run copyright.sh for 2011.
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h"
42 #include "regcache.h"
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54 #include "parser-defs.h"
55 #include "varobj.h"
56 #include "elf-bfd.h"
57 #include "solib.h"
58 #include "remote.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
71 void (*deprecated_show_load_progress) (const char *section,
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
75 unsigned long total_size);
76 void (*deprecated_pre_add_symbol_hook) (const char *);
77 void (*deprecated_post_add_symbol_hook) (void);
78
79 static void clear_symtab_users_cleanup (void *ignore);
80
81 /* Global variables owned by this file */
82 int readnow_symbol_files; /* Read full symbols immediately */
83
84 /* External variables and functions referenced. */
85
86 extern void report_transfer_performance (unsigned long, time_t, time_t);
87
88 /* Functions this file defines */
89
90 static void load_command (char *, int);
91
92 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
93
94 static void add_symbol_file_command (char *, int);
95
96 bfd *symfile_bfd_open (char *);
97
98 int get_section_index (struct objfile *, char *);
99
100 static const struct sym_fns *find_sym_fns (bfd *);
101
102 static void decrement_reading_symtab (void *);
103
104 static void overlay_invalidate_all (void);
105
106 void list_overlays_command (char *, int);
107
108 void map_overlay_command (char *, int);
109
110 void unmap_overlay_command (char *, int);
111
112 static void overlay_auto_command (char *, int);
113
114 static void overlay_manual_command (char *, int);
115
116 static void overlay_off_command (char *, int);
117
118 static void overlay_load_command (char *, int);
119
120 static void overlay_command (char *, int);
121
122 static void simple_free_overlay_table (void);
123
124 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
125 enum bfd_endian);
126
127 static int simple_read_overlay_table (void);
128
129 static int simple_overlay_update_1 (struct obj_section *);
130
131 static void add_filename_language (char *ext, enum language lang);
132
133 static void info_ext_lang_command (char *args, int from_tty);
134
135 static void init_filename_language_table (void);
136
137 static void symfile_find_segment_sections (struct objfile *objfile);
138
139 void _initialize_symfile (void);
140
141 /* List of all available sym_fns. On gdb startup, each object file reader
142 calls add_symtab_fns() to register information on each format it is
143 prepared to read. */
144
145 typedef const struct sym_fns *sym_fns_ptr;
146 DEF_VEC_P (sym_fns_ptr);
147
148 static VEC (sym_fns_ptr) *symtab_fns = NULL;
149
150 /* Flag for whether user will be reloading symbols multiple times.
151 Defaults to ON for VxWorks, otherwise OFF. */
152
153 #ifdef SYMBOL_RELOADING_DEFAULT
154 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
155 #else
156 int symbol_reloading = 0;
157 #endif
158 static void
159 show_symbol_reloading (struct ui_file *file, int from_tty,
160 struct cmd_list_element *c, const char *value)
161 {
162 fprintf_filtered (file, _("\
163 Dynamic symbol table reloading multiple times in one run is %s.\n"),
164 value);
165 }
166
167 /* If non-zero, shared library symbols will be added automatically
168 when the inferior is created, new libraries are loaded, or when
169 attaching to the inferior. This is almost always what users will
170 want to have happen; but for very large programs, the startup time
171 will be excessive, and so if this is a problem, the user can clear
172 this flag and then add the shared library symbols as needed. Note
173 that there is a potential for confusion, since if the shared
174 library symbols are not loaded, commands like "info fun" will *not*
175 report all the functions that are actually present. */
176
177 int auto_solib_add = 1;
178
179 /* For systems that support it, a threshold size in megabytes. If
180 automatically adding a new library's symbol table to those already
181 known to the debugger would cause the total shared library symbol
182 size to exceed this threshhold, then the shlib's symbols are not
183 added. The threshold is ignored if the user explicitly asks for a
184 shlib to be added, such as when using the "sharedlibrary"
185 command. */
186
187 int auto_solib_limit;
188 \f
189
190 /* Make a null terminated copy of the string at PTR with SIZE characters in
191 the obstack pointed to by OBSTACKP . Returns the address of the copy.
192 Note that the string at PTR does not have to be null terminated, I.E. it
193 may be part of a larger string and we are only saving a substring. */
194
195 char *
196 obsavestring (const char *ptr, int size, struct obstack *obstackp)
197 {
198 char *p = (char *) obstack_alloc (obstackp, size + 1);
199 /* Open-coded memcpy--saves function call time. These strings are usually
200 short. FIXME: Is this really still true with a compiler that can
201 inline memcpy? */
202 {
203 const char *p1 = ptr;
204 char *p2 = p;
205 const char *end = ptr + size;
206
207 while (p1 != end)
208 *p2++ = *p1++;
209 }
210 p[size] = 0;
211 return p;
212 }
213
214 /* Concatenate NULL terminated variable argument list of `const char *' strings;
215 return the new string. Space is found in the OBSTACKP. Argument list must
216 be terminated by a sentinel expression `(char *) NULL'. */
217
218 char *
219 obconcat (struct obstack *obstackp, ...)
220 {
221 va_list ap;
222
223 va_start (ap, obstackp);
224 for (;;)
225 {
226 const char *s = va_arg (ap, const char *);
227
228 if (s == NULL)
229 break;
230
231 obstack_grow_str (obstackp, s);
232 }
233 va_end (ap);
234 obstack_1grow (obstackp, 0);
235
236 return obstack_finish (obstackp);
237 }
238
239 /* True if we are reading a symbol table. */
240
241 int currently_reading_symtab = 0;
242
243 static void
244 decrement_reading_symtab (void *dummy)
245 {
246 currently_reading_symtab--;
247 }
248
249 /* Increment currently_reading_symtab and return a cleanup that can be
250 used to decrement it. */
251 struct cleanup *
252 increment_reading_symtab (void)
253 {
254 ++currently_reading_symtab;
255 return make_cleanup (decrement_reading_symtab, NULL);
256 }
257
258 /* Remember the lowest-addressed loadable section we've seen.
259 This function is called via bfd_map_over_sections.
260
261 In case of equal vmas, the section with the largest size becomes the
262 lowest-addressed loadable section.
263
264 If the vmas and sizes are equal, the last section is considered the
265 lowest-addressed loadable section. */
266
267 void
268 find_lowest_section (bfd *abfd, asection *sect, void *obj)
269 {
270 asection **lowest = (asection **) obj;
271
272 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
273 return;
274 if (!*lowest)
275 *lowest = sect; /* First loadable section */
276 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
277 *lowest = sect; /* A lower loadable section */
278 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
279 && (bfd_section_size (abfd, (*lowest))
280 <= bfd_section_size (abfd, sect)))
281 *lowest = sect;
282 }
283
284 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
285
286 struct section_addr_info *
287 alloc_section_addr_info (size_t num_sections)
288 {
289 struct section_addr_info *sap;
290 size_t size;
291
292 size = (sizeof (struct section_addr_info)
293 + sizeof (struct other_sections) * (num_sections - 1));
294 sap = (struct section_addr_info *) xmalloc (size);
295 memset (sap, 0, size);
296 sap->num_sections = num_sections;
297
298 return sap;
299 }
300
301 /* Build (allocate and populate) a section_addr_info struct from
302 an existing section table. */
303
304 extern struct section_addr_info *
305 build_section_addr_info_from_section_table (const struct target_section *start,
306 const struct target_section *end)
307 {
308 struct section_addr_info *sap;
309 const struct target_section *stp;
310 int oidx;
311
312 sap = alloc_section_addr_info (end - start);
313
314 for (stp = start, oidx = 0; stp != end; stp++)
315 {
316 if (bfd_get_section_flags (stp->bfd,
317 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
318 && oidx < end - start)
319 {
320 sap->other[oidx].addr = stp->addr;
321 sap->other[oidx].name
322 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
323 sap->other[oidx].sectindex = stp->the_bfd_section->index;
324 oidx++;
325 }
326 }
327
328 return sap;
329 }
330
331 /* Create a section_addr_info from section offsets in ABFD. */
332
333 static struct section_addr_info *
334 build_section_addr_info_from_bfd (bfd *abfd)
335 {
336 struct section_addr_info *sap;
337 int i;
338 struct bfd_section *sec;
339
340 sap = alloc_section_addr_info (bfd_count_sections (abfd));
341 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
342 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
343 {
344 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
345 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
346 sap->other[i].sectindex = sec->index;
347 i++;
348 }
349 return sap;
350 }
351
352 /* Create a section_addr_info from section offsets in OBJFILE. */
353
354 struct section_addr_info *
355 build_section_addr_info_from_objfile (const struct objfile *objfile)
356 {
357 struct section_addr_info *sap;
358 int i;
359
360 /* Before reread_symbols gets rewritten it is not safe to call:
361 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
362 */
363 sap = build_section_addr_info_from_bfd (objfile->obfd);
364 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
365 {
366 int sectindex = sap->other[i].sectindex;
367
368 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
369 }
370 return sap;
371 }
372
373 /* Free all memory allocated by build_section_addr_info_from_section_table. */
374
375 extern void
376 free_section_addr_info (struct section_addr_info *sap)
377 {
378 int idx;
379
380 for (idx = 0; idx < sap->num_sections; idx++)
381 if (sap->other[idx].name)
382 xfree (sap->other[idx].name);
383 xfree (sap);
384 }
385
386
387 /* Initialize OBJFILE's sect_index_* members. */
388 static void
389 init_objfile_sect_indices (struct objfile *objfile)
390 {
391 asection *sect;
392 int i;
393
394 sect = bfd_get_section_by_name (objfile->obfd, ".text");
395 if (sect)
396 objfile->sect_index_text = sect->index;
397
398 sect = bfd_get_section_by_name (objfile->obfd, ".data");
399 if (sect)
400 objfile->sect_index_data = sect->index;
401
402 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
403 if (sect)
404 objfile->sect_index_bss = sect->index;
405
406 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
407 if (sect)
408 objfile->sect_index_rodata = sect->index;
409
410 /* This is where things get really weird... We MUST have valid
411 indices for the various sect_index_* members or gdb will abort.
412 So if for example, there is no ".text" section, we have to
413 accomodate that. First, check for a file with the standard
414 one or two segments. */
415
416 symfile_find_segment_sections (objfile);
417
418 /* Except when explicitly adding symbol files at some address,
419 section_offsets contains nothing but zeros, so it doesn't matter
420 which slot in section_offsets the individual sect_index_* members
421 index into. So if they are all zero, it is safe to just point
422 all the currently uninitialized indices to the first slot. But
423 beware: if this is the main executable, it may be relocated
424 later, e.g. by the remote qOffsets packet, and then this will
425 be wrong! That's why we try segments first. */
426
427 for (i = 0; i < objfile->num_sections; i++)
428 {
429 if (ANOFFSET (objfile->section_offsets, i) != 0)
430 {
431 break;
432 }
433 }
434 if (i == objfile->num_sections)
435 {
436 if (objfile->sect_index_text == -1)
437 objfile->sect_index_text = 0;
438 if (objfile->sect_index_data == -1)
439 objfile->sect_index_data = 0;
440 if (objfile->sect_index_bss == -1)
441 objfile->sect_index_bss = 0;
442 if (objfile->sect_index_rodata == -1)
443 objfile->sect_index_rodata = 0;
444 }
445 }
446
447 /* The arguments to place_section. */
448
449 struct place_section_arg
450 {
451 struct section_offsets *offsets;
452 CORE_ADDR lowest;
453 };
454
455 /* Find a unique offset to use for loadable section SECT if
456 the user did not provide an offset. */
457
458 static void
459 place_section (bfd *abfd, asection *sect, void *obj)
460 {
461 struct place_section_arg *arg = obj;
462 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
463 int done;
464 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
465
466 /* We are only interested in allocated sections. */
467 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
468 return;
469
470 /* If the user specified an offset, honor it. */
471 if (offsets[sect->index] != 0)
472 return;
473
474 /* Otherwise, let's try to find a place for the section. */
475 start_addr = (arg->lowest + align - 1) & -align;
476
477 do {
478 asection *cur_sec;
479
480 done = 1;
481
482 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
483 {
484 int indx = cur_sec->index;
485
486 /* We don't need to compare against ourself. */
487 if (cur_sec == sect)
488 continue;
489
490 /* We can only conflict with allocated sections. */
491 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
492 continue;
493
494 /* If the section offset is 0, either the section has not been placed
495 yet, or it was the lowest section placed (in which case LOWEST
496 will be past its end). */
497 if (offsets[indx] == 0)
498 continue;
499
500 /* If this section would overlap us, then we must move up. */
501 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
502 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
503 {
504 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
505 start_addr = (start_addr + align - 1) & -align;
506 done = 0;
507 break;
508 }
509
510 /* Otherwise, we appear to be OK. So far. */
511 }
512 }
513 while (!done);
514
515 offsets[sect->index] = start_addr;
516 arg->lowest = start_addr + bfd_get_section_size (sect);
517 }
518
519 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
520 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
521 entries. */
522
523 void
524 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
525 int num_sections,
526 struct section_addr_info *addrs)
527 {
528 int i;
529
530 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
531
532 /* Now calculate offsets for section that were specified by the caller. */
533 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
534 {
535 struct other_sections *osp;
536
537 osp = &addrs->other[i];
538 if (osp->addr == 0)
539 continue;
540
541 /* Record all sections in offsets */
542 /* The section_offsets in the objfile are here filled in using
543 the BFD index. */
544 section_offsets->offsets[osp->sectindex] = osp->addr;
545 }
546 }
547
548 /* Transform section name S for a name comparison. prelink can split section
549 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
550 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
551 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
552 (`.sbss') section has invalid (increased) virtual address. */
553
554 static const char *
555 addr_section_name (const char *s)
556 {
557 if (strcmp (s, ".dynbss") == 0)
558 return ".bss";
559 if (strcmp (s, ".sdynbss") == 0)
560 return ".sbss";
561
562 return s;
563 }
564
565 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
566 their (name, sectindex) pair. sectindex makes the sort by name stable. */
567
568 static int
569 addrs_section_compar (const void *ap, const void *bp)
570 {
571 const struct other_sections *a = *((struct other_sections **) ap);
572 const struct other_sections *b = *((struct other_sections **) bp);
573 int retval, a_idx, b_idx;
574
575 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
576 if (retval)
577 return retval;
578
579 /* SECTINDEX is undefined iff ADDR is zero. */
580 a_idx = a->addr == 0 ? 0 : a->sectindex;
581 b_idx = b->addr == 0 ? 0 : b->sectindex;
582 return a_idx - b_idx;
583 }
584
585 /* Provide sorted array of pointers to sections of ADDRS. The array is
586 terminated by NULL. Caller is responsible to call xfree for it. */
587
588 static struct other_sections **
589 addrs_section_sort (struct section_addr_info *addrs)
590 {
591 struct other_sections **array;
592 int i;
593
594 /* `+ 1' for the NULL terminator. */
595 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
596 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
597 array[i] = &addrs->other[i];
598 array[i] = NULL;
599
600 qsort (array, i, sizeof (*array), addrs_section_compar);
601
602 return array;
603 }
604
605 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
606 also SECTINDEXes specific to ABFD there. This function can be used to
607 rebase ADDRS to start referencing different BFD than before. */
608
609 void
610 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
611 {
612 asection *lower_sect;
613 CORE_ADDR lower_offset;
614 int i;
615 struct cleanup *my_cleanup;
616 struct section_addr_info *abfd_addrs;
617 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
618 struct other_sections **addrs_to_abfd_addrs;
619
620 /* Find lowest loadable section to be used as starting point for
621 continguous sections. */
622 lower_sect = NULL;
623 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
624 if (lower_sect == NULL)
625 {
626 warning (_("no loadable sections found in added symbol-file %s"),
627 bfd_get_filename (abfd));
628 lower_offset = 0;
629 }
630 else
631 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
632
633 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
634 in ABFD. Section names are not unique - there can be multiple sections of
635 the same name. Also the sections of the same name do not have to be
636 adjacent to each other. Some sections may be present only in one of the
637 files. Even sections present in both files do not have to be in the same
638 order.
