dae750ef0510b61b3bffab7ebbbc7f9c4eb2b85e
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observer.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "common/byte-vector.h"
60 #include "selftest.h"
61
62 #include <sys/types.h>
63 #include <fcntl.h>
64 #include <sys/stat.h>
65 #include <ctype.h>
66 #include <chrono>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
72 void (*deprecated_show_load_progress) (const char *section,
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
76 unsigned long total_size);
77 void (*deprecated_pre_add_symbol_hook) (const char *);
78 void (*deprecated_post_add_symbol_hook) (void);
79
80 static void clear_symtab_users_cleanup (void *ignore);
81
82 /* Global variables owned by this file. */
83 int readnow_symbol_files; /* Read full symbols immediately. */
84
85 /* Functions this file defines. */
86
87 static void load_command (char *, int);
88
89 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
90 objfile_flags flags);
91
92 static const struct sym_fns *find_sym_fns (bfd *);
93
94 static void overlay_invalidate_all (void);
95
96 static void simple_free_overlay_table (void);
97
98 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
99 enum bfd_endian);
100
101 static int simple_read_overlay_table (void);
102
103 static int simple_overlay_update_1 (struct obj_section *);
104
105 static void info_ext_lang_command (char *args, int from_tty);
106
107 static void symfile_find_segment_sections (struct objfile *objfile);
108
109 /* List of all available sym_fns. On gdb startup, each object file reader
110 calls add_symtab_fns() to register information on each format it is
111 prepared to read. */
112
113 struct registered_sym_fns
114 {
115 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
116 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
117 {}
118
119 /* BFD flavour that we handle. */
120 enum bfd_flavour sym_flavour;
121
122 /* The "vtable" of symbol functions. */
123 const struct sym_fns *sym_fns;
124 };
125
126 static std::vector<registered_sym_fns> symtab_fns;
127
128 /* Values for "set print symbol-loading". */
129
130 const char print_symbol_loading_off[] = "off";
131 const char print_symbol_loading_brief[] = "brief";
132 const char print_symbol_loading_full[] = "full";
133 static const char *print_symbol_loading_enums[] =
134 {
135 print_symbol_loading_off,
136 print_symbol_loading_brief,
137 print_symbol_loading_full,
138 NULL
139 };
140 static const char *print_symbol_loading = print_symbol_loading_full;
141
142 /* If non-zero, shared library symbols will be added automatically
143 when the inferior is created, new libraries are loaded, or when
144 attaching to the inferior. This is almost always what users will
145 want to have happen; but for very large programs, the startup time
146 will be excessive, and so if this is a problem, the user can clear
147 this flag and then add the shared library symbols as needed. Note
148 that there is a potential for confusion, since if the shared
149 library symbols are not loaded, commands like "info fun" will *not*
150 report all the functions that are actually present. */
151
152 int auto_solib_add = 1;
153 \f
154
155 /* Return non-zero if symbol-loading messages should be printed.
156 FROM_TTY is the standard from_tty argument to gdb commands.
157 If EXEC is non-zero the messages are for the executable.
158 Otherwise, messages are for shared libraries.
159 If FULL is non-zero then the caller is printing a detailed message.
160 E.g., the message includes the shared library name.
161 Otherwise, the caller is printing a brief "summary" message. */
162
163 int
164 print_symbol_loading_p (int from_tty, int exec, int full)
165 {
166 if (!from_tty && !info_verbose)
167 return 0;
168
169 if (exec)
170 {
171 /* We don't check FULL for executables, there are few such
172 messages, therefore brief == full. */
173 return print_symbol_loading != print_symbol_loading_off;
174 }
175 if (full)
176 return print_symbol_loading == print_symbol_loading_full;
177 return print_symbol_loading == print_symbol_loading_brief;
178 }
179
180 /* True if we are reading a symbol table. */
181
182 int currently_reading_symtab = 0;
183
184 /* Increment currently_reading_symtab and return a cleanup that can be
185 used to decrement it. */
186
187 scoped_restore_tmpl<int>
188 increment_reading_symtab (void)
189 {
190 gdb_assert (currently_reading_symtab >= 0);
191 return make_scoped_restore (&currently_reading_symtab,
192 currently_reading_symtab + 1);
193 }
194
195 /* Remember the lowest-addressed loadable section we've seen.
196 This function is called via bfd_map_over_sections.
197
198 In case of equal vmas, the section with the largest size becomes the
199 lowest-addressed loadable section.
200
201 If the vmas and sizes are equal, the last section is considered the
202 lowest-addressed loadable section. */
203
204 void
205 find_lowest_section (bfd *abfd, asection *sect, void *obj)
206 {
207 asection **lowest = (asection **) obj;
208
209 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
210 return;
211 if (!*lowest)
212 *lowest = sect; /* First loadable section */
213 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
214 *lowest = sect; /* A lower loadable section */
215 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
216 && (bfd_section_size (abfd, (*lowest))
217 <= bfd_section_size (abfd, sect)))
218 *lowest = sect;
219 }
220
221 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
222 new object's 'num_sections' field is set to 0; it must be updated
223 by the caller. */
224
225 struct section_addr_info *
226 alloc_section_addr_info (size_t num_sections)
227 {
228 struct section_addr_info *sap;
229 size_t size;
230
231 size = (sizeof (struct section_addr_info)
232 + sizeof (struct other_sections) * (num_sections - 1));
233 sap = (struct section_addr_info *) xmalloc (size);
234 memset (sap, 0, size);
235
236 return sap;
237 }
238
239 /* Build (allocate and populate) a section_addr_info struct from
240 an existing section table. */
241
242 extern struct section_addr_info *
243 build_section_addr_info_from_section_table (const struct target_section *start,
244 const struct target_section *end)
245 {
246 struct section_addr_info *sap;
247 const struct target_section *stp;
248 int oidx;
249
250 sap = alloc_section_addr_info (end - start);
251
252 for (stp = start, oidx = 0; stp != end; stp++)
253 {
254 struct bfd_section *asect = stp->the_bfd_section;
255 bfd *abfd = asect->owner;
256
257 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
258 && oidx < end - start)
259 {
260 sap->other[oidx].addr = stp->addr;
261 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
262 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
263 oidx++;
264 }
265 }
266
267 sap->num_sections = oidx;
268
269 return sap;
270 }
271
272 /* Create a section_addr_info from section offsets in ABFD. */
273
274 static struct section_addr_info *
275 build_section_addr_info_from_bfd (bfd *abfd)
276 {
277 struct section_addr_info *sap;
278 int i;
279 struct bfd_section *sec;
280
281 sap = alloc_section_addr_info (bfd_count_sections (abfd));
282 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
283 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
284 {
285 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
286 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
287 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
288 i++;
289 }
290
291 sap->num_sections = i;
292
293 return sap;
294 }
295
296 /* Create a section_addr_info from section offsets in OBJFILE. */
297
298 struct section_addr_info *
299 build_section_addr_info_from_objfile (const struct objfile *objfile)
300 {
301 struct section_addr_info *sap;
302 int i;
303
304 /* Before reread_symbols gets rewritten it is not safe to call:
305 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
306 */
307 sap = build_section_addr_info_from_bfd (objfile->obfd);
308 for (i = 0; i < sap->num_sections; i++)
309 {
310 int sectindex = sap->other[i].sectindex;
311
312 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
313 }
314 return sap;
315 }
316
317 /* Free all memory allocated by build_section_addr_info_from_section_table. */
318
319 extern void
320 free_section_addr_info (struct section_addr_info *sap)
321 {
322 int idx;
323
324 for (idx = 0; idx < sap->num_sections; idx++)
325 xfree (sap->other[idx].name);
326 xfree (sap);
327 }
328
329 /* Initialize OBJFILE's sect_index_* members. */
330
331 static void
332 init_objfile_sect_indices (struct objfile *objfile)
333 {
334 asection *sect;
335 int i;
336
337 sect = bfd_get_section_by_name (objfile->obfd, ".text");
338 if (sect)
339 objfile->sect_index_text = sect->index;
340
341 sect = bfd_get_section_by_name (objfile->obfd, ".data");
342 if (sect)
343 objfile->sect_index_data = sect->index;
344
345 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
346 if (sect)
347 objfile->sect_index_bss = sect->index;
348
349 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
350 if (sect)
351 objfile->sect_index_rodata = sect->index;
352
353 /* This is where things get really weird... We MUST have valid
354 indices for the various sect_index_* members or gdb will abort.
355 So if for example, there is no ".text" section, we have to
356 accomodate that. First, check for a file with the standard
357 one or two segments. */
358
359 symfile_find_segment_sections (objfile);
360
361 /* Except when explicitly adding symbol files at some address,
362 section_offsets contains nothing but zeros, so it doesn't matter
363 which slot in section_offsets the individual sect_index_* members
364 index into. So if they are all zero, it is safe to just point
365 all the currently uninitialized indices to the first slot. But
366 beware: if this is the main executable, it may be relocated
367 later, e.g. by the remote qOffsets packet, and then this will
368 be wrong! That's why we try segments first. */
369
370 for (i = 0; i < objfile->num_sections; i++)
371 {
372 if (ANOFFSET (objfile->section_offsets, i) != 0)
373 {
374 break;
375 }
376 }
377 if (i == objfile->num_sections)
378 {
379 if (objfile->sect_index_text == -1)
380 objfile->sect_index_text = 0;
381 if (objfile->sect_index_data == -1)
382 objfile->sect_index_data = 0;
383 if (objfile->sect_index_bss == -1)
384 objfile->sect_index_bss = 0;
385 if (objfile->sect_index_rodata == -1)
386 objfile->sect_index_rodata = 0;
387 }
388 }
389
390 /* The arguments to place_section. */
391
392 struct place_section_arg
393 {
394 struct section_offsets *offsets;
395 CORE_ADDR lowest;
396 };
397
398 /* Find a unique offset to use for loadable section SECT if
399 the user did not provide an offset. */
400
401 static void
402 place_section (bfd *abfd, asection *sect, void *obj)
403 {
404 struct place_section_arg *arg = (struct place_section_arg *) obj;
405 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
406 int done;
407 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
408
409 /* We are only interested in allocated sections. */
410 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
411 return;
412
413 /* If the user specified an offset, honor it. */
414 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
415 return;
416
417 /* Otherwise, let's try to find a place for the section. */
418 start_addr = (arg->lowest + align - 1) & -align;
419
420 do {
421 asection *cur_sec;
422
423 done = 1;
424
425 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
426 {
427 int indx = cur_sec->index;
428
429 /* We don't need to compare against ourself. */
430 if (cur_sec == sect)
431 continue;
432
433 /* We can only conflict with allocated sections. */
434 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
435 continue;
436
437 /* If the section offset is 0, either the section has not been placed
438 yet, or it was the lowest section placed (in which case LOWEST
439 will be past its end). */
440 if (offsets[indx] == 0)
441 continue;
442
443 /* If this section would overlap us, then we must move up. */
444 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
445 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
446 {
447 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
448 start_addr = (start_addr + align - 1) & -align;
449 done = 0;
450 break;
451 }
452
453 /* Otherwise, we appear to be OK. So far. */
454 }
455 }
456 while (!done);
457
458 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
459 arg->lowest = start_addr + bfd_get_section_size (sect);
460 }
461
462 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
463 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
464 entries. */
465
466 void
467 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
468 int num_sections,
469 const struct section_addr_info *addrs)
470 {
471 int i;
472
473 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
474
475 /* Now calculate offsets for section that were specified by the caller. */
476 for (i = 0; i < addrs->num_sections; i++)
477 {
478 const struct other_sections *osp;
479
480 osp = &addrs->other[i];
481 if (osp->sectindex == -1)
482 continue;
483
484 /* Record all sections in offsets. */
485 /* The section_offsets in the objfile are here filled in using
486 the BFD index. */
487 section_offsets->offsets[osp->sectindex] = osp->addr;
488 }
489 }
490
491 /* Transform section name S for a name comparison. prelink can split section
492 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
493 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
494 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
495 (`.sbss') section has invalid (increased) virtual address. */
496
497 static const char *
498 addr_section_name (const char *s)
499 {
500 if (strcmp (s, ".dynbss") == 0)
501 return ".bss";
502 if (strcmp (s, ".sdynbss") == 0)
503 return ".sbss";
504
505 return s;
506 }
507
508 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
509 their (name, sectindex) pair. sectindex makes the sort by name stable. */
510
511 static int
512 addrs_section_compar (const void *ap, const void *bp)
513 {
514 const struct other_sections *a = *((struct other_sections **) ap);
515 const struct other_sections *b = *((struct other_sections **) bp);
516 int retval;
517
518 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
519 if (retval)
520 return retval;
521
522 return a->sectindex - b->sectindex;
523 }
524
525 /* Provide sorted array of pointers to sections of ADDRS. The array is
526 terminated by NULL. Caller is responsible to call xfree for it. */
527
528 static struct other_sections **
529 addrs_section_sort (struct section_addr_info *addrs)
530 {
531 struct other_sections **array;
532 int i;
533
534 /* `+ 1' for the NULL terminator. */
535 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
536 for (i = 0; i < addrs->num_sections; i++)
537 array[i] = &addrs->other[i];
538 array[i] = NULL;
539
540 qsort (array, i, sizeof (*array), addrs_section_compar);
541
542 return array;
543 }
544
545 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
546 also SECTINDEXes specific to ABFD there. This function can be used to
547 rebase ADDRS to start referencing different BFD than before. */
548
549 void
550 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
551 {
552 asection *lower_sect;
553 CORE_ADDR lower_offset;
554 int i;
555 struct cleanup *my_cleanup;
556 struct section_addr_info *abfd_addrs;
557 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
558 struct other_sections **addrs_to_abfd_addrs;
559
560 /* Find lowest loadable section to be used as starting point for
561 continguous sections. */
562 lower_sect = NULL;
563 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
564 if (lower_sect == NULL)
565 {
566 warning (_("no loadable sections found in added symbol-file %s"),
567 bfd_get_filename (abfd));
568 lower_offset = 0;
569 }
570 else
571 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
572
573 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
574 in ABFD. Section names are not unique - there can be multiple sections of
575 the same name. Also the sections of the same name do not have to be
576 adjacent to each other. Some sections may be present only in one of the
577 files. Even sections present in both files do not have to be in the same
578 order.
579
580 Use stable sort by name for the sections in both files. Then linearly
581 scan both lists matching as most of the entries as possible. */
582
583 addrs_sorted = addrs_section_sort (addrs);
584 my_cleanup = make_cleanup (xfree, addrs_sorted);
585
586 abfd_addrs = build_section_addr_info_from_bfd (abfd);
587 make_cleanup_free_section_addr_info (abfd_addrs);
588 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
589 make_cleanup (xfree, abfd_addrs_sorted);
590
591 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
592 ABFD_ADDRS_SORTED. */
593
594 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
595 make_cleanup (xfree, addrs_to_abfd_addrs);
596
597 while (*addrs_sorted)
598 {
599 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
600
601 while (*abfd_addrs_sorted
602 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
603 sect_name) < 0)
604 abfd_addrs_sorted++;
605
606 if (*abfd_addrs_sorted
607 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
608 sect_name) == 0)
609 {
610 int index_in_addrs;
611
612 /* Make the found item directly addressable from ADDRS. */
613 index_in_addrs = *addrs_sorted - addrs->other;
614 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
615 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
616
617 /* Never use the same ABFD entry twice. */
618 abfd_addrs_sorted++;
619 }
620
621 addrs_sorted++;
622 }
623
624 /* Calculate offsets for the loadable sections.
