
3711 These functions will attempt to update GDB's mappedness state in the
3712 symbol section table, based on the target's mappedness state.
3713
3714 To do this, we keep a cached copy of the target's _ovly_table, and
3715 attempt to detect when the cached copy is invalidated. The main
3716 entry point is "simple_overlay_update(SECT), which looks up SECT in
3717 the cached table and re-reads only the entry for that section from
3718 the target (whenever possible).
3719 */
3720
3721 /* Cached, dynamically allocated copies of the target data structures: */
3722 static unsigned (*cache_ovly_table)[4] = 0;
3723 #if 0
3724 static unsigned (*cache_ovly_region_table)[3] = 0;
3725 #endif
3726 static unsigned cache_novlys = 0;
3727 #if 0
3728 static unsigned cache_novly_regions = 0;
3729 #endif
3730 static CORE_ADDR cache_ovly_table_base = 0;
3731 #if 0
3732 static CORE_ADDR cache_ovly_region_table_base = 0;
3733 #endif
3734 enum ovly_index
3735 {
3736 VMA, SIZE, LMA, MAPPED
3737 };
3738 #define TARGET_LONG_BYTES (gdbarch_long_bit (current_gdbarch) \
3739 / TARGET_CHAR_BIT)
3740
3741 /* Throw away the cached copy of _ovly_table */
3742 static void
3743 simple_free_overlay_table (void)
3744 {
3745 if (cache_ovly_table)
3746 xfree (cache_ovly_table);
3747 cache_novlys = 0;
3748 cache_ovly_table = NULL;
3749 cache_ovly_table_base = 0;
3750 }
3751
3752 #if 0
3753 /* Throw away the cached copy of _ovly_region_table */
3754 static void
3755 simple_free_overlay_region_table (void)
3756 {
3757 if (cache_ovly_region_table)
3758 xfree (cache_ovly_region_table);
3759 cache_novly_regions = 0;
3760 cache_ovly_region_table = NULL;
3761 cache_ovly_region_table_base = 0;
3762 }
3763 #endif
3764
3765 /* Read an array of ints from the target into a local buffer.
3766 Convert to host order. int LEN is number of ints */
3767 static void
3768 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3769 {
3770 /* FIXME (alloca): Not safe if array is very large. */
3771 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3772 int i;
3773
3774 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3775 for (i = 0; i < len; i++)
3776 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3777 TARGET_LONG_BYTES);
3778 }
3779
3780 /* Find and grab a copy of the target _ovly_table
3781 (and _novlys, which is needed for the table's size) */
3782 static int
3783 simple_read_overlay_table (void)
3784 {
3785 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3786
3787 simple_free_overlay_table ();
3788 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3789 if (! novlys_msym)
3790 {
3791 error (_("Error reading inferior's overlay table: "
3792 "couldn't find `_novlys' variable\n"
3793 "in inferior. Use `overlay manual' mode."));
3794 return 0;
3795 }
3796
3797 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3798 if (! ovly_table_msym)
3799 {
3800 error (_("Error reading inferior's overlay table: couldn't find "
3801 "`_ovly_table' array\n"
3802 "in inferior. Use `overlay manual' mode."));
3803 return 0;
3804 }
3805
3806 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3807 cache_ovly_table
3808 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3809 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3810 read_target_long_array (cache_ovly_table_base,
3811 (unsigned int *) cache_ovly_table,
3812 cache_novlys * 4);
3813
3814 return 1; /* SUCCESS */
3815 }
3816
3817 #if 0
3818 /* Find and grab a copy of the target _ovly_region_table
3819 (and _novly_regions, which is needed for the table's size) */
3820 static int
3821 simple_read_overlay_region_table (void)
3822 {
3823 struct minimal_symbol *msym;
3824
3825 simple_free_overlay_region_table ();
3826 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3827 if (msym != NULL)
3828 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3829 else
3830 return 0; /* failure */
3831 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3832 if (cache_ovly_region_table != NULL)
3833 {
3834 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3835 if (msym != NULL)
3836 {
3837 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3838 read_target_long_array (cache_ovly_region_table_base,
3839 (unsigned int *) cache_ovly_region_table,
3840 cache_novly_regions * 3);
3841 }
3842 else
3843 return 0; /* failure */
3844 }
3845 else
3846 return 0; /* failure */
3847 return 1; /* SUCCESS */
3848 }
3849 #endif
3850
3851 /* Function: simple_overlay_update_1
3852 A helper function for simple_overlay_update. Assuming a cached copy
3853 of _ovly_table exists, look through it to find an entry whose vma,
3854 lma and size match those of OSECT. Re-read the entry and make sure
3855 it still matches OSECT (else the table may no longer be valid).
