Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/tilde.h"
48 #include "block.h"
49 #include "observable.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "gdbsupport/byte-vector.h"
60 #include "gdbsupport/pathstuff.h"
61 #include "gdbsupport/selftest.h"
62 #include "cli/cli-style.h"
63 #include "gdbsupport/forward-scope-exit.h"
64
65 #include <sys/types.h>
66 #include <fcntl.h>
67 #include <sys/stat.h>
68 #include <ctype.h>
69 #include <chrono>
70 #include <algorithm>
71
72 #include "psymtab.h"
73
74 int (*deprecated_ui_load_progress_hook) (const char *section,
75 unsigned long num);
76 void (*deprecated_show_load_progress) (const char *section,
77 unsigned long section_sent,
78 unsigned long section_size,
79 unsigned long total_sent,
80 unsigned long total_size);
81 void (*deprecated_pre_add_symbol_hook) (const char *);
82 void (*deprecated_post_add_symbol_hook) (void);
83
84 using clear_symtab_users_cleanup
85 = FORWARD_SCOPE_EXIT (clear_symtab_users);
86
87 /* Global variables owned by this file. */
88 int readnow_symbol_files; /* Read full symbols immediately. */
89 int readnever_symbol_files; /* Never read full symbols. */
90
91 /* Functions this file defines. */
92
93 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
94 objfile_flags flags, CORE_ADDR reloff);
95
96 static const struct sym_fns *find_sym_fns (bfd *);
97
98 static void overlay_invalidate_all (void);
99
100 static void simple_free_overlay_table (void);
101
102 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
103 enum bfd_endian);
104
105 static int simple_read_overlay_table (void);
106
107 static int simple_overlay_update_1 (struct obj_section *);
108
109 static void symfile_find_segment_sections (struct objfile *objfile);
110
111 /* List of all available sym_fns. On gdb startup, each object file reader
112 calls add_symtab_fns() to register information on each format it is
113 prepared to read. */
114
115 struct registered_sym_fns
116 {
117 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
118 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
119 {}
120
121 /* BFD flavour that we handle. */
122 enum bfd_flavour sym_flavour;
123
124 /* The "vtable" of symbol functions. */
125 const struct sym_fns *sym_fns;
126 };
127
128 static std::vector<registered_sym_fns> symtab_fns;
129
130 /* Values for "set print symbol-loading". */
131
132 const char print_symbol_loading_off[] = "off";
133 const char print_symbol_loading_brief[] = "brief";
134 const char print_symbol_loading_full[] = "full";
135 static const char *print_symbol_loading_enums[] =
136 {
137 print_symbol_loading_off,
138 print_symbol_loading_brief,
139 print_symbol_loading_full,
140 NULL
141 };
142 static const char *print_symbol_loading = print_symbol_loading_full;
143
144 /* See symfile.h. */
145
146 bool auto_solib_add = true;
147 \f
148
149 /* Return non-zero if symbol-loading messages should be printed.
150 FROM_TTY is the standard from_tty argument to gdb commands.
151 If EXEC is non-zero the messages are for the executable.
152 Otherwise, messages are for shared libraries.
153 If FULL is non-zero then the caller is printing a detailed message.
154 E.g., the message includes the shared library name.
155 Otherwise, the caller is printing a brief "summary" message. */
156
157 int
158 print_symbol_loading_p (int from_tty, int exec, int full)
159 {
160 if (!from_tty && !info_verbose)
161 return 0;
162
163 if (exec)
164 {
165 /* We don't check FULL for executables, there are few such
166 messages, therefore brief == full. */
167 return print_symbol_loading != print_symbol_loading_off;
168 }
169 if (full)
170 return print_symbol_loading == print_symbol_loading_full;
171 return print_symbol_loading == print_symbol_loading_brief;
172 }
173
174 /* True if we are reading a symbol table. */
175
176 int currently_reading_symtab = 0;
177
178 /* Increment currently_reading_symtab and return a cleanup that can be
179 used to decrement it. */
180
181 scoped_restore_tmpl<int>
182 increment_reading_symtab (void)
183 {
184 gdb_assert (currently_reading_symtab >= 0);
185 return make_scoped_restore (&currently_reading_symtab,
186 currently_reading_symtab + 1);
187 }
188
189 /* Remember the lowest-addressed loadable section we've seen.
190 This function is called via bfd_map_over_sections.
191
192 In case of equal vmas, the section with the largest size becomes the
193 lowest-addressed loadable section.
194
195 If the vmas and sizes are equal, the last section is considered the
196 lowest-addressed loadable section. */
197
198 void
199 find_lowest_section (bfd *abfd, asection *sect, void *obj)
200 {
201 asection **lowest = (asection **) obj;
202
203 if (0 == (bfd_section_flags (sect) & (SEC_ALLOC | SEC_LOAD)))
204 return;
205 if (!*lowest)
206 *lowest = sect; /* First loadable section */
207 else if (bfd_section_vma (*lowest) > bfd_section_vma (sect))
208 *lowest = sect; /* A lower loadable section */
209 else if (bfd_section_vma (*lowest) == bfd_section_vma (sect)
210 && (bfd_section_size (*lowest) <= bfd_section_size (sect)))
211 *lowest = sect;
212 }
213
214 /* Build (allocate and populate) a section_addr_info struct from
215 an existing section table. */
216
217 section_addr_info
218 build_section_addr_info_from_section_table (const struct target_section *start,
219 const struct target_section *end)
220 {
221 const struct target_section *stp;
222
223 section_addr_info sap;
224
225 for (stp = start; stp != end; stp++)
226 {
227 struct bfd_section *asect = stp->the_bfd_section;
228 bfd *abfd = asect->owner;
229
230 if (bfd_section_flags (asect) & (SEC_ALLOC | SEC_LOAD)
231 && sap.size () < end - start)
232 sap.emplace_back (stp->addr,
233 bfd_section_name (asect),
234 gdb_bfd_section_index (abfd, asect));
235 }
236
237 return sap;
238 }
239
240 /* Create a section_addr_info from section offsets in ABFD. */
241
242 static section_addr_info
243 build_section_addr_info_from_bfd (bfd *abfd)
244 {
245 struct bfd_section *sec;
246
247 section_addr_info sap;
248 for (sec = abfd->sections; sec != NULL; sec = sec->next)
249 if (bfd_section_flags (sec) & (SEC_ALLOC | SEC_LOAD))
250 sap.emplace_back (bfd_section_vma (sec),
251 bfd_section_name (sec),
252 gdb_bfd_section_index (abfd, sec));
253
254 return sap;
255 }
256
257 /* Create a section_addr_info from section offsets in OBJFILE. */
258
259 section_addr_info
260 build_section_addr_info_from_objfile (const struct objfile *objfile)
261 {
262 int i;
263
264 /* Before reread_symbols gets rewritten it is not safe to call:
265 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
266 */
267 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
268 for (i = 0; i < sap.size (); i++)
269 {
270 int sectindex = sap[i].sectindex;
271
272 sap[i].addr += objfile->section_offsets[sectindex];
273 }
274 return sap;
275 }
276
277 /* Initialize OBJFILE's sect_index_* members. */
278
279 static void
280 init_objfile_sect_indices (struct objfile *objfile)
281 {
282 asection *sect;
283 int i;
284
285 sect = bfd_get_section_by_name (objfile->obfd, ".text");
286 if (sect)
287 objfile->sect_index_text = sect->index;
288
289 sect = bfd_get_section_by_name (objfile->obfd, ".data");
290 if (sect)
291 objfile->sect_index_data = sect->index;
292
293 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
294 if (sect)
295 objfile->sect_index_bss = sect->index;
296
297 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
298 if (sect)
299 objfile->sect_index_rodata = sect->index;
300
301 /* This is where things get really weird... We MUST have valid
302 indices for the various sect_index_* members or gdb will abort.
303 So if for example, there is no ".text" section, we have to
304 accomodate that. First, check for a file with the standard
305 one or two segments. */
306
307 symfile_find_segment_sections (objfile);
308
309 /* Except when explicitly adding symbol files at some address,
310 section_offsets contains nothing but zeros, so it doesn't matter
311 which slot in section_offsets the individual sect_index_* members
312 index into. So if they are all zero, it is safe to just point
313 all the currently uninitialized indices to the first slot. But
314 beware: if this is the main executable, it may be relocated
315 later, e.g. by the remote qOffsets packet, and then this will
316 be wrong! That's why we try segments first. */
317
318 for (i = 0; i < objfile->section_offsets.size (); i++)
319 {
320 if (objfile->section_offsets[i] != 0)
321 {
322 break;
323 }
324 }
325 if (i == objfile->section_offsets.size ())
326 {
327 if (objfile->sect_index_text == -1)
328 objfile->sect_index_text = 0;
329 if (objfile->sect_index_data == -1)
330 objfile->sect_index_data = 0;
331 if (objfile->sect_index_bss == -1)
332 objfile->sect_index_bss = 0;
333 if (objfile->sect_index_rodata == -1)
334 objfile->sect_index_rodata = 0;
335 }
336 }
337
338 /* The arguments to place_section. */
339
340 struct place_section_arg
341 {
342 section_offsets *offsets;
343 CORE_ADDR lowest;
344 };
345
346 /* Find a unique offset to use for loadable section SECT if
347 the user did not provide an offset. */
348
349 static void
350 place_section (bfd *abfd, asection *sect, void *obj)
351 {
352 struct place_section_arg *arg = (struct place_section_arg *) obj;
353 section_offsets &offsets = *arg->offsets;
354 CORE_ADDR start_addr;
355 int done;
356 ULONGEST align = ((ULONGEST) 1) << bfd_section_alignment (sect);
357
358 /* We are only interested in allocated sections. */
359 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
360 return;
361
362 /* If the user specified an offset, honor it. */
363 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
364 return;
365
366 /* Otherwise, let's try to find a place for the section. */
367 start_addr = (arg->lowest + align - 1) & -align;
368
369 do {
370 asection *cur_sec;
371
372 done = 1;
373
374 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
375 {
376 int indx = cur_sec->index;
377
378 /* We don't need to compare against ourself. */
379 if (cur_sec == sect)
380 continue;
381
382 /* We can only conflict with allocated sections. */
383 if ((bfd_section_flags (cur_sec) & SEC_ALLOC) == 0)
384 continue;
385
386 /* If the section offset is 0, either the section has not been placed
387 yet, or it was the lowest section placed (in which case LOWEST
388 will be past its end). */
389 if (offsets[indx] == 0)
390 continue;
391
392 /* If this section would overlap us, then we must move up. */
393 if (start_addr + bfd_section_size (sect) > offsets[indx]
394 && start_addr < offsets[indx] + bfd_section_size (cur_sec))
395 {
396 start_addr = offsets[indx] + bfd_section_size (cur_sec);
397 start_addr = (start_addr + align - 1) & -align;
398 done = 0;
399 break;
400 }
401
402 /* Otherwise, we appear to be OK. So far. */
403 }
404 }
405 while (!done);
406
407 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
408 arg->lowest = start_addr + bfd_section_size (sect);
409 }
410
411 /* Store section_addr_info as prepared (made relative and with SECTINDEX
412 filled-in) by addr_info_make_relative into SECTION_OFFSETS. */
413
414 void
415 relative_addr_info_to_section_offsets (section_offsets &section_offsets,
416 const section_addr_info &addrs)
417 {
418 int i;
419
420 section_offsets.assign (section_offsets.size (), 0);
421
422 /* Now calculate offsets for section that were specified by the caller. */
423 for (i = 0; i < addrs.size (); i++)
424 {
425 const struct other_sections *osp;
426
427 osp = &addrs[i];
428 if (osp->sectindex == -1)
429 continue;
430
431 /* Record all sections in offsets. */
432 /* The section_offsets in the objfile are here filled in using
433 the BFD index. */
434 section_offsets[osp->sectindex] = osp->addr;
435 }
436 }
437
438 /* Transform section name S for a name comparison. prelink can split section
439 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
440 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
441 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
442 (`.sbss') section has invalid (increased) virtual address. */
443
444 static const char *
445 addr_section_name (const char *s)
446 {
447 if (strcmp (s, ".dynbss") == 0)
448 return ".bss";
449 if (strcmp (s, ".sdynbss") == 0)
450 return ".sbss";
451
452 return s;
453 }
454
455 /* std::sort comparator for addrs_section_sort. Sort entries in
456 ascending order by their (name, sectindex) pair. sectindex makes
457 the sort by name stable. */
458
459 static bool
460 addrs_section_compar (const struct other_sections *a,
461 const struct other_sections *b)
462 {
463 int retval;
464
465 retval = strcmp (addr_section_name (a->name.c_str ()),
466 addr_section_name (b->name.c_str ()));
467 if (retval != 0)
468 return retval < 0;
469
470 return a->sectindex < b->sectindex;
471 }
472
473 /* Provide sorted array of pointers to sections of ADDRS. */
474
475 static std::vector<const struct other_sections *>
476 addrs_section_sort (const section_addr_info &addrs)
477 {
478 int i;
479
480 std::vector<const struct other_sections *> array (addrs.size ());
481 for (i = 0; i < addrs.size (); i++)
482 array[i] = &addrs[i];
483
484 std::sort (array.begin (), array.end (), addrs_section_compar);
485
486 return array;
487 }
488
489 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
490 also SECTINDEXes specific to ABFD there. This function can be used to
491 rebase ADDRS to start referencing different BFD than before. */
492
493 void
494 addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
495 {
496 asection *lower_sect;
497 CORE_ADDR lower_offset;
498 int i;
499
500 /* Find lowest loadable section to be used as starting point for
501 contiguous sections. */
502 lower_sect = NULL;
503 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
504 if (lower_sect == NULL)
505 {
506 warning (_("no loadable sections found in added symbol-file %s"),
507 bfd_get_filename (abfd));
508 lower_offset = 0;
509 }
510 else
511 lower_offset = bfd_section_vma (lower_sect);
512
513 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
514 in ABFD. Section names are not unique - there can be multiple sections of
515 the same name. Also the sections of the same name do not have to be
516 adjacent to each other. Some sections may be present only in one of the
517 files. Even sections present in both files do not have to be in the same
518 order.
519
520 Use stable sort by name for the sections in both files. Then linearly
521 scan both lists matching as most of the entries as possible. */
522
523 std::vector<const struct other_sections *> addrs_sorted
524 = addrs_section_sort (*addrs);
525
526 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
527 std::vector<const struct other_sections *> abfd_addrs_sorted
528 = addrs_section_sort (abfd_addrs);
529
530 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
531 ABFD_ADDRS_SORTED. */
532
533 std::vector<const struct other_sections *>
534 addrs_to_abfd_addrs (addrs->size (), nullptr);
535
536 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
537 = abfd_addrs_sorted.begin ();
538 for (const other_sections *sect : addrs_sorted)
539 {
540 const char *sect_name = addr_section_name (sect->name.c_str ());
541
542 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
543 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
544 sect_name) < 0)
545 abfd_sorted_iter++;
546
547 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
548 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
549 sect_name) == 0)
550 {
551 int index_in_addrs;
552
553 /* Make the found item directly addressable from ADDRS. */
554 index_in_addrs = sect - addrs->data ();
555 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
556 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
557
558 /* Never use the same ABFD entry twice. */
559 abfd_sorted_iter++;
560 }
561 }
562
563 /* Calculate offsets for the loadable sections.
564 FIXME! Sections must be in order of increasing loadable section
565 so that contiguous sections can use the lower-offset!!!
566
567 Adjust offsets if the segments are not contiguous.
568 If the section is contiguous, its offset should be set to
569 the offset of the highest loadable section lower than it
570 (the loadable section directly below it in memory).