639
640 Use stable sort by name for the sections in both files. Then linearly
641 scan both lists matching as most of the entries as possible. */
642
643 addrs_sorted = addrs_section_sort (addrs);
644 my_cleanup = make_cleanup (xfree, addrs_sorted);
645
646 abfd_addrs = build_section_addr_info_from_bfd (abfd);
647 make_cleanup_free_section_addr_info (abfd_addrs);
648 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
649 make_cleanup (xfree, abfd_addrs_sorted);
650
651 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and ABFD_ADDRS_SORTED. */
652
653 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
654 * addrs->num_sections);
655 make_cleanup (xfree, addrs_to_abfd_addrs);
656
657 while (*addrs_sorted)
658 {
659 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
660
661 while (*abfd_addrs_sorted
662 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
663 sect_name) < 0)
664 abfd_addrs_sorted++;
665
666 if (*abfd_addrs_sorted
667 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
668 sect_name) == 0)
669 {
670 int index_in_addrs;
671
672 /* Make the found item directly addressable from ADDRS. */
673 index_in_addrs = *addrs_sorted - addrs->other;
674 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
675 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
676
677 /* Never use the same ABFD entry twice. */
678 abfd_addrs_sorted++;
679 }
680
681 addrs_sorted++;
682 }
683
684 /* Calculate offsets for the loadable sections.
685 FIXME! Sections must be in order of increasing loadable section
686 so that contiguous sections can use the lower-offset!!!
687
688 Adjust offsets if the segments are not contiguous.
689 If the section is contiguous, its offset should be set to
690 the offset of the highest loadable section lower than it
691 (the loadable section directly below it in memory).
692 this_offset = lower_offset = lower_addr - lower_orig_addr */
693
694 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
695 {
696 struct other_sections *sect = addrs_to_abfd_addrs[i];
697
698 if (sect)
699 {
700 /* This is the index used by BFD. */
701 addrs->other[i].sectindex = sect->sectindex;
702
703 if (addrs->other[i].addr != 0)
704 {
705 addrs->other[i].addr -= sect->addr;
706 lower_offset = addrs->other[i].addr;
707 }
708 else
709 addrs->other[i].addr = lower_offset;
710 }
711 else
712 {
713 /* addr_section_name transformation is not used for SECT_NAME. */
714 const char *sect_name = addrs->other[i].name;
715
716 /* This section does not exist in ABFD, which is normally
717 unexpected and we want to issue a warning.
718
719 However, the ELF prelinker does create a few sections which are
720 marked in the main executable as loadable (they are loaded in
721 memory from the DYNAMIC segment) and yet are not present in
722 separate debug info files. This is fine, and should not cause
723 a warning. Shared libraries contain just the section
724 ".gnu.liblist" but it is not marked as loadable there. There is
725 no other way to identify them than by their name as the sections
726 created by prelink have no special flags.
727
728 For the sections `.bss' and `.sbss' see addr_section_name. */
729
730 if (!(strcmp (sect_name, ".gnu.liblist") == 0
731 || strcmp (sect_name, ".gnu.conflict") == 0
732 || (strcmp (sect_name, ".bss") == 0
733 && i > 0
734 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
735 && addrs_to_abfd_addrs[i - 1] != NULL)
736 || (strcmp (sect_name, ".sbss") == 0
737 && i > 0
738 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
739 && addrs_to_abfd_addrs[i - 1] != NULL)))
740 warning (_("section %s not found in %s"), sect_name,
741 bfd_get_filename (abfd));
742
743 addrs->other[i].addr = 0;
744
745 /* SECTINDEX is invalid if ADDR is zero. */
746 }
747 }
748
749 do_cleanups (my_cleanup);
750 }
751
752 /* Parse the user's idea of an offset for dynamic linking, into our idea
753 of how to represent it for fast symbol reading. This is the default
754 version of the sym_fns.sym_offsets function for symbol readers that
755 don't need to do anything special. It allocates a section_offsets table
756 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
757
758 void
759 default_symfile_offsets (struct objfile *objfile,
760 struct section_addr_info *addrs)
761 {
762 objfile->num_sections = bfd_count_sections (objfile->obfd);
763 objfile->section_offsets = (struct section_offsets *)
764 obstack_alloc (&objfile->objfile_obstack,
765 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
766 relative_addr_info_to_section_offsets (objfile->section_offsets,
767 objfile->num_sections, addrs);
768
769 /* For relocatable files, all loadable sections will start at zero.
770 The zero is meaningless, so try to pick arbitrary addresses such
771 that no loadable sections overlap. This algorithm is quadratic,
772 but the number of sections in a single object file is generally
773 small. */
774 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
775 {
776 struct place_section_arg arg;
777 bfd *abfd = objfile->obfd;
778 asection *cur_sec;
779
780 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
781 /* We do not expect this to happen; just skip this step if the
782 relocatable file has a section with an assigned VMA. */
783 if (bfd_section_vma (abfd, cur_sec) != 0)
784 break;
785
786 if (cur_sec == NULL)
787 {
788 CORE_ADDR *offsets = objfile->section_offsets->offsets;
789
790 /* Pick non-overlapping offsets for sections the user did not
791 place explicitly. */
792 arg.offsets = objfile->section_offsets;
793 arg.lowest = 0;
794 bfd_map_over_sections (objfile->obfd, place_section, &arg);
795
796 /* Correctly filling in the section offsets is not quite
797 enough. Relocatable files have two properties that
798 (most) shared objects do not:
799
800 - Their debug information will contain relocations. Some
801 shared libraries do also, but many do not, so this can not
802 be assumed.
803
804 - If there are multiple code sections they will be loaded
805 at different relative addresses in memory than they are
806 in the objfile, since all sections in the file will start
807 at address zero.
808
809 Because GDB has very limited ability to map from an
810 address in debug info to the correct code section,
811 it relies on adding SECT_OFF_TEXT to things which might be
812 code. If we clear all the section offsets, and set the
813 section VMAs instead, then symfile_relocate_debug_section
814 will return meaningful debug information pointing at the
815 correct sections.
816
817 GDB has too many different data structures for section
818 addresses - a bfd, objfile, and so_list all have section
819 tables, as does exec_ops. Some of these could probably
820 be eliminated. */
821
822 for (cur_sec = abfd->sections; cur_sec != NULL;
823 cur_sec = cur_sec->next)
824 {
825 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
826 continue;
827
828 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
829 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
830 offsets[cur_sec->index]);
831 offsets[cur_sec->index] = 0;
832 }
833 }
834 }
835
836 /* Remember the bfd indexes for the .text, .data, .bss and
837 .rodata sections. */
838 init_objfile_sect_indices (objfile);
839 }
840
841
842 /* Divide the file into segments, which are individual relocatable units.
843 This is the default version of the sym_fns.sym_segments function for
844 symbol readers that do not have an explicit representation of segments.
845 It assumes that object files do not have segments, and fully linked
846 files have a single segment. */
847
848 struct symfile_segment_data *
849 default_symfile_segments (bfd *abfd)
850 {
851 int num_sections, i;
852 asection *sect;
853 struct symfile_segment_data *data;
854 CORE_ADDR low, high;
855
856 /* Relocatable files contain enough information to position each
857 loadable section independently; they should not be relocated
858 in segments. */
859 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
860 return NULL;
861
862 /* Make sure there is at least one loadable section in the file. */
863 for (sect = abfd->sections; sect != NULL; sect = sect->next)
864 {
865 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
866 continue;
867
868 break;
869 }
870 if (sect == NULL)
871 return NULL;
872
873 low = bfd_get_section_vma (abfd, sect);
874 high = low + bfd_get_section_size (sect);
875
876 data = XZALLOC (struct symfile_segment_data);
877 data->num_segments = 1;
878 data->segment_bases = XCALLOC (1, CORE_ADDR);
879 data->segment_sizes = XCALLOC (1, CORE_ADDR);
880
881 num_sections = bfd_count_sections (abfd);
882 data->segment_info = XCALLOC (num_sections, int);
883
884 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
885 {
886 CORE_ADDR vma;
887
888 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
889 continue;
890
891 vma = bfd_get_section_vma (abfd, sect);
892 if (vma < low)
893 low = vma;
894 if (vma + bfd_get_section_size (sect) > high)
895 high = vma + bfd_get_section_size (sect);
896
897 data->segment_info[i] = 1;
898 }
899
900 data->segment_bases[0] = low;
901 data->segment_sizes[0] = high - low;
902
903 return data;
904 }
905
906 /* Process a symbol file, as either the main file or as a dynamically
907 loaded file.
908
909 OBJFILE is where the symbols are to be read from.
910
911 ADDRS is the list of section load addresses. If the user has given
912 an 'add-symbol-file' command, then this is the list of offsets and
913 addresses he or she provided as arguments to the command; or, if
914 we're handling a shared library, these are the actual addresses the
915 sections are loaded at, according to the inferior's dynamic linker
916 (as gleaned by GDB's shared library code). We convert each address
917 into an offset from the section VMA's as it appears in the object
918 file, and then call the file's sym_offsets function to convert this
919 into a format-specific offset table --- a `struct section_offsets'.
920 If ADDRS is non-zero, OFFSETS must be zero.
921
922 OFFSETS is a table of section offsets already in the right
923 format-specific representation. NUM_OFFSETS is the number of
924 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
925 assume this is the proper table the call to sym_offsets described
926 above would produce. Instead of calling sym_offsets, we just dump
927 it right into objfile->section_offsets. (When we're re-reading
928 symbols from an objfile, we don't have the original load address
929 list any more; all we have is the section offset table.) If
930 OFFSETS is non-zero, ADDRS must be zero.
931
932 ADD_FLAGS encodes verbosity level, whether this is main symbol or
933 an extra symbol file such as dynamically loaded code, and wether
934 breakpoint reset should be deferred. */
935
936 void
937 syms_from_objfile (struct objfile *objfile,
938 struct section_addr_info *addrs,
939 struct section_offsets *offsets,
940 int num_offsets,
941 int add_flags)
942 {
943 struct section_addr_info *local_addr = NULL;
944 struct cleanup *old_chain;
945 const int mainline = add_flags & SYMFILE_MAINLINE;
946
947 gdb_assert (! (addrs && offsets));
948
949 init_entry_point_info (objfile);
950 objfile->sf = find_sym_fns (objfile->obfd);
951
952 if (objfile->sf == NULL)
953 return; /* No symbols. */
954
955 /* Make sure that partially constructed symbol tables will be cleaned up
956 if an error occurs during symbol reading. */
957 old_chain = make_cleanup_free_objfile (objfile);
958
959 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
960 list. We now establish the convention that an addr of zero means
961 no load address was specified. */
962 if (! addrs && ! offsets)
963 {
964 local_addr
965 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
966 make_cleanup (xfree, local_addr);
967 addrs = local_addr;
968 }
969
970 /* Now either addrs or offsets is non-zero. */
971
972 if (mainline)
973 {
974 /* We will modify the main symbol table, make sure that all its users
975 will be cleaned up if an error occurs during symbol reading. */
976 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
977
978 /* Since no error yet, throw away the old symbol table. */
979
980 if (symfile_objfile != NULL)
981 {
982 free_objfile (symfile_objfile);
983 gdb_assert (symfile_objfile == NULL);
984 }
985
986 /* Currently we keep symbols from the add-symbol-file command.
987 If the user wants to get rid of them, they should do "symbol-file"
988 without arguments first. Not sure this is the best behavior
989 (PR 2207). */
990
991 (*objfile->sf->sym_new_init) (objfile);
992 }
993
994 /* Convert addr into an offset rather than an absolute address.
995 We find the lowest address of a loaded segment in the objfile,
996 and assume that <addr> is where that got loaded.
997
998 We no longer warn if the lowest section is not a text segment (as
999 happens for the PA64 port. */
1000 if (addrs && addrs->other[0].name)
1001 addr_info_make_relative (addrs, objfile->obfd);
1002
1003 /* Initialize symbol reading routines for this objfile, allow complaints to
1004 appear for this new file, and record how verbose to be, then do the
1005 initial symbol reading for this file. */
1006
1007 (*objfile->sf->sym_init) (objfile);
1008 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1009
1010 if (addrs)
1011 (*objfile->sf->sym_offsets) (objfile, addrs);
1012 else
1013 {
1014 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1015
1016 /* Just copy in the offset table directly as given to us. */
1017 objfile->num_sections = num_offsets;
1018 objfile->section_offsets
1019 = ((struct section_offsets *)
1020 obstack_alloc (&objfile->objfile_obstack, size));
1021 memcpy (objfile->section_offsets, offsets, size);
1022
1023 init_objfile_sect_indices (objfile);
1024 }
1025
1026 (*objfile->sf->sym_read) (objfile, add_flags);
1027
1028 /* Discard cleanups as symbol reading was successful. */
1029
1030 discard_cleanups (old_chain);
1031 xfree (local_addr);
1032 }
1033
1034 /* Perform required actions after either reading in the initial
1035 symbols for a new objfile, or mapping in the symbols from a reusable
1036 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1037
1038 void
1039 new_symfile_objfile (struct objfile *objfile, int add_flags)
1040 {
1041 /* If this is the main symbol file we have to clean up all users of the
1042 old main symbol file. Otherwise it is sufficient to fixup all the
1043 breakpoints that may have been redefined by this symbol file. */
1044 if (add_flags & SYMFILE_MAINLINE)
1045 {
1046 /* OK, make it the "real" symbol file. */
1047 symfile_objfile = objfile;
1048
1049 clear_symtab_users (add_flags);
1050 }
1051 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1052 {
1053 breakpoint_re_set ();
1054 }
1055
1056 /* We're done reading the symbol file; finish off complaints. */
1057 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1058 }
1059
1060 /* Process a symbol file, as either the main file or as a dynamically
1061 loaded file.
