2004-08-24 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h" /* for write_pc */
42 #include "filenames.h" /* for DOSish file names */
43 #include "gdb-stabs.h"
44 #include "gdb_obstack.h"
45 #include "completer.h"
46 #include "bcache.h"
47 #include "hashtab.h"
48 #include "readline/readline.h"
49 #include "gdb_assert.h"
50 #include "block.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include <time.h>
58
59 #ifndef O_BINARY
60 #define O_BINARY 0
61 #endif
62
63 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
64 void (*deprecated_show_load_progress) (const char *section,
65 unsigned long section_sent,
66 unsigned long section_size,
67 unsigned long total_sent,
68 unsigned long total_size);
69 void (*deprecated_pre_add_symbol_hook) (const char *);
70 void (*deprecated_post_add_symbol_hook) (void);
71 void (*deprecated_target_new_objfile_hook) (struct objfile *);
72
73 static void clear_symtab_users_cleanup (void *ignore);
74
75 /* Global variables owned by this file */
76 int readnow_symbol_files; /* Read full symbols immediately */
77
78 /* External variables and functions referenced. */
79
80 extern void report_transfer_performance (unsigned long, time_t, time_t);
81
82 /* Functions this file defines */
83
84 #if 0
85 static int simple_read_overlay_region_table (void);
86 static void simple_free_overlay_region_table (void);
87 #endif
88
89 static void set_initial_language (void);
90
91 static void load_command (char *, int);
92
93 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94
95 static void add_symbol_file_command (char *, int);
96
97 static void add_shared_symbol_files_command (char *, int);
98
99 static void reread_separate_symbols (struct objfile *objfile);
100
101 static void cashier_psymtab (struct partial_symtab *);
102
103 bfd *symfile_bfd_open (char *);
104
105 int get_section_index (struct objfile *, char *);
106
107 static void find_sym_fns (struct objfile *);
108
109 static void decrement_reading_symtab (void *);
110
111 static void overlay_invalidate_all (void);
112
113 static int overlay_is_mapped (struct obj_section *);
114
115 void list_overlays_command (char *, int);
116
117 void map_overlay_command (char *, int);
118
119 void unmap_overlay_command (char *, int);
120
121 static void overlay_auto_command (char *, int);
122
123 static void overlay_manual_command (char *, int);
124
125 static void overlay_off_command (char *, int);
126
127 static void overlay_load_command (char *, int);
128
129 static void overlay_command (char *, int);
130
131 static void simple_free_overlay_table (void);
132
133 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
134
135 static int simple_read_overlay_table (void);
136
137 static int simple_overlay_update_1 (struct obj_section *);
138
139 static void add_filename_language (char *ext, enum language lang);
140
141 static void set_ext_lang_command (char *args, int from_tty);
142
143 static void info_ext_lang_command (char *args, int from_tty);
144
145 static char *find_separate_debug_file (struct objfile *objfile);
146
147 static void init_filename_language_table (void);
148
149 void _initialize_symfile (void);
150
151 /* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155 static struct sym_fns *symtab_fns = NULL;
156
157 /* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160 #ifdef SYMBOL_RELOADING_DEFAULT
161 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162 #else
163 int symbol_reloading = 0;
164 #endif
165
166 /* If non-zero, shared library symbols will be added automatically
167 when the inferior is created, new libraries are loaded, or when
168 attaching to the inferior. This is almost always what users will
169 want to have happen; but for very large programs, the startup time
170 will be excessive, and so if this is a problem, the user can clear
171 this flag and then add the shared library symbols as needed. Note
172 that there is a potential for confusion, since if the shared
173 library symbols are not loaded, commands like "info fun" will *not*
174 report all the functions that are actually present. */
175
176 int auto_solib_add = 1;
177
178 /* For systems that support it, a threshold size in megabytes. If
179 automatically adding a new library's symbol table to those already
180 known to the debugger would cause the total shared library symbol
181 size to exceed this threshhold, then the shlib's symbols are not
182 added. The threshold is ignored if the user explicitly asks for a
183 shlib to be added, such as when using the "sharedlibrary"
184 command. */
185
186 int auto_solib_limit;
187 \f
188
189 /* This compares two partial symbols by names, using strcmp_iw_ordered
190 for the comparison. */
191
192 static int
193 compare_psymbols (const void *s1p, const void *s2p)
194 {
195 struct partial_symbol *const *s1 = s1p;
196 struct partial_symbol *const *s2 = s2p;
197
198 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
199 SYMBOL_SEARCH_NAME (*s2));
200 }
201
202 void
203 sort_pst_symbols (struct partial_symtab *pst)
204 {
205 /* Sort the global list; don't sort the static list */
206
207 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
208 pst->n_global_syms, sizeof (struct partial_symbol *),
209 compare_psymbols);
210 }
211
212 /* Make a null terminated copy of the string at PTR with SIZE characters in
213 the obstack pointed to by OBSTACKP . Returns the address of the copy.
214 Note that the string at PTR does not have to be null terminated, I.E. it
215 may be part of a larger string and we are only saving a substring. */
216
217 char *
218 obsavestring (const char *ptr, int size, struct obstack *obstackp)
219 {
220 char *p = (char *) obstack_alloc (obstackp, size + 1);
221 /* Open-coded memcpy--saves function call time. These strings are usually
222 short. FIXME: Is this really still true with a compiler that can
223 inline memcpy? */
224 {
225 const char *p1 = ptr;
226 char *p2 = p;
227 const char *end = ptr + size;
228 while (p1 != end)
229 *p2++ = *p1++;
230 }
231 p[size] = 0;
232 return p;
233 }
234
235 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
236 in the obstack pointed to by OBSTACKP. */
237
238 char *
239 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
240 const char *s3)
241 {
242 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
243 char *val = (char *) obstack_alloc (obstackp, len);
244 strcpy (val, s1);
245 strcat (val, s2);
246 strcat (val, s3);
247 return val;
248 }
249
250 /* True if we are nested inside psymtab_to_symtab. */
251
252 int currently_reading_symtab = 0;
253
254 static void
255 decrement_reading_symtab (void *dummy)
256 {
257 currently_reading_symtab--;
258 }
259
260 /* Get the symbol table that corresponds to a partial_symtab.
261 This is fast after the first time you do it. In fact, there
262 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
263 case inline. */
264
265 struct symtab *
266 psymtab_to_symtab (struct partial_symtab *pst)
267 {
268 /* If it's been looked up before, return it. */
269 if (pst->symtab)
270 return pst->symtab;
271
272 /* If it has not yet been read in, read it. */
273 if (!pst->readin)
274 {
275 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
276 currently_reading_symtab++;
277 (*pst->read_symtab) (pst);
278 do_cleanups (back_to);
279 }
280
281 return pst->symtab;
282 }
283
284 /* Remember the lowest-addressed loadable section we've seen.
285 This function is called via bfd_map_over_sections.
286
287 In case of equal vmas, the section with the largest size becomes the
288 lowest-addressed loadable section.
289
290 If the vmas and sizes are equal, the last section is considered the
291 lowest-addressed loadable section. */
292
293 void
294 find_lowest_section (bfd *abfd, asection *sect, void *obj)
295 {
296 asection **lowest = (asection **) obj;
297
298 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
299 return;
300 if (!*lowest)
301 *lowest = sect; /* First loadable section */
302 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
303 *lowest = sect; /* A lower loadable section */
304 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
305 && (bfd_section_size (abfd, (*lowest))
306 <= bfd_section_size (abfd, sect)))
307 *lowest = sect;
308 }
309
310 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
311
312 struct section_addr_info *
313 alloc_section_addr_info (size_t num_sections)
314 {
315 struct section_addr_info *sap;
316 size_t size;
317
318 size = (sizeof (struct section_addr_info)
319 + sizeof (struct other_sections) * (num_sections - 1));
320 sap = (struct section_addr_info *) xmalloc (size);
321 memset (sap, 0, size);
322 sap->num_sections = num_sections;
323
324 return sap;
325 }
326
327 /* Build (allocate and populate) a section_addr_info struct from
328 an existing section table. */
329
330 extern struct section_addr_info *
331 build_section_addr_info_from_section_table (const struct section_table *start,
332 const struct section_table *end)
333 {
334 struct section_addr_info *sap;
335 const struct section_table *stp;
336 int oidx;
337
338 sap = alloc_section_addr_info (end - start);
339
340 for (stp = start, oidx = 0; stp != end; stp++)
341 {
342 if (bfd_get_section_flags (stp->bfd,
343 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
344 && oidx < end - start)
345 {
346 sap->other[oidx].addr = stp->addr;
347 sap->other[oidx].name
348 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
349 sap->other[oidx].sectindex = stp->the_bfd_section->index;
350 oidx++;
351 }
352 }
353
354 return sap;
355 }
356
357
358 /* Free all memory allocated by build_section_addr_info_from_section_table. */
359
360 extern void
361 free_section_addr_info (struct section_addr_info *sap)
362 {
363 int idx;
364
365 for (idx = 0; idx < sap->num_sections; idx++)
366 if (sap->other[idx].name)
367 xfree (sap->other[idx].name);
368 xfree (sap);
369 }
370
371
372 /* Initialize OBJFILE's sect_index_* members. */
373 static void
374 init_objfile_sect_indices (struct objfile *objfile)
375 {
376 asection *sect;
377 int i;
378
379 sect = bfd_get_section_by_name (objfile->obfd, ".text");
380 if (sect)
381 objfile->sect_index_text = sect->index;
382
383 sect = bfd_get_section_by_name (objfile->obfd, ".data");
384 if (sect)
385 objfile->sect_index_data = sect->index;
386
387 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
388 if (sect)
389 objfile->sect_index_bss = sect->index;
390
391 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
392 if (sect)
393 objfile->sect_index_rodata = sect->index;
394
395 /* This is where things get really weird... We MUST have valid
396 indices for the various sect_index_* members or gdb will abort.
397 So if for example, there is no ".text" section, we have to
398 accomodate that. Except when explicitly adding symbol files at
399 some address, section_offsets contains nothing but zeros, so it
400 doesn't matter which slot in section_offsets the individual
401 sect_index_* members index into. So if they are all zero, it is
402 safe to just point all the currently uninitialized indices to the
403 first slot. */
404
405 for (i = 0; i < objfile->num_sections; i++)
406 {
407 if (ANOFFSET (objfile->section_offsets, i) != 0)
408 {
409 break;
410 }
411 }
412 if (i == objfile->num_sections)
413 {
414 if (objfile->sect_index_text == -1)
415 objfile->sect_index_text = 0;
416 if (objfile->sect_index_data == -1)
417 objfile->sect_index_data = 0;
418 if (objfile->sect_index_bss == -1)
419 objfile->sect_index_bss = 0;
420 if (objfile->sect_index_rodata == -1)
421 objfile->sect_index_rodata = 0;
422 }
423 }
424
425
426 /* Parse the user's idea of an offset for dynamic linking, into our idea
427 of how to represent it for fast symbol reading. This is the default
428 version of the sym_fns.sym_offsets function for symbol readers that
429 don't need to do anything special. It allocates a section_offsets table
430 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
431
432 void
433 default_symfile_offsets (struct objfile *objfile,
434 struct section_addr_info *addrs)
435 {
436 int i;
437
438 objfile->num_sections = bfd_count_sections (objfile->obfd);
439 objfile->section_offsets = (struct section_offsets *)
440 obstack_alloc (&objfile->objfile_obstack,
441 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
442 memset (objfile->section_offsets, 0,
443 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
444
445 /* Now calculate offsets for section that were specified by the
446 caller. */
447 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
448 {
449 struct other_sections *osp ;
450
451 osp = &addrs->other[i] ;
452 if (osp->addr == 0)
453 continue;
454
455 /* Record all sections in offsets */
456 /* The section_offsets in the objfile are here filled in using
457 the BFD index. */
458 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
459 }
460
461 /* Remember the bfd indexes for the .text, .data, .bss and
462 .rodata sections. */
463 init_objfile_sect_indices (objfile);
464 }
465
466
467 /* Process a symbol file, as either the main file or as a dynamically
468 loaded file.
469
470 OBJFILE is where the symbols are to be read from.
471
472 ADDRS is the list of section load addresses. If the user has given
473 an 'add-symbol-file' command, then this is the list of offsets and
474 addresses he or she provided as arguments to the command; or, if
475 we're handling a shared library, these are the actual addresses the
476 sections are loaded at, according to the inferior's dynamic linker
477 (as gleaned by GDB's shared library code). We convert each address
478 into an offset from the section VMA's as it appears in the object
479 file, and then call the file's sym_offsets function to convert this
480 into a format-specific offset table --- a `struct section_offsets'.
481 If ADDRS is non-zero, OFFSETS must be zero.
482
483 OFFSETS is a table of section offsets already in the right
484 format-specific representation. NUM_OFFSETS is the number of
485 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
486 assume this is the proper table the call to sym_offsets described
487 above would produce. Instead of calling sym_offsets, we just dump
488 it right into objfile->section_offsets. (When we're re-reading
489 symbols from an objfile, we don't have the original load address
490 list any more; all we have is the section offset table.) If
491 OFFSETS is non-zero, ADDRS must be zero.
492
493 MAINLINE is nonzero if this is the main symbol file, or zero if
494 it's an extra symbol file such as dynamically loaded code.
495
496 VERBO is nonzero if the caller has printed a verbose message about
497 the symbol reading (and complaints can be more terse about it). */
498
499 void
500 syms_from_objfile (struct objfile *objfile,
501 struct section_addr_info *addrs,
502 struct section_offsets *offsets,
503 int num_offsets,
504 int mainline,
505 int verbo)
506 {
507 struct section_addr_info *local_addr = NULL;
508 struct cleanup *old_chain;
509
510 gdb_assert (! (addrs && offsets));
511
512 init_entry_point_info (objfile);
513 find_sym_fns (objfile);
514
515 if (objfile->sf == NULL)
516 return; /* No symbols. */
517
518 /* Make sure that partially constructed symbol tables will be cleaned up
519 if an error occurs during symbol reading. */
520 old_chain = make_cleanup_free_objfile (objfile);
521
522 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
523 list. We now establish the convention that an addr of zero means
524 no load address was specified. */
525 if (! addrs && ! offsets)
526 {
527 local_addr
528 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
529 make_cleanup (xfree, local_addr);
530 addrs = local_addr;
531 }
532
533 /* Now either addrs or offsets is non-zero. */
534
535 if (mainline)
536 {
537 /* We will modify the main symbol table, make sure that all its users
538 will be cleaned up if an error occurs during symbol reading. */
539 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
540
541 /* Since no error yet, throw away the old symbol table. */
542
543 if (symfile_objfile != NULL)
544 {
545 free_objfile (symfile_objfile);
546 symfile_objfile = NULL;
547 }
548
549 /* Currently we keep symbols from the add-symbol-file command.
