move the demangled_names_hash into the per-BFD
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57 #include "stack.h"
58 #include "gdb_bfd.h"
59 #include "cli/cli-utils.h"
60
61 #include <sys/types.h>
62 #include <fcntl.h>
63 #include "gdb_string.h"
64 #include "gdb_stat.h"
65 #include <ctype.h>
66 #include <time.h>
67 #include <sys/time.h>
68
69 #include "psymtab.h"
70
71 int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
73 void (*deprecated_show_load_progress) (const char *section,
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
77 unsigned long total_size);
78 void (*deprecated_pre_add_symbol_hook) (const char *);
79 void (*deprecated_post_add_symbol_hook) (void);
80
81 static void clear_symtab_users_cleanup (void *ignore);
82
83 /* Global variables owned by this file. */
84 int readnow_symbol_files; /* Read full symbols immediately. */
85
86 /* Functions this file defines. */
87
88 static void load_command (char *, int);
89
90 static void symbol_file_add_main_1 (const char *args, int from_tty, int flags);
91
92 static void add_symbol_file_command (char *, int);
93
94 static const struct sym_fns *find_sym_fns (bfd *);
95
96 static void decrement_reading_symtab (void *);
97
98 static void overlay_invalidate_all (void);
99
100 static void overlay_auto_command (char *, int);
101
102 static void overlay_manual_command (char *, int);
103
104 static void overlay_off_command (char *, int);
105
106 static void overlay_load_command (char *, int);
107
108 static void overlay_command (char *, int);
109
110 static void simple_free_overlay_table (void);
111
112 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
113 enum bfd_endian);
114
115 static int simple_read_overlay_table (void);
116
117 static int simple_overlay_update_1 (struct obj_section *);
118
119 static void add_filename_language (char *ext, enum language lang);
120
121 static void info_ext_lang_command (char *args, int from_tty);
122
123 static void init_filename_language_table (void);
124
125 static void symfile_find_segment_sections (struct objfile *objfile);
126
127 void _initialize_symfile (void);
128
129 /* List of all available sym_fns. On gdb startup, each object file reader
130 calls add_symtab_fns() to register information on each format it is
131 prepared to read. */
132
133 typedef struct
134 {
135 /* BFD flavour that we handle. */
136 enum bfd_flavour sym_flavour;
137
138 /* The "vtable" of symbol functions. */
139 const struct sym_fns *sym_fns;
140 } registered_sym_fns;
141
142 DEF_VEC_O (registered_sym_fns);
143
144 static VEC (registered_sym_fns) *symtab_fns = NULL;
145
146 /* If non-zero, shared library symbols will be added automatically
147 when the inferior is created, new libraries are loaded, or when
148 attaching to the inferior. This is almost always what users will
149 want to have happen; but for very large programs, the startup time
150 will be excessive, and so if this is a problem, the user can clear
151 this flag and then add the shared library symbols as needed. Note
152 that there is a potential for confusion, since if the shared
153 library symbols are not loaded, commands like "info fun" will *not*
154 report all the functions that are actually present. */
155
156 int auto_solib_add = 1;
157 \f
158
159 /* True if we are reading a symbol table. */
160
161 int currently_reading_symtab = 0;
162
163 static void
164 decrement_reading_symtab (void *dummy)
165 {
166 currently_reading_symtab--;
167 gdb_assert (currently_reading_symtab >= 0);
168 }
169
170 /* Increment currently_reading_symtab and return a cleanup that can be
171 used to decrement it. */
172
173 struct cleanup *
174 increment_reading_symtab (void)
175 {
176 ++currently_reading_symtab;
177 gdb_assert (currently_reading_symtab > 0);
178 return make_cleanup (decrement_reading_symtab, NULL);
179 }
180
181 /* Remember the lowest-addressed loadable section we've seen.
182 This function is called via bfd_map_over_sections.
183
184 In case of equal vmas, the section with the largest size becomes the
185 lowest-addressed loadable section.
186
187 If the vmas and sizes are equal, the last section is considered the
188 lowest-addressed loadable section. */
189
190 void
191 find_lowest_section (bfd *abfd, asection *sect, void *obj)
192 {
193 asection **lowest = (asection **) obj;
194
195 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
196 return;
197 if (!*lowest)
198 *lowest = sect; /* First loadable section */
199 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
200 *lowest = sect; /* A lower loadable section */
201 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
202 && (bfd_section_size (abfd, (*lowest))
203 <= bfd_section_size (abfd, sect)))
204 *lowest = sect;
205 }
206
207 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
208 new object's 'num_sections' field is set to 0; it must be updated
209 by the caller. */
210
211 struct section_addr_info *
212 alloc_section_addr_info (size_t num_sections)
213 {
214 struct section_addr_info *sap;
215 size_t size;
216
217 size = (sizeof (struct section_addr_info)
218 + sizeof (struct other_sections) * (num_sections - 1));
219 sap = (struct section_addr_info *) xmalloc (size);
220 memset (sap, 0, size);
221
222 return sap;
223 }
224
225 /* Build (allocate and populate) a section_addr_info struct from
226 an existing section table. */
227
228 extern struct section_addr_info *
229 build_section_addr_info_from_section_table (const struct target_section *start,
230 const struct target_section *end)
231 {
232 struct section_addr_info *sap;
233 const struct target_section *stp;
234 int oidx;
235
236 sap = alloc_section_addr_info (end - start);
237
238 for (stp = start, oidx = 0; stp != end; stp++)
239 {
240 struct bfd_section *asect = stp->the_bfd_section;
241 bfd *abfd = asect->owner;
242
243 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
244 && oidx < end - start)
245 {
246 sap->other[oidx].addr = stp->addr;
247 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
248 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
249 oidx++;
250 }
251 }
252
253 sap->num_sections = oidx;
254
255 return sap;
256 }
257
258 /* Create a section_addr_info from section offsets in ABFD. */
259
260 static struct section_addr_info *
261 build_section_addr_info_from_bfd (bfd *abfd)
262 {
263 struct section_addr_info *sap;
264 int i;
265 struct bfd_section *sec;
266
267 sap = alloc_section_addr_info (bfd_count_sections (abfd));
268 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
269 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
270 {
271 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
272 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
273 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
274 i++;
275 }
276
277 sap->num_sections = i;
278
279 return sap;
280 }
281
282 /* Create a section_addr_info from section offsets in OBJFILE. */
283
284 struct section_addr_info *
285 build_section_addr_info_from_objfile (const struct objfile *objfile)
286 {
287 struct section_addr_info *sap;
288 int i;
289
290 /* Before reread_symbols gets rewritten it is not safe to call:
291 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
292 */
293 sap = build_section_addr_info_from_bfd (objfile->obfd);
294 for (i = 0; i < sap->num_sections; i++)
295 {
296 int sectindex = sap->other[i].sectindex;
297
298 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
299 }
300 return sap;
301 }
302
303 /* Free all memory allocated by build_section_addr_info_from_section_table. */
304
305 extern void
306 free_section_addr_info (struct section_addr_info *sap)
307 {
308 int idx;
309
310 for (idx = 0; idx < sap->num_sections; idx++)
311 xfree (sap->other[idx].name);
312 xfree (sap);
313 }
314
315 /* Initialize OBJFILE's sect_index_* members. */
316
317 static void
318 init_objfile_sect_indices (struct objfile *objfile)
319 {
320 asection *sect;
321 int i;
322
323 sect = bfd_get_section_by_name (objfile->obfd, ".text");
324 if (sect)
325 objfile->sect_index_text = sect->index;
326
327 sect = bfd_get_section_by_name (objfile->obfd, ".data");
328 if (sect)
329 objfile->sect_index_data = sect->index;
330
331 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
332 if (sect)
333 objfile->sect_index_bss = sect->index;
334
335 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
336 if (sect)
337 objfile->sect_index_rodata = sect->index;
338
339 /* This is where things get really weird... We MUST have valid
340 indices for the various sect_index_* members or gdb will abort.
341 So if for example, there is no ".text" section, we have to
342 accomodate that. First, check for a file with the standard
343 one or two segments. */
344
345 symfile_find_segment_sections (objfile);
346
347 /* Except when explicitly adding symbol files at some address,
348 section_offsets contains nothing but zeros, so it doesn't matter
349 which slot in section_offsets the individual sect_index_* members
350 index into. So if they are all zero, it is safe to just point
351 all the currently uninitialized indices to the first slot. But
352 beware: if this is the main executable, it may be relocated
353 later, e.g. by the remote qOffsets packet, and then this will
354 be wrong! That's why we try segments first. */
355
356 for (i = 0; i < objfile->num_sections; i++)
357 {
358 if (ANOFFSET (objfile->section_offsets, i) != 0)
359 {
360 break;
361 }
362 }
363 if (i == objfile->num_sections)
364 {
365 if (objfile->sect_index_text == -1)
366 objfile->sect_index_text = 0;
367 if (objfile->sect_index_data == -1)
368 objfile->sect_index_data = 0;
369 if (objfile->sect_index_bss == -1)
370 objfile->sect_index_bss = 0;
371 if (objfile->sect_index_rodata == -1)
372 objfile->sect_index_rodata = 0;
373 }
374 }
375
376 /* The arguments to place_section. */
377
378 struct place_section_arg
379 {
380 struct section_offsets *offsets;
381 CORE_ADDR lowest;
382 };
383
384 /* Find a unique offset to use for loadable section SECT if
385 the user did not provide an offset. */
386
387 static void
388 place_section (bfd *abfd, asection *sect, void *obj)
389 {
390 struct place_section_arg *arg = obj;
391 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
392 int done;
393 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
394
395 /* We are only interested in allocated sections. */
396 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
397 return;
398
399 /* If the user specified an offset, honor it. */
400 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
401 return;
402
403 /* Otherwise, let's try to find a place for the section. */
404 start_addr = (arg->lowest + align - 1) & -align;
405
406 do {
407 asection *cur_sec;
408
409 done = 1;
410
411 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
412 {
413 int indx = cur_sec->index;
414
415 /* We don't need to compare against ourself. */
416 if (cur_sec == sect)
417 continue;
418
419 /* We can only conflict with allocated sections. */
420 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
421 continue;
422
423 /* If the section offset is 0, either the section has not been placed
424 yet, or it was the lowest section placed (in which case LOWEST
425 will be past its end). */
426 if (offsets[indx] == 0)
427 continue;
428
429 /* If this section would overlap us, then we must move up. */
430 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
431 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
432 {
433 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
434 start_addr = (start_addr + align - 1) & -align;
435 done = 0;
436 break;
437 }
438
439 /* Otherwise, we appear to be OK. So far. */
440 }
441 }
442 while (!done);
443
444 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
445 arg->lowest = start_addr + bfd_get_section_size (sect);
446 }
447
448 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
449 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
450 entries. */
451
452 void
453 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
454 int num_sections,
455 const struct section_addr_info *addrs)
456 {
457 int i;
458
459 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
460
461 /* Now calculate offsets for section that were specified by the caller. */
462 for (i = 0; i < addrs->num_sections; i++)
463 {
464 const struct other_sections *osp;
465
466 osp = &addrs->other[i];
467 if (osp->sectindex == -1)
468 continue;
469
470 /* Record all sections in offsets. */
471 /* The section_offsets in the objfile are here filled in using
472 the BFD index. */
473 section_offsets->offsets[osp->sectindex] = osp->addr;
474 }
475 }
476
477 /* Transform section name S for a name comparison. prelink can split section
478 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
479 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
480 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
481 (`.sbss') section has invalid (increased) virtual address. */
482
483 static const char *
484 addr_section_name (const char *s)
485 {
486 if (strcmp (s, ".dynbss") == 0)
487 return ".bss";
488 if (strcmp (s, ".sdynbss") == 0)
489 return ".sbss";
490
491 return s;
492 }
493
494 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
495 their (name, sectindex) pair. sectindex makes the sort by name stable. */
496
497 static int
498 addrs_section_compar (const void *ap, const void *bp)
499 {
500 const struct other_sections *a = *((struct other_sections **) ap);
501 const struct other_sections *b = *((struct other_sections **) bp);
502 int retval;
503
504 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
505 if (retval)
506 return retval;
507
508 return a->sectindex - b->sectindex;
509 }
510
511 /* Provide sorted array of pointers to sections of ADDRS. The array is
512 terminated by NULL. Caller is responsible to call xfree for it. */
513
514 static struct other_sections **
515 addrs_section_sort (struct section_addr_info *addrs)
516 {
517 struct other_sections **array;
518 int i;
519
520 /* `+ 1' for the NULL terminator. */
521 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
522 for (i = 0; i < addrs->num_sections; i++)
523 array[i] = &addrs->other[i];
524 array[i] = NULL;
525
526 qsort (array, i, sizeof (*array), addrs_section_compar);
527
528 return array;
529 }
530
531 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
532 also SECTINDEXes specific to ABFD there. This function can be used to
533 rebase ADDRS to start referencing different BFD than before. */
534
535 void
536 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
537 {
538 asection *lower_sect;
539 CORE_ADDR lower_offset;
540 int i;
541 struct cleanup *my_cleanup;
542 struct section_addr_info *abfd_addrs;
543 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
544 struct other_sections **addrs_to_abfd_addrs;
545
546 /* Find lowest loadable section to be used as starting point for
547 continguous sections. */
548 lower_sect = NULL;
549 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
550 if (lower_sect == NULL)
551 {
552 warning (_("no loadable sections found in added symbol-file %s"),
553 bfd_get_filename (abfd));
554 lower_offset = 0;
555 }
556 else
557 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
558
559 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
560 in ABFD. Section names are not unique - there can be multiple sections of
561 the same name. Also the sections of the same name do not have to be
562 adjacent to each other. Some sections may be present only in one of the
563 files. Even sections present in both files do not have to be in the same
564 order.
565
566 Use stable sort by name for the sections in both files. Then linearly
567 scan both lists matching as most of the entries as possible. */
568
569 addrs_sorted = addrs_section_sort (addrs);
570 my_cleanup = make_cleanup (xfree, addrs_sorted);
571
572 abfd_addrs = build_section_addr_info_from_bfd (abfd);
573 make_cleanup_free_section_addr_info (abfd_addrs);
574 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
575 make_cleanup (xfree, abfd_addrs_sorted);
576
577 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
578 ABFD_ADDRS_SORTED. */
579
580 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
581 * addrs->num_sections);
582 make_cleanup (xfree, addrs_to_abfd_addrs);
583
584 while (*addrs_sorted)
585 {
586 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
587
588 while (*abfd_addrs_sorted
589 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
590 sect_name) < 0)
591 abfd_addrs_sorted++;
592
593 if (*abfd_addrs_sorted
594 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
595 sect_name) == 0)
596 {
597 int index_in_addrs;
598
599 /* Make the found item directly addressable from ADDRS. */
600 index_in_addrs = *addrs_sorted - addrs->other;
601 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
602 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
603
604 /* Never use the same ABFD entry twice. */
605 abfd_addrs_sorted++;
606 }
607
608 addrs_sorted++;
609 }
610
611 /* Calculate offsets for the loadable sections.