571 this_offset = lower_offset = lower_addr - lower_orig_addr */
572
573 for (i = 0; i < addrs->size (); i++)
574 {
575 const struct other_sections *sect = addrs_to_abfd_addrs[i];
576
577 if (sect)
578 {
579 /* This is the index used by BFD. */
580 (*addrs)[i].sectindex = sect->sectindex;
581
582 if ((*addrs)[i].addr != 0)
583 {
584 (*addrs)[i].addr -= sect->addr;
585 lower_offset = (*addrs)[i].addr;
586 }
587 else
588 (*addrs)[i].addr = lower_offset;
589 }
590 else
591 {
592 /* addr_section_name transformation is not used for SECT_NAME. */
593 const std::string &sect_name = (*addrs)[i].name;
594
595 /* This section does not exist in ABFD, which is normally
596 unexpected and we want to issue a warning.
597
598 However, the ELF prelinker does create a few sections which are
599 marked in the main executable as loadable (they are loaded in
600 memory from the DYNAMIC segment) and yet are not present in
601 separate debug info files. This is fine, and should not cause
602 a warning. Shared libraries contain just the section
603 ".gnu.liblist" but it is not marked as loadable there. There is
604 no other way to identify them than by their name as the sections
605 created by prelink have no special flags.
606
607 For the sections `.bss' and `.sbss' see addr_section_name. */
608
609 if (!(sect_name == ".gnu.liblist"
610 || sect_name == ".gnu.conflict"
611 || (sect_name == ".bss"
612 && i > 0
613 && (*addrs)[i - 1].name == ".dynbss"
614 && addrs_to_abfd_addrs[i - 1] != NULL)
615 || (sect_name == ".sbss"
616 && i > 0
617 && (*addrs)[i - 1].name == ".sdynbss"
618 && addrs_to_abfd_addrs[i - 1] != NULL)))
619 warning (_("section %s not found in %s"), sect_name.c_str (),
620 bfd_get_filename (abfd));
621
622 (*addrs)[i].addr = 0;
623 (*addrs)[i].sectindex = -1;
624 }
625 }
626 }
627
628 /* Parse the user's idea of an offset for dynamic linking, into our idea
629 of how to represent it for fast symbol reading. This is the default
630 version of the sym_fns.sym_offsets function for symbol readers that
631 don't need to do anything special. It allocates a section_offsets table
632 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
633
634 void
635 default_symfile_offsets (struct objfile *objfile,
636 const section_addr_info &addrs)
637 {
638 objfile->section_offsets.resize (gdb_bfd_count_sections (objfile->obfd));
639 relative_addr_info_to_section_offsets (objfile->section_offsets, addrs);
640
641 /* For relocatable files, all loadable sections will start at zero.
642 The zero is meaningless, so try to pick arbitrary addresses such
643 that no loadable sections overlap. This algorithm is quadratic,
644 but the number of sections in a single object file is generally
645 small. */
646 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
647 {
648 struct place_section_arg arg;
649 bfd *abfd = objfile->obfd;
650 asection *cur_sec;
651
652 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
653 /* We do not expect this to happen; just skip this step if the
654 relocatable file has a section with an assigned VMA. */
655 if (bfd_section_vma (cur_sec) != 0)
656 break;
657
658 if (cur_sec == NULL)
659 {
660 section_offsets &offsets = objfile->section_offsets;
661
662 /* Pick non-overlapping offsets for sections the user did not
663 place explicitly. */
664 arg.offsets = &objfile->section_offsets;
665 arg.lowest = 0;
666 bfd_map_over_sections (objfile->obfd, place_section, &arg);
667
668 /* Correctly filling in the section offsets is not quite
669 enough. Relocatable files have two properties that
670 (most) shared objects do not:
671
672 - Their debug information will contain relocations. Some
673 shared libraries do also, but many do not, so this can not
674 be assumed.
675
676 - If there are multiple code sections they will be loaded
677 at different relative addresses in memory than they are
678 in the objfile, since all sections in the file will start
679 at address zero.
680
681 Because GDB has very limited ability to map from an
682 address in debug info to the correct code section,
683 it relies on adding SECT_OFF_TEXT to things which might be
684 code. If we clear all the section offsets, and set the
685 section VMAs instead, then symfile_relocate_debug_section
686 will return meaningful debug information pointing at the
687 correct sections.
688
689 GDB has too many different data structures for section
690 addresses - a bfd, objfile, and so_list all have section
691 tables, as does exec_ops. Some of these could probably
692 be eliminated. */
693
694 for (cur_sec = abfd->sections; cur_sec != NULL;
695 cur_sec = cur_sec->next)
696 {
697 if ((bfd_section_flags (cur_sec) & SEC_ALLOC) == 0)
698 continue;
699
700 bfd_set_section_vma (cur_sec, offsets[cur_sec->index]);
701 exec_set_section_address (bfd_get_filename (abfd),
702 cur_sec->index,
703 offsets[cur_sec->index]);
704 offsets[cur_sec->index] = 0;
705 }
706 }
707 }
708
709 /* Remember the bfd indexes for the .text, .data, .bss and
710 .rodata sections. */
711 init_objfile_sect_indices (objfile);
712 }
713
714 /* Divide the file into segments, which are individual relocatable units.
715 This is the default version of the sym_fns.sym_segments function for
716 symbol readers that do not have an explicit representation of segments.
717 It assumes that object files do not have segments, and fully linked
718 files have a single segment. */
719
720 symfile_segment_data_up
721 default_symfile_segments (bfd *abfd)
722 {
723 int num_sections, i;
724 asection *sect;
725 CORE_ADDR low, high;
726
727 /* Relocatable files contain enough information to position each
728 loadable section independently; they should not be relocated
729 in segments. */
730 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
731 return NULL;
732
733 /* Make sure there is at least one loadable section in the file. */
734 for (sect = abfd->sections; sect != NULL; sect = sect->next)
735 {
736 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
737 continue;
738
739 break;
740 }
741 if (sect == NULL)
742 return NULL;
743
744 low = bfd_section_vma (sect);
745 high = low + bfd_section_size (sect);
746
747 symfile_segment_data_up data (new symfile_segment_data);
748
749 num_sections = bfd_count_sections (abfd);
750
751 /* All elements are initialized to 0 (map to no segment). */
752 data->segment_info.resize (num_sections);
753
754 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
755 {
756 CORE_ADDR vma;
757
758 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
759 continue;
760
761 vma = bfd_section_vma (sect);
762 if (vma < low)
763 low = vma;
764 if (vma + bfd_section_size (sect) > high)
765 high = vma + bfd_section_size (sect);
766
767 data->segment_info[i] = 1;
768 }
769
770 data->segments.emplace_back (low, high - low);
771
772 return data;
773 }
774
775 /* This is a convenience function to call sym_read for OBJFILE and
776 possibly force the partial symbols to be read. */
777
778 static void
779 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
780 {
781 (*objfile->sf->sym_read) (objfile, add_flags);
782 objfile->per_bfd->minsyms_read = true;
783
784 /* find_separate_debug_file_in_section should be called only if there is
785 single binary with no existing separate debug info file. */
786 if (!objfile_has_partial_symbols (objfile)
787 && objfile->separate_debug_objfile == NULL
788 && objfile->separate_debug_objfile_backlink == NULL)
789 {
790 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
791
792 if (abfd != NULL)
793 {
794 /* find_separate_debug_file_in_section uses the same filename for the
795 virtual section-as-bfd like the bfd filename containing the
796 section. Therefore use also non-canonical name form for the same
797 file containing the section. */
798 symbol_file_add_separate (abfd.get (),
799 bfd_get_filename (abfd.get ()),
800 add_flags | SYMFILE_NOT_FILENAME, objfile);
801 }
802 }
803 if ((add_flags & SYMFILE_NO_READ) == 0)
804 require_partial_symbols (objfile, false);
805 }
806
807 /* Initialize entry point information for this objfile. */
808
809 static void
810 init_entry_point_info (struct objfile *objfile)
811 {
812 struct entry_info *ei = &objfile->per_bfd->ei;
813
814 if (ei->initialized)
815 return;
816 ei->initialized = 1;
817
818 /* Save startup file's range of PC addresses to help blockframe.c
819 decide where the bottom of the stack is. */
820
821 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
822 {
823 /* Executable file -- record its entry point so we'll recognize
824 the startup file because it contains the entry point. */
825 ei->entry_point = bfd_get_start_address (objfile->obfd);
826 ei->entry_point_p = 1;
827 }
828 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
829 && bfd_get_start_address (objfile->obfd) != 0)
830 {
831 /* Some shared libraries may have entry points set and be
832 runnable. There's no clear way to indicate this, so just check
833 for values other than zero. */
834 ei->entry_point = bfd_get_start_address (objfile->obfd);
835 ei->entry_point_p = 1;
836 }
837 else
838 {
839 /* Examination of non-executable.o files. Short-circuit this stuff. */
840 ei->entry_point_p = 0;
841 }
842
843 if (ei->entry_point_p)
844 {
845 struct obj_section *osect;
846 CORE_ADDR entry_point = ei->entry_point;
847 int found;
848
849 /* Make certain that the address points at real code, and not a
850 function descriptor. */
851 entry_point
852 = gdbarch_convert_from_func_ptr_addr (objfile->arch (),
853 entry_point,
854 current_top_target ());
855
856 /* Remove any ISA markers, so that this matches entries in the
857 symbol table. */
858 ei->entry_point
859 = gdbarch_addr_bits_remove (objfile->arch (), entry_point);
860
861 found = 0;
862 ALL_OBJFILE_OSECTIONS (objfile, osect)
863 {
864 struct bfd_section *sect = osect->the_bfd_section;
865
866 if (entry_point >= bfd_section_vma (sect)
867 && entry_point < (bfd_section_vma (sect)
868 + bfd_section_size (sect)))
869 {
870 ei->the_bfd_section_index
871 = gdb_bfd_section_index (objfile->obfd, sect);
872 found = 1;
873 break;
874 }
875 }
876
877 if (!found)
878 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
879 }
880 }
881
882 /* Process a symbol file, as either the main file or as a dynamically
883 loaded file.
884
885 This function does not set the OBJFILE's entry-point info.
886
887 OBJFILE is where the symbols are to be read from.
888
889 ADDRS is the list of section load addresses. If the user has given
890 an 'add-symbol-file' command, then this is the list of offsets and
891 addresses he or she provided as arguments to the command; or, if
892 we're handling a shared library, these are the actual addresses the
893 sections are loaded at, according to the inferior's dynamic linker
894 (as gleaned by GDB's shared library code). We convert each address
895 into an offset from the section VMA's as it appears in the object
896 file, and then call the file's sym_offsets function to convert this
897 into a format-specific offset table --- a `section_offsets'.
898 The sectindex field is used to control the ordering of sections
899 with the same name. Upon return, it is updated to contain the
900 corresponding BFD section index, or -1 if the section was not found.
901
902 ADD_FLAGS encodes verbosity level, whether this is main symbol or
903 an extra symbol file such as dynamically loaded code, and whether
904 breakpoint reset should be deferred. */
905
906 static void
907 syms_from_objfile_1 (struct objfile *objfile,
908 section_addr_info *addrs,
909 symfile_add_flags add_flags)
910 {
911 section_addr_info local_addr;
912 const int mainline = add_flags & SYMFILE_MAINLINE;
913
914 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
915
916 if (objfile->sf == NULL)
917 {
918 /* No symbols to load, but we still need to make sure
919 that the section_offsets table is allocated. */
920 int num_sections = gdb_bfd_count_sections (objfile->obfd);
921
922 objfile->section_offsets.assign (num_sections, 0);
923 return;
924 }
925
926 /* Make sure that partially constructed symbol tables will be cleaned up
927 if an error occurs during symbol reading. */
928 gdb::optional<clear_symtab_users_cleanup> defer_clear_users;
929
930 objfile_up objfile_holder (objfile);
931
932 /* If ADDRS is NULL, put together a dummy address list.
933 We now establish the convention that an addr of zero means
934 no load address was specified. */
935 if (! addrs)
936 addrs = &local_addr;
937
938 if (mainline)
939 {
940 /* We will modify the main symbol table, make sure that all its users
941 will be cleaned up if an error occurs during symbol reading. */
942 defer_clear_users.emplace ((symfile_add_flag) 0);
943
944 /* Since no error yet, throw away the old symbol table. */
945
946 if (symfile_objfile != NULL)
947 {
948 symfile_objfile->unlink ();
949 gdb_assert (symfile_objfile == NULL);
950 }
951
952 /* Currently we keep symbols from the add-symbol-file command.
953 If the user wants to get rid of them, they should do "symbol-file"
954 without arguments first. Not sure this is the best behavior
955 (PR 2207). */
956
957 (*objfile->sf->sym_new_init) (objfile);
958 }
959
960 /* Convert addr into an offset rather than an absolute address.
961 We find the lowest address of a loaded segment in the objfile,
962 and assume that <addr> is where that got loaded.
963
964 We no longer warn if the lowest section is not a text segment (as
965 happens for the PA64 port. */
966 if (addrs->size () > 0)
967 addr_info_make_relative (addrs, objfile->obfd);
968
969 /* Initialize symbol reading routines for this objfile, allow complaints to
970 appear for this new file, and record how verbose to be, then do the
971 initial symbol reading for this file. */
972
973 (*objfile->sf->sym_init) (objfile);
974 clear_complaints ();
975
976 (*objfile->sf->sym_offsets) (objfile, *addrs);
977
978 read_symbols (objfile, add_flags);
979
980 /* Discard cleanups as symbol reading was successful. */
981
982 objfile_holder.release ();
983 if (defer_clear_users)
984 defer_clear_users->release ();
985 }
986
987 /* Same as syms_from_objfile_1, but also initializes the objfile
988 entry-point info. */
989
990 static void
991 syms_from_objfile (struct objfile *objfile,
992 section_addr_info *addrs,
993 symfile_add_flags add_flags)
994 {
995 syms_from_objfile_1 (objfile, addrs, add_flags);
996 init_entry_point_info (objfile);
997 }
998
999 /* Perform required actions after either reading in the initial
1000 symbols for a new objfile, or mapping in the symbols from a reusable
1001 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1002
1003 static void
1004 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1005 {
1006 /* If this is the main symbol file we have to clean up all users of the
1007 old main symbol file. Otherwise it is sufficient to fixup all the
1008 breakpoints that may have been redefined by this symbol file. */
1009 if (add_flags & SYMFILE_MAINLINE)
1010 {
1011 /* OK, make it the "real" symbol file. */
1012 symfile_objfile = objfile;
1013
1014 clear_symtab_users (add_flags);
1015 }
1016 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1017 {
1018 breakpoint_re_set ();
1019 }
1020
1021 /* We're done reading the symbol file; finish off complaints. */
1022 clear_complaints ();
1023 }
1024
1025 /* Process a symbol file, as either the main file or as a dynamically
1026 loaded file.
1027
1028 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1029 A new reference is acquired by this function.
1030
1031 For NAME description see the objfile constructor.
1032
1033 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1034 extra, such as dynamically loaded code, and what to do with breakpoints.