550 If the user wants to get rid of them, they should do "symbol-file"
551 without arguments first. Not sure this is the best behavior
552 (PR 2207). */
553
554 (*objfile->sf->sym_new_init) (objfile);
555 }
556
557 /* Convert addr into an offset rather than an absolute address.
558 We find the lowest address of a loaded segment in the objfile,
559 and assume that <addr> is where that got loaded.
560
561 We no longer warn if the lowest section is not a text segment (as
562 happens for the PA64 port. */
563 if (!mainline && addrs && addrs->other[0].name)
564 {
565 asection *lower_sect;
566 asection *sect;
567 CORE_ADDR lower_offset;
568 int i;
569
570 /* Find lowest loadable section to be used as starting point for
571 continguous sections. FIXME!! won't work without call to find
572 .text first, but this assumes text is lowest section. */
573 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
574 if (lower_sect == NULL)
575 bfd_map_over_sections (objfile->obfd, find_lowest_section,
576 &lower_sect);
577 if (lower_sect == NULL)
578 warning ("no loadable sections found in added symbol-file %s",
579 objfile->name);
580 else
581 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
582 warning ("Lowest section in %s is %s at %s",
583 objfile->name,
584 bfd_section_name (objfile->obfd, lower_sect),
585 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
586 if (lower_sect != NULL)
587 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
588 else
589 lower_offset = 0;
590
591 /* Calculate offsets for the loadable sections.
592 FIXME! Sections must be in order of increasing loadable section
593 so that contiguous sections can use the lower-offset!!!
594
595 Adjust offsets if the segments are not contiguous.
596 If the section is contiguous, its offset should be set to
597 the offset of the highest loadable section lower than it
598 (the loadable section directly below it in memory).
599 this_offset = lower_offset = lower_addr - lower_orig_addr */
600
601 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
602 {
603 if (addrs->other[i].addr != 0)
604 {
605 sect = bfd_get_section_by_name (objfile->obfd,
606 addrs->other[i].name);
607 if (sect)
608 {
609 addrs->other[i].addr
610 -= bfd_section_vma (objfile->obfd, sect);
611 lower_offset = addrs->other[i].addr;
612 /* This is the index used by BFD. */
613 addrs->other[i].sectindex = sect->index ;
614 }
615 else
616 {
617 warning ("section %s not found in %s",
618 addrs->other[i].name,
619 objfile->name);
620 addrs->other[i].addr = 0;
621 }
622 }
623 else
624 addrs->other[i].addr = lower_offset;
625 }
626 }
627
628 /* Initialize symbol reading routines for this objfile, allow complaints to
629 appear for this new file, and record how verbose to be, then do the
630 initial symbol reading for this file. */
631
632 (*objfile->sf->sym_init) (objfile);
633 clear_complaints (&symfile_complaints, 1, verbo);
634
635 if (addrs)
636 (*objfile->sf->sym_offsets) (objfile, addrs);
637 else
638 {
639 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
640
641 /* Just copy in the offset table directly as given to us. */
642 objfile->num_sections = num_offsets;
643 objfile->section_offsets
644 = ((struct section_offsets *)
645 obstack_alloc (&objfile->objfile_obstack, size));
646 memcpy (objfile->section_offsets, offsets, size);
647
648 init_objfile_sect_indices (objfile);
649 }
650
651 #ifndef DEPRECATED_IBM6000_TARGET
652 /* This is a SVR4/SunOS specific hack, I think. In any event, it
653 screws RS/6000. sym_offsets should be doing this sort of thing,
654 because it knows the mapping between bfd sections and
655 section_offsets. */
656 /* This is a hack. As far as I can tell, section offsets are not
657 target dependent. They are all set to addr with a couple of
658 exceptions. The exceptions are sysvr4 shared libraries, whose
659 offsets are kept in solib structures anyway and rs6000 xcoff
660 which handles shared libraries in a completely unique way.
661
662 Section offsets are built similarly, except that they are built
663 by adding addr in all cases because there is no clear mapping
664 from section_offsets into actual sections. Note that solib.c
665 has a different algorithm for finding section offsets.
666
667 These should probably all be collapsed into some target
668 independent form of shared library support. FIXME. */
669
670 if (addrs)
671 {
672 struct obj_section *s;
673
674 /* Map section offsets in "addr" back to the object's
675 sections by comparing the section names with bfd's
676 section names. Then adjust the section address by
677 the offset. */ /* for gdb/13815 */
678
679 ALL_OBJFILE_OSECTIONS (objfile, s)
680 {
681 CORE_ADDR s_addr = 0;
682 int i;
683
684 for (i = 0;
685 !s_addr && i < addrs->num_sections && addrs->other[i].name;
686 i++)
687 if (strcmp (bfd_section_name (s->objfile->obfd,
688 s->the_bfd_section),
689 addrs->other[i].name) == 0)
690 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
691
692 s->addr -= s->offset;
693 s->addr += s_addr;
694 s->endaddr -= s->offset;
695 s->endaddr += s_addr;
696 s->offset += s_addr;
697 }
698 }
699 #endif /* not DEPRECATED_IBM6000_TARGET */
700
701 (*objfile->sf->sym_read) (objfile, mainline);
702
703 /* Don't allow char * to have a typename (else would get caddr_t).
704 Ditto void *. FIXME: Check whether this is now done by all the
705 symbol readers themselves (many of them now do), and if so remove
706 it from here. */
707
708 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
709 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
710
711 /* Mark the objfile has having had initial symbol read attempted. Note
712 that this does not mean we found any symbols... */
713
714 objfile->flags |= OBJF_SYMS;
715
716 /* Discard cleanups as symbol reading was successful. */
717
718 discard_cleanups (old_chain);
719 }
720
721 /* Perform required actions after either reading in the initial
722 symbols for a new objfile, or mapping in the symbols from a reusable
723 objfile. */
724
725 void
726 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
727 {
728
729 /* If this is the main symbol file we have to clean up all users of the
730 old main symbol file. Otherwise it is sufficient to fixup all the
731 breakpoints that may have been redefined by this symbol file. */
732 if (mainline)
733 {
734 /* OK, make it the "real" symbol file. */
735 symfile_objfile = objfile;
736
737 clear_symtab_users ();
738 }
739 else
740 {
741 breakpoint_re_set ();
742 }
743
744 /* We're done reading the symbol file; finish off complaints. */
745 clear_complaints (&symfile_complaints, 0, verbo);
746 }
747
748 /* Process a symbol file, as either the main file or as a dynamically
749 loaded file.
750
751 ABFD is a BFD already open on the file, as from symfile_bfd_open.
752 This BFD will be closed on error, and is always consumed by this function.
753
754 FROM_TTY says how verbose to be.
755
756 MAINLINE specifies whether this is the main symbol file, or whether
757 it's an extra symbol file such as dynamically loaded code.
758
759 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
760 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
761 non-zero.
762
763 Upon success, returns a pointer to the objfile that was added.
764 Upon failure, jumps back to command level (never returns). */
765 static struct objfile *
766 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
767 struct section_addr_info *addrs,
768 struct section_offsets *offsets,
769 int num_offsets,
770 int mainline, int flags)
771 {
772 struct objfile *objfile;
773 struct partial_symtab *psymtab;
774 char *debugfile;
775 struct section_addr_info *orig_addrs;
776 struct cleanup *my_cleanups;
777 const char *name = bfd_get_filename (abfd);
778
779 my_cleanups = make_cleanup_bfd_close (abfd);
780
781 /* Give user a chance to burp if we'd be
782 interactively wiping out any existing symbols. */
783
784 if ((have_full_symbols () || have_partial_symbols ())
785 && mainline
786 && from_tty
787 && !query ("Load new symbol table from \"%s\"? ", name))
788 error ("Not confirmed.");
789
790 objfile = allocate_objfile (abfd, flags);
791 discard_cleanups (my_cleanups);
792
793 orig_addrs = alloc_section_addr_info (bfd_count_sections (abfd));
794 my_cleanups = make_cleanup (xfree, orig_addrs);
795 if (addrs)
796 {
797 int i;
798 orig_addrs->num_sections = addrs->num_sections;
799 for (i = 0; i < addrs->num_sections; i++)
800 orig_addrs->other[i] = addrs->other[i];
801 }
802
803 /* We either created a new mapped symbol table, mapped an existing
804 symbol table file which has not had initial symbol reading
805 performed, or need to read an unmapped symbol table. */
806 if (from_tty || info_verbose)
807 {
808 if (deprecated_pre_add_symbol_hook)
809 deprecated_pre_add_symbol_hook (name);
810 else
811 {
812 printf_unfiltered ("Reading symbols from %s...", name);
813 wrap_here ("");
814 gdb_flush (gdb_stdout);
815 }
816 }
817 syms_from_objfile (objfile, addrs, offsets, num_offsets,
818 mainline, from_tty);
819
820 /* We now have at least a partial symbol table. Check to see if the
821 user requested that all symbols be read on initial access via either
822 the gdb startup command line or on a per symbol file basis. Expand
823 all partial symbol tables for this objfile if so. */
824
825 if ((flags & OBJF_READNOW) || readnow_symbol_files)
826 {
827 if (from_tty || info_verbose)
828 {
829 printf_unfiltered ("expanding to full symbols...");
830 wrap_here ("");
831 gdb_flush (gdb_stdout);
832 }
833
834 for (psymtab = objfile->psymtabs;
835 psymtab != NULL;
836 psymtab = psymtab->next)
837 {
838 psymtab_to_symtab (psymtab);
839 }
840 }
841
842 debugfile = find_separate_debug_file (objfile);
843 if (debugfile)
844 {
845 if (addrs != NULL)
846 {
847 objfile->separate_debug_objfile
848 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
849 }
850 else
851 {
852 objfile->separate_debug_objfile
853 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
854 }
855 objfile->separate_debug_objfile->separate_debug_objfile_backlink
856 = objfile;
857
858 /* Put the separate debug object before the normal one, this is so that
859 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
860 put_objfile_before (objfile->separate_debug_objfile, objfile);
861
862 xfree (debugfile);
863 }
864
865 if (!have_partial_symbols () && !have_full_symbols ())
866 {
867 wrap_here ("");
868 printf_filtered ("(no debugging symbols found)");
869 if (from_tty || info_verbose)
870 printf_filtered ("...");
871 else
872 printf_filtered ("\n");
873 wrap_here ("");
874 }
875
876 if (from_tty || info_verbose)
877 {
878 if (deprecated_post_add_symbol_hook)
879 deprecated_post_add_symbol_hook ();
880 else
881 {
882 printf_unfiltered ("done.\n");
883 }
884 }
885
886 /* We print some messages regardless of whether 'from_tty ||
887 info_verbose' is true, so make sure they go out at the right
888 time. */
889 gdb_flush (gdb_stdout);
890
891 do_cleanups (my_cleanups);
892
893 if (objfile->sf == NULL)
894 return objfile; /* No symbols. */
895
896 new_symfile_objfile (objfile, mainline, from_tty);
897
898 if (deprecated_target_new_objfile_hook)
899 deprecated_target_new_objfile_hook (objfile);
900
901 bfd_cache_close_all ();
902 return (objfile);
903 }
904
905
906 /* Process the symbol file ABFD, as either the main file or as a
907 dynamically loaded file.
908
909 See symbol_file_add_with_addrs_or_offsets's comments for
910 details. */
911 struct objfile *
912 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
913 struct section_addr_info *addrs,
914 int mainline, int flags)
915 {
916 return symbol_file_add_with_addrs_or_offsets (abfd,
917 from_tty, addrs, 0, 0,
918 mainline, flags);
919 }
920
921
922 /* Process a symbol file, as either the main file or as a dynamically
923 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
924 for details. */
925 struct objfile *
926 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
927 int mainline, int flags)
928 {
929 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
930 addrs, mainline, flags);
931 }
932
933
934 /* Call symbol_file_add() with default values and update whatever is
935 affected by the loading of a new main().
936 Used when the file is supplied in the gdb command line
937 and by some targets with special loading requirements.
938 The auxiliary function, symbol_file_add_main_1(), has the flags
939 argument for the switches that can only be specified in the symbol_file
940 command itself. */
941
942 void
943 symbol_file_add_main (char *args, int from_tty)
944 {
945 symbol_file_add_main_1 (args, from_tty, 0);
946 }
947
948 static void
949 symbol_file_add_main_1 (char *args, int from_tty, int flags)
950 {
951 symbol_file_add (args, from_tty, NULL, 1, flags);
952
953 /* Getting new symbols may change our opinion about
954 what is frameless. */
955 reinit_frame_cache ();
956
957 set_initial_language ();
958 }
959
960 void
961 symbol_file_clear (int from_tty)
962 {
963 if ((have_full_symbols () || have_partial_symbols ())
964 && from_tty
965 && !query ("Discard symbol table from `%s'? ",
966 symfile_objfile->name))
967 error ("Not confirmed.");
968 free_all_objfiles ();
969
970 /* solib descriptors may have handles to objfiles. Since their
971 storage has just been released, we'd better wipe the solib
972 descriptors as well.
