merge from gcc
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 #include "defs.h"
27 #include "bfdlink.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcore.h"
31 #include "frame.h"
32 #include "target.h"
33 #include "value.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "source.h"
37 #include "gdbcmd.h"
38 #include "breakpoint.h"
39 #include "language.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "inferior.h" /* for write_pc */
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54
55 #include <sys/types.h>
56 #include <fcntl.h>
57 #include "gdb_string.h"
58 #include "gdb_stat.h"
59 #include <ctype.h>
60 #include <time.h>
61 #include <sys/time.h>
62
63 #ifndef O_BINARY
64 #define O_BINARY 0
65 #endif
66
67 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
68 void (*deprecated_show_load_progress) (const char *section,
69 unsigned long section_sent,
70 unsigned long section_size,
71 unsigned long total_sent,
72 unsigned long total_size);
73 void (*deprecated_pre_add_symbol_hook) (const char *);
74 void (*deprecated_post_add_symbol_hook) (void);
75 void (*deprecated_target_new_objfile_hook) (struct objfile *);
76
77 static void clear_symtab_users_cleanup (void *ignore);
78
79 /* Global variables owned by this file */
80 int readnow_symbol_files; /* Read full symbols immediately */
81
82 /* External variables and functions referenced. */
83
84 extern void report_transfer_performance (unsigned long, time_t, time_t);
85
86 /* Functions this file defines */
87
88 #if 0
89 static int simple_read_overlay_region_table (void);
90 static void simple_free_overlay_region_table (void);
91 #endif
92
93 static void set_initial_language (void);
94
95 static void load_command (char *, int);
96
97 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
98
99 static void add_symbol_file_command (char *, int);
100
101 static void add_shared_symbol_files_command (char *, int);
102
103 static void reread_separate_symbols (struct objfile *objfile);
104
105 static void cashier_psymtab (struct partial_symtab *);
106
107 bfd *symfile_bfd_open (char *);
108
109 int get_section_index (struct objfile *, char *);
110
111 static void find_sym_fns (struct objfile *);
112
113 static void decrement_reading_symtab (void *);
114
115 static void overlay_invalidate_all (void);
116
117 static int overlay_is_mapped (struct obj_section *);
118
119 void list_overlays_command (char *, int);
120
121 void map_overlay_command (char *, int);
122
123 void unmap_overlay_command (char *, int);
124
125 static void overlay_auto_command (char *, int);
126
127 static void overlay_manual_command (char *, int);
128
129 static void overlay_off_command (char *, int);
130
131 static void overlay_load_command (char *, int);
132
133 static void overlay_command (char *, int);
134
135 static void simple_free_overlay_table (void);
136
137 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
138
139 static int simple_read_overlay_table (void);
140
141 static int simple_overlay_update_1 (struct obj_section *);
142
143 static void add_filename_language (char *ext, enum language lang);
144
145 static void info_ext_lang_command (char *args, int from_tty);
146
147 static char *find_separate_debug_file (struct objfile *objfile);
148
149 static void init_filename_language_table (void);
150
151 void _initialize_symfile (void);
152
153 /* List of all available sym_fns. On gdb startup, each object file reader
154 calls add_symtab_fns() to register information on each format it is
155 prepared to read. */
156
157 static struct sym_fns *symtab_fns = NULL;
158
159 /* Flag for whether user will be reloading symbols multiple times.
160 Defaults to ON for VxWorks, otherwise OFF. */
161
162 #ifdef SYMBOL_RELOADING_DEFAULT
163 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
164 #else
165 int symbol_reloading = 0;
166 #endif
167 static void
168 show_symbol_reloading (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170 {
171 fprintf_filtered (file, _("\
172 Dynamic symbol table reloading multiple times in one run is %s.\n"),
173 value);
174 }
175
176
177 /* If non-zero, shared library symbols will be added automatically
178 when the inferior is created, new libraries are loaded, or when
179 attaching to the inferior. This is almost always what users will
180 want to have happen; but for very large programs, the startup time
181 will be excessive, and so if this is a problem, the user can clear
182 this flag and then add the shared library symbols as needed. Note
183 that there is a potential for confusion, since if the shared
184 library symbols are not loaded, commands like "info fun" will *not*
185 report all the functions that are actually present. */
186
187 int auto_solib_add = 1;
188
189 /* For systems that support it, a threshold size in megabytes. If
190 automatically adding a new library's symbol table to those already
191 known to the debugger would cause the total shared library symbol
192 size to exceed this threshhold, then the shlib's symbols are not
193 added. The threshold is ignored if the user explicitly asks for a
194 shlib to be added, such as when using the "sharedlibrary"
195 command. */
196
197 int auto_solib_limit;
198 \f
199
200 /* This compares two partial symbols by names, using strcmp_iw_ordered
201 for the comparison. */
202
203 static int
204 compare_psymbols (const void *s1p, const void *s2p)
205 {
206 struct partial_symbol *const *s1 = s1p;
207 struct partial_symbol *const *s2 = s2p;
208
209 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
210 SYMBOL_SEARCH_NAME (*s2));
211 }
212
213 void
214 sort_pst_symbols (struct partial_symtab *pst)
215 {
216 /* Sort the global list; don't sort the static list */
217
218 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
219 pst->n_global_syms, sizeof (struct partial_symbol *),
220 compare_psymbols);
221 }
222
223 /* Make a null terminated copy of the string at PTR with SIZE characters in
224 the obstack pointed to by OBSTACKP . Returns the address of the copy.
225 Note that the string at PTR does not have to be null terminated, I.E. it
226 may be part of a larger string and we are only saving a substring. */
227
228 char *
229 obsavestring (const char *ptr, int size, struct obstack *obstackp)
230 {
231 char *p = (char *) obstack_alloc (obstackp, size + 1);
232 /* Open-coded memcpy--saves function call time. These strings are usually
233 short. FIXME: Is this really still true with a compiler that can
234 inline memcpy? */
235 {
236 const char *p1 = ptr;
237 char *p2 = p;
238 const char *end = ptr + size;
239 while (p1 != end)
240 *p2++ = *p1++;
241 }
242 p[size] = 0;
243 return p;
244 }
245
246 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
247 in the obstack pointed to by OBSTACKP. */
248
249 char *
250 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
251 const char *s3)
252 {
253 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
254 char *val = (char *) obstack_alloc (obstackp, len);
255 strcpy (val, s1);
256 strcat (val, s2);
257 strcat (val, s3);
258 return val;
259 }
260
261 /* True if we are nested inside psymtab_to_symtab. */
262
263 int currently_reading_symtab = 0;
264
265 static void
266 decrement_reading_symtab (void *dummy)
267 {
268 currently_reading_symtab--;
269 }
270
271 /* Get the symbol table that corresponds to a partial_symtab.
272 This is fast after the first time you do it. In fact, there
273 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
274 case inline. */
275
276 struct symtab *
277 psymtab_to_symtab (struct partial_symtab *pst)
278 {
279 /* If it's been looked up before, return it. */
280 if (pst->symtab)
281 return pst->symtab;
282
283 /* If it has not yet been read in, read it. */
284 if (!pst->readin)
285 {
286 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
287 currently_reading_symtab++;
288 (*pst->read_symtab) (pst);
289 do_cleanups (back_to);
290 }
291
292 return pst->symtab;
293 }
294
295 /* Remember the lowest-addressed loadable section we've seen.
296 This function is called via bfd_map_over_sections.
297
298 In case of equal vmas, the section with the largest size becomes the
299 lowest-addressed loadable section.
300
301 If the vmas and sizes are equal, the last section is considered the
302 lowest-addressed loadable section. */
303
304 void
305 find_lowest_section (bfd *abfd, asection *sect, void *obj)
306 {
307 asection **lowest = (asection **) obj;
308
309 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
310 return;
311 if (!*lowest)
312 *lowest = sect; /* First loadable section */
313 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
314 *lowest = sect; /* A lower loadable section */
315 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
316 && (bfd_section_size (abfd, (*lowest))
317 <= bfd_section_size (abfd, sect)))
318 *lowest = sect;
319 }
320
321 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
322
323 struct section_addr_info *
324 alloc_section_addr_info (size_t num_sections)
325 {
326 struct section_addr_info *sap;
327 size_t size;
328
329 size = (sizeof (struct section_addr_info)
330 + sizeof (struct other_sections) * (num_sections - 1));
331 sap = (struct section_addr_info *) xmalloc (size);
332 memset (sap, 0, size);
333 sap->num_sections = num_sections;
334
335 return sap;
336 }
337
338
339 /* Return a freshly allocated copy of ADDRS. The section names, if
340 any, are also freshly allocated copies of those in ADDRS. */
341 struct section_addr_info *
342 copy_section_addr_info (struct section_addr_info *addrs)
343 {
344 struct section_addr_info *copy
345 = alloc_section_addr_info (addrs->num_sections);
346 int i;
347
348 copy->num_sections = addrs->num_sections;
349 for (i = 0; i < addrs->num_sections; i++)
350 {
351 copy->other[i].addr = addrs->other[i].addr;
352 if (addrs->other[i].name)
353 copy->other[i].name = xstrdup (addrs->other[i].name);
354 else
355 copy->other[i].name = NULL;
356 copy->other[i].sectindex = addrs->other[i].sectindex;
357 }
358
359 return copy;
360 }
361
362
363
364 /* Build (allocate and populate) a section_addr_info struct from
365 an existing section table. */
366
367 extern struct section_addr_info *
368 build_section_addr_info_from_section_table (const struct section_table *start,
369 const struct section_table *end)
370 {
371 struct section_addr_info *sap;
372 const struct section_table *stp;
373 int oidx;
374
375 sap = alloc_section_addr_info (end - start);
376
377 for (stp = start, oidx = 0; stp != end; stp++)
378 {
379 if (bfd_get_section_flags (stp->bfd,
380 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
381 && oidx < end - start)
382 {
383 sap->other[oidx].addr = stp->addr;
384 sap->other[oidx].name
385 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
386 sap->other[oidx].sectindex = stp->the_bfd_section->index;
387 oidx++;
388 }
389 }
390
391 return sap;
392 }
393
394
395 /* Free all memory allocated by build_section_addr_info_from_section_table. */
396
397 extern void
398 free_section_addr_info (struct section_addr_info *sap)
399 {
400 int idx;
401
402 for (idx = 0; idx < sap->num_sections; idx++)
403 if (sap->other[idx].name)
404 xfree (sap->other[idx].name);
405 xfree (sap);
406 }
407
408
409 /* Initialize OBJFILE's sect_index_* members. */
410 static void
411 init_objfile_sect_indices (struct objfile *objfile)
412 {
413 asection *sect;
414 int i;
415
416 sect = bfd_get_section_by_name (objfile->obfd, ".text");
417 if (sect)
418 objfile->sect_index_text = sect->index;
419
420 sect = bfd_get_section_by_name (objfile->obfd, ".data");
421 if (sect)
422 objfile->sect_index_data = sect->index;
423
424 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
425 if (sect)
426 objfile->sect_index_bss = sect->index;
427
428 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
429 if (sect)
430 objfile->sect_index_rodata = sect->index;
431
432 /* This is where things get really weird... We MUST have valid
433 indices for the various sect_index_* members or gdb will abort.
434 So if for example, there is no ".text" section, we have to
435 accomodate that. Except when explicitly adding symbol files at
436 some address, section_offsets contains nothing but zeros, so it
437 doesn't matter which slot in section_offsets the individual
438 sect_index_* members index into. So if they are all zero, it is
439 safe to just point all the currently uninitialized indices to the
440 first slot. */
441
442 for (i = 0; i < objfile->num_sections; i++)
443 {
444 if (ANOFFSET (objfile->section_offsets, i) != 0)
445 {
446 break;
447 }
448 }
449 if (i == objfile->num_sections)
450 {
451 if (objfile->sect_index_text == -1)
452 objfile->sect_index_text = 0;
453 if (objfile->sect_index_data == -1)
454 objfile->sect_index_data = 0;
455 if (objfile->sect_index_bss == -1)
456 objfile->sect_index_bss = 0;
457 if (objfile->sect_index_rodata == -1)
458 objfile->sect_index_rodata = 0;
459 }
460 }
461
462 /* The arguments to place_section. */
463
464 struct place_section_arg
465 {
466 struct section_offsets *offsets;
467 CORE_ADDR lowest;
468 };
469
470 /* Find a unique offset to use for loadable section SECT if
471 the user did not provide an offset. */
472
473 void
474 place_section (bfd *abfd, asection *sect, void *obj)
475 {
476 struct place_section_arg *arg = obj;
477 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
478 int done;
479
480 /* We are only interested in loadable sections. */
481 if ((bfd_get_section_flags (abfd, sect) & SEC_LOAD) == 0)
482 return;
483
484 /* If the user specified an offset, honor it. */
485 if (offsets[sect->index] != 0)
486 return;
487
488 /* Otherwise, let's try to find a place for the section. */
489 do {
490 asection *cur_sec;
491 ULONGEST align = 1 << bfd_get_section_alignment (abfd, sect);
492
493 start_addr = (arg->lowest + align - 1) & -align;
494 done = 1;
495
496 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
497 {
498 int indx = cur_sec->index;
499 CORE_ADDR cur_offset;
500
501 /* We don't need to compare against ourself. */
502 if (cur_sec == sect)
503 continue;
504
505 /* We can only conflict with loadable sections. */
506 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_LOAD) == 0)
507 continue;
508
509 /* We do not expect this to happen; just ignore sections in a
510 relocatable file with an assigned VMA. */
511 if (bfd_section_vma (abfd, cur_sec) != 0)
512 continue;
513
514 /* If the section offset is 0, either the section has not been placed
515 yet, or it was the lowest section placed (in which case LOWEST
516 will be past its end). */
517 if (offsets[indx] == 0)
518 continue;
519
520 /* If this section would overlap us, then we must move up. */
521 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
522 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
523 {
524 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
525 start_addr = (start_addr + align - 1) & -align;
526 done = 0;
527 continue;
528 }
529
530 /* Otherwise, we appear to be OK. So far. */
531 }
532 }
533 while (!done);
534
535 offsets[sect->index] = start_addr;
536 arg->lowest = start_addr + bfd_get_section_size (sect);
537
538 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
539 }
540
541 /* Parse the user's idea of an offset for dynamic linking, into our idea
542 of how to represent it for fast symbol reading. This is the default
543 version of the sym_fns.sym_offsets function for symbol readers that
544 don't need to do anything special. It allocates a section_offsets table
545 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
546
547 void
548 default_symfile_offsets (struct objfile *objfile,
549 struct section_addr_info *addrs)
550 {
551 int i;
552
553 objfile->num_sections = bfd_count_sections (objfile->obfd);
554 objfile->section_offsets = (struct section_offsets *)
555 obstack_alloc (&objfile->objfile_obstack,
556 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
557 memset (objfile->section_offsets, 0,
558 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
559
560 /* Now calculate offsets for section that were specified by the
561 caller. */
562 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
563 {
564 struct other_sections *osp ;
565
566 osp = &addrs->other[i] ;
567 if (osp->addr == 0)
568 continue;
569
570 /* Record all sections in offsets */
571 /* The section_offsets in the objfile are here filled in using
572 the BFD index. */
573 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
574 }
575
576 /* For relocatable files, all loadable sections will start at zero.