612 FIXME! Sections must be in order of increasing loadable section
613 so that contiguous sections can use the lower-offset!!!
614
615 Adjust offsets if the segments are not contiguous.
616 If the section is contiguous, its offset should be set to
617 the offset of the highest loadable section lower than it
618 (the loadable section directly below it in memory).
619 this_offset = lower_offset = lower_addr - lower_orig_addr */
620
621 for (i = 0; i < addrs->num_sections; i++)
622 {
623 struct other_sections *sect = addrs_to_abfd_addrs[i];
624
625 if (sect)
626 {
627 /* This is the index used by BFD. */
628 addrs->other[i].sectindex = sect->sectindex;
629
630 if (addrs->other[i].addr != 0)
631 {
632 addrs->other[i].addr -= sect->addr;
633 lower_offset = addrs->other[i].addr;
634 }
635 else
636 addrs->other[i].addr = lower_offset;
637 }
638 else
639 {
640 /* addr_section_name transformation is not used for SECT_NAME. */
641 const char *sect_name = addrs->other[i].name;
642
643 /* This section does not exist in ABFD, which is normally
644 unexpected and we want to issue a warning.
645
646 However, the ELF prelinker does create a few sections which are
647 marked in the main executable as loadable (they are loaded in
648 memory from the DYNAMIC segment) and yet are not present in
649 separate debug info files. This is fine, and should not cause
650 a warning. Shared libraries contain just the section
651 ".gnu.liblist" but it is not marked as loadable there. There is
652 no other way to identify them than by their name as the sections
653 created by prelink have no special flags.
654
655 For the sections `.bss' and `.sbss' see addr_section_name. */
656
657 if (!(strcmp (sect_name, ".gnu.liblist") == 0
658 || strcmp (sect_name, ".gnu.conflict") == 0
659 || (strcmp (sect_name, ".bss") == 0
660 && i > 0
661 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
662 && addrs_to_abfd_addrs[i - 1] != NULL)
663 || (strcmp (sect_name, ".sbss") == 0
664 && i > 0
665 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
666 && addrs_to_abfd_addrs[i - 1] != NULL)))
667 warning (_("section %s not found in %s"), sect_name,
668 bfd_get_filename (abfd));
669
670 addrs->other[i].addr = 0;
671 addrs->other[i].sectindex = -1;
672 }
673 }
674
675 do_cleanups (my_cleanup);
676 }
677
678 /* Parse the user's idea of an offset for dynamic linking, into our idea
679 of how to represent it for fast symbol reading. This is the default
680 version of the sym_fns.sym_offsets function for symbol readers that
681 don't need to do anything special. It allocates a section_offsets table
682 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
683
684 void
685 default_symfile_offsets (struct objfile *objfile,
686 const struct section_addr_info *addrs)
687 {
688 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
689 objfile->section_offsets = (struct section_offsets *)
690 obstack_alloc (&objfile->objfile_obstack,
691 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
692 relative_addr_info_to_section_offsets (objfile->section_offsets,
693 objfile->num_sections, addrs);
694
695 /* For relocatable files, all loadable sections will start at zero.
696 The zero is meaningless, so try to pick arbitrary addresses such
697 that no loadable sections overlap. This algorithm is quadratic,
698 but the number of sections in a single object file is generally
699 small. */
700 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
701 {
702 struct place_section_arg arg;
703 bfd *abfd = objfile->obfd;
704 asection *cur_sec;
705
706 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
707 /* We do not expect this to happen; just skip this step if the
708 relocatable file has a section with an assigned VMA. */
709 if (bfd_section_vma (abfd, cur_sec) != 0)
710 break;
711
712 if (cur_sec == NULL)
713 {
714 CORE_ADDR *offsets = objfile->section_offsets->offsets;
715
716 /* Pick non-overlapping offsets for sections the user did not
717 place explicitly. */
718 arg.offsets = objfile->section_offsets;
719 arg.lowest = 0;
720 bfd_map_over_sections (objfile->obfd, place_section, &arg);
721
722 /* Correctly filling in the section offsets is not quite
723 enough. Relocatable files have two properties that
724 (most) shared objects do not:
725
726 - Their debug information will contain relocations. Some
727 shared libraries do also, but many do not, so this can not
728 be assumed.
729
730 - If there are multiple code sections they will be loaded
731 at different relative addresses in memory than they are
732 in the objfile, since all sections in the file will start
733 at address zero.
734
735 Because GDB has very limited ability to map from an
736 address in debug info to the correct code section,
737 it relies on adding SECT_OFF_TEXT to things which might be
738 code. If we clear all the section offsets, and set the
739 section VMAs instead, then symfile_relocate_debug_section
740 will return meaningful debug information pointing at the
741 correct sections.
742
743 GDB has too many different data structures for section
744 addresses - a bfd, objfile, and so_list all have section
745 tables, as does exec_ops. Some of these could probably
746 be eliminated. */
747
748 for (cur_sec = abfd->sections; cur_sec != NULL;
749 cur_sec = cur_sec->next)
750 {
751 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
752 continue;
753
754 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
755 exec_set_section_address (bfd_get_filename (abfd),
756 cur_sec->index,
757 offsets[cur_sec->index]);
758 offsets[cur_sec->index] = 0;
759 }
760 }
761 }
762
763 /* Remember the bfd indexes for the .text, .data, .bss and
764 .rodata sections. */
765 init_objfile_sect_indices (objfile);
766 }
767
768 /* Divide the file into segments, which are individual relocatable units.
769 This is the default version of the sym_fns.sym_segments function for
770 symbol readers that do not have an explicit representation of segments.
771 It assumes that object files do not have segments, and fully linked
772 files have a single segment. */
773
774 struct symfile_segment_data *
775 default_symfile_segments (bfd *abfd)
776 {
777 int num_sections, i;
778 asection *sect;
779 struct symfile_segment_data *data;
780 CORE_ADDR low, high;
781
782 /* Relocatable files contain enough information to position each
783 loadable section independently; they should not be relocated
784 in segments. */
785 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
786 return NULL;
787
788 /* Make sure there is at least one loadable section in the file. */
789 for (sect = abfd->sections; sect != NULL; sect = sect->next)
790 {
791 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
792 continue;
793
794 break;
795 }
796 if (sect == NULL)
797 return NULL;
798
799 low = bfd_get_section_vma (abfd, sect);
800 high = low + bfd_get_section_size (sect);
801
802 data = XZALLOC (struct symfile_segment_data);
803 data->num_segments = 1;
804 data->segment_bases = XCALLOC (1, CORE_ADDR);
805 data->segment_sizes = XCALLOC (1, CORE_ADDR);
806
807 num_sections = bfd_count_sections (abfd);
808 data->segment_info = XCALLOC (num_sections, int);
809
810 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
811 {
812 CORE_ADDR vma;
813
814 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
815 continue;
816
817 vma = bfd_get_section_vma (abfd, sect);
818 if (vma < low)
819 low = vma;
820 if (vma + bfd_get_section_size (sect) > high)
821 high = vma + bfd_get_section_size (sect);
822
823 data->segment_info[i] = 1;
824 }
825
826 data->segment_bases[0] = low;
827 data->segment_sizes[0] = high - low;
828
829 return data;
830 }
831
832 /* This is a convenience function to call sym_read for OBJFILE and
833 possibly force the partial symbols to be read. */
834
835 static void
836 read_symbols (struct objfile *objfile, int add_flags)
837 {
838 (*objfile->sf->sym_read) (objfile, add_flags);
839
840 /* find_separate_debug_file_in_section should be called only if there is
841 single binary with no existing separate debug info file. */
842 if (!objfile_has_partial_symbols (objfile)
843 && objfile->separate_debug_objfile == NULL
844 && objfile->separate_debug_objfile_backlink == NULL)
845 {
846 bfd *abfd = find_separate_debug_file_in_section (objfile);
847 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
848
849 if (abfd != NULL)
850 {
851 /* find_separate_debug_file_in_section uses the same filename for the
852 virtual section-as-bfd like the bfd filename containing the
853 section. Therefore use also non-canonical name form for the same
854 file containing the section. */
855 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
856 objfile);
857 }
858
859 do_cleanups (cleanup);
860 }
861 if ((add_flags & SYMFILE_NO_READ) == 0)
862 require_partial_symbols (objfile, 0);
863 }
864
865 /* Initialize entry point information for this objfile. */
866
867 static void
868 init_entry_point_info (struct objfile *objfile)
869 {
870 /* Save startup file's range of PC addresses to help blockframe.c
871 decide where the bottom of the stack is. */
872
873 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
874 {
875 /* Executable file -- record its entry point so we'll recognize
876 the startup file because it contains the entry point. */
877 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
878 objfile->ei.entry_point_p = 1;
879 }
880 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
881 && bfd_get_start_address (objfile->obfd) != 0)
882 {
883 /* Some shared libraries may have entry points set and be
884 runnable. There's no clear way to indicate this, so just check
885 for values other than zero. */
886 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
887 objfile->ei.entry_point_p = 1;
888 }
889 else
890 {
891 /* Examination of non-executable.o files. Short-circuit this stuff. */
892 objfile->ei.entry_point_p = 0;
893 }
894
895 if (objfile->ei.entry_point_p)
896 {
897 CORE_ADDR entry_point = objfile->ei.entry_point;
898
899 /* Make certain that the address points at real code, and not a
900 function descriptor. */
901 entry_point
902 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
903 entry_point,
904 &current_target);
905
906 /* Remove any ISA markers, so that this matches entries in the
907 symbol table. */
908 objfile->ei.entry_point
909 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
910 }
911 }
912
913 /* Process a symbol file, as either the main file or as a dynamically
914 loaded file.
915
916 This function does not set the OBJFILE's entry-point info.
917
918 OBJFILE is where the symbols are to be read from.
919
920 ADDRS is the list of section load addresses. If the user has given
921 an 'add-symbol-file' command, then this is the list of offsets and
922 addresses he or she provided as arguments to the command; or, if
923 we're handling a shared library, these are the actual addresses the
924 sections are loaded at, according to the inferior's dynamic linker
925 (as gleaned by GDB's shared library code). We convert each address
926 into an offset from the section VMA's as it appears in the object
927 file, and then call the file's sym_offsets function to convert this
928 into a format-specific offset table --- a `struct section_offsets'.
929
930 ADD_FLAGS encodes verbosity level, whether this is main symbol or
931 an extra symbol file such as dynamically loaded code, and wether
932 breakpoint reset should be deferred. */
933
934 static void
935 syms_from_objfile_1 (struct objfile *objfile,
936 struct section_addr_info *addrs,
937 int add_flags)
938 {
939 struct section_addr_info *local_addr = NULL;
940 struct cleanup *old_chain;
941 const int mainline = add_flags & SYMFILE_MAINLINE;
942
943 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
944
945 if (objfile->sf == NULL)
946 {
947 /* No symbols to load, but we still need to make sure
948 that the section_offsets table is allocated. */
949 int num_sections = gdb_bfd_count_sections (objfile->obfd);
950 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
951
952 objfile->num_sections = num_sections;
953 objfile->section_offsets
954 = obstack_alloc (&objfile->objfile_obstack, size);
955 memset (objfile->section_offsets, 0, size);
956 return;
957 }
958
959 /* Make sure that partially constructed symbol tables will be cleaned up
960 if an error occurs during symbol reading. */
961 old_chain = make_cleanup_free_objfile (objfile);
962
963 /* If ADDRS is NULL, put together a dummy address list.
964 We now establish the convention that an addr of zero means
965 no load address was specified. */
966 if (! addrs)
967 {
968 local_addr = alloc_section_addr_info (1);
969 make_cleanup (xfree, local_addr);
970 addrs = local_addr;
971 }
972
973 if (mainline)
974 {
975 /* We will modify the main symbol table, make sure that all its users
976 will be cleaned up if an error occurs during symbol reading. */
977 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
978
979 /* Since no error yet, throw away the old symbol table. */
980
981 if (symfile_objfile != NULL)
982 {
983 free_objfile (symfile_objfile);
984 gdb_assert (symfile_objfile == NULL);
985 }
986
987 /* Currently we keep symbols from the add-symbol-file command.
988 If the user wants to get rid of them, they should do "symbol-file"
989 without arguments first. Not sure this is the best behavior
990 (PR 2207). */
991
992 (*objfile->sf->sym_new_init) (objfile);
993 }
994
995 /* Convert addr into an offset rather than an absolute address.
996 We find the lowest address of a loaded segment in the objfile,
997 and assume that <addr> is where that got loaded.
998
999 We no longer warn if the lowest section is not a text segment (as
1000 happens for the PA64 port. */
1001 if (addrs->num_sections > 0)
1002 addr_info_make_relative (addrs, objfile->obfd);
1003
1004 /* Initialize symbol reading routines for this objfile, allow complaints to
1005 appear for this new file, and record how verbose to be, then do the
1006 initial symbol reading for this file. */
1007
1008 (*objfile->sf->sym_init) (objfile);
1009 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1010
1011 (*objfile->sf->sym_offsets) (objfile, addrs);
1012
1013 read_symbols (objfile, add_flags);
1014
1015 /* Discard cleanups as symbol reading was successful. */
1016
1017 discard_cleanups (old_chain);
1018 xfree (local_addr);
1019 }
1020
1021 /* Same as syms_from_objfile_1, but also initializes the objfile
1022 entry-point info. */
1023
1024 static void
1025 syms_from_objfile (struct objfile *objfile,
1026 struct section_addr_info *addrs,
1027 int add_flags)
1028 {
1029 syms_from_objfile_1 (objfile, addrs, add_flags);
1030 init_entry_point_info (objfile);
1031 }
1032
1033 /* Perform required actions after either reading in the initial
1034 symbols for a new objfile, or mapping in the symbols from a reusable
1035 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1036
1037 void
1038 new_symfile_objfile (struct objfile *objfile, int add_flags)
1039 {
1040 /* If this is the main symbol file we have to clean up all users of the
1041 old main symbol file. Otherwise it is sufficient to fixup all the
1042 breakpoints that may have been redefined by this symbol file. */
1043 if (add_flags & SYMFILE_MAINLINE)
1044 {
1045 /* OK, make it the "real" symbol file. */
1046 symfile_objfile = objfile;
1047
1048 clear_symtab_users (add_flags);
1049 }
1050 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1051 {
1052 breakpoint_re_set ();
1053 }
1054
1055 /* We're done reading the symbol file; finish off complaints. */
1056 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1057 }
1058
1059 /* Process a symbol file, as either the main file or as a dynamically
1060 loaded file.
1061
1062 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1063 A new reference is acquired by this function.
1064
1065 For NAME description see allocate_objfile's definition.
1066
1067 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1068 extra, such as dynamically loaded code, and what to do with breakpoins.