973 */
974 #if defined(SOLIB_RESTART)
975 SOLIB_RESTART ();
976 #endif
977
978 symfile_objfile = NULL;
979 if (from_tty)
980 printf_unfiltered ("No symbol file now.\n");
981 }
982
983 static char *
984 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
985 {
986 asection *sect;
987 bfd_size_type debuglink_size;
988 unsigned long crc32;
989 char *contents;
990 int crc_offset;
991 unsigned char *p;
992
993 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
994
995 if (sect == NULL)
996 return NULL;
997
998 debuglink_size = bfd_section_size (objfile->obfd, sect);
999
1000 contents = xmalloc (debuglink_size);
1001 bfd_get_section_contents (objfile->obfd, sect, contents,
1002 (file_ptr)0, (bfd_size_type)debuglink_size);
1003
1004 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1005 crc_offset = strlen (contents) + 1;
1006 crc_offset = (crc_offset + 3) & ~3;
1007
1008 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1009
1010 *crc32_out = crc32;
1011 return contents;
1012 }
1013
1014 static int
1015 separate_debug_file_exists (const char *name, unsigned long crc)
1016 {
1017 unsigned long file_crc = 0;
1018 int fd;
1019 char buffer[8*1024];
1020 int count;
1021
1022 fd = open (name, O_RDONLY | O_BINARY);
1023 if (fd < 0)
1024 return 0;
1025
1026 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1027 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1028
1029 close (fd);
1030
1031 return crc == file_crc;
1032 }
1033
1034 static char *debug_file_directory = NULL;
1035
1036 #if ! defined (DEBUG_SUBDIRECTORY)
1037 #define DEBUG_SUBDIRECTORY ".debug"
1038 #endif
1039
1040 static char *
1041 find_separate_debug_file (struct objfile *objfile)
1042 {
1043 asection *sect;
1044 char *basename;
1045 char *dir;
1046 char *debugfile;
1047 char *name_copy;
1048 bfd_size_type debuglink_size;
1049 unsigned long crc32;
1050 int i;
1051
1052 basename = get_debug_link_info (objfile, &crc32);
1053
1054 if (basename == NULL)
1055 return NULL;
1056
1057 dir = xstrdup (objfile->name);
1058
1059 /* Strip off the final filename part, leaving the directory name,
1060 followed by a slash. Objfile names should always be absolute and
1061 tilde-expanded, so there should always be a slash in there
1062 somewhere. */
1063 for (i = strlen(dir) - 1; i >= 0; i--)
1064 {
1065 if (IS_DIR_SEPARATOR (dir[i]))
1066 break;
1067 }
1068 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1069 dir[i+1] = '\0';
1070
1071 debugfile = alloca (strlen (debug_file_directory) + 1
1072 + strlen (dir)
1073 + strlen (DEBUG_SUBDIRECTORY)
1074 + strlen ("/")
1075 + strlen (basename)
1076 + 1);
1077
1078 /* First try in the same directory as the original file. */
1079 strcpy (debugfile, dir);
1080 strcat (debugfile, basename);
1081
1082 if (separate_debug_file_exists (debugfile, crc32))
1083 {
1084 xfree (basename);
1085 xfree (dir);
1086 return xstrdup (debugfile);
1087 }
1088
1089 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1090 strcpy (debugfile, dir);
1091 strcat (debugfile, DEBUG_SUBDIRECTORY);
1092 strcat (debugfile, "/");
1093 strcat (debugfile, basename);
1094
1095 if (separate_debug_file_exists (debugfile, crc32))
1096 {
1097 xfree (basename);
1098 xfree (dir);
1099 return xstrdup (debugfile);
1100 }
1101
1102 /* Then try in the global debugfile directory. */
1103 strcpy (debugfile, debug_file_directory);
1104 strcat (debugfile, "/");
1105 strcat (debugfile, dir);
1106 strcat (debugfile, basename);
1107
1108 if (separate_debug_file_exists (debugfile, crc32))
1109 {
1110 xfree (basename);
1111 xfree (dir);
1112 return xstrdup (debugfile);
1113 }
1114
1115 xfree (basename);
1116 xfree (dir);
1117 return NULL;
1118 }
1119
1120
1121 /* This is the symbol-file command. Read the file, analyze its
1122 symbols, and add a struct symtab to a symtab list. The syntax of
1123 the command is rather bizarre--(1) buildargv implements various
1124 quoting conventions which are undocumented and have little or
1125 nothing in common with the way things are quoted (or not quoted)
1126 elsewhere in GDB, (2) options are used, which are not generally
1127 used in GDB (perhaps "set mapped on", "set readnow on" would be
1128 better), (3) the order of options matters, which is contrary to GNU
1129 conventions (because it is confusing and inconvenient). */
1130 /* Note: ezannoni 2000-04-17. This function used to have support for
1131 rombug (see remote-os9k.c). It consisted of a call to target_link()
1132 (target.c) to get the address of the text segment from the target,
1133 and pass that to symbol_file_add(). This is no longer supported. */
1134
1135 void
1136 symbol_file_command (char *args, int from_tty)
1137 {
1138 char **argv;
1139 char *name = NULL;
1140 struct cleanup *cleanups;
1141 int flags = OBJF_USERLOADED;
1142
1143 dont_repeat ();
1144
1145 if (args == NULL)
1146 {
1147 symbol_file_clear (from_tty);
1148 }
1149 else
1150 {
1151 if ((argv = buildargv (args)) == NULL)
1152 {
1153 nomem (0);
1154 }
1155 cleanups = make_cleanup_freeargv (argv);
1156 while (*argv != NULL)
1157 {
1158 if (strcmp (*argv, "-readnow") == 0)
1159 flags |= OBJF_READNOW;
1160 else if (**argv == '-')
1161 error ("unknown option `%s'", *argv);
1162 else
1163 {
1164 name = *argv;
1165
1166 symbol_file_add_main_1 (name, from_tty, flags);
1167 }
1168 argv++;
1169 }
1170
1171 if (name == NULL)
1172 {
1173 error ("no symbol file name was specified");
1174 }
1175 do_cleanups (cleanups);
1176 }
1177 }
1178
1179 /* Set the initial language.
1180
1181 A better solution would be to record the language in the psymtab when reading
1182 partial symbols, and then use it (if known) to set the language. This would
1183 be a win for formats that encode the language in an easily discoverable place,
1184 such as DWARF. For stabs, we can jump through hoops looking for specially
1185 named symbols or try to intuit the language from the specific type of stabs
1186 we find, but we can't do that until later when we read in full symbols.
1187 FIXME. */
1188
1189 static void
1190 set_initial_language (void)
1191 {
1192 struct partial_symtab *pst;
1193 enum language lang = language_unknown;
1194
1195 pst = find_main_psymtab ();
1196 if (pst != NULL)
1197 {
1198 if (pst->filename != NULL)
1199 {
1200 lang = deduce_language_from_filename (pst->filename);
1201 }
1202 if (lang == language_unknown)
1203 {
1204 /* Make C the default language */
1205 lang = language_c;
1206 }
1207 set_language (lang);
1208 expected_language = current_language; /* Don't warn the user */
1209 }
1210 }
1211
1212 /* Open file specified by NAME and hand it off to BFD for preliminary
1213 analysis. Result is a newly initialized bfd *, which includes a newly
1214 malloc'd` copy of NAME (tilde-expanded and made absolute).
1215 In case of trouble, error() is called. */
1216
1217 bfd *
1218 symfile_bfd_open (char *name)
1219 {
1220 bfd *sym_bfd;
1221 int desc;
1222 char *absolute_name;
1223
1224
1225
1226 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1227
1228 /* Look down path for it, allocate 2nd new malloc'd copy. */
1229 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name, O_RDONLY | O_BINARY,
1230 0, &absolute_name);
1231 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1232 if (desc < 0)
1233 {
1234 char *exename = alloca (strlen (name) + 5);
1235 strcat (strcpy (exename, name), ".exe");
1236 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1237 O_RDONLY | O_BINARY, 0, &absolute_name);
1238 }
1239 #endif
1240 if (desc < 0)
1241 {
1242 make_cleanup (xfree, name);
1243 perror_with_name (name);
1244 }
1245 xfree (name); /* Free 1st new malloc'd copy */
1246 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1247 /* It'll be freed in free_objfile(). */
1248
1249 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1250 if (!sym_bfd)
1251 {
1252 close (desc);
1253 make_cleanup (xfree, name);
1254 error ("\"%s\": can't open to read symbols: %s.", name,
1255 bfd_errmsg (bfd_get_error ()));
1256 }
1257 bfd_set_cacheable (sym_bfd, 1);
1258
1259 if (!bfd_check_format (sym_bfd, bfd_object))
1260 {
1261 /* FIXME: should be checking for errors from bfd_close (for one thing,
1262 on error it does not free all the storage associated with the
1263 bfd). */
1264 bfd_close (sym_bfd); /* This also closes desc */
1265 make_cleanup (xfree, name);
1266 error ("\"%s\": can't read symbols: %s.", name,
1267 bfd_errmsg (bfd_get_error ()));
1268 }
1269 return (sym_bfd);
1270 }
1271
1272 /* Return the section index for the given section name. Return -1 if
1273 the section was not found. */
1274 int
1275 get_section_index (struct objfile *objfile, char *section_name)
1276 {
1277 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1278 if (sect)
1279 return sect->index;
1280 else
1281 return -1;
1282 }
1283
1284 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1285 startup by the _initialize routine in each object file format reader,
1286 to register information about each format the the reader is prepared
1287 to handle. */
1288
1289 void
1290 add_symtab_fns (struct sym_fns *sf)
1291 {
1292 sf->next = symtab_fns;
1293 symtab_fns = sf;
1294 }
1295
1296
1297 /* Initialize to read symbols from the symbol file sym_bfd. It either
1298 returns or calls error(). The result is an initialized struct sym_fns
1299 in the objfile structure, that contains cached information about the
1300 symbol file. */
1301
1302 static void
1303 find_sym_fns (struct objfile *objfile)
1304 {
1305 struct sym_fns *sf;
1306 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1307 char *our_target = bfd_get_target (objfile->obfd);
1308
1309 if (our_flavour == bfd_target_srec_flavour
1310 || our_flavour == bfd_target_ihex_flavour
1311 || our_flavour == bfd_target_tekhex_flavour)
1312 return; /* No symbols. */
1313
1314 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1315 {
1316 if (our_flavour == sf->sym_flavour)
1317 {
1318 objfile->sf = sf;
1319 return;
1320 }
1321 }
1322 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1323 bfd_get_target (objfile->obfd));
1324 }
1325 \f
1326 /* This function runs the load command of our current target. */
1327
1328 static void
1329 load_command (char *arg, int from_tty)
1330 {
1331 if (arg == NULL)
1332 arg = get_exec_file (1);
1333 target_load (arg, from_tty);
1334
1335 /* After re-loading the executable, we don't really know which
1336 overlays are mapped any more. */
1337 overlay_cache_invalid = 1;
1338 }
1339
1340 /* This version of "load" should be usable for any target. Currently
1341 it is just used for remote targets, not inftarg.c or core files,
1342 on the theory that only in that case is it useful.
1343
1344 Avoiding xmodem and the like seems like a win (a) because we don't have
1345 to worry about finding it, and (b) On VMS, fork() is very slow and so
1346 we don't want to run a subprocess. On the other hand, I'm not sure how
1347 performance compares. */
1348
1349 static int download_write_size = 512;
1350 static int validate_download = 0;
1351
1352 /* Callback service function for generic_load (bfd_map_over_sections). */
1353
1354 static void
1355 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1356 {
1357 bfd_size_type *sum = data;
1358
1359 *sum += bfd_get_section_size (asec);
1360 }
1361
1362 /* Opaque data for load_section_callback. */
1363 struct load_section_data {
1364 unsigned long load_offset;
1365 unsigned long write_count;
1366 unsigned long data_count;
1367 bfd_size_type total_size;
1368 };
1369
1370 /* Callback service function for generic_load (bfd_map_over_sections). */
1371
1372 static void
1373 load_section_callback (bfd *abfd, asection *asec, void *data)
1374 {
1375 struct load_section_data *args = data;
1376
1377 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1378 {
1379 bfd_size_type size = bfd_get_section_size (asec);
1380 if (size > 0)
1381 {
1382 char *buffer;
1383 struct cleanup *old_chain;
1384 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1385 bfd_size_type block_size;
1386 int err;
1387 const char *sect_name = bfd_get_section_name (abfd, asec);
1388 bfd_size_type sent;
1389
1390 if (download_write_size > 0 && size > download_write_size)
1391 block_size = download_write_size;
1392 else
1393 block_size = size;
1394
1395 buffer = xmalloc (size);
1396 old_chain = make_cleanup (xfree, buffer);
1397
1398 /* Is this really necessary? I guess it gives the user something
1399 to look at during a long download. */
1400 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1401 sect_name, paddr_nz (size), paddr_nz (lma));
1402
1403 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1404
1405 sent = 0;
1406 do
1407 {
1408 int len;
1409 bfd_size_type this_transfer = size - sent;
1410
1411 if (this_transfer >= block_size)
1412 this_transfer = block_size;
1413 len = target_write_memory_partial (lma, buffer,
1414 this_transfer, &err);
1415 if (err)
1416 break;
1417 if (validate_download)
1418 {
1419 /* Broken memories and broken monitors manifest
1420 themselves here when bring new computers to
1421 life. This doubles already slow downloads. */
1422 /* NOTE: cagney/1999-10-18: A more efficient
1423 implementation might add a verify_memory()
1424 method to the target vector and then use
1425 that. remote.c could implement that method
1426 using the ``qCRC'' packet. */
1427 char *check = xmalloc (len);
1428 struct cleanup *verify_cleanups =
1429 make_cleanup (xfree, check);
1430
1431 if (target_read_memory (lma, check, len) != 0)
1432 error ("Download verify read failed at 0x%s",
1433 paddr (lma));
1434 if (memcmp (buffer, check, len) != 0)
1435 error ("Download verify compare failed at 0x%s",
1436 paddr (lma));
1437 do_cleanups (verify_cleanups);
1438 }
1439 args->data_count += len;
1440 lma += len;
1441 buffer += len;
1442 args->write_count += 1;
1443 sent += len;
1444 if (quit_flag
1445 || (deprecated_ui_load_progress_hook != NULL
1446 && deprecated_ui_load_progress_hook (sect_name, sent)))
1447 error ("Canceled the download");
1448
1449 if (deprecated_show_load_progress != NULL)
1450 deprecated_show_load_progress (sect_name, sent, size,
1451 args->data_count,
1452 args->total_size);
1453 }
1454 while (sent < size);
1455
1456 if (err != 0)
1457 error ("Memory access error while loading section %s.", sect_name);
1458
1459 do_cleanups (old_chain);
1460 }
1461 }
1462 }
1463
1464 void
1465 generic_load (char *args, int from_tty)
1466 {
1467 asection *s;
1468 bfd *loadfile_bfd;
1469 time_t start_time, end_time; /* Start and end times of download */
1470 char *filename;
1471 struct cleanup *old_cleanups;
1472 char *offptr;
1473 struct load_section_data cbdata;
1474 CORE_ADDR entry;
1475
1476 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1477 cbdata.write_count = 0; /* Number of writes needed. */
1478 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1479 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1480
1481 /* Parse the input argument - the user can specify a load offset as
1482 a second argument. */
1483 filename = xmalloc (strlen (args) + 1);
1484 old_cleanups = make_cleanup (xfree, filename);
1485 strcpy (filename, args);
1486 offptr = strchr (filename, ' ');
1487 if (offptr != NULL)
1488 {
1489 char *endptr;
1490
1491 cbdata.load_offset = strtoul (offptr, &endptr, 0);
1492 if (offptr == endptr)
1493 error ("Invalid download offset:%s\n", offptr);
1494 *offptr = '\0';
1495 }
1496 else
1497 cbdata.load_offset = 0;
1498
1499 /* Open the file for loading. */
1500 loadfile_bfd = bfd_openr (filename, gnutarget);
1501 if (loadfile_bfd == NULL)
1502 {
1503 perror_with_name (filename);
1504 return;
1505 }
1506
1507 /* FIXME: should be checking for errors from bfd_close (for one thing,
1508 on error it does not free all the storage associated with the
1509 bfd). */
1510 make_cleanup_bfd_close (loadfile_bfd);
1511
1512 if (!bfd_check_format (loadfile_bfd, bfd_object))
1513 {
1514 error ("\"%s\" is not an object file: %s", filename,
1515 bfd_errmsg (bfd_get_error ()));
1516 }
1517
1518 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1519 (void *) &cbdata.total_size);
1520
1521 start_time = time (NULL);
1522
1523 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1524
1525 end_time = time (NULL);
1526
1527 entry = bfd_get_start_address (loadfile_bfd);
1528 ui_out_text (uiout, "Start address ");
1529 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1530 ui_out_text (uiout, ", load size ");
1531 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1532 ui_out_text (uiout, "\n");
1533 /* We were doing this in remote-mips.c, I suspect it is right
1534 for other targets too. */
1535 write_pc (entry);
1536
1537 /* FIXME: are we supposed to call symbol_file_add or not? According
1538 to a comment from remote-mips.c (where a call to symbol_file_add
1539 was commented out), making the call confuses GDB if more than one
1540 file is loaded in. Some targets do (e.g., remote-vx.c) but
1541 others don't (or didn't - perhaps they have all been deleted). */
1542
1543 print_transfer_performance (gdb_stdout, cbdata.data_count,
1544 cbdata.write_count, end_time - start_time);
1545
1546 do_cleanups (old_cleanups);
1547 }
1548
1549 /* Report how fast the transfer went. */
1550
1551 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1552 replaced by print_transfer_performance (with a very different
1553 function signature). */
1554
1555 void
1556 report_transfer_performance (unsigned long data_count, time_t start_time,
1557 time_t end_time)
1558 {
1559 print_transfer_performance (gdb_stdout, data_count,
1560 end_time - start_time, 0);
1561 }
1562
1563 void
1564 print_transfer_performance (struct ui_file *stream,
1565 unsigned long data_count,
1566 unsigned long write_count,
1567 unsigned long time_count)
1568 {
1569 ui_out_text (uiout, "Transfer rate: ");
1570 if (time_count > 0)
1571 {
1572 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1573 (data_count * 8) / time_count);
1574 ui_out_text (uiout, " bits/sec");
1575 }
1576 else
1577 {
1578 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1579 ui_out_text (uiout, " bits in <1 sec");
1580 }
1581 if (write_count > 0)
1582 {
1583 ui_out_text (uiout, ", ");
1584 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1585 ui_out_text (uiout, " bytes/write");
1586 }
1587 ui_out_text (uiout, ".\n");
1588 }
1589
1590 /* This function allows the addition of incrementally linked object files.