1062
1063 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1064 This BFD will be closed on error, and is always consumed by this function.
1065
1066 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1067 extra, such as dynamically loaded code, and what to do with breakpoins.
1068
1069 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1070 syms_from_objfile, above.
1071 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1072
1073 Upon success, returns a pointer to the objfile that was added.
1074 Upon failure, jumps back to command level (never returns). */
1075
1076 static struct objfile *
1077 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1078 int add_flags,
1079 struct section_addr_info *addrs,
1080 struct section_offsets *offsets,
1081 int num_offsets,
1082 int flags)
1083 {
1084 struct objfile *objfile;
1085 struct cleanup *my_cleanups;
1086 const char *name = bfd_get_filename (abfd);
1087 const int from_tty = add_flags & SYMFILE_VERBOSE;
1088
1089 if (readnow_symbol_files)
1090 flags |= OBJF_READNOW;
1091
1092 my_cleanups = make_cleanup_bfd_close (abfd);
1093
1094 /* Give user a chance to burp if we'd be
1095 interactively wiping out any existing symbols. */
1096
1097 if ((have_full_symbols () || have_partial_symbols ())
1098 && (add_flags & SYMFILE_MAINLINE)
1099 && from_tty
1100 && !query (_("Load new symbol table from \"%s\"? "), name))
1101 error (_("Not confirmed."));
1102
1103 objfile = allocate_objfile (abfd, flags);
1104 discard_cleanups (my_cleanups);
1105
1106 /* We either created a new mapped symbol table, mapped an existing
1107 symbol table file which has not had initial symbol reading
1108 performed, or need to read an unmapped symbol table. */
1109 if (from_tty || info_verbose)
1110 {
1111 if (deprecated_pre_add_symbol_hook)
1112 deprecated_pre_add_symbol_hook (name);
1113 else
1114 {
1115 printf_unfiltered (_("Reading symbols from %s..."), name);
1116 wrap_here ("");
1117 gdb_flush (gdb_stdout);
1118 }
1119 }
1120 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1121 add_flags);
1122
1123 /* We now have at least a partial symbol table. Check to see if the
1124 user requested that all symbols be read on initial access via either
1125 the gdb startup command line or on a per symbol file basis. Expand
1126 all partial symbol tables for this objfile if so. */
1127
1128 if ((flags & OBJF_READNOW))
1129 {
1130 if (from_tty || info_verbose)
1131 {
1132 printf_unfiltered (_("expanding to full symbols..."));
1133 wrap_here ("");
1134 gdb_flush (gdb_stdout);
1135 }
1136
1137 if (objfile->sf)
1138 objfile->sf->qf->expand_all_symtabs (objfile);
1139 }
1140
1141 if ((from_tty || info_verbose)
1142 && !objfile_has_symbols (objfile))
1143 {
1144 wrap_here ("");
1145 printf_unfiltered (_("(no debugging symbols found)..."));
1146 wrap_here ("");
1147 }
1148
1149 if (from_tty || info_verbose)
1150 {
1151 if (deprecated_post_add_symbol_hook)
1152 deprecated_post_add_symbol_hook ();
1153 else
1154 printf_unfiltered (_("done.\n"));
1155 }
1156
1157 /* We print some messages regardless of whether 'from_tty ||
1158 info_verbose' is true, so make sure they go out at the right
1159 time. */
1160 gdb_flush (gdb_stdout);
1161
1162 do_cleanups (my_cleanups);
1163
1164 if (objfile->sf == NULL)
1165 {
1166 observer_notify_new_objfile (objfile);
1167 return objfile; /* No symbols. */
1168 }
1169
1170 new_symfile_objfile (objfile, add_flags);
1171
1172 observer_notify_new_objfile (objfile);
1173
1174 bfd_cache_close_all ();
1175 return (objfile);
1176 }
1177
1178 /* Add BFD as a separate debug file for OBJFILE. */
1179
1180 void
1181 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1182 {
1183 struct objfile *new_objfile;
1184 struct section_addr_info *sap;
1185 struct cleanup *my_cleanup;
1186
1187 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1188 because sections of BFD may not match sections of OBJFILE and because
1189 vma may have been modified by tools such as prelink. */
1190 sap = build_section_addr_info_from_objfile (objfile);
1191 my_cleanup = make_cleanup_free_section_addr_info (sap);
1192
1193 new_objfile = symbol_file_add_with_addrs_or_offsets
1194 (bfd, symfile_flags,
1195 sap, NULL, 0,
1196 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1197 | OBJF_USERLOADED));
1198
1199 do_cleanups (my_cleanup);
1200
1201 add_separate_debug_objfile (new_objfile, objfile);
1202 }
1203
1204 /* Process the symbol file ABFD, as either the main file or as a
1205 dynamically loaded file.
1206
1207 See symbol_file_add_with_addrs_or_offsets's comments for
1208 details. */
1209 struct objfile *
1210 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1211 struct section_addr_info *addrs,
1212 int flags)
1213 {
1214 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1215 flags);
1216 }
1217
1218
1219 /* Process a symbol file, as either the main file or as a dynamically
1220 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1221 for details. */
1222 struct objfile *
1223 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1224 int flags)
1225 {
1226 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1227 flags);
1228 }
1229
1230
1231 /* Call symbol_file_add() with default values and update whatever is
1232 affected by the loading of a new main().
1233 Used when the file is supplied in the gdb command line
1234 and by some targets with special loading requirements.
1235 The auxiliary function, symbol_file_add_main_1(), has the flags
1236 argument for the switches that can only be specified in the symbol_file
1237 command itself. */
1238
1239 void
1240 symbol_file_add_main (char *args, int from_tty)
1241 {
1242 symbol_file_add_main_1 (args, from_tty, 0);
1243 }
1244
1245 static void
1246 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1247 {
1248 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1249 symbol_file_add (args, add_flags, NULL, flags);
1250
1251 /* Getting new symbols may change our opinion about
1252 what is frameless. */
1253 reinit_frame_cache ();
1254
1255 set_initial_language ();
1256 }
1257
1258 void
1259 symbol_file_clear (int from_tty)
1260 {
1261 if ((have_full_symbols () || have_partial_symbols ())
1262 && from_tty
1263 && (symfile_objfile
1264 ? !query (_("Discard symbol table from `%s'? "),
1265 symfile_objfile->name)
1266 : !query (_("Discard symbol table? "))))
1267 error (_("Not confirmed."));
1268
1269 /* solib descriptors may have handles to objfiles. Wipe them before their
1270 objfiles get stale by free_all_objfiles. */
1271 no_shared_libraries (NULL, from_tty);
1272
1273 free_all_objfiles ();
1274
1275 gdb_assert (symfile_objfile == NULL);
1276 if (from_tty)
1277 printf_unfiltered (_("No symbol file now.\n"));
1278 }
1279
1280 static char *
1281 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1282 {
1283 asection *sect;
1284 bfd_size_type debuglink_size;
1285 unsigned long crc32;
1286 char *contents;
1287 int crc_offset;
1288
1289 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1290
1291 if (sect == NULL)
1292 return NULL;
1293
1294 debuglink_size = bfd_section_size (objfile->obfd, sect);
1295
1296 contents = xmalloc (debuglink_size);
1297 bfd_get_section_contents (objfile->obfd, sect, contents,
1298 (file_ptr)0, (bfd_size_type)debuglink_size);
1299
1300 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1301 crc_offset = strlen (contents) + 1;
1302 crc_offset = (crc_offset + 3) & ~3;
1303
1304 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1305
1306 *crc32_out = crc32;
1307 return contents;
1308 }
1309
1310 static int
1311 separate_debug_file_exists (const char *name, unsigned long crc,
1312 struct objfile *parent_objfile)
1313 {
1314 unsigned long file_crc = 0;
1315 bfd *abfd;
1316 gdb_byte buffer[8*1024];
1317 int count;
1318 struct stat parent_stat, abfd_stat;
1319
1320 /* Find a separate debug info file as if symbols would be present in
1321 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1322 section can contain just the basename of PARENT_OBJFILE without any
1323 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1324 the separate debug infos with the same basename can exist. */
1325
1326 if (strcmp (name, parent_objfile->name) == 0)
1327 return 0;
1328
1329 abfd = bfd_open_maybe_remote (name);
1330
1331 if (!abfd)
1332 return 0;
1333
1334 /* Verify symlinks were not the cause of strcmp name difference above.
1335
1336 Some operating systems, e.g. Windows, do not provide a meaningful
1337 st_ino; they always set it to zero. (Windows does provide a
1338 meaningful st_dev.) Do not indicate a duplicate library in that
1339 case. While there is no guarantee that a system that provides
1340 meaningful inode numbers will never set st_ino to zero, this is
1341 merely an optimization, so we do not need to worry about false
1342 negatives. */
1343
1344 if (bfd_stat (abfd, &abfd_stat) == 0
1345 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0
1346 && abfd_stat.st_dev == parent_stat.st_dev
1347 && abfd_stat.st_ino == parent_stat.st_ino
1348 && abfd_stat.st_ino != 0)
1349 {
1350 bfd_close (abfd);
1351 return 0;
1352 }
1353
1354 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1355 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1356
1357 bfd_close (abfd);
1358
1359 if (crc != file_crc)
1360 {
1361 warning (_("the debug information found in \"%s\""
1362 " does not match \"%s\" (CRC mismatch).\n"),
1363 name, parent_objfile->name);
1364 return 0;
1365 }
1366
1367 return 1;
1368 }
1369
1370 char *debug_file_directory = NULL;
1371 static void
1372 show_debug_file_directory (struct ui_file *file, int from_tty,
1373 struct cmd_list_element *c, const char *value)
1374 {
1375 fprintf_filtered (file, _("\
1376 The directory where separate debug symbols are searched for is \"%s\".\n"),
1377 value);
1378 }
1379
1380 #if ! defined (DEBUG_SUBDIRECTORY)
1381 #define DEBUG_SUBDIRECTORY ".debug"
1382 #endif
1383
1384 char *
1385 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1386 {
1387 char *basename, *debugdir;
1388 char *dir = NULL;
1389 char *debugfile = NULL;
1390 char *canon_name = NULL;
1391 unsigned long crc32;
1392 int i;
1393
1394 basename = get_debug_link_info (objfile, &crc32);
1395
1396 if (basename == NULL)
1397 /* There's no separate debug info, hence there's no way we could
1398 load it => no warning. */
1399 goto cleanup_return_debugfile;
1400
1401 dir = xstrdup (objfile->name);
1402
1403 /* Strip off the final filename part, leaving the directory name,
1404 followed by a slash. The directory can be relative or absolute. */
1405 for (i = strlen(dir) - 1; i >= 0; i--)
1406 {
1407 if (IS_DIR_SEPARATOR (dir[i]))
1408 break;
1409 }
1410 /* If I is -1 then no directory is present there and DIR will be "". */
1411 dir[i+1] = '\0';
1412
1413 /* Set I to max (strlen (canon_name), strlen (dir)). */
1414 canon_name = lrealpath (dir);
1415 i = strlen (dir);
1416 if (canon_name && strlen (canon_name) > i)
1417 i = strlen (canon_name);
1418
1419 debugfile = xmalloc (strlen (debug_file_directory) + 1
1420 + i
1421 + strlen (DEBUG_SUBDIRECTORY)
1422 + strlen ("/")
1423 + strlen (basename)
1424 + 1);
1425
1426 /* First try in the same directory as the original file. */
1427 strcpy (debugfile, dir);
1428 strcat (debugfile, basename);
1429
1430 if (separate_debug_file_exists (debugfile, crc32, objfile))
1431 goto cleanup_return_debugfile;
1432
1433 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1434 strcpy (debugfile, dir);
1435 strcat (debugfile, DEBUG_SUBDIRECTORY);
1436 strcat (debugfile, "/");
1437 strcat (debugfile, basename);
1438
1439 if (separate_debug_file_exists (debugfile, crc32, objfile))
1440 goto cleanup_return_debugfile;
1441
1442 /* Then try in the global debugfile directories.
1443
1444 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1445 cause "/..." lookups. */
1446
1447 debugdir = debug_file_directory;
1448 do
1449 {
1450 char *debugdir_end;
1451
1452 while (*debugdir == DIRNAME_SEPARATOR)
1453 debugdir++;
1454
1455 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1456 if (debugdir_end == NULL)
1457 debugdir_end = &debugdir[strlen (debugdir)];
1458
1459 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1460 debugfile[debugdir_end - debugdir] = 0;
1461 strcat (debugfile, "/");
1462 strcat (debugfile, dir);
1463 strcat (debugfile, basename);
1464
1465 if (separate_debug_file_exists (debugfile, crc32, objfile))
1466 goto cleanup_return_debugfile;
1467
1468 /* If the file is in the sysroot, try using its base path in the
1469 global debugfile directory. */
1470 if (canon_name
1471 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1472 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1473 {
1474 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1475 debugfile[debugdir_end - debugdir] = 0;
1476 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1477 strcat (debugfile, "/");
1478 strcat (debugfile, basename);
1479
1480 if (separate_debug_file_exists (debugfile, crc32, objfile))
1481 goto cleanup_return_debugfile;
1482 }
1483
1484 debugdir = debugdir_end;
1485 }
1486 while (*debugdir != 0);
1487
1488 xfree (debugfile);
1489 debugfile = NULL;
1490
1491 cleanup_return_debugfile:
1492 xfree (canon_name);
1493 xfree (basename);
1494 xfree (dir);
1495 return debugfile;
1496 }
1497
1498
1499 /* This is the symbol-file command. Read the file, analyze its
1500 symbols, and add a struct symtab to a symtab list. The syntax of
1501 the command is rather bizarre:
1502
1503 1. The function buildargv implements various quoting conventions
1504 which are undocumented and have little or nothing in common with
1505 the way things are quoted (or not quoted) elsewhere in GDB.