3856 Set OSECT's mapped state to match the entry. Return: 1 for
3857 success, 0 for failure. */
3858
3859 static int
3860 simple_overlay_update_1 (struct obj_section *osect)
3861 {
3862 int i, size;
3863 bfd *obfd = osect->objfile->obfd;
3864 asection *bsect = osect->the_bfd_section;
3865
3866 size = bfd_get_section_size (osect->the_bfd_section);
3867 for (i = 0; i < cache_novlys; i++)
3868 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3869 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3870 /* && cache_ovly_table[i][SIZE] == size */ )
3871 {
3872 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3873 (unsigned int *) cache_ovly_table[i], 4);
3874 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3875 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3876 /* && cache_ovly_table[i][SIZE] == size */ )
3877 {
3878 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3879 return 1;
3880 }
3881 else /* Warning! Warning! Target's ovly table has changed! */
3882 return 0;
3883 }
3884 return 0;
3885 }
3886
3887 /* Function: simple_overlay_update
3888 If OSECT is NULL, then update all sections' mapped state
3889 (after re-reading the entire target _ovly_table).
3890 If OSECT is non-NULL, then try to find a matching entry in the
3891 cached ovly_table and update only OSECT's mapped state.
3892 If a cached entry can't be found or the cache isn't valid, then
3893 re-read the entire cache, and go ahead and update all sections. */
3894
3895 void
3896 simple_overlay_update (struct obj_section *osect)
3897 {
3898 struct objfile *objfile;
3899
3900 /* Were we given an osect to look up? NULL means do all of them. */
3901 if (osect)
3902 /* Have we got a cached copy of the target's overlay table? */
3903 if (cache_ovly_table != NULL)
3904 /* Does its cached location match what's currently in the symtab? */
3905 if (cache_ovly_table_base ==
3906 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3907 /* Then go ahead and try to look up this single section in the cache */
3908 if (simple_overlay_update_1 (osect))
3909 /* Found it! We're done. */
3910 return;
3911
3912 /* Cached table no good: need to read the entire table anew.
3913 Or else we want all the sections, in which case it's actually
3914 more efficient to read the whole table in one block anyway. */
3915
3916 if (! simple_read_overlay_table ())
3917 return;
3918
3919 /* Now may as well update all sections, even if only one was requested. */
3920 ALL_OBJSECTIONS (objfile, osect)
3921 if (section_is_overlay (osect))
3922 {
3923 int i, size;
3924 bfd *obfd = osect->objfile->obfd;
3925 asection *bsect = osect->the_bfd_section;
3926
3927 size = bfd_get_section_size (bsect);
3928 for (i = 0; i < cache_novlys; i++)
3929 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3930 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3931 /* && cache_ovly_table[i][SIZE] == size */ )
3932 { /* obj_section matches i'th entry in ovly_table */
3933 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3934 break; /* finished with inner for loop: break out */
3935 }
3936 }
3937 }
3938
3939 /* Set the output sections and output offsets for section SECTP in
3940 ABFD. The relocation code in BFD will read these offsets, so we
3941 need to be sure they're initialized. We map each section to itself,
3942 with no offset; this means that SECTP->vma will be honored. */
3943
3944 static void
3945 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3946 {
3947 sectp->output_section = sectp;
3948 sectp->output_offset = 0;
3949 }
3950
3951 /* Relocate the contents of a debug section SECTP in ABFD. The
3952 contents are stored in BUF if it is non-NULL, or returned in a
3953 malloc'd buffer otherwise.
