2012-01-17 Pedro Alves <palves@redhat.com>
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2012 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57 #include "stack.h"
58
59 #include <sys/types.h>
60 #include <fcntl.h>
61 #include "gdb_string.h"
62 #include "gdb_stat.h"
63 #include <ctype.h>
64 #include <time.h>
65 #include <sys/time.h>
66
67 #include "psymtab.h"
68
69 int (*deprecated_ui_load_progress_hook) (const char *section,
70 unsigned long num);
71 void (*deprecated_show_load_progress) (const char *section,
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
75 unsigned long total_size);
76 void (*deprecated_pre_add_symbol_hook) (const char *);
77 void (*deprecated_post_add_symbol_hook) (void);
78
79 static void clear_symtab_users_cleanup (void *ignore);
80
81 /* Global variables owned by this file. */
82 int readnow_symbol_files; /* Read full symbols immediately. */
83
84 /* External variables and functions referenced. */
85
86 extern void report_transfer_performance (unsigned long, time_t, time_t);
87
88 /* Functions this file defines. */
89
90 static void load_command (char *, int);
91
92 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
93
94 static void add_symbol_file_command (char *, int);
95
96 bfd *symfile_bfd_open (char *);
97
98 int get_section_index (struct objfile *, char *);
99
100 static const struct sym_fns *find_sym_fns (bfd *);
101
102 static void decrement_reading_symtab (void *);
103
104 static void overlay_invalidate_all (void);
105
106 void list_overlays_command (char *, int);
107
108 void map_overlay_command (char *, int);
109
110 void unmap_overlay_command (char *, int);
111
112 static void overlay_auto_command (char *, int);
113
114 static void overlay_manual_command (char *, int);
115
116 static void overlay_off_command (char *, int);
117
118 static void overlay_load_command (char *, int);
119
120 static void overlay_command (char *, int);
121
122 static void simple_free_overlay_table (void);
123
124 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
125 enum bfd_endian);
126
127 static int simple_read_overlay_table (void);
128
129 static int simple_overlay_update_1 (struct obj_section *);
130
131 static void add_filename_language (char *ext, enum language lang);
132
133 static void info_ext_lang_command (char *args, int from_tty);
134
135 static void init_filename_language_table (void);
136
137 static void symfile_find_segment_sections (struct objfile *objfile);
138
139 void _initialize_symfile (void);
140
141 /* List of all available sym_fns. On gdb startup, each object file reader
142 calls add_symtab_fns() to register information on each format it is
143 prepared to read. */
144
145 typedef const struct sym_fns *sym_fns_ptr;
146 DEF_VEC_P (sym_fns_ptr);
147
148 static VEC (sym_fns_ptr) *symtab_fns = NULL;
149
150 /* Flag for whether user will be reloading symbols multiple times.
151 Defaults to ON for VxWorks, otherwise OFF. */
152
153 #ifdef SYMBOL_RELOADING_DEFAULT
154 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
155 #else
156 int symbol_reloading = 0;
157 #endif
158 static void
159 show_symbol_reloading (struct ui_file *file, int from_tty,
160 struct cmd_list_element *c, const char *value)
161 {
162 fprintf_filtered (file, _("Dynamic symbol table reloading "
163 "multiple times in one run is %s.\n"),
164 value);
165 }
166
167 /* If non-zero, shared library symbols will be added automatically
168 when the inferior is created, new libraries are loaded, or when
169 attaching to the inferior. This is almost always what users will
170 want to have happen; but for very large programs, the startup time
171 will be excessive, and so if this is a problem, the user can clear
172 this flag and then add the shared library symbols as needed. Note
173 that there is a potential for confusion, since if the shared
174 library symbols are not loaded, commands like "info fun" will *not*
175 report all the functions that are actually present. */
176
177 int auto_solib_add = 1;
178 \f
179
180 /* Make a null terminated copy of the string at PTR with SIZE characters in
181 the obstack pointed to by OBSTACKP . Returns the address of the copy.
182 Note that the string at PTR does not have to be null terminated, I.e. it
183 may be part of a larger string and we are only saving a substring. */
184
185 char *
186 obsavestring (const char *ptr, int size, struct obstack *obstackp)
187 {
188 char *p = (char *) obstack_alloc (obstackp, size + 1);
189 /* Open-coded memcpy--saves function call time. These strings are usually
190 short. FIXME: Is this really still true with a compiler that can
191 inline memcpy? */
192 {
193 const char *p1 = ptr;
194 char *p2 = p;
195 const char *end = ptr + size;
196
197 while (p1 != end)
198 *p2++ = *p1++;
199 }
200 p[size] = 0;
201 return p;
202 }
203
204 /* Concatenate NULL terminated variable argument list of `const char *'
205 strings; return the new string. Space is found in the OBSTACKP.
206 Argument list must be terminated by a sentinel expression `(char *)
207 NULL'. */
208
209 char *
210 obconcat (struct obstack *obstackp, ...)
211 {
212 va_list ap;
213
214 va_start (ap, obstackp);
215 for (;;)
216 {
217 const char *s = va_arg (ap, const char *);
218
219 if (s == NULL)
220 break;
221
222 obstack_grow_str (obstackp, s);
223 }
224 va_end (ap);
225 obstack_1grow (obstackp, 0);
226
227 return obstack_finish (obstackp);
228 }
229
230 /* True if we are reading a symbol table. */
231
232 int currently_reading_symtab = 0;
233
234 static void
235 decrement_reading_symtab (void *dummy)
236 {
237 currently_reading_symtab--;
238 }
239
240 /* Increment currently_reading_symtab and return a cleanup that can be
241 used to decrement it. */
242 struct cleanup *
243 increment_reading_symtab (void)
244 {
245 ++currently_reading_symtab;
246 return make_cleanup (decrement_reading_symtab, NULL);
247 }
248
249 /* Remember the lowest-addressed loadable section we've seen.
250 This function is called via bfd_map_over_sections.
251
252 In case of equal vmas, the section with the largest size becomes the
253 lowest-addressed loadable section.