1506
1507 2. Options are used, which are not generally used in GDB (perhaps
1508 "set mapped on", "set readnow on" would be better)
1509
1510 3. The order of options matters, which is contrary to GNU
1511 conventions (because it is confusing and inconvenient). */
1512
1513 void
1514 symbol_file_command (char *args, int from_tty)
1515 {
1516 dont_repeat ();
1517
1518 if (args == NULL)
1519 {
1520 symbol_file_clear (from_tty);
1521 }
1522 else
1523 {
1524 char **argv = gdb_buildargv (args);
1525 int flags = OBJF_USERLOADED;
1526 struct cleanup *cleanups;
1527 char *name = NULL;
1528
1529 cleanups = make_cleanup_freeargv (argv);
1530 while (*argv != NULL)
1531 {
1532 if (strcmp (*argv, "-readnow") == 0)
1533 flags |= OBJF_READNOW;
1534 else if (**argv == '-')
1535 error (_("unknown option `%s'"), *argv);
1536 else
1537 {
1538 symbol_file_add_main_1 (*argv, from_tty, flags);
1539 name = *argv;
1540 }
1541
1542 argv++;
1543 }
1544
1545 if (name == NULL)
1546 error (_("no symbol file name was specified"));
1547
1548 do_cleanups (cleanups);
1549 }
1550 }
1551
1552 /* Set the initial language.
1553
1554 FIXME: A better solution would be to record the language in the
1555 psymtab when reading partial symbols, and then use it (if known) to
1556 set the language. This would be a win for formats that encode the
1557 language in an easily discoverable place, such as DWARF. For
1558 stabs, we can jump through hoops looking for specially named
1559 symbols or try to intuit the language from the specific type of
1560 stabs we find, but we can't do that until later when we read in
1561 full symbols. */
1562
1563 void
1564 set_initial_language (void)
1565 {
1566 enum language lang = language_unknown;
1567
1568 if (language_of_main != language_unknown)
1569 lang = language_of_main;
1570 else
1571 {
1572 const char *filename;
1573
1574 filename = find_main_filename ();
1575 if (filename != NULL)
1576 lang = deduce_language_from_filename (filename);
1577 }
1578
1579 if (lang == language_unknown)
1580 {
1581 /* Make C the default language */
1582 lang = language_c;
1583 }
1584
1585 set_language (lang);
1586 expected_language = current_language; /* Don't warn the user. */
1587 }
1588
1589 /* If NAME is a remote name open the file using remote protocol, otherwise
1590 open it normally. */
1591
1592 bfd *
1593 bfd_open_maybe_remote (const char *name)
1594 {
1595 if (remote_filename_p (name))
1596 return remote_bfd_open (name, gnutarget);
1597 else
1598 return bfd_openr (name, gnutarget);
1599 }
1600
1601
1602 /* Open the file specified by NAME and hand it off to BFD for
1603 preliminary analysis. Return a newly initialized bfd *, which
1604 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1605 absolute). In case of trouble, error() is called. */
1606
1607 bfd *
1608 symfile_bfd_open (char *name)
1609 {
1610 bfd *sym_bfd;
1611 int desc;
1612 char *absolute_name;
1613
1614 if (remote_filename_p (name))
1615 {
1616 name = xstrdup (name);
1617 sym_bfd = remote_bfd_open (name, gnutarget);
1618 if (!sym_bfd)
1619 {
1620 make_cleanup (xfree, name);
1621 error (_("`%s': can't open to read symbols: %s."), name,
1622 bfd_errmsg (bfd_get_error ()));
1623 }
1624
1625 if (!bfd_check_format (sym_bfd, bfd_object))
1626 {
1627 bfd_close (sym_bfd);
1628 make_cleanup (xfree, name);
1629 error (_("`%s': can't read symbols: %s."), name,
1630 bfd_errmsg (bfd_get_error ()));
1631 }
1632
1633 return sym_bfd;
1634 }
1635
1636 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1637
1638 /* Look down path for it, allocate 2nd new malloc'd copy. */
1639 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1640 O_RDONLY | O_BINARY, &absolute_name);
1641 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1642 if (desc < 0)
1643 {
1644 char *exename = alloca (strlen (name) + 5);
1645
1646 strcat (strcpy (exename, name), ".exe");
1647 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1648 O_RDONLY | O_BINARY, &absolute_name);
1649 }
1650 #endif
1651 if (desc < 0)
1652 {
1653 make_cleanup (xfree, name);
1654 perror_with_name (name);
1655 }
1656
1657 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1658 bfd. It'll be freed in free_objfile(). */
1659 xfree (name);
1660 name = absolute_name;
1661
1662 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1663 if (!sym_bfd)
1664 {
1665 close (desc);
1666 make_cleanup (xfree, name);
1667 error (_("`%s': can't open to read symbols: %s."), name,
1668 bfd_errmsg (bfd_get_error ()));
1669 }
1670 bfd_set_cacheable (sym_bfd, 1);
1671
1672 if (!bfd_check_format (sym_bfd, bfd_object))
1673 {
1674 /* FIXME: should be checking for errors from bfd_close (for one
1675 thing, on error it does not free all the storage associated
1676 with the bfd). */
1677 bfd_close (sym_bfd); /* This also closes desc. */
1678 make_cleanup (xfree, name);
1679 error (_("`%s': can't read symbols: %s."), name,
1680 bfd_errmsg (bfd_get_error ()));
1681 }
1682
1683 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1684 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1685
1686 return sym_bfd;
1687 }
1688
1689 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1690 the section was not found. */
1691
1692 int
1693 get_section_index (struct objfile *objfile, char *section_name)
1694 {
1695 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1696
1697 if (sect)
1698 return sect->index;
1699 else
1700 return -1;
1701 }
1702
1703 /* Link SF into the global symtab_fns list. Called on startup by the
1704 _initialize routine in each object file format reader, to register
1705 information about each format the the reader is prepared to
1706 handle. */
1707
1708 void
1709 add_symtab_fns (const struct sym_fns *sf)
1710 {
1711 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1712 }
1713
1714 /* Initialize OBJFILE to read symbols from its associated BFD. It
1715 either returns or calls error(). The result is an initialized
1716 struct sym_fns in the objfile structure, that contains cached
1717 information about the symbol file. */
1718
1719 static const struct sym_fns *
1720 find_sym_fns (bfd *abfd)
1721 {
1722 const struct sym_fns *sf;
1723 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1724 int i;
1725
1726 if (our_flavour == bfd_target_srec_flavour
1727 || our_flavour == bfd_target_ihex_flavour
1728 || our_flavour == bfd_target_tekhex_flavour)
1729 return NULL; /* No symbols. */
1730
1731 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1732 if (our_flavour == sf->sym_flavour)
1733 return sf;
1734
1735 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1736 bfd_get_target (abfd));
1737 }
1738 \f
1739
1740 /* This function runs the load command of our current target. */
1741
1742 static void
1743 load_command (char *arg, int from_tty)
1744 {
1745 /* The user might be reloading because the binary has changed. Take
1746 this opportunity to check. */
1747 reopen_exec_file ();
1748 reread_symbols ();
1749
1750 if (arg == NULL)
1751 {
1752 char *parg;
1753 int count = 0;
1754
1755 parg = arg = get_exec_file (1);
1756
1757 /* Count how many \ " ' tab space there are in the name. */
1758 while ((parg = strpbrk (parg, "\\\"'\t ")))
1759 {
1760 parg++;
1761 count++;
1762 }
1763
1764 if (count)
1765 {
1766 /* We need to quote this string so buildargv can pull it apart. */
1767 char *temp = xmalloc (strlen (arg) + count + 1 );
1768 char *ptemp = temp;
1769 char *prev;
1770
1771 make_cleanup (xfree, temp);
1772
1773 prev = parg = arg;
1774 while ((parg = strpbrk (parg, "\\\"'\t ")))
1775 {
1776 strncpy (ptemp, prev, parg - prev);
1777 ptemp += parg - prev;
1778 prev = parg++;
1779 *ptemp++ = '\\';
1780 }
1781 strcpy (ptemp, prev);
1782
1783 arg = temp;
1784 }
1785 }
1786
1787 target_load (arg, from_tty);
1788
1789 /* After re-loading the executable, we don't really know which
1790 overlays are mapped any more. */
1791 overlay_cache_invalid = 1;
1792 }
1793
1794 /* This version of "load" should be usable for any target. Currently
1795 it is just used for remote targets, not inftarg.c or core files,
1796 on the theory that only in that case is it useful.
1797
1798 Avoiding xmodem and the like seems like a win (a) because we don't have
1799 to worry about finding it, and (b) On VMS, fork() is very slow and so
1800 we don't want to run a subprocess. On the other hand, I'm not sure how
1801 performance compares. */
1802
1803 static int validate_download = 0;
1804
1805 /* Callback service function for generic_load (bfd_map_over_sections). */
1806
1807 static void
1808 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1809 {
1810 bfd_size_type *sum = data;
1811
1812 *sum += bfd_get_section_size (asec);
1813 }
1814
1815 /* Opaque data for load_section_callback. */
1816 struct load_section_data {
1817 unsigned long load_offset;
1818 struct load_progress_data *progress_data;
1819 VEC(memory_write_request_s) *requests;
1820 };
1821
1822 /* Opaque data for load_progress. */
1823 struct load_progress_data {
1824 /* Cumulative data. */
1825 unsigned long write_count;
1826 unsigned long data_count;
1827 bfd_size_type total_size;
1828 };
1829
1830 /* Opaque data for load_progress for a single section. */
1831 struct load_progress_section_data {
1832 struct load_progress_data *cumulative;
1833
1834 /* Per-section data. */
1835 const char *section_name;
1836 ULONGEST section_sent;
1837 ULONGEST section_size;
1838 CORE_ADDR lma;
1839 gdb_byte *buffer;
1840 };
1841
1842 /* Target write callback routine for progress reporting. */
1843
1844 static void
1845 load_progress (ULONGEST bytes, void *untyped_arg)
1846 {
1847 struct load_progress_section_data *args = untyped_arg;
1848 struct load_progress_data *totals;
1849
1850 if (args == NULL)
1851 /* Writing padding data. No easy way to get at the cumulative
1852 stats, so just ignore this. */
1853 return;
1854
1855 totals = args->cumulative;
1856
1857 if (bytes == 0 && args->section_sent == 0)
1858 {
1859 /* The write is just starting. Let the user know we've started
1860 this section. */
1861 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1862 args->section_name, hex_string (args->section_size),
1863 paddress (target_gdbarch, args->lma));
1864 return;
1865 }
1866
1867 if (validate_download)
1868 {
1869 /* Broken memories and broken monitors manifest themselves here
1870 when bring new computers to life. This doubles already slow
1871 downloads. */
1872 /* NOTE: cagney/1999-10-18: A more efficient implementation
1873 might add a verify_memory() method to the target vector and
1874 then use that. remote.c could implement that method using
1875 the ``qCRC'' packet. */
1876 gdb_byte *check = xmalloc (bytes);
1877 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1878
1879 if (target_read_memory (args->lma, check, bytes) != 0)
1880 error (_("Download verify read failed at %s"),
1881 paddress (target_gdbarch, args->lma));
1882 if (memcmp (args->buffer, check, bytes) != 0)
1883 error (_("Download verify compare failed at %s"),
1884 paddress (target_gdbarch, args->lma));
1885 do_cleanups (verify_cleanups);
1886 }
1887 totals->data_count += bytes;
1888 args->lma += bytes;
1889 args->buffer += bytes;
1890 totals->write_count += 1;
1891 args->section_sent += bytes;
1892 if (quit_flag
1893 || (deprecated_ui_load_progress_hook != NULL
1894 && deprecated_ui_load_progress_hook (args->section_name,
1895 args->section_sent)))
1896 error (_("Canceled the download"));
1897
1898 if (deprecated_show_load_progress != NULL)
1899 deprecated_show_load_progress (args->section_name,
1900 args->section_sent,
1901 args->section_size,
1902 totals->data_count,
1903 totals->total_size);
1904 }
1905
1906 /* Callback service function for generic_load (bfd_map_over_sections). */
1907
1908 static void
1909 load_section_callback (bfd *abfd, asection *asec, void *data)
1910 {
1911 struct memory_write_request *new_request;
1912 struct load_section_data *args = data;
1913 struct load_progress_section_data *section_data;
1914 bfd_size_type size = bfd_get_section_size (asec);
1915 gdb_byte *buffer;
1916 const char *sect_name = bfd_get_section_name (abfd, asec);
1917
1918 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1919 return;
1920
1921 if (size == 0)
1922 return;
1923
1924 new_request = VEC_safe_push (memory_write_request_s,
1925 args->requests, NULL);
1926 memset (new_request, 0, sizeof (struct memory_write_request));
1927 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1928 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1929 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1930 new_request->data = xmalloc (size);
1931 new_request->baton = section_data;
1932
1933 buffer = new_request->data;
1934
1935 section_data->cumulative = args->progress_data;
1936 section_data->section_name = sect_name;
1937 section_data->section_size = size;
1938 section_data->lma = new_request->begin;
1939 section_data->buffer = buffer;
1940
1941 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1942 }
1943
1944 /* Clean up an entire memory request vector, including load
1945 data and progress records. */
1946
1947 static void
1948 clear_memory_write_data (void *arg)
1949 {
1950 VEC(memory_write_request_s) **vec_p = arg;
1951 VEC(memory_write_request_s) *vec = *vec_p;
1952 int i;
1953 struct memory_write_request *mr;
1954
1955 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1956 {
1957 xfree (mr->data);
1958 xfree (mr->baton);
1959 }
1960 VEC_free (memory_write_request_s, vec);
1961 }
1962
1963 void
1964 generic_load (char *args, int from_tty)
1965 {
1966 bfd *loadfile_bfd;
1967 struct timeval start_time, end_time;
1968 char *filename;
1969 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1970 struct load_section_data cbdata;
1971 struct load_progress_data total_progress;
1972
1973 CORE_ADDR entry;
1974 char **argv;
1975
1976 memset (&cbdata, 0, sizeof (cbdata));
1977 memset (&total_progress, 0, sizeof (total_progress));
1978 cbdata.progress_data = &total_progress;
1979
1980 make_cleanup (clear_memory_write_data, &cbdata.requests);
1981
1982 if (args == NULL)