1035
1036 ADDRS is as described for syms_from_objfile_1, above.
1037 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1038
1039 PARENT is the original objfile if ABFD is a separate debug info file.
1040 Otherwise PARENT is NULL.
1041
1042 Upon success, returns a pointer to the objfile that was added.
1043 Upon failure, jumps back to command level (never returns). */
1044
1045 static struct objfile *
1046 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1047 symfile_add_flags add_flags,
1048 section_addr_info *addrs,
1049 objfile_flags flags, struct objfile *parent)
1050 {
1051 struct objfile *objfile;
1052 const int from_tty = add_flags & SYMFILE_VERBOSE;
1053 const int mainline = add_flags & SYMFILE_MAINLINE;
1054 const int always_confirm = add_flags & SYMFILE_ALWAYS_CONFIRM;
1055 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1056 && (readnow_symbol_files
1057 || (add_flags & SYMFILE_NO_READ) == 0));
1058
1059 if (readnow_symbol_files)
1060 {
1061 flags |= OBJF_READNOW;
1062 add_flags &= ~SYMFILE_NO_READ;
1063 }
1064 else if (readnever_symbol_files
1065 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1066 {
1067 flags |= OBJF_READNEVER;
1068 add_flags |= SYMFILE_NO_READ;
1069 }
1070 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1071 flags |= OBJF_NOT_FILENAME;
1072
1073 /* Give user a chance to burp if ALWAYS_CONFIRM or we'd be
1074 interactively wiping out any existing symbols. */
1075
1076 if (from_tty
1077 && (always_confirm
1078 || ((have_full_symbols () || have_partial_symbols ())
1079 && mainline))
1080 && !query (_("Load new symbol table from \"%s\"? "), name))
1081 error (_("Not confirmed."));
1082
1083 if (mainline)
1084 flags |= OBJF_MAINLINE;
1085 objfile = objfile::make (abfd, name, flags, parent);
1086
1087 /* We either created a new mapped symbol table, mapped an existing
1088 symbol table file which has not had initial symbol reading
1089 performed, or need to read an unmapped symbol table. */
1090 if (should_print)
1091 {
1092 if (deprecated_pre_add_symbol_hook)
1093 deprecated_pre_add_symbol_hook (name);
1094 else
1095 printf_filtered (_("Reading symbols from %ps...\n"),
1096 styled_string (file_name_style.style (), name));
1097 }
1098 syms_from_objfile (objfile, addrs, add_flags);
1099
1100 /* We now have at least a partial symbol table. Check to see if the
1101 user requested that all symbols be read on initial access via either
1102 the gdb startup command line or on a per symbol file basis. Expand
1103 all partial symbol tables for this objfile if so. */
1104
1105 if ((flags & OBJF_READNOW))
1106 {
1107 if (should_print)
1108 printf_filtered (_("Expanding full symbols from %ps...\n"),
1109 styled_string (file_name_style.style (), name));
1110
1111 if (objfile->sf)
1112 objfile->sf->qf->expand_all_symtabs (objfile);
1113 }
1114
1115 /* Note that we only print a message if we have no symbols and have
1116 no separate debug file. If there is a separate debug file which
1117 does not have symbols, we'll have emitted this message for that
1118 file, and so printing it twice is just redundant. */
1119 if (should_print && !objfile_has_symbols (objfile)
1120 && objfile->separate_debug_objfile == nullptr)
1121 printf_filtered (_("(No debugging symbols found in %ps)\n"),
1122 styled_string (file_name_style.style (), name));
1123
1124 if (should_print)
1125 {
1126 if (deprecated_post_add_symbol_hook)
1127 deprecated_post_add_symbol_hook ();
1128 }
1129
1130 /* We print some messages regardless of whether 'from_tty ||
1131 info_verbose' is true, so make sure they go out at the right
1132 time. */
1133 gdb_flush (gdb_stdout);
1134
1135 if (objfile->sf == NULL)
1136 {
1137 gdb::observers::new_objfile.notify (objfile);
1138 return objfile; /* No symbols. */
1139 }
1140
1141 finish_new_objfile (objfile, add_flags);
1142
1143 gdb::observers::new_objfile.notify (objfile);
1144
1145 bfd_cache_close_all ();
1146 return (objfile);
1147 }
1148
1149 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1150 see the objfile constructor. */
1151
1152 void
1153 symbol_file_add_separate (bfd *bfd, const char *name,
1154 symfile_add_flags symfile_flags,
1155 struct objfile *objfile)
1156 {
1157 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1158 because sections of BFD may not match sections of OBJFILE and because
1159 vma may have been modified by tools such as prelink. */
1160 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
1161
1162 symbol_file_add_with_addrs
1163 (bfd, name, symfile_flags, &sap,
1164 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1165 | OBJF_USERLOADED | OBJF_MAINLINE),
1166 objfile);
1167 }
1168
1169 /* Process the symbol file ABFD, as either the main file or as a
1170 dynamically loaded file.
1171 See symbol_file_add_with_addrs's comments for details. */
1172
1173 struct objfile *
1174 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1175 symfile_add_flags add_flags,
1176 section_addr_info *addrs,
1177 objfile_flags flags, struct objfile *parent)
1178 {
1179 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1180 parent);
1181 }
1182
1183 /* Process a symbol file, as either the main file or as a dynamically
1184 loaded file. See symbol_file_add_with_addrs's comments for details. */
1185
1186 struct objfile *
1187 symbol_file_add (const char *name, symfile_add_flags add_flags,
1188 section_addr_info *addrs, objfile_flags flags)
1189 {
1190 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1191
1192 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1193 flags, NULL);
1194 }
1195
1196 /* Call symbol_file_add() with default values and update whatever is
1197 affected by the loading of a new main().
1198 Used when the file is supplied in the gdb command line
1199 and by some targets with special loading requirements.
1200 The auxiliary function, symbol_file_add_main_1(), has the flags
1201 argument for the switches that can only be specified in the symbol_file
1202 command itself. */
1203
1204 void
1205 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1206 {
1207 symbol_file_add_main_1 (args, add_flags, 0, 0);
1208 }
1209
1210 static void
1211 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1212 objfile_flags flags, CORE_ADDR reloff)
1213 {
1214 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1215
1216 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1217 if (reloff != 0)
1218 objfile_rebase (objfile, reloff);
1219
1220 /* Getting new symbols may change our opinion about
1221 what is frameless. */
1222 reinit_frame_cache ();
1223
1224 if ((add_flags & SYMFILE_NO_READ) == 0)
1225 set_initial_language ();
1226 }
1227
1228 void
1229 symbol_file_clear (int from_tty)
1230 {
1231 if ((have_full_symbols () || have_partial_symbols ())
1232 && from_tty
1233 && (symfile_objfile
1234 ? !query (_("Discard symbol table from `%s'? "),
1235 objfile_name (symfile_objfile))
1236 : !query (_("Discard symbol table? "))))
1237 error (_("Not confirmed."));
1238
1239 /* solib descriptors may have handles to objfiles. Wipe them before their
1240 objfiles get stale by free_all_objfiles. */
1241 no_shared_libraries (NULL, from_tty);
1242
1243 current_program_space->free_all_objfiles ();
1244
1245 clear_symtab_users (0);
1246
1247 gdb_assert (symfile_objfile == NULL);
1248 if (from_tty)
1249 printf_filtered (_("No symbol file now.\n"));
1250 }
1251
1252 /* See symfile.h. */
1253
1254 bool separate_debug_file_debug = false;
1255
1256 static int
1257 separate_debug_file_exists (const std::string &name, unsigned long crc,
1258 struct objfile *parent_objfile)
1259 {
1260 unsigned long file_crc;
1261 int file_crc_p;
1262 struct stat parent_stat, abfd_stat;
1263 int verified_as_different;
1264
1265 /* Find a separate debug info file as if symbols would be present in
1266 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1267 section can contain just the basename of PARENT_OBJFILE without any
1268 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1269 the separate debug infos with the same basename can exist. */
1270
1271 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1272 return 0;
1273
1274 if (separate_debug_file_debug)
1275 {
1276 printf_filtered (_(" Trying %s..."), name.c_str ());
1277 gdb_flush (gdb_stdout);
1278 }
1279
1280 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget));
1281
1282 if (abfd == NULL)
1283 {
1284 if (separate_debug_file_debug)
1285 printf_filtered (_(" no, unable to open.\n"));
1286
1287 return 0;
1288 }
1289
1290 /* Verify symlinks were not the cause of filename_cmp name difference above.
1291
1292 Some operating systems, e.g. Windows, do not provide a meaningful
1293 st_ino; they always set it to zero. (Windows does provide a
1294 meaningful st_dev.) Files accessed from gdbservers that do not
1295 support the vFile:fstat packet will also have st_ino set to zero.
1296 Do not indicate a duplicate library in either case. While there
1297 is no guarantee that a system that provides meaningful inode
1298 numbers will never set st_ino to zero, this is merely an
1299 optimization, so we do not need to worry about false negatives. */
1300
1301 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1302 && abfd_stat.st_ino != 0
1303 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1304 {
1305 if (abfd_stat.st_dev == parent_stat.st_dev
1306 && abfd_stat.st_ino == parent_stat.st_ino)
1307 {
1308 if (separate_debug_file_debug)
1309 printf_filtered (_(" no, same file as the objfile.\n"));
1310
1311 return 0;
1312 }
1313 verified_as_different = 1;
1314 }
1315 else
1316 verified_as_different = 0;
1317
1318 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1319
1320 if (!file_crc_p)
1321 {
1322 if (separate_debug_file_debug)
1323 printf_filtered (_(" no, error computing CRC.\n"));
1324
1325 return 0;
1326 }
1327
1328 if (crc != file_crc)
1329 {
1330 unsigned long parent_crc;
1331
1332 /* If the files could not be verified as different with
1333 bfd_stat then we need to calculate the parent's CRC
1334 to verify whether the files are different or not. */
1335
1336 if (!verified_as_different)
1337 {
1338 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1339 {
1340 if (separate_debug_file_debug)
1341 printf_filtered (_(" no, error computing CRC.\n"));
1342
1343 return 0;
1344 }
1345 }
1346
1347 if (verified_as_different || parent_crc != file_crc)
1348 warning (_("the debug information found in \"%s\""
1349 " does not match \"%s\" (CRC mismatch).\n"),
1350 name.c_str (), objfile_name (parent_objfile));
1351
1352 if (separate_debug_file_debug)
1353 printf_filtered (_(" no, CRC doesn't match.\n"));
1354
1355 return 0;
1356 }
1357
1358 if (separate_debug_file_debug)
1359 printf_filtered (_(" yes!\n"));
1360
1361 return 1;
1362 }
1363
1364 char *debug_file_directory = NULL;
1365 static void
1366 show_debug_file_directory (struct ui_file *file, int from_tty,
1367 struct cmd_list_element *c, const char *value)
1368 {
1369 fprintf_filtered (file,
1370 _("The directory where separate debug "
1371 "symbols are searched for is \"%s\".\n"),
1372 value);
1373 }
1374
1375 #if ! defined (DEBUG_SUBDIRECTORY)
1376 #define DEBUG_SUBDIRECTORY ".debug"
1377 #endif
1378
1379 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1380 where the original file resides (may not be the same as
1381 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1382 looking for. CANON_DIR is the "realpath" form of DIR.
1383 DIR must contain a trailing '/'.
1384 Returns the path of the file with separate debug info, or an empty
1385 string. */
1386
1387 static std::string
1388 find_separate_debug_file (const char *dir,
1389 const char *canon_dir,
1390 const char *debuglink,
1391 unsigned long crc32, struct objfile *objfile)
1392 {
1393 if (separate_debug_file_debug)
1394 printf_filtered (_("\nLooking for separate debug info (debug link) for "
1395 "%s\n"), objfile_name (objfile));
1396
1397 /* First try in the same directory as the original file. */
1398 std::string debugfile = dir;
1399 debugfile += debuglink;
1400
1401 if (separate_debug_file_exists (debugfile, crc32, objfile))
1402 return debugfile;
1403
1404 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1405 debugfile = dir;
1406 debugfile += DEBUG_SUBDIRECTORY;
1407 debugfile += "/";
1408 debugfile += debuglink;
1409
1410 if (separate_debug_file_exists (debugfile, crc32, objfile))
1411 return debugfile;
1412
1413 /* Then try in the global debugfile directories.
1414
1415 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1416 cause "/..." lookups. */
1417
1418 bool target_prefix = startswith (dir, "target:");
1419 const char *dir_notarget = target_prefix ? dir + strlen ("target:") : dir;
1420 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1421 = dirnames_to_char_ptr_vec (debug_file_directory);
1422 gdb::unique_xmalloc_ptr<char> canon_sysroot = gdb_realpath (gdb_sysroot);
1423
1424 /* MS-Windows/MS-DOS don't allow colons in file names; we must
1425 convert the drive letter into a one-letter directory, so that the
1426 file name resulting from splicing below will be valid.
1427
1428 FIXME: The below only works when GDB runs on MS-Windows/MS-DOS.
1429 There are various remote-debugging scenarios where such a
1430 transformation of the drive letter might be required when GDB runs
1431 on a Posix host, see
1432
1433 https://sourceware.org/ml/gdb-patches/2019-04/msg00605.html
1434
1435 If some of those scenarios need to be supported, we will need to
1436 use a different condition for HAS_DRIVE_SPEC and a different macro
1437 instead of STRIP_DRIVE_SPEC, which work on Posix systems as well. */
1438 std::string drive;
1439 if (HAS_DRIVE_SPEC (dir_notarget))
1440 {
1441 drive = dir_notarget[0];
1442 dir_notarget = STRIP_DRIVE_SPEC (dir_notarget);
1443 }
1444
1445 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1446 {
1447 debugfile = target_prefix ? "target:" : "";
1448 debugfile += debugdir.get ();
1449 debugfile += "/";
1450 debugfile += drive;
1451 debugfile += dir_notarget;
1452 debugfile += debuglink;
1453
1454 if (separate_debug_file_exists (debugfile, crc32, objfile))
1455 return debugfile;
1456
1457 const char *base_path = NULL;
1458 if (canon_dir != NULL)
1459 {
1460 if (canon_sysroot.get () != NULL)
1461 base_path = child_path (canon_sysroot.get (), canon_dir);
1462 else
1463 base_path = child_path (gdb_sysroot, canon_dir);
1464 }
1465 if (base_path != NULL)
1466 {
1467 /* If the file is in the sysroot, try using its base path in
1468 the global debugfile directory. */
1469 debugfile = target_prefix ? "target:" : "";
1470 debugfile += debugdir.get ();
1471 debugfile += "/";
1472 debugfile += base_path;
1473 debugfile += "/";
1474 debugfile += debuglink;
1475
1476 if (separate_debug_file_exists (debugfile, crc32, objfile))
1477 return debugfile;
1478
1479 /* If the file is in the sysroot, try using its base path in
1480 the sysroot's global debugfile directory. */
1481 debugfile = target_prefix ? "target:" : "";
1482 debugfile += gdb_sysroot;
1483 debugfile += debugdir.get ();
1484 debugfile += "/";
1485 debugfile += base_path;
1486 debugfile += "/";
1487 debugfile += debuglink;
1488
1489 if (separate_debug_file_exists (debugfile, crc32, objfile))
1490 return debugfile;
1491 }
1492
1493 }
1494
1495 return std::string ();
1496 }
1497
1498 /* Modify PATH to contain only "[/]directory/" part of PATH.
1499 If there were no directory separators in PATH, PATH will be empty
1500 string on return. */
1501
1502 static void
1503 terminate_after_last_dir_separator (char *path)
1504 {
1505 int i;
1506
1507 /* Strip off the final filename part, leaving the directory name,
1508 followed by a slash. The directory can be relative or absolute. */
1509 for (i = strlen(path) - 1; i >= 0; i--)
1510 if (IS_DIR_SEPARATOR (path[i]))
1511 break;
1512
1513 /* If I is -1 then no directory is present there and DIR will be "". */
1514 path[i + 1] = '\0';
1515 }
1516
1517 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1518 Returns pathname, or an empty string. */
1519
1520 std::string
1521 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1522 {
1523 unsigned long crc32;
1524
1525 gdb::unique_xmalloc_ptr<char> debuglink
1526 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1527
1528 if (debuglink == NULL)
1529 {
1530 /* There's no separate debug info, hence there's no way we could
1531 load it => no warning. */
1532 return std::string ();
1533 }
1534
1535 std::string dir = objfile_name (objfile);
1536 terminate_after_last_dir_separator (&dir[0]);
1537 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1538
1539 std::string debugfile
1540 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1541 debuglink.get (), crc32, objfile);
1542
1543 if (debugfile.empty ())
1544 {
1545 /* For PR gdb/9538, try again with realpath (if different from the
1546 original). */
1547
1548 struct stat st_buf;
1549
1550 if (lstat (objfile_name (objfile), &st_buf) == 0
1551 && S_ISLNK (st_buf.st_mode))
1552 {
1553 gdb::unique_xmalloc_ptr<char> symlink_dir
1554 (lrealpath (objfile_name (objfile)));
1555 if (symlink_dir != NULL)
1556 {
1557 terminate_after_last_dir_separator (symlink_dir.get ());
1558 if (dir != symlink_dir.get ())
1559 {
1560 /* Different directory, so try using it. */
1561 debugfile = find_separate_debug_file (symlink_dir.get (),
1562 symlink_dir.get (),
1563 debuglink.get (),
1564 crc32,
1565 objfile);
1566 }
1567 }
1568 }
1569 }
1570
1571 return debugfile;
1572 }
1573
1574 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1575 simultaneously. */
1576
1577 static void
1578 validate_readnow_readnever (objfile_flags flags)
1579 {
1580 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1581 error (_("-readnow and -readnever cannot be used simultaneously"));
1582 }
1583
1584 /* This is the symbol-file command. Read the file, analyze its
1585 symbols, and add a struct symtab to a symtab list. The syntax of
1586 the command is rather bizarre:
1587
1588 1. The function buildargv implements various quoting conventions
1589 which are undocumented and have little or nothing in common with
1590 the way things are quoted (or not quoted) elsewhere in GDB.