254
255 If the vmas and sizes are equal, the last section is considered the
256 lowest-addressed loadable section. */
257
258 void
259 find_lowest_section (bfd *abfd, asection *sect, void *obj)
260 {
261 asection **lowest = (asection **) obj;
262
263 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
264 return;
265 if (!*lowest)
266 *lowest = sect; /* First loadable section */
267 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
268 *lowest = sect; /* A lower loadable section */
269 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
270 && (bfd_section_size (abfd, (*lowest))
271 <= bfd_section_size (abfd, sect)))
272 *lowest = sect;
273 }
274
275 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
276
277 struct section_addr_info *
278 alloc_section_addr_info (size_t num_sections)
279 {
280 struct section_addr_info *sap;
281 size_t size;
282
283 size = (sizeof (struct section_addr_info)
284 + sizeof (struct other_sections) * (num_sections - 1));
285 sap = (struct section_addr_info *) xmalloc (size);
286 memset (sap, 0, size);
287 sap->num_sections = num_sections;
288
289 return sap;
290 }
291
292 /* Build (allocate and populate) a section_addr_info struct from
293 an existing section table. */
294
295 extern struct section_addr_info *
296 build_section_addr_info_from_section_table (const struct target_section *start,
297 const struct target_section *end)
298 {
299 struct section_addr_info *sap;
300 const struct target_section *stp;
301 int oidx;
302
303 sap = alloc_section_addr_info (end - start);
304
305 for (stp = start, oidx = 0; stp != end; stp++)
306 {
307 if (bfd_get_section_flags (stp->bfd,
308 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
309 && oidx < end - start)
310 {
311 sap->other[oidx].addr = stp->addr;
312 sap->other[oidx].name
313 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
314 sap->other[oidx].sectindex = stp->the_bfd_section->index;
315 oidx++;
316 }
317 }
318
319 return sap;
320 }
321
322 /* Create a section_addr_info from section offsets in ABFD. */
323
324 static struct section_addr_info *
325 build_section_addr_info_from_bfd (bfd *abfd)
326 {
327 struct section_addr_info *sap;
328 int i;
329 struct bfd_section *sec;
330
331 sap = alloc_section_addr_info (bfd_count_sections (abfd));
332 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
333 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
334 {
335 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
336 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
337 sap->other[i].sectindex = sec->index;
338 i++;
339 }
340 return sap;
341 }
342
343 /* Create a section_addr_info from section offsets in OBJFILE. */
344
345 struct section_addr_info *
346 build_section_addr_info_from_objfile (const struct objfile *objfile)
347 {
348 struct section_addr_info *sap;
349 int i;
350
351 /* Before reread_symbols gets rewritten it is not safe to call:
352 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
353 */
354 sap = build_section_addr_info_from_bfd (objfile->obfd);
355 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
356 {
357 int sectindex = sap->other[i].sectindex;
358
359 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
360 }
361 return sap;
362 }
363
364 /* Free all memory allocated by build_section_addr_info_from_section_table. */
365
366 extern void
367 free_section_addr_info (struct section_addr_info *sap)
368 {
369 int idx;
370
371 for (idx = 0; idx < sap->num_sections; idx++)
372 if (sap->other[idx].name)
373 xfree (sap->other[idx].name);
374 xfree (sap);
375 }
376
377
378 /* Initialize OBJFILE's sect_index_* members. */
379 static void
380 init_objfile_sect_indices (struct objfile *objfile)
381 {
382 asection *sect;
383 int i;
384
385 sect = bfd_get_section_by_name (objfile->obfd, ".text");
386 if (sect)
387 objfile->sect_index_text = sect->index;
388
389 sect = bfd_get_section_by_name (objfile->obfd, ".data");
390 if (sect)
391 objfile->sect_index_data = sect->index;
392
393 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
394 if (sect)
395 objfile->sect_index_bss = sect->index;
396
397 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
398 if (sect)
399 objfile->sect_index_rodata = sect->index;
400
401 /* This is where things get really weird... We MUST have valid
402 indices for the various sect_index_* members or gdb will abort.
403 So if for example, there is no ".text" section, we have to
404 accomodate that. First, check for a file with the standard
405 one or two segments. */
406
407 symfile_find_segment_sections (objfile);
408
409 /* Except when explicitly adding symbol files at some address,
410 section_offsets contains nothing but zeros, so it doesn't matter
411 which slot in section_offsets the individual sect_index_* members
412 index into. So if they are all zero, it is safe to just point
413 all the currently uninitialized indices to the first slot. But
414 beware: if this is the main executable, it may be relocated
415 later, e.g. by the remote qOffsets packet, and then this will
416 be wrong! That's why we try segments first. */
417
418 for (i = 0; i < objfile->num_sections; i++)
419 {
420 if (ANOFFSET (objfile->section_offsets, i) != 0)
421 {
422 break;
423 }
424 }
425 if (i == objfile->num_sections)
426 {
427 if (objfile->sect_index_text == -1)
428 objfile->sect_index_text = 0;
429 if (objfile->sect_index_data == -1)
430 objfile->sect_index_data = 0;
431 if (objfile->sect_index_bss == -1)
432 objfile->sect_index_bss = 0;
433 if (objfile->sect_index_rodata == -1)
434 objfile->sect_index_rodata = 0;
435 }
436 }
437
438 /* The arguments to place_section. */
439
440 struct place_section_arg
441 {
442 struct section_offsets *offsets;
443 CORE_ADDR lowest;
444 };
445
446 /* Find a unique offset to use for loadable section SECT if
447 the user did not provide an offset. */
448
449 static void
450 place_section (bfd *abfd, asection *sect, void *obj)
451 {
452 struct place_section_arg *arg = obj;
453 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
454 int done;
455 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
456
457 /* We are only interested in allocated sections. */
458 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
459 return;
460
461 /* If the user specified an offset, honor it. */
462 if (offsets[sect->index] != 0)
463 return;
464
465 /* Otherwise, let's try to find a place for the section. */
466 start_addr = (arg->lowest + align - 1) & -align;
467
468 do {
469 asection *cur_sec;
470
471 done = 1;
472
473 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
474 {
475 int indx = cur_sec->index;
476
477 /* We don't need to compare against ourself. */
478 if (cur_sec == sect)
479 continue;
480
481 /* We can only conflict with allocated sections. */
482 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
483 continue;
484
485 /* If the section offset is 0, either the section has not been placed
486 yet, or it was the lowest section placed (in which case LOWEST
487 will be past its end). */
488 if (offsets[indx] == 0)
489 continue;
490
491 /* If this section would overlap us, then we must move up. */
492 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
493 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
494 {
495 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
496 start_addr = (start_addr + align - 1) & -align;
497 done = 0;
498 break;
499 }
500
501 /* Otherwise, we appear to be OK. So far. */
502 }
503 }
504 while (!done);
505
506 offsets[sect->index] = start_addr;
507 arg->lowest = start_addr + bfd_get_section_size (sect);
508 }
509
510 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
511 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
512 entries. */
513
514 void
515 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
516 int num_sections,
517 struct section_addr_info *addrs)
518 {
519 int i;
520
521 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
522
523 /* Now calculate offsets for section that were specified by the caller. */
524 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
525 {
526 struct other_sections *osp;
527
528 osp = &addrs->other[i];
529 if (osp->sectindex == -1)
530 continue;
531
532 /* Record all sections in offsets. */
533 /* The section_offsets in the objfile are here filled in using
534 the BFD index. */
535 section_offsets->offsets[osp->sectindex] = osp->addr;
536 }
537 }
538
539 /* Transform section name S for a name comparison. prelink can split section
540 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
541 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
542 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
543 (`.sbss') section has invalid (increased) virtual address. */
544
545 static const char *
546 addr_section_name (const char *s)
547 {
548 if (strcmp (s, ".dynbss") == 0)
549 return ".bss";
550 if (strcmp (s, ".sdynbss") == 0)
551 return ".sbss";
552
553 return s;
554 }
555
556 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
557 their (name, sectindex) pair. sectindex makes the sort by name stable. */
558
559 static int
560 addrs_section_compar (const void *ap, const void *bp)
561 {
562 const struct other_sections *a = *((struct other_sections **) ap);
563 const struct other_sections *b = *((struct other_sections **) bp);
564 int retval, a_idx, b_idx;
565
566 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
567 if (retval)
568 return retval;
569
570 return a->sectindex - b->sectindex;
571 }
572
573 /* Provide sorted array of pointers to sections of ADDRS. The array is
574 terminated by NULL. Caller is responsible to call xfree for it. */
575
576 static struct other_sections **
577 addrs_section_sort (struct section_addr_info *addrs)
578 {
579 struct other_sections **array;
580 int i;
581
582 /* `+ 1' for the NULL terminator. */
583 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
584 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
585 array[i] = &addrs->other[i];
586 array[i] = NULL;
587
588 qsort (array, i, sizeof (*array), addrs_section_compar);
589
590 return array;
591 }
592
593 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
594 also SECTINDEXes specific to ABFD there. This function can be used to
595 rebase ADDRS to start referencing different BFD than before. */
596
597 void
598 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
599 {
600 asection *lower_sect;
601 CORE_ADDR lower_offset;
602 int i;
603 struct cleanup *my_cleanup;
604 struct section_addr_info *abfd_addrs;
605 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
606 struct other_sections **addrs_to_abfd_addrs;
607
608 /* Find lowest loadable section to be used as starting point for
609 continguous sections. */
610 lower_sect = NULL;
611 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
612 if (lower_sect == NULL)
613 {
614 warning (_("no loadable sections found in added symbol-file %s"),
615 bfd_get_filename (abfd));
616 lower_offset = 0;
617 }
618 else
619 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
620
621 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
622 in ABFD. Section names are not unique - there can be multiple sections of
623 the same name. Also the sections of the same name do not have to be
624 adjacent to each other. Some sections may be present only in one of the
625 files. Even sections present in both files do not have to be in the same
626 order.