1983 error_no_arg (_("file to load"));
1984
1985 argv = gdb_buildargv (args);
1986 make_cleanup_freeargv (argv);
1987
1988 filename = tilde_expand (argv[0]);
1989 make_cleanup (xfree, filename);
1990
1991 if (argv[1] != NULL)
1992 {
1993 char *endptr;
1994
1995 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1996
1997 /* If the last word was not a valid number then
1998 treat it as a file name with spaces in. */
1999 if (argv[1] == endptr)
2000 error (_("Invalid download offset:%s."), argv[1]);
2001
2002 if (argv[2] != NULL)
2003 error (_("Too many parameters."));
2004 }
2005
2006 /* Open the file for loading. */
2007 loadfile_bfd = bfd_openr (filename, gnutarget);
2008 if (loadfile_bfd == NULL)
2009 {
2010 perror_with_name (filename);
2011 return;
2012 }
2013
2014 /* FIXME: should be checking for errors from bfd_close (for one thing,
2015 on error it does not free all the storage associated with the
2016 bfd). */
2017 make_cleanup_bfd_close (loadfile_bfd);
2018
2019 if (!bfd_check_format (loadfile_bfd, bfd_object))
2020 {
2021 error (_("\"%s\" is not an object file: %s"), filename,
2022 bfd_errmsg (bfd_get_error ()));
2023 }
2024
2025 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2026 (void *) &total_progress.total_size);
2027
2028 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2029
2030 gettimeofday (&start_time, NULL);
2031
2032 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2033 load_progress) != 0)
2034 error (_("Load failed"));
2035
2036 gettimeofday (&end_time, NULL);
2037
2038 entry = bfd_get_start_address (loadfile_bfd);
2039 ui_out_text (uiout, "Start address ");
2040 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
2041 ui_out_text (uiout, ", load size ");
2042 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2043 ui_out_text (uiout, "\n");
2044 /* We were doing this in remote-mips.c, I suspect it is right
2045 for other targets too. */
2046 regcache_write_pc (get_current_regcache (), entry);
2047
2048 /* Reset breakpoints, now that we have changed the load image. For
2049 instance, breakpoints may have been set (or reset, by
2050 post_create_inferior) while connected to the target but before we
2051 loaded the program. In that case, the prologue analyzer could
2052 have read instructions from the target to find the right
2053 breakpoint locations. Loading has changed the contents of that
2054 memory. */
2055
2056 breakpoint_re_set ();
2057
2058 /* FIXME: are we supposed to call symbol_file_add or not? According
2059 to a comment from remote-mips.c (where a call to symbol_file_add
2060 was commented out), making the call confuses GDB if more than one
2061 file is loaded in. Some targets do (e.g., remote-vx.c) but
2062 others don't (or didn't - perhaps they have all been deleted). */
2063
2064 print_transfer_performance (gdb_stdout, total_progress.data_count,
2065 total_progress.write_count,
2066 &start_time, &end_time);
2067
2068 do_cleanups (old_cleanups);
2069 }
2070
2071 /* Report how fast the transfer went. */
2072
2073 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2074 replaced by print_transfer_performance (with a very different
2075 function signature). */
2076
2077 void
2078 report_transfer_performance (unsigned long data_count, time_t start_time,
2079 time_t end_time)
2080 {
2081 struct timeval start, end;
2082
2083 start.tv_sec = start_time;
2084 start.tv_usec = 0;
2085 end.tv_sec = end_time;
2086 end.tv_usec = 0;
2087
2088 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2089 }
2090
2091 void
2092 print_transfer_performance (struct ui_file *stream,
2093 unsigned long data_count,
2094 unsigned long write_count,
2095 const struct timeval *start_time,
2096 const struct timeval *end_time)
2097 {
2098 ULONGEST time_count;
2099
2100 /* Compute the elapsed time in milliseconds, as a tradeoff between
2101 accuracy and overflow. */
2102 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2103 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2104
2105 ui_out_text (uiout, "Transfer rate: ");
2106 if (time_count > 0)
2107 {
2108 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2109
2110 if (ui_out_is_mi_like_p (uiout))
2111 {
2112 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2113 ui_out_text (uiout, " bits/sec");
2114 }
2115 else if (rate < 1024)
2116 {
2117 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2118 ui_out_text (uiout, " bytes/sec");
2119 }
2120 else
2121 {
2122 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2123 ui_out_text (uiout, " KB/sec");
2124 }
2125 }
2126 else
2127 {
2128 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2129 ui_out_text (uiout, " bits in <1 sec");
2130 }
2131 if (write_count > 0)
2132 {
2133 ui_out_text (uiout, ", ");
2134 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2135 ui_out_text (uiout, " bytes/write");
2136 }
2137 ui_out_text (uiout, ".\n");
2138 }
2139
2140 /* This function allows the addition of incrementally linked object files.
2141 It does not modify any state in the target, only in the debugger. */
2142 /* Note: ezannoni 2000-04-13 This function/command used to have a
2143 special case syntax for the rombug target (Rombug is the boot
2144 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2145 rombug case, the user doesn't need to supply a text address,
2146 instead a call to target_link() (in target.c) would supply the
2147 value to use. We are now discontinuing this type of ad hoc syntax. */
2148
2149 static void
2150 add_symbol_file_command (char *args, int from_tty)
2151 {
2152 struct gdbarch *gdbarch = get_current_arch ();
2153 char *filename = NULL;
2154 int flags = OBJF_USERLOADED;
2155 char *arg;
2156 int section_index = 0;
2157 int argcnt = 0;
2158 int sec_num = 0;
2159 int i;
2160 int expecting_sec_name = 0;
2161 int expecting_sec_addr = 0;
2162 char **argv;
2163
2164 struct sect_opt
2165 {
2166 char *name;
2167 char *value;
2168 };
2169
2170 struct section_addr_info *section_addrs;
2171 struct sect_opt *sect_opts = NULL;
2172 size_t num_sect_opts = 0;
2173 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2174
2175 num_sect_opts = 16;
2176 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2177 * sizeof (struct sect_opt));
2178
2179 dont_repeat ();
2180
2181 if (args == NULL)
2182 error (_("add-symbol-file takes a file name and an address"));
2183
2184 argv = gdb_buildargv (args);
2185 make_cleanup_freeargv (argv);
2186
2187 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2188 {
2189 /* Process the argument. */
2190 if (argcnt == 0)
2191 {
2192 /* The first argument is the file name. */
2193 filename = tilde_expand (arg);
2194 make_cleanup (xfree, filename);
2195 }
2196 else
2197 if (argcnt == 1)
2198 {
2199 /* The second argument is always the text address at which
2200 to load the program. */
2201 sect_opts[section_index].name = ".text";
2202 sect_opts[section_index].value = arg;
2203 if (++section_index >= num_sect_opts)
2204 {
2205 num_sect_opts *= 2;
2206 sect_opts = ((struct sect_opt *)
2207 xrealloc (sect_opts,
2208 num_sect_opts
2209 * sizeof (struct sect_opt)));
2210 }
2211 }
2212 else
2213 {
2214 /* It's an option (starting with '-') or it's an argument
2215 to an option */
2216
2217 if (*arg == '-')
2218 {
2219 if (strcmp (arg, "-readnow") == 0)
2220 flags |= OBJF_READNOW;
2221 else if (strcmp (arg, "-s") == 0)
2222 {
2223 expecting_sec_name = 1;
2224 expecting_sec_addr = 1;
2225 }
2226 }
2227 else
2228 {
2229 if (expecting_sec_name)
2230 {
2231 sect_opts[section_index].name = arg;
2232 expecting_sec_name = 0;
2233 }
2234 else
2235 if (expecting_sec_addr)
2236 {
2237 sect_opts[section_index].value = arg;
2238 expecting_sec_addr = 0;
2239 if (++section_index >= num_sect_opts)
2240 {
2241 num_sect_opts *= 2;
2242 sect_opts = ((struct sect_opt *)
2243 xrealloc (sect_opts,
2244 num_sect_opts
2245 * sizeof (struct sect_opt)));
2246 }
2247 }
2248 else
2249 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2250 }
2251 }
2252 }
2253
2254 /* This command takes at least two arguments. The first one is a
2255 filename, and the second is the address where this file has been
2256 loaded. Abort now if this address hasn't been provided by the
2257 user. */
2258 if (section_index < 1)
2259 error (_("The address where %s has been loaded is missing"), filename);
2260
2261 /* Print the prompt for the query below. And save the arguments into
2262 a sect_addr_info structure to be passed around to other
2263 functions. We have to split this up into separate print
2264 statements because hex_string returns a local static
2265 string. */
2266
2267 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2268 section_addrs = alloc_section_addr_info (section_index);
2269 make_cleanup (xfree, section_addrs);
2270 for (i = 0; i < section_index; i++)
2271 {
2272 CORE_ADDR addr;
2273 char *val = sect_opts[i].value;
2274 char *sec = sect_opts[i].name;
2275
2276 addr = parse_and_eval_address (val);
2277
2278 /* Here we store the section offsets in the order they were
2279 entered on the command line. */
2280 section_addrs->other[sec_num].name = sec;
2281 section_addrs->other[sec_num].addr = addr;
2282 printf_unfiltered ("\t%s_addr = %s\n", sec,
2283 paddress (gdbarch, addr));
2284 sec_num++;
2285
2286 /* The object's sections are initialized when a
2287 call is made to build_objfile_section_table (objfile).
2288 This happens in reread_symbols.
2289 At this point, we don't know what file type this is,
2290 so we can't determine what section names are valid. */
2291 }
2292
2293 if (from_tty && (!query ("%s", "")))
2294 error (_("Not confirmed."));
2295
2296 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2297 section_addrs, flags);
2298
2299 /* Getting new symbols may change our opinion about what is
2300 frameless. */
2301 reinit_frame_cache ();
2302 do_cleanups (my_cleanups);
2303 }
2304 \f
2305
2306 /* Re-read symbols if a symbol-file has changed. */
2307 void
2308 reread_symbols (void)
2309 {
2310 struct objfile *objfile;
2311 long new_modtime;
2312 int reread_one = 0;
2313 struct stat new_statbuf;
2314 int res;
2315
2316 /* With the addition of shared libraries, this should be modified,
2317 the load time should be saved in the partial symbol tables, since
2318 different tables may come from different source files. FIXME.
2319 This routine should then walk down each partial symbol table
2320 and see if the symbol table that it originates from has been changed */
2321
2322 for (objfile = object_files; objfile; objfile = objfile->next)
2323 {
2324 /* solib-sunos.c creates one objfile with obfd. */
2325 if (objfile->obfd == NULL)
2326 continue;
2327
2328 /* Separate debug objfiles are handled in the main objfile. */
2329 if (objfile->separate_debug_objfile_backlink)
2330 continue;
2331
2332 /* If this object is from an archive (what you usually create with
2333 `ar', often called a `static library' on most systems, though
2334 a `shared library' on AIX is also an archive), then you should
2335 stat on the archive name, not member name. */
2336 if (objfile->obfd->my_archive)
2337 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2338 else
2339 res = stat (objfile->name, &new_statbuf);
2340 if (res != 0)
2341 {
2342 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2343 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2344 objfile->name);
2345 continue;
2346 }
2347 new_modtime = new_statbuf.st_mtime;
2348 if (new_modtime != objfile->mtime)
2349 {
2350 struct cleanup *old_cleanups;
2351 struct section_offsets *offsets;
2352 int num_offsets;
2353 char *obfd_filename;
2354
2355 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2356 objfile->name);
2357
2358 /* There are various functions like symbol_file_add,
2359 symfile_bfd_open, syms_from_objfile, etc., which might
2360 appear to do what we want. But they have various other
2361 effects which we *don't* want. So we just do stuff
2362 ourselves. We don't worry about mapped files (for one thing,
2363 any mapped file will be out of date). */
2364
2365 /* If we get an error, blow away this objfile (not sure if
2366 that is the correct response for things like shared
2367 libraries). */
2368 old_cleanups = make_cleanup_free_objfile (objfile);
2369 /* We need to do this whenever any symbols go away. */
2370 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2371
2372 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2373 bfd_get_filename (exec_bfd)) == 0)
2374 {
2375 /* Reload EXEC_BFD without asking anything. */
2376
2377 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2378 }
2379
2380 /* Clean up any state BFD has sitting around. We don't need
2381 to close the descriptor but BFD lacks a way of closing the
2382 BFD without closing the descriptor. */
2383 obfd_filename = bfd_get_filename (objfile->obfd);
2384 if (!bfd_close (objfile->obfd))
2385 error (_("Can't close BFD for %s: %s"), objfile->name,
2386 bfd_errmsg (bfd_get_error ()));
2387 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
2388 if (objfile->obfd == NULL)
2389 error (_("Can't open %s to read symbols."), objfile->name);
2390 else
2391 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2392 /* bfd_openr sets cacheable to true, which is what we want. */
2393 if (!bfd_check_format (objfile->obfd, bfd_object))
2394 error (_("Can't read symbols from %s: %s."), objfile->name,
2395 bfd_errmsg (bfd_get_error ()));
2396
2397 /* Save the offsets, we will nuke them with the rest of the
2398 objfile_obstack. */
2399 num_offsets = objfile->num_sections;
2400 offsets = ((struct section_offsets *)
2401 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2402 memcpy (offsets, objfile->section_offsets,
2403 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2404
2405 /* Remove any references to this objfile in the global
2406 value lists. */
2407 preserve_values (objfile);
2408
2409 /* Nuke all the state that we will re-read. Much of the following
2410 code which sets things to NULL really is necessary to tell
2411 other parts of GDB that there is nothing currently there.