1591
1592 2. Options are used, which are not generally used in GDB (perhaps
1593 "set mapped on", "set readnow on" would be better)
1594
1595 3. The order of options matters, which is contrary to GNU
1596 conventions (because it is confusing and inconvenient). */
1597
1598 void
1599 symbol_file_command (const char *args, int from_tty)
1600 {
1601 dont_repeat ();
1602
1603 if (args == NULL)
1604 {
1605 symbol_file_clear (from_tty);
1606 }
1607 else
1608 {
1609 objfile_flags flags = OBJF_USERLOADED;
1610 symfile_add_flags add_flags = 0;
1611 char *name = NULL;
1612 bool stop_processing_options = false;
1613 CORE_ADDR offset = 0;
1614 int idx;
1615 char *arg;
1616
1617 if (from_tty)
1618 add_flags |= SYMFILE_VERBOSE;
1619
1620 gdb_argv built_argv (args);
1621 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1622 {
1623 if (stop_processing_options || *arg != '-')
1624 {
1625 if (name == NULL)
1626 name = arg;
1627 else
1628 error (_("Unrecognized argument \"%s\""), arg);
1629 }
1630 else if (strcmp (arg, "-readnow") == 0)
1631 flags |= OBJF_READNOW;
1632 else if (strcmp (arg, "-readnever") == 0)
1633 flags |= OBJF_READNEVER;
1634 else if (strcmp (arg, "-o") == 0)
1635 {
1636 arg = built_argv[++idx];
1637 if (arg == NULL)
1638 error (_("Missing argument to -o"));
1639
1640 offset = parse_and_eval_address (arg);
1641 }
1642 else if (strcmp (arg, "--") == 0)
1643 stop_processing_options = true;
1644 else
1645 error (_("Unrecognized argument \"%s\""), arg);
1646 }
1647
1648 if (name == NULL)
1649 error (_("no symbol file name was specified"));
1650
1651 validate_readnow_readnever (flags);
1652
1653 /* Set SYMFILE_DEFER_BP_RESET because the proper displacement for a PIE
1654 (Position Independent Executable) main symbol file will only be
1655 computed by the solib_create_inferior_hook below. Without it,
1656 breakpoint_re_set would fail to insert the breakpoints with the zero
1657 displacement. */
1658 add_flags |= SYMFILE_DEFER_BP_RESET;
1659
1660 symbol_file_add_main_1 (name, add_flags, flags, offset);
1661
1662 solib_create_inferior_hook (from_tty);
1663
1664 /* Now it's safe to re-add the breakpoints. */
1665 breakpoint_re_set ();
1666 }
1667 }
1668
1669 /* Set the initial language. */
1670
1671 void
1672 set_initial_language (void)
1673 {
1674 if (language_mode == language_mode_manual)
1675 return;
1676 enum language lang = main_language ();
1677 /* Make C the default language. */
1678 enum language default_lang = language_c;
1679
1680 if (lang == language_unknown)
1681 {
1682 const char *name = main_name ();
1683 struct symbol *sym
1684 = lookup_symbol_in_language (name, NULL, VAR_DOMAIN, default_lang,
1685 NULL).symbol;
1686
1687 if (sym != NULL)
1688 lang = sym->language ();
1689 }
1690
1691 if (lang == language_unknown)
1692 {
1693 lang = default_lang;
1694 }
1695
1696 set_language (lang);
1697 expected_language = current_language; /* Don't warn the user. */
1698 }
1699
1700 /* Open the file specified by NAME and hand it off to BFD for
1701 preliminary analysis. Return a newly initialized bfd *, which
1702 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1703 absolute). In case of trouble, error() is called. */
1704
1705 gdb_bfd_ref_ptr
1706 symfile_bfd_open (const char *name)
1707 {
1708 int desc = -1;
1709
1710 gdb::unique_xmalloc_ptr<char> absolute_name;
1711 if (!is_target_filename (name))
1712 {
1713 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1714
1715 /* Look down path for it, allocate 2nd new malloc'd copy. */
1716 desc = openp (getenv ("PATH"),
1717 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1718 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1719 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1720 if (desc < 0)
1721 {
1722 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1723
1724 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1725 desc = openp (getenv ("PATH"),
1726 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1727 exename, O_RDONLY | O_BINARY, &absolute_name);
1728 }
1729 #endif
1730 if (desc < 0)
1731 perror_with_name (expanded_name.get ());
1732
1733 name = absolute_name.get ();
1734 }
1735
1736 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1737 if (sym_bfd == NULL)
1738 error (_("`%s': can't open to read symbols: %s."), name,
1739 bfd_errmsg (bfd_get_error ()));
1740
1741 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1742 bfd_set_cacheable (sym_bfd.get (), 1);
1743
1744 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1745 error (_("`%s': can't read symbols: %s."), name,
1746 bfd_errmsg (bfd_get_error ()));
1747
1748 return sym_bfd;
1749 }
1750
1751 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1752 the section was not found. */
1753
1754 int
1755 get_section_index (struct objfile *objfile, const char *section_name)
1756 {
1757 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1758
1759 if (sect)
1760 return sect->index;
1761 else
1762 return -1;
1763 }
1764
1765 /* Link SF into the global symtab_fns list.
1766 FLAVOUR is the file format that SF handles.
1767 Called on startup by the _initialize routine in each object file format
1768 reader, to register information about each format the reader is prepared
1769 to handle. */
1770
1771 void
1772 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1773 {
1774 symtab_fns.emplace_back (flavour, sf);
1775 }
1776
1777 /* Initialize OBJFILE to read symbols from its associated BFD. It
1778 either returns or calls error(). The result is an initialized
1779 struct sym_fns in the objfile structure, that contains cached
1780 information about the symbol file. */
1781
1782 static const struct sym_fns *
1783 find_sym_fns (bfd *abfd)
1784 {
1785 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1786
1787 if (our_flavour == bfd_target_srec_flavour
1788 || our_flavour == bfd_target_ihex_flavour
1789 || our_flavour == bfd_target_tekhex_flavour)
1790 return NULL; /* No symbols. */
1791
1792 for (const registered_sym_fns &rsf : symtab_fns)
1793 if (our_flavour == rsf.sym_flavour)
1794 return rsf.sym_fns;
1795
1796 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1797 bfd_get_target (abfd));
1798 }
1799 \f
1800
1801 /* This function runs the load command of our current target. */
1802
1803 static void
1804 load_command (const char *arg, int from_tty)
1805 {
1806 dont_repeat ();
1807
1808 /* The user might be reloading because the binary has changed. Take
1809 this opportunity to check. */
1810 reopen_exec_file ();
1811 reread_symbols ();
1812
1813 std::string temp;
1814 if (arg == NULL)
1815 {
1816 const char *parg, *prev;
1817
1818 arg = get_exec_file (1);
1819
1820 /* We may need to quote this string so buildargv can pull it
1821 apart. */
1822 prev = parg = arg;
1823 while ((parg = strpbrk (parg, "\\\"'\t ")))
1824 {
1825 temp.append (prev, parg - prev);
1826 prev = parg++;
1827 temp.push_back ('\\');
1828 }
1829 /* If we have not copied anything yet, then we didn't see a
1830 character to quote, and we can just leave ARG unchanged. */
1831 if (!temp.empty ())
1832 {
1833 temp.append (prev);
1834 arg = temp.c_str ();
1835 }
1836 }
1837
1838 target_load (arg, from_tty);
1839
1840 /* After re-loading the executable, we don't really know which
1841 overlays are mapped any more. */
1842 overlay_cache_invalid = 1;
1843 }
1844
1845 /* This version of "load" should be usable for any target. Currently
1846 it is just used for remote targets, not inftarg.c or core files,
1847 on the theory that only in that case is it useful.
1848
1849 Avoiding xmodem and the like seems like a win (a) because we don't have
1850 to worry about finding it, and (b) On VMS, fork() is very slow and so
1851 we don't want to run a subprocess. On the other hand, I'm not sure how
1852 performance compares. */
1853
1854 static int validate_download = 0;
1855
1856 /* Callback service function for generic_load (bfd_map_over_sections). */
1857
1858 static void
1859 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1860 {
1861 bfd_size_type *sum = (bfd_size_type *) data;
1862
1863 *sum += bfd_section_size (asec);
1864 }
1865
1866 /* Opaque data for load_progress. */
1867 struct load_progress_data
1868 {
1869 /* Cumulative data. */
1870 unsigned long write_count = 0;
1871 unsigned long data_count = 0;
1872 bfd_size_type total_size = 0;
1873 };
1874
1875 /* Opaque data for load_progress for a single section. */
1876 struct load_progress_section_data
1877 {
1878 load_progress_section_data (load_progress_data *cumulative_,
1879 const char *section_name_, ULONGEST section_size_,
1880 CORE_ADDR lma_, gdb_byte *buffer_)
1881 : cumulative (cumulative_), section_name (section_name_),
1882 section_size (section_size_), lma (lma_), buffer (buffer_)
1883 {}
1884
1885 struct load_progress_data *cumulative;
1886
1887 /* Per-section data. */
1888 const char *section_name;
1889 ULONGEST section_sent = 0;
1890 ULONGEST section_size;
1891 CORE_ADDR lma;
1892 gdb_byte *buffer;
1893 };
1894
1895 /* Opaque data for load_section_callback. */
1896 struct load_section_data
1897 {
1898 load_section_data (load_progress_data *progress_data_)
1899 : progress_data (progress_data_)
1900 {}
1901
1902 ~load_section_data ()
1903 {
1904 for (auto &&request : requests)
1905 {
1906 xfree (request.data);
1907 delete ((load_progress_section_data *) request.baton);
1908 }
1909 }
1910
1911 CORE_ADDR load_offset = 0;
1912 struct load_progress_data *progress_data;
1913 std::vector<struct memory_write_request> requests;
1914 };
1915
1916 /* Target write callback routine for progress reporting. */
1917
1918 static void
1919 load_progress (ULONGEST bytes, void *untyped_arg)
1920 {
1921 struct load_progress_section_data *args
1922 = (struct load_progress_section_data *) untyped_arg;
1923 struct load_progress_data *totals;
1924
1925 if (args == NULL)
1926 /* Writing padding data. No easy way to get at the cumulative
1927 stats, so just ignore this. */
1928 return;
1929
1930 totals = args->cumulative;
1931
1932 if (bytes == 0 && args->section_sent == 0)
1933 {
1934 /* The write is just starting. Let the user know we've started
1935 this section. */
1936 current_uiout->message ("Loading section %s, size %s lma %s\n",
1937 args->section_name,
1938 hex_string (args->section_size),
1939 paddress (target_gdbarch (), args->lma));
1940 return;
1941 }
1942
1943 if (validate_download)
1944 {
1945 /* Broken memories and broken monitors manifest themselves here
1946 when bring new computers to life. This doubles already slow
1947 downloads. */
1948 /* NOTE: cagney/1999-10-18: A more efficient implementation
1949 might add a verify_memory() method to the target vector and
1950 then use that. remote.c could implement that method using
1951 the ``qCRC'' packet. */
1952 gdb::byte_vector check (bytes);
1953
1954 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1955 error (_("Download verify read failed at %s"),
1956 paddress (target_gdbarch (), args->lma));
1957 if (memcmp (args->buffer, check.data (), bytes) != 0)
1958 error (_("Download verify compare failed at %s"),
1959 paddress (target_gdbarch (), args->lma));
1960 }
1961 totals->data_count += bytes;
1962 args->lma += bytes;
1963 args->buffer += bytes;
1964 totals->write_count += 1;
1965 args->section_sent += bytes;
1966 if (check_quit_flag ()
1967 || (deprecated_ui_load_progress_hook != NULL
1968 && deprecated_ui_load_progress_hook (args->section_name,
1969 args->section_sent)))
1970 error (_("Canceled the download"));
1971
1972 if (deprecated_show_load_progress != NULL)
1973 deprecated_show_load_progress (args->section_name,
1974 args->section_sent,
1975 args->section_size,
1976 totals->data_count,
1977 totals->total_size);
1978 }
1979
1980 /* Callback service function for generic_load (bfd_map_over_sections). */
1981
1982 static void
1983 load_section_callback (bfd *abfd, asection *asec, void *data)
1984 {
1985 struct load_section_data *args = (struct load_section_data *) data;
1986 bfd_size_type size = bfd_section_size (asec);
1987 const char *sect_name = bfd_section_name (asec);
1988
1989 if ((bfd_section_flags (asec) & SEC_LOAD) == 0)
1990 return;
1991
1992 if (size == 0)
1993 return;
1994
1995 ULONGEST begin = bfd_section_lma (asec) + args->load_offset;
1996 ULONGEST end = begin + size;
1997 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
1998 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1999
2000 load_progress_section_data *section_data
2001 = new load_progress_section_data (args->progress_data, sect_name, size,
2002 begin, buffer);
2003
2004 args->requests.emplace_back (begin, end, buffer, section_data);
2005 }
2006
2007 static void print_transfer_performance (struct ui_file *stream,
2008 unsigned long data_count,
2009 unsigned long write_count,
2010 std::chrono::steady_clock::duration d);
2011
2012 /* See symfile.h. */
2013
2014 void
2015 generic_load (const char *args, int from_tty)
2016 {
2017 struct load_progress_data total_progress;
2018 struct load_section_data cbdata (&total_progress);
2019 struct ui_out *uiout = current_uiout;
2020
2021 if (args == NULL)
2022 error_no_arg (_("file to load"));
2023
2024 gdb_argv argv (args);
2025
2026 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2027
2028 if (argv[1] != NULL)
2029 {
2030 const char *endptr;
2031
2032 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2033
2034 /* If the last word was not a valid number then
2035 treat it as a file name with spaces in. */
2036 if (argv[1] == endptr)
2037 error (_("Invalid download offset:%s."), argv[1]);
2038
2039 if (argv[2] != NULL)
2040 error (_("Too many parameters."));
2041 }
2042
2043 /* Open the file for loading. */
2044 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget));
2045 if (loadfile_bfd == NULL)
2046 perror_with_name (filename.get ());
2047
2048 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2049 {
2050 error (_("\"%s\" is not an object file: %s"), filename.get (),
2051 bfd_errmsg (bfd_get_error ()));
2052 }
2053
2054 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2055 (void *) &total_progress.total_size);
2056
2057 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2058
2059 using namespace std::chrono;
2060
2061 steady_clock::time_point start_time = steady_clock::now ();
2062
2063 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2064 load_progress) != 0)
2065 error (_("Load failed"));
2066
2067 steady_clock::time_point end_time = steady_clock::now ();
2068
2069 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
2070 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2071 uiout->text ("Start address ");
2072 uiout->field_core_addr ("address", target_gdbarch (), entry);
2073 uiout->text (", load size ");
2074 uiout->field_unsigned ("load-size", total_progress.data_count);
2075 uiout->text ("\n");
2076 regcache_write_pc (get_current_regcache (), entry);
2077
2078 /* Reset breakpoints, now that we have changed the load image. For
2079 instance, breakpoints may have been set (or reset, by
2080 post_create_inferior) while connected to the target but before we
2081 loaded the program. In that case, the prologue analyzer could
2082 have read instructions from the target to find the right
2083 breakpoint locations. Loading has changed the contents of that
2084 memory. */
2085
2086 breakpoint_re_set ();
2087
2088 print_transfer_performance (gdb_stdout, total_progress.data_count,
2089 total_progress.write_count,
2090 end_time - start_time);
2091 }
2092
2093 /* Report on STREAM the performance of a memory transfer operation,
2094 such as 'load'. DATA_COUNT is the number of bytes transferred.