627
628 Use stable sort by name for the sections in both files. Then linearly
629 scan both lists matching as most of the entries as possible. */
630
631 addrs_sorted = addrs_section_sort (addrs);
632 my_cleanup = make_cleanup (xfree, addrs_sorted);
633
634 abfd_addrs = build_section_addr_info_from_bfd (abfd);
635 make_cleanup_free_section_addr_info (abfd_addrs);
636 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
637 make_cleanup (xfree, abfd_addrs_sorted);
638
639 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
640 ABFD_ADDRS_SORTED. */
641
642 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
643 * addrs->num_sections);
644 make_cleanup (xfree, addrs_to_abfd_addrs);
645
646 while (*addrs_sorted)
647 {
648 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
649
650 while (*abfd_addrs_sorted
651 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
652 sect_name) < 0)
653 abfd_addrs_sorted++;
654
655 if (*abfd_addrs_sorted
656 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
657 sect_name) == 0)
658 {
659 int index_in_addrs;
660
661 /* Make the found item directly addressable from ADDRS. */
662 index_in_addrs = *addrs_sorted - addrs->other;
663 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
664 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
665
666 /* Never use the same ABFD entry twice. */
667 abfd_addrs_sorted++;
668 }
669
670 addrs_sorted++;
671 }
672
673 /* Calculate offsets for the loadable sections.
674 FIXME! Sections must be in order of increasing loadable section
675 so that contiguous sections can use the lower-offset!!!
676
677 Adjust offsets if the segments are not contiguous.
678 If the section is contiguous, its offset should be set to
679 the offset of the highest loadable section lower than it
680 (the loadable section directly below it in memory).
681 this_offset = lower_offset = lower_addr - lower_orig_addr */
682
683 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
684 {
685 struct other_sections *sect = addrs_to_abfd_addrs[i];
686
687 if (sect)
688 {
689 /* This is the index used by BFD. */
690 addrs->other[i].sectindex = sect->sectindex;
691
692 if (addrs->other[i].addr != 0)
693 {
694 addrs->other[i].addr -= sect->addr;
695 lower_offset = addrs->other[i].addr;
696 }
697 else
698 addrs->other[i].addr = lower_offset;
699 }
700 else
701 {
702 /* addr_section_name transformation is not used for SECT_NAME. */
703 const char *sect_name = addrs->other[i].name;
704
705 /* This section does not exist in ABFD, which is normally
706 unexpected and we want to issue a warning.
707
708 However, the ELF prelinker does create a few sections which are
709 marked in the main executable as loadable (they are loaded in
710 memory from the DYNAMIC segment) and yet are not present in
711 separate debug info files. This is fine, and should not cause
712 a warning. Shared libraries contain just the section
713 ".gnu.liblist" but it is not marked as loadable there. There is
714 no other way to identify them than by their name as the sections
715 created by prelink have no special flags.
716
717 For the sections `.bss' and `.sbss' see addr_section_name. */
718
719 if (!(strcmp (sect_name, ".gnu.liblist") == 0
720 || strcmp (sect_name, ".gnu.conflict") == 0
721 || (strcmp (sect_name, ".bss") == 0
722 && i > 0
723 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
724 && addrs_to_abfd_addrs[i - 1] != NULL)
725 || (strcmp (sect_name, ".sbss") == 0
726 && i > 0
727 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
728 && addrs_to_abfd_addrs[i - 1] != NULL)))
729 warning (_("section %s not found in %s"), sect_name,
730 bfd_get_filename (abfd));
731
732 addrs->other[i].addr = 0;
733 addrs->other[i].sectindex = -1;
734 }
735 }
736
737 do_cleanups (my_cleanup);
738 }
739
740 /* Parse the user's idea of an offset for dynamic linking, into our idea
741 of how to represent it for fast symbol reading. This is the default
742 version of the sym_fns.sym_offsets function for symbol readers that
743 don't need to do anything special. It allocates a section_offsets table
744 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
745
746 void
747 default_symfile_offsets (struct objfile *objfile,
748 struct section_addr_info *addrs)
749 {
750 objfile->num_sections = bfd_count_sections (objfile->obfd);
751 objfile->section_offsets = (struct section_offsets *)
752 obstack_alloc (&objfile->objfile_obstack,
753 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
754 relative_addr_info_to_section_offsets (objfile->section_offsets,
755 objfile->num_sections, addrs);
756
757 /* For relocatable files, all loadable sections will start at zero.
758 The zero is meaningless, so try to pick arbitrary addresses such
759 that no loadable sections overlap. This algorithm is quadratic,
760 but the number of sections in a single object file is generally
761 small. */
762 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
763 {
764 struct place_section_arg arg;
765 bfd *abfd = objfile->obfd;
766 asection *cur_sec;
767
768 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
769 /* We do not expect this to happen; just skip this step if the
770 relocatable file has a section with an assigned VMA. */
771 if (bfd_section_vma (abfd, cur_sec) != 0)
772 break;
773
774 if (cur_sec == NULL)
775 {
776 CORE_ADDR *offsets = objfile->section_offsets->offsets;
777
778 /* Pick non-overlapping offsets for sections the user did not
779 place explicitly. */
780 arg.offsets = objfile->section_offsets;
781 arg.lowest = 0;
782 bfd_map_over_sections (objfile->obfd, place_section, &arg);
783
784 /* Correctly filling in the section offsets is not quite
785 enough. Relocatable files have two properties that
786 (most) shared objects do not:
787
788 - Their debug information will contain relocations. Some
789 shared libraries do also, but many do not, so this can not
790 be assumed.
791
792 - If there are multiple code sections they will be loaded
793 at different relative addresses in memory than they are
794 in the objfile, since all sections in the file will start
795 at address zero.
796
797 Because GDB has very limited ability to map from an
798 address in debug info to the correct code section,
799 it relies on adding SECT_OFF_TEXT to things which might be
800 code. If we clear all the section offsets, and set the
801 section VMAs instead, then symfile_relocate_debug_section
802 will return meaningful debug information pointing at the
803 correct sections.
804
805 GDB has too many different data structures for section
806 addresses - a bfd, objfile, and so_list all have section
807 tables, as does exec_ops. Some of these could probably
808 be eliminated. */
809
810 for (cur_sec = abfd->sections; cur_sec != NULL;
811 cur_sec = cur_sec->next)
812 {
813 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
814 continue;
815
816 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
817 exec_set_section_address (bfd_get_filename (abfd),
818 cur_sec->index,
819 offsets[cur_sec->index]);
820 offsets[cur_sec->index] = 0;
821 }
822 }
823 }
824
825 /* Remember the bfd indexes for the .text, .data, .bss and
826 .rodata sections. */
827 init_objfile_sect_indices (objfile);
828 }
829
830
831 /* Divide the file into segments, which are individual relocatable units.
832 This is the default version of the sym_fns.sym_segments function for
833 symbol readers that do not have an explicit representation of segments.