577 The zero is meaningless, so try to pick arbitrary addresses such
578 that no loadable sections overlap. This algorithm is quadratic,
579 but the number of sections in a single object file is generally
580 small. */
581 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
582 {
583 struct place_section_arg arg;
584 arg.offsets = objfile->section_offsets;
585 arg.lowest = 0;
586 bfd_map_over_sections (objfile->obfd, place_section, &arg);
587 }
588
589 /* Remember the bfd indexes for the .text, .data, .bss and
590 .rodata sections. */
591 init_objfile_sect_indices (objfile);
592 }
593
594
595 /* Process a symbol file, as either the main file or as a dynamically
596 loaded file.
597
598 OBJFILE is where the symbols are to be read from.
599
600 ADDRS is the list of section load addresses. If the user has given
601 an 'add-symbol-file' command, then this is the list of offsets and
602 addresses he or she provided as arguments to the command; or, if
603 we're handling a shared library, these are the actual addresses the
604 sections are loaded at, according to the inferior's dynamic linker
605 (as gleaned by GDB's shared library code). We convert each address
606 into an offset from the section VMA's as it appears in the object
607 file, and then call the file's sym_offsets function to convert this
608 into a format-specific offset table --- a `struct section_offsets'.
609 If ADDRS is non-zero, OFFSETS must be zero.
610
611 OFFSETS is a table of section offsets already in the right
612 format-specific representation. NUM_OFFSETS is the number of
613 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
614 assume this is the proper table the call to sym_offsets described
615 above would produce. Instead of calling sym_offsets, we just dump
616 it right into objfile->section_offsets. (When we're re-reading
617 symbols from an objfile, we don't have the original load address
618 list any more; all we have is the section offset table.) If
619 OFFSETS is non-zero, ADDRS must be zero.
620
621 MAINLINE is nonzero if this is the main symbol file, or zero if
622 it's an extra symbol file such as dynamically loaded code.
623
624 VERBO is nonzero if the caller has printed a verbose message about
625 the symbol reading (and complaints can be more terse about it). */
626
627 void
628 syms_from_objfile (struct objfile *objfile,
629 struct section_addr_info *addrs,
630 struct section_offsets *offsets,
631 int num_offsets,
632 int mainline,
633 int verbo)
634 {
635 struct section_addr_info *local_addr = NULL;
636 struct cleanup *old_chain;
637
638 gdb_assert (! (addrs && offsets));
639
640 init_entry_point_info (objfile);
641 find_sym_fns (objfile);
642
643 if (objfile->sf == NULL)
644 return; /* No symbols. */
645
646 /* Make sure that partially constructed symbol tables will be cleaned up
647 if an error occurs during symbol reading. */
648 old_chain = make_cleanup_free_objfile (objfile);
649
650 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
651 list. We now establish the convention that an addr of zero means
652 no load address was specified. */
653 if (! addrs && ! offsets)
654 {
655 local_addr
656 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
657 make_cleanup (xfree, local_addr);
658 addrs = local_addr;
659 }
660
661 /* Now either addrs or offsets is non-zero. */
662
663 if (mainline)
664 {
665 /* We will modify the main symbol table, make sure that all its users
666 will be cleaned up if an error occurs during symbol reading. */
667 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
668
669 /* Since no error yet, throw away the old symbol table. */
670
671 if (symfile_objfile != NULL)
672 {
673 free_objfile (symfile_objfile);
674 symfile_objfile = NULL;
675 }
676
677 /* Currently we keep symbols from the add-symbol-file command.
678 If the user wants to get rid of them, they should do "symbol-file"
679 without arguments first. Not sure this is the best behavior
680 (PR 2207). */
681
682 (*objfile->sf->sym_new_init) (objfile);
683 }
684
685 /* Convert addr into an offset rather than an absolute address.
686 We find the lowest address of a loaded segment in the objfile,
687 and assume that <addr> is where that got loaded.
688
689 We no longer warn if the lowest section is not a text segment (as
690 happens for the PA64 port. */
691 if (!mainline && addrs && addrs->other[0].name)
692 {
693 asection *lower_sect;
694 asection *sect;
695 CORE_ADDR lower_offset;
696 int i;
697
698 /* Find lowest loadable section to be used as starting point for
699 continguous sections. FIXME!! won't work without call to find
700 .text first, but this assumes text is lowest section. */
701 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
702 if (lower_sect == NULL)
703 bfd_map_over_sections (objfile->obfd, find_lowest_section,
704 &lower_sect);
705 if (lower_sect == NULL)
706 warning (_("no loadable sections found in added symbol-file %s"),
707 objfile->name);
708 else
709 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
710 warning (_("Lowest section in %s is %s at %s"),
711 objfile->name,
712 bfd_section_name (objfile->obfd, lower_sect),
713 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
714 if (lower_sect != NULL)
715 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
716 else
717 lower_offset = 0;
718
719 /* Calculate offsets for the loadable sections.
720 FIXME! Sections must be in order of increasing loadable section
721 so that contiguous sections can use the lower-offset!!!
722
723 Adjust offsets if the segments are not contiguous.
724 If the section is contiguous, its offset should be set to
725 the offset of the highest loadable section lower than it
726 (the loadable section directly below it in memory).
727 this_offset = lower_offset = lower_addr - lower_orig_addr */
728
729 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
730 {
731 if (addrs->other[i].addr != 0)
732 {
733 sect = bfd_get_section_by_name (objfile->obfd,
734 addrs->other[i].name);
735 if (sect)
736 {
737 addrs->other[i].addr
738 -= bfd_section_vma (objfile->obfd, sect);
739 lower_offset = addrs->other[i].addr;
740 /* This is the index used by BFD. */
741 addrs->other[i].sectindex = sect->index ;
742 }
743 else
744 {
745 warning (_("section %s not found in %s"),
746 addrs->other[i].name,
747 objfile->name);
748 addrs->other[i].addr = 0;
749 }
750 }
751 else
752 addrs->other[i].addr = lower_offset;
753 }
754 }
755
756 /* Initialize symbol reading routines for this objfile, allow complaints to
757 appear for this new file, and record how verbose to be, then do the
758 initial symbol reading for this file. */
759
760 (*objfile->sf->sym_init) (objfile);
761 clear_complaints (&symfile_complaints, 1, verbo);
762
763 if (addrs)
764 (*objfile->sf->sym_offsets) (objfile, addrs);
765 else
766 {
767 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
768
769 /* Just copy in the offset table directly as given to us. */
770 objfile->num_sections = num_offsets;
771 objfile->section_offsets
772 = ((struct section_offsets *)
773 obstack_alloc (&objfile->objfile_obstack, size));
774 memcpy (objfile->section_offsets, offsets, size);
775
776 init_objfile_sect_indices (objfile);
777 }
778
779 #ifndef DEPRECATED_IBM6000_TARGET
780 /* This is a SVR4/SunOS specific hack, I think. In any event, it
781 screws RS/6000. sym_offsets should be doing this sort of thing,
782 because it knows the mapping between bfd sections and
783 section_offsets. */
784 /* This is a hack. As far as I can tell, section offsets are not
785 target dependent. They are all set to addr with a couple of
786 exceptions. The exceptions are sysvr4 shared libraries, whose
787 offsets are kept in solib structures anyway and rs6000 xcoff
788 which handles shared libraries in a completely unique way.
789
790 Section offsets are built similarly, except that they are built
791 by adding addr in all cases because there is no clear mapping
792 from section_offsets into actual sections. Note that solib.c
793 has a different algorithm for finding section offsets.
794
795 These should probably all be collapsed into some target
796 independent form of shared library support. FIXME. */
797
798 if (addrs)
799 {
800 struct obj_section *s;
801
802 /* Map section offsets in "addr" back to the object's
803 sections by comparing the section names with bfd's
804 section names. Then adjust the section address by
805 the offset. */ /* for gdb/13815 */
806
807 ALL_OBJFILE_OSECTIONS (objfile, s)
808 {
809 CORE_ADDR s_addr = 0;
810 int i;
811
812 for (i = 0;
813 !s_addr && i < addrs->num_sections && addrs->other[i].name;
814 i++)
815 if (strcmp (bfd_section_name (s->objfile->obfd,
816 s->the_bfd_section),
817 addrs->other[i].name) == 0)
818 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
819
820 s->addr -= s->offset;
821 s->addr += s_addr;
822 s->endaddr -= s->offset;
823 s->endaddr += s_addr;
824 s->offset += s_addr;
825 }
826 }
827 #endif /* not DEPRECATED_IBM6000_TARGET */
828
829 (*objfile->sf->sym_read) (objfile, mainline);
830
831 /* Don't allow char * to have a typename (else would get caddr_t).
832 Ditto void *. FIXME: Check whether this is now done by all the
833 symbol readers themselves (many of them now do), and if so remove
834 it from here. */
835
836 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
837 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
838
839 /* Mark the objfile has having had initial symbol read attempted. Note
840 that this does not mean we found any symbols... */
841
842 objfile->flags |= OBJF_SYMS;
843
844 /* Discard cleanups as symbol reading was successful. */
845
846 discard_cleanups (old_chain);
847 }
848
849 /* Perform required actions after either reading in the initial
850 symbols for a new objfile, or mapping in the symbols from a reusable
851 objfile. */
852
853 void
854 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
855 {
856
857 /* If this is the main symbol file we have to clean up all users of the
858 old main symbol file. Otherwise it is sufficient to fixup all the
859 breakpoints that may have been redefined by this symbol file. */
860 if (mainline)
861 {
862 /* OK, make it the "real" symbol file. */
863 symfile_objfile = objfile;
864
865 clear_symtab_users ();
866 }
867 else
868 {
869 breakpoint_re_set ();
870 }
871
872 /* We're done reading the symbol file; finish off complaints. */
873 clear_complaints (&symfile_complaints, 0, verbo);
874 }
875
876 /* Process a symbol file, as either the main file or as a dynamically
877 loaded file.
878
879 ABFD is a BFD already open on the file, as from symfile_bfd_open.
880 This BFD will be closed on error, and is always consumed by this function.
881
882 FROM_TTY says how verbose to be.
883
884 MAINLINE specifies whether this is the main symbol file, or whether
885 it's an extra symbol file such as dynamically loaded code.
886
887 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
888 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
889 non-zero.
890
891 Upon success, returns a pointer to the objfile that was added.
892 Upon failure, jumps back to command level (never returns). */
893 static struct objfile *
894 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
895 struct section_addr_info *addrs,
896 struct section_offsets *offsets,
897 int num_offsets,
898 int mainline, int flags)
899 {
900 struct objfile *objfile;
901 struct partial_symtab *psymtab;
902 char *debugfile;
903 struct section_addr_info *orig_addrs = NULL;
904 struct cleanup *my_cleanups;
905 const char *name = bfd_get_filename (abfd);
906
907 my_cleanups = make_cleanup_bfd_close (abfd);
908
909 /* Give user a chance to burp if we'd be
910 interactively wiping out any existing symbols. */
911
912 if ((have_full_symbols () || have_partial_symbols ())
913 && mainline
914 && from_tty
915 && !query ("Load new symbol table from \"%s\"? ", name))
916 error (_("Not confirmed."));
917
918 objfile = allocate_objfile (abfd, flags);
919 discard_cleanups (my_cleanups);
920
921 if (addrs)
922 {
923 orig_addrs = copy_section_addr_info (addrs);
924 make_cleanup_free_section_addr_info (orig_addrs);
925 }
926
927 /* We either created a new mapped symbol table, mapped an existing
928 symbol table file which has not had initial symbol reading
929 performed, or need to read an unmapped symbol table. */
930 if (from_tty || info_verbose)
931 {
932 if (deprecated_pre_add_symbol_hook)
933 deprecated_pre_add_symbol_hook (name);
934 else
935 {
936 printf_unfiltered (_("Reading symbols from %s..."), name);
937 wrap_here ("");
938 gdb_flush (gdb_stdout);
939 }
940 }
941 syms_from_objfile (objfile, addrs, offsets, num_offsets,
942 mainline, from_tty);
943
944 /* We now have at least a partial symbol table. Check to see if the
945 user requested that all symbols be read on initial access via either
946 the gdb startup command line or on a per symbol file basis. Expand
947 all partial symbol tables for this objfile if so. */
948
949 if ((flags & OBJF_READNOW) || readnow_symbol_files)
950 {
951 if (from_tty || info_verbose)
952 {
953 printf_unfiltered (_("expanding to full symbols..."));
954 wrap_here ("");
955 gdb_flush (gdb_stdout);
956 }
957
958 for (psymtab = objfile->psymtabs;
959 psymtab != NULL;
960 psymtab = psymtab->next)
961 {
962 psymtab_to_symtab (psymtab);
963 }
964 }
965
966 debugfile = find_separate_debug_file (objfile);
967 if (debugfile)
968 {
969 if (addrs != NULL)
970 {
971 objfile->separate_debug_objfile
972 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
973 }
974 else
975 {
976 objfile->separate_debug_objfile
977 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
978 }
979 objfile->separate_debug_objfile->separate_debug_objfile_backlink
980 = objfile;
981
982 /* Put the separate debug object before the normal one, this is so that
983 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
984 put_objfile_before (objfile->separate_debug_objfile, objfile);
985
986 xfree (debugfile);
987 }
988
989 if (!have_partial_symbols () && !have_full_symbols ())
990 {
991 wrap_here ("");
992 printf_filtered (_("(no debugging symbols found)"));
993 if (from_tty || info_verbose)
994 printf_filtered ("...");
995 else
996 printf_filtered ("\n");
997 wrap_here ("");
998 }
999
1000 if (from_tty || info_verbose)
1001 {
1002 if (deprecated_post_add_symbol_hook)
1003 deprecated_post_add_symbol_hook ();
1004 else
1005 {
1006 printf_unfiltered (_("done.\n"));
1007 }
1008 }
1009
1010 /* We print some messages regardless of whether 'from_tty ||
1011 info_verbose' is true, so make sure they go out at the right
1012 time. */
1013 gdb_flush (gdb_stdout);
1014
1015 do_cleanups (my_cleanups);
1016
1017 if (objfile->sf == NULL)
1018 return objfile; /* No symbols. */
1019
1020 new_symfile_objfile (objfile, mainline, from_tty);
1021
1022 if (deprecated_target_new_objfile_hook)
1023 deprecated_target_new_objfile_hook (objfile);
1024
1025 bfd_cache_close_all ();
1026 return (objfile);
1027 }
1028
1029
1030 /* Process the symbol file ABFD, as either the main file or as a
1031 dynamically loaded file.