2412
2413 Try to keep the freeing order compatible with free_objfile. */
2414
2415 if (objfile->sf != NULL)
2416 {
2417 (*objfile->sf->sym_finish) (objfile);
2418 }
2419
2420 clear_objfile_data (objfile);
2421
2422 /* Free the separate debug objfiles. It will be
2423 automatically recreated by sym_read. */
2424 free_objfile_separate_debug (objfile);
2425
2426 /* FIXME: Do we have to free a whole linked list, or is this
2427 enough? */
2428 if (objfile->global_psymbols.list)
2429 xfree (objfile->global_psymbols.list);
2430 memset (&objfile->global_psymbols, 0,
2431 sizeof (objfile->global_psymbols));
2432 if (objfile->static_psymbols.list)
2433 xfree (objfile->static_psymbols.list);
2434 memset (&objfile->static_psymbols, 0,
2435 sizeof (objfile->static_psymbols));
2436
2437 /* Free the obstacks for non-reusable objfiles */
2438 psymbol_bcache_free (objfile->psymbol_cache);
2439 objfile->psymbol_cache = psymbol_bcache_init ();
2440 bcache_xfree (objfile->macro_cache);
2441 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2442 bcache_xfree (objfile->filename_cache);
2443 objfile->filename_cache = bcache_xmalloc (NULL,NULL);
2444 if (objfile->demangled_names_hash != NULL)
2445 {
2446 htab_delete (objfile->demangled_names_hash);
2447 objfile->demangled_names_hash = NULL;
2448 }
2449 obstack_free (&objfile->objfile_obstack, 0);
2450 objfile->sections = NULL;
2451 objfile->symtabs = NULL;
2452 objfile->psymtabs = NULL;
2453 objfile->psymtabs_addrmap = NULL;
2454 objfile->free_psymtabs = NULL;
2455 objfile->cp_namespace_symtab = NULL;
2456 objfile->template_symbols = NULL;
2457 objfile->msymbols = NULL;
2458 objfile->deprecated_sym_private = NULL;
2459 objfile->minimal_symbol_count = 0;
2460 memset (&objfile->msymbol_hash, 0,
2461 sizeof (objfile->msymbol_hash));
2462 memset (&objfile->msymbol_demangled_hash, 0,
2463 sizeof (objfile->msymbol_demangled_hash));
2464
2465 objfile->psymbol_cache = psymbol_bcache_init ();
2466 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2467 objfile->filename_cache = bcache_xmalloc (NULL, NULL);
2468 /* obstack_init also initializes the obstack so it is
2469 empty. We could use obstack_specify_allocation but
2470 gdb_obstack.h specifies the alloc/dealloc
2471 functions. */
2472 obstack_init (&objfile->objfile_obstack);
2473 if (build_objfile_section_table (objfile))
2474 {
2475 error (_("Can't find the file sections in `%s': %s"),
2476 objfile->name, bfd_errmsg (bfd_get_error ()));
2477 }
2478 terminate_minimal_symbol_table (objfile);
2479
2480 /* We use the same section offsets as from last time. I'm not
2481 sure whether that is always correct for shared libraries. */
2482 objfile->section_offsets = (struct section_offsets *)
2483 obstack_alloc (&objfile->objfile_obstack,
2484 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2485 memcpy (objfile->section_offsets, offsets,
2486 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2487 objfile->num_sections = num_offsets;
2488
2489 /* What the hell is sym_new_init for, anyway? The concept of
2490 distinguishing between the main file and additional files
2491 in this way seems rather dubious. */
2492 if (objfile == symfile_objfile)
2493 {
2494 (*objfile->sf->sym_new_init) (objfile);
2495 }
2496
2497 (*objfile->sf->sym_init) (objfile);
2498 clear_complaints (&symfile_complaints, 1, 1);
2499 /* Do not set flags as this is safe and we don't want to be
2500 verbose. */
2501 (*objfile->sf->sym_read) (objfile, 0);
2502 if (!objfile_has_symbols (objfile))
2503 {
2504 wrap_here ("");
2505 printf_unfiltered (_("(no debugging symbols found)\n"));
2506 wrap_here ("");
2507 }
2508
2509 /* We're done reading the symbol file; finish off complaints. */
2510 clear_complaints (&symfile_complaints, 0, 1);
2511
2512 /* Getting new symbols may change our opinion about what is
2513 frameless. */
2514
2515 reinit_frame_cache ();
2516
2517 /* Discard cleanups as symbol reading was successful. */
2518 discard_cleanups (old_cleanups);
2519
2520 /* If the mtime has changed between the time we set new_modtime
2521 and now, we *want* this to be out of date, so don't call stat
2522 again now. */
2523 objfile->mtime = new_modtime;
2524 reread_one = 1;
2525 init_entry_point_info (objfile);
2526 }
2527 }
2528
2529 if (reread_one)
2530 {
2531 /* Notify objfiles that we've modified objfile sections. */
2532 objfiles_changed ();
2533
2534 clear_symtab_users (0);
2535 /* At least one objfile has changed, so we can consider that
2536 the executable we're debugging has changed too. */
2537 observer_notify_executable_changed ();
2538 }
2539 }
2540 \f
2541
2542
2543 typedef struct
2544 {
2545 char *ext;
2546 enum language lang;
2547 }
2548 filename_language;
2549
2550 static filename_language *filename_language_table;
2551 static int fl_table_size, fl_table_next;
2552
2553 static void
2554 add_filename_language (char *ext, enum language lang)
2555 {
2556 if (fl_table_next >= fl_table_size)
2557 {
2558 fl_table_size += 10;
2559 filename_language_table =
2560 xrealloc (filename_language_table,
2561 fl_table_size * sizeof (*filename_language_table));
2562 }
2563
2564 filename_language_table[fl_table_next].ext = xstrdup (ext);
2565 filename_language_table[fl_table_next].lang = lang;
2566 fl_table_next++;
2567 }
2568
2569 static char *ext_args;
2570 static void
2571 show_ext_args (struct ui_file *file, int from_tty,
2572 struct cmd_list_element *c, const char *value)
2573 {
2574 fprintf_filtered (file, _("\
2575 Mapping between filename extension and source language is \"%s\".\n"),
2576 value);
2577 }
2578
2579 static void
2580 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2581 {
2582 int i;
2583 char *cp = ext_args;
2584 enum language lang;
2585
2586 /* First arg is filename extension, starting with '.' */
2587 if (*cp != '.')
2588 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2589
2590 /* Find end of first arg. */
2591 while (*cp && !isspace (*cp))
2592 cp++;
2593
2594 if (*cp == '\0')
2595 error (_("'%s': two arguments required -- filename extension and language"),
2596 ext_args);
2597
2598 /* Null-terminate first arg */
2599 *cp++ = '\0';
2600
2601 /* Find beginning of second arg, which should be a source language. */
2602 while (*cp && isspace (*cp))
2603 cp++;
2604
2605 if (*cp == '\0')
2606 error (_("'%s': two arguments required -- filename extension and language"),
2607 ext_args);
2608
2609 /* Lookup the language from among those we know. */
2610 lang = language_enum (cp);
2611
2612 /* Now lookup the filename extension: do we already know it? */
2613 for (i = 0; i < fl_table_next; i++)
2614 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2615 break;
2616
2617 if (i >= fl_table_next)
2618 {
2619 /* new file extension */
2620 add_filename_language (ext_args, lang);
2621 }
2622 else
2623 {
2624 /* redefining a previously known filename extension */
2625
2626 /* if (from_tty) */
2627 /* query ("Really make files of type %s '%s'?", */
2628 /* ext_args, language_str (lang)); */
2629
2630 xfree (filename_language_table[i].ext);
2631 filename_language_table[i].ext = xstrdup (ext_args);
2632 filename_language_table[i].lang = lang;
2633 }
2634 }
2635
2636 static void
2637 info_ext_lang_command (char *args, int from_tty)
2638 {
2639 int i;
2640
2641 printf_filtered (_("Filename extensions and the languages they represent:"));
2642 printf_filtered ("\n\n");
2643 for (i = 0; i < fl_table_next; i++)
2644 printf_filtered ("\t%s\t- %s\n",
2645 filename_language_table[i].ext,
2646 language_str (filename_language_table[i].lang));
2647 }
2648
2649 static void
2650 init_filename_language_table (void)
2651 {
2652 if (fl_table_size == 0) /* protect against repetition */
2653 {
2654 fl_table_size = 20;
2655 fl_table_next = 0;
2656 filename_language_table =
2657 xmalloc (fl_table_size * sizeof (*filename_language_table));
2658 add_filename_language (".c", language_c);
2659 add_filename_language (".d", language_d);
2660 add_filename_language (".C", language_cplus);
2661 add_filename_language (".cc", language_cplus);
2662 add_filename_language (".cp", language_cplus);
2663 add_filename_language (".cpp", language_cplus);
2664 add_filename_language (".cxx", language_cplus);
2665 add_filename_language (".c++", language_cplus);
2666 add_filename_language (".java", language_java);
2667 add_filename_language (".class", language_java);
2668 add_filename_language (".m", language_objc);
2669 add_filename_language (".f", language_fortran);
2670 add_filename_language (".F", language_fortran);
2671 add_filename_language (".for", language_fortran);
2672 add_filename_language (".FOR", language_fortran);
2673 add_filename_language (".ftn", language_fortran);
2674 add_filename_language (".FTN", language_fortran);
2675 add_filename_language (".fpp", language_fortran);
2676 add_filename_language (".FPP", language_fortran);
2677 add_filename_language (".f90", language_fortran);
2678 add_filename_language (".F90", language_fortran);
2679 add_filename_language (".f95", language_fortran);
2680 add_filename_language (".F95", language_fortran);
2681 add_filename_language (".f03", language_fortran);
2682 add_filename_language (".F03", language_fortran);
2683 add_filename_language (".f08", language_fortran);
2684 add_filename_language (".F08", language_fortran);
2685 add_filename_language (".s", language_asm);
2686 add_filename_language (".sx", language_asm);
2687 add_filename_language (".S", language_asm);
2688 add_filename_language (".pas", language_pascal);
2689 add_filename_language (".p", language_pascal);
2690 add_filename_language (".pp", language_pascal);
2691 add_filename_language (".adb", language_ada);
2692 add_filename_language (".ads", language_ada);
2693 add_filename_language (".a", language_ada);
2694 add_filename_language (".ada", language_ada);
2695 add_filename_language (".dg", language_ada);
2696 }
2697 }
2698
2699 enum language
2700 deduce_language_from_filename (const char *filename)
2701 {
2702 int i;
2703 char *cp;
2704
2705 if (filename != NULL)
2706 if ((cp = strrchr (filename, '.')) != NULL)
2707 for (i = 0; i < fl_table_next; i++)
2708 if (strcmp (cp, filename_language_table[i].ext) == 0)
2709 return filename_language_table[i].lang;
2710
2711 return language_unknown;
2712 }
2713 \f
2714 /* allocate_symtab:
2715
2716 Allocate and partly initialize a new symbol table. Return a pointer
2717 to it. error() if no space.
2718
2719 Caller must set these fields:
2720 LINETABLE(symtab)
2721 symtab->blockvector
2722 symtab->dirname
2723 symtab->free_code
2724 symtab->free_ptr
2725 */
2726
2727 struct symtab *
2728 allocate_symtab (const char *filename, struct objfile *objfile)
2729 {
2730 struct symtab *symtab;
2731
2732 symtab = (struct symtab *)
2733 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2734 memset (symtab, 0, sizeof (*symtab));
2735 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2736 objfile->filename_cache);
2737 symtab->fullname = NULL;
2738 symtab->language = deduce_language_from_filename (filename);
2739 symtab->debugformat = "unknown";
2740
2741 /* Hook it to the objfile it comes from */
2742
2743 symtab->objfile = objfile;
2744 symtab->next = objfile->symtabs;
2745 objfile->symtabs = symtab;
2746
2747 return (symtab);
2748 }
2749 \f
2750
2751 /* Reset all data structures in gdb which may contain references to symbol
2752 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2753
2754 void
2755 clear_symtab_users (int add_flags)
2756 {
2757 /* Someday, we should do better than this, by only blowing away
2758 the things that really need to be blown. */
2759
2760 /* Clear the "current" symtab first, because it is no longer valid.
2761 breakpoint_re_set may try to access the current symtab. */
2762 clear_current_source_symtab_and_line ();
2763
2764 clear_displays ();
2765 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2766 breakpoint_re_set ();
2767 set_default_breakpoint (0, NULL, 0, 0, 0);
2768 clear_pc_function_cache ();
2769 observer_notify_new_objfile (NULL);
2770
2771 /* Clear globals which might have pointed into a removed objfile.
2772 FIXME: It's not clear which of these are supposed to persist
2773 between expressions and which ought to be reset each time. */
2774 expression_context_block = NULL;
2775 innermost_block = NULL;
2776
2777 /* Varobj may refer to old symbols, perform a cleanup. */
2778 varobj_invalidate ();
2779
2780 }
2781
2782 static void
2783 clear_symtab_users_cleanup (void *ignore)
2784 {
2785 clear_symtab_users (0);
2786 }
2787 \f
2788 /* OVERLAYS:
2789 The following code implements an abstraction for debugging overlay sections.
2790
2791 The target model is as follows:
2792 1) The gnu linker will permit multiple sections to be mapped into the
2793 same VMA, each with its own unique LMA (or load address).
2794 2) It is assumed that some runtime mechanism exists for mapping the
2795 sections, one by one, from the load address into the VMA address.
2796 3) This code provides a mechanism for gdb to keep track of which
2797 sections should be considered to be mapped from the VMA to the LMA.
2798 This information is used for symbol lookup, and memory read/write.
2799 For instance, if a section has been mapped then its contents
2800 should be read from the VMA, otherwise from the LMA.
2801
2802 Two levels of debugger support for overlays are available. One is
2803 "manual", in which the debugger relies on the user to tell it which
2804 overlays are currently mapped. This level of support is
2805 implemented entirely in the core debugger, and the information about
2806 whether a section is mapped is kept in the objfile->obj_section table.
2807
2808 The second level of support is "automatic", and is only available if
2809 the target-specific code provides functionality to read the target's
2810 overlay mapping table, and translate its contents for the debugger
2811 (by updating the mapped state information in the obj_section tables).
2812
2813 The interface is as follows:
2814 User commands:
2815 overlay map <name> -- tell gdb to consider this section mapped
2816 overlay unmap <name> -- tell gdb to consider this section unmapped
2817 overlay list -- list the sections that GDB thinks are mapped
2818 overlay read-target -- get the target's state of what's mapped
2819 overlay off/manual/auto -- set overlay debugging state
2820 Functional interface:
2821 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2822 section, return that section.