834 It assumes that object files do not have segments, and fully linked
835 files have a single segment. */
836
837 struct symfile_segment_data *
838 default_symfile_segments (bfd *abfd)
839 {
840 int num_sections, i;
841 asection *sect;
842 struct symfile_segment_data *data;
843 CORE_ADDR low, high;
844
845 /* Relocatable files contain enough information to position each
846 loadable section independently; they should not be relocated
847 in segments. */
848 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
849 return NULL;
850
851 /* Make sure there is at least one loadable section in the file. */
852 for (sect = abfd->sections; sect != NULL; sect = sect->next)
853 {
854 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
855 continue;
856
857 break;
858 }
859 if (sect == NULL)
860 return NULL;
861
862 low = bfd_get_section_vma (abfd, sect);
863 high = low + bfd_get_section_size (sect);
864
865 data = XZALLOC (struct symfile_segment_data);
866 data->num_segments = 1;
867 data->segment_bases = XCALLOC (1, CORE_ADDR);
868 data->segment_sizes = XCALLOC (1, CORE_ADDR);
869
870 num_sections = bfd_count_sections (abfd);
871 data->segment_info = XCALLOC (num_sections, int);
872
873 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
874 {
875 CORE_ADDR vma;
876
877 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
878 continue;
879
880 vma = bfd_get_section_vma (abfd, sect);
881 if (vma < low)
882 low = vma;
883 if (vma + bfd_get_section_size (sect) > high)
884 high = vma + bfd_get_section_size (sect);
885
886 data->segment_info[i] = 1;
887 }
888
889 data->segment_bases[0] = low;
890 data->segment_sizes[0] = high - low;
891
892 return data;
893 }
894
895 /* Process a symbol file, as either the main file or as a dynamically
896 loaded file.
897
898 OBJFILE is where the symbols are to be read from.
899
900 ADDRS is the list of section load addresses. If the user has given
901 an 'add-symbol-file' command, then this is the list of offsets and
902 addresses he or she provided as arguments to the command; or, if
903 we're handling a shared library, these are the actual addresses the
904 sections are loaded at, according to the inferior's dynamic linker
905 (as gleaned by GDB's shared library code). We convert each address
906 into an offset from the section VMA's as it appears in the object
907 file, and then call the file's sym_offsets function to convert this
908 into a format-specific offset table --- a `struct section_offsets'.
909 If ADDRS is non-zero, OFFSETS must be zero.
910
911 OFFSETS is a table of section offsets already in the right
912 format-specific representation. NUM_OFFSETS is the number of
913 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
914 assume this is the proper table the call to sym_offsets described
915 above would produce. Instead of calling sym_offsets, we just dump
916 it right into objfile->section_offsets. (When we're re-reading
917 symbols from an objfile, we don't have the original load address
918 list any more; all we have is the section offset table.) If
919 OFFSETS is non-zero, ADDRS must be zero.
920
921 ADD_FLAGS encodes verbosity level, whether this is main symbol or
922 an extra symbol file such as dynamically loaded code, and wether
923 breakpoint reset should be deferred. */
924
925 void
926 syms_from_objfile (struct objfile *objfile,
927 struct section_addr_info *addrs,
928 struct section_offsets *offsets,
929 int num_offsets,
930 int add_flags)
931 {
932 struct section_addr_info *local_addr = NULL;
933 struct cleanup *old_chain;
934 const int mainline = add_flags & SYMFILE_MAINLINE;
935
936 gdb_assert (! (addrs && offsets));
937
938 init_entry_point_info (objfile);
939 objfile->sf = find_sym_fns (objfile->obfd);
940
941 if (objfile->sf == NULL)
942 return; /* No symbols. */
943
944 /* Make sure that partially constructed symbol tables will be cleaned up
945 if an error occurs during symbol reading. */
946 old_chain = make_cleanup_free_objfile (objfile);
947
948 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
949 list. We now establish the convention that an addr of zero means
950 no load address was specified. */
951 if (! addrs && ! offsets)
952 {
953 local_addr
954 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
955 make_cleanup (xfree, local_addr);
956 addrs = local_addr;
957 }
958
959 /* Now either addrs or offsets is non-zero. */
960
961 if (mainline)
962 {
963 /* We will modify the main symbol table, make sure that all its users
964 will be cleaned up if an error occurs during symbol reading. */
965 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
966
967 /* Since no error yet, throw away the old symbol table. */
968
969 if (symfile_objfile != NULL)
970 {
971 free_objfile (symfile_objfile);
972 gdb_assert (symfile_objfile == NULL);
973 }
974
975 /* Currently we keep symbols from the add-symbol-file command.
976 If the user wants to get rid of them, they should do "symbol-file"
977 without arguments first. Not sure this is the best behavior
978 (PR 2207). */
979
980 (*objfile->sf->sym_new_init) (objfile);
981 }
982
983 /* Convert addr into an offset rather than an absolute address.
984 We find the lowest address of a loaded segment in the objfile,
985 and assume that <addr> is where that got loaded.
986
987 We no longer warn if the lowest section is not a text segment (as
988 happens for the PA64 port. */
989 if (addrs && addrs->other[0].name)
990 addr_info_make_relative (addrs, objfile->obfd);
991
992 /* Initialize symbol reading routines for this objfile, allow complaints to
993 appear for this new file, and record how verbose to be, then do the
994 initial symbol reading for this file. */
995
996 (*objfile->sf->sym_init) (objfile);
997 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
998
999 if (addrs)
1000 (*objfile->sf->sym_offsets) (objfile, addrs);
1001 else
1002 {
1003 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1004
1005 /* Just copy in the offset table directly as given to us. */
1006 objfile->num_sections = num_offsets;
1007 objfile->section_offsets
1008 = ((struct section_offsets *)
1009 obstack_alloc (&objfile->objfile_obstack, size));
1010 memcpy (objfile->section_offsets, offsets, size);
1011
1012 init_objfile_sect_indices (objfile);
1013 }
1014
1015 (*objfile->sf->sym_read) (objfile, add_flags);
1016
1017 if ((add_flags & SYMFILE_NO_READ) == 0)
1018 require_partial_symbols (objfile, 0);
1019
1020 /* Discard cleanups as symbol reading was successful. */
1021
1022 discard_cleanups (old_chain);
1023 xfree (local_addr);
1024 }
1025
1026 /* Perform required actions after either reading in the initial
1027 symbols for a new objfile, or mapping in the symbols from a reusable
1028 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1029
1030 void
1031 new_symfile_objfile (struct objfile *objfile, int add_flags)
1032 {
1033 /* If this is the main symbol file we have to clean up all users of the
1034 old main symbol file. Otherwise it is sufficient to fixup all the
1035 breakpoints that may have been redefined by this symbol file. */
1036 if (add_flags & SYMFILE_MAINLINE)
1037 {
1038 /* OK, make it the "real" symbol file. */
1039 symfile_objfile = objfile;
1040
1041 clear_symtab_users (add_flags);
1042 }
1043 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1044 {
1045 breakpoint_re_set ();
1046 }
1047
1048 /* We're done reading the symbol file; finish off complaints. */
1049 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1050 }
1051
1052 /* Process a symbol file, as either the main file or as a dynamically
1053 loaded file.
1054
1055 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1056 This BFD will be closed on error, and is always consumed by this function.
1057
1058 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1059 extra, such as dynamically loaded code, and what to do with breakpoins.
1060
1061 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1062 syms_from_objfile, above.