625 FIXME! Sections must be in order of increasing loadable section
626 so that contiguous sections can use the lower-offset!!!
627
628 Adjust offsets if the segments are not contiguous.
629 If the section is contiguous, its offset should be set to
630 the offset of the highest loadable section lower than it
631 (the loadable section directly below it in memory).
632 this_offset = lower_offset = lower_addr - lower_orig_addr */
633
634 for (i = 0; i < addrs->num_sections; i++)
635 {
636 struct other_sections *sect = addrs_to_abfd_addrs[i];
637
638 if (sect)
639 {
640 /* This is the index used by BFD. */
641 addrs->other[i].sectindex = sect->sectindex;
642
643 if (addrs->other[i].addr != 0)
644 {
645 addrs->other[i].addr -= sect->addr;
646 lower_offset = addrs->other[i].addr;
647 }
648 else
649 addrs->other[i].addr = lower_offset;
650 }
651 else
652 {
653 /* addr_section_name transformation is not used for SECT_NAME. */
654 const char *sect_name = addrs->other[i].name;
655
656 /* This section does not exist in ABFD, which is normally
657 unexpected and we want to issue a warning.
658
659 However, the ELF prelinker does create a few sections which are
660 marked in the main executable as loadable (they are loaded in
661 memory from the DYNAMIC segment) and yet are not present in
662 separate debug info files. This is fine, and should not cause
663 a warning. Shared libraries contain just the section
664 ".gnu.liblist" but it is not marked as loadable there. There is
665 no other way to identify them than by their name as the sections
666 created by prelink have no special flags.
667
668 For the sections `.bss' and `.sbss' see addr_section_name. */
669
670 if (!(strcmp (sect_name, ".gnu.liblist") == 0
671 || strcmp (sect_name, ".gnu.conflict") == 0
672 || (strcmp (sect_name, ".bss") == 0
673 && i > 0
674 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
675 && addrs_to_abfd_addrs[i - 1] != NULL)
676 || (strcmp (sect_name, ".sbss") == 0
677 && i > 0
678 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
679 && addrs_to_abfd_addrs[i - 1] != NULL)))
680 warning (_("section %s not found in %s"), sect_name,
681 bfd_get_filename (abfd));
682
683 addrs->other[i].addr = 0;
684 addrs->other[i].sectindex = -1;
685 }
686 }
687
688 do_cleanups (my_cleanup);
689 }
690
691 /* Parse the user's idea of an offset for dynamic linking, into our idea
692 of how to represent it for fast symbol reading. This is the default
693 version of the sym_fns.sym_offsets function for symbol readers that
694 don't need to do anything special. It allocates a section_offsets table
695 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
696
697 void
698 default_symfile_offsets (struct objfile *objfile,
699 const struct section_addr_info *addrs)
700 {
701 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
702 objfile->section_offsets = (struct section_offsets *)
703 obstack_alloc (&objfile->objfile_obstack,
704 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
705 relative_addr_info_to_section_offsets (objfile->section_offsets,
706 objfile->num_sections, addrs);
707
708 /* For relocatable files, all loadable sections will start at zero.
709 The zero is meaningless, so try to pick arbitrary addresses such
710 that no loadable sections overlap. This algorithm is quadratic,
711 but the number of sections in a single object file is generally
712 small. */
713 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
714 {
715 struct place_section_arg arg;
716 bfd *abfd = objfile->obfd;
717 asection *cur_sec;
718
719 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
720 /* We do not expect this to happen; just skip this step if the
721 relocatable file has a section with an assigned VMA. */
722 if (bfd_section_vma (abfd, cur_sec) != 0)
723 break;
724
725 if (cur_sec == NULL)
726 {
727 CORE_ADDR *offsets = objfile->section_offsets->offsets;
728
729 /* Pick non-overlapping offsets for sections the user did not
730 place explicitly. */
731 arg.offsets = objfile->section_offsets;
732 arg.lowest = 0;
733 bfd_map_over_sections (objfile->obfd, place_section, &arg);
734
735 /* Correctly filling in the section offsets is not quite
736 enough. Relocatable files have two properties that
737 (most) shared objects do not:
738
739 - Their debug information will contain relocations. Some
740 shared libraries do also, but many do not, so this can not
741 be assumed.
742
743 - If there are multiple code sections they will be loaded
744 at different relative addresses in memory than they are
745 in the objfile, since all sections in the file will start
746 at address zero.
747
748 Because GDB has very limited ability to map from an
749 address in debug info to the correct code section,
750 it relies on adding SECT_OFF_TEXT to things which might be
751 code. If we clear all the section offsets, and set the
752 section VMAs instead, then symfile_relocate_debug_section
753 will return meaningful debug information pointing at the
754 correct sections.
755
756 GDB has too many different data structures for section
757 addresses - a bfd, objfile, and so_list all have section
758 tables, as does exec_ops. Some of these could probably
759 be eliminated. */
760
761 for (cur_sec = abfd->sections; cur_sec != NULL;
762 cur_sec = cur_sec->next)
763 {
764 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
765 continue;
766
767 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
768 exec_set_section_address (bfd_get_filename (abfd),
769 cur_sec->index,
770 offsets[cur_sec->index]);
771 offsets[cur_sec->index] = 0;
772 }
773 }
774 }
775
776 /* Remember the bfd indexes for the .text, .data, .bss and
777 .rodata sections. */
778 init_objfile_sect_indices (objfile);
779 }
780
781 /* Divide the file into segments, which are individual relocatable units.
782 This is the default version of the sym_fns.sym_segments function for
783 symbol readers that do not have an explicit representation of segments.
784 It assumes that object files do not have segments, and fully linked
785 files have a single segment. */
786
787 struct symfile_segment_data *
788 default_symfile_segments (bfd *abfd)
789 {
790 int num_sections, i;
791 asection *sect;
792 struct symfile_segment_data *data;
793 CORE_ADDR low, high;
794
795 /* Relocatable files contain enough information to position each
796 loadable section independently; they should not be relocated
797 in segments. */
798 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
799 return NULL;
800
801 /* Make sure there is at least one loadable section in the file. */
802 for (sect = abfd->sections; sect != NULL; sect = sect->next)
803 {
804 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
805 continue;
806
807 break;
808 }
809 if (sect == NULL)
810 return NULL;
811
812 low = bfd_get_section_vma (abfd, sect);
813 high = low + bfd_get_section_size (sect);
814
815 data = XCNEW (struct symfile_segment_data);
816 data->num_segments = 1;
817 data->segment_bases = XCNEW (CORE_ADDR);
818 data->segment_sizes = XCNEW (CORE_ADDR);
819
820 num_sections = bfd_count_sections (abfd);
821 data->segment_info = XCNEWVEC (int, num_sections);
822
823 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
824 {
825 CORE_ADDR vma;
826
827 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
828 continue;
829
830 vma = bfd_get_section_vma (abfd, sect);
831 if (vma < low)
832 low = vma;
833 if (vma + bfd_get_section_size (sect) > high)
834 high = vma + bfd_get_section_size (sect);
835
836 data->segment_info[i] = 1;
837 }
838
839 data->segment_bases[0] = low;
840 data->segment_sizes[0] = high - low;
841
842 return data;
843 }
844
845 /* This is a convenience function to call sym_read for OBJFILE and
846 possibly force the partial symbols to be read. */
847
848 static void
849 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
850 {
851 (*objfile->sf->sym_read) (objfile, add_flags);
852 objfile->per_bfd->minsyms_read = true;
853
854 /* find_separate_debug_file_in_section should be called only if there is
855 single binary with no existing separate debug info file. */
856 if (!objfile_has_partial_symbols (objfile)
857 && objfile->separate_debug_objfile == NULL
858 && objfile->separate_debug_objfile_backlink == NULL)
859 {
860 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
861
862 if (abfd != NULL)
863 {
864 /* find_separate_debug_file_in_section uses the same filename for the
865 virtual section-as-bfd like the bfd filename containing the
866 section. Therefore use also non-canonical name form for the same
867 file containing the section. */
868 symbol_file_add_separate (abfd.get (), objfile->original_name,
869 add_flags, objfile);
870 }
871 }
872 if ((add_flags & SYMFILE_NO_READ) == 0)
873 require_partial_symbols (objfile, 0);
874 }
875
876 /* Initialize entry point information for this objfile. */
877
878 static void
879 init_entry_point_info (struct objfile *objfile)
880 {
881 struct entry_info *ei = &objfile->per_bfd->ei;
882
883 if (ei->initialized)
884 return;
885 ei->initialized = 1;
886
887 /* Save startup file's range of PC addresses to help blockframe.c
888 decide where the bottom of the stack is. */
889
890 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
891 {
892 /* Executable file -- record its entry point so we'll recognize
893 the startup file because it contains the entry point. */
894 ei->entry_point = bfd_get_start_address (objfile->obfd);
895 ei->entry_point_p = 1;
896 }
897 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
898 && bfd_get_start_address (objfile->obfd) != 0)
899 {
900 /* Some shared libraries may have entry points set and be
901 runnable. There's no clear way to indicate this, so just check
902 for values other than zero. */
903 ei->entry_point = bfd_get_start_address (objfile->obfd);
904 ei->entry_point_p = 1;
905 }
906 else
907 {
908 /* Examination of non-executable.o files. Short-circuit this stuff. */
909 ei->entry_point_p = 0;
910 }
911
912 if (ei->entry_point_p)
913 {
914 struct obj_section *osect;
915 CORE_ADDR entry_point = ei->entry_point;
916 int found;
917
918 /* Make certain that the address points at real code, and not a
919 function descriptor. */
920 entry_point
921 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
922 entry_point,
923 &current_target);
924
925 /* Remove any ISA markers, so that this matches entries in the
926 symbol table. */
927 ei->entry_point
928 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
929
930 found = 0;
931 ALL_OBJFILE_OSECTIONS (objfile, osect)
932 {
933 struct bfd_section *sect = osect->the_bfd_section;
934
935 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
936 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
937 + bfd_get_section_size (sect)))
938 {
939 ei->the_bfd_section_index
940 = gdb_bfd_section_index (objfile->obfd, sect);
941 found = 1;
942 break;
943 }
944 }
945
946 if (!found)
947 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
948 }
949 }
950
951 /* Process a symbol file, as either the main file or as a dynamically
952 loaded file.
953
954 This function does not set the OBJFILE's entry-point info.
955
956 OBJFILE is where the symbols are to be read from.
957
958 ADDRS is the list of section load addresses. If the user has given
959 an 'add-symbol-file' command, then this is the list of offsets and
960 addresses he or she provided as arguments to the command; or, if
961 we're handling a shared library, these are the actual addresses the
962 sections are loaded at, according to the inferior's dynamic linker
963 (as gleaned by GDB's shared library code). We convert each address
964 into an offset from the section VMA's as it appears in the object
965 file, and then call the file's sym_offsets function to convert this
966 into a format-specific offset table --- a `struct section_offsets'.
967
968 ADD_FLAGS encodes verbosity level, whether this is main symbol or
969 an extra symbol file such as dynamically loaded code, and wether
970 breakpoint reset should be deferred. */
971
972 static void
973 syms_from_objfile_1 (struct objfile *objfile,
974 struct section_addr_info *addrs,
975 symfile_add_flags add_flags)
976 {
977 struct section_addr_info *local_addr = NULL;
978 struct cleanup *old_chain;
979 const int mainline = add_flags & SYMFILE_MAINLINE;
980
981 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
982
983 if (objfile->sf == NULL)
984 {
985 /* No symbols to load, but we still need to make sure
986 that the section_offsets table is allocated. */
987 int num_sections = gdb_bfd_count_sections (objfile->obfd);
988 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
989
990 objfile->num_sections = num_sections;
991 objfile->section_offsets
992 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
993 size);
994 memset (objfile->section_offsets, 0, size);
995 return;
996 }
997
998 /* Make sure that partially constructed symbol tables will be cleaned up
999 if an error occurs during symbol reading. */
1000 old_chain = make_cleanup_free_objfile (objfile);
1001
1002 /* If ADDRS is NULL, put together a dummy address list.
1003 We now establish the convention that an addr of zero means
1004 no load address was specified. */
1005 if (! addrs)
1006 {
1007 local_addr = alloc_section_addr_info (1);
1008 make_cleanup (xfree, local_addr);
1009 addrs = local_addr;
1010 }
1011
1012 if (mainline)
1013 {
1014 /* We will modify the main symbol table, make sure that all its users
1015 will be cleaned up if an error occurs during symbol reading. */
1016 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1017
1018 /* Since no error yet, throw away the old symbol table. */
1019
1020 if (symfile_objfile != NULL)
1021 {
1022 delete symfile_objfile;
1023 gdb_assert (symfile_objfile == NULL);
1024 }
1025
1026 /* Currently we keep symbols from the add-symbol-file command.
1027 If the user wants to get rid of them, they should do "symbol-file"
1028 without arguments first. Not sure this is the best behavior
1029 (PR 2207). */
1030
1031 (*objfile->sf->sym_new_init) (objfile);
1032 }
1033
1034 /* Convert addr into an offset rather than an absolute address.
1035 We find the lowest address of a loaded segment in the objfile,
1036 and assume that <addr> is where that got loaded.
1037
1038 We no longer warn if the lowest section is not a text segment (as
1039 happens for the PA64 port. */
1040 if (addrs->num_sections > 0)
1041 addr_info_make_relative (addrs, objfile->obfd);
1042
1043 /* Initialize symbol reading routines for this objfile, allow complaints to
1044 appear for this new file, and record how verbose to be, then do the
1045 initial symbol reading for this file. */
1046
1047 (*objfile->sf->sym_init) (objfile);
1048 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1049
1050 (*objfile->sf->sym_offsets) (objfile, addrs);
1051
1052 read_symbols (objfile, add_flags);
1053
1054 /* Discard cleanups as symbol reading was successful. */
1055
1056 discard_cleanups (old_chain);
1057 xfree (local_addr);
1058 }
1059
1060 /* Same as syms_from_objfile_1, but also initializes the objfile
1061 entry-point info. */
1062
1063 static void
1064 syms_from_objfile (struct objfile *objfile,
1065 struct section_addr_info *addrs,
1066 symfile_add_flags add_flags)
1067 {
1068 syms_from_objfile_1 (objfile, addrs, add_flags);
1069 init_entry_point_info (objfile);
1070 }
1071
1072 /* Perform required actions after either reading in the initial
1073 symbols for a new objfile, or mapping in the symbols from a reusable
1074 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1075
1076 static void
1077 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1078 {
1079 /* If this is the main symbol file we have to clean up all users of the
1080 old main symbol file. Otherwise it is sufficient to fixup all the
1081 breakpoints that may have been redefined by this symbol file. */
1082 if (add_flags & SYMFILE_MAINLINE)
1083 {
1084 /* OK, make it the "real" symbol file. */
1085 symfile_objfile = objfile;
1086
1087 clear_symtab_users (add_flags);
1088 }
1089 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1090 {
1091 breakpoint_re_set ();
1092 }
1093
1094 /* We're done reading the symbol file; finish off complaints. */
1095 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1096 }
1097
1098 /* Process a symbol file, as either the main file or as a dynamically
1099 loaded file.