1591 It does not modify any state in the target, only in the debugger. */
1592 /* Note: ezannoni 2000-04-13 This function/command used to have a
1593 special case syntax for the rombug target (Rombug is the boot
1594 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1595 rombug case, the user doesn't need to supply a text address,
1596 instead a call to target_link() (in target.c) would supply the
1597 value to use. We are now discontinuing this type of ad hoc syntax. */
1598
1599 static void
1600 add_symbol_file_command (char *args, int from_tty)
1601 {
1602 char *filename = NULL;
1603 int flags = OBJF_USERLOADED;
1604 char *arg;
1605 int expecting_option = 0;
1606 int section_index = 0;
1607 int argcnt = 0;
1608 int sec_num = 0;
1609 int i;
1610 int expecting_sec_name = 0;
1611 int expecting_sec_addr = 0;
1612
1613 struct sect_opt
1614 {
1615 char *name;
1616 char *value;
1617 };
1618
1619 struct section_addr_info *section_addrs;
1620 struct sect_opt *sect_opts = NULL;
1621 size_t num_sect_opts = 0;
1622 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1623
1624 num_sect_opts = 16;
1625 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1626 * sizeof (struct sect_opt));
1627
1628 dont_repeat ();
1629
1630 if (args == NULL)
1631 error ("add-symbol-file takes a file name and an address");
1632
1633 /* Make a copy of the string that we can safely write into. */
1634 args = xstrdup (args);
1635
1636 while (*args != '\000')
1637 {
1638 /* Any leading spaces? */
1639 while (isspace (*args))
1640 args++;
1641
1642 /* Point arg to the beginning of the argument. */
1643 arg = args;
1644
1645 /* Move args pointer over the argument. */
1646 while ((*args != '\000') && !isspace (*args))
1647 args++;
1648
1649 /* If there are more arguments, terminate arg and
1650 proceed past it. */
1651 if (*args != '\000')
1652 *args++ = '\000';
1653
1654 /* Now process the argument. */
1655 if (argcnt == 0)
1656 {
1657 /* The first argument is the file name. */
1658 filename = tilde_expand (arg);
1659 make_cleanup (xfree, filename);
1660 }
1661 else
1662 if (argcnt == 1)
1663 {
1664 /* The second argument is always the text address at which
1665 to load the program. */
1666 sect_opts[section_index].name = ".text";
1667 sect_opts[section_index].value = arg;
1668 if (++section_index > num_sect_opts)
1669 {
1670 num_sect_opts *= 2;
1671 sect_opts = ((struct sect_opt *)
1672 xrealloc (sect_opts,
1673 num_sect_opts
1674 * sizeof (struct sect_opt)));
1675 }
1676 }
1677 else
1678 {
1679 /* It's an option (starting with '-') or it's an argument
1680 to an option */
1681
1682 if (*arg == '-')
1683 {
1684 if (strcmp (arg, "-readnow") == 0)
1685 flags |= OBJF_READNOW;
1686 else if (strcmp (arg, "-s") == 0)
1687 {
1688 expecting_sec_name = 1;
1689 expecting_sec_addr = 1;
1690 }
1691 }
1692 else
1693 {
1694 if (expecting_sec_name)
1695 {
1696 sect_opts[section_index].name = arg;
1697 expecting_sec_name = 0;
1698 }
1699 else
1700 if (expecting_sec_addr)
1701 {
1702 sect_opts[section_index].value = arg;
1703 expecting_sec_addr = 0;
1704 if (++section_index > num_sect_opts)
1705 {
1706 num_sect_opts *= 2;
1707 sect_opts = ((struct sect_opt *)
1708 xrealloc (sect_opts,
1709 num_sect_opts
1710 * sizeof (struct sect_opt)));
1711 }
1712 }
1713 else
1714 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1715 }
1716 }
1717 argcnt++;
1718 }
1719
1720 /* Print the prompt for the query below. And save the arguments into
1721 a sect_addr_info structure to be passed around to other
1722 functions. We have to split this up into separate print
1723 statements because local_hex_string returns a local static
1724 string. */
1725
1726 printf_unfiltered ("add symbol table from file \"%s\" at\n", filename);
1727 section_addrs = alloc_section_addr_info (section_index);
1728 make_cleanup (xfree, section_addrs);
1729 for (i = 0; i < section_index; i++)
1730 {
1731 CORE_ADDR addr;
1732 char *val = sect_opts[i].value;
1733 char *sec = sect_opts[i].name;
1734
1735 addr = parse_and_eval_address (val);
1736
1737 /* Here we store the section offsets in the order they were
1738 entered on the command line. */
1739 section_addrs->other[sec_num].name = sec;
1740 section_addrs->other[sec_num].addr = addr;
1741 printf_unfiltered ("\t%s_addr = %s\n",
1742 sec,
1743 local_hex_string ((unsigned long)addr));
1744 sec_num++;
1745
1746 /* The object's sections are initialized when a
1747 call is made to build_objfile_section_table (objfile).
1748 This happens in reread_symbols.
1749 At this point, we don't know what file type this is,
1750 so we can't determine what section names are valid. */
1751 }
1752
1753 if (from_tty && (!query ("%s", "")))
1754 error ("Not confirmed.");
1755
1756 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
1757
1758 /* Getting new symbols may change our opinion about what is
1759 frameless. */
1760 reinit_frame_cache ();
1761 do_cleanups (my_cleanups);
1762 }
1763 \f
1764 static void
1765 add_shared_symbol_files_command (char *args, int from_tty)
1766 {
1767 #ifdef ADD_SHARED_SYMBOL_FILES
1768 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1769 #else
1770 error ("This command is not available in this configuration of GDB.");
1771 #endif
1772 }
1773 \f
1774 /* Re-read symbols if a symbol-file has changed. */
1775 void
1776 reread_symbols (void)
1777 {
1778 struct objfile *objfile;
1779 long new_modtime;
1780 int reread_one = 0;
1781 struct stat new_statbuf;
1782 int res;
1783
1784 /* With the addition of shared libraries, this should be modified,
1785 the load time should be saved in the partial symbol tables, since
1786 different tables may come from different source files. FIXME.
1787 This routine should then walk down each partial symbol table
1788 and see if the symbol table that it originates from has been changed */
1789
1790 for (objfile = object_files; objfile; objfile = objfile->next)
1791 {
1792 if (objfile->obfd)
1793 {
1794 #ifdef DEPRECATED_IBM6000_TARGET
1795 /* If this object is from a shared library, then you should
1796 stat on the library name, not member name. */
1797
1798 if (objfile->obfd->my_archive)
1799 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1800 else
1801 #endif
1802 res = stat (objfile->name, &new_statbuf);
1803 if (res != 0)
1804 {
1805 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1806 printf_unfiltered ("`%s' has disappeared; keeping its symbols.\n",
1807 objfile->name);
1808 continue;
1809 }
1810 new_modtime = new_statbuf.st_mtime;
1811 if (new_modtime != objfile->mtime)
1812 {
1813 struct cleanup *old_cleanups;
1814 struct section_offsets *offsets;
1815 int num_offsets;
1816 char *obfd_filename;
1817
1818 printf_unfiltered ("`%s' has changed; re-reading symbols.\n",
1819 objfile->name);
1820
1821 /* There are various functions like symbol_file_add,
1822 symfile_bfd_open, syms_from_objfile, etc., which might
1823 appear to do what we want. But they have various other
1824 effects which we *don't* want. So we just do stuff
1825 ourselves. We don't worry about mapped files (for one thing,
1826 any mapped file will be out of date). */
1827
1828 /* If we get an error, blow away this objfile (not sure if
1829 that is the correct response for things like shared
1830 libraries). */
1831 old_cleanups = make_cleanup_free_objfile (objfile);
1832 /* We need to do this whenever any symbols go away. */
1833 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1834
1835 /* Clean up any state BFD has sitting around. We don't need
1836 to close the descriptor but BFD lacks a way of closing the
1837 BFD without closing the descriptor. */
1838 obfd_filename = bfd_get_filename (objfile->obfd);
1839 if (!bfd_close (objfile->obfd))
1840 error ("Can't close BFD for %s: %s", objfile->name,
1841 bfd_errmsg (bfd_get_error ()));
1842 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1843 if (objfile->obfd == NULL)
1844 error ("Can't open %s to read symbols.", objfile->name);
1845 /* bfd_openr sets cacheable to true, which is what we want. */
1846 if (!bfd_check_format (objfile->obfd, bfd_object))
1847 error ("Can't read symbols from %s: %s.", objfile->name,
1848 bfd_errmsg (bfd_get_error ()));
1849
1850 /* Save the offsets, we will nuke them with the rest of the
1851 objfile_obstack. */
1852 num_offsets = objfile->num_sections;
1853 offsets = ((struct section_offsets *)
1854 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
1855 memcpy (offsets, objfile->section_offsets,
1856 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1857
1858 /* Nuke all the state that we will re-read. Much of the following
1859 code which sets things to NULL really is necessary to tell
1860 other parts of GDB that there is nothing currently there. */
1861
1862 /* FIXME: Do we have to free a whole linked list, or is this
1863 enough? */
1864 if (objfile->global_psymbols.list)
1865 xfree (objfile->global_psymbols.list);
1866 memset (&objfile->global_psymbols, 0,
1867 sizeof (objfile->global_psymbols));
1868 if (objfile->static_psymbols.list)
1869 xfree (objfile->static_psymbols.list);
1870 memset (&objfile->static_psymbols, 0,
1871 sizeof (objfile->static_psymbols));
1872
1873 /* Free the obstacks for non-reusable objfiles */
1874 bcache_xfree (objfile->psymbol_cache);
1875 objfile->psymbol_cache = bcache_xmalloc ();
1876 bcache_xfree (objfile->macro_cache);
1877 objfile->macro_cache = bcache_xmalloc ();
1878 if (objfile->demangled_names_hash != NULL)
1879 {
1880 htab_delete (objfile->demangled_names_hash);
1881 objfile->demangled_names_hash = NULL;
1882 }
1883 obstack_free (&objfile->objfile_obstack, 0);
1884 objfile->sections = NULL;
1885 objfile->symtabs = NULL;
1886 objfile->psymtabs = NULL;
1887 objfile->free_psymtabs = NULL;
1888 objfile->cp_namespace_symtab = NULL;
1889 objfile->msymbols = NULL;
1890 objfile->sym_private = NULL;
1891 objfile->minimal_symbol_count = 0;
1892 memset (&objfile->msymbol_hash, 0,
1893 sizeof (objfile->msymbol_hash));
1894 memset (&objfile->msymbol_demangled_hash, 0,
1895 sizeof (objfile->msymbol_demangled_hash));
1896 objfile->fundamental_types = NULL;
1897 clear_objfile_data (objfile);
1898 if (objfile->sf != NULL)
1899 {
1900 (*objfile->sf->sym_finish) (objfile);
1901 }
1902
1903 /* We never make this a mapped file. */
1904 objfile->md = NULL;
1905 objfile->psymbol_cache = bcache_xmalloc ();
1906 objfile->macro_cache = bcache_xmalloc ();
1907 /* obstack_init also initializes the obstack so it is
1908 empty. We could use obstack_specify_allocation but
1909 gdb_obstack.h specifies the alloc/dealloc
1910 functions. */
1911 obstack_init (&objfile->objfile_obstack);
1912 if (build_objfile_section_table (objfile))
1913 {
1914 error ("Can't find the file sections in `%s': %s",
1915 objfile->name, bfd_errmsg (bfd_get_error ()));
1916 }
1917 terminate_minimal_symbol_table (objfile);
1918
1919 /* We use the same section offsets as from last time. I'm not
1920 sure whether that is always correct for shared libraries. */
1921 objfile->section_offsets = (struct section_offsets *)
1922 obstack_alloc (&objfile->objfile_obstack,
1923 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1924 memcpy (objfile->section_offsets, offsets,
1925 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1926 objfile->num_sections = num_offsets;
1927
1928 /* What the hell is sym_new_init for, anyway? The concept of
1929 distinguishing between the main file and additional files
1930 in this way seems rather dubious. */
1931 if (objfile == symfile_objfile)
1932 {
1933 (*objfile->sf->sym_new_init) (objfile);
1934 }
1935
1936 (*objfile->sf->sym_init) (objfile);
1937 clear_complaints (&symfile_complaints, 1, 1);
1938 /* The "mainline" parameter is a hideous hack; I think leaving it
1939 zero is OK since dbxread.c also does what it needs to do if
1940 objfile->global_psymbols.size is 0. */
1941 (*objfile->sf->sym_read) (objfile, 0);
1942 if (!have_partial_symbols () && !have_full_symbols ())
1943 {
1944 wrap_here ("");
1945 printf_unfiltered ("(no debugging symbols found)\n");
1946 wrap_here ("");
1947 }
1948 objfile->flags |= OBJF_SYMS;
1949
1950 /* We're done reading the symbol file; finish off complaints. */
1951 clear_complaints (&symfile_complaints, 0, 1);
1952
1953 /* Getting new symbols may change our opinion about what is
1954 frameless. */
1955
1956 reinit_frame_cache ();
1957
1958 /* Discard cleanups as symbol reading was successful. */
1959 discard_cleanups (old_cleanups);
1960
1961 /* If the mtime has changed between the time we set new_modtime
1962 and now, we *want* this to be out of date, so don't call stat
1963 again now. */
1964 objfile->mtime = new_modtime;
1965 reread_one = 1;
1966 reread_separate_symbols (objfile);
1967 }
1968 }
1969 }
1970
1971 if (reread_one)
1972 clear_symtab_users ();
1973 }
1974
1975
1976 /* Handle separate debug info for OBJFILE, which has just been
1977 re-read:
1978 - If we had separate debug info before, but now we don't, get rid
1979 of the separated objfile.