1063 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1064
1065 PARENT is the original objfile if ABFD is a separate debug info file.
1066 Otherwise PARENT is NULL.
1067
1068 Upon success, returns a pointer to the objfile that was added.
1069 Upon failure, jumps back to command level (never returns). */
1070
1071 static struct objfile *
1072 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1073 int add_flags,
1074 struct section_addr_info *addrs,
1075 struct section_offsets *offsets,
1076 int num_offsets,
1077 int flags, struct objfile *parent)
1078 {
1079 struct objfile *objfile;
1080 struct cleanup *my_cleanups;
1081 const char *name = bfd_get_filename (abfd);
1082 const int from_tty = add_flags & SYMFILE_VERBOSE;
1083 const int mainline = add_flags & SYMFILE_MAINLINE;
1084 const int should_print = ((from_tty || info_verbose)
1085 && (readnow_symbol_files
1086 || (add_flags & SYMFILE_NO_READ) == 0));
1087
1088 if (readnow_symbol_files)
1089 {
1090 flags |= OBJF_READNOW;
1091 add_flags &= ~SYMFILE_NO_READ;
1092 }
1093
1094 my_cleanups = make_cleanup_bfd_close (abfd);
1095
1096 /* Give user a chance to burp if we'd be
1097 interactively wiping out any existing symbols. */
1098
1099 if ((have_full_symbols () || have_partial_symbols ())
1100 && mainline
1101 && from_tty
1102 && !query (_("Load new symbol table from \"%s\"? "), name))
1103 error (_("Not confirmed."));
1104
1105 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
1106 discard_cleanups (my_cleanups);
1107
1108 if (parent)
1109 add_separate_debug_objfile (objfile, parent);
1110
1111 /* We either created a new mapped symbol table, mapped an existing
1112 symbol table file which has not had initial symbol reading
1113 performed, or need to read an unmapped symbol table. */
1114 if (should_print)
1115 {
1116 if (deprecated_pre_add_symbol_hook)
1117 deprecated_pre_add_symbol_hook (name);
1118 else
1119 {
1120 printf_unfiltered (_("Reading symbols from %s..."), name);
1121 wrap_here ("");
1122 gdb_flush (gdb_stdout);
1123 }
1124 }
1125 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1126 add_flags);
1127
1128 /* We now have at least a partial symbol table. Check to see if the
1129 user requested that all symbols be read on initial access via either
1130 the gdb startup command line or on a per symbol file basis. Expand
1131 all partial symbol tables for this objfile if so. */
1132
1133 if ((flags & OBJF_READNOW))
1134 {
1135 if (should_print)
1136 {
1137 printf_unfiltered (_("expanding to full symbols..."));
1138 wrap_here ("");
1139 gdb_flush (gdb_stdout);
1140 }
1141
1142 if (objfile->sf)
1143 objfile->sf->qf->expand_all_symtabs (objfile);
1144 }
1145
1146 if (should_print && !objfile_has_symbols (objfile))
1147 {
1148 wrap_here ("");
1149 printf_unfiltered (_("(no debugging symbols found)..."));
1150 wrap_here ("");
1151 }
1152
1153 if (should_print)
1154 {
1155 if (deprecated_post_add_symbol_hook)
1156 deprecated_post_add_symbol_hook ();
1157 else
1158 printf_unfiltered (_("done.\n"));
1159 }
1160
1161 /* We print some messages regardless of whether 'from_tty ||
1162 info_verbose' is true, so make sure they go out at the right
1163 time. */
1164 gdb_flush (gdb_stdout);
1165
1166 if (objfile->sf == NULL)
1167 {
1168 observer_notify_new_objfile (objfile);
1169 return objfile; /* No symbols. */
1170 }
1171
1172 new_symfile_objfile (objfile, add_flags);
1173
1174 observer_notify_new_objfile (objfile);
1175
1176 bfd_cache_close_all ();
1177 return (objfile);
1178 }
1179
1180 /* Add BFD as a separate debug file for OBJFILE. */
1181
1182 void
1183 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1184 {
1185 struct objfile *new_objfile;
1186 struct section_addr_info *sap;
1187 struct cleanup *my_cleanup;
1188
1189 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1190 because sections of BFD may not match sections of OBJFILE and because
1191 vma may have been modified by tools such as prelink. */
1192 sap = build_section_addr_info_from_objfile (objfile);
1193 my_cleanup = make_cleanup_free_section_addr_info (sap);
1194
1195 new_objfile = symbol_file_add_with_addrs_or_offsets
1196 (bfd, symfile_flags,
1197 sap, NULL, 0,
1198 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1199 | OBJF_USERLOADED),
1200 objfile);
1201
1202 do_cleanups (my_cleanup);
1203 }
1204
1205 /* Process the symbol file ABFD, as either the main file or as a
1206 dynamically loaded file.
1207
1208 See symbol_file_add_with_addrs_or_offsets's comments for
1209 details. */
1210 struct objfile *
1211 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1212 struct section_addr_info *addrs,
1213 int flags, struct objfile *parent)
1214 {
1215 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1216 flags, parent);
1217 }
1218
1219
1220 /* Process a symbol file, as either the main file or as a dynamically
1221 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1222 for details. */
1223 struct objfile *
1224 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1225 int flags)
1226 {
1227 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1228 flags, NULL);
1229 }
1230
1231
1232 /* Call symbol_file_add() with default values and update whatever is
1233 affected by the loading of a new main().
1234 Used when the file is supplied in the gdb command line
1235 and by some targets with special loading requirements.
1236 The auxiliary function, symbol_file_add_main_1(), has the flags
1237 argument for the switches that can only be specified in the symbol_file
1238 command itself. */
1239
1240 void
1241 symbol_file_add_main (char *args, int from_tty)
1242 {
1243 symbol_file_add_main_1 (args, from_tty, 0);
1244 }
1245
1246 static void
1247 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1248 {
1249 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1250 symbol_file_add (args, add_flags, NULL, flags);
1251
1252 /* Getting new symbols may change our opinion about
1253 what is frameless. */
1254 reinit_frame_cache ();
1255
1256 set_initial_language ();
1257 }
1258
1259 void
1260 symbol_file_clear (int from_tty)
1261 {
1262 if ((have_full_symbols () || have_partial_symbols ())
1263 && from_tty
1264 && (symfile_objfile
1265 ? !query (_("Discard symbol table from `%s'? "),
1266 symfile_objfile->name)
1267 : !query (_("Discard symbol table? "))))
1268 error (_("Not confirmed."));
1269
1270 /* solib descriptors may have handles to objfiles. Wipe them before their
1271 objfiles get stale by free_all_objfiles. */
1272 no_shared_libraries (NULL, from_tty);
1273
1274 free_all_objfiles ();
1275
1276 gdb_assert (symfile_objfile == NULL);
1277 if (from_tty)
1278 printf_unfiltered (_("No symbol file now.\n"));
1279 }
1280
1281 static char *
1282 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1283 {
1284 asection *sect;
1285 bfd_size_type debuglink_size;
1286 unsigned long crc32;
1287 char *contents;
1288 int crc_offset;
1289
1290 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1291
1292 if (sect == NULL)
1293 return NULL;
1294
1295 debuglink_size = bfd_section_size (objfile->obfd, sect);
1296
1297 contents = xmalloc (debuglink_size);
1298 bfd_get_section_contents (objfile->obfd, sect, contents,
1299 (file_ptr)0, (bfd_size_type)debuglink_size);
1300
1301 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1302 crc_offset = strlen (contents) + 1;
1303 crc_offset = (crc_offset + 3) & ~3;
1304
1305 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1306
1307 *crc32_out = crc32;
1308 return contents;
1309 }
1310
1311 /* Return 32-bit CRC for ABFD. If successful store it to *FILE_CRC_RETURN and
1312 return 1. Otherwise print a warning and return 0. ABFD seek position is
1313 not preserved. */
1314
1315 static int
1316 get_file_crc (bfd *abfd, unsigned long *file_crc_return)
1317 {
1318 unsigned long file_crc = 0;
1319
1320 if (bfd_seek (abfd, 0, SEEK_SET) != 0)
1321 {
1322 warning (_("Problem reading \"%s\" for CRC: %s"),
1323 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1324 return 0;
1325 }
1326
1327 for (;;)
1328 {
1329 gdb_byte buffer[8 * 1024];
1330 bfd_size_type count;
1331
1332 count = bfd_bread (buffer, sizeof (buffer), abfd);
1333 if (count == (bfd_size_type) -1)
1334 {
1335 warning (_("Problem reading \"%s\" for CRC: %s"),
1336 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1337 return 0;
1338 }
1339 if (count == 0)
1340 break;
1341 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1342 }
1343
1344 *file_crc_return = file_crc;
1345 return 1;
1346 }
1347
1348 static int
1349 separate_debug_file_exists (const char *name, unsigned long crc,
1350 struct objfile *parent_objfile)
1351 {
1352 unsigned long file_crc;
1353 int file_crc_p;
1354 bfd *abfd;
1355 struct stat parent_stat, abfd_stat;
1356 int verified_as_different;
1357
1358 /* Find a separate debug info file as if symbols would be present in
1359 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1360 section can contain just the basename of PARENT_OBJFILE without any
1361 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1362 the separate debug infos with the same basename can exist. */
1363
1364 if (filename_cmp (name, parent_objfile->name) == 0)
1365 return 0;
1366
1367 abfd = bfd_open_maybe_remote (name);
1368
1369 if (!abfd)
1370 return 0;
1371
1372 /* Verify symlinks were not the cause of filename_cmp name difference above.