1100
1101 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1102 A new reference is acquired by this function.
1103
1104 For NAME description see the objfile constructor.
1105
1106 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1107 extra, such as dynamically loaded code, and what to do with breakpoins.
1108
1109 ADDRS is as described for syms_from_objfile_1, above.
1110 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1111
1112 PARENT is the original objfile if ABFD is a separate debug info file.
1113 Otherwise PARENT is NULL.
1114
1115 Upon success, returns a pointer to the objfile that was added.
1116 Upon failure, jumps back to command level (never returns). */
1117
1118 static struct objfile *
1119 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1120 symfile_add_flags add_flags,
1121 struct section_addr_info *addrs,
1122 objfile_flags flags, struct objfile *parent)
1123 {
1124 struct objfile *objfile;
1125 const int from_tty = add_flags & SYMFILE_VERBOSE;
1126 const int mainline = add_flags & SYMFILE_MAINLINE;
1127 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1128 && (readnow_symbol_files
1129 || (add_flags & SYMFILE_NO_READ) == 0));
1130
1131 if (readnow_symbol_files)
1132 {
1133 flags |= OBJF_READNOW;
1134 add_flags &= ~SYMFILE_NO_READ;
1135 }
1136
1137 /* Give user a chance to burp if we'd be
1138 interactively wiping out any existing symbols. */
1139
1140 if ((have_full_symbols () || have_partial_symbols ())
1141 && mainline
1142 && from_tty
1143 && !query (_("Load new symbol table from \"%s\"? "), name))
1144 error (_("Not confirmed."));
1145
1146 if (mainline)
1147 flags |= OBJF_MAINLINE;
1148 objfile = new struct objfile (abfd, name, flags);
1149
1150 if (parent)
1151 add_separate_debug_objfile (objfile, parent);
1152
1153 /* We either created a new mapped symbol table, mapped an existing
1154 symbol table file which has not had initial symbol reading
1155 performed, or need to read an unmapped symbol table. */
1156 if (should_print)
1157 {
1158 if (deprecated_pre_add_symbol_hook)
1159 deprecated_pre_add_symbol_hook (name);
1160 else
1161 {
1162 printf_unfiltered (_("Reading symbols from %s..."), name);
1163 wrap_here ("");
1164 gdb_flush (gdb_stdout);
1165 }
1166 }
1167 syms_from_objfile (objfile, addrs, add_flags);
1168
1169 /* We now have at least a partial symbol table. Check to see if the
1170 user requested that all symbols be read on initial access via either
1171 the gdb startup command line or on a per symbol file basis. Expand
1172 all partial symbol tables for this objfile if so. */
1173
1174 if ((flags & OBJF_READNOW))
1175 {
1176 if (should_print)
1177 {
1178 printf_unfiltered (_("expanding to full symbols..."));
1179 wrap_here ("");
1180 gdb_flush (gdb_stdout);
1181 }
1182
1183 if (objfile->sf)
1184 objfile->sf->qf->expand_all_symtabs (objfile);
1185 }
1186
1187 if (should_print && !objfile_has_symbols (objfile))
1188 {
1189 wrap_here ("");
1190 printf_unfiltered (_("(no debugging symbols found)..."));
1191 wrap_here ("");
1192 }
1193
1194 if (should_print)
1195 {
1196 if (deprecated_post_add_symbol_hook)
1197 deprecated_post_add_symbol_hook ();
1198 else
1199 printf_unfiltered (_("done.\n"));
1200 }
1201
1202 /* We print some messages regardless of whether 'from_tty ||
1203 info_verbose' is true, so make sure they go out at the right
1204 time. */
1205 gdb_flush (gdb_stdout);
1206
1207 if (objfile->sf == NULL)
1208 {
1209 observer_notify_new_objfile (objfile);
1210 return objfile; /* No symbols. */
1211 }
1212
1213 finish_new_objfile (objfile, add_flags);
1214
1215 observer_notify_new_objfile (objfile);
1216
1217 bfd_cache_close_all ();
1218 return (objfile);
1219 }
1220
1221 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1222 see the objfile constructor. */
1223
1224 void
1225 symbol_file_add_separate (bfd *bfd, const char *name,
1226 symfile_add_flags symfile_flags,
1227 struct objfile *objfile)
1228 {
1229 struct section_addr_info *sap;
1230 struct cleanup *my_cleanup;
1231
1232 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1233 because sections of BFD may not match sections of OBJFILE and because
1234 vma may have been modified by tools such as prelink. */
1235 sap = build_section_addr_info_from_objfile (objfile);
1236 my_cleanup = make_cleanup_free_section_addr_info (sap);
1237
1238 symbol_file_add_with_addrs
1239 (bfd, name, symfile_flags, sap,
1240 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1241 | OBJF_USERLOADED),
1242 objfile);
1243
1244 do_cleanups (my_cleanup);
1245 }
1246
1247 /* Process the symbol file ABFD, as either the main file or as a
1248 dynamically loaded file.
1249 See symbol_file_add_with_addrs's comments for details. */
1250
1251 struct objfile *
1252 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1253 symfile_add_flags add_flags,
1254 struct section_addr_info *addrs,
1255 objfile_flags flags, struct objfile *parent)
1256 {
1257 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1258 parent);
1259 }
1260
1261 /* Process a symbol file, as either the main file or as a dynamically
1262 loaded file. See symbol_file_add_with_addrs's comments for details. */
1263
1264 struct objfile *
1265 symbol_file_add (const char *name, symfile_add_flags add_flags,
1266 struct section_addr_info *addrs, objfile_flags flags)
1267 {
1268 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1269
1270 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1271 flags, NULL);
1272 }
1273
1274 /* Call symbol_file_add() with default values and update whatever is
1275 affected by the loading of a new main().
1276 Used when the file is supplied in the gdb command line
1277 and by some targets with special loading requirements.
1278 The auxiliary function, symbol_file_add_main_1(), has the flags
1279 argument for the switches that can only be specified in the symbol_file
1280 command itself. */
1281
1282 void
1283 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1284 {
1285 symbol_file_add_main_1 (args, add_flags, 0);
1286 }
1287
1288 static void
1289 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1290 objfile_flags flags)
1291 {
1292 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1293
1294 symbol_file_add (args, add_flags, NULL, flags);
1295
1296 /* Getting new symbols may change our opinion about
1297 what is frameless. */
1298 reinit_frame_cache ();
1299
1300 if ((add_flags & SYMFILE_NO_READ) == 0)
1301 set_initial_language ();
1302 }
1303
1304 void
1305 symbol_file_clear (int from_tty)
1306 {
1307 if ((have_full_symbols () || have_partial_symbols ())
1308 && from_tty
1309 && (symfile_objfile
1310 ? !query (_("Discard symbol table from `%s'? "),
1311 objfile_name (symfile_objfile))
1312 : !query (_("Discard symbol table? "))))
1313 error (_("Not confirmed."));
1314
1315 /* solib descriptors may have handles to objfiles. Wipe them before their
1316 objfiles get stale by free_all_objfiles. */
1317 no_shared_libraries (NULL, from_tty);
1318
1319 free_all_objfiles ();
1320
1321 gdb_assert (symfile_objfile == NULL);
1322 if (from_tty)
1323 printf_unfiltered (_("No symbol file now.\n"));
1324 }
1325
1326 /* See symfile.h. */
1327
1328 int separate_debug_file_debug = 0;
1329
1330 static int
1331 separate_debug_file_exists (const char *name, unsigned long crc,
1332 struct objfile *parent_objfile)
1333 {
1334 unsigned long file_crc;
1335 int file_crc_p;
1336 struct stat parent_stat, abfd_stat;
1337 int verified_as_different;
1338
1339 /* Find a separate debug info file as if symbols would be present in
1340 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1341 section can contain just the basename of PARENT_OBJFILE without any
1342 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1343 the separate debug infos with the same basename can exist. */
1344
1345 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1346 return 0;
1347
1348 if (separate_debug_file_debug)
1349 printf_unfiltered (_(" Trying %s\n"), name);
1350
1351 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name, gnutarget, -1));
1352
1353 if (abfd == NULL)
1354 return 0;
1355
1356 /* Verify symlinks were not the cause of filename_cmp name difference above.
1357
1358 Some operating systems, e.g. Windows, do not provide a meaningful
1359 st_ino; they always set it to zero. (Windows does provide a
1360 meaningful st_dev.) Files accessed from gdbservers that do not
1361 support the vFile:fstat packet will also have st_ino set to zero.
1362 Do not indicate a duplicate library in either case. While there
1363 is no guarantee that a system that provides meaningful inode
1364 numbers will never set st_ino to zero, this is merely an
1365 optimization, so we do not need to worry about false negatives. */
1366
1367 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1368 && abfd_stat.st_ino != 0
1369 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1370 {
1371 if (abfd_stat.st_dev == parent_stat.st_dev
1372 && abfd_stat.st_ino == parent_stat.st_ino)
1373 return 0;
1374 verified_as_different = 1;
1375 }
1376 else
1377 verified_as_different = 0;
1378
1379 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1380
1381 if (!file_crc_p)
1382 return 0;
1383
1384 if (crc != file_crc)
1385 {
1386 unsigned long parent_crc;
1387
1388 /* If the files could not be verified as different with
1389 bfd_stat then we need to calculate the parent's CRC
1390 to verify whether the files are different or not. */
1391
1392 if (!verified_as_different)
1393 {
1394 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1395 return 0;
1396 }
1397
1398 if (verified_as_different || parent_crc != file_crc)
1399 warning (_("the debug information found in \"%s\""
1400 " does not match \"%s\" (CRC mismatch).\n"),
1401 name, objfile_name (parent_objfile));
1402
1403 return 0;
1404 }
1405
1406 return 1;
1407 }
1408
1409 char *debug_file_directory = NULL;
1410 static void
1411 show_debug_file_directory (struct ui_file *file, int from_tty,
1412 struct cmd_list_element *c, const char *value)
1413 {
1414 fprintf_filtered (file,
1415 _("The directory where separate debug "
1416 "symbols are searched for is \"%s\".\n"),
1417 value);
1418 }
1419
1420 #if ! defined (DEBUG_SUBDIRECTORY)
1421 #define DEBUG_SUBDIRECTORY ".debug"
1422 #endif
1423
1424 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1425 where the original file resides (may not be the same as
1426 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1427 looking for. CANON_DIR is the "realpath" form of DIR.
1428 DIR must contain a trailing '/'.
1429 Returns the path of the file with separate debug info, of NULL. */
1430
1431 static char *
1432 find_separate_debug_file (const char *dir,
1433 const char *canon_dir,
1434 const char *debuglink,
1435 unsigned long crc32, struct objfile *objfile)
1436 {
1437 char *debugdir;
1438 char *debugfile;
1439 int i;
1440 VEC (char_ptr) *debugdir_vec;
1441 struct cleanup *back_to;
1442 int ix;
1443
1444 if (separate_debug_file_debug)
1445 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1446 "%s\n"), objfile_name (objfile));
1447
1448 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1449 i = strlen (dir);
1450 if (canon_dir != NULL && strlen (canon_dir) > i)
1451 i = strlen (canon_dir);
1452
1453 debugfile
1454 = (char *) xmalloc (strlen (debug_file_directory) + 1
1455 + i
1456 + strlen (DEBUG_SUBDIRECTORY)
1457 + strlen ("/")
1458 + strlen (debuglink)
1459 + 1);
1460
1461 /* First try in the same directory as the original file. */
1462 strcpy (debugfile, dir);
1463 strcat (debugfile, debuglink);
1464
1465 if (separate_debug_file_exists (debugfile, crc32, objfile))
1466 return debugfile;
1467
1468 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1469 strcpy (debugfile, dir);
1470 strcat (debugfile, DEBUG_SUBDIRECTORY);
1471 strcat (debugfile, "/");
1472 strcat (debugfile, debuglink);
1473
1474 if (separate_debug_file_exists (debugfile, crc32, objfile))
1475 return debugfile;
1476
1477 /* Then try in the global debugfile directories.
1478
1479 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1480 cause "/..." lookups. */
1481
1482 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1483 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1484
1485 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1486 {
1487 strcpy (debugfile, debugdir);
1488 strcat (debugfile, "/");
1489 strcat (debugfile, dir);
1490 strcat (debugfile, debuglink);
1491
1492 if (separate_debug_file_exists (debugfile, crc32, objfile))
1493 {
1494 do_cleanups (back_to);
1495 return debugfile;
1496 }
1497
1498 /* If the file is in the sysroot, try using its base path in the
1499 global debugfile directory. */
1500 if (canon_dir != NULL
1501 && filename_ncmp (canon_dir, gdb_sysroot,
1502 strlen (gdb_sysroot)) == 0
1503 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1504 {
1505 strcpy (debugfile, debugdir);
1506 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1507 strcat (debugfile, "/");
1508 strcat (debugfile, debuglink);
1509
1510 if (separate_debug_file_exists (debugfile, crc32, objfile))
1511 {
1512 do_cleanups (back_to);
1513 return debugfile;
1514 }
1515 }
1516 }
1517
1518 do_cleanups (back_to);
1519 xfree (debugfile);
1520 return NULL;
1521 }
1522
1523 /* Modify PATH to contain only "[/]directory/" part of PATH.
1524 If there were no directory separators in PATH, PATH will be empty
1525 string on return. */
1526
1527 static void
1528 terminate_after_last_dir_separator (char *path)
1529 {
1530 int i;
1531
1532 /* Strip off the final filename part, leaving the directory name,
1533 followed by a slash. The directory can be relative or absolute. */
1534 for (i = strlen(path) - 1; i >= 0; i--)
1535 if (IS_DIR_SEPARATOR (path[i]))
1536 break;
1537
1538 /* If I is -1 then no directory is present there and DIR will be "". */
1539 path[i + 1] = '\0';
1540 }
1541
1542 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1543 Returns pathname, or NULL. */
1544
1545 char *
1546 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1547 {
1548 char *debugfile;
1549 unsigned long crc32;
1550
1551 gdb::unique_xmalloc_ptr<char> debuglink
1552 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1553
1554 if (debuglink == NULL)
1555 {
1556 /* There's no separate debug info, hence there's no way we could
1557 load it => no warning. */
1558 return NULL;
1559 }
1560
1561 std::string dir = objfile_name (objfile);
1562 terminate_after_last_dir_separator (&dir[0]);
1563 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1564
1565 debugfile = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1566 debuglink.get (), crc32, objfile);
1567
1568 if (debugfile == NULL)
1569 {
1570 /* For PR gdb/9538, try again with realpath (if different from the
1571 original). */
1572
1573 struct stat st_buf;
1574
1575 if (lstat (objfile_name (objfile), &st_buf) == 0
1576 && S_ISLNK (st_buf.st_mode))
1577 {
1578 gdb::unique_xmalloc_ptr<char> symlink_dir
1579 (lrealpath (objfile_name (objfile)));
1580 if (symlink_dir != NULL)
1581 {
1582 terminate_after_last_dir_separator (symlink_dir.get ());
1583 if (dir != symlink_dir.get ())
1584 {
1585 /* Different directory, so try using it. */
1586 debugfile = find_separate_debug_file (symlink_dir.get (),
1587 symlink_dir.get (),
1588 debuglink.get (),
1589 crc32,
1590 objfile);
1591 }
1592 }
1593 }
1594 }
1595
1596 return debugfile;
1597 }
1598
1599 /* This is the symbol-file command. Read the file, analyze its
1600 symbols, and add a struct symtab to a symtab list. The syntax of
1601 the command is rather bizarre:
1602
1603 1. The function buildargv implements various quoting conventions
1604 which are undocumented and have little or nothing in common with
1605 the way things are quoted (or not quoted) elsewhere in GDB.