2823 find_pc_overlay(pc): find any overlay section that contains
2824 the pc, either in its VMA or its LMA
2825 section_is_mapped(sect): true if overlay is marked as mapped
2826 section_is_overlay(sect): true if section's VMA != LMA
2827 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2828 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2829 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2830 overlay_mapped_address(...): map an address from section's LMA to VMA
2831 overlay_unmapped_address(...): map an address from section's VMA to LMA
2832 symbol_overlayed_address(...): Return a "current" address for symbol:
2833 either in VMA or LMA depending on whether
2834 the symbol's section is currently mapped
2835 */
2836
2837 /* Overlay debugging state: */
2838
2839 enum overlay_debugging_state overlay_debugging = ovly_off;
2840 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2841
2842 /* Function: section_is_overlay (SECTION)
2843 Returns true if SECTION has VMA not equal to LMA, ie.
2844 SECTION is loaded at an address different from where it will "run". */
2845
2846 int
2847 section_is_overlay (struct obj_section *section)
2848 {
2849 if (overlay_debugging && section)
2850 {
2851 bfd *abfd = section->objfile->obfd;
2852 asection *bfd_section = section->the_bfd_section;
2853
2854 if (bfd_section_lma (abfd, bfd_section) != 0
2855 && bfd_section_lma (abfd, bfd_section)
2856 != bfd_section_vma (abfd, bfd_section))
2857 return 1;
2858 }
2859
2860 return 0;
2861 }
2862
2863 /* Function: overlay_invalidate_all (void)
2864 Invalidate the mapped state of all overlay sections (mark it as stale). */
2865
2866 static void
2867 overlay_invalidate_all (void)
2868 {
2869 struct objfile *objfile;
2870 struct obj_section *sect;
2871
2872 ALL_OBJSECTIONS (objfile, sect)
2873 if (section_is_overlay (sect))
2874 sect->ovly_mapped = -1;
2875 }
2876
2877 /* Function: section_is_mapped (SECTION)
2878 Returns true if section is an overlay, and is currently mapped.
2879
2880 Access to the ovly_mapped flag is restricted to this function, so
2881 that we can do automatic update. If the global flag
2882 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2883 overlay_invalidate_all. If the mapped state of the particular
2884 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2885
2886 int
2887 section_is_mapped (struct obj_section *osect)
2888 {
2889 struct gdbarch *gdbarch;
2890
2891 if (osect == 0 || !section_is_overlay (osect))
2892 return 0;
2893
2894 switch (overlay_debugging)
2895 {
2896 default:
2897 case ovly_off:
2898 return 0; /* overlay debugging off */
2899 case ovly_auto: /* overlay debugging automatic */
2900 /* Unles there is a gdbarch_overlay_update function,
2901 there's really nothing useful to do here (can't really go auto) */
2902 gdbarch = get_objfile_arch (osect->objfile);
2903 if (gdbarch_overlay_update_p (gdbarch))
2904 {
2905 if (overlay_cache_invalid)
2906 {
2907 overlay_invalidate_all ();
2908 overlay_cache_invalid = 0;
2909 }
2910 if (osect->ovly_mapped == -1)
2911 gdbarch_overlay_update (gdbarch, osect);
2912 }
2913 /* fall thru to manual case */
2914 case ovly_on: /* overlay debugging manual */
2915 return osect->ovly_mapped == 1;
2916 }
2917 }
2918
2919 /* Function: pc_in_unmapped_range
2920 If PC falls into the lma range of SECTION, return true, else false. */
2921
2922 CORE_ADDR
2923 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
2924 {
2925 if (section_is_overlay (section))
2926 {
2927 bfd *abfd = section->objfile->obfd;
2928 asection *bfd_section = section->the_bfd_section;
2929
2930 /* We assume the LMA is relocated by the same offset as the VMA. */
2931 bfd_vma size = bfd_get_section_size (bfd_section);
2932 CORE_ADDR offset = obj_section_offset (section);
2933
2934 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2935 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2936 return 1;
2937 }
2938
2939 return 0;
2940 }
2941
2942 /* Function: pc_in_mapped_range
2943 If PC falls into the vma range of SECTION, return true, else false. */
2944
2945 CORE_ADDR
2946 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
2947 {
2948 if (section_is_overlay (section))
2949 {
2950 if (obj_section_addr (section) <= pc
2951 && pc < obj_section_endaddr (section))
2952 return 1;
2953 }
2954
2955 return 0;
2956 }
2957
2958
2959 /* Return true if the mapped ranges of sections A and B overlap, false
2960 otherwise. */
2961 static int
2962 sections_overlap (struct obj_section *a, struct obj_section *b)
2963 {
2964 CORE_ADDR a_start = obj_section_addr (a);
2965 CORE_ADDR a_end = obj_section_endaddr (a);
2966 CORE_ADDR b_start = obj_section_addr (b);
2967 CORE_ADDR b_end = obj_section_endaddr (b);
2968
2969 return (a_start < b_end && b_start < a_end);
2970 }
2971
2972 /* Function: overlay_unmapped_address (PC, SECTION)
2973 Returns the address corresponding to PC in the unmapped (load) range.
2974 May be the same as PC. */
2975
2976 CORE_ADDR
2977 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
2978 {
2979 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
2980 {
2981 bfd *abfd = section->objfile->obfd;
2982 asection *bfd_section = section->the_bfd_section;
2983
2984 return pc + bfd_section_lma (abfd, bfd_section)
2985 - bfd_section_vma (abfd, bfd_section);
2986 }
2987
2988 return pc;
2989 }
2990
2991 /* Function: overlay_mapped_address (PC, SECTION)
2992 Returns the address corresponding to PC in the mapped (runtime) range.
2993 May be the same as PC. */
2994
2995 CORE_ADDR
2996 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
2997 {
2998 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
2999 {
3000 bfd *abfd = section->objfile->obfd;
3001 asection *bfd_section = section->the_bfd_section;
3002
3003 return pc + bfd_section_vma (abfd, bfd_section)
3004 - bfd_section_lma (abfd, bfd_section);
3005 }
3006
3007 return pc;
3008 }
3009
3010
3011 /* Function: symbol_overlayed_address
3012 Return one of two addresses (relative to the VMA or to the LMA),
3013 depending on whether the section is mapped or not. */
3014
3015 CORE_ADDR
3016 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3017 {
3018 if (overlay_debugging)
3019 {
3020 /* If the symbol has no section, just return its regular address. */
3021 if (section == 0)
3022 return address;
3023 /* If the symbol's section is not an overlay, just return its address */
3024 if (!section_is_overlay (section))
3025 return address;
3026 /* If the symbol's section is mapped, just return its address */
3027 if (section_is_mapped (section))
3028 return address;
3029 /*
3030 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3031 * then return its LOADED address rather than its vma address!!
3032 */
3033 return overlay_unmapped_address (address, section);
3034 }
3035 return address;
3036 }
3037
3038 /* Function: find_pc_overlay (PC)
3039 Return the best-match overlay section for PC:
3040 If PC matches a mapped overlay section's VMA, return that section.
3041 Else if PC matches an unmapped section's VMA, return that section.
3042 Else if PC matches an unmapped section's LMA, return that section. */
3043
3044 struct obj_section *
3045 find_pc_overlay (CORE_ADDR pc)
3046 {
3047 struct objfile *objfile;
3048 struct obj_section *osect, *best_match = NULL;
3049
3050 if (overlay_debugging)
3051 ALL_OBJSECTIONS (objfile, osect)
3052 if (section_is_overlay (osect))
3053 {
3054 if (pc_in_mapped_range (pc, osect))
3055 {
3056 if (section_is_mapped (osect))
3057 return osect;
3058 else
3059 best_match = osect;
3060 }
3061 else if (pc_in_unmapped_range (pc, osect))
3062 best_match = osect;
3063 }
3064 return best_match;
3065 }
3066
3067 /* Function: find_pc_mapped_section (PC)
3068 If PC falls into the VMA address range of an overlay section that is
3069 currently marked as MAPPED, return that section. Else return NULL. */
3070
3071 struct obj_section *
3072 find_pc_mapped_section (CORE_ADDR pc)
3073 {
3074 struct objfile *objfile;
3075 struct obj_section *osect;
3076
3077 if (overlay_debugging)
3078 ALL_OBJSECTIONS (objfile, osect)
3079 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3080 return osect;
3081
3082 return NULL;
3083 }
3084
3085 /* Function: list_overlays_command
3086 Print a list of mapped sections and their PC ranges */
3087
3088 void
3089 list_overlays_command (char *args, int from_tty)
3090 {
3091 int nmapped = 0;
3092 struct objfile *objfile;
3093 struct obj_section *osect;
3094
3095 if (overlay_debugging)
3096 ALL_OBJSECTIONS (objfile, osect)
3097 if (section_is_mapped (osect))
3098 {
3099 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3100 const char *name;
3101 bfd_vma lma, vma;
3102 int size;
3103
3104 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3105 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3106 size = bfd_get_section_size (osect->the_bfd_section);
3107 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3108
3109 printf_filtered ("Section %s, loaded at ", name);
3110 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3111 puts_filtered (" - ");
3112 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3113 printf_filtered (", mapped at ");
3114 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3115 puts_filtered (" - ");
3116 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3117 puts_filtered ("\n");
3118
3119 nmapped++;
3120 }
3121 if (nmapped == 0)
3122 printf_filtered (_("No sections are mapped.\n"));
3123 }
3124
3125 /* Function: map_overlay_command
3126 Mark the named section as mapped (ie. residing at its VMA address). */
3127
3128 void
3129 map_overlay_command (char *args, int from_tty)
3130 {
3131 struct objfile *objfile, *objfile2;
3132 struct obj_section *sec, *sec2;
3133
3134 if (!overlay_debugging)
3135 error (_("\
3136 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3137 the 'overlay manual' command."));
3138
3139 if (args == 0 || *args == 0)
3140 error (_("Argument required: name of an overlay section"));
3141
3142 /* First, find a section matching the user supplied argument */
3143 ALL_OBJSECTIONS (objfile, sec)
3144 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3145 {
3146 /* Now, check to see if the section is an overlay. */
3147 if (!section_is_overlay (sec))
3148 continue; /* not an overlay section */
3149
3150 /* Mark the overlay as "mapped" */
3151 sec->ovly_mapped = 1;
3152
3153 /* Next, make a pass and unmap any sections that are
3154 overlapped by this new section: */
3155 ALL_OBJSECTIONS (objfile2, sec2)
3156 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3157 {
3158 if (info_verbose)
3159 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3160 bfd_section_name (objfile->obfd,
3161 sec2->the_bfd_section));
3162 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3163 }
3164 return;
3165 }
3166 error (_("No overlay section called %s"), args);
3167 }
3168
3169 /* Function: unmap_overlay_command
3170 Mark the overlay section as unmapped
3171 (ie. resident in its LMA address range, rather than the VMA range). */
3172
3173 void
3174 unmap_overlay_command (char *args, int from_tty)
3175 {
3176 struct objfile *objfile;
3177 struct obj_section *sec;
3178
3179 if (!overlay_debugging)
3180 error (_("\
3181 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3182 the 'overlay manual' command."));
3183
3184 if (args == 0 || *args == 0)
3185 error (_("Argument required: name of an overlay section"));
3186
3187 /* First, find a section matching the user supplied argument */
3188 ALL_OBJSECTIONS (objfile, sec)
3189 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3190 {
3191 if (!sec->ovly_mapped)
3192 error (_("Section %s is not mapped"), args);
3193 sec->ovly_mapped = 0;
3194 return;
3195 }
3196 error (_("No overlay section called %s"), args);
3197 }
3198
3199 /* Function: overlay_auto_command
3200 A utility command to turn on overlay debugging.
3201 Possibly this should be done via a set/show command. */
3202
3203 static void
3204 overlay_auto_command (char *args, int from_tty)
3205 {
3206 overlay_debugging = ovly_auto;
3207 enable_overlay_breakpoints ();
3208 if (info_verbose)
3209 printf_unfiltered (_("Automatic overlay debugging enabled."));
3210 }
3211
3212 /* Function: overlay_manual_command
3213 A utility command to turn on overlay debugging.
3214 Possibly this should be done via a set/show command. */
3215
3216 static void
3217 overlay_manual_command (char *args, int from_tty)
3218 {
3219 overlay_debugging = ovly_on;
3220 disable_overlay_breakpoints ();
3221 if (info_verbose)
3222 printf_unfiltered (_("Overlay debugging enabled."));
3223 }
3224
3225 /* Function: overlay_off_command
3226 A utility command to turn on overlay debugging.
3227 Possibly this should be done via a set/show command. */
3228
3229 static void
3230 overlay_off_command (char *args, int from_tty)
3231 {
3232 overlay_debugging = ovly_off;
3233 disable_overlay_breakpoints ();
3234 if (info_verbose)
3235 printf_unfiltered (_("Overlay debugging disabled."));
3236 }
3237
3238 static void
3239 overlay_load_command (char *args, int from_tty)
3240 {
3241 struct gdbarch *gdbarch = get_current_arch ();
3242
3243 if (gdbarch_overlay_update_p (gdbarch))
3244 gdbarch_overlay_update (gdbarch, NULL);
3245 else
3246 error (_("This target does not know how to read its overlay state."));
3247 }
3248
3249 /* Function: overlay_command
3250 A place-holder for a mis-typed command */
3251
3252 /* Command list chain containing all defined "overlay" subcommands. */
3253 struct cmd_list_element *overlaylist;
3254
3255 static void
3256 overlay_command (char *args, int from_tty)
3257 {
3258 printf_unfiltered
3259 ("\"overlay\" must be followed by the name of an overlay command.\n");
3260 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3261 }
3262
3263
3264 /* Target Overlays for the "Simplest" overlay manager:
3265
3266 This is GDB's default target overlay layer. It works with the
3267 minimal overlay manager supplied as an example by Cygnus. The
3268 entry point is via a function pointer "gdbarch_overlay_update",
3269 so targets that use a different runtime overlay manager can
3270 substitute their own overlay_update function and take over the
3271 function pointer.
3272
3273 The overlay_update function pokes around in the target's data structures
3274 to see what overlays are mapped, and updates GDB's overlay mapping with
3275 this information.
3276
3277 In this simple implementation, the target data structures are as follows:
3278 unsigned _novlys; /# number of overlay sections #/
3279 unsigned _ovly_table[_novlys][4] = {
3280 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3281 {..., ..., ..., ...},
3282 }
3283 unsigned _novly_regions; /# number of overlay regions #/
3284 unsigned _ovly_region_table[_novly_regions][3] = {
3285 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3286 {..., ..., ...},
3287 }
3288 These functions will attempt to update GDB's mappedness state in the
3289 symbol section table, based on the target's mappedness state.
3290
3291 To do this, we keep a cached copy of the target's _ovly_table, and
3292 attempt to detect when the cached copy is invalidated. The main
3293 entry point is "simple_overlay_update(SECT), which looks up SECT in
3294 the cached table and re-reads only the entry for that section from
3295 the target (whenever possible).