1373
1374 Some operating systems, e.g. Windows, do not provide a meaningful
1375 st_ino; they always set it to zero. (Windows does provide a
1376 meaningful st_dev.) Do not indicate a duplicate library in that
1377 case. While there is no guarantee that a system that provides
1378 meaningful inode numbers will never set st_ino to zero, this is
1379 merely an optimization, so we do not need to worry about false
1380 negatives. */
1381
1382 if (bfd_stat (abfd, &abfd_stat) == 0
1383 && abfd_stat.st_ino != 0
1384 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1385 {
1386 if (abfd_stat.st_dev == parent_stat.st_dev
1387 && abfd_stat.st_ino == parent_stat.st_ino)
1388 {
1389 bfd_close (abfd);
1390 return 0;
1391 }
1392 verified_as_different = 1;
1393 }
1394 else
1395 verified_as_different = 0;
1396
1397 file_crc_p = get_file_crc (abfd, &file_crc);
1398
1399 bfd_close (abfd);
1400
1401 if (!file_crc_p)
1402 return 0;
1403
1404 if (crc != file_crc)
1405 {
1406 /* If one (or both) the files are accessed for example the via "remote:"
1407 gdbserver way it does not support the bfd_stat operation. Verify
1408 whether those two files are not the same manually. */
1409
1410 if (!verified_as_different && !parent_objfile->crc32_p)
1411 {
1412 parent_objfile->crc32_p = get_file_crc (parent_objfile->obfd,
1413 &parent_objfile->crc32);
1414 if (!parent_objfile->crc32_p)
1415 return 0;
1416 }
1417
1418 if (verified_as_different || parent_objfile->crc32 != file_crc)
1419 warning (_("the debug information found in \"%s\""
1420 " does not match \"%s\" (CRC mismatch).\n"),
1421 name, parent_objfile->name);
1422
1423 return 0;
1424 }
1425
1426 return 1;
1427 }
1428
1429 char *debug_file_directory = NULL;
1430 static void
1431 show_debug_file_directory (struct ui_file *file, int from_tty,
1432 struct cmd_list_element *c, const char *value)
1433 {
1434 fprintf_filtered (file,
1435 _("The directory where separate debug "
1436 "symbols are searched for is \"%s\".\n"),
1437 value);
1438 }
1439
1440 #if ! defined (DEBUG_SUBDIRECTORY)
1441 #define DEBUG_SUBDIRECTORY ".debug"
1442 #endif
1443
1444 char *
1445 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1446 {
1447 char *basename, *debugdir;
1448 char *dir = NULL;
1449 char *debugfile = NULL;
1450 char *canon_name = NULL;
1451 unsigned long crc32;
1452 int i;
1453
1454 basename = get_debug_link_info (objfile, &crc32);
1455
1456 if (basename == NULL)
1457 /* There's no separate debug info, hence there's no way we could
1458 load it => no warning. */
1459 goto cleanup_return_debugfile;
1460
1461 dir = xstrdup (objfile->name);
1462
1463 /* Strip off the final filename part, leaving the directory name,
1464 followed by a slash. The directory can be relative or absolute. */
1465 for (i = strlen(dir) - 1; i >= 0; i--)
1466 {
1467 if (IS_DIR_SEPARATOR (dir[i]))
1468 break;
1469 }
1470 /* If I is -1 then no directory is present there and DIR will be "". */
1471 dir[i+1] = '\0';
1472
1473 /* Set I to max (strlen (canon_name), strlen (dir)). */
1474 canon_name = lrealpath (dir);
1475 i = strlen (dir);
1476 if (canon_name && strlen (canon_name) > i)
1477 i = strlen (canon_name);
1478
1479 debugfile = xmalloc (strlen (debug_file_directory) + 1
1480 + i
1481 + strlen (DEBUG_SUBDIRECTORY)
1482 + strlen ("/")
1483 + strlen (basename)
1484 + 1);
1485
1486 /* First try in the same directory as the original file. */
1487 strcpy (debugfile, dir);
1488 strcat (debugfile, basename);
1489
1490 if (separate_debug_file_exists (debugfile, crc32, objfile))
1491 goto cleanup_return_debugfile;
1492
1493 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1494 strcpy (debugfile, dir);
1495 strcat (debugfile, DEBUG_SUBDIRECTORY);
1496 strcat (debugfile, "/");
1497 strcat (debugfile, basename);
1498
1499 if (separate_debug_file_exists (debugfile, crc32, objfile))
1500 goto cleanup_return_debugfile;
1501
1502 /* Then try in the global debugfile directories.
1503
1504 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1505 cause "/..." lookups. */
1506
1507 debugdir = debug_file_directory;
1508 do
1509 {
1510 char *debugdir_end;
1511
1512 while (*debugdir == DIRNAME_SEPARATOR)
1513 debugdir++;
1514
1515 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1516 if (debugdir_end == NULL)
1517 debugdir_end = &debugdir[strlen (debugdir)];
1518
1519 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1520 debugfile[debugdir_end - debugdir] = 0;
1521 strcat (debugfile, "/");
1522 strcat (debugfile, dir);
1523 strcat (debugfile, basename);
1524
1525 if (separate_debug_file_exists (debugfile, crc32, objfile))
1526 goto cleanup_return_debugfile;
1527
1528 /* If the file is in the sysroot, try using its base path in the
1529 global debugfile directory. */
1530 if (canon_name
1531 && filename_ncmp (canon_name, gdb_sysroot,
1532 strlen (gdb_sysroot)) == 0
1533 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1534 {
1535 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1536 debugfile[debugdir_end - debugdir] = 0;
1537 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1538 strcat (debugfile, "/");
1539 strcat (debugfile, basename);
1540
1541 if (separate_debug_file_exists (debugfile, crc32, objfile))
1542 goto cleanup_return_debugfile;
1543 }
1544
1545 debugdir = debugdir_end;
1546 }
1547 while (*debugdir != 0);
1548
1549 xfree (debugfile);
1550 debugfile = NULL;
1551
1552 cleanup_return_debugfile:
1553 xfree (canon_name);
1554 xfree (basename);
1555 xfree (dir);
1556 return debugfile;
1557 }
1558
1559
1560 /* This is the symbol-file command. Read the file, analyze its
1561 symbols, and add a struct symtab to a symtab list. The syntax of
1562 the command is rather bizarre:
1563
1564 1. The function buildargv implements various quoting conventions
1565 which are undocumented and have little or nothing in common with
1566 the way things are quoted (or not quoted) elsewhere in GDB.