3954
3955 For some platforms and debug info formats, shared libraries contain
3956 relocations against the debug sections (particularly for DWARF-2;
3957 one affected platform is PowerPC GNU/Linux, although it depends on
3958 the version of the linker in use). Also, ELF object files naturally
3959 have unresolved relocations for their debug sections. We need to apply
3960 the relocations in order to get the locations of symbols correct. */
3961
3962 bfd_byte *
3963 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3964 {
3965 /* We're only interested in debugging sections with relocation
3966 information. */
3967 if ((sectp->flags & SEC_RELOC) == 0)
3968 return NULL;
3969 if ((sectp->flags & SEC_DEBUGGING) == 0)
3970 return NULL;
3971
3972 /* We will handle section offsets properly elsewhere, so relocate as if
3973 all sections begin at 0. */
3974 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3975
3976 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3977 }
3978
3979 struct symfile_segment_data *
3980 get_symfile_segment_data (bfd *abfd)
3981 {
3982 struct sym_fns *sf = find_sym_fns (abfd);
3983
3984 if (sf == NULL)
3985 return NULL;
3986
3987 return sf->sym_segments (abfd);
3988 }
3989
3990 void
3991 free_symfile_segment_data (struct symfile_segment_data *data)
3992 {
3993 xfree (data->segment_bases);
3994 xfree (data->segment_sizes);
3995 xfree (data->segment_info);
3996 xfree (data);
3997 }
3998
3999
4000 /* Given:
4001 - DATA, containing segment addresses from the object file ABFD, and
4002 the mapping from ABFD's sections onto the segments that own them,
4003 and
4004 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
4005 segment addresses reported by the target,
4006 store the appropriate offsets for each section in OFFSETS.
4007
4008 If there are fewer entries in SEGMENT_BASES than there are segments
4009 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4010
4011 If there are more entries, then ignore the extra. The target may
4012 not be able to distinguish between an empty data segment and a
4013 missing data segment; a missing text segment is less plausible. */
4014 int
4015 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4016 struct section_offsets *offsets,
4017 int num_segment_bases,
4018 const CORE_ADDR *segment_bases)
4019 {
4020 int i;
4021 asection *sect;
4022
4023 /* It doesn't make sense to call this function unless you have some
4024 segment base addresses. */
4025 gdb_assert (segment_bases > 0);
4026
4027 /* If we do not have segment mappings for the object file, we
4028 can not relocate it by segments. */
4029 gdb_assert (data != NULL);
4030 gdb_assert (data->num_segments > 0);
4031
4032 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4033 {
4034 int which = data->segment_info[i];
4035
4036 gdb_assert (0 <= which && which <= data->num_segments);
4037
4038 /* Don't bother computing offsets for sections that aren't
4039 loaded as part of any segment. */
4040 if (! which)
4041 continue;
4042
4043 /* Use the last SEGMENT_BASES entry as the address of any extra
4044 segments mentioned in DATA->segment_info. */
4045 if (which > num_segment_bases)
4046 which = num_segment_bases;
4047
4048 offsets->offsets[i] = (segment_bases[which - 1]
4049 - data->segment_bases[which - 1]);
4050 }
4051
4052 return 1;
4053 }
4054
4055 static void
4056 symfile_find_segment_sections (struct objfile *objfile)
4057 {
4058 bfd *abfd = objfile->obfd;
4059 int i;
4060 asection *sect;
4061 struct symfile_segment_data *data;
4062
4063 data = get_symfile_segment_data (objfile->obfd);
4064 if (data == NULL)
4065 return;
4066
4067 if (data->num_segments != 1 && data->num_segments != 2)
4068 {
4069 free_symfile_segment_data (data);
4070 return;
4071 }
4072
4073 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4074 {
4075 CORE_ADDR vma;
4076 int which = data->segment_info[i];
4077
4078 if (which == 1)
4079 {
4080 if (objfile->sect_index_text == -1)
4081 objfile->sect_index_text = sect->index;
4082
4083 if (objfile->sect_index_rodata == -1)
4084 objfile->sect_index_rodata = sect->index;
4085 }
4086 else if (which == 2)
4087 {
4088 if (objfile->sect_index_data == -1)
4089 objfile->sect_index_data = sect->index;
4090
4091 if (objfile->sect_index_bss == -1)
4092 objfile->sect_index_bss = sect->index;
4093 }
4094 }
4095
4096 free_symfile_segment_data (data);
4097 }
4098
4099 void