1032
1033 See symbol_file_add_with_addrs_or_offsets's comments for
1034 details. */
1035 struct objfile *
1036 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1037 struct section_addr_info *addrs,
1038 int mainline, int flags)
1039 {
1040 return symbol_file_add_with_addrs_or_offsets (abfd,
1041 from_tty, addrs, 0, 0,
1042 mainline, flags);
1043 }
1044
1045
1046 /* Process a symbol file, as either the main file or as a dynamically
1047 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1048 for details. */
1049 struct objfile *
1050 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1051 int mainline, int flags)
1052 {
1053 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1054 addrs, mainline, flags);
1055 }
1056
1057
1058 /* Call symbol_file_add() with default values and update whatever is
1059 affected by the loading of a new main().
1060 Used when the file is supplied in the gdb command line
1061 and by some targets with special loading requirements.
1062 The auxiliary function, symbol_file_add_main_1(), has the flags
1063 argument for the switches that can only be specified in the symbol_file
1064 command itself. */
1065
1066 void
1067 symbol_file_add_main (char *args, int from_tty)
1068 {
1069 symbol_file_add_main_1 (args, from_tty, 0);
1070 }
1071
1072 static void
1073 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1074 {
1075 symbol_file_add (args, from_tty, NULL, 1, flags);
1076
1077 /* Getting new symbols may change our opinion about
1078 what is frameless. */
1079 reinit_frame_cache ();
1080
1081 set_initial_language ();
1082 }
1083
1084 void
1085 symbol_file_clear (int from_tty)
1086 {
1087 if ((have_full_symbols () || have_partial_symbols ())
1088 && from_tty
1089 && (symfile_objfile
1090 ? !query (_("Discard symbol table from `%s'? "),
1091 symfile_objfile->name)
1092 : !query (_("Discard symbol table? "))))
1093 error (_("Not confirmed."));
1094 free_all_objfiles ();
1095
1096 /* solib descriptors may have handles to objfiles. Since their
1097 storage has just been released, we'd better wipe the solib
1098 descriptors as well.
1099 */
1100 #if defined(SOLIB_RESTART)
1101 SOLIB_RESTART ();
1102 #endif
1103
1104 symfile_objfile = NULL;
1105 if (from_tty)
1106 printf_unfiltered (_("No symbol file now.\n"));
1107 }
1108
1109 static char *
1110 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1111 {
1112 asection *sect;
1113 bfd_size_type debuglink_size;
1114 unsigned long crc32;
1115 char *contents;
1116 int crc_offset;
1117 unsigned char *p;
1118
1119 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1120
1121 if (sect == NULL)
1122 return NULL;
1123
1124 debuglink_size = bfd_section_size (objfile->obfd, sect);
1125
1126 contents = xmalloc (debuglink_size);
1127 bfd_get_section_contents (objfile->obfd, sect, contents,
1128 (file_ptr)0, (bfd_size_type)debuglink_size);
1129
1130 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1131 crc_offset = strlen (contents) + 1;
1132 crc_offset = (crc_offset + 3) & ~3;
1133
1134 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1135
1136 *crc32_out = crc32;
1137 return contents;
1138 }
1139
1140 static int
1141 separate_debug_file_exists (const char *name, unsigned long crc)
1142 {
1143 unsigned long file_crc = 0;
1144 int fd;
1145 gdb_byte buffer[8*1024];
1146 int count;
1147
1148 fd = open (name, O_RDONLY | O_BINARY);
1149 if (fd < 0)
1150 return 0;
1151
1152 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1153 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1154
1155 close (fd);
1156
1157 return crc == file_crc;
1158 }
1159
1160 static char *debug_file_directory = NULL;
1161 static void
1162 show_debug_file_directory (struct ui_file *file, int from_tty,
1163 struct cmd_list_element *c, const char *value)
1164 {
1165 fprintf_filtered (file, _("\
1166 The directory where separate debug symbols are searched for is \"%s\".\n"),
1167 value);
1168 }
1169
1170 #if ! defined (DEBUG_SUBDIRECTORY)
1171 #define DEBUG_SUBDIRECTORY ".debug"
1172 #endif
1173
1174 static char *
1175 find_separate_debug_file (struct objfile *objfile)
1176 {
1177 asection *sect;
1178 char *basename;
1179 char *dir;
1180 char *debugfile;
1181 char *name_copy;
1182 bfd_size_type debuglink_size;
1183 unsigned long crc32;
1184 int i;
1185
1186 basename = get_debug_link_info (objfile, &crc32);
1187
1188 if (basename == NULL)
1189 return NULL;
1190
1191 dir = xstrdup (objfile->name);
1192
1193 /* Strip off the final filename part, leaving the directory name,
1194 followed by a slash. Objfile names should always be absolute and
1195 tilde-expanded, so there should always be a slash in there
1196 somewhere. */
1197 for (i = strlen(dir) - 1; i >= 0; i--)
1198 {
1199 if (IS_DIR_SEPARATOR (dir[i]))
1200 break;
1201 }
1202 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1203 dir[i+1] = '\0';
1204
1205 debugfile = alloca (strlen (debug_file_directory) + 1
1206 + strlen (dir)
1207 + strlen (DEBUG_SUBDIRECTORY)
1208 + strlen ("/")
1209 + strlen (basename)
1210 + 1);
1211
1212 /* First try in the same directory as the original file. */
1213 strcpy (debugfile, dir);
1214 strcat (debugfile, basename);
1215
1216 if (separate_debug_file_exists (debugfile, crc32))
1217 {
1218 xfree (basename);
1219 xfree (dir);
1220 return xstrdup (debugfile);
1221 }
1222
1223 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1224 strcpy (debugfile, dir);
1225 strcat (debugfile, DEBUG_SUBDIRECTORY);
1226 strcat (debugfile, "/");
1227 strcat (debugfile, basename);
1228
1229 if (separate_debug_file_exists (debugfile, crc32))
1230 {
1231 xfree (basename);
1232 xfree (dir);
1233 return xstrdup (debugfile);
1234 }
1235
1236 /* Then try in the global debugfile directory. */
1237 strcpy (debugfile, debug_file_directory);
1238 strcat (debugfile, "/");
1239 strcat (debugfile, dir);
1240 strcat (debugfile, basename);
1241
1242 if (separate_debug_file_exists (debugfile, crc32))
1243 {
1244 xfree (basename);
1245 xfree (dir);
1246 return xstrdup (debugfile);
1247 }
1248
1249 xfree (basename);
1250 xfree (dir);
1251 return NULL;
1252 }
1253
1254
1255 /* This is the symbol-file command. Read the file, analyze its
1256 symbols, and add a struct symtab to a symtab list. The syntax of
1257 the command is rather bizarre:
1258
1259 1. The function buildargv implements various quoting conventions
1260 which are undocumented and have little or nothing in common with
1261 the way things are quoted (or not quoted) elsewhere in GDB.
1262
1263 2. Options are used, which are not generally used in GDB (perhaps
1264 "set mapped on", "set readnow on" would be better)
1265
1266 3. The order of options matters, which is contrary to GNU
1267 conventions (because it is confusing and inconvenient). */
1268
1269 void
1270 symbol_file_command (char *args, int from_tty)
1271 {
1272 dont_repeat ();
1273
1274 if (args == NULL)
1275 {
1276 symbol_file_clear (from_tty);
1277 }
1278 else
1279 {
1280 char **argv = buildargv (args);
1281 int flags = OBJF_USERLOADED;
1282 struct cleanup *cleanups;
1283 char *name = NULL;
1284
1285 if (argv == NULL)
1286 nomem (0);
1287
1288 cleanups = make_cleanup_freeargv (argv);
1289 while (*argv != NULL)
1290 {
1291 if (strcmp (*argv, "-readnow") == 0)
1292 flags |= OBJF_READNOW;
1293 else if (**argv == '-')
1294 error (_("unknown option `%s'"), *argv);
1295 else
1296 {
1297 symbol_file_add_main_1 (*argv, from_tty, flags);
1298 name = *argv;
1299 }
1300
1301 argv++;
1302 }
1303
1304 if (name == NULL)
1305 error (_("no symbol file name was specified"));
1306
1307 do_cleanups (cleanups);
1308 }
1309 }
1310
1311 /* Set the initial language.
1312
1313 FIXME: A better solution would be to record the language in the
1314 psymtab when reading partial symbols, and then use it (if known) to
1315 set the language. This would be a win for formats that encode the
1316 language in an easily discoverable place, such as DWARF. For
1317 stabs, we can jump through hoops looking for specially named
1318 symbols or try to intuit the language from the specific type of
1319 stabs we find, but we can't do that until later when we read in
1320 full symbols. */
1321
1322 static void
1323 set_initial_language (void)
1324 {
1325 struct partial_symtab *pst;
1326 enum language lang = language_unknown;
1327
1328 pst = find_main_psymtab ();
1329 if (pst != NULL)
1330 {
1331 if (pst->filename != NULL)
1332 lang = deduce_language_from_filename (pst->filename);
1333
1334 if (lang == language_unknown)
1335 {
1336 /* Make C the default language */
1337 lang = language_c;
1338 }
1339
1340 set_language (lang);
1341 expected_language = current_language; /* Don't warn the user. */
1342 }
1343 }
1344
1345 /* Open the file specified by NAME and hand it off to BFD for
1346 preliminary analysis. Return a newly initialized bfd *, which
1347 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1348 absolute). In case of trouble, error() is called. */
1349
1350 bfd *
1351 symfile_bfd_open (char *name)
1352 {
1353 bfd *sym_bfd;
1354 int desc;
1355 char *absolute_name;
1356
1357 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1358
1359 /* Look down path for it, allocate 2nd new malloc'd copy. */
1360 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1361 O_RDONLY | O_BINARY, 0, &absolute_name);
1362 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1363 if (desc < 0)
1364 {
1365 char *exename = alloca (strlen (name) + 5);
1366 strcat (strcpy (exename, name), ".exe");
1367 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1368 O_RDONLY | O_BINARY, 0, &absolute_name);
1369 }
1370 #endif
1371 if (desc < 0)
1372 {
1373 make_cleanup (xfree, name);
1374 perror_with_name (name);
1375 }
1376
1377 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1378 bfd. It'll be freed in free_objfile(). */
1379 xfree (name);
1380 name = absolute_name;
1381
1382 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1383 if (!sym_bfd)
1384 {
1385 close (desc);
1386 make_cleanup (xfree, name);
1387 error (_("\"%s\": can't open to read symbols: %s."), name,
1388 bfd_errmsg (bfd_get_error ()));
1389 }
1390 bfd_set_cacheable (sym_bfd, 1);
1391
1392 if (!bfd_check_format (sym_bfd, bfd_object))
1393 {
1394 /* FIXME: should be checking for errors from bfd_close (for one
1395 thing, on error it does not free all the storage associated
1396 with the bfd). */
1397 bfd_close (sym_bfd); /* This also closes desc. */
1398 make_cleanup (xfree, name);
1399 error (_("\"%s\": can't read symbols: %s."), name,
1400 bfd_errmsg (bfd_get_error ()));
1401 }
1402
1403 return sym_bfd;
1404 }
1405
1406 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1407 the section was not found. */
1408
1409 int
1410 get_section_index (struct objfile *objfile, char *section_name)
1411 {
1412 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1413
1414 if (sect)
1415 return sect->index;
1416 else
1417 return -1;
1418 }
1419
1420 /* Link SF into the global symtab_fns list. Called on startup by the
1421 _initialize routine in each object file format reader, to register
1422 information about each format the the reader is prepared to
1423 handle. */
1424
1425 void
1426 add_symtab_fns (struct sym_fns *sf)
1427 {
1428 sf->next = symtab_fns;
1429 symtab_fns = sf;
1430 }
1431
1432 /* Initialize OBJFILE to read symbols from its associated BFD. It
1433 either returns or calls error(). The result is an initialized
1434 struct sym_fns in the objfile structure, that contains cached
1435 information about the symbol file. */
1436
1437 static void
1438 find_sym_fns (struct objfile *objfile)
1439 {
1440 struct sym_fns *sf;
1441 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1442 char *our_target = bfd_get_target (objfile->obfd);
1443
1444 if (our_flavour == bfd_target_srec_flavour
1445 || our_flavour == bfd_target_ihex_flavour
1446 || our_flavour == bfd_target_tekhex_flavour)
1447 return; /* No symbols. */
1448
1449 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1450 {
1451 if (our_flavour == sf->sym_flavour)
1452 {
1453 objfile->sf = sf;
1454 return;
1455 }
1456 }
1457
1458 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1459 bfd_get_target (objfile->obfd));
1460 }
1461 \f
1462
1463 /* This function runs the load command of our current target. */
1464
1465 static void
1466 load_command (char *arg, int from_tty)
1467 {
1468 if (arg == NULL)
1469 arg = get_exec_file (1);
1470 target_load (arg, from_tty);
1471
1472 /* After re-loading the executable, we don't really know which
1473 overlays are mapped any more. */
1474 overlay_cache_invalid = 1;
1475 }
1476
1477 /* This version of "load" should be usable for any target. Currently
1478 it is just used for remote targets, not inftarg.c or core files,
1479 on the theory that only in that case is it useful.