1606
1607 2. Options are used, which are not generally used in GDB (perhaps
1608 "set mapped on", "set readnow on" would be better)
1609
1610 3. The order of options matters, which is contrary to GNU
1611 conventions (because it is confusing and inconvenient). */
1612
1613 void
1614 symbol_file_command (const char *args, int from_tty)
1615 {
1616 dont_repeat ();
1617
1618 if (args == NULL)
1619 {
1620 symbol_file_clear (from_tty);
1621 }
1622 else
1623 {
1624 objfile_flags flags = OBJF_USERLOADED;
1625 symfile_add_flags add_flags = 0;
1626 char *name = NULL;
1627
1628 if (from_tty)
1629 add_flags |= SYMFILE_VERBOSE;
1630
1631 gdb_argv built_argv (args);
1632 for (char *arg : built_argv)
1633 {
1634 if (strcmp (arg, "-readnow") == 0)
1635 flags |= OBJF_READNOW;
1636 else if (*arg == '-')
1637 error (_("unknown option `%s'"), arg);
1638 else
1639 {
1640 symbol_file_add_main_1 (arg, add_flags, flags);
1641 name = arg;
1642 }
1643 }
1644
1645 if (name == NULL)
1646 error (_("no symbol file name was specified"));
1647 }
1648 }
1649
1650 /* Set the initial language.
1651
1652 FIXME: A better solution would be to record the language in the
1653 psymtab when reading partial symbols, and then use it (if known) to
1654 set the language. This would be a win for formats that encode the
1655 language in an easily discoverable place, such as DWARF. For
1656 stabs, we can jump through hoops looking for specially named
1657 symbols or try to intuit the language from the specific type of
1658 stabs we find, but we can't do that until later when we read in
1659 full symbols. */
1660
1661 void
1662 set_initial_language (void)
1663 {
1664 enum language lang = main_language ();
1665
1666 if (lang == language_unknown)
1667 {
1668 char *name = main_name ();
1669 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1670
1671 if (sym != NULL)
1672 lang = SYMBOL_LANGUAGE (sym);
1673 }
1674
1675 if (lang == language_unknown)
1676 {
1677 /* Make C the default language */
1678 lang = language_c;
1679 }
1680
1681 set_language (lang);
1682 expected_language = current_language; /* Don't warn the user. */
1683 }
1684
1685 /* Open the file specified by NAME and hand it off to BFD for
1686 preliminary analysis. Return a newly initialized bfd *, which
1687 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1688 absolute). In case of trouble, error() is called. */
1689
1690 gdb_bfd_ref_ptr
1691 symfile_bfd_open (const char *name)
1692 {
1693 int desc = -1;
1694 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1695
1696 if (!is_target_filename (name))
1697 {
1698 char *absolute_name;
1699
1700 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1701
1702 /* Look down path for it, allocate 2nd new malloc'd copy. */
1703 desc = openp (getenv ("PATH"),
1704 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1705 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1706 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1707 if (desc < 0)
1708 {
1709 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1710
1711 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1712 desc = openp (getenv ("PATH"),
1713 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1714 exename, O_RDONLY | O_BINARY, &absolute_name);
1715 }
1716 #endif
1717 if (desc < 0)
1718 perror_with_name (expanded_name.get ());
1719
1720 make_cleanup (xfree, absolute_name);
1721 name = absolute_name;
1722 }
1723
1724 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1725 if (sym_bfd == NULL)
1726 error (_("`%s': can't open to read symbols: %s."), name,
1727 bfd_errmsg (bfd_get_error ()));
1728
1729 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1730 bfd_set_cacheable (sym_bfd.get (), 1);
1731
1732 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1733 error (_("`%s': can't read symbols: %s."), name,
1734 bfd_errmsg (bfd_get_error ()));
1735
1736 do_cleanups (back_to);
1737
1738 return sym_bfd;
1739 }
1740
1741 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1742 the section was not found. */
1743
1744 int
1745 get_section_index (struct objfile *objfile, const char *section_name)
1746 {
1747 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1748
1749 if (sect)
1750 return sect->index;
1751 else
1752 return -1;
1753 }
1754
1755 /* Link SF into the global symtab_fns list.
1756 FLAVOUR is the file format that SF handles.
1757 Called on startup by the _initialize routine in each object file format
1758 reader, to register information about each format the reader is prepared
1759 to handle. */
1760
1761 void
1762 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1763 {
1764 symtab_fns.emplace_back (flavour, sf);
1765 }
1766
1767 /* Initialize OBJFILE to read symbols from its associated BFD. It
1768 either returns or calls error(). The result is an initialized
1769 struct sym_fns in the objfile structure, that contains cached
1770 information about the symbol file. */
1771
1772 static const struct sym_fns *
1773 find_sym_fns (bfd *abfd)
1774 {
1775 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1776
1777 if (our_flavour == bfd_target_srec_flavour
1778 || our_flavour == bfd_target_ihex_flavour
1779 || our_flavour == bfd_target_tekhex_flavour)
1780 return NULL; /* No symbols. */
1781
1782 for (const registered_sym_fns &rsf : symtab_fns)
1783 if (our_flavour == rsf.sym_flavour)
1784 return rsf.sym_fns;
1785
1786 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1787 bfd_get_target (abfd));
1788 }
1789 \f
1790
1791 /* This function runs the load command of our current target. */
1792
1793 static void
1794 load_command (char *arg, int from_tty)
1795 {
1796 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1797
1798 dont_repeat ();
1799
1800 /* The user might be reloading because the binary has changed. Take
1801 this opportunity to check. */
1802 reopen_exec_file ();
1803 reread_symbols ();
1804
1805 if (arg == NULL)
1806 {
1807 char *parg;
1808 int count = 0;
1809
1810 parg = arg = get_exec_file (1);
1811
1812 /* Count how many \ " ' tab space there are in the name. */
1813 while ((parg = strpbrk (parg, "\\\"'\t ")))
1814 {
1815 parg++;
1816 count++;
1817 }
1818
1819 if (count)
1820 {
1821 /* We need to quote this string so buildargv can pull it apart. */
1822 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1823 char *ptemp = temp;
1824 char *prev;
1825
1826 make_cleanup (xfree, temp);
1827
1828 prev = parg = arg;
1829 while ((parg = strpbrk (parg, "\\\"'\t ")))
1830 {
1831 strncpy (ptemp, prev, parg - prev);
1832 ptemp += parg - prev;
1833 prev = parg++;
1834 *ptemp++ = '\\';
1835 }
1836 strcpy (ptemp, prev);
1837
1838 arg = temp;
1839 }
1840 }
1841
1842 target_load (arg, from_tty);
1843
1844 /* After re-loading the executable, we don't really know which
1845 overlays are mapped any more. */
1846 overlay_cache_invalid = 1;
1847
1848 do_cleanups (cleanup);
1849 }
1850
1851 /* This version of "load" should be usable for any target. Currently
1852 it is just used for remote targets, not inftarg.c or core files,
1853 on the theory that only in that case is it useful.
1854
1855 Avoiding xmodem and the like seems like a win (a) because we don't have
1856 to worry about finding it, and (b) On VMS, fork() is very slow and so
1857 we don't want to run a subprocess. On the other hand, I'm not sure how
1858 performance compares. */
1859
1860 static int validate_download = 0;
1861
1862 /* Callback service function for generic_load (bfd_map_over_sections). */
1863
1864 static void
1865 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1866 {
1867 bfd_size_type *sum = (bfd_size_type *) data;
1868
1869 *sum += bfd_get_section_size (asec);
1870 }
1871
1872 /* Opaque data for load_section_callback. */
1873 struct load_section_data {
1874 CORE_ADDR load_offset;
1875 struct load_progress_data *progress_data;
1876 VEC(memory_write_request_s) *requests;
1877 };
1878
1879 /* Opaque data for load_progress. */
1880 struct load_progress_data {
1881 /* Cumulative data. */
1882 unsigned long write_count;
1883 unsigned long data_count;
1884 bfd_size_type total_size;
1885 };
1886
1887 /* Opaque data for load_progress for a single section. */
1888 struct load_progress_section_data {
1889 struct load_progress_data *cumulative;
1890
1891 /* Per-section data. */
1892 const char *section_name;
1893 ULONGEST section_sent;
1894 ULONGEST section_size;
1895 CORE_ADDR lma;
1896 gdb_byte *buffer;
1897 };
1898
1899 /* Target write callback routine for progress reporting. */
1900
1901 static void
1902 load_progress (ULONGEST bytes, void *untyped_arg)
1903 {
1904 struct load_progress_section_data *args
1905 = (struct load_progress_section_data *) untyped_arg;
1906 struct load_progress_data *totals;
1907
1908 if (args == NULL)
1909 /* Writing padding data. No easy way to get at the cumulative
1910 stats, so just ignore this. */
1911 return;
1912
1913 totals = args->cumulative;
1914
1915 if (bytes == 0 && args->section_sent == 0)
1916 {
1917 /* The write is just starting. Let the user know we've started
1918 this section. */
1919 current_uiout->message ("Loading section %s, size %s lma %s\n",
1920 args->section_name,
1921 hex_string (args->section_size),
1922 paddress (target_gdbarch (), args->lma));
1923 return;
1924 }
1925
1926 if (validate_download)
1927 {
1928 /* Broken memories and broken monitors manifest themselves here
1929 when bring new computers to life. This doubles already slow
1930 downloads. */
1931 /* NOTE: cagney/1999-10-18: A more efficient implementation
1932 might add a verify_memory() method to the target vector and
1933 then use that. remote.c could implement that method using
1934 the ``qCRC'' packet. */
1935 gdb::byte_vector check (bytes);
1936
1937 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1938 error (_("Download verify read failed at %s"),
1939 paddress (target_gdbarch (), args->lma));
1940 if (memcmp (args->buffer, check.data (), bytes) != 0)
1941 error (_("Download verify compare failed at %s"),
1942 paddress (target_gdbarch (), args->lma));
1943 }
1944 totals->data_count += bytes;
1945 args->lma += bytes;
1946 args->buffer += bytes;
1947 totals->write_count += 1;
1948 args->section_sent += bytes;
1949 if (check_quit_flag ()
1950 || (deprecated_ui_load_progress_hook != NULL
1951 && deprecated_ui_load_progress_hook (args->section_name,
1952 args->section_sent)))
1953 error (_("Canceled the download"));
1954
1955 if (deprecated_show_load_progress != NULL)
1956 deprecated_show_load_progress (args->section_name,
1957 args->section_sent,
1958 args->section_size,
1959 totals->data_count,
1960 totals->total_size);
1961 }
1962
1963 /* Callback service function for generic_load (bfd_map_over_sections). */
1964
1965 static void
1966 load_section_callback (bfd *abfd, asection *asec, void *data)
1967 {
1968 struct memory_write_request *new_request;
1969 struct load_section_data *args = (struct load_section_data *) data;
1970 struct load_progress_section_data *section_data;
1971 bfd_size_type size = bfd_get_section_size (asec);
1972 gdb_byte *buffer;
1973 const char *sect_name = bfd_get_section_name (abfd, asec);
1974
1975 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1976 return;
1977
1978 if (size == 0)
1979 return;
1980
1981 new_request = VEC_safe_push (memory_write_request_s,
1982 args->requests, NULL);
1983 memset (new_request, 0, sizeof (struct memory_write_request));
1984 section_data = XCNEW (struct load_progress_section_data);
1985 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1986 new_request->end = new_request->begin + size; /* FIXME Should size
1987 be in instead? */
1988 new_request->data = (gdb_byte *) xmalloc (size);
1989 new_request->baton = section_data;
1990
1991 buffer = new_request->data;
1992
1993 section_data->cumulative = args->progress_data;
1994 section_data->section_name = sect_name;
1995 section_data->section_size = size;
1996 section_data->lma = new_request->begin;
1997 section_data->buffer = buffer;
1998
1999 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2000 }
2001
2002 /* Clean up an entire memory request vector, including load
2003 data and progress records. */
2004
2005 static void
2006 clear_memory_write_data (void *arg)
2007 {
2008 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
2009 VEC(memory_write_request_s) *vec = *vec_p;
2010 int i;
2011 struct memory_write_request *mr;
2012
2013 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2014 {
2015 xfree (mr->data);
2016 xfree (mr->baton);
2017 }
2018 VEC_free (memory_write_request_s, vec);
2019 }
2020
2021 static void print_transfer_performance (struct ui_file *stream,
2022 unsigned long data_count,
2023 unsigned long write_count,
2024 std::chrono::steady_clock::duration d);
2025
2026 void
2027 generic_load (const char *args, int from_tty)
2028 {
2029 struct cleanup *old_cleanups;
2030 struct load_section_data cbdata;
2031 struct load_progress_data total_progress;
2032 struct ui_out *uiout = current_uiout;
2033
2034 CORE_ADDR entry;
2035
2036 memset (&cbdata, 0, sizeof (cbdata));
2037 memset (&total_progress, 0, sizeof (total_progress));
2038 cbdata.progress_data = &total_progress;
2039
2040 old_cleanups = make_cleanup (clear_memory_write_data, &cbdata.requests);
2041
2042 if (args == NULL)
2043 error_no_arg (_("file to load"));
2044
2045 gdb_argv argv (args);
2046
2047 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2048
2049 if (argv[1] != NULL)
2050 {
2051 const char *endptr;
2052
2053 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2054
2055 /* If the last word was not a valid number then
2056 treat it as a file name with spaces in. */
2057 if (argv[1] == endptr)
2058 error (_("Invalid download offset:%s."), argv[1]);
2059
2060 if (argv[2] != NULL)
2061 error (_("Too many parameters."));
2062 }
2063
2064 /* Open the file for loading. */
2065 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
2066 if (loadfile_bfd == NULL)
2067 perror_with_name (filename.get ());
2068
2069 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2070 {
2071 error (_("\"%s\" is not an object file: %s"), filename.get (),
2072 bfd_errmsg (bfd_get_error ()));
2073 }
2074
2075 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2076 (void *) &total_progress.total_size);
2077
2078 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2079
2080 using namespace std::chrono;
2081
2082 steady_clock::time_point start_time = steady_clock::now ();
2083
2084 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2085 load_progress) != 0)
2086 error (_("Load failed"));
2087
2088 steady_clock::time_point end_time = steady_clock::now ();
2089
2090 entry = bfd_get_start_address (loadfile_bfd.get ());
2091 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2092 uiout->text ("Start address ");
2093 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2094 uiout->text (", load size ");
2095 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2096 uiout->text ("\n");
2097 regcache_write_pc (get_current_regcache (), entry);
2098
2099 /* Reset breakpoints, now that we have changed the load image. For
2100 instance, breakpoints may have been set (or reset, by
2101 post_create_inferior) while connected to the target but before we
2102 loaded the program. In that case, the prologue analyzer could
2103 have read instructions from the target to find the right
2104 breakpoint locations. Loading has changed the contents of that
2105 memory. */
2106
2107 breakpoint_re_set ();
2108
2109 print_transfer_performance (gdb_stdout, total_progress.data_count,
2110 total_progress.write_count,
2111 end_time - start_time);
2112
2113 do_cleanups (old_cleanups);
2114 }
2115
2116 /* Report on STREAM the performance of a memory transfer operation,
2117 such as 'load'. DATA_COUNT is the number of bytes transferred.