4100 _initialize_symfile (void)
4101 {
4102 struct cmd_list_element *c;
4103
4104 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4105 Load symbol table from executable file FILE.\n\
4106 The `file' command can also load symbol tables, as well as setting the file\n\
4107 to execute."), &cmdlist);
4108 set_cmd_completer (c, filename_completer);
4109
4110 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
4111 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
4112 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
4113 ADDR is the starting address of the file's text.\n\
4114 The optional arguments are section-name section-address pairs and\n\
4115 should be specified if the data and bss segments are not contiguous\n\
4116 with the text. SECT is a section name to be loaded at SECT_ADDR."),
4117 &cmdlist);
4118 set_cmd_completer (c, filename_completer);
4119
4120 c = add_cmd ("add-shared-symbol-files", class_files,
4121 add_shared_symbol_files_command, _("\
4122 Load the symbols from shared objects in the dynamic linker's link map."),
4123 &cmdlist);
4124 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
4125 &cmdlist);
4126
4127 c = add_cmd ("load", class_files, load_command, _("\
4128 Dynamically load FILE into the running program, and record its symbols\n\
4129 for access from GDB.\n\
4130 A load OFFSET may also be given."), &cmdlist);
4131 set_cmd_completer (c, filename_completer);
4132
4133 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4134 &symbol_reloading, _("\
4135 Set dynamic symbol table reloading multiple times in one run."), _("\
4136 Show dynamic symbol table reloading multiple times in one run."), NULL,
4137 NULL,
4138 show_symbol_reloading,
4139 &setlist, &showlist);
4140
4141 add_prefix_cmd ("overlay", class_support, overlay_command,
4142 _("Commands for debugging overlays."), &overlaylist,
4143 "overlay ", 0, &cmdlist);
4144
4145 add_com_alias ("ovly", "overlay", class_alias, 1);
4146 add_com_alias ("ov", "overlay", class_alias, 1);
4147
4148 add_cmd ("map-overlay", class_support, map_overlay_command,
4149 _("Assert that an overlay section is mapped."), &overlaylist);
4150
4151 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4152 _("Assert that an overlay section is unmapped."), &overlaylist);
4153
4154 add_cmd ("list-overlays", class_support, list_overlays_command,
4155 _("List mappings of overlay sections."), &overlaylist);
4156
4157 add_cmd ("manual", class_support, overlay_manual_command,
4158 _("Enable overlay debugging."), &overlaylist);
4159 add_cmd ("off", class_support, overlay_off_command,
4160 _("Disable overlay debugging."), &overlaylist);
4161 add_cmd ("auto", class_support, overlay_auto_command,
4162 _("Enable automatic overlay debugging."), &overlaylist);
4163 add_cmd ("load-target", class_support, overlay_load_command,
4164 _("Read the overlay mapping state from the target."), &overlaylist);
4165
4166 /* Filename extension to source language lookup table: */
4167 init_filename_language_table ();
4168 add_setshow_string_noescape_cmd ("extension-language", class_files,
4169 &ext_args, _("\
4170 Set mapping between filename extension and source language."), _("\
4171 Show mapping between filename extension and source language."), _("\
4172 Usage: set extension-language .foo bar"),
4173 set_ext_lang_command,
4174 show_ext_args,
4175 &setlist, &showlist);
4176
4177 add_info ("extensions", info_ext_lang_command,
4178 _("All filename extensions associated with a source language."));
4179
4180 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4181 &debug_file_directory, _("\
4182 Set the directory where separate debug symbols are searched for."), _("\
4183 Show the directory where separate debug symbols are searched for."), _("\
4184 Separate debug symbols are first searched for in the same\n\
4185 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4186 and lastly at the path of the directory of the binary with\n\
4187 the global debug-file directory prepended."),
4188 NULL,
4189 show_debug_file_directory,
4190 &setlist, &showlist);
4191
4192 add_setshow_boolean_cmd ("symbol-loading", no_class,
4193 &print_symbol_loading, _("\
4194 Set printing of symbol loading messages."), _("\
4195 Show printing of symbol loading messages."), NULL,
4196 NULL,
4197 NULL,
4198 &setprintlist, &showprintlist);
4199 }
This page took 0.119667 seconds and 4 git commands to generate.