1480
1481 Avoiding xmodem and the like seems like a win (a) because we don't have
1482 to worry about finding it, and (b) On VMS, fork() is very slow and so
1483 we don't want to run a subprocess. On the other hand, I'm not sure how
1484 performance compares. */
1485
1486 static int download_write_size = 512;
1487 static void
1488 show_download_write_size (struct ui_file *file, int from_tty,
1489 struct cmd_list_element *c, const char *value)
1490 {
1491 fprintf_filtered (file, _("\
1492 The write size used when downloading a program is %s.\n"),
1493 value);
1494 }
1495 static int validate_download = 0;
1496
1497 /* Callback service function for generic_load (bfd_map_over_sections). */
1498
1499 static void
1500 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1501 {
1502 bfd_size_type *sum = data;
1503
1504 *sum += bfd_get_section_size (asec);
1505 }
1506
1507 /* Opaque data for load_section_callback. */
1508 struct load_section_data {
1509 unsigned long load_offset;
1510 unsigned long write_count;
1511 unsigned long data_count;
1512 bfd_size_type total_size;
1513 };
1514
1515 /* Callback service function for generic_load (bfd_map_over_sections). */
1516
1517 static void
1518 load_section_callback (bfd *abfd, asection *asec, void *data)
1519 {
1520 struct load_section_data *args = data;
1521
1522 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1523 {
1524 bfd_size_type size = bfd_get_section_size (asec);
1525 if (size > 0)
1526 {
1527 gdb_byte *buffer;
1528 struct cleanup *old_chain;
1529 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1530 bfd_size_type block_size;
1531 int err;
1532 const char *sect_name = bfd_get_section_name (abfd, asec);
1533 bfd_size_type sent;
1534
1535 if (download_write_size > 0 && size > download_write_size)
1536 block_size = download_write_size;
1537 else
1538 block_size = size;
1539
1540 buffer = xmalloc (size);
1541 old_chain = make_cleanup (xfree, buffer);
1542
1543 /* Is this really necessary? I guess it gives the user something
1544 to look at during a long download. */
1545 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1546 sect_name, paddr_nz (size), paddr_nz (lma));
1547
1548 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1549
1550 sent = 0;
1551 do
1552 {
1553 int len;
1554 bfd_size_type this_transfer = size - sent;
1555
1556 if (this_transfer >= block_size)
1557 this_transfer = block_size;
1558 len = target_write_memory_partial (lma, buffer,
1559 this_transfer, &err);
1560 if (err)
1561 break;
1562 if (validate_download)
1563 {
1564 /* Broken memories and broken monitors manifest
1565 themselves here when bring new computers to
1566 life. This doubles already slow downloads. */
1567 /* NOTE: cagney/1999-10-18: A more efficient
1568 implementation might add a verify_memory()
1569 method to the target vector and then use
1570 that. remote.c could implement that method
1571 using the ``qCRC'' packet. */
1572 gdb_byte *check = xmalloc (len);
1573 struct cleanup *verify_cleanups =
1574 make_cleanup (xfree, check);
1575
1576 if (target_read_memory (lma, check, len) != 0)
1577 error (_("Download verify read failed at 0x%s"),
1578 paddr (lma));
1579 if (memcmp (buffer, check, len) != 0)
1580 error (_("Download verify compare failed at 0x%s"),
1581 paddr (lma));
1582 do_cleanups (verify_cleanups);
1583 }
1584 args->data_count += len;
1585 lma += len;
1586 buffer += len;
1587 args->write_count += 1;
1588 sent += len;
1589 if (quit_flag
1590 || (deprecated_ui_load_progress_hook != NULL
1591 && deprecated_ui_load_progress_hook (sect_name, sent)))
1592 error (_("Canceled the download"));
1593
1594 if (deprecated_show_load_progress != NULL)
1595 deprecated_show_load_progress (sect_name, sent, size,
1596 args->data_count,
1597 args->total_size);
1598 }
1599 while (sent < size);
1600
1601 if (err != 0)
1602 error (_("Memory access error while loading section %s."), sect_name);
1603
1604 do_cleanups (old_chain);
1605 }
1606 }
1607 }
1608
1609 void
1610 generic_load (char *args, int from_tty)
1611 {
1612 asection *s;
1613 bfd *loadfile_bfd;
1614 struct timeval start_time, end_time;
1615 char *filename;
1616 struct cleanup *old_cleanups;
1617 char *offptr;
1618 struct load_section_data cbdata;
1619 CORE_ADDR entry;
1620
1621 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1622 cbdata.write_count = 0; /* Number of writes needed. */
1623 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1624 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1625
1626 /* Parse the input argument - the user can specify a load offset as
1627 a second argument. */
1628 filename = xmalloc (strlen (args) + 1);
1629 old_cleanups = make_cleanup (xfree, filename);
1630 strcpy (filename, args);
1631 offptr = strchr (filename, ' ');
1632 if (offptr != NULL)
1633 {
1634 char *endptr;
1635
1636 cbdata.load_offset = strtoul (offptr, &endptr, 0);
1637 if (offptr == endptr)
1638 error (_("Invalid download offset:%s."), offptr);
1639 *offptr = '\0';
1640 }
1641 else
1642 cbdata.load_offset = 0;
1643
1644 /* Open the file for loading. */
1645 loadfile_bfd = bfd_openr (filename, gnutarget);
1646 if (loadfile_bfd == NULL)
1647 {
1648 perror_with_name (filename);
1649 return;
1650 }
1651
1652 /* FIXME: should be checking for errors from bfd_close (for one thing,
1653 on error it does not free all the storage associated with the
1654 bfd). */
1655 make_cleanup_bfd_close (loadfile_bfd);
1656
1657 if (!bfd_check_format (loadfile_bfd, bfd_object))
1658 {
1659 error (_("\"%s\" is not an object file: %s"), filename,
1660 bfd_errmsg (bfd_get_error ()));
1661 }
1662
1663 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1664 (void *) &cbdata.total_size);
1665
1666 gettimeofday (&start_time, NULL);
1667
1668 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1669
1670 gettimeofday (&end_time, NULL);
1671
1672 entry = bfd_get_start_address (loadfile_bfd);
1673 ui_out_text (uiout, "Start address ");
1674 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1675 ui_out_text (uiout, ", load size ");
1676 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1677 ui_out_text (uiout, "\n");
1678 /* We were doing this in remote-mips.c, I suspect it is right
1679 for other targets too. */
1680 write_pc (entry);
1681
1682 /* FIXME: are we supposed to call symbol_file_add or not? According
1683 to a comment from remote-mips.c (where a call to symbol_file_add
1684 was commented out), making the call confuses GDB if more than one
1685 file is loaded in. Some targets do (e.g., remote-vx.c) but
1686 others don't (or didn't - perhaps they have all been deleted). */
1687
1688 print_transfer_performance (gdb_stdout, cbdata.data_count,
1689 cbdata.write_count, &start_time, &end_time);
1690
1691 do_cleanups (old_cleanups);
1692 }
1693
1694 /* Report how fast the transfer went. */
1695
1696 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1697 replaced by print_transfer_performance (with a very different
1698 function signature). */
1699
1700 void
1701 report_transfer_performance (unsigned long data_count, time_t start_time,
1702 time_t end_time)
1703 {
1704 struct timeval start, end;
1705
1706 start.tv_sec = start_time;
1707 start.tv_usec = 0;
1708 end.tv_sec = end_time;
1709 end.tv_usec = 0;
1710
1711 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
1712 }
1713
1714 void
1715 print_transfer_performance (struct ui_file *stream,
1716 unsigned long data_count,
1717 unsigned long write_count,
1718 const struct timeval *start_time,
1719 const struct timeval *end_time)
1720 {
1721 unsigned long time_count;
1722
1723 /* Compute the elapsed time in milliseconds, as a tradeoff between
1724 accuracy and overflow. */
1725 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
1726 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
1727
1728 ui_out_text (uiout, "Transfer rate: ");
1729 if (time_count > 0)
1730 {
1731 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1732 1000 * (data_count * 8) / time_count);
1733 ui_out_text (uiout, " bits/sec");
1734 }
1735 else
1736 {
1737 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1738 ui_out_text (uiout, " bits in <1 sec");
1739 }
1740 if (write_count > 0)
1741 {
1742 ui_out_text (uiout, ", ");
1743 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1744 ui_out_text (uiout, " bytes/write");
1745 }
1746 ui_out_text (uiout, ".\n");
1747 }
1748
1749 /* This function allows the addition of incrementally linked object files.
1750 It does not modify any state in the target, only in the debugger. */
1751 /* Note: ezannoni 2000-04-13 This function/command used to have a
1752 special case syntax for the rombug target (Rombug is the boot
1753 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1754 rombug case, the user doesn't need to supply a text address,
1755 instead a call to target_link() (in target.c) would supply the
1756 value to use. We are now discontinuing this type of ad hoc syntax. */
1757
1758 static void
1759 add_symbol_file_command (char *args, int from_tty)
1760 {
1761 char *filename = NULL;
1762 int flags = OBJF_USERLOADED;
1763 char *arg;
1764 int expecting_option = 0;
1765 int section_index = 0;
1766 int argcnt = 0;
1767 int sec_num = 0;
1768 int i;
1769 int expecting_sec_name = 0;
1770 int expecting_sec_addr = 0;
1771
1772 struct sect_opt
1773 {
1774 char *name;
1775 char *value;
1776 };
1777
1778 struct section_addr_info *section_addrs;
1779 struct sect_opt *sect_opts = NULL;
1780 size_t num_sect_opts = 0;
1781 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1782
1783 num_sect_opts = 16;
1784 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1785 * sizeof (struct sect_opt));
1786
1787 dont_repeat ();
1788
1789 if (args == NULL)
1790 error (_("add-symbol-file takes a file name and an address"));
1791
1792 /* Make a copy of the string that we can safely write into. */
1793 args = xstrdup (args);
1794
1795 while (*args != '\000')
1796 {
1797 /* Any leading spaces? */
1798 while (isspace (*args))
1799 args++;
1800
1801 /* Point arg to the beginning of the argument. */
1802 arg = args;
1803
1804 /* Move args pointer over the argument. */
1805 while ((*args != '\000') && !isspace (*args))
1806 args++;
1807
1808 /* If there are more arguments, terminate arg and
1809 proceed past it. */
1810 if (*args != '\000')
1811 *args++ = '\000';
1812
1813 /* Now process the argument. */
1814 if (argcnt == 0)
1815 {
1816 /* The first argument is the file name. */
1817 filename = tilde_expand (arg);
1818 make_cleanup (xfree, filename);
1819 }
1820 else
1821 if (argcnt == 1)
1822 {
1823 /* The second argument is always the text address at which
1824 to load the program. */
1825 sect_opts[section_index].name = ".text";
1826 sect_opts[section_index].value = arg;
1827 if (++section_index > num_sect_opts)
1828 {
1829 num_sect_opts *= 2;
1830 sect_opts = ((struct sect_opt *)
1831 xrealloc (sect_opts,
1832 num_sect_opts
1833 * sizeof (struct sect_opt)));
1834 }
1835 }
1836 else
1837 {
1838 /* It's an option (starting with '-') or it's an argument
1839 to an option */
1840
1841 if (*arg == '-')
1842 {
1843 if (strcmp (arg, "-readnow") == 0)
1844 flags |= OBJF_READNOW;
1845 else if (strcmp (arg, "-s") == 0)
1846 {
1847 expecting_sec_name = 1;
1848 expecting_sec_addr = 1;
1849 }
1850 }
1851 else
1852 {
1853 if (expecting_sec_name)
1854 {
1855 sect_opts[section_index].name = arg;
1856 expecting_sec_name = 0;
1857 }
1858 else
1859 if (expecting_sec_addr)
1860 {
1861 sect_opts[section_index].value = arg;
1862 expecting_sec_addr = 0;
1863 if (++section_index > num_sect_opts)
1864 {
1865 num_sect_opts *= 2;
1866 sect_opts = ((struct sect_opt *)
1867 xrealloc (sect_opts,
1868 num_sect_opts
1869 * sizeof (struct sect_opt)));
1870 }
1871 }
1872 else
1873 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
1874 }
1875 }
1876 argcnt++;
1877 }
1878
1879 /* This command takes at least two arguments. The first one is a
1880 filename, and the second is the address where this file has been
1881 loaded. Abort now if this address hasn't been provided by the
1882 user. */
1883 if (section_index < 1)
1884 error (_("The address where %s has been loaded is missing"), filename);
1885
1886 /* Print the prompt for the query below. And save the arguments into
1887 a sect_addr_info structure to be passed around to other
1888 functions. We have to split this up into separate print
1889 statements because hex_string returns a local static
1890 string. */
1891
1892 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
1893 section_addrs = alloc_section_addr_info (section_index);
1894 make_cleanup (xfree, section_addrs);
1895 for (i = 0; i < section_index; i++)
1896 {
1897 CORE_ADDR addr;
1898 char *val = sect_opts[i].value;
1899 char *sec = sect_opts[i].name;
1900
1901 addr = parse_and_eval_address (val);
1902
1903 /* Here we store the section offsets in the order they were
1904 entered on the command line. */
1905 section_addrs->other[sec_num].name = sec;
1906 section_addrs->other[sec_num].addr = addr;
1907 printf_unfiltered ("\t%s_addr = %s\n",
1908 sec, hex_string ((unsigned long)addr));
1909 sec_num++;
1910
1911 /* The object's sections are initialized when a
1912 call is made to build_objfile_section_table (objfile).
1913 This happens in reread_symbols.
1914 At this point, we don't know what file type this is,
1915 so we can't determine what section names are valid. */
1916 }
1917
1918 if (from_tty && (!query ("%s", "")))
1919 error (_("Not confirmed."));
1920
1921 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
1922
1923 /* Getting new symbols may change our opinion about what is
1924 frameless. */
1925 reinit_frame_cache ();
1926 do_cleanups (my_cleanups);
1927 }
1928 \f
1929 static void
1930 add_shared_symbol_files_command (char *args, int from_tty)
1931 {
1932 #ifdef ADD_SHARED_SYMBOL_FILES
1933 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1934 #else
1935 error (_("This command is not available in this configuration of GDB."));
1936 #endif
1937 }
1938 \f
1939 /* Re-read symbols if a symbol-file has changed. */
1940 void
1941 reread_symbols (void)
1942 {
1943 struct objfile *objfile;
1944 long new_modtime;
1945 int reread_one = 0;
1946 struct stat new_statbuf;
1947 int res;
1948
1949 /* With the addition of shared libraries, this should be modified,
1950 the load time should be saved in the partial symbol tables, since
1951 different tables may come from different source files. FIXME.