2118 WRITE_COUNT is the number of separate write operations, or 0, if
2119 that information is not available. TIME is how long the operation
2120 lasted. */
2121
2122 static void
2123 print_transfer_performance (struct ui_file *stream,
2124 unsigned long data_count,
2125 unsigned long write_count,
2126 std::chrono::steady_clock::duration time)
2127 {
2128 using namespace std::chrono;
2129 struct ui_out *uiout = current_uiout;
2130
2131 milliseconds ms = duration_cast<milliseconds> (time);
2132
2133 uiout->text ("Transfer rate: ");
2134 if (ms.count () > 0)
2135 {
2136 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2137
2138 if (uiout->is_mi_like_p ())
2139 {
2140 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2141 uiout->text (" bits/sec");
2142 }
2143 else if (rate < 1024)
2144 {
2145 uiout->field_fmt ("transfer-rate", "%lu", rate);
2146 uiout->text (" bytes/sec");
2147 }
2148 else
2149 {
2150 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2151 uiout->text (" KB/sec");
2152 }
2153 }
2154 else
2155 {
2156 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2157 uiout->text (" bits in <1 sec");
2158 }
2159 if (write_count > 0)
2160 {
2161 uiout->text (", ");
2162 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2163 uiout->text (" bytes/write");
2164 }
2165 uiout->text (".\n");
2166 }
2167
2168 /* This function allows the addition of incrementally linked object files.
2169 It does not modify any state in the target, only in the debugger. */
2170 /* Note: ezannoni 2000-04-13 This function/command used to have a
2171 special case syntax for the rombug target (Rombug is the boot
2172 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2173 rombug case, the user doesn't need to supply a text address,
2174 instead a call to target_link() (in target.c) would supply the
2175 value to use. We are now discontinuing this type of ad hoc syntax. */
2176
2177 static void
2178 add_symbol_file_command (const char *args, int from_tty)
2179 {
2180 struct gdbarch *gdbarch = get_current_arch ();
2181 gdb::unique_xmalloc_ptr<char> filename;
2182 char *arg;
2183 int argcnt = 0;
2184 int sec_num = 0;
2185 int expecting_sec_name = 0;
2186 int expecting_sec_addr = 0;
2187 struct objfile *objf;
2188 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2189 symfile_add_flags add_flags = 0;
2190
2191 if (from_tty)
2192 add_flags |= SYMFILE_VERBOSE;
2193
2194 struct sect_opt
2195 {
2196 const char *name;
2197 const char *value;
2198 };
2199
2200 struct section_addr_info *section_addrs;
2201 std::vector<sect_opt> sect_opts;
2202 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2203
2204 dont_repeat ();
2205
2206 if (args == NULL)
2207 error (_("add-symbol-file takes a file name and an address"));
2208
2209 gdb_argv argv (args);
2210
2211 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2212 {
2213 /* Process the argument. */
2214 if (argcnt == 0)
2215 {
2216 /* The first argument is the file name. */
2217 filename.reset (tilde_expand (arg));
2218 }
2219 else if (argcnt == 1)
2220 {
2221 /* The second argument is always the text address at which
2222 to load the program. */
2223 sect_opt sect = { ".text", arg };
2224 sect_opts.push_back (sect);
2225 }
2226 else
2227 {
2228 /* It's an option (starting with '-') or it's an argument
2229 to an option. */
2230 if (expecting_sec_name)
2231 {
2232 sect_opt sect = { arg, NULL };
2233 sect_opts.push_back (sect);
2234 expecting_sec_name = 0;
2235 }
2236 else if (expecting_sec_addr)
2237 {
2238 sect_opts.back ().value = arg;
2239 expecting_sec_addr = 0;
2240 }
2241 else if (strcmp (arg, "-readnow") == 0)
2242 flags |= OBJF_READNOW;
2243 else if (strcmp (arg, "-s") == 0)
2244 {
2245 expecting_sec_name = 1;
2246 expecting_sec_addr = 1;
2247 }
2248 else
2249 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2250 " [-readnow] [-s <secname> <addr>]*"));
2251 }
2252 }
2253
2254 /* This command takes at least two arguments. The first one is a
2255 filename, and the second is the address where this file has been
2256 loaded. Abort now if this address hasn't been provided by the
2257 user. */
2258 if (sect_opts.empty ())
2259 error (_("The address where %s has been loaded is missing"),
2260 filename.get ());
2261
2262 /* Print the prompt for the query below. And save the arguments into
2263 a sect_addr_info structure to be passed around to other
2264 functions. We have to split this up into separate print
2265 statements because hex_string returns a local static
2266 string. */
2267
2268 printf_unfiltered (_("add symbol table from file \"%s\" at\n"),
2269 filename.get ());
2270 section_addrs = alloc_section_addr_info (sect_opts.size ());
2271 make_cleanup (xfree, section_addrs);
2272 for (sect_opt &sect : sect_opts)
2273 {
2274 CORE_ADDR addr;
2275 const char *val = sect.value;
2276 const char *sec = sect.name;
2277
2278 addr = parse_and_eval_address (val);
2279
2280 /* Here we store the section offsets in the order they were
2281 entered on the command line. */
2282 section_addrs->other[sec_num].name = (char *) sec;
2283 section_addrs->other[sec_num].addr = addr;
2284 printf_unfiltered ("\t%s_addr = %s\n", sec,
2285 paddress (gdbarch, addr));
2286 sec_num++;
2287
2288 /* The object's sections are initialized when a
2289 call is made to build_objfile_section_table (objfile).
2290 This happens in reread_symbols.
2291 At this point, we don't know what file type this is,
2292 so we can't determine what section names are valid. */
2293 }
2294 section_addrs->num_sections = sec_num;
2295
2296 if (from_tty && (!query ("%s", "")))
2297 error (_("Not confirmed."));
2298
2299 objf = symbol_file_add (filename.get (), add_flags, section_addrs, flags);
2300
2301 add_target_sections_of_objfile (objf);
2302
2303 /* Getting new symbols may change our opinion about what is
2304 frameless. */
2305 reinit_frame_cache ();
2306 do_cleanups (my_cleanups);
2307 }
2308 \f
2309
2310 /* This function removes a symbol file that was added via add-symbol-file. */
2311
2312 static void
2313 remove_symbol_file_command (const char *args, int from_tty)
2314 {
2315 struct objfile *objf = NULL;
2316 struct program_space *pspace = current_program_space;
2317
2318 dont_repeat ();
2319
2320 if (args == NULL)
2321 error (_("remove-symbol-file: no symbol file provided"));
2322
2323 gdb_argv argv (args);
2324
2325 if (strcmp (argv[0], "-a") == 0)
2326 {
2327 /* Interpret the next argument as an address. */
2328 CORE_ADDR addr;
2329
2330 if (argv[1] == NULL)
2331 error (_("Missing address argument"));
2332
2333 if (argv[2] != NULL)
2334 error (_("Junk after %s"), argv[1]);
2335
2336 addr = parse_and_eval_address (argv[1]);
2337
2338 ALL_OBJFILES (objf)
2339 {
2340 if ((objf->flags & OBJF_USERLOADED) != 0
2341 && (objf->flags & OBJF_SHARED) != 0
2342 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2343 break;
2344 }
2345 }
2346 else if (argv[0] != NULL)
2347 {
2348 /* Interpret the current argument as a file name. */
2349
2350 if (argv[1] != NULL)
2351 error (_("Junk after %s"), argv[0]);
2352
2353 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2354
2355 ALL_OBJFILES (objf)
2356 {
2357 if ((objf->flags & OBJF_USERLOADED) != 0
2358 && (objf->flags & OBJF_SHARED) != 0
2359 && objf->pspace == pspace
2360 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
2361 break;
2362 }
2363 }
2364
2365 if (objf == NULL)
2366 error (_("No symbol file found"));
2367
2368 if (from_tty
2369 && !query (_("Remove symbol table from file \"%s\"? "),
2370 objfile_name (objf)))
2371 error (_("Not confirmed."));
2372
2373 delete objf;
2374 clear_symtab_users (0);
2375 }
2376
2377 /* Re-read symbols if a symbol-file has changed. */
2378
2379 void
2380 reread_symbols (void)
2381 {
2382 struct objfile *objfile;
2383 long new_modtime;
2384 struct stat new_statbuf;
2385 int res;
2386 std::vector<struct objfile *> new_objfiles;
2387
2388 /* With the addition of shared libraries, this should be modified,
2389 the load time should be saved in the partial symbol tables, since
2390 different tables may come from different source files. FIXME.
2391 This routine should then walk down each partial symbol table
2392 and see if the symbol table that it originates from has been changed. */
2393
2394 for (objfile = object_files; objfile; objfile = objfile->next)
2395 {
2396 if (objfile->obfd == NULL)
2397 continue;
2398
2399 /* Separate debug objfiles are handled in the main objfile. */
2400 if (objfile->separate_debug_objfile_backlink)
2401 continue;
2402
2403 /* If this object is from an archive (what you usually create with
2404 `ar', often called a `static library' on most systems, though
2405 a `shared library' on AIX is also an archive), then you should
2406 stat on the archive name, not member name. */
2407 if (objfile->obfd->my_archive)
2408 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2409 else
2410 res = stat (objfile_name (objfile), &new_statbuf);
2411 if (res != 0)
2412 {
2413 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2414 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2415 objfile_name (objfile));
2416 continue;
2417 }
2418 new_modtime = new_statbuf.st_mtime;
2419 if (new_modtime != objfile->mtime)
2420 {
2421 struct cleanup *old_cleanups;
2422 struct section_offsets *offsets;
2423 int num_offsets;
2424 char *original_name;
2425
2426 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2427 objfile_name (objfile));
2428
2429 /* There are various functions like symbol_file_add,
2430 symfile_bfd_open, syms_from_objfile, etc., which might
2431 appear to do what we want. But they have various other
2432 effects which we *don't* want. So we just do stuff
2433 ourselves. We don't worry about mapped files (for one thing,
2434 any mapped file will be out of date). */
2435
2436 /* If we get an error, blow away this objfile (not sure if
2437 that is the correct response for things like shared
2438 libraries). */
2439 old_cleanups = make_cleanup_free_objfile (objfile);
2440 /* We need to do this whenever any symbols go away. */
2441 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2442
2443 if (exec_bfd != NULL
2444 && filename_cmp (bfd_get_filename (objfile->obfd),
2445 bfd_get_filename (exec_bfd)) == 0)
2446 {
2447 /* Reload EXEC_BFD without asking anything. */
2448
2449 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2450 }
2451
2452 /* Keep the calls order approx. the same as in free_objfile. */
2453
2454 /* Free the separate debug objfiles. It will be
2455 automatically recreated by sym_read. */
2456 free_objfile_separate_debug (objfile);
2457
2458 /* Remove any references to this objfile in the global
2459 value lists. */
2460 preserve_values (objfile);
2461
2462 /* Nuke all the state that we will re-read. Much of the following
2463 code which sets things to NULL really is necessary to tell
2464 other parts of GDB that there is nothing currently there.
2465
2466 Try to keep the freeing order compatible with free_objfile. */
2467
2468 if (objfile->sf != NULL)
2469 {
2470 (*objfile->sf->sym_finish) (objfile);
2471 }
2472
2473 clear_objfile_data (objfile);
2474
2475 /* Clean up any state BFD has sitting around. */
2476 {
2477 gdb_bfd_ref_ptr obfd (objfile->obfd);
2478 char *obfd_filename;
2479
2480 obfd_filename = bfd_get_filename (objfile->obfd);
2481 /* Open the new BFD before freeing the old one, so that
2482 the filename remains live. */
2483 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2484 objfile->obfd = temp.release ();
2485 if (objfile->obfd == NULL)
2486 error (_("Can't open %s to read symbols."), obfd_filename);
2487 }
2488
2489 original_name = xstrdup (objfile->original_name);
2490 make_cleanup (xfree, original_name);
2491
2492 /* bfd_openr sets cacheable to true, which is what we want. */
2493 if (!bfd_check_format (objfile->obfd, bfd_object))
2494 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2495 bfd_errmsg (bfd_get_error ()));
2496
2497 /* Save the offsets, we will nuke them with the rest of the
2498 objfile_obstack. */
2499 num_offsets = objfile->num_sections;
2500 offsets = ((struct section_offsets *)
2501 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2502 memcpy (offsets, objfile->section_offsets,
2503 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2504
2505 /* FIXME: Do we have to free a whole linked list, or is this
2506 enough? */
2507 objfile->global_psymbols.clear ();
2508 objfile->static_psymbols.clear ();
2509
2510 /* Free the obstacks for non-reusable objfiles. */
2511 psymbol_bcache_free (objfile->psymbol_cache);
2512 objfile->psymbol_cache = psymbol_bcache_init ();
2513
2514 /* NB: after this call to obstack_free, objfiles_changed
2515 will need to be called (see discussion below). */
2516 obstack_free (&objfile->objfile_obstack, 0);
2517 objfile->sections = NULL;
2518 objfile->compunit_symtabs = NULL;
2519 objfile->psymtabs = NULL;
2520 objfile->psymtabs_addrmap = NULL;
2521 objfile->free_psymtabs = NULL;
2522 objfile->template_symbols = NULL;
2523
2524 /* obstack_init also initializes the obstack so it is
2525 empty. We could use obstack_specify_allocation but
2526 gdb_obstack.h specifies the alloc/dealloc functions. */
2527 obstack_init (&objfile->objfile_obstack);
2528
2529 /* set_objfile_per_bfd potentially allocates the per-bfd
2530 data on the objfile's obstack (if sharing data across
2531 multiple users is not possible), so it's important to
2532 do it *after* the obstack has been initialized. */
2533 set_objfile_per_bfd (objfile);
2534
2535 objfile->original_name
2536 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2537 strlen (original_name));
2538
2539 /* Reset the sym_fns pointer. The ELF reader can change it
2540 based on whether .gdb_index is present, and we need it to
2541 start over. PR symtab/15885 */
2542 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2543
2544 build_objfile_section_table (objfile);
2545 terminate_minimal_symbol_table (objfile);
2546
2547 /* We use the same section offsets as from last time. I'm not
2548 sure whether that is always correct for shared libraries. */
2549 objfile->section_offsets = (struct section_offsets *)
2550 obstack_alloc (&objfile->objfile_obstack,
2551 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2552 memcpy (objfile->section_offsets, offsets,
2553 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2554 objfile->num_sections = num_offsets;
2555
2556 /* What the hell is sym_new_init for, anyway? The concept of
2557 distinguishing between the main file and additional files
2558 in this way seems rather dubious. */
2559 if (objfile == symfile_objfile)
2560 {
2561 (*objfile->sf->sym_new_init) (objfile);
2562 }
2563
2564 (*objfile->sf->sym_init) (objfile);
2565 clear_complaints (&symfile_complaints, 1, 1);
2566
2567 objfile->flags &= ~OBJF_PSYMTABS_READ;
2568
2569 /* We are about to read new symbols and potentially also
2570 DWARF information. Some targets may want to pass addresses
2571 read from DWARF DIE's through an adjustment function before
2572 saving them, like MIPS, which may call into
2573 "find_pc_section". When called, that function will make
2574 use of per-objfile program space data.