1069
1070 ADDRS is as described for syms_from_objfile_1, above.
1071 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1072
1073 PARENT is the original objfile if ABFD is a separate debug info file.
1074 Otherwise PARENT is NULL.
1075
1076 Upon success, returns a pointer to the objfile that was added.
1077 Upon failure, jumps back to command level (never returns). */
1078
1079 static struct objfile *
1080 symbol_file_add_with_addrs (bfd *abfd, const char *name, int add_flags,
1081 struct section_addr_info *addrs,
1082 int flags, struct objfile *parent)
1083 {
1084 struct objfile *objfile;
1085 const int from_tty = add_flags & SYMFILE_VERBOSE;
1086 const int mainline = add_flags & SYMFILE_MAINLINE;
1087 const int should_print = ((from_tty || info_verbose)
1088 && (readnow_symbol_files
1089 || (add_flags & SYMFILE_NO_READ) == 0));
1090
1091 if (readnow_symbol_files)
1092 {
1093 flags |= OBJF_READNOW;
1094 add_flags &= ~SYMFILE_NO_READ;
1095 }
1096
1097 /* Give user a chance to burp if we'd be
1098 interactively wiping out any existing symbols. */
1099
1100 if ((have_full_symbols () || have_partial_symbols ())
1101 && mainline
1102 && from_tty
1103 && !query (_("Load new symbol table from \"%s\"? "), name))
1104 error (_("Not confirmed."));
1105
1106 objfile = allocate_objfile (abfd, name,
1107 flags | (mainline ? OBJF_MAINLINE : 0));
1108
1109 if (parent)
1110 add_separate_debug_objfile (objfile, parent);
1111
1112 /* We either created a new mapped symbol table, mapped an existing
1113 symbol table file which has not had initial symbol reading
1114 performed, or need to read an unmapped symbol table. */
1115 if (should_print)
1116 {
1117 if (deprecated_pre_add_symbol_hook)
1118 deprecated_pre_add_symbol_hook (name);
1119 else
1120 {
1121 printf_unfiltered (_("Reading symbols from %s..."), name);
1122 wrap_here ("");
1123 gdb_flush (gdb_stdout);
1124 }
1125 }
1126 syms_from_objfile (objfile, addrs, add_flags);
1127
1128 /* We now have at least a partial symbol table. Check to see if the
1129 user requested that all symbols be read on initial access via either
1130 the gdb startup command line or on a per symbol file basis. Expand
1131 all partial symbol tables for this objfile if so. */
1132
1133 if ((flags & OBJF_READNOW))
1134 {
1135 if (should_print)
1136 {
1137 printf_unfiltered (_("expanding to full symbols..."));
1138 wrap_here ("");
1139 gdb_flush (gdb_stdout);
1140 }
1141
1142 if (objfile->sf)
1143 objfile->sf->qf->expand_all_symtabs (objfile);
1144 }
1145
1146 if (should_print && !objfile_has_symbols (objfile))
1147 {
1148 wrap_here ("");
1149 printf_unfiltered (_("(no debugging symbols found)..."));
1150 wrap_here ("");
1151 }
1152
1153 if (should_print)
1154 {
1155 if (deprecated_post_add_symbol_hook)
1156 deprecated_post_add_symbol_hook ();
1157 else
1158 printf_unfiltered (_("done.\n"));
1159 }
1160
1161 /* We print some messages regardless of whether 'from_tty ||
1162 info_verbose' is true, so make sure they go out at the right
1163 time. */
1164 gdb_flush (gdb_stdout);
1165
1166 if (objfile->sf == NULL)
1167 {
1168 observer_notify_new_objfile (objfile);
1169 return objfile; /* No symbols. */
1170 }
1171
1172 new_symfile_objfile (objfile, add_flags);
1173
1174 observer_notify_new_objfile (objfile);
1175
1176 bfd_cache_close_all ();
1177 return (objfile);
1178 }
1179
1180 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1181 see allocate_objfile's definition. */
1182
1183 void
1184 symbol_file_add_separate (bfd *bfd, const char *name, int symfile_flags,
1185 struct objfile *objfile)
1186 {
1187 struct objfile *new_objfile;
1188 struct section_addr_info *sap;
1189 struct cleanup *my_cleanup;
1190
1191 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1192 because sections of BFD may not match sections of OBJFILE and because
1193 vma may have been modified by tools such as prelink. */
1194 sap = build_section_addr_info_from_objfile (objfile);
1195 my_cleanup = make_cleanup_free_section_addr_info (sap);
1196
1197 new_objfile = symbol_file_add_with_addrs
1198 (bfd, name, symfile_flags, sap,
1199 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1200 | OBJF_USERLOADED),
1201 objfile);
1202
1203 do_cleanups (my_cleanup);
1204 }
1205
1206 /* Process the symbol file ABFD, as either the main file or as a
1207 dynamically loaded file.
1208 See symbol_file_add_with_addrs's comments for details. */
1209
1210 struct objfile *
1211 symbol_file_add_from_bfd (bfd *abfd, const char *name, int add_flags,
1212 struct section_addr_info *addrs,
1213 int flags, struct objfile *parent)
1214 {
1215 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1216 parent);
1217 }
1218
1219 /* Process a symbol file, as either the main file or as a dynamically
1220 loaded file. See symbol_file_add_with_addrs's comments for details. */
1221
1222 struct objfile *
1223 symbol_file_add (const char *name, int add_flags,
1224 struct section_addr_info *addrs, int flags)
1225 {
1226 bfd *bfd = symfile_bfd_open (name);
1227 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1228 struct objfile *objf;
1229
1230 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
1231 do_cleanups (cleanup);
1232 return objf;
1233 }
1234
1235 /* Call symbol_file_add() with default values and update whatever is
1236 affected by the loading of a new main().
1237 Used when the file is supplied in the gdb command line
1238 and by some targets with special loading requirements.
1239 The auxiliary function, symbol_file_add_main_1(), has the flags
1240 argument for the switches that can only be specified in the symbol_file
1241 command itself. */
1242
1243 void
1244 symbol_file_add_main (const char *args, int from_tty)
1245 {
1246 symbol_file_add_main_1 (args, from_tty, 0);
1247 }
1248
1249 static void
1250 symbol_file_add_main_1 (const char *args, int from_tty, int flags)
1251 {
1252 const int add_flags = (current_inferior ()->symfile_flags
1253 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1254
1255 symbol_file_add (args, add_flags, NULL, flags);
1256
1257 /* Getting new symbols may change our opinion about
1258 what is frameless. */
1259 reinit_frame_cache ();
1260
1261 if ((flags & SYMFILE_NO_READ) == 0)
1262 set_initial_language ();
1263 }
1264
1265 void
1266 symbol_file_clear (int from_tty)
1267 {
1268 if ((have_full_symbols () || have_partial_symbols ())
1269 && from_tty
1270 && (symfile_objfile
1271 ? !query (_("Discard symbol table from `%s'? "),
1272 objfile_name (symfile_objfile))
1273 : !query (_("Discard symbol table? "))))
1274 error (_("Not confirmed."));
1275
1276 /* solib descriptors may have handles to objfiles. Wipe them before their
1277 objfiles get stale by free_all_objfiles. */
1278 no_shared_libraries (NULL, from_tty);
1279
1280 free_all_objfiles ();
1281
1282 gdb_assert (symfile_objfile == NULL);
1283 if (from_tty)
1284 printf_unfiltered (_("No symbol file now.\n"));
1285 }
1286
1287 static int
1288 separate_debug_file_exists (const char *name, unsigned long crc,
1289 struct objfile *parent_objfile)
1290 {
1291 unsigned long file_crc;
1292 int file_crc_p;
1293 bfd *abfd;
1294 struct stat parent_stat, abfd_stat;
1295 int verified_as_different;
1296
1297 /* Find a separate debug info file as if symbols would be present in
1298 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1299 section can contain just the basename of PARENT_OBJFILE without any
1300 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1301 the separate debug infos with the same basename can exist. */
1302
1303 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1304 return 0;
1305
1306 abfd = gdb_bfd_open_maybe_remote (name);
1307
1308 if (!abfd)
1309 return 0;
1310
1311 /* Verify symlinks were not the cause of filename_cmp name difference above.
1312
1313 Some operating systems, e.g. Windows, do not provide a meaningful
1314 st_ino; they always set it to zero. (Windows does provide a
1315 meaningful st_dev.) Do not indicate a duplicate library in that
1316 case. While there is no guarantee that a system that provides
1317 meaningful inode numbers will never set st_ino to zero, this is
1318 merely an optimization, so we do not need to worry about false
1319 negatives. */
1320
1321 if (bfd_stat (abfd, &abfd_stat) == 0
1322 && abfd_stat.st_ino != 0
1323 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1324 {
1325 if (abfd_stat.st_dev == parent_stat.st_dev
1326 && abfd_stat.st_ino == parent_stat.st_ino)
1327 {
1328 gdb_bfd_unref (abfd);
1329 return 0;
1330 }
1331 verified_as_different = 1;
1332 }
1333 else
1334 verified_as_different = 0;
1335
1336 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
1337
1338 gdb_bfd_unref (abfd);
1339
1340 if (!file_crc_p)
1341 return 0;
1342
1343 if (crc != file_crc)
1344 {
1345 unsigned long parent_crc;
1346
1347 /* If one (or both) the files are accessed for example the via "remote:"
1348 gdbserver way it does not support the bfd_stat operation. Verify
1349 whether those two files are not the same manually. */
1350
1351 if (!verified_as_different)
1352 {
1353 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1354 return 0;
1355 }
1356
1357 if (verified_as_different || parent_crc != file_crc)
1358 warning (_("the debug information found in \"%s\""
1359 " does not match \"%s\" (CRC mismatch).\n"),
1360 name, objfile_name (parent_objfile));
1361
1362 return 0;
1363 }
1364
1365 return 1;
1366 }
1367
1368 char *debug_file_directory = NULL;
1369 static void
1370 show_debug_file_directory (struct ui_file *file, int from_tty,
1371 struct cmd_list_element *c, const char *value)
1372 {
1373 fprintf_filtered (file,
1374 _("The directory where separate debug "
1375 "symbols are searched for is \"%s\".\n"),
1376 value);
1377 }
1378
1379 #if ! defined (DEBUG_SUBDIRECTORY)
1380 #define DEBUG_SUBDIRECTORY ".debug"
1381 #endif
1382
1383 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1384 where the original file resides (may not be the same as
1385 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1386 looking for. CANON_DIR is the "realpath" form of DIR.
1387 DIR must contain a trailing '/'.
1388 Returns the path of the file with separate debug info, of NULL. */
1389
1390 static char *
1391 find_separate_debug_file (const char *dir,
1392 const char *canon_dir,
1393 const char *debuglink,
1394 unsigned long crc32, struct objfile *objfile)
1395 {
1396 char *debugdir;
1397 char *debugfile;
1398 int i;
1399 VEC (char_ptr) *debugdir_vec;
1400 struct cleanup *back_to;
1401 int ix;
1402
1403 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1404 i = strlen (dir);
1405 if (canon_dir != NULL && strlen (canon_dir) > i)
1406 i = strlen (canon_dir);
1407
1408 debugfile = xmalloc (strlen (debug_file_directory) + 1
1409 + i
1410 + strlen (DEBUG_SUBDIRECTORY)
1411 + strlen ("/")
1412 + strlen (debuglink)
1413 + 1);
1414
1415 /* First try in the same directory as the original file. */
1416 strcpy (debugfile, dir);
1417 strcat (debugfile, debuglink);
1418
1419 if (separate_debug_file_exists (debugfile, crc32, objfile))
1420 return debugfile;
1421
1422 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1423 strcpy (debugfile, dir);
1424 strcat (debugfile, DEBUG_SUBDIRECTORY);
1425 strcat (debugfile, "/");
1426 strcat (debugfile, debuglink);
1427
1428 if (separate_debug_file_exists (debugfile, crc32, objfile))
1429 return debugfile;
1430
1431 /* Then try in the global debugfile directories.
1432
1433 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1434 cause "/..." lookups. */
1435
1436 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1437 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1438
1439 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1440 {
1441 strcpy (debugfile, debugdir);
1442 strcat (debugfile, "/");
1443 strcat (debugfile, dir);
1444 strcat (debugfile, debuglink);
1445
1446 if (separate_debug_file_exists (debugfile, crc32, objfile))
1447 {
1448 do_cleanups (back_to);
1449 return debugfile;
1450 }
1451
1452 /* If the file is in the sysroot, try using its base path in the
1453 global debugfile directory. */
1454 if (canon_dir != NULL
1455 && filename_ncmp (canon_dir, gdb_sysroot,
1456 strlen (gdb_sysroot)) == 0
1457 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1458 {
1459 strcpy (debugfile, debugdir);
1460 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1461 strcat (debugfile, "/");
1462 strcat (debugfile, debuglink);
1463
1464 if (separate_debug_file_exists (debugfile, crc32, objfile))
1465 {
1466 do_cleanups (back_to);
1467 return debugfile;
1468 }
1469 }
1470 }
1471
1472 do_cleanups (back_to);
1473 xfree (debugfile);
1474 return NULL;
1475 }
1476
1477 /* Modify PATH to contain only "[/]directory/" part of PATH.
1478 If there were no directory separators in PATH, PATH will be empty
1479 string on return. */
1480
1481 static void
1482 terminate_after_last_dir_separator (char *path)
1483 {
1484 int i;
1485
1486 /* Strip off the final filename part, leaving the directory name,
1487 followed by a slash. The directory can be relative or absolute. */
1488 for (i = strlen(path) - 1; i >= 0; i--)
1489 if (IS_DIR_SEPARATOR (path[i]))
1490 break;
1491
1492 /* If I is -1 then no directory is present there and DIR will be "". */
1493 path[i + 1] = '\0';
1494 }
1495
1496 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1497 Returns pathname, or NULL. */
1498
1499 char *
1500 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1501 {
1502 char *debuglink;
1503 char *dir, *canon_dir;
1504 char *debugfile;
1505 unsigned long crc32;
1506 struct cleanup *cleanups;
1507
1508 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1509
1510 if (debuglink == NULL)
1511 {
1512 /* There's no separate debug info, hence there's no way we could
1513 load it => no warning. */
1514 return NULL;
1515 }
1516
1517 cleanups = make_cleanup (xfree, debuglink);
1518 dir = xstrdup (objfile_name (objfile));
1519 make_cleanup (xfree, dir);
1520 terminate_after_last_dir_separator (dir);
1521 canon_dir = lrealpath (dir);
1522
1523 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1524 crc32, objfile);
1525 xfree (canon_dir);
1526
1527 if (debugfile == NULL)
1528 {
1529 #ifdef HAVE_LSTAT
1530 /* For PR gdb/9538, try again with realpath (if different from the
1531 original). */
1532
1533 struct stat st_buf;
1534
1535 if (lstat (objfile_name (objfile), &st_buf) == 0
1536 && S_ISLNK (st_buf.st_mode))
1537 {
1538 char *symlink_dir;
1539
1540 symlink_dir = lrealpath (objfile_name (objfile));
1541 if (symlink_dir != NULL)
1542 {
1543 make_cleanup (xfree, symlink_dir);
1544 terminate_after_last_dir_separator (symlink_dir);
1545 if (strcmp (dir, symlink_dir) != 0)
1546 {
1547 /* Different directory, so try using it. */
1548 debugfile = find_separate_debug_file (symlink_dir,
1549 symlink_dir,
1550 debuglink,
1551 crc32,
1552 objfile);
1553 }
1554 }
1555 }
1556 #endif /* HAVE_LSTAT */
1557 }
1558
1559 do_cleanups (cleanups);
1560 return debugfile;
1561 }
1562
1563 /* This is the symbol-file command. Read the file, analyze its
1564 symbols, and add a struct symtab to a symtab list. The syntax of
1565 the command is rather bizarre:
1566
1567 1. The function buildargv implements various quoting conventions
1568 which are undocumented and have little or nothing in common with
1569 the way things are quoted (or not quoted) elsewhere in GDB.