2095 WRITE_COUNT is the number of separate write operations, or 0, if
2096 that information is not available. TIME is how long the operation
2097 lasted. */
2098
2099 static void
2100 print_transfer_performance (struct ui_file *stream,
2101 unsigned long data_count,
2102 unsigned long write_count,
2103 std::chrono::steady_clock::duration time)
2104 {
2105 using namespace std::chrono;
2106 struct ui_out *uiout = current_uiout;
2107
2108 milliseconds ms = duration_cast<milliseconds> (time);
2109
2110 uiout->text ("Transfer rate: ");
2111 if (ms.count () > 0)
2112 {
2113 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2114
2115 if (uiout->is_mi_like_p ())
2116 {
2117 uiout->field_unsigned ("transfer-rate", rate * 8);
2118 uiout->text (" bits/sec");
2119 }
2120 else if (rate < 1024)
2121 {
2122 uiout->field_unsigned ("transfer-rate", rate);
2123 uiout->text (" bytes/sec");
2124 }
2125 else
2126 {
2127 uiout->field_unsigned ("transfer-rate", rate / 1024);
2128 uiout->text (" KB/sec");
2129 }
2130 }
2131 else
2132 {
2133 uiout->field_unsigned ("transferred-bits", (data_count * 8));
2134 uiout->text (" bits in <1 sec");
2135 }
2136 if (write_count > 0)
2137 {
2138 uiout->text (", ");
2139 uiout->field_unsigned ("write-rate", data_count / write_count);
2140 uiout->text (" bytes/write");
2141 }
2142 uiout->text (".\n");
2143 }
2144
2145 /* Add an OFFSET to the start address of each section in OBJF, except
2146 sections that were specified in ADDRS. */
2147
2148 static void
2149 set_objfile_default_section_offset (struct objfile *objf,
2150 const section_addr_info &addrs,
2151 CORE_ADDR offset)
2152 {
2153 /* Add OFFSET to all sections by default. */
2154 section_offsets offsets (objf->section_offsets.size (), offset);
2155
2156 /* Create sorted lists of all sections in ADDRS as well as all
2157 sections in OBJF. */
2158
2159 std::vector<const struct other_sections *> addrs_sorted
2160 = addrs_section_sort (addrs);
2161
2162 section_addr_info objf_addrs
2163 = build_section_addr_info_from_objfile (objf);
2164 std::vector<const struct other_sections *> objf_addrs_sorted
2165 = addrs_section_sort (objf_addrs);
2166
2167 /* Walk the BFD section list, and if a matching section is found in
2168 ADDRS_SORTED_LIST, set its offset to zero to keep its address
2169 unchanged.
2170
2171 Note that both lists may contain multiple sections with the same
2172 name, and then the sections from ADDRS are matched in BFD order
2173 (thanks to sectindex). */
2174
2175 std::vector<const struct other_sections *>::iterator addrs_sorted_iter
2176 = addrs_sorted.begin ();
2177 for (const other_sections *objf_sect : objf_addrs_sorted)
2178 {
2179 const char *objf_name = addr_section_name (objf_sect->name.c_str ());
2180 int cmp = -1;
2181
2182 while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ())
2183 {
2184 const struct other_sections *sect = *addrs_sorted_iter;
2185 const char *sect_name = addr_section_name (sect->name.c_str ());
2186 cmp = strcmp (sect_name, objf_name);
2187 if (cmp <= 0)
2188 ++addrs_sorted_iter;
2189 }
2190
2191 if (cmp == 0)
2192 offsets[objf_sect->sectindex] = 0;
2193 }
2194
2195 /* Apply the new section offsets. */
2196 objfile_relocate (objf, offsets);
2197 }
2198
2199 /* This function allows the addition of incrementally linked object files.
2200 It does not modify any state in the target, only in the debugger. */
2201
2202 static void
2203 add_symbol_file_command (const char *args, int from_tty)
2204 {
2205 struct gdbarch *gdbarch = get_current_arch ();
2206 gdb::unique_xmalloc_ptr<char> filename;
2207 char *arg;
2208 int argcnt = 0;
2209 struct objfile *objf;
2210 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2211 symfile_add_flags add_flags = 0;
2212
2213 if (from_tty)
2214 add_flags |= SYMFILE_VERBOSE;
2215
2216 struct sect_opt
2217 {
2218 const char *name;
2219 const char *value;
2220 };
2221
2222 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2223 bool stop_processing_options = false;
2224 CORE_ADDR offset = 0;
2225
2226 dont_repeat ();
2227
2228 if (args == NULL)
2229 error (_("add-symbol-file takes a file name and an address"));
2230
2231 bool seen_addr = false;
2232 bool seen_offset = false;
2233 gdb_argv argv (args);
2234
2235 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2236 {
2237 if (stop_processing_options || *arg != '-')
2238 {
2239 if (filename == NULL)
2240 {
2241 /* First non-option argument is always the filename. */
2242 filename.reset (tilde_expand (arg));
2243 }
2244 else if (!seen_addr)
2245 {
2246 /* The second non-option argument is always the text
2247 address at which to load the program. */
2248 sect_opts[0].value = arg;
2249 seen_addr = true;
2250 }
2251 else
2252 error (_("Unrecognized argument \"%s\""), arg);
2253 }
2254 else if (strcmp (arg, "-readnow") == 0)
2255 flags |= OBJF_READNOW;
2256 else if (strcmp (arg, "-readnever") == 0)
2257 flags |= OBJF_READNEVER;
2258 else if (strcmp (arg, "-s") == 0)
2259 {
2260 if (argv[argcnt + 1] == NULL)
2261 error (_("Missing section name after \"-s\""));
2262 else if (argv[argcnt + 2] == NULL)
2263 error (_("Missing section address after \"-s\""));
2264
2265 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2266
2267 sect_opts.push_back (sect);
2268 argcnt += 2;
2269 }
2270 else if (strcmp (arg, "-o") == 0)
2271 {
2272 arg = argv[++argcnt];
2273 if (arg == NULL)
2274 error (_("Missing argument to -o"));
2275
2276 offset = parse_and_eval_address (arg);
2277 seen_offset = true;
2278 }
2279 else if (strcmp (arg, "--") == 0)
2280 stop_processing_options = true;
2281 else
2282 error (_("Unrecognized argument \"%s\""), arg);
2283 }
2284
2285 if (filename == NULL)
2286 error (_("You must provide a filename to be loaded."));
2287
2288 validate_readnow_readnever (flags);
2289
2290 /* Print the prompt for the query below. And save the arguments into
2291 a sect_addr_info structure to be passed around to other
2292 functions. We have to split this up into separate print
2293 statements because hex_string returns a local static
2294 string. */
2295
2296 printf_unfiltered (_("add symbol table from file \"%s\""),
2297 filename.get ());
2298 section_addr_info section_addrs;
2299 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2300 if (!seen_addr)
2301 ++it;
2302 for (; it != sect_opts.end (); ++it)
2303 {
2304 CORE_ADDR addr;
2305 const char *val = it->value;
2306 const char *sec = it->name;
2307
2308 if (section_addrs.empty ())
2309 printf_unfiltered (_(" at\n"));
2310 addr = parse_and_eval_address (val);
2311
2312 /* Here we store the section offsets in the order they were
2313 entered on the command line. Every array element is
2314 assigned an ascending section index to preserve the above
2315 order over an unstable sorting algorithm. This dummy
2316 index is not used for any other purpose.
2317 */
2318 section_addrs.emplace_back (addr, sec, section_addrs.size ());
2319 printf_filtered ("\t%s_addr = %s\n", sec,
2320 paddress (gdbarch, addr));
2321
2322 /* The object's sections are initialized when a
2323 call is made to build_objfile_section_table (objfile).
2324 This happens in reread_symbols.
2325 At this point, we don't know what file type this is,
2326 so we can't determine what section names are valid. */
2327 }
2328 if (seen_offset)
2329 printf_unfiltered (_("%s offset by %s\n"),
2330 (section_addrs.empty ()
2331 ? _(" with all sections")
2332 : _("with other sections")),
2333 paddress (gdbarch, offset));
2334 else if (section_addrs.empty ())
2335 printf_unfiltered ("\n");
2336
2337 if (from_tty && (!query ("%s", "")))
2338 error (_("Not confirmed."));
2339
2340 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2341 flags);
2342 if (!objfile_has_symbols (objf) && objf->per_bfd->minimal_symbol_count <= 0)
2343 warning (_("newly-added symbol file \"%s\" does not provide any symbols"),
2344 filename.get ());
2345
2346 if (seen_offset)
2347 set_objfile_default_section_offset (objf, section_addrs, offset);
2348
2349 add_target_sections_of_objfile (objf);
2350
2351 /* Getting new symbols may change our opinion about what is
2352 frameless. */
2353 reinit_frame_cache ();
2354 }
2355 \f
2356
2357 /* This function removes a symbol file that was added via add-symbol-file. */
2358
2359 static void
2360 remove_symbol_file_command (const char *args, int from_tty)
2361 {
2362 struct objfile *objf = NULL;
2363 struct program_space *pspace = current_program_space;
2364
2365 dont_repeat ();
2366
2367 if (args == NULL)
2368 error (_("remove-symbol-file: no symbol file provided"));
2369
2370 gdb_argv argv (args);
2371
2372 if (strcmp (argv[0], "-a") == 0)
2373 {
2374 /* Interpret the next argument as an address. */
2375 CORE_ADDR addr;
2376
2377 if (argv[1] == NULL)
2378 error (_("Missing address argument"));
2379
2380 if (argv[2] != NULL)
2381 error (_("Junk after %s"), argv[1]);
2382
2383 addr = parse_and_eval_address (argv[1]);
2384
2385 for (objfile *objfile : current_program_space->objfiles ())
2386 {
2387 if ((objfile->flags & OBJF_USERLOADED) != 0
2388 && (objfile->flags & OBJF_SHARED) != 0
2389 && objfile->pspace == pspace
2390 && is_addr_in_objfile (addr, objfile))
2391 {
2392 objf = objfile;
2393 break;
2394 }
2395 }
2396 }
2397 else if (argv[0] != NULL)
2398 {
2399 /* Interpret the current argument as a file name. */
2400
2401 if (argv[1] != NULL)
2402 error (_("Junk after %s"), argv[0]);
2403
2404 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2405
2406 for (objfile *objfile : current_program_space->objfiles ())
2407 {
2408 if ((objfile->flags & OBJF_USERLOADED) != 0
2409 && (objfile->flags & OBJF_SHARED) != 0
2410 && objfile->pspace == pspace
2411 && filename_cmp (filename.get (), objfile_name (objfile)) == 0)
2412 {
2413 objf = objfile;
2414 break;
2415 }
2416 }
2417 }
2418
2419 if (objf == NULL)
2420 error (_("No symbol file found"));
2421
2422 if (from_tty
2423 && !query (_("Remove symbol table from file \"%s\"? "),
2424 objfile_name (objf)))
2425 error (_("Not confirmed."));
2426
2427 objf->unlink ();
2428 clear_symtab_users (0);
2429 }
2430
2431 /* Re-read symbols if a symbol-file has changed. */
2432
2433 void
2434 reread_symbols (void)
2435 {
2436 long new_modtime;
2437 struct stat new_statbuf;
2438 int res;
2439 std::vector<struct objfile *> new_objfiles;
2440
2441 for (objfile *objfile : current_program_space->objfiles ())
2442 {
2443 if (objfile->obfd == NULL)
2444 continue;
2445
2446 /* Separate debug objfiles are handled in the main objfile. */
2447 if (objfile->separate_debug_objfile_backlink)
2448 continue;
2449
2450 /* If this object is from an archive (what you usually create with
2451 `ar', often called a `static library' on most systems, though
2452 a `shared library' on AIX is also an archive), then you should
2453 stat on the archive name, not member name. */
2454 if (objfile->obfd->my_archive)
2455 res = stat (bfd_get_filename (objfile->obfd->my_archive), &new_statbuf);
2456 else
2457 res = stat (objfile_name (objfile), &new_statbuf);
2458 if (res != 0)
2459 {
2460 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2461 printf_filtered (_("`%s' has disappeared; keeping its symbols.\n"),
2462 objfile_name (objfile));
2463 continue;
2464 }
2465 new_modtime = new_statbuf.st_mtime;
2466 if (new_modtime != objfile->mtime)
2467 {
2468 printf_filtered (_("`%s' has changed; re-reading symbols.\n"),
2469 objfile_name (objfile));
2470
2471 /* There are various functions like symbol_file_add,
2472 symfile_bfd_open, syms_from_objfile, etc., which might
2473 appear to do what we want. But they have various other
2474 effects which we *don't* want. So we just do stuff
2475 ourselves. We don't worry about mapped files (for one thing,
2476 any mapped file will be out of date). */
2477
2478 /* If we get an error, blow away this objfile (not sure if
2479 that is the correct response for things like shared
2480 libraries). */
2481 objfile_up objfile_holder (objfile);
2482
2483 /* We need to do this whenever any symbols go away. */
2484 clear_symtab_users_cleanup defer_clear_users (0);
2485
2486 if (exec_bfd != NULL
2487 && filename_cmp (bfd_get_filename (objfile->obfd),
2488 bfd_get_filename (exec_bfd)) == 0)
2489 {
2490 /* Reload EXEC_BFD without asking anything. */
2491
2492 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2493 }
2494
2495 /* Keep the calls order approx. the same as in free_objfile. */
2496
2497 /* Free the separate debug objfiles. It will be
2498 automatically recreated by sym_read. */
2499 free_objfile_separate_debug (objfile);
2500
2501 /* Clear the stale source cache. */
2502 forget_cached_source_info ();
2503
2504 /* Remove any references to this objfile in the global
2505 value lists. */
2506 preserve_values (objfile);
2507
2508 /* Nuke all the state that we will re-read. Much of the following
2509 code which sets things to NULL really is necessary to tell
2510 other parts of GDB that there is nothing currently there.