3296 */
3297
3298 /* Cached, dynamically allocated copies of the target data structures: */
3299 static unsigned (*cache_ovly_table)[4] = 0;
3300 static unsigned cache_novlys = 0;
3301 static CORE_ADDR cache_ovly_table_base = 0;
3302 enum ovly_index
3303 {
3304 VMA, SIZE, LMA, MAPPED
3305 };
3306
3307 /* Throw away the cached copy of _ovly_table */
3308 static void
3309 simple_free_overlay_table (void)
3310 {
3311 if (cache_ovly_table)
3312 xfree (cache_ovly_table);
3313 cache_novlys = 0;
3314 cache_ovly_table = NULL;
3315 cache_ovly_table_base = 0;
3316 }
3317
3318 /* Read an array of ints of size SIZE from the target into a local buffer.
3319 Convert to host order. int LEN is number of ints */
3320 static void
3321 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3322 int len, int size, enum bfd_endian byte_order)
3323 {
3324 /* FIXME (alloca): Not safe if array is very large. */
3325 gdb_byte *buf = alloca (len * size);
3326 int i;
3327
3328 read_memory (memaddr, buf, len * size);
3329 for (i = 0; i < len; i++)
3330 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3331 }
3332
3333 /* Find and grab a copy of the target _ovly_table
3334 (and _novlys, which is needed for the table's size) */
3335 static int
3336 simple_read_overlay_table (void)
3337 {
3338 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3339 struct gdbarch *gdbarch;
3340 int word_size;
3341 enum bfd_endian byte_order;
3342
3343 simple_free_overlay_table ();
3344 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3345 if (! novlys_msym)
3346 {
3347 error (_("Error reading inferior's overlay table: "
3348 "couldn't find `_novlys' variable\n"
3349 "in inferior. Use `overlay manual' mode."));
3350 return 0;
3351 }
3352
3353 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3354 if (! ovly_table_msym)
3355 {
3356 error (_("Error reading inferior's overlay table: couldn't find "
3357 "`_ovly_table' array\n"
3358 "in inferior. Use `overlay manual' mode."));
3359 return 0;
3360 }
3361
3362 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3363 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3364 byte_order = gdbarch_byte_order (gdbarch);
3365
3366 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3367 4, byte_order);
3368 cache_ovly_table
3369 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3370 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3371 read_target_long_array (cache_ovly_table_base,
3372 (unsigned int *) cache_ovly_table,
3373 cache_novlys * 4, word_size, byte_order);
3374
3375 return 1; /* SUCCESS */
3376 }
3377
3378 /* Function: simple_overlay_update_1
3379 A helper function for simple_overlay_update. Assuming a cached copy
3380 of _ovly_table exists, look through it to find an entry whose vma,
3381 lma and size match those of OSECT. Re-read the entry and make sure
3382 it still matches OSECT (else the table may no longer be valid).
3383 Set OSECT's mapped state to match the entry. Return: 1 for
3384 success, 0 for failure. */
3385
3386 static int
3387 simple_overlay_update_1 (struct obj_section *osect)
3388 {
3389 int i, size;
3390 bfd *obfd = osect->objfile->obfd;
3391 asection *bsect = osect->the_bfd_section;
3392 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3393 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3394 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3395
3396 size = bfd_get_section_size (osect->the_bfd_section);
3397 for (i = 0; i < cache_novlys; i++)
3398 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3399 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3400 /* && cache_ovly_table[i][SIZE] == size */ )
3401 {
3402 read_target_long_array (cache_ovly_table_base + i * word_size,
3403 (unsigned int *) cache_ovly_table[i],
3404 4, word_size, byte_order);
3405 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3406 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3407 /* && cache_ovly_table[i][SIZE] == size */ )
3408 {
3409 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3410 return 1;
3411 }
3412 else /* Warning! Warning! Target's ovly table has changed! */
3413 return 0;
3414 }
3415 return 0;
3416 }
3417
3418 /* Function: simple_overlay_update
3419 If OSECT is NULL, then update all sections' mapped state
3420 (after re-reading the entire target _ovly_table).
3421 If OSECT is non-NULL, then try to find a matching entry in the
3422 cached ovly_table and update only OSECT's mapped state.
3423 If a cached entry can't be found or the cache isn't valid, then
3424 re-read the entire cache, and go ahead and update all sections. */
3425
3426 void
3427 simple_overlay_update (struct obj_section *osect)
3428 {
3429 struct objfile *objfile;
3430
3431 /* Were we given an osect to look up? NULL means do all of them. */
3432 if (osect)
3433 /* Have we got a cached copy of the target's overlay table? */
3434 if (cache_ovly_table != NULL)
3435 /* Does its cached location match what's currently in the symtab? */
3436 if (cache_ovly_table_base ==
3437 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3438 /* Then go ahead and try to look up this single section in the cache */
3439 if (simple_overlay_update_1 (osect))
3440 /* Found it! We're done. */
3441 return;
3442
3443 /* Cached table no good: need to read the entire table anew.
3444 Or else we want all the sections, in which case it's actually
3445 more efficient to read the whole table in one block anyway. */
3446
3447 if (! simple_read_overlay_table ())
3448 return;
3449
3450 /* Now may as well update all sections, even if only one was requested. */
3451 ALL_OBJSECTIONS (objfile, osect)
3452 if (section_is_overlay (osect))
3453 {
3454 int i, size;
3455 bfd *obfd = osect->objfile->obfd;
3456 asection *bsect = osect->the_bfd_section;
3457
3458 size = bfd_get_section_size (bsect);
3459 for (i = 0; i < cache_novlys; i++)
3460 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3461 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3462 /* && cache_ovly_table[i][SIZE] == size */ )
3463 { /* obj_section matches i'th entry in ovly_table */
3464 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3465 break; /* finished with inner for loop: break out */
3466 }
3467 }
3468 }
3469
3470 /* Set the output sections and output offsets for section SECTP in
3471 ABFD. The relocation code in BFD will read these offsets, so we
3472 need to be sure they're initialized. We map each section to itself,
3473 with no offset; this means that SECTP->vma will be honored. */
3474
3475 static void
3476 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3477 {
3478 sectp->output_section = sectp;
3479 sectp->output_offset = 0;
3480 }
3481
3482 /* Default implementation for sym_relocate. */
3483
3484
3485 bfd_byte *
3486 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3487 bfd_byte *buf)
3488 {
3489 bfd *abfd = objfile->obfd;
3490
3491 /* We're only interested in sections with relocation
3492 information. */
3493 if ((sectp->flags & SEC_RELOC) == 0)
3494 return NULL;
3495
3496 /* We will handle section offsets properly elsewhere, so relocate as if
3497 all sections begin at 0. */
3498 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3499
3500 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3501 }
3502
3503 /* Relocate the contents of a debug section SECTP in ABFD. The
3504 contents are stored in BUF if it is non-NULL, or returned in a
3505 malloc'd buffer otherwise.
3506
3507 For some platforms and debug info formats, shared libraries contain
3508 relocations against the debug sections (particularly for DWARF-2;
3509 one affected platform is PowerPC GNU/Linux, although it depends on
3510 the version of the linker in use). Also, ELF object files naturally
3511 have unresolved relocations for their debug sections. We need to apply
3512 the relocations in order to get the locations of symbols correct.
3513 Another example that may require relocation processing, is the
3514 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3515 debug section. */
3516
3517 bfd_byte *
3518 symfile_relocate_debug_section (struct objfile *objfile,
3519 asection *sectp, bfd_byte *buf)
3520 {
3521 gdb_assert (objfile->sf->sym_relocate);
3522
3523 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3524 }
3525
3526 struct symfile_segment_data *
3527 get_symfile_segment_data (bfd *abfd)
3528 {
3529 const struct sym_fns *sf = find_sym_fns (abfd);
3530
3531 if (sf == NULL)
3532 return NULL;
3533
3534 return sf->sym_segments (abfd);
3535 }
3536
3537 void
3538 free_symfile_segment_data (struct symfile_segment_data *data)
3539 {
3540 xfree (data->segment_bases);
3541 xfree (data->segment_sizes);
3542 xfree (data->segment_info);
3543 xfree (data);
3544 }
3545
3546
3547 /* Given:
3548 - DATA, containing segment addresses from the object file ABFD, and
3549 the mapping from ABFD's sections onto the segments that own them,
3550 and
3551 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3552 segment addresses reported by the target,
3553 store the appropriate offsets for each section in OFFSETS.
3554
3555 If there are fewer entries in SEGMENT_BASES than there are segments
3556 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3557
3558 If there are more entries, then ignore the extra. The target may
3559 not be able to distinguish between an empty data segment and a
3560 missing data segment; a missing text segment is less plausible. */
3561 int
3562 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3563 struct section_offsets *offsets,
3564 int num_segment_bases,
3565 const CORE_ADDR *segment_bases)
3566 {
3567 int i;
3568 asection *sect;
3569
3570 /* It doesn't make sense to call this function unless you have some
3571 segment base addresses. */
3572 gdb_assert (num_segment_bases > 0);
3573
3574 /* If we do not have segment mappings for the object file, we
3575 can not relocate it by segments. */
3576 gdb_assert (data != NULL);
3577 gdb_assert (data->num_segments > 0);
3578
3579 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3580 {
3581 int which = data->segment_info[i];
3582
3583 gdb_assert (0 <= which && which <= data->num_segments);
3584
3585 /* Don't bother computing offsets for sections that aren't
3586 loaded as part of any segment. */
3587 if (! which)
3588 continue;
3589
3590 /* Use the last SEGMENT_BASES entry as the address of any extra
3591 segments mentioned in DATA->segment_info. */
3592 if (which > num_segment_bases)
3593 which = num_segment_bases;
3594
3595 offsets->offsets[i] = (segment_bases[which - 1]
3596 - data->segment_bases[which - 1]);
3597 }
3598
3599 return 1;
3600 }
3601
3602 static void
3603 symfile_find_segment_sections (struct objfile *objfile)
3604 {
3605 bfd *abfd = objfile->obfd;
3606 int i;
3607 asection *sect;
3608 struct symfile_segment_data *data;
3609
3610 data = get_symfile_segment_data (objfile->obfd);
3611 if (data == NULL)
3612 return;
3613
3614 if (data->num_segments != 1 && data->num_segments != 2)
3615 {
3616 free_symfile_segment_data (data);
3617 return;
3618 }
3619
3620 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3621 {
3622 int which = data->segment_info[i];
3623
3624 if (which == 1)
3625 {
3626 if (objfile->sect_index_text == -1)
3627 objfile->sect_index_text = sect->index;
3628
3629 if (objfile->sect_index_rodata == -1)
3630 objfile->sect_index_rodata = sect->index;
3631 }
3632 else if (which == 2)
3633 {
3634 if (objfile->sect_index_data == -1)
3635 objfile->sect_index_data = sect->index;
3636
3637 if (objfile->sect_index_bss == -1)
3638 objfile->sect_index_bss = sect->index;
3639 }
3640 }
3641
3642 free_symfile_segment_data (data);
3643 }
3644
3645 void
3646 _initialize_symfile (void)
3647 {
3648 struct cmd_list_element *c;
3649
3650 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3651 Load symbol table from executable file FILE.\n\
3652 The `file' command can also load symbol tables, as well as setting the file\n\
3653 to execute."), &cmdlist);
3654 set_cmd_completer (c, filename_completer);
3655
3656 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3657 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3658 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3659 ADDR is the starting address of the file's text.\n\
3660 The optional arguments are section-name section-address pairs and\n\
3661 should be specified if the data and bss segments are not contiguous\n\
3662 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3663 &cmdlist);
3664 set_cmd_completer (c, filename_completer);
3665
3666 c = add_cmd ("load", class_files, load_command, _("\
3667 Dynamically load FILE into the running program, and record its symbols\n\
3668 for access from GDB.\n\
3669 A load OFFSET may also be given."), &cmdlist);
3670 set_cmd_completer (c, filename_completer);
3671
3672 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3673 &symbol_reloading, _("\
3674 Set dynamic symbol table reloading multiple times in one run."), _("\
3675 Show dynamic symbol table reloading multiple times in one run."), NULL,
3676 NULL,
3677 show_symbol_reloading,
3678 &setlist, &showlist);
3679
3680 add_prefix_cmd ("overlay", class_support, overlay_command,
3681 _("Commands for debugging overlays."), &overlaylist,
3682 "overlay ", 0, &cmdlist);
3683
3684 add_com_alias ("ovly", "overlay", class_alias, 1);
3685 add_com_alias ("ov", "overlay", class_alias, 1);
3686
3687 add_cmd ("map-overlay", class_support, map_overlay_command,
3688 _("Assert that an overlay section is mapped."), &overlaylist);
3689
3690 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3691 _("Assert that an overlay section is unmapped."), &overlaylist);
3692
3693 add_cmd ("list-overlays", class_support, list_overlays_command,
3694 _("List mappings of overlay sections."), &overlaylist);
3695
3696 add_cmd ("manual", class_support, overlay_manual_command,
3697 _("Enable overlay debugging."), &overlaylist);
3698 add_cmd ("off", class_support, overlay_off_command,
3699 _("Disable overlay debugging."), &overlaylist);
3700 add_cmd ("auto", class_support, overlay_auto_command,
3701 _("Enable automatic overlay debugging."), &overlaylist);
3702 add_cmd ("load-target", class_support, overlay_load_command,
3703 _("Read the overlay mapping state from the target."), &overlaylist);
3704
3705 /* Filename extension to source language lookup table: */
3706 init_filename_language_table ();
3707 add_setshow_string_noescape_cmd ("extension-language", class_files,
3708 &ext_args, _("\
3709 Set mapping between filename extension and source language."), _("\
3710 Show mapping between filename extension and source language."), _("\
3711 Usage: set extension-language .foo bar"),
3712 set_ext_lang_command,
3713 show_ext_args,
3714 &setlist, &showlist);
3715
3716 add_info ("extensions", info_ext_lang_command,
3717 _("All filename extensions associated with a source language."));
3718
3719 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3720 &debug_file_directory, _("\
3721 Set the directories where separate debug symbols are searched for."), _("\
3722 Show the directories where separate debug symbols are searched for."), _("\
3723 Separate debug symbols are first searched for in the same\n\
3724 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3725 and lastly at the path of the directory of the binary with\n\
3726 each global debug-file-directory component prepended."),
3727 NULL,
3728 show_debug_file_directory,
3729 &setlist, &showlist);
3730 }
This page took 0.106026 seconds and 4 git commands to generate.