1570
1571 2. Options are used, which are not generally used in GDB (perhaps
1572 "set mapped on", "set readnow on" would be better)
1573
1574 3. The order of options matters, which is contrary to GNU
1575 conventions (because it is confusing and inconvenient). */
1576
1577 void
1578 symbol_file_command (char *args, int from_tty)
1579 {
1580 dont_repeat ();
1581
1582 if (args == NULL)
1583 {
1584 symbol_file_clear (from_tty);
1585 }
1586 else
1587 {
1588 char **argv = gdb_buildargv (args);
1589 int flags = OBJF_USERLOADED;
1590 struct cleanup *cleanups;
1591 char *name = NULL;
1592
1593 cleanups = make_cleanup_freeargv (argv);
1594 while (*argv != NULL)
1595 {
1596 if (strcmp (*argv, "-readnow") == 0)
1597 flags |= OBJF_READNOW;
1598 else if (**argv == '-')
1599 error (_("unknown option `%s'"), *argv);
1600 else
1601 {
1602 symbol_file_add_main_1 (*argv, from_tty, flags);
1603 name = *argv;
1604 }
1605
1606 argv++;
1607 }
1608
1609 if (name == NULL)
1610 error (_("no symbol file name was specified"));
1611
1612 do_cleanups (cleanups);
1613 }
1614 }
1615
1616 /* Set the initial language.
1617
1618 FIXME: A better solution would be to record the language in the
1619 psymtab when reading partial symbols, and then use it (if known) to
1620 set the language. This would be a win for formats that encode the
1621 language in an easily discoverable place, such as DWARF. For
1622 stabs, we can jump through hoops looking for specially named
1623 symbols or try to intuit the language from the specific type of
1624 stabs we find, but we can't do that until later when we read in
1625 full symbols. */
1626
1627 void
1628 set_initial_language (void)
1629 {
1630 enum language lang = language_unknown;
1631
1632 if (language_of_main != language_unknown)
1633 lang = language_of_main;
1634 else
1635 {
1636 char *name = main_name ();
1637 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL);
1638
1639 if (sym != NULL)
1640 lang = SYMBOL_LANGUAGE (sym);
1641 }
1642
1643 if (lang == language_unknown)
1644 {
1645 /* Make C the default language */
1646 lang = language_c;
1647 }
1648
1649 set_language (lang);
1650 expected_language = current_language; /* Don't warn the user. */
1651 }
1652
1653 /* If NAME is a remote name open the file using remote protocol, otherwise
1654 open it normally. Returns a new reference to the BFD. On error,
1655 returns NULL with the BFD error set. */
1656
1657 bfd *
1658 gdb_bfd_open_maybe_remote (const char *name)
1659 {
1660 bfd *result;
1661
1662 if (remote_filename_p (name))
1663 result = remote_bfd_open (name, gnutarget);
1664 else
1665 result = gdb_bfd_open (name, gnutarget, -1);
1666
1667 return result;
1668 }
1669
1670 /* Open the file specified by NAME and hand it off to BFD for
1671 preliminary analysis. Return a newly initialized bfd *, which
1672 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1673 absolute). In case of trouble, error() is called. */
1674
1675 bfd *
1676 symfile_bfd_open (const char *cname)
1677 {
1678 bfd *sym_bfd;
1679 int desc;
1680 char *name, *absolute_name;
1681 struct cleanup *back_to;
1682
1683 if (remote_filename_p (cname))
1684 {
1685 sym_bfd = remote_bfd_open (cname, gnutarget);
1686 if (!sym_bfd)
1687 error (_("`%s': can't open to read symbols: %s."), cname,
1688 bfd_errmsg (bfd_get_error ()));
1689
1690 if (!bfd_check_format (sym_bfd, bfd_object))
1691 {
1692 make_cleanup_bfd_unref (sym_bfd);
1693 error (_("`%s': can't read symbols: %s."), cname,
1694 bfd_errmsg (bfd_get_error ()));
1695 }
1696
1697 return sym_bfd;
1698 }
1699
1700 name = tilde_expand (cname); /* Returns 1st new malloc'd copy. */
1701
1702 /* Look down path for it, allocate 2nd new malloc'd copy. */
1703 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, name,
1704 O_RDONLY | O_BINARY, &absolute_name);
1705 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1706 if (desc < 0)
1707 {
1708 char *exename = alloca (strlen (name) + 5);
1709
1710 strcat (strcpy (exename, name), ".exe");
1711 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1712 exename, O_RDONLY | O_BINARY, &absolute_name);
1713 }
1714 #endif
1715 if (desc < 0)
1716 {
1717 make_cleanup (xfree, name);
1718 perror_with_name (name);
1719 }
1720
1721 xfree (name);
1722 name = absolute_name;
1723 back_to = make_cleanup (xfree, name);
1724
1725 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1726 if (!sym_bfd)
1727 error (_("`%s': can't open to read symbols: %s."), name,
1728 bfd_errmsg (bfd_get_error ()));
1729 bfd_set_cacheable (sym_bfd, 1);
1730
1731 if (!bfd_check_format (sym_bfd, bfd_object))
1732 {
1733 make_cleanup_bfd_unref (sym_bfd);
1734 error (_("`%s': can't read symbols: %s."), name,
1735 bfd_errmsg (bfd_get_error ()));
1736 }
1737
1738 do_cleanups (back_to);
1739
1740 return sym_bfd;
1741 }
1742
1743 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1744 the section was not found. */
1745
1746 int
1747 get_section_index (struct objfile *objfile, char *section_name)
1748 {
1749 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1750
1751 if (sect)
1752 return sect->index;
1753 else
1754 return -1;
1755 }
1756
1757 /* Link SF into the global symtab_fns list.
1758 FLAVOUR is the file format that SF handles.
1759 Called on startup by the _initialize routine in each object file format
1760 reader, to register information about each format the reader is prepared
1761 to handle. */
1762
1763 void
1764 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1765 {
1766 registered_sym_fns fns = { flavour, sf };
1767
1768 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
1769 }
1770
1771 /* Initialize OBJFILE to read symbols from its associated BFD. It
1772 either returns or calls error(). The result is an initialized
1773 struct sym_fns in the objfile structure, that contains cached
1774 information about the symbol file. */
1775
1776 static const struct sym_fns *
1777 find_sym_fns (bfd *abfd)
1778 {
1779 registered_sym_fns *rsf;
1780 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1781 int i;
1782
1783 if (our_flavour == bfd_target_srec_flavour
1784 || our_flavour == bfd_target_ihex_flavour
1785 || our_flavour == bfd_target_tekhex_flavour)
1786 return NULL; /* No symbols. */
1787
1788 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1789 if (our_flavour == rsf->sym_flavour)
1790 return rsf->sym_fns;
1791
1792 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1793 bfd_get_target (abfd));
1794 }
1795 \f
1796
1797 /* This function runs the load command of our current target. */
1798
1799 static void
1800 load_command (char *arg, int from_tty)
1801 {
1802 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1803
1804 dont_repeat ();
1805
1806 /* The user might be reloading because the binary has changed. Take
1807 this opportunity to check. */
1808 reopen_exec_file ();
1809 reread_symbols ();
1810
1811 if (arg == NULL)
1812 {
1813 char *parg;
1814 int count = 0;
1815
1816 parg = arg = get_exec_file (1);
1817
1818 /* Count how many \ " ' tab space there are in the name. */
1819 while ((parg = strpbrk (parg, "\\\"'\t ")))
1820 {
1821 parg++;
1822 count++;
1823 }
1824
1825 if (count)
1826 {
1827 /* We need to quote this string so buildargv can pull it apart. */
1828 char *temp = xmalloc (strlen (arg) + count + 1 );
1829 char *ptemp = temp;
1830 char *prev;
1831
1832 make_cleanup (xfree, temp);
1833
1834 prev = parg = arg;
1835 while ((parg = strpbrk (parg, "\\\"'\t ")))
1836 {
1837 strncpy (ptemp, prev, parg - prev);
1838 ptemp += parg - prev;
1839 prev = parg++;
1840 *ptemp++ = '\\';
1841 }
1842 strcpy (ptemp, prev);
1843
1844 arg = temp;
1845 }
1846 }
1847
1848 target_load (arg, from_tty);
1849
1850 /* After re-loading the executable, we don't really know which
1851 overlays are mapped any more. */
1852 overlay_cache_invalid = 1;
1853
1854 do_cleanups (cleanup);
1855 }
1856
1857 /* This version of "load" should be usable for any target. Currently
1858 it is just used for remote targets, not inftarg.c or core files,
1859 on the theory that only in that case is it useful.
1860
1861 Avoiding xmodem and the like seems like a win (a) because we don't have
1862 to worry about finding it, and (b) On VMS, fork() is very slow and so
1863 we don't want to run a subprocess. On the other hand, I'm not sure how
1864 performance compares. */
1865
1866 static int validate_download = 0;
1867
1868 /* Callback service function for generic_load (bfd_map_over_sections). */
1869
1870 static void
1871 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1872 {
1873 bfd_size_type *sum = data;
1874
1875 *sum += bfd_get_section_size (asec);
1876 }
1877
1878 /* Opaque data for load_section_callback. */
1879 struct load_section_data {
1880 CORE_ADDR load_offset;
1881 struct load_progress_data *progress_data;
1882 VEC(memory_write_request_s) *requests;
1883 };
1884
1885 /* Opaque data for load_progress. */
1886 struct load_progress_data {
1887 /* Cumulative data. */
1888 unsigned long write_count;
1889 unsigned long data_count;
1890 bfd_size_type total_size;
1891 };
1892
1893 /* Opaque data for load_progress for a single section. */
1894 struct load_progress_section_data {
1895 struct load_progress_data *cumulative;
1896
1897 /* Per-section data. */
1898 const char *section_name;
1899 ULONGEST section_sent;
1900 ULONGEST section_size;
1901 CORE_ADDR lma;
1902 gdb_byte *buffer;
1903 };
1904
1905 /* Target write callback routine for progress reporting. */
1906
1907 static void
1908 load_progress (ULONGEST bytes, void *untyped_arg)
1909 {
1910 struct load_progress_section_data *args = untyped_arg;
1911 struct load_progress_data *totals;
1912
1913 if (args == NULL)
1914 /* Writing padding data. No easy way to get at the cumulative
1915 stats, so just ignore this. */
1916 return;
1917
1918 totals = args->cumulative;
1919
1920 if (bytes == 0 && args->section_sent == 0)
1921 {
1922 /* The write is just starting. Let the user know we've started
1923 this section. */
1924 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1925 args->section_name, hex_string (args->section_size),
1926 paddress (target_gdbarch (), args->lma));
1927 return;
1928 }
1929
1930 if (validate_download)
1931 {
1932 /* Broken memories and broken monitors manifest themselves here
1933 when bring new computers to life. This doubles already slow
1934 downloads. */
1935 /* NOTE: cagney/1999-10-18: A more efficient implementation
1936 might add a verify_memory() method to the target vector and
1937 then use that. remote.c could implement that method using
1938 the ``qCRC'' packet. */
1939 gdb_byte *check = xmalloc (bytes);
1940 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1941
1942 if (target_read_memory (args->lma, check, bytes) != 0)
1943 error (_("Download verify read failed at %s"),
1944 paddress (target_gdbarch (), args->lma));
1945 if (memcmp (args->buffer, check, bytes) != 0)
1946 error (_("Download verify compare failed at %s"),
1947 paddress (target_gdbarch (), args->lma));
1948 do_cleanups (verify_cleanups);
1949 }
1950 totals->data_count += bytes;
1951 args->lma += bytes;
1952 args->buffer += bytes;
1953 totals->write_count += 1;
1954 args->section_sent += bytes;
1955 if (check_quit_flag ()
1956 || (deprecated_ui_load_progress_hook != NULL
1957 && deprecated_ui_load_progress_hook (args->section_name,
1958 args->section_sent)))
1959 error (_("Canceled the download"));
1960
1961 if (deprecated_show_load_progress != NULL)
1962 deprecated_show_load_progress (args->section_name,
1963 args->section_sent,
1964 args->section_size,
1965 totals->data_count,
1966 totals->total_size);
1967 }
1968
1969 /* Callback service function for generic_load (bfd_map_over_sections). */
1970
1971 static void
1972 load_section_callback (bfd *abfd, asection *asec, void *data)
1973 {
1974 struct memory_write_request *new_request;
1975 struct load_section_data *args = data;
1976 struct load_progress_section_data *section_data;
1977 bfd_size_type size = bfd_get_section_size (asec);
1978 gdb_byte *buffer;
1979 const char *sect_name = bfd_get_section_name (abfd, asec);
1980
1981 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1982 return;
1983
1984 if (size == 0)
1985 return;
1986
1987 new_request = VEC_safe_push (memory_write_request_s,
1988 args->requests, NULL);
1989 memset (new_request, 0, sizeof (struct memory_write_request));
1990 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1991 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1992 new_request->end = new_request->begin + size; /* FIXME Should size
1993 be in instead? */
1994 new_request->data = xmalloc (size);
1995 new_request->baton = section_data;
1996
1997 buffer = new_request->data;
1998
1999 section_data->cumulative = args->progress_data;
2000 section_data->section_name = sect_name;
2001 section_data->section_size = size;
2002 section_data->lma = new_request->begin;
2003 section_data->buffer = buffer;
2004
2005 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2006 }
2007
2008 /* Clean up an entire memory request vector, including load
2009 data and progress records. */
2010
2011 static void
2012 clear_memory_write_data (void *arg)
2013 {
2014 VEC(memory_write_request_s) **vec_p = arg;
2015 VEC(memory_write_request_s) *vec = *vec_p;
2016 int i;
2017 struct memory_write_request *mr;
2018
2019 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2020 {
2021 xfree (mr->data);
2022 xfree (mr->baton);
2023 }
2024 VEC_free (memory_write_request_s, vec);