1952 This routine should then walk down each partial symbol table
1953 and see if the symbol table that it originates from has been changed */
1954
1955 for (objfile = object_files; objfile; objfile = objfile->next)
1956 {
1957 if (objfile->obfd)
1958 {
1959 #ifdef DEPRECATED_IBM6000_TARGET
1960 /* If this object is from a shared library, then you should
1961 stat on the library name, not member name. */
1962
1963 if (objfile->obfd->my_archive)
1964 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1965 else
1966 #endif
1967 res = stat (objfile->name, &new_statbuf);
1968 if (res != 0)
1969 {
1970 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1971 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
1972 objfile->name);
1973 continue;
1974 }
1975 new_modtime = new_statbuf.st_mtime;
1976 if (new_modtime != objfile->mtime)
1977 {
1978 struct cleanup *old_cleanups;
1979 struct section_offsets *offsets;
1980 int num_offsets;
1981 char *obfd_filename;
1982
1983 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
1984 objfile->name);
1985
1986 /* There are various functions like symbol_file_add,
1987 symfile_bfd_open, syms_from_objfile, etc., which might
1988 appear to do what we want. But they have various other
1989 effects which we *don't* want. So we just do stuff
1990 ourselves. We don't worry about mapped files (for one thing,
1991 any mapped file will be out of date). */
1992
1993 /* If we get an error, blow away this objfile (not sure if
1994 that is the correct response for things like shared
1995 libraries). */
1996 old_cleanups = make_cleanup_free_objfile (objfile);
1997 /* We need to do this whenever any symbols go away. */
1998 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1999
2000 /* Clean up any state BFD has sitting around. We don't need
2001 to close the descriptor but BFD lacks a way of closing the
2002 BFD without closing the descriptor. */
2003 obfd_filename = bfd_get_filename (objfile->obfd);
2004 if (!bfd_close (objfile->obfd))
2005 error (_("Can't close BFD for %s: %s"), objfile->name,
2006 bfd_errmsg (bfd_get_error ()));
2007 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2008 if (objfile->obfd == NULL)
2009 error (_("Can't open %s to read symbols."), objfile->name);
2010 /* bfd_openr sets cacheable to true, which is what we want. */
2011 if (!bfd_check_format (objfile->obfd, bfd_object))
2012 error (_("Can't read symbols from %s: %s."), objfile->name,
2013 bfd_errmsg (bfd_get_error ()));
2014
2015 /* Save the offsets, we will nuke them with the rest of the
2016 objfile_obstack. */
2017 num_offsets = objfile->num_sections;
2018 offsets = ((struct section_offsets *)
2019 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2020 memcpy (offsets, objfile->section_offsets,
2021 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2022
2023 /* Remove any references to this objfile in the global
2024 value lists. */
2025 preserve_values (objfile);
2026
2027 /* Nuke all the state that we will re-read. Much of the following
2028 code which sets things to NULL really is necessary to tell
2029 other parts of GDB that there is nothing currently there. */
2030
2031 /* FIXME: Do we have to free a whole linked list, or is this
2032 enough? */
2033 if (objfile->global_psymbols.list)
2034 xfree (objfile->global_psymbols.list);
2035 memset (&objfile->global_psymbols, 0,
2036 sizeof (objfile->global_psymbols));
2037 if (objfile->static_psymbols.list)
2038 xfree (objfile->static_psymbols.list);
2039 memset (&objfile->static_psymbols, 0,
2040 sizeof (objfile->static_psymbols));
2041
2042 /* Free the obstacks for non-reusable objfiles */
2043 bcache_xfree (objfile->psymbol_cache);
2044 objfile->psymbol_cache = bcache_xmalloc ();
2045 bcache_xfree (objfile->macro_cache);
2046 objfile->macro_cache = bcache_xmalloc ();
2047 if (objfile->demangled_names_hash != NULL)
2048 {
2049 htab_delete (objfile->demangled_names_hash);
2050 objfile->demangled_names_hash = NULL;
2051 }
2052 obstack_free (&objfile->objfile_obstack, 0);
2053 objfile->sections = NULL;
2054 objfile->symtabs = NULL;
2055 objfile->psymtabs = NULL;
2056 objfile->free_psymtabs = NULL;
2057 objfile->cp_namespace_symtab = NULL;
2058 objfile->msymbols = NULL;
2059 objfile->deprecated_sym_private = NULL;
2060 objfile->minimal_symbol_count = 0;
2061 memset (&objfile->msymbol_hash, 0,
2062 sizeof (objfile->msymbol_hash));
2063 memset (&objfile->msymbol_demangled_hash, 0,
2064 sizeof (objfile->msymbol_demangled_hash));
2065 objfile->fundamental_types = NULL;
2066 clear_objfile_data (objfile);
2067 if (objfile->sf != NULL)
2068 {
2069 (*objfile->sf->sym_finish) (objfile);
2070 }
2071
2072 /* We never make this a mapped file. */
2073 objfile->md = NULL;
2074 objfile->psymbol_cache = bcache_xmalloc ();
2075 objfile->macro_cache = bcache_xmalloc ();
2076 /* obstack_init also initializes the obstack so it is
2077 empty. We could use obstack_specify_allocation but
2078 gdb_obstack.h specifies the alloc/dealloc
2079 functions. */
2080 obstack_init (&objfile->objfile_obstack);
2081 if (build_objfile_section_table (objfile))
2082 {
2083 error (_("Can't find the file sections in `%s': %s"),
2084 objfile->name, bfd_errmsg (bfd_get_error ()));
2085 }
2086 terminate_minimal_symbol_table (objfile);
2087
2088 /* We use the same section offsets as from last time. I'm not
2089 sure whether that is always correct for shared libraries. */
2090 objfile->section_offsets = (struct section_offsets *)
2091 obstack_alloc (&objfile->objfile_obstack,
2092 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2093 memcpy (objfile->section_offsets, offsets,
2094 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2095 objfile->num_sections = num_offsets;
2096
2097 /* What the hell is sym_new_init for, anyway? The concept of
2098 distinguishing between the main file and additional files
2099 in this way seems rather dubious. */
2100 if (objfile == symfile_objfile)
2101 {
2102 (*objfile->sf->sym_new_init) (objfile);
2103 }
2104
2105 (*objfile->sf->sym_init) (objfile);
2106 clear_complaints (&symfile_complaints, 1, 1);
2107 /* The "mainline" parameter is a hideous hack; I think leaving it
2108 zero is OK since dbxread.c also does what it needs to do if
2109 objfile->global_psymbols.size is 0. */
2110 (*objfile->sf->sym_read) (objfile, 0);
2111 if (!have_partial_symbols () && !have_full_symbols ())
2112 {
2113 wrap_here ("");
2114 printf_unfiltered (_("(no debugging symbols found)\n"));
2115 wrap_here ("");
2116 }
2117 objfile->flags |= OBJF_SYMS;
2118
2119 /* We're done reading the symbol file; finish off complaints. */
2120 clear_complaints (&symfile_complaints, 0, 1);
2121
2122 /* Getting new symbols may change our opinion about what is
2123 frameless. */
2124
2125 reinit_frame_cache ();
2126
2127 /* Discard cleanups as symbol reading was successful. */
2128 discard_cleanups (old_cleanups);
2129
2130 /* If the mtime has changed between the time we set new_modtime
2131 and now, we *want* this to be out of date, so don't call stat
2132 again now. */
2133 objfile->mtime = new_modtime;
2134 reread_one = 1;
2135 reread_separate_symbols (objfile);
2136 }
2137 }
2138 }
2139
2140 if (reread_one)
2141 {
2142 clear_symtab_users ();
2143 /* At least one objfile has changed, so we can consider that
2144 the executable we're debugging has changed too. */
2145 observer_notify_executable_changed (NULL);
2146 }
2147
2148 }
2149
2150
2151 /* Handle separate debug info for OBJFILE, which has just been
2152 re-read:
2153 - If we had separate debug info before, but now we don't, get rid
2154 of the separated objfile.
2155 - If we didn't have separated debug info before, but now we do,
2156 read in the new separated debug info file.
2157 - If the debug link points to a different file, toss the old one
2158 and read the new one.
2159 This function does *not* handle the case where objfile is still
2160 using the same separate debug info file, but that file's timestamp
2161 has changed. That case should be handled by the loop in
2162 reread_symbols already. */
2163 static void
2164 reread_separate_symbols (struct objfile *objfile)
2165 {
2166 char *debug_file;
2167 unsigned long crc32;
2168
2169 /* Does the updated objfile's debug info live in a
2170 separate file? */
2171 debug_file = find_separate_debug_file (objfile);
2172
2173 if (objfile->separate_debug_objfile)
2174 {
2175 /* There are two cases where we need to get rid of
2176 the old separated debug info objfile:
2177 - if the new primary objfile doesn't have
2178 separated debug info, or
2179 - if the new primary objfile has separate debug
2180 info, but it's under a different filename.
2181
2182 If the old and new objfiles both have separate
2183 debug info, under the same filename, then we're
2184 okay --- if the separated file's contents have
2185 changed, we will have caught that when we
2186 visited it in this function's outermost
2187 loop. */
2188 if (! debug_file
2189 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2190 free_objfile (objfile->separate_debug_objfile);
2191 }
2192
2193 /* If the new objfile has separate debug info, and we
2194 haven't loaded it already, do so now. */
2195 if (debug_file
2196 && ! objfile->separate_debug_objfile)
2197 {
2198 /* Use the same section offset table as objfile itself.
2199 Preserve the flags from objfile that make sense. */
2200 objfile->separate_debug_objfile
2201 = (symbol_file_add_with_addrs_or_offsets
2202 (symfile_bfd_open (debug_file),
2203 info_verbose, /* from_tty: Don't override the default. */
2204 0, /* No addr table. */
2205 objfile->section_offsets, objfile->num_sections,
2206 0, /* Not mainline. See comments about this above. */
2207 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2208 | OBJF_USERLOADED)));
2209 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2210 = objfile;
2211 }
2212 }
2213
2214
2215 \f
2216
2217
2218 typedef struct
2219 {
2220 char *ext;
2221 enum language lang;
2222 }
2223 filename_language;
2224
2225 static filename_language *filename_language_table;
2226 static int fl_table_size, fl_table_next;
2227
2228 static void
2229 add_filename_language (char *ext, enum language lang)
2230 {
2231 if (fl_table_next >= fl_table_size)
2232 {
2233 fl_table_size += 10;
2234 filename_language_table =
2235 xrealloc (filename_language_table,
2236 fl_table_size * sizeof (*filename_language_table));
2237 }
2238
2239 filename_language_table[fl_table_next].ext = xstrdup (ext);
2240 filename_language_table[fl_table_next].lang = lang;
2241 fl_table_next++;
2242 }
2243
2244 static char *ext_args;
2245 static void
2246 show_ext_args (struct ui_file *file, int from_tty,
2247 struct cmd_list_element *c, const char *value)
2248 {
2249 fprintf_filtered (file, _("\
2250 Mapping between filename extension and source language is \"%s\".\n"),
2251 value);
2252 }
2253
2254 static void
2255 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2256 {
2257 int i;
2258 char *cp = ext_args;
2259 enum language lang;
2260
2261 /* First arg is filename extension, starting with '.' */
2262 if (*cp != '.')
2263 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2264
2265 /* Find end of first arg. */
2266 while (*cp && !isspace (*cp))
2267 cp++;
2268
2269 if (*cp == '\0')
2270 error (_("'%s': two arguments required -- filename extension and language"),
2271 ext_args);
2272
2273 /* Null-terminate first arg */
2274 *cp++ = '\0';
2275
2276 /* Find beginning of second arg, which should be a source language. */
2277 while (*cp && isspace (*cp))
2278 cp++;
2279
2280 if (*cp == '\0')
2281 error (_("'%s': two arguments required -- filename extension and language"),
2282 ext_args);
2283
2284 /* Lookup the language from among those we know. */
2285 lang = language_enum (cp);
2286
2287 /* Now lookup the filename extension: do we already know it? */
2288 for (i = 0; i < fl_table_next; i++)
2289 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2290 break;
2291
2292 if (i >= fl_table_next)
2293 {
2294 /* new file extension */
2295 add_filename_language (ext_args, lang);
2296 }
2297 else
2298 {
2299 /* redefining a previously known filename extension */
2300
2301 /* if (from_tty) */
2302 /* query ("Really make files of type %s '%s'?", */
2303 /* ext_args, language_str (lang)); */
2304
2305 xfree (filename_language_table[i].ext);
2306 filename_language_table[i].ext = xstrdup (ext_args);
2307 filename_language_table[i].lang = lang;
2308 }
2309 }
2310
2311 static void
2312 info_ext_lang_command (char *args, int from_tty)
2313 {
2314 int i;
2315
2316 printf_filtered (_("Filename extensions and the languages they represent:"));
2317 printf_filtered ("\n\n");
2318 for (i = 0; i < fl_table_next; i++)
2319 printf_filtered ("\t%s\t- %s\n",
2320 filename_language_table[i].ext,
2321 language_str (filename_language_table[i].lang));
2322 }
2323
2324 static void
2325 init_filename_language_table (void)
2326 {
2327 if (fl_table_size == 0) /* protect against repetition */
2328 {
2329 fl_table_size = 20;
2330 fl_table_next = 0;
2331 filename_language_table =
2332 xmalloc (fl_table_size * sizeof (*filename_language_table));
2333 add_filename_language (".c", language_c);
2334 add_filename_language (".C", language_cplus);
2335 add_filename_language (".cc", language_cplus);
2336 add_filename_language (".cp", language_cplus);
2337 add_filename_language (".cpp", language_cplus);
2338 add_filename_language (".cxx", language_cplus);
2339 add_filename_language (".c++", language_cplus);
2340 add_filename_language (".java", language_java);
2341 add_filename_language (".class", language_java);
2342 add_filename_language (".m", language_objc);
2343 add_filename_language (".f", language_fortran);
2344 add_filename_language (".F", language_fortran);
2345 add_filename_language (".s", language_asm);
2346 add_filename_language (".S", language_asm);
2347 add_filename_language (".pas", language_pascal);
2348 add_filename_language (".p", language_pascal);
2349 add_filename_language (".pp", language_pascal);
2350 add_filename_language (".adb", language_ada);
2351 add_filename_language (".ads", language_ada);
2352 add_filename_language (".a", language_ada);
2353 add_filename_language (".ada", language_ada);
2354 }
2355 }
2356
2357 enum language
2358 deduce_language_from_filename (char *filename)
2359 {
2360 int i;
2361 char *cp;
2362
2363 if (filename != NULL)
2364 if ((cp = strrchr (filename, '.')) != NULL)
2365 for (i = 0; i < fl_table_next; i++)
2366 if (strcmp (cp, filename_language_table[i].ext) == 0)
2367 return filename_language_table[i].lang;
2368
2369 return language_unknown;
2370 }
2371 \f
2372 /* allocate_symtab:
2373
2374 Allocate and partly initialize a new symbol table. Return a pointer
2375 to it. error() if no space.
2376
2377 Caller must set these fields:
2378 LINETABLE(symtab)
2379 symtab->blockvector
2380 symtab->dirname
2381 symtab->free_code
2382 symtab->free_ptr
2383 possibly free_named_symtabs (symtab->filename);
2384 */
2385
2386 struct symtab *
2387 allocate_symtab (char *filename, struct objfile *objfile)
2388 {
2389 struct symtab *symtab;
2390
2391 symtab = (struct symtab *)
2392 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2393 memset (symtab, 0, sizeof (*symtab));
2394 symtab->filename = obsavestring (filename, strlen (filename),
2395 &objfile->objfile_obstack);
2396 symtab->fullname = NULL;
2397 symtab->language = deduce_language_from_filename (filename);
2398 symtab->debugformat = obsavestring ("unknown", 7,
2399 &objfile->objfile_obstack);
2400
2401 /* Hook it to the objfile it comes from */
2402
2403 symtab->objfile = objfile;
2404 symtab->next = objfile->symtabs;
2405 objfile->symtabs = symtab;
2406
2407 /* FIXME: This should go away. It is only defined for the Z8000,
2408 and the Z8000 definition of this macro doesn't have anything to
2409 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2410 here for convenience. */
2411 #ifdef INIT_EXTRA_SYMTAB_INFO
2412 INIT_EXTRA_SYMTAB_INFO (symtab);
2413 #endif
2414
2415 return (symtab);
2416 }
2417
2418 struct partial_symtab *
2419 allocate_psymtab (char *filename, struct objfile *objfile)
2420 {
2421 struct partial_symtab *psymtab;
2422
2423 if (objfile->free_psymtabs)
2424 {
2425 psymtab = objfile->free_psymtabs;
2426 objfile->free_psymtabs = psymtab->next;
2427 }
2428 else
2429 psymtab = (struct partial_symtab *)
2430 obstack_alloc (&objfile->objfile_obstack,
2431 sizeof (struct partial_symtab));
2432
2433 memset (psymtab, 0, sizeof (struct partial_symtab));
2434 psymtab->filename = obsavestring (filename, strlen (filename),
2435 &objfile->objfile_obstack);
2436 psymtab->symtab = NULL;
2437
2438 /* Prepend it to the psymtab list for the objfile it belongs to.