2511
2512 Try to keep the freeing order compatible with free_objfile. */
2513
2514 if (objfile->sf != NULL)
2515 {
2516 (*objfile->sf->sym_finish) (objfile);
2517 }
2518
2519 clear_objfile_data (objfile);
2520
2521 /* Clean up any state BFD has sitting around. */
2522 {
2523 gdb_bfd_ref_ptr obfd (objfile->obfd);
2524 const char *obfd_filename;
2525
2526 obfd_filename = bfd_get_filename (objfile->obfd);
2527 /* Open the new BFD before freeing the old one, so that
2528 the filename remains live. */
2529 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget));
2530 objfile->obfd = temp.release ();
2531 if (objfile->obfd == NULL)
2532 error (_("Can't open %s to read symbols."), obfd_filename);
2533 }
2534
2535 std::string original_name = objfile->original_name;
2536
2537 /* bfd_openr sets cacheable to true, which is what we want. */
2538 if (!bfd_check_format (objfile->obfd, bfd_object))
2539 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2540 bfd_errmsg (bfd_get_error ()));
2541
2542 objfile->reset_psymtabs ();
2543
2544 /* NB: after this call to obstack_free, objfiles_changed
2545 will need to be called (see discussion below). */
2546 obstack_free (&objfile->objfile_obstack, 0);
2547 objfile->sections = NULL;
2548 objfile->section_offsets.clear ();
2549 objfile->sect_index_bss = -1;
2550 objfile->sect_index_data = -1;
2551 objfile->sect_index_rodata = -1;
2552 objfile->sect_index_text = -1;
2553 objfile->compunit_symtabs = NULL;
2554 objfile->template_symbols = NULL;
2555 objfile->static_links.reset (nullptr);
2556
2557 /* obstack_init also initializes the obstack so it is
2558 empty. We could use obstack_specify_allocation but
2559 gdb_obstack.h specifies the alloc/dealloc functions. */
2560 obstack_init (&objfile->objfile_obstack);
2561
2562 /* set_objfile_per_bfd potentially allocates the per-bfd
2563 data on the objfile's obstack (if sharing data across
2564 multiple users is not possible), so it's important to
2565 do it *after* the obstack has been initialized. */
2566 set_objfile_per_bfd (objfile);
2567
2568 objfile->original_name
2569 = obstack_strdup (&objfile->objfile_obstack, original_name);
2570
2571 /* Reset the sym_fns pointer. The ELF reader can change it
2572 based on whether .gdb_index is present, and we need it to
2573 start over. PR symtab/15885 */
2574 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2575
2576 build_objfile_section_table (objfile);
2577
2578 /* What the hell is sym_new_init for, anyway? The concept of
2579 distinguishing between the main file and additional files
2580 in this way seems rather dubious. */
2581 if (objfile == symfile_objfile)
2582 {
2583 (*objfile->sf->sym_new_init) (objfile);
2584 }
2585
2586 (*objfile->sf->sym_init) (objfile);
2587 clear_complaints ();
2588
2589 objfile->flags &= ~OBJF_PSYMTABS_READ;
2590
2591 /* We are about to read new symbols and potentially also
2592 DWARF information. Some targets may want to pass addresses
2593 read from DWARF DIE's through an adjustment function before
2594 saving them, like MIPS, which may call into
2595 "find_pc_section". When called, that function will make
2596 use of per-objfile program space data.
2597
2598 Since we discarded our section information above, we have
2599 dangling pointers in the per-objfile program space data
2600 structure. Force GDB to update the section mapping
2601 information by letting it know the objfile has changed,
2602 making the dangling pointers point to correct data
2603 again. */
2604
2605 objfiles_changed ();
2606
2607 /* Recompute section offsets and section indices. */
2608 objfile->sf->sym_offsets (objfile, {});
2609
2610 read_symbols (objfile, 0);
2611
2612 if (!objfile_has_symbols (objfile))
2613 {
2614 wrap_here ("");
2615 printf_filtered (_("(no debugging symbols found)\n"));
2616 wrap_here ("");
2617 }
2618
2619 /* We're done reading the symbol file; finish off complaints. */
2620 clear_complaints ();
2621
2622 /* Getting new symbols may change our opinion about what is
2623 frameless. */
2624
2625 reinit_frame_cache ();
2626
2627 /* Discard cleanups as symbol reading was successful. */
2628 objfile_holder.release ();
2629 defer_clear_users.release ();
2630
2631 /* If the mtime has changed between the time we set new_modtime
2632 and now, we *want* this to be out of date, so don't call stat
2633 again now. */
2634 objfile->mtime = new_modtime;
2635 init_entry_point_info (objfile);
2636
2637 new_objfiles.push_back (objfile);
2638 }
2639 }
2640
2641 if (!new_objfiles.empty ())
2642 {
2643 clear_symtab_users (0);
2644
2645 /* clear_objfile_data for each objfile was called before freeing it and
2646 gdb::observers::new_objfile.notify (NULL) has been called by
2647 clear_symtab_users above. Notify the new files now. */
2648 for (auto iter : new_objfiles)
2649 gdb::observers::new_objfile.notify (iter);
2650
2651 /* At least one objfile has changed, so we can consider that
2652 the executable we're debugging has changed too. */
2653 gdb::observers::executable_changed.notify ();
2654 }
2655 }
2656 \f
2657
2658 struct filename_language
2659 {
2660 filename_language (const std::string &ext_, enum language lang_)
2661 : ext (ext_), lang (lang_)
2662 {}
2663
2664 std::string ext;
2665 enum language lang;
2666 };
2667
2668 static std::vector<filename_language> filename_language_table;
2669
2670 /* See symfile.h. */
2671
2672 void
2673 add_filename_language (const char *ext, enum language lang)
2674 {
2675 gdb_assert (ext != nullptr);
2676 filename_language_table.emplace_back (ext, lang);
2677 }
2678
2679 static char *ext_args;
2680 static void
2681 show_ext_args (struct ui_file *file, int from_tty,
2682 struct cmd_list_element *c, const char *value)
2683 {
2684 fprintf_filtered (file,
2685 _("Mapping between filename extension "
2686 "and source language is \"%s\".\n"),
2687 value);
2688 }
2689
2690 static void
2691 set_ext_lang_command (const char *args,
2692 int from_tty, struct cmd_list_element *e)
2693 {
2694 char *cp = ext_args;
2695 enum language lang;
2696
2697 /* First arg is filename extension, starting with '.' */
2698 if (*cp != '.')
2699 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2700
2701 /* Find end of first arg. */
2702 while (*cp && !isspace (*cp))
2703 cp++;
2704
2705 if (*cp == '\0')
2706 error (_("'%s': two arguments required -- "
2707 "filename extension and language"),
2708 ext_args);
2709
2710 /* Null-terminate first arg. */
2711 *cp++ = '\0';
2712
2713 /* Find beginning of second arg, which should be a source language. */
2714 cp = skip_spaces (cp);
2715
2716 if (*cp == '\0')
2717 error (_("'%s': two arguments required -- "
2718 "filename extension and language"),
2719 ext_args);
2720
2721 /* Lookup the language from among those we know. */
2722 lang = language_enum (cp);
2723
2724 auto it = filename_language_table.begin ();
2725 /* Now lookup the filename extension: do we already know it? */
2726 for (; it != filename_language_table.end (); it++)
2727 {
2728 if (it->ext == ext_args)
2729 break;
2730 }
2731
2732 if (it == filename_language_table.end ())
2733 {
2734 /* New file extension. */
2735 add_filename_language (ext_args, lang);
2736 }
2737 else
2738 {
2739 /* Redefining a previously known filename extension. */
2740
2741 /* if (from_tty) */
2742 /* query ("Really make files of type %s '%s'?", */
2743 /* ext_args, language_str (lang)); */
2744
2745 it->lang = lang;
2746 }
2747 }
2748
2749 static void
2750 info_ext_lang_command (const char *args, int from_tty)
2751 {
2752 printf_filtered (_("Filename extensions and the languages they represent:"));
2753 printf_filtered ("\n\n");
2754 for (const filename_language &entry : filename_language_table)
2755 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2756 language_str (entry.lang));
2757 }
2758
2759 enum language
2760 deduce_language_from_filename (const char *filename)
2761 {
2762 const char *cp;
2763
2764 if (filename != NULL)
2765 if ((cp = strrchr (filename, '.')) != NULL)
2766 {
2767 for (const filename_language &entry : filename_language_table)
2768 if (entry.ext == cp)
2769 return entry.lang;
2770 }
2771
2772 return language_unknown;
2773 }
2774 \f
2775 /* Allocate and initialize a new symbol table.
2776 CUST is from the result of allocate_compunit_symtab. */
2777
2778 struct symtab *
2779 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2780 {
2781 struct objfile *objfile = cust->objfile;
2782 struct symtab *symtab
2783 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2784
2785 symtab->filename = objfile->intern (filename);
2786 symtab->fullname = NULL;
2787 symtab->language = deduce_language_from_filename (filename);
2788
2789 /* This can be very verbose with lots of headers.
2790 Only print at higher debug levels. */
2791 if (symtab_create_debug >= 2)
2792 {
2793 /* Be a bit clever with debugging messages, and don't print objfile
2794 every time, only when it changes. */
2795 static char *last_objfile_name = NULL;
2796
2797 if (last_objfile_name == NULL
2798 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2799 {
2800 xfree (last_objfile_name);
2801 last_objfile_name = xstrdup (objfile_name (objfile));
2802 fprintf_filtered (gdb_stdlog,
2803 "Creating one or more symtabs for objfile %s ...\n",
2804 last_objfile_name);
2805 }
2806 fprintf_filtered (gdb_stdlog,
2807 "Created symtab %s for module %s.\n",
2808 host_address_to_string (symtab), filename);
2809 }
2810
2811 /* Add it to CUST's list of symtabs. */
2812 if (cust->filetabs == NULL)
2813 {
2814 cust->filetabs = symtab;
2815 cust->last_filetab = symtab;
2816 }
2817 else
2818 {
2819 cust->last_filetab->next = symtab;
2820 cust->last_filetab = symtab;
2821 }
2822
2823 /* Backlink to the containing compunit symtab. */
2824 symtab->compunit_symtab = cust;
2825
2826 return symtab;
2827 }
2828
2829 /* Allocate and initialize a new compunit.
2830 NAME is the name of the main source file, if there is one, or some
2831 descriptive text if there are no source files. */
2832
2833 struct compunit_symtab *
2834 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2835 {
2836 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2837 struct compunit_symtab);
2838 const char *saved_name;
2839
2840 cu->objfile = objfile;
2841
2842 /* The name we record here is only for display/debugging purposes.
2843 Just save the basename to avoid path issues (too long for display,
2844 relative vs absolute, etc.). */
2845 saved_name = lbasename (name);
2846 cu->name = obstack_strdup (&objfile->objfile_obstack, saved_name);
2847
2848 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2849
2850 if (symtab_create_debug)
2851 {
2852 fprintf_filtered (gdb_stdlog,
2853 "Created compunit symtab %s for %s.\n",
2854 host_address_to_string (cu),
2855 cu->name);
2856 }
2857
2858 return cu;
2859 }
2860
2861 /* Hook CU to the objfile it comes from. */
2862
2863 void
2864 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2865 {
2866 cu->next = cu->objfile->compunit_symtabs;
2867 cu->objfile->compunit_symtabs = cu;
2868 }
2869 \f
2870
2871 /* Reset all data structures in gdb which may contain references to
2872 symbol table data. */
2873
2874 void
2875 clear_symtab_users (symfile_add_flags add_flags)
2876 {
2877 /* Someday, we should do better than this, by only blowing away
2878 the things that really need to be blown. */
2879
2880 /* Clear the "current" symtab first, because it is no longer valid.
2881 breakpoint_re_set may try to access the current symtab. */
2882 clear_current_source_symtab_and_line ();
2883
2884 clear_displays ();
2885 clear_last_displayed_sal ();
2886 clear_pc_function_cache ();
2887 gdb::observers::new_objfile.notify (NULL);
2888
2889 /* Varobj may refer to old symbols, perform a cleanup. */
2890 varobj_invalidate ();
2891
2892 /* Now that the various caches have been cleared, we can re_set
2893 our breakpoints without risking it using stale data. */
2894 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2895 breakpoint_re_set ();
2896 }
2897 \f
2898 /* OVERLAYS:
2899 The following code implements an abstraction for debugging overlay sections.
2900
2901 The target model is as follows:
2902 1) The gnu linker will permit multiple sections to be mapped into the
2903 same VMA, each with its own unique LMA (or load address).
2904 2) It is assumed that some runtime mechanism exists for mapping the
2905 sections, one by one, from the load address into the VMA address.
2906 3) This code provides a mechanism for gdb to keep track of which
2907 sections should be considered to be mapped from the VMA to the LMA.
2908 This information is used for symbol lookup, and memory read/write.
2909 For instance, if a section has been mapped then its contents
2910 should be read from the VMA, otherwise from the LMA.
2911
2912 Two levels of debugger support for overlays are available. One is
2913 "manual", in which the debugger relies on the user to tell it which
2914 overlays are currently mapped. This level of support is
2915 implemented entirely in the core debugger, and the information about
2916 whether a section is mapped is kept in the objfile->obj_section table.
2917
2918 The second level of support is "automatic", and is only available if
2919 the target-specific code provides functionality to read the target's
2920 overlay mapping table, and translate its contents for the debugger
2921 (by updating the mapped state information in the obj_section tables).
2922
2923 The interface is as follows:
2924 User commands:
2925 overlay map <name> -- tell gdb to consider this section mapped
2926 overlay unmap <name> -- tell gdb to consider this section unmapped
2927 overlay list -- list the sections that GDB thinks are mapped
2928 overlay read-target -- get the target's state of what's mapped
2929 overlay off/manual/auto -- set overlay debugging state
2930 Functional interface:
2931 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2932 section, return that section.
2933 find_pc_overlay(pc): find any overlay section that contains
2934 the pc, either in its VMA or its LMA
2935 section_is_mapped(sect): true if overlay is marked as mapped
2936 section_is_overlay(sect): true if section's VMA != LMA
2937 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2938 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2939 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2940 overlay_mapped_address(...): map an address from section's LMA to VMA
2941 overlay_unmapped_address(...): map an address from section's VMA to LMA
2942 symbol_overlayed_address(...): Return a "current" address for symbol:
2943 either in VMA or LMA depending on whether
2944 the symbol's section is currently mapped. */
2945
2946 /* Overlay debugging state: */
2947
2948 enum overlay_debugging_state overlay_debugging = ovly_off;
2949 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2950
2951 /* Function: section_is_overlay (SECTION)
2952 Returns true if SECTION has VMA not equal to LMA, ie.
2953 SECTION is loaded at an address different from where it will "run". */
2954
2955 int
2956 section_is_overlay (struct obj_section *section)
2957 {
2958 if (overlay_debugging && section)
2959 {
2960 asection *bfd_section = section->the_bfd_section;
2961
2962 if (bfd_section_lma (bfd_section) != 0
2963 && bfd_section_lma (bfd_section) != bfd_section_vma (bfd_section))
2964 return 1;
2965 }
2966
2967 return 0;
2968 }
2969
2970 /* Function: overlay_invalidate_all (void)
2971 Invalidate the mapped state of all overlay sections (mark it as stale). */
2972
2973 static void
2974 overlay_invalidate_all (void)
2975 {
2976 struct obj_section *sect;
2977
2978 for (objfile *objfile : current_program_space->objfiles ())
2979 ALL_OBJFILE_OSECTIONS (objfile, sect)
2980 if (section_is_overlay (sect))
2981 sect->ovly_mapped = -1;
2982 }
2983
2984 /* Function: section_is_mapped (SECTION)