2575
2576 Since we discarded our section information above, we have
2577 dangling pointers in the per-objfile program space data
2578 structure. Force GDB to update the section mapping
2579 information by letting it know the objfile has changed,
2580 making the dangling pointers point to correct data
2581 again. */
2582
2583 objfiles_changed ();
2584
2585 read_symbols (objfile, 0);
2586
2587 if (!objfile_has_symbols (objfile))
2588 {
2589 wrap_here ("");
2590 printf_unfiltered (_("(no debugging symbols found)\n"));
2591 wrap_here ("");
2592 }
2593
2594 /* We're done reading the symbol file; finish off complaints. */
2595 clear_complaints (&symfile_complaints, 0, 1);
2596
2597 /* Getting new symbols may change our opinion about what is
2598 frameless. */
2599
2600 reinit_frame_cache ();
2601
2602 /* Discard cleanups as symbol reading was successful. */
2603 discard_cleanups (old_cleanups);
2604
2605 /* If the mtime has changed between the time we set new_modtime
2606 and now, we *want* this to be out of date, so don't call stat
2607 again now. */
2608 objfile->mtime = new_modtime;
2609 init_entry_point_info (objfile);
2610
2611 new_objfiles.push_back (objfile);
2612 }
2613 }
2614
2615 if (!new_objfiles.empty ())
2616 {
2617 clear_symtab_users (0);
2618
2619 /* clear_objfile_data for each objfile was called before freeing it and
2620 observer_notify_new_objfile (NULL) has been called by
2621 clear_symtab_users above. Notify the new files now. */
2622 for (auto iter : new_objfiles)
2623 observer_notify_new_objfile (iter);
2624
2625 /* At least one objfile has changed, so we can consider that
2626 the executable we're debugging has changed too. */
2627 observer_notify_executable_changed ();
2628 }
2629 }
2630 \f
2631
2632 struct filename_language
2633 {
2634 filename_language (const std::string &ext_, enum language lang_)
2635 : ext (ext_), lang (lang_)
2636 {}
2637
2638 std::string ext;
2639 enum language lang;
2640 };
2641
2642 static std::vector<filename_language> filename_language_table;
2643
2644 /* See symfile.h. */
2645
2646 void
2647 add_filename_language (const char *ext, enum language lang)
2648 {
2649 filename_language_table.emplace_back (ext, lang);
2650 }
2651
2652 static char *ext_args;
2653 static void
2654 show_ext_args (struct ui_file *file, int from_tty,
2655 struct cmd_list_element *c, const char *value)
2656 {
2657 fprintf_filtered (file,
2658 _("Mapping between filename extension "
2659 "and source language is \"%s\".\n"),
2660 value);
2661 }
2662
2663 static void
2664 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2665 {
2666 char *cp = ext_args;
2667 enum language lang;
2668
2669 /* First arg is filename extension, starting with '.' */
2670 if (*cp != '.')
2671 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2672
2673 /* Find end of first arg. */
2674 while (*cp && !isspace (*cp))
2675 cp++;
2676
2677 if (*cp == '\0')
2678 error (_("'%s': two arguments required -- "
2679 "filename extension and language"),
2680 ext_args);
2681
2682 /* Null-terminate first arg. */
2683 *cp++ = '\0';
2684
2685 /* Find beginning of second arg, which should be a source language. */
2686 cp = skip_spaces (cp);
2687
2688 if (*cp == '\0')
2689 error (_("'%s': two arguments required -- "
2690 "filename extension and language"),
2691 ext_args);
2692
2693 /* Lookup the language from among those we know. */
2694 lang = language_enum (cp);
2695
2696 auto it = filename_language_table.begin ();
2697 /* Now lookup the filename extension: do we already know it? */
2698 for (; it != filename_language_table.end (); it++)
2699 {
2700 if (it->ext == ext_args)
2701 break;
2702 }
2703
2704 if (it == filename_language_table.end ())
2705 {
2706 /* New file extension. */
2707 add_filename_language (ext_args, lang);
2708 }
2709 else
2710 {
2711 /* Redefining a previously known filename extension. */
2712
2713 /* if (from_tty) */
2714 /* query ("Really make files of type %s '%s'?", */
2715 /* ext_args, language_str (lang)); */
2716
2717 it->lang = lang;
2718 }
2719 }
2720
2721 static void
2722 info_ext_lang_command (char *args, int from_tty)
2723 {
2724 printf_filtered (_("Filename extensions and the languages they represent:"));
2725 printf_filtered ("\n\n");
2726 for (const filename_language &entry : filename_language_table)
2727 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2728 language_str (entry.lang));
2729 }
2730
2731 enum language
2732 deduce_language_from_filename (const char *filename)
2733 {
2734 const char *cp;
2735
2736 if (filename != NULL)
2737 if ((cp = strrchr (filename, '.')) != NULL)
2738 {
2739 for (const filename_language &entry : filename_language_table)
2740 if (entry.ext == cp)
2741 return entry.lang;
2742 }
2743
2744 return language_unknown;
2745 }
2746 \f
2747 /* Allocate and initialize a new symbol table.
2748 CUST is from the result of allocate_compunit_symtab. */
2749
2750 struct symtab *
2751 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2752 {
2753 struct objfile *objfile = cust->objfile;
2754 struct symtab *symtab
2755 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2756
2757 symtab->filename
2758 = (const char *) bcache (filename, strlen (filename) + 1,
2759 objfile->per_bfd->filename_cache);
2760 symtab->fullname = NULL;
2761 symtab->language = deduce_language_from_filename (filename);
2762
2763 /* This can be very verbose with lots of headers.
2764 Only print at higher debug levels. */
2765 if (symtab_create_debug >= 2)
2766 {
2767 /* Be a bit clever with debugging messages, and don't print objfile
2768 every time, only when it changes. */
2769 static char *last_objfile_name = NULL;
2770
2771 if (last_objfile_name == NULL
2772 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2773 {
2774 xfree (last_objfile_name);
2775 last_objfile_name = xstrdup (objfile_name (objfile));
2776 fprintf_unfiltered (gdb_stdlog,
2777 "Creating one or more symtabs for objfile %s ...\n",
2778 last_objfile_name);
2779 }
2780 fprintf_unfiltered (gdb_stdlog,
2781 "Created symtab %s for module %s.\n",
2782 host_address_to_string (symtab), filename);
2783 }
2784
2785 /* Add it to CUST's list of symtabs. */
2786 if (cust->filetabs == NULL)
2787 {
2788 cust->filetabs = symtab;
2789 cust->last_filetab = symtab;
2790 }
2791 else
2792 {
2793 cust->last_filetab->next = symtab;
2794 cust->last_filetab = symtab;
2795 }
2796
2797 /* Backlink to the containing compunit symtab. */
2798 symtab->compunit_symtab = cust;
2799
2800 return symtab;
2801 }
2802
2803 /* Allocate and initialize a new compunit.
2804 NAME is the name of the main source file, if there is one, or some
2805 descriptive text if there are no source files. */
2806
2807 struct compunit_symtab *
2808 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2809 {
2810 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2811 struct compunit_symtab);
2812 const char *saved_name;
2813
2814 cu->objfile = objfile;
2815
2816 /* The name we record here is only for display/debugging purposes.
2817 Just save the basename to avoid path issues (too long for display,
2818 relative vs absolute, etc.). */
2819 saved_name = lbasename (name);
2820 cu->name
2821 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2822 strlen (saved_name));
2823
2824 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2825
2826 if (symtab_create_debug)
2827 {
2828 fprintf_unfiltered (gdb_stdlog,
2829 "Created compunit symtab %s for %s.\n",
2830 host_address_to_string (cu),
2831 cu->name);
2832 }
2833
2834 return cu;
2835 }
2836
2837 /* Hook CU to the objfile it comes from. */
2838
2839 void
2840 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2841 {
2842 cu->next = cu->objfile->compunit_symtabs;
2843 cu->objfile->compunit_symtabs = cu;
2844 }
2845 \f
2846
2847 /* Reset all data structures in gdb which may contain references to
2848 symbol table data. */
2849
2850 void
2851 clear_symtab_users (symfile_add_flags add_flags)
2852 {
2853 /* Someday, we should do better than this, by only blowing away
2854 the things that really need to be blown. */
2855
2856 /* Clear the "current" symtab first, because it is no longer valid.
2857 breakpoint_re_set may try to access the current symtab. */
2858 clear_current_source_symtab_and_line ();
2859
2860 clear_displays ();
2861 clear_last_displayed_sal ();
2862 clear_pc_function_cache ();
2863 observer_notify_new_objfile (NULL);
2864
2865 /* Clear globals which might have pointed into a removed objfile.
2866 FIXME: It's not clear which of these are supposed to persist
2867 between expressions and which ought to be reset each time. */
2868 expression_context_block = NULL;
2869 innermost_block = NULL;
2870
2871 /* Varobj may refer to old symbols, perform a cleanup. */
2872 varobj_invalidate ();
2873
2874 /* Now that the various caches have been cleared, we can re_set
2875 our breakpoints without risking it using stale data. */
2876 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2877 breakpoint_re_set ();
2878 }
2879
2880 static void
2881 clear_symtab_users_cleanup (void *ignore)
2882 {
2883 clear_symtab_users (0);
2884 }
2885 \f
2886 /* OVERLAYS:
2887 The following code implements an abstraction for debugging overlay sections.
2888
2889 The target model is as follows:
2890 1) The gnu linker will permit multiple sections to be mapped into the
2891 same VMA, each with its own unique LMA (or load address).
2892 2) It is assumed that some runtime mechanism exists for mapping the
2893 sections, one by one, from the load address into the VMA address.
2894 3) This code provides a mechanism for gdb to keep track of which
2895 sections should be considered to be mapped from the VMA to the LMA.
2896 This information is used for symbol lookup, and memory read/write.
2897 For instance, if a section has been mapped then its contents
2898 should be read from the VMA, otherwise from the LMA.
2899
2900 Two levels of debugger support for overlays are available. One is
2901 "manual", in which the debugger relies on the user to tell it which
2902 overlays are currently mapped. This level of support is
2903 implemented entirely in the core debugger, and the information about
2904 whether a section is mapped is kept in the objfile->obj_section table.
2905
2906 The second level of support is "automatic", and is only available if
2907 the target-specific code provides functionality to read the target's
2908 overlay mapping table, and translate its contents for the debugger
2909 (by updating the mapped state information in the obj_section tables).
2910
2911 The interface is as follows:
2912 User commands:
2913 overlay map <name> -- tell gdb to consider this section mapped
2914 overlay unmap <name> -- tell gdb to consider this section unmapped
2915 overlay list -- list the sections that GDB thinks are mapped
2916 overlay read-target -- get the target's state of what's mapped
2917 overlay off/manual/auto -- set overlay debugging state
2918 Functional interface:
2919 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2920 section, return that section.
2921 find_pc_overlay(pc): find any overlay section that contains
2922 the pc, either in its VMA or its LMA
2923 section_is_mapped(sect): true if overlay is marked as mapped
2924 section_is_overlay(sect): true if section's VMA != LMA
2925 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2926 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2927 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2928 overlay_mapped_address(...): map an address from section's LMA to VMA
2929 overlay_unmapped_address(...): map an address from section's VMA to LMA
2930 symbol_overlayed_address(...): Return a "current" address for symbol:
2931 either in VMA or LMA depending on whether
2932 the symbol's section is currently mapped. */
2933
2934 /* Overlay debugging state: */
2935
2936 enum overlay_debugging_state overlay_debugging = ovly_off;
2937 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2938
2939 /* Function: section_is_overlay (SECTION)
2940 Returns true if SECTION has VMA not equal to LMA, ie.
2941 SECTION is loaded at an address different from where it will "run". */
2942
2943 int
2944 section_is_overlay (struct obj_section *section)
2945 {
2946 if (overlay_debugging && section)
2947 {
2948 bfd *abfd = section->objfile->obfd;
2949 asection *bfd_section = section->the_bfd_section;
2950
2951 if (bfd_section_lma (abfd, bfd_section) != 0
2952 && bfd_section_lma (abfd, bfd_section)
2953 != bfd_section_vma (abfd, bfd_section))
2954 return 1;
2955 }
2956
2957 return 0;
2958 }
2959
2960 /* Function: overlay_invalidate_all (void)
2961 Invalidate the mapped state of all overlay sections (mark it as stale). */
2962
2963 static void
2964 overlay_invalidate_all (void)
2965 {
2966 struct objfile *objfile;
2967 struct obj_section *sect;
2968
2969 ALL_OBJSECTIONS (objfile, sect)
2970 if (section_is_overlay (sect))
2971 sect->ovly_mapped = -1;
2972 }
2973
2974 /* Function: section_is_mapped (SECTION)
2975 Returns true if section is an overlay, and is currently mapped.
2976
2977 Access to the ovly_mapped flag is restricted to this function, so
2978 that we can do automatic update. If the global flag
2979 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2980 overlay_invalidate_all. If the mapped state of the particular
2981 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2982
2983 int
2984 section_is_mapped (struct obj_section *osect)
2985 {
2986 struct gdbarch *gdbarch;
2987
2988 if (osect == 0 || !section_is_overlay (osect))
2989 return 0;
2990
2991 switch (overlay_debugging)
2992 {
2993 default:
2994 case ovly_off:
2995 return 0; /* overlay debugging off */
2996 case ovly_auto: /* overlay debugging automatic */
2997 /* Unles there is a gdbarch_overlay_update function,
2998 there's really nothing useful to do here (can't really go auto). */
2999 gdbarch = get_objfile_arch (osect->objfile);
3000 if (gdbarch_overlay_update_p (gdbarch))
3001 {
3002 if (overlay_cache_invalid)
3003 {
3004 overlay_invalidate_all ();
3005 overlay_cache_invalid = 0;
3006 }
3007 if (osect->ovly_mapped == -1)
3008 gdbarch_overlay_update (gdbarch, osect);
3009 }
3010 /* fall thru to manual case */
3011 case ovly_on: /* overlay debugging manual */
3012 return osect->ovly_mapped == 1;
3013 }
3014 }
3015
3016 /* Function: pc_in_unmapped_range
3017 If PC falls into the lma range of SECTION, return true, else false. */
3018
3019 CORE_ADDR
3020 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3021 {
3022 if (section_is_overlay (section))
3023 {
3024 bfd *abfd = section->objfile->obfd;
3025 asection *bfd_section = section->the_bfd_section;
3026
3027 /* We assume the LMA is relocated by the same offset as the VMA. */
3028 bfd_vma size = bfd_get_section_size (bfd_section);
3029 CORE_ADDR offset = obj_section_offset (section);
3030
3031 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3032 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3033 return 1;
3034 }
3035
3036 return 0;
3037 }
3038
3039 /* Function: pc_in_mapped_range
3040 If PC falls into the vma range of SECTION, return true, else false. */
3041
3042 CORE_ADDR
3043 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3044 {
3045 if (section_is_overlay (section))
3046 {
3047 if (obj_section_addr (section) <= pc
3048 && pc < obj_section_endaddr (section))
3049 return 1;
3050 }
3051
3052 return 0;
3053 }
3054
3055 /* Return true if the mapped ranges of sections A and B overlap, false
3056 otherwise. */
3057
3058 static int
3059 sections_overlap (struct obj_section *a, struct obj_section *b)
3060 {
3061 CORE_ADDR a_start = obj_section_addr (a);
3062 CORE_ADDR a_end = obj_section_endaddr (a);
3063 CORE_ADDR b_start = obj_section_addr (b);
3064 CORE_ADDR b_end = obj_section_endaddr (b);
3065
3066 return (a_start < b_end && b_start < a_end);
3067 }
3068
3069 /* Function: overlay_unmapped_address (PC, SECTION)