2439 Psymtabs are searched in most recent inserted -> least recent
2440 inserted order. */
2441
2442 psymtab->objfile = objfile;
2443 psymtab->next = objfile->psymtabs;
2444 objfile->psymtabs = psymtab;
2445 #if 0
2446 {
2447 struct partial_symtab **prev_pst;
2448 psymtab->objfile = objfile;
2449 psymtab->next = NULL;
2450 prev_pst = &(objfile->psymtabs);
2451 while ((*prev_pst) != NULL)
2452 prev_pst = &((*prev_pst)->next);
2453 (*prev_pst) = psymtab;
2454 }
2455 #endif
2456
2457 return (psymtab);
2458 }
2459
2460 void
2461 discard_psymtab (struct partial_symtab *pst)
2462 {
2463 struct partial_symtab **prev_pst;
2464
2465 /* From dbxread.c:
2466 Empty psymtabs happen as a result of header files which don't
2467 have any symbols in them. There can be a lot of them. But this
2468 check is wrong, in that a psymtab with N_SLINE entries but
2469 nothing else is not empty, but we don't realize that. Fixing
2470 that without slowing things down might be tricky. */
2471
2472 /* First, snip it out of the psymtab chain */
2473
2474 prev_pst = &(pst->objfile->psymtabs);
2475 while ((*prev_pst) != pst)
2476 prev_pst = &((*prev_pst)->next);
2477 (*prev_pst) = pst->next;
2478
2479 /* Next, put it on a free list for recycling */
2480
2481 pst->next = pst->objfile->free_psymtabs;
2482 pst->objfile->free_psymtabs = pst;
2483 }
2484 \f
2485
2486 /* Reset all data structures in gdb which may contain references to symbol
2487 table data. */
2488
2489 void
2490 clear_symtab_users (void)
2491 {
2492 /* Someday, we should do better than this, by only blowing away
2493 the things that really need to be blown. */
2494
2495 /* Clear the "current" symtab first, because it is no longer valid.
2496 breakpoint_re_set may try to access the current symtab. */
2497 clear_current_source_symtab_and_line ();
2498
2499 clear_displays ();
2500 breakpoint_re_set ();
2501 set_default_breakpoint (0, 0, 0, 0);
2502 clear_pc_function_cache ();
2503 if (deprecated_target_new_objfile_hook)
2504 deprecated_target_new_objfile_hook (NULL);
2505 }
2506
2507 static void
2508 clear_symtab_users_cleanup (void *ignore)
2509 {
2510 clear_symtab_users ();
2511 }
2512
2513 /* clear_symtab_users_once:
2514
2515 This function is run after symbol reading, or from a cleanup.
2516 If an old symbol table was obsoleted, the old symbol table
2517 has been blown away, but the other GDB data structures that may
2518 reference it have not yet been cleared or re-directed. (The old
2519 symtab was zapped, and the cleanup queued, in free_named_symtab()
2520 below.)
2521
2522 This function can be queued N times as a cleanup, or called
2523 directly; it will do all the work the first time, and then will be a
2524 no-op until the next time it is queued. This works by bumping a
2525 counter at queueing time. Much later when the cleanup is run, or at
2526 the end of symbol processing (in case the cleanup is discarded), if
2527 the queued count is greater than the "done-count", we do the work
2528 and set the done-count to the queued count. If the queued count is
2529 less than or equal to the done-count, we just ignore the call. This
2530 is needed because reading a single .o file will often replace many
2531 symtabs (one per .h file, for example), and we don't want to reset
2532 the breakpoints N times in the user's face.
2533
2534 The reason we both queue a cleanup, and call it directly after symbol
2535 reading, is because the cleanup protects us in case of errors, but is
2536 discarded if symbol reading is successful. */
2537
2538 #if 0
2539 /* FIXME: As free_named_symtabs is currently a big noop this function
2540 is no longer needed. */
2541 static void clear_symtab_users_once (void);
2542
2543 static int clear_symtab_users_queued;
2544 static int clear_symtab_users_done;
2545
2546 static void
2547 clear_symtab_users_once (void)
2548 {
2549 /* Enforce once-per-`do_cleanups'-semantics */
2550 if (clear_symtab_users_queued <= clear_symtab_users_done)
2551 return;
2552 clear_symtab_users_done = clear_symtab_users_queued;
2553
2554 clear_symtab_users ();
2555 }
2556 #endif
2557
2558 /* Delete the specified psymtab, and any others that reference it. */
2559
2560 static void
2561 cashier_psymtab (struct partial_symtab *pst)
2562 {
2563 struct partial_symtab *ps, *pprev = NULL;
2564 int i;
2565
2566 /* Find its previous psymtab in the chain */
2567 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2568 {
2569 if (ps == pst)
2570 break;
2571 pprev = ps;
2572 }
2573
2574 if (ps)
2575 {
2576 /* Unhook it from the chain. */
2577 if (ps == pst->objfile->psymtabs)
2578 pst->objfile->psymtabs = ps->next;
2579 else
2580 pprev->next = ps->next;
2581
2582 /* FIXME, we can't conveniently deallocate the entries in the
2583 partial_symbol lists (global_psymbols/static_psymbols) that
2584 this psymtab points to. These just take up space until all
2585 the psymtabs are reclaimed. Ditto the dependencies list and
2586 filename, which are all in the objfile_obstack. */
2587
2588 /* We need to cashier any psymtab that has this one as a dependency... */
2589 again:
2590 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2591 {
2592 for (i = 0; i < ps->number_of_dependencies; i++)
2593 {
2594 if (ps->dependencies[i] == pst)
2595 {
2596 cashier_psymtab (ps);
2597 goto again; /* Must restart, chain has been munged. */
2598 }
2599 }
2600 }
2601 }
2602 }
2603
2604 /* If a symtab or psymtab for filename NAME is found, free it along
2605 with any dependent breakpoints, displays, etc.
2606 Used when loading new versions of object modules with the "add-file"
2607 command. This is only called on the top-level symtab or psymtab's name;
2608 it is not called for subsidiary files such as .h files.
2609
2610 Return value is 1 if we blew away the environment, 0 if not.
2611 FIXME. The return value appears to never be used.
2612
2613 FIXME. I think this is not the best way to do this. We should
2614 work on being gentler to the environment while still cleaning up
2615 all stray pointers into the freed symtab. */
2616
2617 int
2618 free_named_symtabs (char *name)
2619 {
2620 #if 0
2621 /* FIXME: With the new method of each objfile having it's own
2622 psymtab list, this function needs serious rethinking. In particular,
2623 why was it ever necessary to toss psymtabs with specific compilation
2624 unit filenames, as opposed to all psymtabs from a particular symbol
2625 file? -- fnf
2626 Well, the answer is that some systems permit reloading of particular
2627 compilation units. We want to blow away any old info about these
2628 compilation units, regardless of which objfiles they arrived in. --gnu. */
2629
2630 struct symtab *s;
2631 struct symtab *prev;
2632 struct partial_symtab *ps;
2633 struct blockvector *bv;
2634 int blewit = 0;
2635
2636 /* We only wack things if the symbol-reload switch is set. */
2637 if (!symbol_reloading)
2638 return 0;
2639
2640 /* Some symbol formats have trouble providing file names... */
2641 if (name == 0 || *name == '\0')
2642 return 0;
2643
2644 /* Look for a psymtab with the specified name. */
2645
2646 again2:
2647 for (ps = partial_symtab_list; ps; ps = ps->next)
2648 {
2649 if (strcmp (name, ps->filename) == 0)
2650 {
2651 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2652 goto again2; /* Must restart, chain has been munged */
2653 }
2654 }
2655
2656 /* Look for a symtab with the specified name. */
2657
2658 for (s = symtab_list; s; s = s->next)
2659 {
2660 if (strcmp (name, s->filename) == 0)
2661 break;
2662 prev = s;
2663 }
2664
2665 if (s)
2666 {
2667 if (s == symtab_list)
2668 symtab_list = s->next;
2669 else
2670 prev->next = s->next;
2671
2672 /* For now, queue a delete for all breakpoints, displays, etc., whether
2673 or not they depend on the symtab being freed. This should be
2674 changed so that only those data structures affected are deleted. */
2675
2676 /* But don't delete anything if the symtab is empty.
2677 This test is necessary due to a bug in "dbxread.c" that
2678 causes empty symtabs to be created for N_SO symbols that
2679 contain the pathname of the object file. (This problem
2680 has been fixed in GDB 3.9x). */
2681
2682 bv = BLOCKVECTOR (s);
2683 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2684 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2685 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2686 {
2687 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
2688 name);
2689 clear_symtab_users_queued++;
2690 make_cleanup (clear_symtab_users_once, 0);
2691 blewit = 1;
2692 }
2693 else
2694 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2695 name);
2696
2697 free_symtab (s);
2698 }
2699 else
2700 {
2701 /* It is still possible that some breakpoints will be affected
2702 even though no symtab was found, since the file might have
2703 been compiled without debugging, and hence not be associated
2704 with a symtab. In order to handle this correctly, we would need
2705 to keep a list of text address ranges for undebuggable files.
2706 For now, we do nothing, since this is a fairly obscure case. */
2707 ;
2708 }
2709
2710 /* FIXME, what about the minimal symbol table? */
2711 return blewit;
2712 #else
2713 return (0);
2714 #endif
2715 }
2716 \f
2717 /* Allocate and partially fill a partial symtab. It will be
2718 completely filled at the end of the symbol list.
2719
2720 FILENAME is the name of the symbol-file we are reading from. */
2721
2722 struct partial_symtab *
2723 start_psymtab_common (struct objfile *objfile,
2724 struct section_offsets *section_offsets, char *filename,
2725 CORE_ADDR textlow, struct partial_symbol **global_syms,
2726 struct partial_symbol **static_syms)
2727 {
2728 struct partial_symtab *psymtab;
2729
2730 psymtab = allocate_psymtab (filename, objfile);
2731 psymtab->section_offsets = section_offsets;
2732 psymtab->textlow = textlow;
2733 psymtab->texthigh = psymtab->textlow; /* default */
2734 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2735 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2736 return (psymtab);
2737 }
2738 \f
2739 /* Add a symbol with a long value to a psymtab.
2740 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2741 Return the partial symbol that has been added. */
2742
2743 /* NOTE: carlton/2003-09-11: The reason why we return the partial
2744 symbol is so that callers can get access to the symbol's demangled
2745 name, which they don't have any cheap way to determine otherwise.
2746 (Currenly, dwarf2read.c is the only file who uses that information,
2747 though it's possible that other readers might in the future.)
2748 Elena wasn't thrilled about that, and I don't blame her, but we
2749 couldn't come up with a better way to get that information. If
2750 it's needed in other situations, we could consider breaking up
2751 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2752 cache. */
2753
2754 const struct partial_symbol *
2755 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2756 enum address_class class,
2757 struct psymbol_allocation_list *list, long val, /* Value as a long */
2758 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2759 enum language language, struct objfile *objfile)
2760 {
2761 struct partial_symbol *psym;
2762 char *buf = alloca (namelength + 1);
2763 /* psymbol is static so that there will be no uninitialized gaps in the
2764 structure which might contain random data, causing cache misses in
2765 bcache. */
2766 static struct partial_symbol psymbol;
2767
2768 /* Create local copy of the partial symbol */
2769 memcpy (buf, name, namelength);
2770 buf[namelength] = '\0';
2771 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2772 if (val != 0)
2773 {
2774 SYMBOL_VALUE (&psymbol) = val;
2775 }
2776 else
2777 {
2778 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2779 }
2780 SYMBOL_SECTION (&psymbol) = 0;
2781 SYMBOL_LANGUAGE (&psymbol) = language;
2782 PSYMBOL_DOMAIN (&psymbol) = domain;
2783 PSYMBOL_CLASS (&psymbol) = class;
2784
2785 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2786
2787 /* Stash the partial symbol away in the cache */
2788 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2789 objfile->psymbol_cache);
2790
2791 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2792 if (list->next >= list->list + list->size)
2793 {
2794 extend_psymbol_list (list, objfile);
2795 }
2796 *list->next++ = psym;
2797 OBJSTAT (objfile, n_psyms++);
2798
2799 return psym;
2800 }
2801
2802 /* Add a symbol with a long value to a psymtab. This differs from
2803 * add_psymbol_to_list above in taking both a mangled and a demangled
2804 * name. */
2805
2806 void
2807 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2808 int dem_namelength, domain_enum domain,
2809 enum address_class class,
2810 struct psymbol_allocation_list *list, long val, /* Value as a long */
2811 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2812 enum language language,
2813 struct objfile *objfile)
2814 {
2815 struct partial_symbol *psym;
2816 char *buf = alloca (namelength + 1);
2817 /* psymbol is static so that there will be no uninitialized gaps in the
2818 structure which might contain random data, causing cache misses in
2819 bcache. */
2820 static struct partial_symbol psymbol;
2821
2822 /* Create local copy of the partial symbol */
2823
2824 memcpy (buf, name, namelength);
2825 buf[namelength] = '\0';
2826 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2827 objfile->psymbol_cache);
2828
2829 buf = alloca (dem_namelength + 1);
2830 memcpy (buf, dem_name, dem_namelength);
2831 buf[dem_namelength] = '\0';
2832
2833 switch (language)
2834 {
2835 case language_c:
2836 case language_cplus:
2837 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2838 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2839 break;
2840 /* FIXME What should be done for the default case? Ignoring for now. */
2841 }
2842
2843 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2844 if (val != 0)
2845 {
2846 SYMBOL_VALUE (&psymbol) = val;
2847 }
2848 else
2849 {
2850 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2851 }
2852 SYMBOL_SECTION (&psymbol) = 0;
2853 SYMBOL_LANGUAGE (&psymbol) = language;
2854 PSYMBOL_DOMAIN (&psymbol) = domain;
2855 PSYMBOL_CLASS (&psymbol) = class;
2856 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2857
2858 /* Stash the partial symbol away in the cache */
2859 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2860 objfile->psymbol_cache);
2861
2862 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2863 if (list->next >= list->list + list->size)
2864 {
2865 extend_psymbol_list (list, objfile);
2866 }
2867 *list->next++ = psym;
2868 OBJSTAT (objfile, n_psyms++);
2869 }
2870
2871 /* Initialize storage for partial symbols. */
2872
2873 void
2874 init_psymbol_list (struct objfile *objfile, int total_symbols)
2875 {
2876 /* Free any previously allocated psymbol lists. */
2877
2878 if (objfile->global_psymbols.list)
2879 {
2880 xfree (objfile->global_psymbols.list);
2881 }
2882 if (objfile->static_psymbols.list)
2883 {
2884 xfree (objfile->static_psymbols.list);
2885 }
2886
2887 /* Current best guess is that approximately a twentieth
2888 of the total symbols (in a debugging file) are global or static
2889 oriented symbols */
2890
2891 objfile->global_psymbols.size = total_symbols / 10;
2892 objfile->static_psymbols.size = total_symbols / 10;
2893
2894 if (objfile->global_psymbols.size > 0)
2895 {
2896 objfile->global_psymbols.next =
2897 objfile->global_psymbols.list = (struct partial_symbol **)
2898 xmalloc ((objfile->global_psymbols.size
2899 * sizeof (struct partial_symbol *)));
2900 }
2901 if (objfile->static_psymbols.size > 0)
2902 {
2903 objfile->static_psymbols.next =
2904 objfile->static_psymbols.list = (struct partial_symbol **)
2905 xmalloc ((objfile->static_psymbols.size
2906 * sizeof (struct partial_symbol *)));
2907 }
2908 }
2909
2910 /* OVERLAYS:
2911 The following code implements an abstraction for debugging overlay sections.
2912
2913 The target model is as follows:
2914 1) The gnu linker will permit multiple sections to be mapped into the
2915 same VMA, each with its own unique LMA (or load address).