1567
1568 2. Options are used, which are not generally used in GDB (perhaps
1569 "set mapped on", "set readnow on" would be better)
1570
1571 3. The order of options matters, which is contrary to GNU
1572 conventions (because it is confusing and inconvenient). */
1573
1574 void
1575 symbol_file_command (char *args, int from_tty)
1576 {
1577 dont_repeat ();
1578
1579 if (args == NULL)
1580 {
1581 symbol_file_clear (from_tty);
1582 }
1583 else
1584 {
1585 char **argv = gdb_buildargv (args);
1586 int flags = OBJF_USERLOADED;
1587 struct cleanup *cleanups;
1588 char *name = NULL;
1589
1590 cleanups = make_cleanup_freeargv (argv);
1591 while (*argv != NULL)
1592 {
1593 if (strcmp (*argv, "-readnow") == 0)
1594 flags |= OBJF_READNOW;
1595 else if (**argv == '-')
1596 error (_("unknown option `%s'"), *argv);
1597 else
1598 {
1599 symbol_file_add_main_1 (*argv, from_tty, flags);
1600 name = *argv;
1601 }
1602
1603 argv++;
1604 }
1605
1606 if (name == NULL)
1607 error (_("no symbol file name was specified"));
1608
1609 do_cleanups (cleanups);
1610 }
1611 }
1612
1613 /* Set the initial language.
1614
1615 FIXME: A better solution would be to record the language in the
1616 psymtab when reading partial symbols, and then use it (if known) to
1617 set the language. This would be a win for formats that encode the
1618 language in an easily discoverable place, such as DWARF. For
1619 stabs, we can jump through hoops looking for specially named
1620 symbols or try to intuit the language from the specific type of
1621 stabs we find, but we can't do that until later when we read in
1622 full symbols. */
1623
1624 void
1625 set_initial_language (void)
1626 {
1627 enum language lang = language_unknown;
1628
1629 if (language_of_main != language_unknown)
1630 lang = language_of_main;
1631 else
1632 {
1633 const char *filename;
1634
1635 filename = find_main_filename ();
1636 if (filename != NULL)
1637 lang = deduce_language_from_filename (filename);
1638 }
1639
1640 if (lang == language_unknown)
1641 {
1642 /* Make C the default language */
1643 lang = language_c;
1644 }
1645
1646 set_language (lang);
1647 expected_language = current_language; /* Don't warn the user. */
1648 }
1649
1650 /* If NAME is a remote name open the file using remote protocol, otherwise
1651 open it normally. */
1652
1653 bfd *
1654 bfd_open_maybe_remote (const char *name)
1655 {
1656 if (remote_filename_p (name))
1657 return remote_bfd_open (name, gnutarget);
1658 else
1659 return bfd_openr (name, gnutarget);
1660 }
1661
1662
1663 /* Open the file specified by NAME and hand it off to BFD for
1664 preliminary analysis. Return a newly initialized bfd *, which
1665 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1666 absolute). In case of trouble, error() is called. */
1667
1668 bfd *
1669 symfile_bfd_open (char *name)
1670 {
1671 bfd *sym_bfd;
1672 int desc;
1673 char *absolute_name;
1674
1675 if (remote_filename_p (name))
1676 {
1677 name = xstrdup (name);
1678 sym_bfd = remote_bfd_open (name, gnutarget);
1679 if (!sym_bfd)
1680 {
1681 make_cleanup (xfree, name);
1682 error (_("`%s': can't open to read symbols: %s."), name,
1683 bfd_errmsg (bfd_get_error ()));
1684 }
1685
1686 if (!bfd_check_format (sym_bfd, bfd_object))
1687 {
1688 bfd_close (sym_bfd);
1689 make_cleanup (xfree, name);
1690 error (_("`%s': can't read symbols: %s."), name,
1691 bfd_errmsg (bfd_get_error ()));
1692 }
1693
1694 return sym_bfd;
1695 }
1696
1697 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1698
1699 /* Look down path for it, allocate 2nd new malloc'd copy. */
1700 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1701 O_RDONLY | O_BINARY, &absolute_name);
1702 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1703 if (desc < 0)
1704 {
1705 char *exename = alloca (strlen (name) + 5);
1706
1707 strcat (strcpy (exename, name), ".exe");
1708 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1709 O_RDONLY | O_BINARY, &absolute_name);
1710 }
1711 #endif
1712 if (desc < 0)
1713 {
1714 make_cleanup (xfree, name);
1715 perror_with_name (name);
1716 }
1717
1718 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1719 bfd. It'll be freed in free_objfile(). */
1720 xfree (name);
1721 name = absolute_name;
1722
1723 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1724 if (!sym_bfd)
1725 {
1726 close (desc);
1727 make_cleanup (xfree, name);
1728 error (_("`%s': can't open to read symbols: %s."), name,
1729 bfd_errmsg (bfd_get_error ()));
1730 }
1731 bfd_set_cacheable (sym_bfd, 1);
1732
1733 if (!bfd_check_format (sym_bfd, bfd_object))
1734 {
1735 /* FIXME: should be checking for errors from bfd_close (for one
1736 thing, on error it does not free all the storage associated
1737 with the bfd). */
1738 bfd_close (sym_bfd); /* This also closes desc. */
1739 make_cleanup (xfree, name);
1740 error (_("`%s': can't read symbols: %s."), name,
1741 bfd_errmsg (bfd_get_error ()));
1742 }
1743
1744 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1745 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1746
1747 return sym_bfd;
1748 }
1749
1750 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1751 the section was not found. */
1752
1753 int
1754 get_section_index (struct objfile *objfile, char *section_name)
1755 {
1756 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1757
1758 if (sect)
1759 return sect->index;
1760 else
1761 return -1;
1762 }
1763
1764 /* Link SF into the global symtab_fns list. Called on startup by the
1765 _initialize routine in each object file format reader, to register
1766 information about each format the reader is prepared to handle. */
1767
1768 void
1769 add_symtab_fns (const struct sym_fns *sf)
1770 {
1771 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1772 }
1773
1774 /* Initialize OBJFILE to read symbols from its associated BFD. It
1775 either returns or calls error(). The result is an initialized
1776 struct sym_fns in the objfile structure, that contains cached
1777 information about the symbol file. */
1778
1779 static const struct sym_fns *
1780 find_sym_fns (bfd *abfd)
1781 {
1782 const struct sym_fns *sf;
1783 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1784 int i;
1785
1786 if (our_flavour == bfd_target_srec_flavour
1787 || our_flavour == bfd_target_ihex_flavour
1788 || our_flavour == bfd_target_tekhex_flavour)
1789 return NULL; /* No symbols. */
1790
1791 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1792 if (our_flavour == sf->sym_flavour)
1793 return sf;
1794
1795 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1796 bfd_get_target (abfd));
1797 }
1798 \f
1799
1800 /* This function runs the load command of our current target. */
1801
1802 static void
1803 load_command (char *arg, int from_tty)
1804 {
1805 dont_repeat ();
1806
1807 /* The user might be reloading because the binary has changed. Take
1808 this opportunity to check. */
1809 reopen_exec_file ();
1810 reread_symbols ();
1811
1812 if (arg == NULL)
1813 {
1814 char *parg;
1815 int count = 0;
1816
1817 parg = arg = get_exec_file (1);
1818
1819 /* Count how many \ " ' tab space there are in the name. */
1820 while ((parg = strpbrk (parg, "\\\"'\t ")))
1821 {
1822 parg++;
1823 count++;
1824 }
1825
1826 if (count)
1827 {
1828 /* We need to quote this string so buildargv can pull it apart. */
1829 char *temp = xmalloc (strlen (arg) + count + 1 );
1830 char *ptemp = temp;
1831 char *prev;
1832
1833 make_cleanup (xfree, temp);
1834
1835 prev = parg = arg;
1836 while ((parg = strpbrk (parg, "\\\"'\t ")))
1837 {
1838 strncpy (ptemp, prev, parg - prev);
1839 ptemp += parg - prev;
1840 prev = parg++;
1841 *ptemp++ = '\\';
1842 }
1843 strcpy (ptemp, prev);
1844
1845 arg = temp;
1846 }
1847 }
1848
1849 target_load (arg, from_tty);
1850
1851 /* After re-loading the executable, we don't really know which
1852 overlays are mapped any more. */
1853 overlay_cache_invalid = 1;
1854 }
1855
1856 /* This version of "load" should be usable for any target. Currently
1857 it is just used for remote targets, not inftarg.c or core files,
1858 on the theory that only in that case is it useful.