3070 Returns the address corresponding to PC in the unmapped (load) range.
3071 May be the same as PC. */
3072
3073 CORE_ADDR
3074 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3075 {
3076 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3077 {
3078 bfd *abfd = section->objfile->obfd;
3079 asection *bfd_section = section->the_bfd_section;
3080
3081 return pc + bfd_section_lma (abfd, bfd_section)
3082 - bfd_section_vma (abfd, bfd_section);
3083 }
3084
3085 return pc;
3086 }
3087
3088 /* Function: overlay_mapped_address (PC, SECTION)
3089 Returns the address corresponding to PC in the mapped (runtime) range.
3090 May be the same as PC. */
3091
3092 CORE_ADDR
3093 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3094 {
3095 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3096 {
3097 bfd *abfd = section->objfile->obfd;
3098 asection *bfd_section = section->the_bfd_section;
3099
3100 return pc + bfd_section_vma (abfd, bfd_section)
3101 - bfd_section_lma (abfd, bfd_section);
3102 }
3103
3104 return pc;
3105 }
3106
3107 /* Function: symbol_overlayed_address
3108 Return one of two addresses (relative to the VMA or to the LMA),
3109 depending on whether the section is mapped or not. */
3110
3111 CORE_ADDR
3112 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3113 {
3114 if (overlay_debugging)
3115 {
3116 /* If the symbol has no section, just return its regular address. */
3117 if (section == 0)
3118 return address;
3119 /* If the symbol's section is not an overlay, just return its
3120 address. */
3121 if (!section_is_overlay (section))
3122 return address;
3123 /* If the symbol's section is mapped, just return its address. */
3124 if (section_is_mapped (section))
3125 return address;
3126 /*
3127 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3128 * then return its LOADED address rather than its vma address!!
3129 */
3130 return overlay_unmapped_address (address, section);
3131 }
3132 return address;
3133 }
3134
3135 /* Function: find_pc_overlay (PC)
3136 Return the best-match overlay section for PC:
3137 If PC matches a mapped overlay section's VMA, return that section.
3138 Else if PC matches an unmapped section's VMA, return that section.
3139 Else if PC matches an unmapped section's LMA, return that section. */
3140
3141 struct obj_section *
3142 find_pc_overlay (CORE_ADDR pc)
3143 {
3144 struct objfile *objfile;
3145 struct obj_section *osect, *best_match = NULL;
3146
3147 if (overlay_debugging)
3148 {
3149 ALL_OBJSECTIONS (objfile, osect)
3150 if (section_is_overlay (osect))
3151 {
3152 if (pc_in_mapped_range (pc, osect))
3153 {
3154 if (section_is_mapped (osect))
3155 return osect;
3156 else
3157 best_match = osect;
3158 }
3159 else if (pc_in_unmapped_range (pc, osect))
3160 best_match = osect;
3161 }
3162 }
3163 return best_match;
3164 }
3165
3166 /* Function: find_pc_mapped_section (PC)
3167 If PC falls into the VMA address range of an overlay section that is
3168 currently marked as MAPPED, return that section. Else return NULL. */
3169
3170 struct obj_section *
3171 find_pc_mapped_section (CORE_ADDR pc)
3172 {
3173 struct objfile *objfile;
3174 struct obj_section *osect;
3175
3176 if (overlay_debugging)
3177 {
3178 ALL_OBJSECTIONS (objfile, osect)
3179 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3180 return osect;
3181 }
3182
3183 return NULL;
3184 }
3185
3186 /* Function: list_overlays_command
3187 Print a list of mapped sections and their PC ranges. */
3188
3189 static void
3190 list_overlays_command (const char *args, int from_tty)
3191 {
3192 int nmapped = 0;
3193 struct objfile *objfile;
3194 struct obj_section *osect;
3195
3196 if (overlay_debugging)
3197 {
3198 ALL_OBJSECTIONS (objfile, osect)
3199 if (section_is_mapped (osect))
3200 {
3201 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3202 const char *name;
3203 bfd_vma lma, vma;
3204 int size;
3205
3206 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3207 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3208 size = bfd_get_section_size (osect->the_bfd_section);
3209 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3210
3211 printf_filtered ("Section %s, loaded at ", name);
3212 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3213 puts_filtered (" - ");
3214 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3215 printf_filtered (", mapped at ");
3216 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3217 puts_filtered (" - ");
3218 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3219 puts_filtered ("\n");
3220
3221 nmapped++;
3222 }
3223 }
3224 if (nmapped == 0)
3225 printf_filtered (_("No sections are mapped.\n"));
3226 }
3227
3228 /* Function: map_overlay_command
3229 Mark the named section as mapped (ie. residing at its VMA address). */
3230
3231 static void
3232 map_overlay_command (const char *args, int from_tty)
3233 {
3234 struct objfile *objfile, *objfile2;
3235 struct obj_section *sec, *sec2;
3236
3237 if (!overlay_debugging)
3238 error (_("Overlay debugging not enabled. Use "
3239 "either the 'overlay auto' or\n"
3240 "the 'overlay manual' command."));
3241
3242 if (args == 0 || *args == 0)
3243 error (_("Argument required: name of an overlay section"));
3244
3245 /* First, find a section matching the user supplied argument. */
3246 ALL_OBJSECTIONS (objfile, sec)
3247 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3248 {
3249 /* Now, check to see if the section is an overlay. */
3250 if (!section_is_overlay (sec))
3251 continue; /* not an overlay section */
3252
3253 /* Mark the overlay as "mapped". */
3254 sec->ovly_mapped = 1;
3255
3256 /* Next, make a pass and unmap any sections that are
3257 overlapped by this new section: */
3258 ALL_OBJSECTIONS (objfile2, sec2)
3259 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3260 {
3261 if (info_verbose)
3262 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3263 bfd_section_name (objfile->obfd,
3264 sec2->the_bfd_section));
3265 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3266 }
3267 return;
3268 }
3269 error (_("No overlay section called %s"), args);
3270 }
3271
3272 /* Function: unmap_overlay_command
3273 Mark the overlay section as unmapped
3274 (ie. resident in its LMA address range, rather than the VMA range). */
3275
3276 static void
3277 unmap_overlay_command (const char *args, int from_tty)
3278 {
3279 struct objfile *objfile;
3280 struct obj_section *sec = NULL;
3281
3282 if (!overlay_debugging)
3283 error (_("Overlay debugging not enabled. "
3284 "Use either the 'overlay auto' or\n"
3285 "the 'overlay manual' command."));
3286
3287 if (args == 0 || *args == 0)
3288 error (_("Argument required: name of an overlay section"));
3289
3290 /* First, find a section matching the user supplied argument. */
3291 ALL_OBJSECTIONS (objfile, sec)
3292 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3293 {
3294 if (!sec->ovly_mapped)
3295 error (_("Section %s is not mapped"), args);
3296 sec->ovly_mapped = 0;
3297 return;
3298 }
3299 error (_("No overlay section called %s"), args);
3300 }
3301
3302 /* Function: overlay_auto_command
3303 A utility command to turn on overlay debugging.
3304 Possibly this should be done via a set/show command. */
3305
3306 static void
3307 overlay_auto_command (const char *args, int from_tty)
3308 {
3309 overlay_debugging = ovly_auto;
3310 enable_overlay_breakpoints ();
3311 if (info_verbose)
3312 printf_unfiltered (_("Automatic overlay debugging enabled."));
3313 }
3314
3315 /* Function: overlay_manual_command
3316 A utility command to turn on overlay debugging.
3317 Possibly this should be done via a set/show command. */
3318
3319 static void
3320 overlay_manual_command (const char *args, int from_tty)
3321 {
3322 overlay_debugging = ovly_on;
3323 disable_overlay_breakpoints ();
3324 if (info_verbose)
3325 printf_unfiltered (_("Overlay debugging enabled."));
3326 }
3327
3328 /* Function: overlay_off_command
3329 A utility command to turn on overlay debugging.
3330 Possibly this should be done via a set/show command. */
3331
3332 static void
3333 overlay_off_command (const char *args, int from_tty)
3334 {
3335 overlay_debugging = ovly_off;
3336 disable_overlay_breakpoints ();
3337 if (info_verbose)
3338 printf_unfiltered (_("Overlay debugging disabled."));
3339 }
3340
3341 static void
3342 overlay_load_command (const char *args, int from_tty)
3343 {
3344 struct gdbarch *gdbarch = get_current_arch ();
3345
3346 if (gdbarch_overlay_update_p (gdbarch))
3347 gdbarch_overlay_update (gdbarch, NULL);
3348 else
3349 error (_("This target does not know how to read its overlay state."));
3350 }
3351
3352 /* Function: overlay_command
3353 A place-holder for a mis-typed command. */
3354
3355 /* Command list chain containing all defined "overlay" subcommands. */
3356 static struct cmd_list_element *overlaylist;
3357
3358 static void
3359 overlay_command (const char *args, int from_tty)
3360 {
3361 printf_unfiltered
3362 ("\"overlay\" must be followed by the name of an overlay command.\n");
3363 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3364 }
3365
3366 /* Target Overlays for the "Simplest" overlay manager:
3367
3368 This is GDB's default target overlay layer. It works with the
3369 minimal overlay manager supplied as an example by Cygnus. The
3370 entry point is via a function pointer "gdbarch_overlay_update",
3371 so targets that use a different runtime overlay manager can
3372 substitute their own overlay_update function and take over the
3373 function pointer.
3374
3375 The overlay_update function pokes around in the target's data structures
3376 to see what overlays are mapped, and updates GDB's overlay mapping with
3377 this information.
3378
3379 In this simple implementation, the target data structures are as follows:
3380 unsigned _novlys; /# number of overlay sections #/
3381 unsigned _ovly_table[_novlys][4] = {
3382 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3383 {..., ..., ..., ...},
3384 }
3385 unsigned _novly_regions; /# number of overlay regions #/
3386 unsigned _ovly_region_table[_novly_regions][3] = {
3387 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3388 {..., ..., ...},
3389 }
3390 These functions will attempt to update GDB's mappedness state in the
3391 symbol section table, based on the target's mappedness state.
3392
3393 To do this, we keep a cached copy of the target's _ovly_table, and
3394 attempt to detect when the cached copy is invalidated. The main
3395 entry point is "simple_overlay_update(SECT), which looks up SECT in
3396 the cached table and re-reads only the entry for that section from
3397 the target (whenever possible). */
3398
3399 /* Cached, dynamically allocated copies of the target data structures: */
3400 static unsigned (*cache_ovly_table)[4] = 0;
3401 static unsigned cache_novlys = 0;
3402 static CORE_ADDR cache_ovly_table_base = 0;
3403 enum ovly_index
3404 {
3405 VMA, OSIZE, LMA, MAPPED
3406 };
3407
3408 /* Throw away the cached copy of _ovly_table. */
3409
3410 static void
3411 simple_free_overlay_table (void)
3412 {
3413 if (cache_ovly_table)
3414 xfree (cache_ovly_table);
3415 cache_novlys = 0;
3416 cache_ovly_table = NULL;
3417 cache_ovly_table_base = 0;
3418 }
3419
3420 /* Read an array of ints of size SIZE from the target into a local buffer.
3421 Convert to host order. int LEN is number of ints. */
3422
3423 static void
3424 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3425 int len, int size, enum bfd_endian byte_order)
3426 {
3427 /* FIXME (alloca): Not safe if array is very large. */
3428 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3429 int i;
3430
3431 read_memory (memaddr, buf, len * size);
3432 for (i = 0; i < len; i++)
3433 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3434 }
3435
3436 /* Find and grab a copy of the target _ovly_table
3437 (and _novlys, which is needed for the table's size). */
3438
3439 static int
3440 simple_read_overlay_table (void)
3441 {
3442 struct bound_minimal_symbol novlys_msym;
3443 struct bound_minimal_symbol ovly_table_msym;
3444 struct gdbarch *gdbarch;
3445 int word_size;
3446 enum bfd_endian byte_order;
3447
3448 simple_free_overlay_table ();
3449 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3450 if (! novlys_msym.minsym)
3451 {
3452 error (_("Error reading inferior's overlay table: "
3453 "couldn't find `_novlys' variable\n"
3454 "in inferior. Use `overlay manual' mode."));
3455 return 0;
3456 }
3457
3458 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3459 if (! ovly_table_msym.minsym)
3460 {
3461 error (_("Error reading inferior's overlay table: couldn't find "
3462 "`_ovly_table' array\n"
3463 "in inferior. Use `overlay manual' mode."));
3464 return 0;
3465 }
3466
3467 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3468 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3469 byte_order = gdbarch_byte_order (gdbarch);
3470
3471 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3472 4, byte_order);
3473 cache_ovly_table
3474 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3475 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3476 read_target_long_array (cache_ovly_table_base,
3477 (unsigned int *) cache_ovly_table,
3478 cache_novlys * 4, word_size, byte_order);
3479
3480 return 1; /* SUCCESS */
3481 }
3482
3483 /* Function: simple_overlay_update_1
3484 A helper function for simple_overlay_update. Assuming a cached copy
3485 of _ovly_table exists, look through it to find an entry whose vma,
3486 lma and size match those of OSECT. Re-read the entry and make sure
3487 it still matches OSECT (else the table may no longer be valid).
3488 Set OSECT's mapped state to match the entry. Return: 1 for
3489 success, 0 for failure. */
3490
3491 static int
3492 simple_overlay_update_1 (struct obj_section *osect)
3493 {
3494 int i;
3495 bfd *obfd = osect->objfile->obfd;
3496 asection *bsect = osect->the_bfd_section;
3497 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3498 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3499 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3500
3501 for (i = 0; i < cache_novlys; i++)
3502 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3503 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3504 {
3505 read_target_long_array (cache_ovly_table_base + i * word_size,
3506 (unsigned int *) cache_ovly_table[i],
3507 4, word_size, byte_order);
3508 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3509 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3510 {
3511 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3512 return 1;
3513 }
3514 else /* Warning! Warning! Target's ovly table has changed! */
3515 return 0;
3516 }
3517 return 0;
3518 }
3519
3520 /* Function: simple_overlay_update
3521 If OSECT is NULL, then update all sections' mapped state
3522 (after re-reading the entire target _ovly_table).
3523 If OSECT is non-NULL, then try to find a matching entry in the
3524 cached ovly_table and update only OSECT's mapped state.