2916 2) It is assumed that some runtime mechanism exists for mapping the
2917 sections, one by one, from the load address into the VMA address.
2918 3) This code provides a mechanism for gdb to keep track of which
2919 sections should be considered to be mapped from the VMA to the LMA.
2920 This information is used for symbol lookup, and memory read/write.
2921 For instance, if a section has been mapped then its contents
2922 should be read from the VMA, otherwise from the LMA.
2923
2924 Two levels of debugger support for overlays are available. One is
2925 "manual", in which the debugger relies on the user to tell it which
2926 overlays are currently mapped. This level of support is
2927 implemented entirely in the core debugger, and the information about
2928 whether a section is mapped is kept in the objfile->obj_section table.
2929
2930 The second level of support is "automatic", and is only available if
2931 the target-specific code provides functionality to read the target's
2932 overlay mapping table, and translate its contents for the debugger
2933 (by updating the mapped state information in the obj_section tables).
2934
2935 The interface is as follows:
2936 User commands:
2937 overlay map <name> -- tell gdb to consider this section mapped
2938 overlay unmap <name> -- tell gdb to consider this section unmapped
2939 overlay list -- list the sections that GDB thinks are mapped
2940 overlay read-target -- get the target's state of what's mapped
2941 overlay off/manual/auto -- set overlay debugging state
2942 Functional interface:
2943 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2944 section, return that section.
2945 find_pc_overlay(pc): find any overlay section that contains
2946 the pc, either in its VMA or its LMA
2947 overlay_is_mapped(sect): true if overlay is marked as mapped
2948 section_is_overlay(sect): true if section's VMA != LMA
2949 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2950 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2951 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2952 overlay_mapped_address(...): map an address from section's LMA to VMA
2953 overlay_unmapped_address(...): map an address from section's VMA to LMA
2954 symbol_overlayed_address(...): Return a "current" address for symbol:
2955 either in VMA or LMA depending on whether
2956 the symbol's section is currently mapped
2957 */
2958
2959 /* Overlay debugging state: */
2960
2961 enum overlay_debugging_state overlay_debugging = ovly_off;
2962 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2963
2964 /* Target vector for refreshing overlay mapped state */
2965 static void simple_overlay_update (struct obj_section *);
2966 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2967
2968 /* Function: section_is_overlay (SECTION)
2969 Returns true if SECTION has VMA not equal to LMA, ie.
2970 SECTION is loaded at an address different from where it will "run". */
2971
2972 int
2973 section_is_overlay (asection *section)
2974 {
2975 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2976
2977 if (overlay_debugging)
2978 if (section && section->lma != 0 &&
2979 section->vma != section->lma)
2980 return 1;
2981
2982 return 0;
2983 }
2984
2985 /* Function: overlay_invalidate_all (void)
2986 Invalidate the mapped state of all overlay sections (mark it as stale). */
2987
2988 static void
2989 overlay_invalidate_all (void)
2990 {
2991 struct objfile *objfile;
2992 struct obj_section *sect;
2993
2994 ALL_OBJSECTIONS (objfile, sect)
2995 if (section_is_overlay (sect->the_bfd_section))
2996 sect->ovly_mapped = -1;
2997 }
2998
2999 /* Function: overlay_is_mapped (SECTION)
3000 Returns true if section is an overlay, and is currently mapped.
3001 Private: public access is thru function section_is_mapped.
3002
3003 Access to the ovly_mapped flag is restricted to this function, so
3004 that we can do automatic update. If the global flag
3005 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3006 overlay_invalidate_all. If the mapped state of the particular
3007 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3008
3009 static int
3010 overlay_is_mapped (struct obj_section *osect)
3011 {
3012 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3013 return 0;
3014
3015 switch (overlay_debugging)
3016 {
3017 default:
3018 case ovly_off:
3019 return 0; /* overlay debugging off */
3020 case ovly_auto: /* overlay debugging automatic */
3021 /* Unles there is a target_overlay_update function,
3022 there's really nothing useful to do here (can't really go auto) */
3023 if (target_overlay_update)
3024 {
3025 if (overlay_cache_invalid)
3026 {
3027 overlay_invalidate_all ();
3028 overlay_cache_invalid = 0;
3029 }
3030 if (osect->ovly_mapped == -1)
3031 (*target_overlay_update) (osect);
3032 }
3033 /* fall thru to manual case */
3034 case ovly_on: /* overlay debugging manual */
3035 return osect->ovly_mapped == 1;
3036 }
3037 }
3038
3039 /* Function: section_is_mapped
3040 Returns true if section is an overlay, and is currently mapped. */
3041
3042 int
3043 section_is_mapped (asection *section)
3044 {
3045 struct objfile *objfile;
3046 struct obj_section *osect;
3047
3048 if (overlay_debugging)
3049 if (section && section_is_overlay (section))
3050 ALL_OBJSECTIONS (objfile, osect)
3051 if (osect->the_bfd_section == section)
3052 return overlay_is_mapped (osect);
3053
3054 return 0;
3055 }
3056
3057 /* Function: pc_in_unmapped_range
3058 If PC falls into the lma range of SECTION, return true, else false. */
3059
3060 CORE_ADDR
3061 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
3062 {
3063 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3064
3065 int size;
3066
3067 if (overlay_debugging)
3068 if (section && section_is_overlay (section))
3069 {
3070 size = bfd_get_section_size (section);
3071 if (section->lma <= pc && pc < section->lma + size)
3072 return 1;
3073 }
3074 return 0;
3075 }
3076
3077 /* Function: pc_in_mapped_range
3078 If PC falls into the vma range of SECTION, return true, else false. */
3079
3080 CORE_ADDR
3081 pc_in_mapped_range (CORE_ADDR pc, asection *section)
3082 {
3083 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3084
3085 int size;
3086
3087 if (overlay_debugging)
3088 if (section && section_is_overlay (section))
3089 {
3090 size = bfd_get_section_size (section);
3091 if (section->vma <= pc && pc < section->vma + size)
3092 return 1;
3093 }
3094 return 0;
3095 }
3096
3097
3098 /* Return true if the mapped ranges of sections A and B overlap, false
3099 otherwise. */
3100 static int
3101 sections_overlap (asection *a, asection *b)
3102 {
3103 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3104
3105 CORE_ADDR a_start = a->vma;
3106 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
3107 CORE_ADDR b_start = b->vma;
3108 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
3109
3110 return (a_start < b_end && b_start < a_end);
3111 }
3112
3113 /* Function: overlay_unmapped_address (PC, SECTION)
3114 Returns the address corresponding to PC in the unmapped (load) range.
3115 May be the same as PC. */
3116
3117 CORE_ADDR
3118 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3119 {
3120 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3121
3122 if (overlay_debugging)
3123 if (section && section_is_overlay (section) &&
3124 pc_in_mapped_range (pc, section))
3125 return pc + section->lma - section->vma;
3126
3127 return pc;
3128 }
3129
3130 /* Function: overlay_mapped_address (PC, SECTION)
3131 Returns the address corresponding to PC in the mapped (runtime) range.
3132 May be the same as PC. */
3133
3134 CORE_ADDR
3135 overlay_mapped_address (CORE_ADDR pc, asection *section)
3136 {
3137 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3138
3139 if (overlay_debugging)
3140 if (section && section_is_overlay (section) &&
3141 pc_in_unmapped_range (pc, section))
3142 return pc + section->vma - section->lma;
3143
3144 return pc;
3145 }
3146
3147
3148 /* Function: symbol_overlayed_address
3149 Return one of two addresses (relative to the VMA or to the LMA),
3150 depending on whether the section is mapped or not. */
3151
3152 CORE_ADDR
3153 symbol_overlayed_address (CORE_ADDR address, asection *section)
3154 {
3155 if (overlay_debugging)
3156 {
3157 /* If the symbol has no section, just return its regular address. */
3158 if (section == 0)
3159 return address;
3160 /* If the symbol's section is not an overlay, just return its address */
3161 if (!section_is_overlay (section))
3162 return address;
3163 /* If the symbol's section is mapped, just return its address */
3164 if (section_is_mapped (section))
3165 return address;
3166 /*
3167 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3168 * then return its LOADED address rather than its vma address!!
3169 */
3170 return overlay_unmapped_address (address, section);
3171 }
3172 return address;
3173 }
3174
3175 /* Function: find_pc_overlay (PC)
3176 Return the best-match overlay section for PC:
3177 If PC matches a mapped overlay section's VMA, return that section.
3178 Else if PC matches an unmapped section's VMA, return that section.
3179 Else if PC matches an unmapped section's LMA, return that section. */
3180
3181 asection *
3182 find_pc_overlay (CORE_ADDR pc)
3183 {
3184 struct objfile *objfile;
3185 struct obj_section *osect, *best_match = NULL;
3186
3187 if (overlay_debugging)
3188 ALL_OBJSECTIONS (objfile, osect)
3189 if (section_is_overlay (osect->the_bfd_section))
3190 {
3191 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3192 {
3193 if (overlay_is_mapped (osect))
3194 return osect->the_bfd_section;
3195 else
3196 best_match = osect;
3197 }
3198 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3199 best_match = osect;
3200 }
3201 return best_match ? best_match->the_bfd_section : NULL;
3202 }
3203
3204 /* Function: find_pc_mapped_section (PC)
3205 If PC falls into the VMA address range of an overlay section that is
3206 currently marked as MAPPED, return that section. Else return NULL. */
3207
3208 asection *
3209 find_pc_mapped_section (CORE_ADDR pc)
3210 {
3211 struct objfile *objfile;
3212 struct obj_section *osect;
3213
3214 if (overlay_debugging)
3215 ALL_OBJSECTIONS (objfile, osect)
3216 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3217 overlay_is_mapped (osect))
3218 return osect->the_bfd_section;
3219
3220 return NULL;
3221 }
3222
3223 /* Function: list_overlays_command
3224 Print a list of mapped sections and their PC ranges */
3225
3226 void
3227 list_overlays_command (char *args, int from_tty)
3228 {
3229 int nmapped = 0;
3230 struct objfile *objfile;
3231 struct obj_section *osect;
3232
3233 if (overlay_debugging)
3234 ALL_OBJSECTIONS (objfile, osect)
3235 if (overlay_is_mapped (osect))
3236 {
3237 const char *name;
3238 bfd_vma lma, vma;
3239 int size;
3240
3241 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3242 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3243 size = bfd_get_section_size (osect->the_bfd_section);
3244 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3245
3246 printf_filtered ("Section %s, loaded at ", name);
3247 deprecated_print_address_numeric (lma, 1, gdb_stdout);
3248 puts_filtered (" - ");
3249 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
3250 printf_filtered (", mapped at ");
3251 deprecated_print_address_numeric (vma, 1, gdb_stdout);
3252 puts_filtered (" - ");
3253 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
3254 puts_filtered ("\n");
3255
3256 nmapped++;
3257 }
3258 if (nmapped == 0)
3259 printf_filtered (_("No sections are mapped.\n"));
3260 }
3261
3262 /* Function: map_overlay_command
3263 Mark the named section as mapped (ie. residing at its VMA address). */
3264
3265 void
3266 map_overlay_command (char *args, int from_tty)
3267 {
3268 struct objfile *objfile, *objfile2;
3269 struct obj_section *sec, *sec2;
3270 asection *bfdsec;
3271
3272 if (!overlay_debugging)
3273 error (_("\
3274 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3275 the 'overlay manual' command."));
3276
3277 if (args == 0 || *args == 0)
3278 error (_("Argument required: name of an overlay section"));
3279
3280 /* First, find a section matching the user supplied argument */
3281 ALL_OBJSECTIONS (objfile, sec)
3282 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3283 {
3284 /* Now, check to see if the section is an overlay. */
3285 bfdsec = sec->the_bfd_section;
3286 if (!section_is_overlay (bfdsec))
3287 continue; /* not an overlay section */
3288
3289 /* Mark the overlay as "mapped" */
3290 sec->ovly_mapped = 1;
3291
3292 /* Next, make a pass and unmap any sections that are
3293 overlapped by this new section: */
3294 ALL_OBJSECTIONS (objfile2, sec2)
3295 if (sec2->ovly_mapped
3296 && sec != sec2
3297 && sec->the_bfd_section != sec2->the_bfd_section
3298 && sections_overlap (sec->the_bfd_section,
3299 sec2->the_bfd_section))
3300 {
3301 if (info_verbose)
3302 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3303 bfd_section_name (objfile->obfd,
3304 sec2->the_bfd_section));
3305 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3306 }
3307 return;
3308 }
3309 error (_("No overlay section called %s"), args);
3310 }
3311
3312 /* Function: unmap_overlay_command
3313 Mark the overlay section as unmapped
3314 (ie. resident in its LMA address range, rather than the VMA range). */
3315
3316 void
3317 unmap_overlay_command (char *args, int from_tty)
3318 {
3319 struct objfile *objfile;
3320 struct obj_section *sec;
3321
3322 if (!overlay_debugging)
3323 error (_("\
3324 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3325 the 'overlay manual' command."));
3326
3327 if (args == 0 || *args == 0)
3328 error (_("Argument required: name of an overlay section"));
3329
3330 /* First, find a section matching the user supplied argument */
3331 ALL_OBJSECTIONS (objfile, sec)
3332 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3333 {
3334 if (!sec->ovly_mapped)
3335 error (_("Section %s is not mapped"), args);
3336 sec->ovly_mapped = 0;
3337 return;
3338 }
3339 error (_("No overlay section called %s"), args);
3340 }
3341
3342 /* Function: overlay_auto_command
3343 A utility command to turn on overlay debugging.
3344 Possibly this should be done via a set/show command. */
3345
3346 static void
3347 overlay_auto_command (char *args, int from_tty)
3348 {
3349 overlay_debugging = ovly_auto;
3350 enable_overlay_breakpoints ();
3351 if (info_verbose)
3352 printf_unfiltered (_("Automatic overlay debugging enabled."));
3353 }
3354
3355 /* Function: overlay_manual_command
3356 A utility command to turn on overlay debugging.
3357 Possibly this should be done via a set/show command. */
3358
3359 static void
3360 overlay_manual_command (char *args, int from_tty)
3361 {
3362 overlay_debugging = ovly_on;
3363 disable_overlay_breakpoints ();
3364 if (info_verbose)
3365 printf_unfiltered (_("Overlay debugging enabled."));
3366 }
3367
3368 /* Function: overlay_off_command
3369 A utility command to turn on overlay debugging.
3370 Possibly this should be done via a set/show command. */
3371
3372 static void
3373 overlay_off_command (char *args, int from_tty)
3374 {
3375 overlay_debugging = ovly_off;
3376 disable_overlay_breakpoints ();
3377 if (info_verbose)
3378 printf_unfiltered (_("Overlay debugging disabled."));
3379 }
3380
3381 static void
3382 overlay_load_command (char *args, int from_tty)
3383 {
3384 if (target_overlay_update)
3385 (*target_overlay_update) (NULL);
3386 else
3387 error (_("This target does not know how to read its overlay state."));
3388 }
3389
3390 /* Function: overlay_command
3391 A place-holder for a mis-typed command */
3392
3393 /* Command list chain containing all defined "overlay" subcommands. */
3394 struct cmd_list_element *overlaylist;
3395
3396 static void
3397 overlay_command (char *args, int from_tty)
3398 {
3399 printf_unfiltered
3400 ("\"overlay\" must be followed by the name of an overlay command.\n");
3401 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3402 }
3403
3404
3405 /* Target Overlays for the "Simplest" overlay manager:
3406
3407 This is GDB's default target overlay layer. It works with the
3408 minimal overlay manager supplied as an example by Cygnus. The
3409 entry point is via a function pointer "target_overlay_update",
3410 so targets that use a different runtime overlay manager can
3411 substitute their own overlay_update function and take over the
3412 function pointer.