2025 }
2026
2027 void
2028 generic_load (char *args, int from_tty)
2029 {
2030 bfd *loadfile_bfd;
2031 struct timeval start_time, end_time;
2032 char *filename;
2033 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2034 struct load_section_data cbdata;
2035 struct load_progress_data total_progress;
2036 struct ui_out *uiout = current_uiout;
2037
2038 CORE_ADDR entry;
2039 char **argv;
2040
2041 memset (&cbdata, 0, sizeof (cbdata));
2042 memset (&total_progress, 0, sizeof (total_progress));
2043 cbdata.progress_data = &total_progress;
2044
2045 make_cleanup (clear_memory_write_data, &cbdata.requests);
2046
2047 if (args == NULL)
2048 error_no_arg (_("file to load"));
2049
2050 argv = gdb_buildargv (args);
2051 make_cleanup_freeargv (argv);
2052
2053 filename = tilde_expand (argv[0]);
2054 make_cleanup (xfree, filename);
2055
2056 if (argv[1] != NULL)
2057 {
2058 const char *endptr;
2059
2060 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2061
2062 /* If the last word was not a valid number then
2063 treat it as a file name with spaces in. */
2064 if (argv[1] == endptr)
2065 error (_("Invalid download offset:%s."), argv[1]);
2066
2067 if (argv[2] != NULL)
2068 error (_("Too many parameters."));
2069 }
2070
2071 /* Open the file for loading. */
2072 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2073 if (loadfile_bfd == NULL)
2074 {
2075 perror_with_name (filename);
2076 return;
2077 }
2078
2079 make_cleanup_bfd_unref (loadfile_bfd);
2080
2081 if (!bfd_check_format (loadfile_bfd, bfd_object))
2082 {
2083 error (_("\"%s\" is not an object file: %s"), filename,
2084 bfd_errmsg (bfd_get_error ()));
2085 }
2086
2087 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2088 (void *) &total_progress.total_size);
2089
2090 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2091
2092 gettimeofday (&start_time, NULL);
2093
2094 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2095 load_progress) != 0)
2096 error (_("Load failed"));
2097
2098 gettimeofday (&end_time, NULL);
2099
2100 entry = bfd_get_start_address (loadfile_bfd);
2101 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2102 ui_out_text (uiout, "Start address ");
2103 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2104 ui_out_text (uiout, ", load size ");
2105 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2106 ui_out_text (uiout, "\n");
2107 /* We were doing this in remote-mips.c, I suspect it is right
2108 for other targets too. */
2109 regcache_write_pc (get_current_regcache (), entry);
2110
2111 /* Reset breakpoints, now that we have changed the load image. For
2112 instance, breakpoints may have been set (or reset, by
2113 post_create_inferior) while connected to the target but before we
2114 loaded the program. In that case, the prologue analyzer could
2115 have read instructions from the target to find the right
2116 breakpoint locations. Loading has changed the contents of that
2117 memory. */
2118
2119 breakpoint_re_set ();
2120
2121 /* FIXME: are we supposed to call symbol_file_add or not? According
2122 to a comment from remote-mips.c (where a call to symbol_file_add
2123 was commented out), making the call confuses GDB if more than one
2124 file is loaded in. Some targets do (e.g., remote-vx.c) but
2125 others don't (or didn't - perhaps they have all been deleted). */
2126
2127 print_transfer_performance (gdb_stdout, total_progress.data_count,
2128 total_progress.write_count,
2129 &start_time, &end_time);
2130
2131 do_cleanups (old_cleanups);
2132 }
2133
2134 /* Report how fast the transfer went. */
2135
2136 void
2137 print_transfer_performance (struct ui_file *stream,
2138 unsigned long data_count,
2139 unsigned long write_count,
2140 const struct timeval *start_time,
2141 const struct timeval *end_time)
2142 {
2143 ULONGEST time_count;
2144 struct ui_out *uiout = current_uiout;
2145
2146 /* Compute the elapsed time in milliseconds, as a tradeoff between
2147 accuracy and overflow. */
2148 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2149 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2150
2151 ui_out_text (uiout, "Transfer rate: ");
2152 if (time_count > 0)
2153 {
2154 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2155
2156 if (ui_out_is_mi_like_p (uiout))
2157 {
2158 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2159 ui_out_text (uiout, " bits/sec");
2160 }
2161 else if (rate < 1024)
2162 {
2163 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2164 ui_out_text (uiout, " bytes/sec");
2165 }
2166 else
2167 {
2168 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2169 ui_out_text (uiout, " KB/sec");
2170 }
2171 }
2172 else
2173 {
2174 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2175 ui_out_text (uiout, " bits in <1 sec");
2176 }
2177 if (write_count > 0)
2178 {
2179 ui_out_text (uiout, ", ");
2180 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2181 ui_out_text (uiout, " bytes/write");
2182 }
2183 ui_out_text (uiout, ".\n");
2184 }
2185
2186 /* This function allows the addition of incrementally linked object files.
2187 It does not modify any state in the target, only in the debugger. */
2188 /* Note: ezannoni 2000-04-13 This function/command used to have a
2189 special case syntax for the rombug target (Rombug is the boot
2190 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2191 rombug case, the user doesn't need to supply a text address,
2192 instead a call to target_link() (in target.c) would supply the
2193 value to use. We are now discontinuing this type of ad hoc syntax. */
2194
2195 static void
2196 add_symbol_file_command (char *args, int from_tty)
2197 {
2198 struct gdbarch *gdbarch = get_current_arch ();
2199 char *filename = NULL;
2200 int flags = OBJF_USERLOADED;
2201 char *arg;
2202 int section_index = 0;
2203 int argcnt = 0;
2204 int sec_num = 0;
2205 int i;
2206 int expecting_sec_name = 0;
2207 int expecting_sec_addr = 0;
2208 char **argv;
2209
2210 struct sect_opt
2211 {
2212 char *name;
2213 char *value;
2214 };
2215
2216 struct section_addr_info *section_addrs;
2217 struct sect_opt *sect_opts = NULL;
2218 size_t num_sect_opts = 0;
2219 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2220
2221 num_sect_opts = 16;
2222 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2223 * sizeof (struct sect_opt));
2224
2225 dont_repeat ();
2226
2227 if (args == NULL)
2228 error (_("add-symbol-file takes a file name and an address"));
2229
2230 argv = gdb_buildargv (args);
2231 make_cleanup_freeargv (argv);
2232
2233 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2234 {
2235 /* Process the argument. */
2236 if (argcnt == 0)
2237 {
2238 /* The first argument is the file name. */
2239 filename = tilde_expand (arg);
2240 make_cleanup (xfree, filename);
2241 }
2242 else if (argcnt == 1)
2243 {
2244 /* The second argument is always the text address at which
2245 to load the program. */
2246 sect_opts[section_index].name = ".text";
2247 sect_opts[section_index].value = arg;
2248 if (++section_index >= num_sect_opts)
2249 {
2250 num_sect_opts *= 2;
2251 sect_opts = ((struct sect_opt *)
2252 xrealloc (sect_opts,
2253 num_sect_opts
2254 * sizeof (struct sect_opt)));
2255 }
2256 }
2257 else
2258 {
2259 /* It's an option (starting with '-') or it's an argument
2260 to an option. */
2261 if (expecting_sec_name)
2262 {
2263 sect_opts[section_index].name = arg;
2264 expecting_sec_name = 0;
2265 }
2266 else if (expecting_sec_addr)
2267 {
2268 sect_opts[section_index].value = arg;
2269 expecting_sec_addr = 0;
2270 if (++section_index >= num_sect_opts)
2271 {
2272 num_sect_opts *= 2;
2273 sect_opts = ((struct sect_opt *)
2274 xrealloc (sect_opts,
2275 num_sect_opts
2276 * sizeof (struct sect_opt)));
2277 }
2278 }
2279 else if (strcmp (arg, "-readnow") == 0)
2280 flags |= OBJF_READNOW;
2281 else if (strcmp (arg, "-s") == 0)
2282 {
2283 expecting_sec_name = 1;
2284 expecting_sec_addr = 1;
2285 }
2286 else
2287 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2288 " [-readnow] [-s <secname> <addr>]*"));
2289 }
2290 }
2291
2292 /* This command takes at least two arguments. The first one is a
2293 filename, and the second is the address where this file has been
2294 loaded. Abort now if this address hasn't been provided by the
2295 user. */
2296 if (section_index < 1)
2297 error (_("The address where %s has been loaded is missing"), filename);
2298
2299 /* Print the prompt for the query below. And save the arguments into
2300 a sect_addr_info structure to be passed around to other
2301 functions. We have to split this up into separate print
2302 statements because hex_string returns a local static
2303 string. */
2304
2305 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2306 section_addrs = alloc_section_addr_info (section_index);
2307 make_cleanup (xfree, section_addrs);
2308 for (i = 0; i < section_index; i++)
2309 {
2310 CORE_ADDR addr;
2311 char *val = sect_opts[i].value;
2312 char *sec = sect_opts[i].name;
2313
2314 addr = parse_and_eval_address (val);
2315
2316 /* Here we store the section offsets in the order they were
2317 entered on the command line. */
2318 section_addrs->other[sec_num].name = sec;
2319 section_addrs->other[sec_num].addr = addr;
2320 printf_unfiltered ("\t%s_addr = %s\n", sec,
2321 paddress (gdbarch, addr));
2322 sec_num++;
2323
2324 /* The object's sections are initialized when a
2325 call is made to build_objfile_section_table (objfile).
2326 This happens in reread_symbols.
2327 At this point, we don't know what file type this is,
2328 so we can't determine what section names are valid. */
2329 }
2330 section_addrs->num_sections = sec_num;
2331
2332 if (from_tty && (!query ("%s", "")))
2333 error (_("Not confirmed."));
2334
2335 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2336 section_addrs, flags);
2337
2338 /* Getting new symbols may change our opinion about what is
2339 frameless. */
2340 reinit_frame_cache ();
2341 do_cleanups (my_cleanups);
2342 }
2343 \f
2344
2345 typedef struct objfile *objfilep;
2346
2347 DEF_VEC_P (objfilep);
2348
2349 /* Re-read symbols if a symbol-file has changed. */
2350
2351 void
2352 reread_symbols (void)
2353 {
2354 struct objfile *objfile;
2355 long new_modtime;
2356 struct stat new_statbuf;
2357 int res;
2358 VEC (objfilep) *new_objfiles = NULL;
2359 struct cleanup *all_cleanups;
2360
2361 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2362
2363 /* With the addition of shared libraries, this should be modified,
2364 the load time should be saved in the partial symbol tables, since
2365 different tables may come from different source files. FIXME.
2366 This routine should then walk down each partial symbol table
2367 and see if the symbol table that it originates from has been changed. */
2368
2369 for (objfile = object_files; objfile; objfile = objfile->next)
2370 {
2371 if (objfile->obfd == NULL)
2372 continue;
2373
2374 /* Separate debug objfiles are handled in the main objfile. */
2375 if (objfile->separate_debug_objfile_backlink)
2376 continue;
2377
2378 /* If this object is from an archive (what you usually create with
2379 `ar', often called a `static library' on most systems, though
2380 a `shared library' on AIX is also an archive), then you should
2381 stat on the archive name, not member name. */
2382 if (objfile->obfd->my_archive)
2383 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2384 else
2385 res = stat (objfile_name (objfile), &new_statbuf);
2386 if (res != 0)
2387 {
2388 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2389 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2390 objfile_name (objfile));
2391 continue;
2392 }
2393 new_modtime = new_statbuf.st_mtime;
2394 if (new_modtime != objfile->mtime)
2395 {
2396 struct cleanup *old_cleanups;
2397 struct section_offsets *offsets;
2398 int num_offsets;
2399 char *original_name;
2400
2401 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2402 objfile_name (objfile));
2403
2404 /* There are various functions like symbol_file_add,
2405 symfile_bfd_open, syms_from_objfile, etc., which might
2406 appear to do what we want. But they have various other
2407 effects which we *don't* want. So we just do stuff
2408 ourselves. We don't worry about mapped files (for one thing,
2409 any mapped file will be out of date). */
2410
2411 /* If we get an error, blow away this objfile (not sure if
2412 that is the correct response for things like shared
2413 libraries). */
2414 old_cleanups = make_cleanup_free_objfile (objfile);
2415 /* We need to do this whenever any symbols go away. */
2416 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2417
2418 if (exec_bfd != NULL
2419 && filename_cmp (bfd_get_filename (objfile->obfd),
2420 bfd_get_filename (exec_bfd)) == 0)
2421 {
2422 /* Reload EXEC_BFD without asking anything. */
2423
2424 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2425 }
2426
2427 /* Keep the calls order approx. the same as in free_objfile. */
2428
2429 /* Free the separate debug objfiles. It will be
2430 automatically recreated by sym_read. */
2431 free_objfile_separate_debug (objfile);
2432
2433 /* Remove any references to this objfile in the global
2434 value lists. */
2435 preserve_values (objfile);
2436
2437 /* Nuke all the state that we will re-read. Much of the following
2438 code which sets things to NULL really is necessary to tell
2439 other parts of GDB that there is nothing currently there.