1980 - If we didn't have separated debug info before, but now we do,
1981 read in the new separated debug info file.
1982 - If the debug link points to a different file, toss the old one
1983 and read the new one.
1984 This function does *not* handle the case where objfile is still
1985 using the same separate debug info file, but that file's timestamp
1986 has changed. That case should be handled by the loop in
1987 reread_symbols already. */
1988 static void
1989 reread_separate_symbols (struct objfile *objfile)
1990 {
1991 char *debug_file;
1992 unsigned long crc32;
1993
1994 /* Does the updated objfile's debug info live in a
1995 separate file? */
1996 debug_file = find_separate_debug_file (objfile);
1997
1998 if (objfile->separate_debug_objfile)
1999 {
2000 /* There are two cases where we need to get rid of
2001 the old separated debug info objfile:
2002 - if the new primary objfile doesn't have
2003 separated debug info, or
2004 - if the new primary objfile has separate debug
2005 info, but it's under a different filename.
2006
2007 If the old and new objfiles both have separate
2008 debug info, under the same filename, then we're
2009 okay --- if the separated file's contents have
2010 changed, we will have caught that when we
2011 visited it in this function's outermost
2012 loop. */
2013 if (! debug_file
2014 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2015 free_objfile (objfile->separate_debug_objfile);
2016 }
2017
2018 /* If the new objfile has separate debug info, and we
2019 haven't loaded it already, do so now. */
2020 if (debug_file
2021 && ! objfile->separate_debug_objfile)
2022 {
2023 /* Use the same section offset table as objfile itself.
2024 Preserve the flags from objfile that make sense. */
2025 objfile->separate_debug_objfile
2026 = (symbol_file_add_with_addrs_or_offsets
2027 (symfile_bfd_open (debug_file),
2028 info_verbose, /* from_tty: Don't override the default. */
2029 0, /* No addr table. */
2030 objfile->section_offsets, objfile->num_sections,
2031 0, /* Not mainline. See comments about this above. */
2032 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2033 | OBJF_USERLOADED)));
2034 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2035 = objfile;
2036 }
2037 }
2038
2039
2040 \f
2041
2042
2043 typedef struct
2044 {
2045 char *ext;
2046 enum language lang;
2047 }
2048 filename_language;
2049
2050 static filename_language *filename_language_table;
2051 static int fl_table_size, fl_table_next;
2052
2053 static void
2054 add_filename_language (char *ext, enum language lang)
2055 {
2056 if (fl_table_next >= fl_table_size)
2057 {
2058 fl_table_size += 10;
2059 filename_language_table =
2060 xrealloc (filename_language_table,
2061 fl_table_size * sizeof (*filename_language_table));
2062 }
2063
2064 filename_language_table[fl_table_next].ext = xstrdup (ext);
2065 filename_language_table[fl_table_next].lang = lang;
2066 fl_table_next++;
2067 }
2068
2069 static char *ext_args;
2070
2071 static void
2072 set_ext_lang_command (char *args, int from_tty)
2073 {
2074 int i;
2075 char *cp = ext_args;
2076 enum language lang;
2077
2078 /* First arg is filename extension, starting with '.' */
2079 if (*cp != '.')
2080 error ("'%s': Filename extension must begin with '.'", ext_args);
2081
2082 /* Find end of first arg. */
2083 while (*cp && !isspace (*cp))
2084 cp++;
2085
2086 if (*cp == '\0')
2087 error ("'%s': two arguments required -- filename extension and language",
2088 ext_args);
2089
2090 /* Null-terminate first arg */
2091 *cp++ = '\0';
2092
2093 /* Find beginning of second arg, which should be a source language. */
2094 while (*cp && isspace (*cp))
2095 cp++;
2096
2097 if (*cp == '\0')
2098 error ("'%s': two arguments required -- filename extension and language",
2099 ext_args);
2100
2101 /* Lookup the language from among those we know. */
2102 lang = language_enum (cp);
2103
2104 /* Now lookup the filename extension: do we already know it? */
2105 for (i = 0; i < fl_table_next; i++)
2106 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2107 break;
2108
2109 if (i >= fl_table_next)
2110 {
2111 /* new file extension */
2112 add_filename_language (ext_args, lang);
2113 }
2114 else
2115 {
2116 /* redefining a previously known filename extension */
2117
2118 /* if (from_tty) */
2119 /* query ("Really make files of type %s '%s'?", */
2120 /* ext_args, language_str (lang)); */
2121
2122 xfree (filename_language_table[i].ext);
2123 filename_language_table[i].ext = xstrdup (ext_args);
2124 filename_language_table[i].lang = lang;
2125 }
2126 }
2127
2128 static void
2129 info_ext_lang_command (char *args, int from_tty)
2130 {
2131 int i;
2132
2133 printf_filtered ("Filename extensions and the languages they represent:");
2134 printf_filtered ("\n\n");
2135 for (i = 0; i < fl_table_next; i++)
2136 printf_filtered ("\t%s\t- %s\n",
2137 filename_language_table[i].ext,
2138 language_str (filename_language_table[i].lang));
2139 }
2140
2141 static void
2142 init_filename_language_table (void)
2143 {
2144 if (fl_table_size == 0) /* protect against repetition */
2145 {
2146 fl_table_size = 20;
2147 fl_table_next = 0;
2148 filename_language_table =
2149 xmalloc (fl_table_size * sizeof (*filename_language_table));
2150 add_filename_language (".c", language_c);
2151 add_filename_language (".C", language_cplus);
2152 add_filename_language (".cc", language_cplus);
2153 add_filename_language (".cp", language_cplus);
2154 add_filename_language (".cpp", language_cplus);
2155 add_filename_language (".cxx", language_cplus);
2156 add_filename_language (".c++", language_cplus);
2157 add_filename_language (".java", language_java);
2158 add_filename_language (".class", language_java);
2159 add_filename_language (".m", language_objc);
2160 add_filename_language (".f", language_fortran);
2161 add_filename_language (".F", language_fortran);
2162 add_filename_language (".s", language_asm);
2163 add_filename_language (".S", language_asm);
2164 add_filename_language (".pas", language_pascal);
2165 add_filename_language (".p", language_pascal);
2166 add_filename_language (".pp", language_pascal);
2167 }
2168 }
2169
2170 enum language
2171 deduce_language_from_filename (char *filename)
2172 {
2173 int i;
2174 char *cp;
2175
2176 if (filename != NULL)
2177 if ((cp = strrchr (filename, '.')) != NULL)
2178 for (i = 0; i < fl_table_next; i++)
2179 if (strcmp (cp, filename_language_table[i].ext) == 0)
2180 return filename_language_table[i].lang;
2181
2182 return language_unknown;
2183 }
2184 \f
2185 /* allocate_symtab:
2186
2187 Allocate and partly initialize a new symbol table. Return a pointer
2188 to it. error() if no space.
2189
2190 Caller must set these fields:
2191 LINETABLE(symtab)
2192 symtab->blockvector
2193 symtab->dirname
2194 symtab->free_code
2195 symtab->free_ptr
2196 possibly free_named_symtabs (symtab->filename);
2197 */
2198
2199 struct symtab *
2200 allocate_symtab (char *filename, struct objfile *objfile)
2201 {
2202 struct symtab *symtab;
2203
2204 symtab = (struct symtab *)
2205 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2206 memset (symtab, 0, sizeof (*symtab));
2207 symtab->filename = obsavestring (filename, strlen (filename),
2208 &objfile->objfile_obstack);
2209 symtab->fullname = NULL;
2210 symtab->language = deduce_language_from_filename (filename);
2211 symtab->debugformat = obsavestring ("unknown", 7,
2212 &objfile->objfile_obstack);
2213
2214 /* Hook it to the objfile it comes from */
2215
2216 symtab->objfile = objfile;
2217 symtab->next = objfile->symtabs;
2218 objfile->symtabs = symtab;
2219
2220 /* FIXME: This should go away. It is only defined for the Z8000,
2221 and the Z8000 definition of this macro doesn't have anything to
2222 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2223 here for convenience. */
2224 #ifdef INIT_EXTRA_SYMTAB_INFO
2225 INIT_EXTRA_SYMTAB_INFO (symtab);
2226 #endif
2227
2228 return (symtab);
2229 }
2230
2231 struct partial_symtab *
2232 allocate_psymtab (char *filename, struct objfile *objfile)
2233 {
2234 struct partial_symtab *psymtab;
2235
2236 if (objfile->free_psymtabs)
2237 {
2238 psymtab = objfile->free_psymtabs;
2239 objfile->free_psymtabs = psymtab->next;
2240 }
2241 else
2242 psymtab = (struct partial_symtab *)
2243 obstack_alloc (&objfile->objfile_obstack,
2244 sizeof (struct partial_symtab));
2245
2246 memset (psymtab, 0, sizeof (struct partial_symtab));
2247 psymtab->filename = obsavestring (filename, strlen (filename),
2248 &objfile->objfile_obstack);
2249 psymtab->symtab = NULL;
2250
2251 /* Prepend it to the psymtab list for the objfile it belongs to.
2252 Psymtabs are searched in most recent inserted -> least recent
2253 inserted order. */
2254
2255 psymtab->objfile = objfile;
2256 psymtab->next = objfile->psymtabs;
2257 objfile->psymtabs = psymtab;
2258 #if 0
2259 {
2260 struct partial_symtab **prev_pst;
2261 psymtab->objfile = objfile;
2262 psymtab->next = NULL;
2263 prev_pst = &(objfile->psymtabs);
2264 while ((*prev_pst) != NULL)
2265 prev_pst = &((*prev_pst)->next);
2266 (*prev_pst) = psymtab;
2267 }
2268 #endif
2269
2270 return (psymtab);
2271 }
2272
2273 void
2274 discard_psymtab (struct partial_symtab *pst)
2275 {
2276 struct partial_symtab **prev_pst;
2277
2278 /* From dbxread.c:
2279 Empty psymtabs happen as a result of header files which don't
2280 have any symbols in them. There can be a lot of them. But this
2281 check is wrong, in that a psymtab with N_SLINE entries but
2282 nothing else is not empty, but we don't realize that. Fixing
2283 that without slowing things down might be tricky. */
2284
2285 /* First, snip it out of the psymtab chain */
2286
2287 prev_pst = &(pst->objfile->psymtabs);
2288 while ((*prev_pst) != pst)
2289 prev_pst = &((*prev_pst)->next);
2290 (*prev_pst) = pst->next;
2291
2292 /* Next, put it on a free list for recycling */
2293
2294 pst->next = pst->objfile->free_psymtabs;
2295 pst->objfile->free_psymtabs = pst;
2296 }
2297 \f
2298
2299 /* Reset all data structures in gdb which may contain references to symbol
2300 table data. */
2301
2302 void
2303 clear_symtab_users (void)
2304 {
2305 /* Someday, we should do better than this, by only blowing away
2306 the things that really need to be blown. */
2307 clear_value_history ();
2308 clear_displays ();
2309 clear_internalvars ();
2310 breakpoint_re_set ();
2311 set_default_breakpoint (0, 0, 0, 0);
2312 clear_current_source_symtab_and_line ();
2313 clear_pc_function_cache ();
2314 if (deprecated_target_new_objfile_hook)
2315 deprecated_target_new_objfile_hook (NULL);
2316 }
2317
2318 static void
2319 clear_symtab_users_cleanup (void *ignore)
2320 {
2321 clear_symtab_users ();
2322 }
2323
2324 /* clear_symtab_users_once:
2325
2326 This function is run after symbol reading, or from a cleanup.
2327 If an old symbol table was obsoleted, the old symbol table
2328 has been blown away, but the other GDB data structures that may
2329 reference it have not yet been cleared or re-directed. (The old
2330 symtab was zapped, and the cleanup queued, in free_named_symtab()
2331 below.)