3525 If a cached entry can't be found or the cache isn't valid, then
3526 re-read the entire cache, and go ahead and update all sections. */
3527
3528 void
3529 simple_overlay_update (struct obj_section *osect)
3530 {
3531 struct objfile *objfile;
3532
3533 /* Were we given an osect to look up? NULL means do all of them. */
3534 if (osect)
3535 /* Have we got a cached copy of the target's overlay table? */
3536 if (cache_ovly_table != NULL)
3537 {
3538 /* Does its cached location match what's currently in the
3539 symtab? */
3540 struct bound_minimal_symbol minsym
3541 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3542
3543 if (minsym.minsym == NULL)
3544 error (_("Error reading inferior's overlay table: couldn't "
3545 "find `_ovly_table' array\n"
3546 "in inferior. Use `overlay manual' mode."));
3547
3548 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3549 /* Then go ahead and try to look up this single section in
3550 the cache. */
3551 if (simple_overlay_update_1 (osect))
3552 /* Found it! We're done. */
3553 return;
3554 }
3555
3556 /* Cached table no good: need to read the entire table anew.
3557 Or else we want all the sections, in which case it's actually
3558 more efficient to read the whole table in one block anyway. */
3559
3560 if (! simple_read_overlay_table ())
3561 return;
3562
3563 /* Now may as well update all sections, even if only one was requested. */
3564 ALL_OBJSECTIONS (objfile, osect)
3565 if (section_is_overlay (osect))
3566 {
3567 int i;
3568 bfd *obfd = osect->objfile->obfd;
3569 asection *bsect = osect->the_bfd_section;
3570
3571 for (i = 0; i < cache_novlys; i++)
3572 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3573 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3574 { /* obj_section matches i'th entry in ovly_table. */
3575 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3576 break; /* finished with inner for loop: break out. */
3577 }
3578 }
3579 }
3580
3581 /* Set the output sections and output offsets for section SECTP in
3582 ABFD. The relocation code in BFD will read these offsets, so we
3583 need to be sure they're initialized. We map each section to itself,
3584 with no offset; this means that SECTP->vma will be honored. */
3585
3586 static void
3587 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3588 {
3589 sectp->output_section = sectp;
3590 sectp->output_offset = 0;
3591 }
3592
3593 /* Default implementation for sym_relocate. */
3594
3595 bfd_byte *
3596 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3597 bfd_byte *buf)
3598 {
3599 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3600 DWO file. */
3601 bfd *abfd = sectp->owner;
3602
3603 /* We're only interested in sections with relocation
3604 information. */
3605 if ((sectp->flags & SEC_RELOC) == 0)
3606 return NULL;
3607
3608 /* We will handle section offsets properly elsewhere, so relocate as if
3609 all sections begin at 0. */
3610 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3611
3612 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3613 }
3614
3615 /* Relocate the contents of a debug section SECTP in ABFD. The
3616 contents are stored in BUF if it is non-NULL, or returned in a
3617 malloc'd buffer otherwise.
3618
3619 For some platforms and debug info formats, shared libraries contain
3620 relocations against the debug sections (particularly for DWARF-2;
3621 one affected platform is PowerPC GNU/Linux, although it depends on
3622 the version of the linker in use). Also, ELF object files naturally
3623 have unresolved relocations for their debug sections. We need to apply
3624 the relocations in order to get the locations of symbols correct.
3625 Another example that may require relocation processing, is the
3626 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3627 debug section. */
3628
3629 bfd_byte *
3630 symfile_relocate_debug_section (struct objfile *objfile,
3631 asection *sectp, bfd_byte *buf)
3632 {
3633 gdb_assert (objfile->sf->sym_relocate);
3634
3635 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3636 }
3637
3638 struct symfile_segment_data *
3639 get_symfile_segment_data (bfd *abfd)
3640 {
3641 const struct sym_fns *sf = find_sym_fns (abfd);
3642
3643 if (sf == NULL)
3644 return NULL;
3645
3646 return sf->sym_segments (abfd);
3647 }
3648
3649 void
3650 free_symfile_segment_data (struct symfile_segment_data *data)
3651 {
3652 xfree (data->segment_bases);
3653 xfree (data->segment_sizes);
3654 xfree (data->segment_info);
3655 xfree (data);
3656 }
3657
3658 /* Given:
3659 - DATA, containing segment addresses from the object file ABFD, and
3660 the mapping from ABFD's sections onto the segments that own them,
3661 and
3662 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3663 segment addresses reported by the target,
3664 store the appropriate offsets for each section in OFFSETS.
3665
3666 If there are fewer entries in SEGMENT_BASES than there are segments
3667 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3668
3669 If there are more entries, then ignore the extra. The target may
3670 not be able to distinguish between an empty data segment and a
3671 missing data segment; a missing text segment is less plausible. */
3672
3673 int
3674 symfile_map_offsets_to_segments (bfd *abfd,
3675 const struct symfile_segment_data *data,
3676 struct section_offsets *offsets,
3677 int num_segment_bases,
3678 const CORE_ADDR *segment_bases)
3679 {
3680 int i;
3681 asection *sect;
3682
3683 /* It doesn't make sense to call this function unless you have some
3684 segment base addresses. */
3685 gdb_assert (num_segment_bases > 0);
3686
3687 /* If we do not have segment mappings for the object file, we
3688 can not relocate it by segments. */
3689 gdb_assert (data != NULL);
3690 gdb_assert (data->num_segments > 0);
3691
3692 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3693 {
3694 int which = data->segment_info[i];
3695
3696 gdb_assert (0 <= which && which <= data->num_segments);
3697
3698 /* Don't bother computing offsets for sections that aren't
3699 loaded as part of any segment. */
3700 if (! which)
3701 continue;
3702
3703 /* Use the last SEGMENT_BASES entry as the address of any extra
3704 segments mentioned in DATA->segment_info. */
3705 if (which > num_segment_bases)
3706 which = num_segment_bases;
3707
3708 offsets->offsets[i] = (segment_bases[which - 1]
3709 - data->segment_bases[which - 1]);
3710 }
3711
3712 return 1;
3713 }
3714
3715 static void
3716 symfile_find_segment_sections (struct objfile *objfile)
3717 {
3718 bfd *abfd = objfile->obfd;
3719 int i;
3720 asection *sect;
3721 struct symfile_segment_data *data;
3722
3723 data = get_symfile_segment_data (objfile->obfd);
3724 if (data == NULL)
3725 return;
3726
3727 if (data->num_segments != 1 && data->num_segments != 2)
3728 {
3729 free_symfile_segment_data (data);
3730 return;
3731 }
3732
3733 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3734 {
3735 int which = data->segment_info[i];
3736
3737 if (which == 1)
3738 {
3739 if (objfile->sect_index_text == -1)
3740 objfile->sect_index_text = sect->index;
3741
3742 if (objfile->sect_index_rodata == -1)
3743 objfile->sect_index_rodata = sect->index;
3744 }
3745 else if (which == 2)
3746 {
3747 if (objfile->sect_index_data == -1)
3748 objfile->sect_index_data = sect->index;
3749
3750 if (objfile->sect_index_bss == -1)
3751 objfile->sect_index_bss = sect->index;
3752 }
3753 }
3754
3755 free_symfile_segment_data (data);
3756 }
3757
3758 /* Listen for free_objfile events. */
3759
3760 static void
3761 symfile_free_objfile (struct objfile *objfile)
3762 {
3763 /* Remove the target sections owned by this objfile. */
3764 if (objfile != NULL)
3765 remove_target_sections ((void *) objfile);
3766 }
3767
3768 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3769 Expand all symtabs that match the specified criteria.
3770 See quick_symbol_functions.expand_symtabs_matching for details. */
3771
3772 void
3773 expand_symtabs_matching
3774 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3775 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3776 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3777 enum search_domain kind)
3778 {
3779 struct objfile *objfile;
3780
3781 ALL_OBJFILES (objfile)
3782 {
3783 if (objfile->sf)
3784 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3785 symbol_matcher,
3786 expansion_notify, kind);
3787 }
3788 }
3789
3790 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3791 Map function FUN over every file.
3792 See quick_symbol_functions.map_symbol_filenames for details. */
3793
3794 void
3795 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3796 int need_fullname)
3797 {
3798 struct objfile *objfile;
3799
3800 ALL_OBJFILES (objfile)
3801 {
3802 if (objfile->sf)
3803 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3804 need_fullname);
3805 }
3806 }
3807
3808 #if GDB_SELF_TEST
3809
3810 namespace selftests {
3811 namespace filename_language {
3812
3813 static void test_filename_language ()
3814 {
3815 /* This test messes up the filename_language_table global. */
3816 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3817
3818 /* Test deducing an unknown extension. */
3819 language lang = deduce_language_from_filename ("myfile.blah");
3820 SELF_CHECK (lang == language_unknown);
3821
3822 /* Test deducing a known extension. */
3823 lang = deduce_language_from_filename ("myfile.c");
3824 SELF_CHECK (lang == language_c);
3825
3826 /* Test adding a new extension using the internal API. */
3827 add_filename_language (".blah", language_pascal);
3828 lang = deduce_language_from_filename ("myfile.blah");
3829 SELF_CHECK (lang == language_pascal);
3830 }
3831
3832 static void
3833 test_set_ext_lang_command ()
3834 {
3835 /* This test messes up the filename_language_table global. */
3836 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3837
3838 /* Confirm that the .hello extension is not known. */
3839 language lang = deduce_language_from_filename ("cake.hello");
3840 SELF_CHECK (lang == language_unknown);
3841
3842 /* Test adding a new extension using the CLI command. */
3843 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3844 ext_args = args_holder.get ();
3845 set_ext_lang_command (NULL, 1, NULL);
3846
3847 lang = deduce_language_from_filename ("cake.hello");
3848 SELF_CHECK (lang == language_rust);
3849
3850 /* Test overriding an existing extension using the CLI command. */
3851 int size_before = filename_language_table.size ();
3852 args_holder.reset (xstrdup (".hello pascal"));
3853 ext_args = args_holder.get ();
3854 set_ext_lang_command (NULL, 1, NULL);
3855 int size_after = filename_language_table.size ();
3856
3857 lang = deduce_language_from_filename ("cake.hello");
3858 SELF_CHECK (lang == language_pascal);
3859 SELF_CHECK (size_before == size_after);
3860 }
3861
3862 } /* namespace filename_language */
3863 } /* namespace selftests */
3864
3865 #endif /* GDB_SELF_TEST */
3866
3867 void
3868 _initialize_symfile (void)
3869 {
3870 struct cmd_list_element *c;
3871
3872 observer_attach_free_objfile (symfile_free_objfile);
3873
3874 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3875 Load symbol table from executable file FILE.\n\
3876 The `file' command can also load symbol tables, as well as setting the file\n\
3877 to execute."), &cmdlist);
3878 set_cmd_completer (c, filename_completer);
3879
3880 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3881 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3882 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3883 ...]\nADDR is the starting address of the file's text.\n\
3884 The optional arguments are section-name section-address pairs and\n\
3885 should be specified if the data and bss segments are not contiguous\n\
3886 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3887 &cmdlist);
3888 set_cmd_completer (c, filename_completer);
3889
3890 c = add_cmd ("remove-symbol-file", class_files,
3891 remove_symbol_file_command, _("\
3892 Remove a symbol file added via the add-symbol-file command.\n\
3893 Usage: remove-symbol-file FILENAME\n\
3894 remove-symbol-file -a ADDRESS\n\
3895 The file to remove can be identified by its filename or by an address\n\
3896 that lies within the boundaries of this symbol file in memory."),
3897 &cmdlist);
3898
3899 c = add_cmd ("load", class_files, load_command, _("\
3900 Dynamically load FILE into the running program, and record its symbols\n\
3901 for access from GDB.\n\
3902 An optional load OFFSET may also be given as a literal address.\n\
3903 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3904 on its own.\n\
3905 Usage: load [FILE] [OFFSET]"), &cmdlist);
3906 set_cmd_completer (c, filename_completer);
3907
3908 add_prefix_cmd ("overlay", class_support, overlay_command,
3909 _("Commands for debugging overlays."), &overlaylist,
3910 "overlay ", 0, &cmdlist);
3911
3912 add_com_alias ("ovly", "overlay", class_alias, 1);
3913 add_com_alias ("ov", "overlay", class_alias, 1);
3914
3915 add_cmd ("map-overlay", class_support, map_overlay_command,
3916 _("Assert that an overlay section is mapped."), &overlaylist);
3917
3918 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3919 _("Assert that an overlay section is unmapped."), &overlaylist);
3920
3921 add_cmd ("list-overlays", class_support, list_overlays_command,
3922 _("List mappings of overlay sections."), &overlaylist);
3923
3924 add_cmd ("manual", class_support, overlay_manual_command,
3925 _("Enable overlay debugging."), &overlaylist);
3926 add_cmd ("off", class_support, overlay_off_command,
3927 _("Disable overlay debugging."), &overlaylist);
3928 add_cmd ("auto", class_support, overlay_auto_command,
3929 _("Enable automatic overlay debugging."), &overlaylist);
3930 add_cmd ("load-target", class_support, overlay_load_command,
3931 _("Read the overlay mapping state from the target."), &overlaylist);
3932
3933 /* Filename extension to source language lookup table: */
3934 add_setshow_string_noescape_cmd ("extension-language", class_files,
3935 &ext_args, _("\
3936 Set mapping between filename extension and source language."), _("\
3937 Show mapping between filename extension and source language."), _("\
3938 Usage: set extension-language .foo bar"),
3939 set_ext_lang_command,
3940 show_ext_args,
3941 &setlist, &showlist);
3942
3943 add_info ("extensions", info_ext_lang_command,
3944 _("All filename extensions associated with a source language."));
3945
3946 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3947 &debug_file_directory, _("\
3948 Set the directories where separate debug symbols are searched for."), _("\
3949 Show the directories where separate debug symbols are searched for."), _("\
3950 Separate debug symbols are first searched for in the same\n\
3951 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3952 and lastly at the path of the directory of the binary with\n\
3953 each global debug-file-directory component prepended."),
3954 NULL,
3955 show_debug_file_directory,
3956 &setlist, &showlist);
3957
3958 add_setshow_enum_cmd ("symbol-loading", no_class,
3959 print_symbol_loading_enums, &print_symbol_loading,
3960 _("\
3961 Set printing of symbol loading messages."), _("\
3962 Show printing of symbol loading messages."), _("\
3963 off == turn all messages off\n\
3964 brief == print messages for the executable,\n\
3965 and brief messages for shared libraries\n\
3966 full == print messages for the executable,\n\
3967 and messages for each shared library."),
3968 NULL,
3969 NULL,
3970 &setprintlist, &showprintlist);
3971
3972 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3973 &separate_debug_file_debug, _("\
3974 Set printing of separate debug info file search debug."), _("\
3975 Show printing of separate debug info file search debug."), _("\
3976 When on, GDB prints the searched locations while looking for separate debug \
3977 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3978
3979 #if GDB_SELF_TEST
3980 selftests::register_test
3981 ("filename_language", selftests::filename_language::test_filename_language);
3982 selftests::register_test
3983 ("set_ext_lang_command",
3984 selftests::filename_language::test_set_ext_lang_command);
3985 #endif
3986 }
This page took 0.1097 seconds and 4 git commands to generate.