2440
2441 Try to keep the freeing order compatible with free_objfile. */
2442
2443 if (objfile->sf != NULL)
2444 {
2445 (*objfile->sf->sym_finish) (objfile);
2446 }
2447
2448 clear_objfile_data (objfile);
2449
2450 /* Clean up any state BFD has sitting around. */
2451 {
2452 struct bfd *obfd = objfile->obfd;
2453 char *obfd_filename;
2454
2455 obfd_filename = bfd_get_filename (objfile->obfd);
2456 /* Open the new BFD before freeing the old one, so that
2457 the filename remains live. */
2458 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
2459 if (objfile->obfd == NULL)
2460 {
2461 /* We have to make a cleanup and error here, rather
2462 than erroring later, because once we unref OBFD,
2463 OBFD_FILENAME will be freed. */
2464 make_cleanup_bfd_unref (obfd);
2465 error (_("Can't open %s to read symbols."), obfd_filename);
2466 }
2467 gdb_bfd_unref (obfd);
2468 }
2469
2470 original_name = xstrdup (objfile->original_name);
2471 make_cleanup (xfree, original_name);
2472
2473 /* bfd_openr sets cacheable to true, which is what we want. */
2474 if (!bfd_check_format (objfile->obfd, bfd_object))
2475 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2476 bfd_errmsg (bfd_get_error ()));
2477
2478 /* Save the offsets, we will nuke them with the rest of the
2479 objfile_obstack. */
2480 num_offsets = objfile->num_sections;
2481 offsets = ((struct section_offsets *)
2482 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2483 memcpy (offsets, objfile->section_offsets,
2484 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2485
2486 /* FIXME: Do we have to free a whole linked list, or is this
2487 enough? */
2488 if (objfile->global_psymbols.list)
2489 xfree (objfile->global_psymbols.list);
2490 memset (&objfile->global_psymbols, 0,
2491 sizeof (objfile->global_psymbols));
2492 if (objfile->static_psymbols.list)
2493 xfree (objfile->static_psymbols.list);
2494 memset (&objfile->static_psymbols, 0,
2495 sizeof (objfile->static_psymbols));
2496
2497 /* Free the obstacks for non-reusable objfiles. */
2498 psymbol_bcache_free (objfile->psymbol_cache);
2499 objfile->psymbol_cache = psymbol_bcache_init ();
2500 obstack_free (&objfile->objfile_obstack, 0);
2501 objfile->sections = NULL;
2502 objfile->symtabs = NULL;
2503 objfile->psymtabs = NULL;
2504 objfile->psymtabs_addrmap = NULL;
2505 objfile->free_psymtabs = NULL;
2506 objfile->template_symbols = NULL;
2507 objfile->msymbols = NULL;
2508 objfile->minimal_symbol_count = 0;
2509 memset (&objfile->msymbol_hash, 0,
2510 sizeof (objfile->msymbol_hash));
2511 memset (&objfile->msymbol_demangled_hash, 0,
2512 sizeof (objfile->msymbol_demangled_hash));
2513
2514 set_objfile_per_bfd (objfile);
2515
2516 /* obstack_init also initializes the obstack so it is
2517 empty. We could use obstack_specify_allocation but
2518 gdb_obstack.h specifies the alloc/dealloc functions. */
2519 obstack_init (&objfile->objfile_obstack);
2520
2521 objfile->original_name = obstack_copy0 (&objfile->objfile_obstack,
2522 original_name,
2523 strlen (original_name));
2524
2525 /* Reset the sym_fns pointer. The ELF reader can change it
2526 based on whether .gdb_index is present, and we need it to
2527 start over. PR symtab/15885 */
2528 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2529
2530 build_objfile_section_table (objfile);
2531 terminate_minimal_symbol_table (objfile);
2532
2533 /* We use the same section offsets as from last time. I'm not
2534 sure whether that is always correct for shared libraries. */
2535 objfile->section_offsets = (struct section_offsets *)
2536 obstack_alloc (&objfile->objfile_obstack,
2537 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2538 memcpy (objfile->section_offsets, offsets,
2539 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2540 objfile->num_sections = num_offsets;
2541
2542 /* What the hell is sym_new_init for, anyway? The concept of
2543 distinguishing between the main file and additional files
2544 in this way seems rather dubious. */
2545 if (objfile == symfile_objfile)
2546 {
2547 (*objfile->sf->sym_new_init) (objfile);
2548 }
2549
2550 (*objfile->sf->sym_init) (objfile);
2551 clear_complaints (&symfile_complaints, 1, 1);
2552
2553 objfile->flags &= ~OBJF_PSYMTABS_READ;
2554 read_symbols (objfile, 0);
2555
2556 if (!objfile_has_symbols (objfile))
2557 {
2558 wrap_here ("");
2559 printf_unfiltered (_("(no debugging symbols found)\n"));
2560 wrap_here ("");
2561 }
2562
2563 /* We're done reading the symbol file; finish off complaints. */
2564 clear_complaints (&symfile_complaints, 0, 1);
2565
2566 /* Getting new symbols may change our opinion about what is
2567 frameless. */
2568
2569 reinit_frame_cache ();
2570
2571 /* Discard cleanups as symbol reading was successful. */
2572 discard_cleanups (old_cleanups);
2573
2574 /* If the mtime has changed between the time we set new_modtime
2575 and now, we *want* this to be out of date, so don't call stat
2576 again now. */
2577 objfile->mtime = new_modtime;
2578 init_entry_point_info (objfile);
2579
2580 VEC_safe_push (objfilep, new_objfiles, objfile);
2581 }
2582 }
2583
2584 if (new_objfiles)
2585 {
2586 int ix;
2587
2588 /* Notify objfiles that we've modified objfile sections. */
2589 objfiles_changed ();
2590
2591 clear_symtab_users (0);
2592
2593 /* clear_objfile_data for each objfile was called before freeing it and
2594 observer_notify_new_objfile (NULL) has been called by
2595 clear_symtab_users above. Notify the new files now. */
2596 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2597 observer_notify_new_objfile (objfile);
2598
2599 /* At least one objfile has changed, so we can consider that
2600 the executable we're debugging has changed too. */
2601 observer_notify_executable_changed ();
2602 }
2603
2604 do_cleanups (all_cleanups);
2605 }
2606 \f
2607
2608 typedef struct
2609 {
2610 char *ext;
2611 enum language lang;
2612 }
2613 filename_language;
2614
2615 static filename_language *filename_language_table;
2616 static int fl_table_size, fl_table_next;
2617
2618 static void
2619 add_filename_language (char *ext, enum language lang)
2620 {
2621 if (fl_table_next >= fl_table_size)
2622 {
2623 fl_table_size += 10;
2624 filename_language_table =
2625 xrealloc (filename_language_table,
2626 fl_table_size * sizeof (*filename_language_table));
2627 }
2628
2629 filename_language_table[fl_table_next].ext = xstrdup (ext);
2630 filename_language_table[fl_table_next].lang = lang;
2631 fl_table_next++;
2632 }
2633
2634 static char *ext_args;
2635 static void
2636 show_ext_args (struct ui_file *file, int from_tty,
2637 struct cmd_list_element *c, const char *value)
2638 {
2639 fprintf_filtered (file,
2640 _("Mapping between filename extension "
2641 "and source language is \"%s\".\n"),
2642 value);
2643 }
2644
2645 static void
2646 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2647 {
2648 int i;
2649 char *cp = ext_args;
2650 enum language lang;
2651
2652 /* First arg is filename extension, starting with '.' */
2653 if (*cp != '.')
2654 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2655
2656 /* Find end of first arg. */
2657 while (*cp && !isspace (*cp))
2658 cp++;
2659
2660 if (*cp == '\0')
2661 error (_("'%s': two arguments required -- "
2662 "filename extension and language"),
2663 ext_args);
2664
2665 /* Null-terminate first arg. */
2666 *cp++ = '\0';
2667
2668 /* Find beginning of second arg, which should be a source language. */
2669 cp = skip_spaces (cp);
2670
2671 if (*cp == '\0')
2672 error (_("'%s': two arguments required -- "
2673 "filename extension and language"),
2674 ext_args);
2675
2676 /* Lookup the language from among those we know. */
2677 lang = language_enum (cp);
2678
2679 /* Now lookup the filename extension: do we already know it? */
2680 for (i = 0; i < fl_table_next; i++)
2681 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2682 break;
2683
2684 if (i >= fl_table_next)
2685 {
2686 /* New file extension. */
2687 add_filename_language (ext_args, lang);
2688 }
2689 else
2690 {
2691 /* Redefining a previously known filename extension. */
2692
2693 /* if (from_tty) */
2694 /* query ("Really make files of type %s '%s'?", */
2695 /* ext_args, language_str (lang)); */
2696
2697 xfree (filename_language_table[i].ext);
2698 filename_language_table[i].ext = xstrdup (ext_args);
2699 filename_language_table[i].lang = lang;
2700 }
2701 }
2702
2703 static void
2704 info_ext_lang_command (char *args, int from_tty)
2705 {
2706 int i;
2707
2708 printf_filtered (_("Filename extensions and the languages they represent:"));
2709 printf_filtered ("\n\n");
2710 for (i = 0; i < fl_table_next; i++)
2711 printf_filtered ("\t%s\t- %s\n",
2712 filename_language_table[i].ext,
2713 language_str (filename_language_table[i].lang));
2714 }
2715
2716 static void
2717 init_filename_language_table (void)
2718 {
2719 if (fl_table_size == 0) /* Protect against repetition. */
2720 {
2721 fl_table_size = 20;
2722 fl_table_next = 0;
2723 filename_language_table =
2724 xmalloc (fl_table_size * sizeof (*filename_language_table));
2725 add_filename_language (".c", language_c);
2726 add_filename_language (".d", language_d);
2727 add_filename_language (".C", language_cplus);
2728 add_filename_language (".cc", language_cplus);
2729 add_filename_language (".cp", language_cplus);
2730 add_filename_language (".cpp", language_cplus);
2731 add_filename_language (".cxx", language_cplus);
2732 add_filename_language (".c++", language_cplus);
2733 add_filename_language (".java", language_java);
2734 add_filename_language (".class", language_java);
2735 add_filename_language (".m", language_objc);
2736 add_filename_language (".f", language_fortran);
2737 add_filename_language (".F", language_fortran);
2738 add_filename_language (".for", language_fortran);
2739 add_filename_language (".FOR", language_fortran);
2740 add_filename_language (".ftn", language_fortran);
2741 add_filename_language (".FTN", language_fortran);
2742 add_filename_language (".fpp", language_fortran);
2743 add_filename_language (".FPP", language_fortran);
2744 add_filename_language (".f90", language_fortran);
2745 add_filename_language (".F90", language_fortran);
2746 add_filename_language (".f95", language_fortran);
2747 add_filename_language (".F95", language_fortran);
2748 add_filename_language (".f03", language_fortran);
2749 add_filename_language (".F03", language_fortran);
2750 add_filename_language (".f08", language_fortran);
2751 add_filename_language (".F08", language_fortran);
2752 add_filename_language (".s", language_asm);
2753 add_filename_language (".sx", language_asm);
2754 add_filename_language (".S", language_asm);
2755 add_filename_language (".pas", language_pascal);
2756 add_filename_language (".p", language_pascal);
2757 add_filename_language (".pp", language_pascal);
2758 add_filename_language (".adb", language_ada);
2759 add_filename_language (".ads", language_ada);
2760 add_filename_language (".a", language_ada);
2761 add_filename_language (".ada", language_ada);
2762 add_filename_language (".dg", language_ada);
2763 }
2764 }
2765
2766 enum language
2767 deduce_language_from_filename (const char *filename)
2768 {
2769 int i;
2770 char *cp;
2771
2772 if (filename != NULL)
2773 if ((cp = strrchr (filename, '.')) != NULL)
2774 for (i = 0; i < fl_table_next; i++)
2775 if (strcmp (cp, filename_language_table[i].ext) == 0)
2776 return filename_language_table[i].lang;
2777
2778 return language_unknown;
2779 }
2780 \f
2781 /* allocate_symtab:
2782
2783 Allocate and partly initialize a new symbol table. Return a pointer
2784 to it. error() if no space.
2785
2786 Caller must set these fields:
2787 LINETABLE(symtab)
2788 symtab->blockvector
2789 symtab->dirname
2790 symtab->free_code
2791 symtab->free_ptr
2792 */
2793
2794 struct symtab *
2795 allocate_symtab (const char *filename, struct objfile *objfile)
2796 {
2797 struct symtab *symtab;
2798
2799 symtab = (struct symtab *)
2800 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2801 memset (symtab, 0, sizeof (*symtab));
2802 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2803 objfile->per_bfd->filename_cache);
2804 symtab->fullname = NULL;
2805 symtab->language = deduce_language_from_filename (filename);
2806 symtab->debugformat = "unknown";
2807
2808 /* Hook it to the objfile it comes from. */
2809
2810 symtab->objfile = objfile;
2811 symtab->next = objfile->symtabs;
2812 objfile->symtabs = symtab;
2813
2814 if (symtab_create_debug)
2815 {
2816 /* Be a bit clever with debugging messages, and don't print objfile
2817 every time, only when it changes. */
2818 static char *last_objfile_name = NULL;
2819
2820 if (last_objfile_name == NULL
2821 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2822 {
2823 xfree (last_objfile_name);
2824 last_objfile_name = xstrdup (objfile_name (objfile));
2825 fprintf_unfiltered (gdb_stdlog,
2826 "Creating one or more symtabs for objfile %s ...\n",
2827 last_objfile_name);
2828 }
2829 fprintf_unfiltered (gdb_stdlog,
2830 "Created symtab %s for module %s.\n",
2831 host_address_to_string (symtab), filename);
2832 }
2833
2834 return (symtab);
2835 }
2836 \f
2837
2838 /* Reset all data structures in gdb which may contain references to symbol
2839 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2840
2841 void
2842 clear_symtab_users (int add_flags)
2843 {
2844 /* Someday, we should do better than this, by only blowing away
2845 the things that really need to be blown. */
2846
2847 /* Clear the "current" symtab first, because it is no longer valid.
2848 breakpoint_re_set may try to access the current symtab. */
2849 clear_current_source_symtab_and_line ();
2850
2851 clear_displays ();
2852 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2853 breakpoint_re_set ();
2854 clear_last_displayed_sal ();
2855 clear_pc_function_cache ();
2856 observer_notify_new_objfile (NULL);
2857
2858 /* Clear globals which might have pointed into a removed objfile.
2859 FIXME: It's not clear which of these are supposed to persist
2860 between expressions and which ought to be reset each time. */
2861 expression_context_block = NULL;
2862 innermost_block = NULL;
2863
2864 /* Varobj may refer to old symbols, perform a cleanup. */
2865 varobj_invalidate ();
2866
2867 }
2868
2869 static void
2870 clear_symtab_users_cleanup (void *ignore)
2871 {
2872 clear_symtab_users (0);
2873 }
2874 \f
2875 /* OVERLAYS:
2876 The following code implements an abstraction for debugging overlay sections.
2877
2878 The target model is as follows:
2879 1) The gnu linker will permit multiple sections to be mapped into the
2880 same VMA, each with its own unique LMA (or load address).
2881 2) It is assumed that some runtime mechanism exists for mapping the
2882 sections, one by one, from the load address into the VMA address.
2883 3) This code provides a mechanism for gdb to keep track of which
2884 sections should be considered to be mapped from the VMA to the LMA.
2885 This information is used for symbol lookup, and memory read/write.
2886 For instance, if a section has been mapped then its contents
2887 should be read from the VMA, otherwise from the LMA.
2888
2889 Two levels of debugger support for overlays are available. One is
2890 "manual", in which the debugger relies on the user to tell it which
2891 overlays are currently mapped. This level of support is
2892 implemented entirely in the core debugger, and the information about
2893 whether a section is mapped is kept in the objfile->obj_section table.
2894
2895 The second level of support is "automatic", and is only available if
2896 the target-specific code provides functionality to read the target's
2897 overlay mapping table, and translate its contents for the debugger
2898 (by updating the mapped state information in the obj_section tables).
2899
2900 The interface is as follows:
2901 User commands:
2902 overlay map <name> -- tell gdb to consider this section mapped
2903 overlay unmap <name> -- tell gdb to consider this section unmapped
2904 overlay list -- list the sections that GDB thinks are mapped
2905 overlay read-target -- get the target's state of what's mapped
2906 overlay off/manual/auto -- set overlay debugging state
2907 Functional interface:
2908 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2909 section, return that section.