2332
2333 This function can be queued N times as a cleanup, or called
2334 directly; it will do all the work the first time, and then will be a
2335 no-op until the next time it is queued. This works by bumping a
2336 counter at queueing time. Much later when the cleanup is run, or at
2337 the end of symbol processing (in case the cleanup is discarded), if
2338 the queued count is greater than the "done-count", we do the work
2339 and set the done-count to the queued count. If the queued count is
2340 less than or equal to the done-count, we just ignore the call. This
2341 is needed because reading a single .o file will often replace many
2342 symtabs (one per .h file, for example), and we don't want to reset
2343 the breakpoints N times in the user's face.
2344
2345 The reason we both queue a cleanup, and call it directly after symbol
2346 reading, is because the cleanup protects us in case of errors, but is
2347 discarded if symbol reading is successful. */
2348
2349 #if 0
2350 /* FIXME: As free_named_symtabs is currently a big noop this function
2351 is no longer needed. */
2352 static void clear_symtab_users_once (void);
2353
2354 static int clear_symtab_users_queued;
2355 static int clear_symtab_users_done;
2356
2357 static void
2358 clear_symtab_users_once (void)
2359 {
2360 /* Enforce once-per-`do_cleanups'-semantics */
2361 if (clear_symtab_users_queued <= clear_symtab_users_done)
2362 return;
2363 clear_symtab_users_done = clear_symtab_users_queued;
2364
2365 clear_symtab_users ();
2366 }
2367 #endif
2368
2369 /* Delete the specified psymtab, and any others that reference it. */
2370
2371 static void
2372 cashier_psymtab (struct partial_symtab *pst)
2373 {
2374 struct partial_symtab *ps, *pprev = NULL;
2375 int i;
2376
2377 /* Find its previous psymtab in the chain */
2378 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2379 {
2380 if (ps == pst)
2381 break;
2382 pprev = ps;
2383 }
2384
2385 if (ps)
2386 {
2387 /* Unhook it from the chain. */
2388 if (ps == pst->objfile->psymtabs)
2389 pst->objfile->psymtabs = ps->next;
2390 else
2391 pprev->next = ps->next;
2392
2393 /* FIXME, we can't conveniently deallocate the entries in the
2394 partial_symbol lists (global_psymbols/static_psymbols) that
2395 this psymtab points to. These just take up space until all
2396 the psymtabs are reclaimed. Ditto the dependencies list and
2397 filename, which are all in the objfile_obstack. */
2398
2399 /* We need to cashier any psymtab that has this one as a dependency... */
2400 again:
2401 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2402 {
2403 for (i = 0; i < ps->number_of_dependencies; i++)
2404 {
2405 if (ps->dependencies[i] == pst)
2406 {
2407 cashier_psymtab (ps);
2408 goto again; /* Must restart, chain has been munged. */
2409 }
2410 }
2411 }
2412 }
2413 }
2414
2415 /* If a symtab or psymtab for filename NAME is found, free it along
2416 with any dependent breakpoints, displays, etc.
2417 Used when loading new versions of object modules with the "add-file"
2418 command. This is only called on the top-level symtab or psymtab's name;
2419 it is not called for subsidiary files such as .h files.
2420
2421 Return value is 1 if we blew away the environment, 0 if not.
2422 FIXME. The return value appears to never be used.
2423
2424 FIXME. I think this is not the best way to do this. We should
2425 work on being gentler to the environment while still cleaning up
2426 all stray pointers into the freed symtab. */
2427
2428 int
2429 free_named_symtabs (char *name)
2430 {
2431 #if 0
2432 /* FIXME: With the new method of each objfile having it's own
2433 psymtab list, this function needs serious rethinking. In particular,
2434 why was it ever necessary to toss psymtabs with specific compilation
2435 unit filenames, as opposed to all psymtabs from a particular symbol
2436 file? -- fnf
2437 Well, the answer is that some systems permit reloading of particular
2438 compilation units. We want to blow away any old info about these
2439 compilation units, regardless of which objfiles they arrived in. --gnu. */
2440
2441 struct symtab *s;
2442 struct symtab *prev;
2443 struct partial_symtab *ps;
2444 struct blockvector *bv;
2445 int blewit = 0;
2446
2447 /* We only wack things if the symbol-reload switch is set. */
2448 if (!symbol_reloading)
2449 return 0;
2450
2451 /* Some symbol formats have trouble providing file names... */
2452 if (name == 0 || *name == '\0')
2453 return 0;
2454
2455 /* Look for a psymtab with the specified name. */
2456
2457 again2:
2458 for (ps = partial_symtab_list; ps; ps = ps->next)
2459 {
2460 if (strcmp (name, ps->filename) == 0)
2461 {
2462 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2463 goto again2; /* Must restart, chain has been munged */
2464 }
2465 }
2466
2467 /* Look for a symtab with the specified name. */
2468
2469 for (s = symtab_list; s; s = s->next)
2470 {
2471 if (strcmp (name, s->filename) == 0)
2472 break;
2473 prev = s;
2474 }
2475
2476 if (s)
2477 {
2478 if (s == symtab_list)
2479 symtab_list = s->next;
2480 else
2481 prev->next = s->next;
2482
2483 /* For now, queue a delete for all breakpoints, displays, etc., whether
2484 or not they depend on the symtab being freed. This should be
2485 changed so that only those data structures affected are deleted. */
2486
2487 /* But don't delete anything if the symtab is empty.
2488 This test is necessary due to a bug in "dbxread.c" that
2489 causes empty symtabs to be created for N_SO symbols that
2490 contain the pathname of the object file. (This problem
2491 has been fixed in GDB 3.9x). */
2492
2493 bv = BLOCKVECTOR (s);
2494 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2495 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2496 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2497 {
2498 complaint (&symfile_complaints, "Replacing old symbols for `%s'",
2499 name);
2500 clear_symtab_users_queued++;
2501 make_cleanup (clear_symtab_users_once, 0);
2502 blewit = 1;
2503 }
2504 else
2505 {
2506 complaint (&symfile_complaints, "Empty symbol table found for `%s'",
2507 name);
2508 }
2509
2510 free_symtab (s);
2511 }
2512 else
2513 {
2514 /* It is still possible that some breakpoints will be affected
2515 even though no symtab was found, since the file might have
2516 been compiled without debugging, and hence not be associated
2517 with a symtab. In order to handle this correctly, we would need
2518 to keep a list of text address ranges for undebuggable files.
2519 For now, we do nothing, since this is a fairly obscure case. */
2520 ;
2521 }
2522
2523 /* FIXME, what about the minimal symbol table? */
2524 return blewit;
2525 #else
2526 return (0);
2527 #endif
2528 }
2529 \f
2530 /* Allocate and partially fill a partial symtab. It will be
2531 completely filled at the end of the symbol list.
2532
2533 FILENAME is the name of the symbol-file we are reading from. */
2534
2535 struct partial_symtab *
2536 start_psymtab_common (struct objfile *objfile,
2537 struct section_offsets *section_offsets, char *filename,
2538 CORE_ADDR textlow, struct partial_symbol **global_syms,
2539 struct partial_symbol **static_syms)
2540 {
2541 struct partial_symtab *psymtab;
2542
2543 psymtab = allocate_psymtab (filename, objfile);
2544 psymtab->section_offsets = section_offsets;
2545 psymtab->textlow = textlow;
2546 psymtab->texthigh = psymtab->textlow; /* default */
2547 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2548 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2549 return (psymtab);
2550 }
2551 \f
2552 /* Add a symbol with a long value to a psymtab.
2553 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2554 Return the partial symbol that has been added. */
2555
2556 /* NOTE: carlton/2003-09-11: The reason why we return the partial
2557 symbol is so that callers can get access to the symbol's demangled
2558 name, which they don't have any cheap way to determine otherwise.
2559 (Currenly, dwarf2read.c is the only file who uses that information,
2560 though it's possible that other readers might in the future.)
2561 Elena wasn't thrilled about that, and I don't blame her, but we
2562 couldn't come up with a better way to get that information. If
2563 it's needed in other situations, we could consider breaking up
2564 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2565 cache. */
2566
2567 const struct partial_symbol *
2568 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2569 enum address_class class,
2570 struct psymbol_allocation_list *list, long val, /* Value as a long */
2571 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2572 enum language language, struct objfile *objfile)
2573 {
2574 struct partial_symbol *psym;
2575 char *buf = alloca (namelength + 1);
2576 /* psymbol is static so that there will be no uninitialized gaps in the
2577 structure which might contain random data, causing cache misses in
2578 bcache. */
2579 static struct partial_symbol psymbol;
2580
2581 /* Create local copy of the partial symbol */
2582 memcpy (buf, name, namelength);
2583 buf[namelength] = '\0';
2584 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2585 if (val != 0)
2586 {
2587 SYMBOL_VALUE (&psymbol) = val;
2588 }
2589 else
2590 {
2591 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2592 }
2593 SYMBOL_SECTION (&psymbol) = 0;
2594 SYMBOL_LANGUAGE (&psymbol) = language;
2595 PSYMBOL_DOMAIN (&psymbol) = domain;
2596 PSYMBOL_CLASS (&psymbol) = class;
2597
2598 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2599
2600 /* Stash the partial symbol away in the cache */
2601 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2602 objfile->psymbol_cache);
2603
2604 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2605 if (list->next >= list->list + list->size)
2606 {
2607 extend_psymbol_list (list, objfile);
2608 }
2609 *list->next++ = psym;
2610 OBJSTAT (objfile, n_psyms++);
2611
2612 return psym;
2613 }
2614
2615 /* Add a symbol with a long value to a psymtab. This differs from
2616 * add_psymbol_to_list above in taking both a mangled and a demangled
2617 * name. */
2618
2619 void
2620 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2621 int dem_namelength, domain_enum domain,
2622 enum address_class class,
2623 struct psymbol_allocation_list *list, long val, /* Value as a long */
2624 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2625 enum language language,
2626 struct objfile *objfile)
2627 {
2628 struct partial_symbol *psym;
2629 char *buf = alloca (namelength + 1);
2630 /* psymbol is static so that there will be no uninitialized gaps in the
2631 structure which might contain random data, causing cache misses in
2632 bcache. */
2633 static struct partial_symbol psymbol;
2634
2635 /* Create local copy of the partial symbol */
2636
2637 memcpy (buf, name, namelength);
2638 buf[namelength] = '\0';
2639 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2640 objfile->psymbol_cache);
2641
2642 buf = alloca (dem_namelength + 1);
2643 memcpy (buf, dem_name, dem_namelength);
2644 buf[dem_namelength] = '\0';
2645
2646 switch (language)
2647 {
2648 case language_c:
2649 case language_cplus:
2650 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2651 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2652 break;
2653 /* FIXME What should be done for the default case? Ignoring for now. */
2654 }
2655
2656 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2657 if (val != 0)
2658 {
2659 SYMBOL_VALUE (&psymbol) = val;
2660 }
2661 else
2662 {
2663 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2664 }
2665 SYMBOL_SECTION (&psymbol) = 0;
2666 SYMBOL_LANGUAGE (&psymbol) = language;
2667 PSYMBOL_DOMAIN (&psymbol) = domain;
2668 PSYMBOL_CLASS (&psymbol) = class;
2669 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2670
2671 /* Stash the partial symbol away in the cache */
2672 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2673 objfile->psymbol_cache);
2674
2675 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2676 if (list->next >= list->list + list->size)
2677 {
2678 extend_psymbol_list (list, objfile);
2679 }
2680 *list->next++ = psym;
2681 OBJSTAT (objfile, n_psyms++);
2682 }
2683
2684 /* Initialize storage for partial symbols. */
2685
2686 void
2687 init_psymbol_list (struct objfile *objfile, int total_symbols)
2688 {
2689 /* Free any previously allocated psymbol lists. */
2690
2691 if (objfile->global_psymbols.list)
2692 {
2693 xfree (objfile->global_psymbols.list);
2694 }
2695 if (objfile->static_psymbols.list)
2696 {
2697 xfree (objfile->static_psymbols.list);
2698 }
2699
2700 /* Current best guess is that approximately a twentieth
2701 of the total symbols (in a debugging file) are global or static
2702 oriented symbols */
2703
2704 objfile->global_psymbols.size = total_symbols / 10;
2705 objfile->static_psymbols.size = total_symbols / 10;
2706
2707 if (objfile->global_psymbols.size > 0)
2708 {
2709 objfile->global_psymbols.next =
2710 objfile->global_psymbols.list = (struct partial_symbol **)
2711 xmalloc ((objfile->global_psymbols.size
2712 * sizeof (struct partial_symbol *)));
2713 }
2714 if (objfile->static_psymbols.size > 0)
2715 {
2716 objfile->static_psymbols.next =
2717 objfile->static_psymbols.list = (struct partial_symbol **)
2718 xmalloc ((objfile->static_psymbols.size
2719 * sizeof (struct partial_symbol *)));
2720 }
2721 }
2722
2723 /* OVERLAYS:
2724 The following code implements an abstraction for debugging overlay sections.
2725
2726 The target model is as follows:
2727 1) The gnu linker will permit multiple sections to be mapped into the
2728 same VMA, each with its own unique LMA (or load address).
2729 2) It is assumed that some runtime mechanism exists for mapping the
2730 sections, one by one, from the load address into the VMA address.
2731 3) This code provides a mechanism for gdb to keep track of which
2732 sections should be considered to be mapped from the VMA to the LMA.
2733 This information is used for symbol lookup, and memory read/write.
2734 For instance, if a section has been mapped then its contents
2735 should be read from the VMA, otherwise from the LMA.
2736
2737 Two levels of debugger support for overlays are available. One is
2738 "manual", in which the debugger relies on the user to tell it which
2739 overlays are currently mapped. This level of support is
2740 implemented entirely in the core debugger, and the information about
2741 whether a section is mapped is kept in the objfile->obj_section table.
2742
2743 The second level of support is "automatic", and is only available if
2744 the target-specific code provides functionality to read the target's
2745 overlay mapping table, and translate its contents for the debugger
2746 (by updating the mapped state information in the obj_section tables).