2985 Returns true if section is an overlay, and is currently mapped.
2986
2987 Access to the ovly_mapped flag is restricted to this function, so
2988 that we can do automatic update. If the global flag
2989 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2990 overlay_invalidate_all. If the mapped state of the particular
2991 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2992
2993 int
2994 section_is_mapped (struct obj_section *osect)
2995 {
2996 struct gdbarch *gdbarch;
2997
2998 if (osect == 0 || !section_is_overlay (osect))
2999 return 0;
3000
3001 switch (overlay_debugging)
3002 {
3003 default:
3004 case ovly_off:
3005 return 0; /* overlay debugging off */
3006 case ovly_auto: /* overlay debugging automatic */
3007 /* Unles there is a gdbarch_overlay_update function,
3008 there's really nothing useful to do here (can't really go auto). */
3009 gdbarch = osect->objfile->arch ();
3010 if (gdbarch_overlay_update_p (gdbarch))
3011 {
3012 if (overlay_cache_invalid)
3013 {
3014 overlay_invalidate_all ();
3015 overlay_cache_invalid = 0;
3016 }
3017 if (osect->ovly_mapped == -1)
3018 gdbarch_overlay_update (gdbarch, osect);
3019 }
3020 /* fall thru */
3021 case ovly_on: /* overlay debugging manual */
3022 return osect->ovly_mapped == 1;
3023 }
3024 }
3025
3026 /* Function: pc_in_unmapped_range
3027 If PC falls into the lma range of SECTION, return true, else false. */
3028
3029 CORE_ADDR
3030 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3031 {
3032 if (section_is_overlay (section))
3033 {
3034 asection *bfd_section = section->the_bfd_section;
3035
3036 /* We assume the LMA is relocated by the same offset as the VMA. */
3037 bfd_vma size = bfd_section_size (bfd_section);
3038 CORE_ADDR offset = obj_section_offset (section);
3039
3040 if (bfd_section_lma (bfd_section) + offset <= pc
3041 && pc < bfd_section_lma (bfd_section) + offset + size)
3042 return 1;
3043 }
3044
3045 return 0;
3046 }
3047
3048 /* Function: pc_in_mapped_range
3049 If PC falls into the vma range of SECTION, return true, else false. */
3050
3051 CORE_ADDR
3052 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3053 {
3054 if (section_is_overlay (section))
3055 {
3056 if (obj_section_addr (section) <= pc
3057 && pc < obj_section_endaddr (section))
3058 return 1;
3059 }
3060
3061 return 0;
3062 }
3063
3064 /* Return true if the mapped ranges of sections A and B overlap, false
3065 otherwise. */
3066
3067 static int
3068 sections_overlap (struct obj_section *a, struct obj_section *b)
3069 {
3070 CORE_ADDR a_start = obj_section_addr (a);
3071 CORE_ADDR a_end = obj_section_endaddr (a);
3072 CORE_ADDR b_start = obj_section_addr (b);
3073 CORE_ADDR b_end = obj_section_endaddr (b);
3074
3075 return (a_start < b_end && b_start < a_end);
3076 }
3077
3078 /* Function: overlay_unmapped_address (PC, SECTION)
3079 Returns the address corresponding to PC in the unmapped (load) range.
3080 May be the same as PC. */
3081
3082 CORE_ADDR
3083 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3084 {
3085 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3086 {
3087 asection *bfd_section = section->the_bfd_section;
3088
3089 return (pc + bfd_section_lma (bfd_section)
3090 - bfd_section_vma (bfd_section));
3091 }
3092
3093 return pc;
3094 }
3095
3096 /* Function: overlay_mapped_address (PC, SECTION)
3097 Returns the address corresponding to PC in the mapped (runtime) range.
3098 May be the same as PC. */
3099
3100 CORE_ADDR
3101 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3102 {
3103 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3104 {
3105 asection *bfd_section = section->the_bfd_section;
3106
3107 return (pc + bfd_section_vma (bfd_section)
3108 - bfd_section_lma (bfd_section));
3109 }
3110
3111 return pc;
3112 }
3113
3114 /* Function: symbol_overlayed_address
3115 Return one of two addresses (relative to the VMA or to the LMA),
3116 depending on whether the section is mapped or not. */
3117
3118 CORE_ADDR
3119 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3120 {
3121 if (overlay_debugging)
3122 {
3123 /* If the symbol has no section, just return its regular address. */
3124 if (section == 0)
3125 return address;
3126 /* If the symbol's section is not an overlay, just return its
3127 address. */
3128 if (!section_is_overlay (section))
3129 return address;
3130 /* If the symbol's section is mapped, just return its address. */
3131 if (section_is_mapped (section))
3132 return address;
3133 /*
3134 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3135 * then return its LOADED address rather than its vma address!!
3136 */
3137 return overlay_unmapped_address (address, section);
3138 }
3139 return address;
3140 }
3141
3142 /* Function: find_pc_overlay (PC)
3143 Return the best-match overlay section for PC:
3144 If PC matches a mapped overlay section's VMA, return that section.
3145 Else if PC matches an unmapped section's VMA, return that section.
3146 Else if PC matches an unmapped section's LMA, return that section. */
3147
3148 struct obj_section *
3149 find_pc_overlay (CORE_ADDR pc)
3150 {
3151 struct obj_section *osect, *best_match = NULL;
3152
3153 if (overlay_debugging)
3154 {
3155 for (objfile *objfile : current_program_space->objfiles ())
3156 ALL_OBJFILE_OSECTIONS (objfile, osect)
3157 if (section_is_overlay (osect))
3158 {
3159 if (pc_in_mapped_range (pc, osect))
3160 {
3161 if (section_is_mapped (osect))
3162 return osect;
3163 else
3164 best_match = osect;
3165 }
3166 else if (pc_in_unmapped_range (pc, osect))
3167 best_match = osect;
3168 }
3169 }
3170 return best_match;
3171 }
3172
3173 /* Function: find_pc_mapped_section (PC)
3174 If PC falls into the VMA address range of an overlay section that is
3175 currently marked as MAPPED, return that section. Else return NULL. */
3176
3177 struct obj_section *
3178 find_pc_mapped_section (CORE_ADDR pc)
3179 {
3180 struct obj_section *osect;
3181
3182 if (overlay_debugging)
3183 {
3184 for (objfile *objfile : current_program_space->objfiles ())
3185 ALL_OBJFILE_OSECTIONS (objfile, osect)
3186 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3187 return osect;
3188 }
3189
3190 return NULL;
3191 }
3192
3193 /* Function: list_overlays_command
3194 Print a list of mapped sections and their PC ranges. */
3195
3196 static void
3197 list_overlays_command (const char *args, int from_tty)
3198 {
3199 int nmapped = 0;
3200 struct obj_section *osect;
3201
3202 if (overlay_debugging)
3203 {
3204 for (objfile *objfile : current_program_space->objfiles ())
3205 ALL_OBJFILE_OSECTIONS (objfile, osect)
3206 if (section_is_mapped (osect))
3207 {
3208 struct gdbarch *gdbarch = objfile->arch ();
3209 const char *name;
3210 bfd_vma lma, vma;
3211 int size;
3212
3213 vma = bfd_section_vma (osect->the_bfd_section);
3214 lma = bfd_section_lma (osect->the_bfd_section);
3215 size = bfd_section_size (osect->the_bfd_section);
3216 name = bfd_section_name (osect->the_bfd_section);
3217
3218 printf_filtered ("Section %s, loaded at ", name);
3219 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3220 puts_filtered (" - ");
3221 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3222 printf_filtered (", mapped at ");
3223 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3224 puts_filtered (" - ");
3225 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3226 puts_filtered ("\n");
3227
3228 nmapped++;
3229 }
3230 }
3231 if (nmapped == 0)
3232 printf_filtered (_("No sections are mapped.\n"));
3233 }
3234
3235 /* Function: map_overlay_command
3236 Mark the named section as mapped (ie. residing at its VMA address). */
3237
3238 static void
3239 map_overlay_command (const char *args, int from_tty)
3240 {
3241 struct obj_section *sec, *sec2;
3242
3243 if (!overlay_debugging)
3244 error (_("Overlay debugging not enabled. Use "
3245 "either the 'overlay auto' or\n"
3246 "the 'overlay manual' command."));
3247
3248 if (args == 0 || *args == 0)
3249 error (_("Argument required: name of an overlay section"));
3250
3251 /* First, find a section matching the user supplied argument. */
3252 for (objfile *obj_file : current_program_space->objfiles ())
3253 ALL_OBJFILE_OSECTIONS (obj_file, sec)
3254 if (!strcmp (bfd_section_name (sec->the_bfd_section), args))
3255 {
3256 /* Now, check to see if the section is an overlay. */
3257 if (!section_is_overlay (sec))
3258 continue; /* not an overlay section */
3259
3260 /* Mark the overlay as "mapped". */
3261 sec->ovly_mapped = 1;
3262
3263 /* Next, make a pass and unmap any sections that are
3264 overlapped by this new section: */
3265 for (objfile *objfile2 : current_program_space->objfiles ())
3266 ALL_OBJFILE_OSECTIONS (objfile2, sec2)
3267 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec,
3268 sec2))
3269 {
3270 if (info_verbose)
3271 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3272 bfd_section_name (sec2->the_bfd_section));
3273 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3274 }
3275 return;
3276 }
3277 error (_("No overlay section called %s"), args);
3278 }
3279
3280 /* Function: unmap_overlay_command
3281 Mark the overlay section as unmapped
3282 (ie. resident in its LMA address range, rather than the VMA range). */
3283
3284 static void
3285 unmap_overlay_command (const char *args, int from_tty)
3286 {
3287 struct obj_section *sec = NULL;
3288
3289 if (!overlay_debugging)
3290 error (_("Overlay debugging not enabled. "
3291 "Use either the 'overlay auto' or\n"
3292 "the 'overlay manual' command."));
3293
3294 if (args == 0 || *args == 0)
3295 error (_("Argument required: name of an overlay section"));
3296
3297 /* First, find a section matching the user supplied argument. */
3298 for (objfile *objfile : current_program_space->objfiles ())
3299 ALL_OBJFILE_OSECTIONS (objfile, sec)
3300 if (!strcmp (bfd_section_name (sec->the_bfd_section), args))
3301 {
3302 if (!sec->ovly_mapped)
3303 error (_("Section %s is not mapped"), args);
3304 sec->ovly_mapped = 0;
3305 return;
3306 }
3307 error (_("No overlay section called %s"), args);
3308 }
3309
3310 /* Function: overlay_auto_command
3311 A utility command to turn on overlay debugging.
3312 Possibly this should be done via a set/show command. */
3313
3314 static void
3315 overlay_auto_command (const char *args, int from_tty)
3316 {
3317 overlay_debugging = ovly_auto;
3318 enable_overlay_breakpoints ();
3319 if (info_verbose)
3320 printf_unfiltered (_("Automatic overlay debugging enabled."));
3321 }
3322
3323 /* Function: overlay_manual_command
3324 A utility command to turn on overlay debugging.
3325 Possibly this should be done via a set/show command. */
3326
3327 static void
3328 overlay_manual_command (const char *args, int from_tty)
3329 {
3330 overlay_debugging = ovly_on;
3331 disable_overlay_breakpoints ();
3332 if (info_verbose)
3333 printf_unfiltered (_("Overlay debugging enabled."));
3334 }
3335
3336 /* Function: overlay_off_command
3337 A utility command to turn on overlay debugging.
3338 Possibly this should be done via a set/show command. */
3339
3340 static void
3341 overlay_off_command (const char *args, int from_tty)
3342 {
3343 overlay_debugging = ovly_off;
3344 disable_overlay_breakpoints ();
3345 if (info_verbose)
3346 printf_unfiltered (_("Overlay debugging disabled."));
3347 }
3348
3349 static void
3350 overlay_load_command (const char *args, int from_tty)
3351 {
3352 struct gdbarch *gdbarch = get_current_arch ();
3353
3354 if (gdbarch_overlay_update_p (gdbarch))
3355 gdbarch_overlay_update (gdbarch, NULL);
3356 else
3357 error (_("This target does not know how to read its overlay state."));
3358 }
3359
3360 /* Command list chain containing all defined "overlay" subcommands. */
3361 static struct cmd_list_element *overlaylist;
3362
3363 /* Target Overlays for the "Simplest" overlay manager:
3364
3365 This is GDB's default target overlay layer. It works with the
3366 minimal overlay manager supplied as an example by Cygnus. The
3367 entry point is via a function pointer "gdbarch_overlay_update",
3368 so targets that use a different runtime overlay manager can
3369 substitute their own overlay_update function and take over the
3370 function pointer.
3371
3372 The overlay_update function pokes around in the target's data structures
3373 to see what overlays are mapped, and updates GDB's overlay mapping with
3374 this information.
3375
3376 In this simple implementation, the target data structures are as follows:
3377 unsigned _novlys; /# number of overlay sections #/
3378 unsigned _ovly_table[_novlys][4] = {
3379 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3380 {..., ..., ..., ...},
3381 }
3382 unsigned _novly_regions; /# number of overlay regions #/
3383 unsigned _ovly_region_table[_novly_regions][3] = {
3384 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3385 {..., ..., ...},
3386 }
3387 These functions will attempt to update GDB's mappedness state in the
3388 symbol section table, based on the target's mappedness state.
3389
3390 To do this, we keep a cached copy of the target's _ovly_table, and
3391 attempt to detect when the cached copy is invalidated. The main
3392 entry point is "simple_overlay_update(SECT), which looks up SECT in
3393 the cached table and re-reads only the entry for that section from
3394 the target (whenever possible). */
3395
3396 /* Cached, dynamically allocated copies of the target data structures: */
3397 static unsigned (*cache_ovly_table)[4] = 0;
3398 static unsigned cache_novlys = 0;
3399 static CORE_ADDR cache_ovly_table_base = 0;
3400 enum ovly_index
3401 {
3402 VMA, OSIZE, LMA, MAPPED
3403 };
3404
3405 /* Throw away the cached copy of _ovly_table. */
3406
3407 static void
3408 simple_free_overlay_table (void)
3409 {
3410 xfree (cache_ovly_table);
3411 cache_novlys = 0;
3412 cache_ovly_table = NULL;
3413 cache_ovly_table_base = 0;
3414 }
3415
3416 /* Read an array of ints of size SIZE from the target into a local buffer.
3417 Convert to host order. int LEN is number of ints. */
3418
3419 static void
3420 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3421 int len, int size, enum bfd_endian byte_order)
3422 {
3423 /* FIXME (alloca): Not safe if array is very large. */
3424 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3425 int i;
3426
3427 read_memory (memaddr, buf, len * size);
3428 for (i = 0; i < len; i++)
3429 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3430 }
3431
3432 /* Find and grab a copy of the target _ovly_table
3433 (and _novlys, which is needed for the table's size). */
3434
3435 static int
3436 simple_read_overlay_table (void)
3437 {
3438 struct bound_minimal_symbol novlys_msym;
3439 struct bound_minimal_symbol ovly_table_msym;
3440 struct gdbarch *gdbarch;
3441 int word_size;
3442 enum bfd_endian byte_order;
3443
3444 simple_free_overlay_table ();
3445 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3446 if (! novlys_msym.minsym)
3447 {
3448 error (_("Error reading inferior's overlay table: "
3449 "couldn't find `_novlys' variable\n"
3450 "in inferior. Use `overlay manual' mode."));
3451 return 0;
3452 }
3453
3454 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3455 if (! ovly_table_msym.minsym)
3456 {
3457 error (_("Error reading inferior's overlay table: couldn't find "
3458 "`_ovly_table' array\n"
3459 "in inferior. Use `overlay manual' mode."));
3460 return 0;
3461 }
3462
3463 gdbarch = ovly_table_msym.objfile->arch ();
3464 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3465 byte_order = gdbarch_byte_order (gdbarch);
3466
3467 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3468 4, byte_order);
3469 cache_ovly_table
3470 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3471 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3472 read_target_long_array (cache_ovly_table_base,
3473 (unsigned int *) cache_ovly_table,
3474 cache_novlys * 4, word_size, byte_order);
3475
3476 return 1; /* SUCCESS */
3477 }
3478
3479 /* Function: simple_overlay_update_1
3480 A helper function for simple_overlay_update. Assuming a cached copy
3481 of _ovly_table exists, look through it to find an entry whose vma,
3482 lma and size match those of OSECT. Re-read the entry and make sure
3483 it still matches OSECT (else the table may no longer be valid).
3484 Set OSECT's mapped state to match the entry. Return: 1 for
3485 success, 0 for failure. */
3486
3487 static int
3488 simple_overlay_update_1 (struct obj_section *osect)
3489 {
3490 int i;
3491 asection *bsect = osect->the_bfd_section;
3492 struct gdbarch *gdbarch = osect->objfile->arch ();
3493 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3494 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3495
3496 for (i = 0; i < cache_novlys; i++)
3497 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3498 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3499 {
3500 read_target_long_array (cache_ovly_table_base + i * word_size,
3501 (unsigned int *) cache_ovly_table[i],
3502 4, word_size, byte_order);
3503 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3504 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3505 {
3506 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3507 return 1;
3508 }
3509 else /* Warning! Warning! Target's ovly table has changed! */
3510 return 0;
3511 }
3512 return 0;
3513 }
3514
3515 /* Function: simple_overlay_update
3516 If OSECT is NULL, then update all sections' mapped state
3517 (after re-reading the entire target _ovly_table).