2910 find_pc_overlay(pc): find any overlay section that contains
2911 the pc, either in its VMA or its LMA
2912 section_is_mapped(sect): true if overlay is marked as mapped
2913 section_is_overlay(sect): true if section's VMA != LMA
2914 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2915 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2916 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2917 overlay_mapped_address(...): map an address from section's LMA to VMA
2918 overlay_unmapped_address(...): map an address from section's VMA to LMA
2919 symbol_overlayed_address(...): Return a "current" address for symbol:
2920 either in VMA or LMA depending on whether
2921 the symbol's section is currently mapped. */
2922
2923 /* Overlay debugging state: */
2924
2925 enum overlay_debugging_state overlay_debugging = ovly_off;
2926 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2927
2928 /* Function: section_is_overlay (SECTION)
2929 Returns true if SECTION has VMA not equal to LMA, ie.
2930 SECTION is loaded at an address different from where it will "run". */
2931
2932 int
2933 section_is_overlay (struct obj_section *section)
2934 {
2935 if (overlay_debugging && section)
2936 {
2937 bfd *abfd = section->objfile->obfd;
2938 asection *bfd_section = section->the_bfd_section;
2939
2940 if (bfd_section_lma (abfd, bfd_section) != 0
2941 && bfd_section_lma (abfd, bfd_section)
2942 != bfd_section_vma (abfd, bfd_section))
2943 return 1;
2944 }
2945
2946 return 0;
2947 }
2948
2949 /* Function: overlay_invalidate_all (void)
2950 Invalidate the mapped state of all overlay sections (mark it as stale). */
2951
2952 static void
2953 overlay_invalidate_all (void)
2954 {
2955 struct objfile *objfile;
2956 struct obj_section *sect;
2957
2958 ALL_OBJSECTIONS (objfile, sect)
2959 if (section_is_overlay (sect))
2960 sect->ovly_mapped = -1;
2961 }
2962
2963 /* Function: section_is_mapped (SECTION)
2964 Returns true if section is an overlay, and is currently mapped.
2965
2966 Access to the ovly_mapped flag is restricted to this function, so
2967 that we can do automatic update. If the global flag
2968 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2969 overlay_invalidate_all. If the mapped state of the particular
2970 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2971
2972 int
2973 section_is_mapped (struct obj_section *osect)
2974 {
2975 struct gdbarch *gdbarch;
2976
2977 if (osect == 0 || !section_is_overlay (osect))
2978 return 0;
2979
2980 switch (overlay_debugging)
2981 {
2982 default:
2983 case ovly_off:
2984 return 0; /* overlay debugging off */
2985 case ovly_auto: /* overlay debugging automatic */
2986 /* Unles there is a gdbarch_overlay_update function,
2987 there's really nothing useful to do here (can't really go auto). */
2988 gdbarch = get_objfile_arch (osect->objfile);
2989 if (gdbarch_overlay_update_p (gdbarch))
2990 {
2991 if (overlay_cache_invalid)
2992 {
2993 overlay_invalidate_all ();
2994 overlay_cache_invalid = 0;
2995 }
2996 if (osect->ovly_mapped == -1)
2997 gdbarch_overlay_update (gdbarch, osect);
2998 }
2999 /* fall thru to manual case */
3000 case ovly_on: /* overlay debugging manual */
3001 return osect->ovly_mapped == 1;
3002 }
3003 }
3004
3005 /* Function: pc_in_unmapped_range
3006 If PC falls into the lma range of SECTION, return true, else false. */
3007
3008 CORE_ADDR
3009 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3010 {
3011 if (section_is_overlay (section))
3012 {
3013 bfd *abfd = section->objfile->obfd;
3014 asection *bfd_section = section->the_bfd_section;
3015
3016 /* We assume the LMA is relocated by the same offset as the VMA. */
3017 bfd_vma size = bfd_get_section_size (bfd_section);
3018 CORE_ADDR offset = obj_section_offset (section);
3019
3020 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3021 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3022 return 1;
3023 }
3024
3025 return 0;
3026 }
3027
3028 /* Function: pc_in_mapped_range
3029 If PC falls into the vma range of SECTION, return true, else false. */
3030
3031 CORE_ADDR
3032 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3033 {
3034 if (section_is_overlay (section))
3035 {
3036 if (obj_section_addr (section) <= pc
3037 && pc < obj_section_endaddr (section))
3038 return 1;
3039 }
3040
3041 return 0;
3042 }
3043
3044 /* Return true if the mapped ranges of sections A and B overlap, false
3045 otherwise. */
3046
3047 static int
3048 sections_overlap (struct obj_section *a, struct obj_section *b)
3049 {
3050 CORE_ADDR a_start = obj_section_addr (a);
3051 CORE_ADDR a_end = obj_section_endaddr (a);
3052 CORE_ADDR b_start = obj_section_addr (b);
3053 CORE_ADDR b_end = obj_section_endaddr (b);
3054
3055 return (a_start < b_end && b_start < a_end);
3056 }
3057
3058 /* Function: overlay_unmapped_address (PC, SECTION)
3059 Returns the address corresponding to PC in the unmapped (load) range.
3060 May be the same as PC. */
3061
3062 CORE_ADDR
3063 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3064 {
3065 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3066 {
3067 bfd *abfd = section->objfile->obfd;
3068 asection *bfd_section = section->the_bfd_section;
3069
3070 return pc + bfd_section_lma (abfd, bfd_section)
3071 - bfd_section_vma (abfd, bfd_section);
3072 }
3073
3074 return pc;
3075 }
3076
3077 /* Function: overlay_mapped_address (PC, SECTION)
3078 Returns the address corresponding to PC in the mapped (runtime) range.
3079 May be the same as PC. */
3080
3081 CORE_ADDR
3082 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3083 {
3084 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3085 {
3086 bfd *abfd = section->objfile->obfd;
3087 asection *bfd_section = section->the_bfd_section;
3088
3089 return pc + bfd_section_vma (abfd, bfd_section)
3090 - bfd_section_lma (abfd, bfd_section);
3091 }
3092
3093 return pc;
3094 }
3095
3096 /* Function: symbol_overlayed_address
3097 Return one of two addresses (relative to the VMA or to the LMA),
3098 depending on whether the section is mapped or not. */
3099
3100 CORE_ADDR
3101 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3102 {
3103 if (overlay_debugging)
3104 {
3105 /* If the symbol has no section, just return its regular address. */
3106 if (section == 0)
3107 return address;
3108 /* If the symbol's section is not an overlay, just return its
3109 address. */
3110 if (!section_is_overlay (section))
3111 return address;
3112 /* If the symbol's section is mapped, just return its address. */
3113 if (section_is_mapped (section))
3114 return address;
3115 /*
3116 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3117 * then return its LOADED address rather than its vma address!!
3118 */
3119 return overlay_unmapped_address (address, section);
3120 }
3121 return address;
3122 }
3123
3124 /* Function: find_pc_overlay (PC)
3125 Return the best-match overlay section for PC:
3126 If PC matches a mapped overlay section's VMA, return that section.
3127 Else if PC matches an unmapped section's VMA, return that section.
3128 Else if PC matches an unmapped section's LMA, return that section. */
3129
3130 struct obj_section *
3131 find_pc_overlay (CORE_ADDR pc)
3132 {
3133 struct objfile *objfile;
3134 struct obj_section *osect, *best_match = NULL;
3135
3136 if (overlay_debugging)
3137 ALL_OBJSECTIONS (objfile, osect)
3138 if (section_is_overlay (osect))
3139 {
3140 if (pc_in_mapped_range (pc, osect))
3141 {
3142 if (section_is_mapped (osect))
3143 return osect;
3144 else
3145 best_match = osect;
3146 }
3147 else if (pc_in_unmapped_range (pc, osect))
3148 best_match = osect;
3149 }
3150 return best_match;
3151 }
3152
3153 /* Function: find_pc_mapped_section (PC)
3154 If PC falls into the VMA address range of an overlay section that is
3155 currently marked as MAPPED, return that section. Else return NULL. */
3156
3157 struct obj_section *
3158 find_pc_mapped_section (CORE_ADDR pc)
3159 {
3160 struct objfile *objfile;
3161 struct obj_section *osect;
3162
3163 if (overlay_debugging)
3164 ALL_OBJSECTIONS (objfile, osect)
3165 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3166 return osect;
3167
3168 return NULL;
3169 }
3170
3171 /* Function: list_overlays_command
3172 Print a list of mapped sections and their PC ranges. */
3173
3174 static void
3175 list_overlays_command (char *args, int from_tty)
3176 {
3177 int nmapped = 0;
3178 struct objfile *objfile;
3179 struct obj_section *osect;
3180
3181 if (overlay_debugging)
3182 ALL_OBJSECTIONS (objfile, osect)
3183 if (section_is_mapped (osect))
3184 {
3185 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3186 const char *name;
3187 bfd_vma lma, vma;
3188 int size;
3189
3190 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3191 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3192 size = bfd_get_section_size (osect->the_bfd_section);
3193 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3194
3195 printf_filtered ("Section %s, loaded at ", name);
3196 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3197 puts_filtered (" - ");
3198 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3199 printf_filtered (", mapped at ");
3200 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3201 puts_filtered (" - ");
3202 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3203 puts_filtered ("\n");
3204
3205 nmapped++;
3206 }
3207 if (nmapped == 0)
3208 printf_filtered (_("No sections are mapped.\n"));
3209 }
3210
3211 /* Function: map_overlay_command
3212 Mark the named section as mapped (ie. residing at its VMA address). */
3213
3214 static void
3215 map_overlay_command (char *args, int from_tty)
3216 {
3217 struct objfile *objfile, *objfile2;
3218 struct obj_section *sec, *sec2;
3219
3220 if (!overlay_debugging)
3221 error (_("Overlay debugging not enabled. Use "
3222 "either the 'overlay auto' or\n"
3223 "the 'overlay manual' command."));
3224
3225 if (args == 0 || *args == 0)
3226 error (_("Argument required: name of an overlay section"));
3227
3228 /* First, find a section matching the user supplied argument. */
3229 ALL_OBJSECTIONS (objfile, sec)
3230 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3231 {
3232 /* Now, check to see if the section is an overlay. */
3233 if (!section_is_overlay (sec))
3234 continue; /* not an overlay section */
3235
3236 /* Mark the overlay as "mapped". */
3237 sec->ovly_mapped = 1;
3238
3239 /* Next, make a pass and unmap any sections that are
3240 overlapped by this new section: */
3241 ALL_OBJSECTIONS (objfile2, sec2)
3242 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3243 {
3244 if (info_verbose)
3245 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3246 bfd_section_name (objfile->obfd,
3247 sec2->the_bfd_section));
3248 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3249 }
3250 return;
3251 }
3252 error (_("No overlay section called %s"), args);
3253 }
3254
3255 /* Function: unmap_overlay_command
3256 Mark the overlay section as unmapped
3257 (ie. resident in its LMA address range, rather than the VMA range). */
3258
3259 static void
3260 unmap_overlay_command (char *args, int from_tty)
3261 {
3262 struct objfile *objfile;
3263 struct obj_section *sec;
3264
3265 if (!overlay_debugging)
3266 error (_("Overlay debugging not enabled. "
3267 "Use either the 'overlay auto' or\n"
3268 "the 'overlay manual' command."));
3269
3270 if (args == 0 || *args == 0)
3271 error (_("Argument required: name of an overlay section"));
3272
3273 /* First, find a section matching the user supplied argument. */
3274 ALL_OBJSECTIONS (objfile, sec)
3275 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3276 {
3277 if (!sec->ovly_mapped)
3278 error (_("Section %s is not mapped"), args);
3279 sec->ovly_mapped = 0;
3280 return;
3281 }
3282 error (_("No overlay section called %s"), args);
3283 }
3284
3285 /* Function: overlay_auto_command
3286 A utility command to turn on overlay debugging.
3287 Possibly this should be done via a set/show command. */
3288
3289 static void
3290 overlay_auto_command (char *args, int from_tty)
3291 {
3292 overlay_debugging = ovly_auto;
3293 enable_overlay_breakpoints ();
3294 if (info_verbose)
3295 printf_unfiltered (_("Automatic overlay debugging enabled."));
3296 }
3297
3298 /* Function: overlay_manual_command
3299 A utility command to turn on overlay debugging.
3300 Possibly this should be done via a set/show command. */
3301
3302 static void
3303 overlay_manual_command (char *args, int from_tty)
3304 {
3305 overlay_debugging = ovly_on;
3306 disable_overlay_breakpoints ();
3307 if (info_verbose)
3308 printf_unfiltered (_("Overlay debugging enabled."));
3309 }
3310
3311 /* Function: overlay_off_command
3312 A utility command to turn on overlay debugging.
3313 Possibly this should be done via a set/show command. */
3314
3315 static void
3316 overlay_off_command (char *args, int from_tty)
3317 {
3318 overlay_debugging = ovly_off;
3319 disable_overlay_breakpoints ();
3320 if (info_verbose)
3321 printf_unfiltered (_("Overlay debugging disabled."));
3322 }
3323
3324 static void
3325 overlay_load_command (char *args, int from_tty)
3326 {
3327 struct gdbarch *gdbarch = get_current_arch ();
3328
3329 if (gdbarch_overlay_update_p (gdbarch))
3330 gdbarch_overlay_update (gdbarch, NULL);
3331 else
3332 error (_("This target does not know how to read its overlay state."));
3333 }
3334
3335 /* Function: overlay_command
3336 A place-holder for a mis-typed command. */
3337
3338 /* Command list chain containing all defined "overlay" subcommands. */
3339 static struct cmd_list_element *overlaylist;
3340
3341 static void
3342 overlay_command (char *args, int from_tty)
3343 {
3344 printf_unfiltered
3345 ("\"overlay\" must be followed by the name of an overlay command.\n");
3346 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3347 }
3348
3349 /* Target Overlays for the "Simplest" overlay manager:
3350
3351 This is GDB's default target overlay layer. It works with the
3352 minimal overlay manager supplied as an example by Cygnus. The
3353 entry point is via a function pointer "gdbarch_overlay_update",
3354 so targets that use a different runtime overlay manager can
3355 substitute their own overlay_update function and take over the
3356 function pointer.
3357
3358 The overlay_update function pokes around in the target's data structures
3359 to see what overlays are mapped, and updates GDB's overlay mapping with
3360 this information.
3361
3362 In this simple implementation, the target data structures are as follows:
3363 unsigned _novlys; /# number of overlay sections #/
3364 unsigned _ovly_table[_novlys][4] = {
3365 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3366 {..., ..., ..., ...},
3367 }
3368 unsigned _novly_regions; /# number of overlay regions #/
3369 unsigned _ovly_region_table[_novly_regions][3] = {
3370 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3371 {..., ..., ...},
3372 }
3373 These functions will attempt to update GDB's mappedness state in the
3374 symbol section table, based on the target's mappedness state.