2747
2748 The interface is as follows:
2749 User commands:
2750 overlay map <name> -- tell gdb to consider this section mapped
2751 overlay unmap <name> -- tell gdb to consider this section unmapped
2752 overlay list -- list the sections that GDB thinks are mapped
2753 overlay read-target -- get the target's state of what's mapped
2754 overlay off/manual/auto -- set overlay debugging state
2755 Functional interface:
2756 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2757 section, return that section.
2758 find_pc_overlay(pc): find any overlay section that contains
2759 the pc, either in its VMA or its LMA
2760 overlay_is_mapped(sect): true if overlay is marked as mapped
2761 section_is_overlay(sect): true if section's VMA != LMA
2762 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2763 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2764 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2765 overlay_mapped_address(...): map an address from section's LMA to VMA
2766 overlay_unmapped_address(...): map an address from section's VMA to LMA
2767 symbol_overlayed_address(...): Return a "current" address for symbol:
2768 either in VMA or LMA depending on whether
2769 the symbol's section is currently mapped
2770 */
2771
2772 /* Overlay debugging state: */
2773
2774 enum overlay_debugging_state overlay_debugging = ovly_off;
2775 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2776
2777 /* Target vector for refreshing overlay mapped state */
2778 static void simple_overlay_update (struct obj_section *);
2779 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2780
2781 /* Function: section_is_overlay (SECTION)
2782 Returns true if SECTION has VMA not equal to LMA, ie.
2783 SECTION is loaded at an address different from where it will "run". */
2784
2785 int
2786 section_is_overlay (asection *section)
2787 {
2788 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2789
2790 if (overlay_debugging)
2791 if (section && section->lma != 0 &&
2792 section->vma != section->lma)
2793 return 1;
2794
2795 return 0;
2796 }
2797
2798 /* Function: overlay_invalidate_all (void)
2799 Invalidate the mapped state of all overlay sections (mark it as stale). */
2800
2801 static void
2802 overlay_invalidate_all (void)
2803 {
2804 struct objfile *objfile;
2805 struct obj_section *sect;
2806
2807 ALL_OBJSECTIONS (objfile, sect)
2808 if (section_is_overlay (sect->the_bfd_section))
2809 sect->ovly_mapped = -1;
2810 }
2811
2812 /* Function: overlay_is_mapped (SECTION)
2813 Returns true if section is an overlay, and is currently mapped.
2814 Private: public access is thru function section_is_mapped.
2815
2816 Access to the ovly_mapped flag is restricted to this function, so
2817 that we can do automatic update. If the global flag
2818 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2819 overlay_invalidate_all. If the mapped state of the particular
2820 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2821
2822 static int
2823 overlay_is_mapped (struct obj_section *osect)
2824 {
2825 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2826 return 0;
2827
2828 switch (overlay_debugging)
2829 {
2830 default:
2831 case ovly_off:
2832 return 0; /* overlay debugging off */
2833 case ovly_auto: /* overlay debugging automatic */
2834 /* Unles there is a target_overlay_update function,
2835 there's really nothing useful to do here (can't really go auto) */
2836 if (target_overlay_update)
2837 {
2838 if (overlay_cache_invalid)
2839 {
2840 overlay_invalidate_all ();
2841 overlay_cache_invalid = 0;
2842 }
2843 if (osect->ovly_mapped == -1)
2844 (*target_overlay_update) (osect);
2845 }
2846 /* fall thru to manual case */
2847 case ovly_on: /* overlay debugging manual */
2848 return osect->ovly_mapped == 1;
2849 }
2850 }
2851
2852 /* Function: section_is_mapped
2853 Returns true if section is an overlay, and is currently mapped. */
2854
2855 int
2856 section_is_mapped (asection *section)
2857 {
2858 struct objfile *objfile;
2859 struct obj_section *osect;
2860
2861 if (overlay_debugging)
2862 if (section && section_is_overlay (section))
2863 ALL_OBJSECTIONS (objfile, osect)
2864 if (osect->the_bfd_section == section)
2865 return overlay_is_mapped (osect);
2866
2867 return 0;
2868 }
2869
2870 /* Function: pc_in_unmapped_range
2871 If PC falls into the lma range of SECTION, return true, else false. */
2872
2873 CORE_ADDR
2874 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
2875 {
2876 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2877
2878 int size;
2879
2880 if (overlay_debugging)
2881 if (section && section_is_overlay (section))
2882 {
2883 size = bfd_get_section_size (section);
2884 if (section->lma <= pc && pc < section->lma + size)
2885 return 1;
2886 }
2887 return 0;
2888 }
2889
2890 /* Function: pc_in_mapped_range
2891 If PC falls into the vma range of SECTION, return true, else false. */
2892
2893 CORE_ADDR
2894 pc_in_mapped_range (CORE_ADDR pc, asection *section)
2895 {
2896 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2897
2898 int size;
2899
2900 if (overlay_debugging)
2901 if (section && section_is_overlay (section))
2902 {
2903 size = bfd_get_section_size (section);
2904 if (section->vma <= pc && pc < section->vma + size)
2905 return 1;
2906 }
2907 return 0;
2908 }
2909
2910
2911 /* Return true if the mapped ranges of sections A and B overlap, false
2912 otherwise. */
2913 static int
2914 sections_overlap (asection *a, asection *b)
2915 {
2916 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2917
2918 CORE_ADDR a_start = a->vma;
2919 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
2920 CORE_ADDR b_start = b->vma;
2921 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
2922
2923 return (a_start < b_end && b_start < a_end);
2924 }
2925
2926 /* Function: overlay_unmapped_address (PC, SECTION)
2927 Returns the address corresponding to PC in the unmapped (load) range.
2928 May be the same as PC. */
2929
2930 CORE_ADDR
2931 overlay_unmapped_address (CORE_ADDR pc, asection *section)
2932 {
2933 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2934
2935 if (overlay_debugging)
2936 if (section && section_is_overlay (section) &&
2937 pc_in_mapped_range (pc, section))
2938 return pc + section->lma - section->vma;
2939
2940 return pc;
2941 }
2942
2943 /* Function: overlay_mapped_address (PC, SECTION)
2944 Returns the address corresponding to PC in the mapped (runtime) range.
2945 May be the same as PC. */
2946
2947 CORE_ADDR
2948 overlay_mapped_address (CORE_ADDR pc, asection *section)
2949 {
2950 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2951
2952 if (overlay_debugging)
2953 if (section && section_is_overlay (section) &&
2954 pc_in_unmapped_range (pc, section))
2955 return pc + section->vma - section->lma;
2956
2957 return pc;
2958 }
2959
2960
2961 /* Function: symbol_overlayed_address
2962 Return one of two addresses (relative to the VMA or to the LMA),
2963 depending on whether the section is mapped or not. */
2964
2965 CORE_ADDR
2966 symbol_overlayed_address (CORE_ADDR address, asection *section)
2967 {
2968 if (overlay_debugging)
2969 {
2970 /* If the symbol has no section, just return its regular address. */
2971 if (section == 0)
2972 return address;
2973 /* If the symbol's section is not an overlay, just return its address */
2974 if (!section_is_overlay (section))
2975 return address;
2976 /* If the symbol's section is mapped, just return its address */
2977 if (section_is_mapped (section))
2978 return address;
2979 /*
2980 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2981 * then return its LOADED address rather than its vma address!!
2982 */
2983 return overlay_unmapped_address (address, section);
2984 }
2985 return address;
2986 }
2987
2988 /* Function: find_pc_overlay (PC)
2989 Return the best-match overlay section for PC:
2990 If PC matches a mapped overlay section's VMA, return that section.
2991 Else if PC matches an unmapped section's VMA, return that section.
2992 Else if PC matches an unmapped section's LMA, return that section. */
2993
2994 asection *
2995 find_pc_overlay (CORE_ADDR pc)
2996 {
2997 struct objfile *objfile;
2998 struct obj_section *osect, *best_match = NULL;
2999
3000 if (overlay_debugging)
3001 ALL_OBJSECTIONS (objfile, osect)
3002 if (section_is_overlay (osect->the_bfd_section))
3003 {
3004 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3005 {
3006 if (overlay_is_mapped (osect))
3007 return osect->the_bfd_section;
3008 else
3009 best_match = osect;
3010 }
3011 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3012 best_match = osect;
3013 }
3014 return best_match ? best_match->the_bfd_section : NULL;
3015 }
3016
3017 /* Function: find_pc_mapped_section (PC)
3018 If PC falls into the VMA address range of an overlay section that is
3019 currently marked as MAPPED, return that section. Else return NULL. */
3020
3021 asection *
3022 find_pc_mapped_section (CORE_ADDR pc)
3023 {
3024 struct objfile *objfile;
3025 struct obj_section *osect;
3026
3027 if (overlay_debugging)
3028 ALL_OBJSECTIONS (objfile, osect)
3029 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3030 overlay_is_mapped (osect))
3031 return osect->the_bfd_section;
3032
3033 return NULL;
3034 }
3035
3036 /* Function: list_overlays_command
3037 Print a list of mapped sections and their PC ranges */
3038
3039 void
3040 list_overlays_command (char *args, int from_tty)
3041 {
3042 int nmapped = 0;
3043 struct objfile *objfile;
3044 struct obj_section *osect;
3045
3046 if (overlay_debugging)
3047 ALL_OBJSECTIONS (objfile, osect)
3048 if (overlay_is_mapped (osect))
3049 {
3050 const char *name;
3051 bfd_vma lma, vma;
3052 int size;
3053
3054 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3055 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3056 size = bfd_get_section_size (osect->the_bfd_section);
3057 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3058
3059 printf_filtered ("Section %s, loaded at ", name);
3060 print_address_numeric (lma, 1, gdb_stdout);
3061 puts_filtered (" - ");
3062 print_address_numeric (lma + size, 1, gdb_stdout);
3063 printf_filtered (", mapped at ");
3064 print_address_numeric (vma, 1, gdb_stdout);
3065 puts_filtered (" - ");
3066 print_address_numeric (vma + size, 1, gdb_stdout);
3067 puts_filtered ("\n");
3068
3069 nmapped++;
3070 }
3071 if (nmapped == 0)
3072 printf_filtered ("No sections are mapped.\n");
3073 }
3074
3075 /* Function: map_overlay_command
3076 Mark the named section as mapped (ie. residing at its VMA address). */
3077
3078 void
3079 map_overlay_command (char *args, int from_tty)
3080 {
3081 struct objfile *objfile, *objfile2;
3082 struct obj_section *sec, *sec2;
3083 asection *bfdsec;
3084
3085 if (!overlay_debugging)
3086 error ("\
3087 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3088 the 'overlay manual' command.");
3089
3090 if (args == 0 || *args == 0)
3091 error ("Argument required: name of an overlay section");
3092
3093 /* First, find a section matching the user supplied argument */
3094 ALL_OBJSECTIONS (objfile, sec)
3095 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3096 {
3097 /* Now, check to see if the section is an overlay. */
3098 bfdsec = sec->the_bfd_section;
3099 if (!section_is_overlay (bfdsec))
3100 continue; /* not an overlay section */
3101
3102 /* Mark the overlay as "mapped" */
3103 sec->ovly_mapped = 1;
3104
3105 /* Next, make a pass and unmap any sections that are
3106 overlapped by this new section: */
3107 ALL_OBJSECTIONS (objfile2, sec2)
3108 if (sec2->ovly_mapped
3109 && sec != sec2
3110 && sec->the_bfd_section != sec2->the_bfd_section
3111 && sections_overlap (sec->the_bfd_section,
3112 sec2->the_bfd_section))
3113 {
3114 if (info_verbose)
3115 printf_unfiltered ("Note: section %s unmapped by overlap\n",
3116 bfd_section_name (objfile->obfd,
3117 sec2->the_bfd_section));
3118 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3119 }
3120 return;
3121 }
3122 error ("No overlay section called %s", args);
3123 }
3124
3125 /* Function: unmap_overlay_command
3126 Mark the overlay section as unmapped
3127 (ie. resident in its LMA address range, rather than the VMA range). */
3128
3129 void
3130 unmap_overlay_command (char *args, int from_tty)
3131 {
3132 struct objfile *objfile;
3133 struct obj_section *sec;
3134
3135 if (!overlay_debugging)
3136 error ("\
3137 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3138 the 'overlay manual' command.");
3139
3140 if (args == 0 || *args == 0)
3141 error ("Argument required: name of an overlay section");
3142
3143 /* First, find a section matching the user supplied argument */
3144 ALL_OBJSECTIONS (objfile, sec)
3145 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3146 {
3147 if (!sec->ovly_mapped)
3148 error ("Section %s is not mapped", args);
3149 sec->ovly_mapped = 0;
3150 return;
3151 }
3152 error ("No overlay section called %s", args);
3153 }
3154
3155 /* Function: overlay_auto_command
3156 A utility command to turn on overlay debugging.
3157 Possibly this should be done via a set/show command. */
3158
3159 static void
3160 overlay_auto_command (char *args, int from_tty)
3161 {
3162 overlay_debugging = ovly_auto;
3163 enable_overlay_breakpoints ();
3164 if (info_verbose)
3165 printf_unfiltered ("Automatic overlay debugging enabled.");
3166 }
3167
3168 /* Function: overlay_manual_command
3169 A utility command to turn on overlay debugging.
3170 Possibly this should be done via a set/show command. */
3171
3172 static void
3173 overlay_manual_command (char *args, int from_tty)
3174 {
3175 overlay_debugging = ovly_on;
3176 disable_overlay_breakpoints ();
3177 if (info_verbose)
3178 printf_unfiltered ("Overlay debugging enabled.");
3179 }
3180
3181 /* Function: overlay_off_command
3182 A utility command to turn on overlay debugging.
3183 Possibly this should be done via a set/show command. */
3184
3185 static void
3186 overlay_off_command (char *args, int from_tty)
3187 {
3188 overlay_debugging = ovly_off;
3189 disable_overlay_breakpoints ();
3190 if (info_verbose)
3191 printf_unfiltered ("Overlay debugging disabled.");
3192 }
3193
3194 static void
3195 overlay_load_command (char *args, int from_tty)
3196 {
3197 if (target_overlay_update)
3198 (*target_overlay_update) (NULL);
3199 else
3200 error ("This target does not know how to read its overlay state.");
3201 }
3202
3203 /* Function: overlay_command
3204 A place-holder for a mis-typed command */
3205
3206 /* Command list chain containing all defined "overlay" subcommands. */
3207 struct cmd_list_element *overlaylist;
3208
3209 static void
3210 overlay_command (char *args, int from_tty)
3211 {
3212 printf_unfiltered
3213 ("\"overlay\" must be followed by the name of an overlay command.\n");
3214 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3215 }
3216
3217
3218 /* Target Overlays for the "Simplest" overlay manager:
3219
3220 This is GDB's default target overlay layer. It works with the
3221 minimal overlay manager supplied as an example by Cygnus. The
3222 entry point is via a function pointer "target_overlay_update",
3223 so targets that use a different runtime overlay manager can
3224 substitute their own overlay_update function and take over the
3225 function pointer.