3518 If OSECT is non-NULL, then try to find a matching entry in the
3519 cached ovly_table and update only OSECT's mapped state.
3520 If a cached entry can't be found or the cache isn't valid, then
3521 re-read the entire cache, and go ahead and update all sections. */
3522
3523 void
3524 simple_overlay_update (struct obj_section *osect)
3525 {
3526 /* Were we given an osect to look up? NULL means do all of them. */
3527 if (osect)
3528 /* Have we got a cached copy of the target's overlay table? */
3529 if (cache_ovly_table != NULL)
3530 {
3531 /* Does its cached location match what's currently in the
3532 symtab? */
3533 struct bound_minimal_symbol minsym
3534 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3535
3536 if (minsym.minsym == NULL)
3537 error (_("Error reading inferior's overlay table: couldn't "
3538 "find `_ovly_table' array\n"
3539 "in inferior. Use `overlay manual' mode."));
3540
3541 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3542 /* Then go ahead and try to look up this single section in
3543 the cache. */
3544 if (simple_overlay_update_1 (osect))
3545 /* Found it! We're done. */
3546 return;
3547 }
3548
3549 /* Cached table no good: need to read the entire table anew.
3550 Or else we want all the sections, in which case it's actually
3551 more efficient to read the whole table in one block anyway. */
3552
3553 if (! simple_read_overlay_table ())
3554 return;
3555
3556 /* Now may as well update all sections, even if only one was requested. */
3557 for (objfile *objfile : current_program_space->objfiles ())
3558 ALL_OBJFILE_OSECTIONS (objfile, osect)
3559 if (section_is_overlay (osect))
3560 {
3561 int i;
3562 asection *bsect = osect->the_bfd_section;
3563
3564 for (i = 0; i < cache_novlys; i++)
3565 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3566 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3567 { /* obj_section matches i'th entry in ovly_table. */
3568 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3569 break; /* finished with inner for loop: break out. */
3570 }
3571 }
3572 }
3573
3574 /* Set the output sections and output offsets for section SECTP in
3575 ABFD. The relocation code in BFD will read these offsets, so we
3576 need to be sure they're initialized. We map each section to itself,
3577 with no offset; this means that SECTP->vma will be honored. */
3578
3579 static void
3580 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3581 {
3582 sectp->output_section = sectp;
3583 sectp->output_offset = 0;
3584 }
3585
3586 /* Default implementation for sym_relocate. */
3587
3588 bfd_byte *
3589 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3590 bfd_byte *buf)
3591 {
3592 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3593 DWO file. */
3594 bfd *abfd = sectp->owner;
3595
3596 /* We're only interested in sections with relocation
3597 information. */
3598 if ((sectp->flags & SEC_RELOC) == 0)
3599 return NULL;
3600
3601 /* We will handle section offsets properly elsewhere, so relocate as if
3602 all sections begin at 0. */
3603 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3604
3605 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3606 }
3607
3608 /* Relocate the contents of a debug section SECTP in ABFD. The
3609 contents are stored in BUF if it is non-NULL, or returned in a
3610 malloc'd buffer otherwise.
3611
3612 For some platforms and debug info formats, shared libraries contain
3613 relocations against the debug sections (particularly for DWARF-2;
3614 one affected platform is PowerPC GNU/Linux, although it depends on
3615 the version of the linker in use). Also, ELF object files naturally
3616 have unresolved relocations for their debug sections. We need to apply
3617 the relocations in order to get the locations of symbols correct.
3618 Another example that may require relocation processing, is the
3619 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3620 debug section. */
3621
3622 bfd_byte *
3623 symfile_relocate_debug_section (struct objfile *objfile,
3624 asection *sectp, bfd_byte *buf)
3625 {
3626 gdb_assert (objfile->sf->sym_relocate);
3627
3628 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3629 }
3630
3631 symfile_segment_data_up
3632 get_symfile_segment_data (bfd *abfd)
3633 {
3634 const struct sym_fns *sf = find_sym_fns (abfd);
3635
3636 if (sf == NULL)
3637 return NULL;
3638
3639 return sf->sym_segments (abfd);
3640 }
3641
3642 /* Given:
3643 - DATA, containing segment addresses from the object file ABFD, and
3644 the mapping from ABFD's sections onto the segments that own them,
3645 and
3646 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3647 segment addresses reported by the target,
3648 store the appropriate offsets for each section in OFFSETS.
3649
3650 If there are fewer entries in SEGMENT_BASES than there are segments
3651 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3652
3653 If there are more entries, then ignore the extra. The target may
3654 not be able to distinguish between an empty data segment and a
3655 missing data segment; a missing text segment is less plausible. */
3656
3657 int
3658 symfile_map_offsets_to_segments (bfd *abfd,
3659 const struct symfile_segment_data *data,
3660 section_offsets &offsets,
3661 int num_segment_bases,
3662 const CORE_ADDR *segment_bases)
3663 {
3664 int i;
3665 asection *sect;
3666
3667 /* It doesn't make sense to call this function unless you have some
3668 segment base addresses. */
3669 gdb_assert (num_segment_bases > 0);
3670
3671 /* If we do not have segment mappings for the object file, we
3672 can not relocate it by segments. */
3673 gdb_assert (data != NULL);
3674 gdb_assert (data->segments.size () > 0);
3675
3676 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3677 {
3678 int which = data->segment_info[i];
3679
3680 gdb_assert (0 <= which && which <= data->segments.size ());
3681
3682 /* Don't bother computing offsets for sections that aren't
3683 loaded as part of any segment. */
3684 if (! which)
3685 continue;
3686
3687 /* Use the last SEGMENT_BASES entry as the address of any extra
3688 segments mentioned in DATA->segment_info. */
3689 if (which > num_segment_bases)
3690 which = num_segment_bases;
3691
3692 offsets[i] = segment_bases[which - 1] - data->segments[which - 1].base;
3693 }
3694
3695 return 1;
3696 }
3697
3698 static void
3699 symfile_find_segment_sections (struct objfile *objfile)
3700 {
3701 bfd *abfd = objfile->obfd;
3702 int i;
3703 asection *sect;
3704
3705 symfile_segment_data_up data
3706 = get_symfile_segment_data (objfile->obfd);
3707 if (data == NULL)
3708 return;
3709
3710 if (data->segments.size () != 1 && data->segments.size () != 2)
3711 return;
3712
3713 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3714 {
3715 int which = data->segment_info[i];
3716
3717 if (which == 1)
3718 {
3719 if (objfile->sect_index_text == -1)
3720 objfile->sect_index_text = sect->index;
3721
3722 if (objfile->sect_index_rodata == -1)
3723 objfile->sect_index_rodata = sect->index;
3724 }
3725 else if (which == 2)
3726 {
3727 if (objfile->sect_index_data == -1)
3728 objfile->sect_index_data = sect->index;
3729
3730 if (objfile->sect_index_bss == -1)
3731 objfile->sect_index_bss = sect->index;
3732 }
3733 }
3734 }
3735
3736 /* Listen for free_objfile events. */
3737
3738 static void
3739 symfile_free_objfile (struct objfile *objfile)
3740 {
3741 /* Remove the target sections owned by this objfile. */
3742 if (objfile != NULL)
3743 remove_target_sections ((void *) objfile);
3744 }
3745
3746 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3747 Expand all symtabs that match the specified criteria.
3748 See quick_symbol_functions.expand_symtabs_matching for details. */
3749
3750 void
3751 expand_symtabs_matching
3752 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3753 const lookup_name_info &lookup_name,
3754 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3755 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3756 enum search_domain kind)
3757 {
3758 for (objfile *objfile : current_program_space->objfiles ())
3759 {
3760 if (objfile->sf)
3761 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3762 &lookup_name,
3763 symbol_matcher,
3764 expansion_notify, kind);
3765 }
3766 }
3767
3768 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3769 Map function FUN over every file.
3770 See quick_symbol_functions.map_symbol_filenames for details. */
3771
3772 void
3773 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3774 int need_fullname)
3775 {
3776 for (objfile *objfile : current_program_space->objfiles ())
3777 {
3778 if (objfile->sf)
3779 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3780 need_fullname);
3781 }
3782 }
3783
3784 #if GDB_SELF_TEST
3785
3786 namespace selftests {
3787 namespace filename_language {
3788
3789 static void test_filename_language ()
3790 {
3791 /* This test messes up the filename_language_table global. */
3792 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3793
3794 /* Test deducing an unknown extension. */
3795 language lang = deduce_language_from_filename ("myfile.blah");
3796 SELF_CHECK (lang == language_unknown);
3797
3798 /* Test deducing a known extension. */
3799 lang = deduce_language_from_filename ("myfile.c");
3800 SELF_CHECK (lang == language_c);
3801
3802 /* Test adding a new extension using the internal API. */
3803 add_filename_language (".blah", language_pascal);
3804 lang = deduce_language_from_filename ("myfile.blah");
3805 SELF_CHECK (lang == language_pascal);
3806 }
3807
3808 static void
3809 test_set_ext_lang_command ()
3810 {
3811 /* This test messes up the filename_language_table global. */
3812 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3813
3814 /* Confirm that the .hello extension is not known. */
3815 language lang = deduce_language_from_filename ("cake.hello");
3816 SELF_CHECK (lang == language_unknown);
3817
3818 /* Test adding a new extension using the CLI command. */
3819 auto args_holder = make_unique_xstrdup (".hello rust");
3820 ext_args = args_holder.get ();
3821 set_ext_lang_command (NULL, 1, NULL);
3822
3823 lang = deduce_language_from_filename ("cake.hello");
3824 SELF_CHECK (lang == language_rust);
3825
3826 /* Test overriding an existing extension using the CLI command. */
3827 int size_before = filename_language_table.size ();
3828 args_holder.reset (xstrdup (".hello pascal"));
3829 ext_args = args_holder.get ();
3830 set_ext_lang_command (NULL, 1, NULL);
3831 int size_after = filename_language_table.size ();
3832
3833 lang = deduce_language_from_filename ("cake.hello");
3834 SELF_CHECK (lang == language_pascal);
3835 SELF_CHECK (size_before == size_after);
3836 }
3837
3838 } /* namespace filename_language */
3839 } /* namespace selftests */
3840
3841 #endif /* GDB_SELF_TEST */
3842
3843 void _initialize_symfile ();
3844 void
3845 _initialize_symfile ()
3846 {
3847 struct cmd_list_element *c;
3848
3849 gdb::observers::free_objfile.attach (symfile_free_objfile);
3850
3851 #define READNOW_READNEVER_HELP \
3852 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3853 immediately. This makes the command slower, but may make future operations\n\
3854 faster.\n\
3855 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3856 symbolic debug information."
3857
3858 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3859 Load symbol table from executable file FILE.\n\
3860 Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3861 OFF is an optional offset which is added to each section address.\n\
3862 The `file' command can also load symbol tables, as well as setting the file\n\
3863 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3864 set_cmd_completer (c, filename_completer);
3865
3866 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3867 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3868 Usage: add-symbol-file FILE [-readnow | -readnever] [-o OFF] [ADDR] \
3869 [-s SECT-NAME SECT-ADDR]...\n\
3870 ADDR is the starting address of the file's text.\n\
3871 Each '-s' argument provides a section name and address, and\n\
3872 should be specified if the data and bss segments are not contiguous\n\
3873 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n\
3874 OFF is an optional offset which is added to the default load addresses\n\
3875 of all sections for which no other address was specified.\n"
3876 READNOW_READNEVER_HELP),
3877 &cmdlist);
3878 set_cmd_completer (c, filename_completer);
3879
3880 c = add_cmd ("remove-symbol-file", class_files,
3881 remove_symbol_file_command, _("\
3882 Remove a symbol file added via the add-symbol-file command.\n\
3883 Usage: remove-symbol-file FILENAME\n\
3884 remove-symbol-file -a ADDRESS\n\
3885 The file to remove can be identified by its filename or by an address\n\
3886 that lies within the boundaries of this symbol file in memory."),
3887 &cmdlist);
3888
3889 c = add_cmd ("load", class_files, load_command, _("\
3890 Dynamically load FILE into the running program.\n\
3891 FILE symbols are recorded for access from GDB.\n\
3892 Usage: load [FILE] [OFFSET]\n\
3893 An optional load OFFSET may also be given as a literal address.\n\
3894 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3895 on its own."), &cmdlist);
3896 set_cmd_completer (c, filename_completer);
3897
3898 add_basic_prefix_cmd ("overlay", class_support,
3899 _("Commands for debugging overlays."), &overlaylist,
3900 "overlay ", 0, &cmdlist);
3901
3902 add_com_alias ("ovly", "overlay", class_support, 1);
3903 add_com_alias ("ov", "overlay", class_support, 1);
3904
3905 add_cmd ("map-overlay", class_support, map_overlay_command,
3906 _("Assert that an overlay section is mapped."), &overlaylist);
3907
3908 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3909 _("Assert that an overlay section is unmapped."), &overlaylist);
3910
3911 add_cmd ("list-overlays", class_support, list_overlays_command,
3912 _("List mappings of overlay sections."), &overlaylist);
3913
3914 add_cmd ("manual", class_support, overlay_manual_command,
3915 _("Enable overlay debugging."), &overlaylist);
3916 add_cmd ("off", class_support, overlay_off_command,
3917 _("Disable overlay debugging."), &overlaylist);
3918 add_cmd ("auto", class_support, overlay_auto_command,
3919 _("Enable automatic overlay debugging."), &overlaylist);
3920 add_cmd ("load-target", class_support, overlay_load_command,
3921 _("Read the overlay mapping state from the target."), &overlaylist);
3922
3923 /* Filename extension to source language lookup table: */
3924 add_setshow_string_noescape_cmd ("extension-language", class_files,
3925 &ext_args, _("\
3926 Set mapping between filename extension and source language."), _("\
3927 Show mapping between filename extension and source language."), _("\
3928 Usage: set extension-language .foo bar"),
3929 set_ext_lang_command,
3930 show_ext_args,
3931 &setlist, &showlist);
3932
3933 add_info ("extensions", info_ext_lang_command,
3934 _("All filename extensions associated with a source language."));
3935
3936 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3937 &debug_file_directory, _("\
3938 Set the directories where separate debug symbols are searched for."), _("\
3939 Show the directories where separate debug symbols are searched for."), _("\
3940 Separate debug symbols are first searched for in the same\n\
3941 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3942 and lastly at the path of the directory of the binary with\n\
3943 each global debug-file-directory component prepended."),
3944 NULL,
3945 show_debug_file_directory,
3946 &setlist, &showlist);
3947
3948 add_setshow_enum_cmd ("symbol-loading", no_class,
3949 print_symbol_loading_enums, &print_symbol_loading,
3950 _("\
3951 Set printing of symbol loading messages."), _("\
3952 Show printing of symbol loading messages."), _("\
3953 off == turn all messages off\n\
3954 brief == print messages for the executable,\n\
3955 and brief messages for shared libraries\n\
3956 full == print messages for the executable,\n\
3957 and messages for each shared library."),
3958 NULL,
3959 NULL,
3960 &setprintlist, &showprintlist);
3961
3962 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3963 &separate_debug_file_debug, _("\
3964 Set printing of separate debug info file search debug."), _("\
3965 Show printing of separate debug info file search debug."), _("\
3966 When on, GDB prints the searched locations while looking for separate debug \
3967 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3968
3969 #if GDB_SELF_TEST
3970 selftests::register_test
3971 ("filename_language", selftests::filename_language::test_filename_language);
3972 selftests::register_test
3973 ("set_ext_lang_command",
3974 selftests::filename_language::test_set_ext_lang_command);
3975 #endif
3976 }
This page took 0.127269 seconds and 4 git commands to generate.