3375
3376 To do this, we keep a cached copy of the target's _ovly_table, and
3377 attempt to detect when the cached copy is invalidated. The main
3378 entry point is "simple_overlay_update(SECT), which looks up SECT in
3379 the cached table and re-reads only the entry for that section from
3380 the target (whenever possible). */
3381
3382 /* Cached, dynamically allocated copies of the target data structures: */
3383 static unsigned (*cache_ovly_table)[4] = 0;
3384 static unsigned cache_novlys = 0;
3385 static CORE_ADDR cache_ovly_table_base = 0;
3386 enum ovly_index
3387 {
3388 VMA, SIZE, LMA, MAPPED
3389 };
3390
3391 /* Throw away the cached copy of _ovly_table. */
3392
3393 static void
3394 simple_free_overlay_table (void)
3395 {
3396 if (cache_ovly_table)
3397 xfree (cache_ovly_table);
3398 cache_novlys = 0;
3399 cache_ovly_table = NULL;
3400 cache_ovly_table_base = 0;
3401 }
3402
3403 /* Read an array of ints of size SIZE from the target into a local buffer.
3404 Convert to host order. int LEN is number of ints. */
3405
3406 static void
3407 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3408 int len, int size, enum bfd_endian byte_order)
3409 {
3410 /* FIXME (alloca): Not safe if array is very large. */
3411 gdb_byte *buf = alloca (len * size);
3412 int i;
3413
3414 read_memory (memaddr, buf, len * size);
3415 for (i = 0; i < len; i++)
3416 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3417 }
3418
3419 /* Find and grab a copy of the target _ovly_table
3420 (and _novlys, which is needed for the table's size). */
3421
3422 static int
3423 simple_read_overlay_table (void)
3424 {
3425 struct minimal_symbol *novlys_msym;
3426 struct bound_minimal_symbol ovly_table_msym;
3427 struct gdbarch *gdbarch;
3428 int word_size;
3429 enum bfd_endian byte_order;
3430
3431 simple_free_overlay_table ();
3432 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3433 if (! novlys_msym)
3434 {
3435 error (_("Error reading inferior's overlay table: "
3436 "couldn't find `_novlys' variable\n"
3437 "in inferior. Use `overlay manual' mode."));
3438 return 0;
3439 }
3440
3441 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3442 if (! ovly_table_msym.minsym)
3443 {
3444 error (_("Error reading inferior's overlay table: couldn't find "
3445 "`_ovly_table' array\n"
3446 "in inferior. Use `overlay manual' mode."));
3447 return 0;
3448 }
3449
3450 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3451 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3452 byte_order = gdbarch_byte_order (gdbarch);
3453
3454 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3455 4, byte_order);
3456 cache_ovly_table
3457 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3458 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym.minsym);
3459 read_target_long_array (cache_ovly_table_base,
3460 (unsigned int *) cache_ovly_table,
3461 cache_novlys * 4, word_size, byte_order);
3462
3463 return 1; /* SUCCESS */
3464 }
3465
3466 /* Function: simple_overlay_update_1
3467 A helper function for simple_overlay_update. Assuming a cached copy
3468 of _ovly_table exists, look through it to find an entry whose vma,
3469 lma and size match those of OSECT. Re-read the entry and make sure
3470 it still matches OSECT (else the table may no longer be valid).
3471 Set OSECT's mapped state to match the entry. Return: 1 for
3472 success, 0 for failure. */
3473
3474 static int
3475 simple_overlay_update_1 (struct obj_section *osect)
3476 {
3477 int i, size;
3478 bfd *obfd = osect->objfile->obfd;
3479 asection *bsect = osect->the_bfd_section;
3480 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3481 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3482 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3483
3484 size = bfd_get_section_size (osect->the_bfd_section);
3485 for (i = 0; i < cache_novlys; i++)
3486 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3487 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3488 /* && cache_ovly_table[i][SIZE] == size */ )
3489 {
3490 read_target_long_array (cache_ovly_table_base + i * word_size,
3491 (unsigned int *) cache_ovly_table[i],
3492 4, word_size, byte_order);
3493 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3494 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3495 /* && cache_ovly_table[i][SIZE] == size */ )
3496 {
3497 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3498 return 1;
3499 }
3500 else /* Warning! Warning! Target's ovly table has changed! */
3501 return 0;
3502 }
3503 return 0;
3504 }
3505
3506 /* Function: simple_overlay_update
3507 If OSECT is NULL, then update all sections' mapped state
3508 (after re-reading the entire target _ovly_table).
3509 If OSECT is non-NULL, then try to find a matching entry in the
3510 cached ovly_table and update only OSECT's mapped state.
3511 If a cached entry can't be found or the cache isn't valid, then
3512 re-read the entire cache, and go ahead and update all sections. */
3513
3514 void
3515 simple_overlay_update (struct obj_section *osect)
3516 {
3517 struct objfile *objfile;
3518
3519 /* Were we given an osect to look up? NULL means do all of them. */
3520 if (osect)
3521 /* Have we got a cached copy of the target's overlay table? */
3522 if (cache_ovly_table != NULL)
3523 {
3524 /* Does its cached location match what's currently in the
3525 symtab? */
3526 struct minimal_symbol *minsym
3527 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3528
3529 if (minsym == NULL)
3530 error (_("Error reading inferior's overlay table: couldn't "
3531 "find `_ovly_table' array\n"
3532 "in inferior. Use `overlay manual' mode."));
3533
3534 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3535 /* Then go ahead and try to look up this single section in
3536 the cache. */
3537 if (simple_overlay_update_1 (osect))
3538 /* Found it! We're done. */
3539 return;
3540 }
3541
3542 /* Cached table no good: need to read the entire table anew.
3543 Or else we want all the sections, in which case it's actually
3544 more efficient to read the whole table in one block anyway. */
3545
3546 if (! simple_read_overlay_table ())
3547 return;
3548
3549 /* Now may as well update all sections, even if only one was requested. */
3550 ALL_OBJSECTIONS (objfile, osect)
3551 if (section_is_overlay (osect))
3552 {
3553 int i, size;
3554 bfd *obfd = osect->objfile->obfd;
3555 asection *bsect = osect->the_bfd_section;
3556
3557 size = bfd_get_section_size (bsect);
3558 for (i = 0; i < cache_novlys; i++)
3559 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3560 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3561 /* && cache_ovly_table[i][SIZE] == size */ )
3562 { /* obj_section matches i'th entry in ovly_table. */
3563 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3564 break; /* finished with inner for loop: break out. */
3565 }
3566 }
3567 }
3568
3569 /* Set the output sections and output offsets for section SECTP in
3570 ABFD. The relocation code in BFD will read these offsets, so we
3571 need to be sure they're initialized. We map each section to itself,
3572 with no offset; this means that SECTP->vma will be honored. */
3573
3574 static void
3575 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3576 {
3577 sectp->output_section = sectp;
3578 sectp->output_offset = 0;
3579 }
3580
3581 /* Default implementation for sym_relocate. */
3582
3583 bfd_byte *
3584 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3585 bfd_byte *buf)
3586 {
3587 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3588 DWO file. */
3589 bfd *abfd = sectp->owner;
3590
3591 /* We're only interested in sections with relocation
3592 information. */
3593 if ((sectp->flags & SEC_RELOC) == 0)
3594 return NULL;
3595
3596 /* We will handle section offsets properly elsewhere, so relocate as if
3597 all sections begin at 0. */
3598 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3599
3600 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3601 }
3602
3603 /* Relocate the contents of a debug section SECTP in ABFD. The
3604 contents are stored in BUF if it is non-NULL, or returned in a
3605 malloc'd buffer otherwise.
3606
3607 For some platforms and debug info formats, shared libraries contain
3608 relocations against the debug sections (particularly for DWARF-2;
3609 one affected platform is PowerPC GNU/Linux, although it depends on
3610 the version of the linker in use). Also, ELF object files naturally
3611 have unresolved relocations for their debug sections. We need to apply
3612 the relocations in order to get the locations of symbols correct.
3613 Another example that may require relocation processing, is the
3614 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3615 debug section. */
3616
3617 bfd_byte *
3618 symfile_relocate_debug_section (struct objfile *objfile,
3619 asection *sectp, bfd_byte *buf)
3620 {
3621 gdb_assert (objfile->sf->sym_relocate);
3622
3623 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3624 }
3625
3626 struct symfile_segment_data *
3627 get_symfile_segment_data (bfd *abfd)
3628 {
3629 const struct sym_fns *sf = find_sym_fns (abfd);
3630
3631 if (sf == NULL)
3632 return NULL;
3633
3634 return sf->sym_segments (abfd);
3635 }
3636
3637 void
3638 free_symfile_segment_data (struct symfile_segment_data *data)
3639 {
3640 xfree (data->segment_bases);
3641 xfree (data->segment_sizes);
3642 xfree (data->segment_info);
3643 xfree (data);
3644 }
3645
3646 /* Given:
3647 - DATA, containing segment addresses from the object file ABFD, and
3648 the mapping from ABFD's sections onto the segments that own them,
3649 and
3650 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3651 segment addresses reported by the target,
3652 store the appropriate offsets for each section in OFFSETS.
3653
3654 If there are fewer entries in SEGMENT_BASES than there are segments
3655 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3656
3657 If there are more entries, then ignore the extra. The target may
3658 not be able to distinguish between an empty data segment and a
3659 missing data segment; a missing text segment is less plausible. */
3660
3661 int
3662 symfile_map_offsets_to_segments (bfd *abfd,
3663 const struct symfile_segment_data *data,
3664 struct section_offsets *offsets,
3665 int num_segment_bases,
3666 const CORE_ADDR *segment_bases)
3667 {
3668 int i;
3669 asection *sect;
3670
3671 /* It doesn't make sense to call this function unless you have some
3672 segment base addresses. */
3673 gdb_assert (num_segment_bases > 0);
3674
3675 /* If we do not have segment mappings for the object file, we
3676 can not relocate it by segments. */
3677 gdb_assert (data != NULL);
3678 gdb_assert (data->num_segments > 0);
3679
3680 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3681 {
3682 int which = data->segment_info[i];
3683
3684 gdb_assert (0 <= which && which <= data->num_segments);
3685
3686 /* Don't bother computing offsets for sections that aren't
3687 loaded as part of any segment. */
3688 if (! which)
3689 continue;
3690
3691 /* Use the last SEGMENT_BASES entry as the address of any extra
3692 segments mentioned in DATA->segment_info. */
3693 if (which > num_segment_bases)
3694 which = num_segment_bases;
3695
3696 offsets->offsets[i] = (segment_bases[which - 1]
3697 - data->segment_bases[which - 1]);
3698 }
3699
3700 return 1;
3701 }
3702
3703 static void
3704 symfile_find_segment_sections (struct objfile *objfile)
3705 {
3706 bfd *abfd = objfile->obfd;
3707 int i;
3708 asection *sect;
3709 struct symfile_segment_data *data;
3710
3711 data = get_symfile_segment_data (objfile->obfd);
3712 if (data == NULL)
3713 return;
3714
3715 if (data->num_segments != 1 && data->num_segments != 2)
3716 {
3717 free_symfile_segment_data (data);
3718 return;
3719 }
3720
3721 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3722 {
3723 int which = data->segment_info[i];
3724
3725 if (which == 1)
3726 {
3727 if (objfile->sect_index_text == -1)
3728 objfile->sect_index_text = sect->index;
3729
3730 if (objfile->sect_index_rodata == -1)
3731 objfile->sect_index_rodata = sect->index;
3732 }
3733 else if (which == 2)
3734 {
3735 if (objfile->sect_index_data == -1)
3736 objfile->sect_index_data = sect->index;
3737
3738 if (objfile->sect_index_bss == -1)
3739 objfile->sect_index_bss = sect->index;
3740 }
3741 }
3742
3743 free_symfile_segment_data (data);
3744 }
3745
3746 void
3747 _initialize_symfile (void)
3748 {
3749 struct cmd_list_element *c;
3750
3751 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3752 Load symbol table from executable file FILE.\n\
3753 The `file' command can also load symbol tables, as well as setting the file\n\
3754 to execute."), &cmdlist);
3755 set_cmd_completer (c, filename_completer);
3756
3757 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3758 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3759 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3760 ...]\nADDR is the starting address of the file's text.\n\
3761 The optional arguments are section-name section-address pairs and\n\
3762 should be specified if the data and bss segments are not contiguous\n\
3763 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3764 &cmdlist);
3765 set_cmd_completer (c, filename_completer);
3766
3767 c = add_cmd ("load", class_files, load_command, _("\
3768 Dynamically load FILE into the running program, and record its symbols\n\
3769 for access from GDB.\n\
3770 A load OFFSET may also be given."), &cmdlist);
3771 set_cmd_completer (c, filename_completer);
3772
3773 add_prefix_cmd ("overlay", class_support, overlay_command,
3774 _("Commands for debugging overlays."), &overlaylist,
3775 "overlay ", 0, &cmdlist);
3776
3777 add_com_alias ("ovly", "overlay", class_alias, 1);
3778 add_com_alias ("ov", "overlay", class_alias, 1);
3779
3780 add_cmd ("map-overlay", class_support, map_overlay_command,
3781 _("Assert that an overlay section is mapped."), &overlaylist);
3782
3783 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3784 _("Assert that an overlay section is unmapped."), &overlaylist);
3785
3786 add_cmd ("list-overlays", class_support, list_overlays_command,
3787 _("List mappings of overlay sections."), &overlaylist);
3788
3789 add_cmd ("manual", class_support, overlay_manual_command,
3790 _("Enable overlay debugging."), &overlaylist);
3791 add_cmd ("off", class_support, overlay_off_command,
3792 _("Disable overlay debugging."), &overlaylist);
3793 add_cmd ("auto", class_support, overlay_auto_command,
3794 _("Enable automatic overlay debugging."), &overlaylist);
3795 add_cmd ("load-target", class_support, overlay_load_command,
3796 _("Read the overlay mapping state from the target."), &overlaylist);
3797
3798 /* Filename extension to source language lookup table: */
3799 init_filename_language_table ();
3800 add_setshow_string_noescape_cmd ("extension-language", class_files,
3801 &ext_args, _("\
3802 Set mapping between filename extension and source language."), _("\
3803 Show mapping between filename extension and source language."), _("\
3804 Usage: set extension-language .foo bar"),
3805 set_ext_lang_command,
3806 show_ext_args,
3807 &setlist, &showlist);
3808
3809 add_info ("extensions", info_ext_lang_command,
3810 _("All filename extensions associated with a source language."));
3811
3812 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3813 &debug_file_directory, _("\
3814 Set the directories where separate debug symbols are searched for."), _("\
3815 Show the directories where separate debug symbols are searched for."), _("\
3816 Separate debug symbols are first searched for in the same\n\
3817 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3818 and lastly at the path of the directory of the binary with\n\
3819 each global debug-file-directory component prepended."),
3820 NULL,
3821 show_debug_file_directory,
3822 &setlist, &showlist);
3823 }
This page took 0.136049 seconds and 4 git commands to generate.