3226
3227 The overlay_update function pokes around in the target's data structures
3228 to see what overlays are mapped, and updates GDB's overlay mapping with
3229 this information.
3230
3231 In this simple implementation, the target data structures are as follows:
3232 unsigned _novlys; /# number of overlay sections #/
3233 unsigned _ovly_table[_novlys][4] = {
3234 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3235 {..., ..., ..., ...},
3236 }
3237 unsigned _novly_regions; /# number of overlay regions #/
3238 unsigned _ovly_region_table[_novly_regions][3] = {
3239 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3240 {..., ..., ...},
3241 }
3242 These functions will attempt to update GDB's mappedness state in the
3243 symbol section table, based on the target's mappedness state.
3244
3245 To do this, we keep a cached copy of the target's _ovly_table, and
3246 attempt to detect when the cached copy is invalidated. The main
3247 entry point is "simple_overlay_update(SECT), which looks up SECT in
3248 the cached table and re-reads only the entry for that section from
3249 the target (whenever possible).
3250 */
3251
3252 /* Cached, dynamically allocated copies of the target data structures: */
3253 static unsigned (*cache_ovly_table)[4] = 0;
3254 #if 0
3255 static unsigned (*cache_ovly_region_table)[3] = 0;
3256 #endif
3257 static unsigned cache_novlys = 0;
3258 #if 0
3259 static unsigned cache_novly_regions = 0;
3260 #endif
3261 static CORE_ADDR cache_ovly_table_base = 0;
3262 #if 0
3263 static CORE_ADDR cache_ovly_region_table_base = 0;
3264 #endif
3265 enum ovly_index
3266 {
3267 VMA, SIZE, LMA, MAPPED
3268 };
3269 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3270
3271 /* Throw away the cached copy of _ovly_table */
3272 static void
3273 simple_free_overlay_table (void)
3274 {
3275 if (cache_ovly_table)
3276 xfree (cache_ovly_table);
3277 cache_novlys = 0;
3278 cache_ovly_table = NULL;
3279 cache_ovly_table_base = 0;
3280 }
3281
3282 #if 0
3283 /* Throw away the cached copy of _ovly_region_table */
3284 static void
3285 simple_free_overlay_region_table (void)
3286 {
3287 if (cache_ovly_region_table)
3288 xfree (cache_ovly_region_table);
3289 cache_novly_regions = 0;
3290 cache_ovly_region_table = NULL;
3291 cache_ovly_region_table_base = 0;
3292 }
3293 #endif
3294
3295 /* Read an array of ints from the target into a local buffer.
3296 Convert to host order. int LEN is number of ints */
3297 static void
3298 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3299 {
3300 /* FIXME (alloca): Not safe if array is very large. */
3301 char *buf = alloca (len * TARGET_LONG_BYTES);
3302 int i;
3303
3304 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3305 for (i = 0; i < len; i++)
3306 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3307 TARGET_LONG_BYTES);
3308 }
3309
3310 /* Find and grab a copy of the target _ovly_table
3311 (and _novlys, which is needed for the table's size) */
3312 static int
3313 simple_read_overlay_table (void)
3314 {
3315 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3316
3317 simple_free_overlay_table ();
3318 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3319 if (! novlys_msym)
3320 {
3321 error ("Error reading inferior's overlay table: "
3322 "couldn't find `_novlys' variable\n"
3323 "in inferior. Use `overlay manual' mode.");
3324 return 0;
3325 }
3326
3327 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3328 if (! ovly_table_msym)
3329 {
3330 error ("Error reading inferior's overlay table: couldn't find "
3331 "`_ovly_table' array\n"
3332 "in inferior. Use `overlay manual' mode.");
3333 return 0;
3334 }
3335
3336 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3337 cache_ovly_table
3338 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3339 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3340 read_target_long_array (cache_ovly_table_base,
3341 (int *) cache_ovly_table,
3342 cache_novlys * 4);
3343
3344 return 1; /* SUCCESS */
3345 }
3346
3347 #if 0
3348 /* Find and grab a copy of the target _ovly_region_table
3349 (and _novly_regions, which is needed for the table's size) */
3350 static int
3351 simple_read_overlay_region_table (void)
3352 {
3353 struct minimal_symbol *msym;
3354
3355 simple_free_overlay_region_table ();
3356 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3357 if (msym != NULL)
3358 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3359 else
3360 return 0; /* failure */
3361 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3362 if (cache_ovly_region_table != NULL)
3363 {
3364 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3365 if (msym != NULL)
3366 {
3367 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3368 read_target_long_array (cache_ovly_region_table_base,
3369 (int *) cache_ovly_region_table,
3370 cache_novly_regions * 3);
3371 }
3372 else
3373 return 0; /* failure */
3374 }
3375 else
3376 return 0; /* failure */
3377 return 1; /* SUCCESS */
3378 }
3379 #endif
3380
3381 /* Function: simple_overlay_update_1
3382 A helper function for simple_overlay_update. Assuming a cached copy
3383 of _ovly_table exists, look through it to find an entry whose vma,
3384 lma and size match those of OSECT. Re-read the entry and make sure
3385 it still matches OSECT (else the table may no longer be valid).
3386 Set OSECT's mapped state to match the entry. Return: 1 for
3387 success, 0 for failure. */
3388
3389 static int
3390 simple_overlay_update_1 (struct obj_section *osect)
3391 {
3392 int i, size;
3393 bfd *obfd = osect->objfile->obfd;
3394 asection *bsect = osect->the_bfd_section;
3395
3396 size = bfd_get_section_size (osect->the_bfd_section);
3397 for (i = 0; i < cache_novlys; i++)
3398 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3399 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3400 /* && cache_ovly_table[i][SIZE] == size */ )
3401 {
3402 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3403 (int *) cache_ovly_table[i], 4);
3404 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3405 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3406 /* && cache_ovly_table[i][SIZE] == size */ )
3407 {
3408 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3409 return 1;
3410 }
3411 else /* Warning! Warning! Target's ovly table has changed! */
3412 return 0;
3413 }
3414 return 0;
3415 }
3416
3417 /* Function: simple_overlay_update
3418 If OSECT is NULL, then update all sections' mapped state
3419 (after re-reading the entire target _ovly_table).
3420 If OSECT is non-NULL, then try to find a matching entry in the
3421 cached ovly_table and update only OSECT's mapped state.
3422 If a cached entry can't be found or the cache isn't valid, then
3423 re-read the entire cache, and go ahead and update all sections. */
3424
3425 static void
3426 simple_overlay_update (struct obj_section *osect)
3427 {
3428 struct objfile *objfile;
3429
3430 /* Were we given an osect to look up? NULL means do all of them. */
3431 if (osect)
3432 /* Have we got a cached copy of the target's overlay table? */
3433 if (cache_ovly_table != NULL)
3434 /* Does its cached location match what's currently in the symtab? */
3435 if (cache_ovly_table_base ==
3436 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3437 /* Then go ahead and try to look up this single section in the cache */
3438 if (simple_overlay_update_1 (osect))
3439 /* Found it! We're done. */
3440 return;
3441
3442 /* Cached table no good: need to read the entire table anew.
3443 Or else we want all the sections, in which case it's actually
3444 more efficient to read the whole table in one block anyway. */
3445
3446 if (! simple_read_overlay_table ())
3447 return;
3448
3449 /* Now may as well update all sections, even if only one was requested. */
3450 ALL_OBJSECTIONS (objfile, osect)
3451 if (section_is_overlay (osect->the_bfd_section))
3452 {
3453 int i, size;
3454 bfd *obfd = osect->objfile->obfd;
3455 asection *bsect = osect->the_bfd_section;
3456
3457 size = bfd_get_section_size (bsect);
3458 for (i = 0; i < cache_novlys; i++)
3459 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3460 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3461 /* && cache_ovly_table[i][SIZE] == size */ )
3462 { /* obj_section matches i'th entry in ovly_table */
3463 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3464 break; /* finished with inner for loop: break out */
3465 }
3466 }
3467 }
3468
3469 /* Set the output sections and output offsets for section SECTP in
3470 ABFD. The relocation code in BFD will read these offsets, so we
3471 need to be sure they're initialized. We map each section to itself,
3472 with no offset; this means that SECTP->vma will be honored. */
3473
3474 static void
3475 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3476 {
3477 sectp->output_section = sectp;
3478 sectp->output_offset = 0;
3479 }
3480
3481 /* Relocate the contents of a debug section SECTP in ABFD. The
3482 contents are stored in BUF if it is non-NULL, or returned in a
3483 malloc'd buffer otherwise.
3484
3485 For some platforms and debug info formats, shared libraries contain
3486 relocations against the debug sections (particularly for DWARF-2;
3487 one affected platform is PowerPC GNU/Linux, although it depends on
3488 the version of the linker in use). Also, ELF object files naturally
3489 have unresolved relocations for their debug sections. We need to apply
3490 the relocations in order to get the locations of symbols correct. */
3491
3492 bfd_byte *
3493 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3494 {
3495 /* We're only interested in debugging sections with relocation
3496 information. */
3497 if ((sectp->flags & SEC_RELOC) == 0)
3498 return NULL;
3499 if ((sectp->flags & SEC_DEBUGGING) == 0)
3500 return NULL;
3501
3502 /* We will handle section offsets properly elsewhere, so relocate as if
3503 all sections begin at 0. */
3504 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3505
3506 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3507 }
3508
3509 void
3510 _initialize_symfile (void)
3511 {
3512 struct cmd_list_element *c;
3513
3514 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3515 "Load symbol table from executable file FILE.\n\
3516 The `file' command can also load symbol tables, as well as setting the file\n\
3517 to execute.", &cmdlist);
3518 set_cmd_completer (c, filename_completer);
3519
3520 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3521 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3522 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3523 ADDR is the starting address of the file's text.\n\
3524 The optional arguments are section-name section-address pairs and\n\
3525 should be specified if the data and bss segments are not contiguous\n\
3526 with the text. SECT is a section name to be loaded at SECT_ADDR.",
3527 &cmdlist);
3528 set_cmd_completer (c, filename_completer);
3529
3530 c = add_cmd ("add-shared-symbol-files", class_files,
3531 add_shared_symbol_files_command,
3532 "Load the symbols from shared objects in the dynamic linker's link map.",
3533 &cmdlist);
3534 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3535 &cmdlist);
3536
3537 c = add_cmd ("load", class_files, load_command,
3538 "Dynamically load FILE into the running program, and record its symbols\n\
3539 for access from GDB.", &cmdlist);
3540 set_cmd_completer (c, filename_completer);
3541
3542 deprecated_add_show_from_set
3543 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3544 (char *) &symbol_reloading,
3545 "Set dynamic symbol table reloading multiple times in one run.",
3546 &setlist),
3547 &showlist);
3548
3549 add_prefix_cmd ("overlay", class_support, overlay_command,
3550 "Commands for debugging overlays.", &overlaylist,
3551 "overlay ", 0, &cmdlist);
3552
3553 add_com_alias ("ovly", "overlay", class_alias, 1);
3554 add_com_alias ("ov", "overlay", class_alias, 1);
3555
3556 add_cmd ("map-overlay", class_support, map_overlay_command,
3557 "Assert that an overlay section is mapped.", &overlaylist);
3558
3559 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3560 "Assert that an overlay section is unmapped.", &overlaylist);
3561
3562 add_cmd ("list-overlays", class_support, list_overlays_command,
3563 "List mappings of overlay sections.", &overlaylist);
3564
3565 add_cmd ("manual", class_support, overlay_manual_command,
3566 "Enable overlay debugging.", &overlaylist);
3567 add_cmd ("off", class_support, overlay_off_command,
3568 "Disable overlay debugging.", &overlaylist);
3569 add_cmd ("auto", class_support, overlay_auto_command,
3570 "Enable automatic overlay debugging.", &overlaylist);
3571 add_cmd ("load-target", class_support, overlay_load_command,
3572 "Read the overlay mapping state from the target.", &overlaylist);
3573
3574 /* Filename extension to source language lookup table: */
3575 init_filename_language_table ();
3576 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3577 (char *) &ext_args,
3578 "Set mapping between filename extension and source language.\n\
3579 Usage: set extension-language .foo bar",
3580 &setlist);
3581 set_cmd_cfunc (c, set_ext_lang_command);
3582
3583 add_info ("extensions", info_ext_lang_command,
3584 "All filename extensions associated with a source language.");
3585
3586 deprecated_add_show_from_set
3587 (add_set_cmd ("download-write-size", class_obscure,
3588 var_integer, (char *) &download_write_size,
3589 "Set the write size used when downloading a program.\n"
3590 "Only used when downloading a program onto a remote\n"
3591 "target. Specify zero, or a negative value, to disable\n"
3592 "blocked writes. The actual size of each transfer is also\n"
3593 "limited by the size of the target packet and the memory\n"
3594 "cache.\n",
3595 &setlist),
3596 &showlist);
3597
3598 debug_file_directory = xstrdup (DEBUGDIR);
3599 c = (add_set_cmd
3600 ("debug-file-directory", class_support, var_string,
3601 (char *) &debug_file_directory,
3602 "Set the directory where separate debug symbols are searched for.\n"
3603 "Separate debug symbols are first searched for in the same\n"
3604 "directory as the binary, then in the `" DEBUG_SUBDIRECTORY
3605 "' subdirectory,\n"
3606 "and lastly at the path of the directory of the binary with\n"
3607 "the global debug-file directory prepended\n",
3608 &setlist));
3609 deprecated_add_show_from_set (c, &showlist);
3610 set_cmd_completer (c, filename_completer);
3611 }
This page took 0.147027 seconds and 4 git commands to generate.