3413
3414 The overlay_update function pokes around in the target's data structures
3415 to see what overlays are mapped, and updates GDB's overlay mapping with
3416 this information.
3417
3418 In this simple implementation, the target data structures are as follows:
3419 unsigned _novlys; /# number of overlay sections #/
3420 unsigned _ovly_table[_novlys][4] = {
3421 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3422 {..., ..., ..., ...},
3423 }
3424 unsigned _novly_regions; /# number of overlay regions #/
3425 unsigned _ovly_region_table[_novly_regions][3] = {
3426 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3427 {..., ..., ...},
3428 }
3429 These functions will attempt to update GDB's mappedness state in the
3430 symbol section table, based on the target's mappedness state.
3431
3432 To do this, we keep a cached copy of the target's _ovly_table, and
3433 attempt to detect when the cached copy is invalidated. The main
3434 entry point is "simple_overlay_update(SECT), which looks up SECT in
3435 the cached table and re-reads only the entry for that section from
3436 the target (whenever possible).
3437 */
3438
3439 /* Cached, dynamically allocated copies of the target data structures: */
3440 static unsigned (*cache_ovly_table)[4] = 0;
3441 #if 0
3442 static unsigned (*cache_ovly_region_table)[3] = 0;
3443 #endif
3444 static unsigned cache_novlys = 0;
3445 #if 0
3446 static unsigned cache_novly_regions = 0;
3447 #endif
3448 static CORE_ADDR cache_ovly_table_base = 0;
3449 #if 0
3450 static CORE_ADDR cache_ovly_region_table_base = 0;
3451 #endif
3452 enum ovly_index
3453 {
3454 VMA, SIZE, LMA, MAPPED
3455 };
3456 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3457
3458 /* Throw away the cached copy of _ovly_table */
3459 static void
3460 simple_free_overlay_table (void)
3461 {
3462 if (cache_ovly_table)
3463 xfree (cache_ovly_table);
3464 cache_novlys = 0;
3465 cache_ovly_table = NULL;
3466 cache_ovly_table_base = 0;
3467 }
3468
3469 #if 0
3470 /* Throw away the cached copy of _ovly_region_table */
3471 static void
3472 simple_free_overlay_region_table (void)
3473 {
3474 if (cache_ovly_region_table)
3475 xfree (cache_ovly_region_table);
3476 cache_novly_regions = 0;
3477 cache_ovly_region_table = NULL;
3478 cache_ovly_region_table_base = 0;
3479 }
3480 #endif
3481
3482 /* Read an array of ints from the target into a local buffer.
3483 Convert to host order. int LEN is number of ints */
3484 static void
3485 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3486 {
3487 /* FIXME (alloca): Not safe if array is very large. */
3488 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3489 int i;
3490
3491 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3492 for (i = 0; i < len; i++)
3493 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3494 TARGET_LONG_BYTES);
3495 }
3496
3497 /* Find and grab a copy of the target _ovly_table
3498 (and _novlys, which is needed for the table's size) */
3499 static int
3500 simple_read_overlay_table (void)
3501 {
3502 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3503
3504 simple_free_overlay_table ();
3505 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3506 if (! novlys_msym)
3507 {
3508 error (_("Error reading inferior's overlay table: "
3509 "couldn't find `_novlys' variable\n"
3510 "in inferior. Use `overlay manual' mode."));
3511 return 0;
3512 }
3513
3514 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3515 if (! ovly_table_msym)
3516 {
3517 error (_("Error reading inferior's overlay table: couldn't find "
3518 "`_ovly_table' array\n"
3519 "in inferior. Use `overlay manual' mode."));
3520 return 0;
3521 }
3522
3523 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3524 cache_ovly_table
3525 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3526 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3527 read_target_long_array (cache_ovly_table_base,
3528 (unsigned int *) cache_ovly_table,
3529 cache_novlys * 4);
3530
3531 return 1; /* SUCCESS */
3532 }
3533
3534 #if 0
3535 /* Find and grab a copy of the target _ovly_region_table
3536 (and _novly_regions, which is needed for the table's size) */
3537 static int
3538 simple_read_overlay_region_table (void)
3539 {
3540 struct minimal_symbol *msym;
3541
3542 simple_free_overlay_region_table ();
3543 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3544 if (msym != NULL)
3545 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3546 else
3547 return 0; /* failure */
3548 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3549 if (cache_ovly_region_table != NULL)
3550 {
3551 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3552 if (msym != NULL)
3553 {
3554 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3555 read_target_long_array (cache_ovly_region_table_base,
3556 (unsigned int *) cache_ovly_region_table,
3557 cache_novly_regions * 3);
3558 }
3559 else
3560 return 0; /* failure */
3561 }
3562 else
3563 return 0; /* failure */
3564 return 1; /* SUCCESS */
3565 }
3566 #endif
3567
3568 /* Function: simple_overlay_update_1
3569 A helper function for simple_overlay_update. Assuming a cached copy
3570 of _ovly_table exists, look through it to find an entry whose vma,
3571 lma and size match those of OSECT. Re-read the entry and make sure
3572 it still matches OSECT (else the table may no longer be valid).
3573 Set OSECT's mapped state to match the entry. Return: 1 for
3574 success, 0 for failure. */
3575
3576 static int
3577 simple_overlay_update_1 (struct obj_section *osect)
3578 {
3579 int i, size;
3580 bfd *obfd = osect->objfile->obfd;
3581 asection *bsect = osect->the_bfd_section;
3582
3583 size = bfd_get_section_size (osect->the_bfd_section);
3584 for (i = 0; i < cache_novlys; i++)
3585 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3586 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3587 /* && cache_ovly_table[i][SIZE] == size */ )
3588 {
3589 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3590 (unsigned int *) cache_ovly_table[i], 4);
3591 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3592 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3593 /* && cache_ovly_table[i][SIZE] == size */ )
3594 {
3595 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3596 return 1;
3597 }
3598 else /* Warning! Warning! Target's ovly table has changed! */
3599 return 0;
3600 }
3601 return 0;
3602 }
3603
3604 /* Function: simple_overlay_update
3605 If OSECT is NULL, then update all sections' mapped state
3606 (after re-reading the entire target _ovly_table).
3607 If OSECT is non-NULL, then try to find a matching entry in the
3608 cached ovly_table and update only OSECT's mapped state.
3609 If a cached entry can't be found or the cache isn't valid, then
3610 re-read the entire cache, and go ahead and update all sections. */
3611
3612 static void
3613 simple_overlay_update (struct obj_section *osect)
3614 {
3615 struct objfile *objfile;
3616
3617 /* Were we given an osect to look up? NULL means do all of them. */
3618 if (osect)
3619 /* Have we got a cached copy of the target's overlay table? */
3620 if (cache_ovly_table != NULL)
3621 /* Does its cached location match what's currently in the symtab? */
3622 if (cache_ovly_table_base ==
3623 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3624 /* Then go ahead and try to look up this single section in the cache */
3625 if (simple_overlay_update_1 (osect))
3626 /* Found it! We're done. */
3627 return;
3628
3629 /* Cached table no good: need to read the entire table anew.
3630 Or else we want all the sections, in which case it's actually
3631 more efficient to read the whole table in one block anyway. */
3632
3633 if (! simple_read_overlay_table ())
3634 return;
3635
3636 /* Now may as well update all sections, even if only one was requested. */
3637 ALL_OBJSECTIONS (objfile, osect)
3638 if (section_is_overlay (osect->the_bfd_section))
3639 {
3640 int i, size;
3641 bfd *obfd = osect->objfile->obfd;
3642 asection *bsect = osect->the_bfd_section;
3643
3644 size = bfd_get_section_size (bsect);
3645 for (i = 0; i < cache_novlys; i++)
3646 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3647 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3648 /* && cache_ovly_table[i][SIZE] == size */ )
3649 { /* obj_section matches i'th entry in ovly_table */
3650 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3651 break; /* finished with inner for loop: break out */
3652 }
3653 }
3654 }
3655
3656 /* Set the output sections and output offsets for section SECTP in
3657 ABFD. The relocation code in BFD will read these offsets, so we
3658 need to be sure they're initialized. We map each section to itself,
3659 with no offset; this means that SECTP->vma will be honored. */
3660
3661 static void
3662 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3663 {
3664 sectp->output_section = sectp;
3665 sectp->output_offset = 0;
3666 }
3667
3668 /* Relocate the contents of a debug section SECTP in ABFD. The
3669 contents are stored in BUF if it is non-NULL, or returned in a
3670 malloc'd buffer otherwise.
3671
3672 For some platforms and debug info formats, shared libraries contain
3673 relocations against the debug sections (particularly for DWARF-2;
3674 one affected platform is PowerPC GNU/Linux, although it depends on
3675 the version of the linker in use). Also, ELF object files naturally
3676 have unresolved relocations for their debug sections. We need to apply
3677 the relocations in order to get the locations of symbols correct. */
3678
3679 bfd_byte *
3680 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3681 {
3682 /* We're only interested in debugging sections with relocation
3683 information. */
3684 if ((sectp->flags & SEC_RELOC) == 0)
3685 return NULL;
3686 if ((sectp->flags & SEC_DEBUGGING) == 0)
3687 return NULL;
3688
3689 /* We will handle section offsets properly elsewhere, so relocate as if
3690 all sections begin at 0. */
3691 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3692
3693 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3694 }
3695
3696 void
3697 _initialize_symfile (void)
3698 {
3699 struct cmd_list_element *c;
3700
3701 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3702 Load symbol table from executable file FILE.\n\
3703 The `file' command can also load symbol tables, as well as setting the file\n\
3704 to execute."), &cmdlist);
3705 set_cmd_completer (c, filename_completer);
3706
3707 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3708 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3709 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3710 ADDR is the starting address of the file's text.\n\
3711 The optional arguments are section-name section-address pairs and\n\
3712 should be specified if the data and bss segments are not contiguous\n\
3713 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3714 &cmdlist);
3715 set_cmd_completer (c, filename_completer);
3716
3717 c = add_cmd ("add-shared-symbol-files", class_files,
3718 add_shared_symbol_files_command, _("\
3719 Load the symbols from shared objects in the dynamic linker's link map."),
3720 &cmdlist);
3721 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3722 &cmdlist);
3723
3724 c = add_cmd ("load", class_files, load_command, _("\
3725 Dynamically load FILE into the running program, and record its symbols\n\
3726 for access from GDB."), &cmdlist);
3727 set_cmd_completer (c, filename_completer);
3728
3729 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3730 &symbol_reloading, _("\
3731 Set dynamic symbol table reloading multiple times in one run."), _("\
3732 Show dynamic symbol table reloading multiple times in one run."), NULL,
3733 NULL,
3734 show_symbol_reloading,
3735 &setlist, &showlist);
3736
3737 add_prefix_cmd ("overlay", class_support, overlay_command,
3738 _("Commands for debugging overlays."), &overlaylist,
3739 "overlay ", 0, &cmdlist);
3740
3741 add_com_alias ("ovly", "overlay", class_alias, 1);
3742 add_com_alias ("ov", "overlay", class_alias, 1);
3743
3744 add_cmd ("map-overlay", class_support, map_overlay_command,
3745 _("Assert that an overlay section is mapped."), &overlaylist);
3746
3747 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3748 _("Assert that an overlay section is unmapped."), &overlaylist);
3749
3750 add_cmd ("list-overlays", class_support, list_overlays_command,
3751 _("List mappings of overlay sections."), &overlaylist);
3752
3753 add_cmd ("manual", class_support, overlay_manual_command,
3754 _("Enable overlay debugging."), &overlaylist);
3755 add_cmd ("off", class_support, overlay_off_command,
3756 _("Disable overlay debugging."), &overlaylist);
3757 add_cmd ("auto", class_support, overlay_auto_command,
3758 _("Enable automatic overlay debugging."), &overlaylist);
3759 add_cmd ("load-target", class_support, overlay_load_command,
3760 _("Read the overlay mapping state from the target."), &overlaylist);
3761
3762 /* Filename extension to source language lookup table: */
3763 init_filename_language_table ();
3764 add_setshow_string_noescape_cmd ("extension-language", class_files,
3765 &ext_args, _("\
3766 Set mapping between filename extension and source language."), _("\
3767 Show mapping between filename extension and source language."), _("\
3768 Usage: set extension-language .foo bar"),
3769 set_ext_lang_command,
3770 show_ext_args,
3771 &setlist, &showlist);
3772
3773 add_info ("extensions", info_ext_lang_command,
3774 _("All filename extensions associated with a source language."));
3775
3776 add_setshow_integer_cmd ("download-write-size", class_obscure,
3777 &download_write_size, _("\
3778 Set the write size used when downloading a program."), _("\
3779 Show the write size used when downloading a program."), _("\
3780 Only used when downloading a program onto a remote\n\
3781 target. Specify zero, or a negative value, to disable\n\
3782 blocked writes. The actual size of each transfer is also\n\
3783 limited by the size of the target packet and the memory\n\
3784 cache."),
3785 NULL,
3786 show_download_write_size,
3787 &setlist, &showlist);
3788
3789 debug_file_directory = xstrdup (DEBUGDIR);
3790 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3791 &debug_file_directory, _("\
3792 Set the directory where separate debug symbols are searched for."), _("\
3793 Show the directory where separate debug symbols are searched for."), _("\
3794 Separate debug symbols are first searched for in the same\n\
3795 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3796 and lastly at the path of the directory of the binary with\n\
3797 the global debug-file directory prepended."),
3798 NULL,
3799 show_debug_file_directory,
3800 &setlist, &showlist);
3801 }
This page took 0.110676 seconds and 4 git commands to generate.