1859
1860 Avoiding xmodem and the like seems like a win (a) because we don't have
1861 to worry about finding it, and (b) On VMS, fork() is very slow and so
1862 we don't want to run a subprocess. On the other hand, I'm not sure how
1863 performance compares. */
1864
1865 static int validate_download = 0;
1866
1867 /* Callback service function for generic_load (bfd_map_over_sections). */
1868
1869 static void
1870 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1871 {
1872 bfd_size_type *sum = data;
1873
1874 *sum += bfd_get_section_size (asec);
1875 }
1876
1877 /* Opaque data for load_section_callback. */
1878 struct load_section_data {
1879 unsigned long load_offset;
1880 struct load_progress_data *progress_data;
1881 VEC(memory_write_request_s) *requests;
1882 };
1883
1884 /* Opaque data for load_progress. */
1885 struct load_progress_data {
1886 /* Cumulative data. */
1887 unsigned long write_count;
1888 unsigned long data_count;
1889 bfd_size_type total_size;
1890 };
1891
1892 /* Opaque data for load_progress for a single section. */
1893 struct load_progress_section_data {
1894 struct load_progress_data *cumulative;
1895
1896 /* Per-section data. */
1897 const char *section_name;
1898 ULONGEST section_sent;
1899 ULONGEST section_size;
1900 CORE_ADDR lma;
1901 gdb_byte *buffer;
1902 };
1903
1904 /* Target write callback routine for progress reporting. */
1905
1906 static void
1907 load_progress (ULONGEST bytes, void *untyped_arg)
1908 {
1909 struct load_progress_section_data *args = untyped_arg;
1910 struct load_progress_data *totals;
1911
1912 if (args == NULL)
1913 /* Writing padding data. No easy way to get at the cumulative
1914 stats, so just ignore this. */
1915 return;
1916
1917 totals = args->cumulative;
1918
1919 if (bytes == 0 && args->section_sent == 0)
1920 {
1921 /* The write is just starting. Let the user know we've started
1922 this section. */
1923 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1924 args->section_name, hex_string (args->section_size),
1925 paddress (target_gdbarch, args->lma));
1926 return;
1927 }
1928
1929 if (validate_download)
1930 {
1931 /* Broken memories and broken monitors manifest themselves here
1932 when bring new computers to life. This doubles already slow
1933 downloads. */
1934 /* NOTE: cagney/1999-10-18: A more efficient implementation
1935 might add a verify_memory() method to the target vector and
1936 then use that. remote.c could implement that method using
1937 the ``qCRC'' packet. */
1938 gdb_byte *check = xmalloc (bytes);
1939 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1940
1941 if (target_read_memory (args->lma, check, bytes) != 0)
1942 error (_("Download verify read failed at %s"),
1943 paddress (target_gdbarch, args->lma));
1944 if (memcmp (args->buffer, check, bytes) != 0)
1945 error (_("Download verify compare failed at %s"),
1946 paddress (target_gdbarch, args->lma));
1947 do_cleanups (verify_cleanups);
1948 }
1949 totals->data_count += bytes;
1950 args->lma += bytes;
1951 args->buffer += bytes;
1952 totals->write_count += 1;
1953 args->section_sent += bytes;
1954 if (quit_flag
1955 || (deprecated_ui_load_progress_hook != NULL
1956 && deprecated_ui_load_progress_hook (args->section_name,
1957 args->section_sent)))
1958 error (_("Canceled the download"));
1959
1960 if (deprecated_show_load_progress != NULL)
1961 deprecated_show_load_progress (args->section_name,
1962 args->section_sent,
1963 args->section_size,
1964 totals->data_count,
1965 totals->total_size);
1966 }
1967
1968 /* Callback service function for generic_load (bfd_map_over_sections). */
1969
1970 static void
1971 load_section_callback (bfd *abfd, asection *asec, void *data)
1972 {
1973 struct memory_write_request *new_request;
1974 struct load_section_data *args = data;
1975 struct load_progress_section_data *section_data;
1976 bfd_size_type size = bfd_get_section_size (asec);
1977 gdb_byte *buffer;
1978 const char *sect_name = bfd_get_section_name (abfd, asec);
1979
1980 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1981 return;
1982
1983 if (size == 0)
1984 return;
1985
1986 new_request = VEC_safe_push (memory_write_request_s,
1987 args->requests, NULL);
1988 memset (new_request, 0, sizeof (struct memory_write_request));
1989 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1990 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1991 new_request->end = new_request->begin + size; /* FIXME Should size
1992 be in instead? */
1993 new_request->data = xmalloc (size);
1994 new_request->baton = section_data;
1995
1996 buffer = new_request->data;
1997
1998 section_data->cumulative = args->progress_data;
1999 section_data->section_name = sect_name;
2000 section_data->section_size = size;
2001 section_data->lma = new_request->begin;
2002 section_data->buffer = buffer;
2003
2004 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2005 }
2006
2007 /* Clean up an entire memory request vector, including load
2008 data and progress records. */
2009
2010 static void
2011 clear_memory_write_data (void *arg)
2012 {
2013 VEC(memory_write_request_s) **vec_p = arg;
2014 VEC(memory_write_request_s) *vec = *vec_p;
2015 int i;
2016 struct memory_write_request *mr;
2017
2018 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2019 {
2020 xfree (mr->data);
2021 xfree (mr->baton);
2022 }
2023 VEC_free (memory_write_request_s, vec);
2024 }
2025
2026 void
2027 generic_load (char *args, int from_tty)
2028 {
2029 bfd *loadfile_bfd;
2030 struct timeval start_time, end_time;
2031 char *filename;
2032 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2033 struct load_section_data cbdata;
2034 struct load_progress_data total_progress;
2035 struct ui_out *uiout = current_uiout;
2036
2037 CORE_ADDR entry;
2038 char **argv;
2039
2040 memset (&cbdata, 0, sizeof (cbdata));
2041 memset (&total_progress, 0, sizeof (total_progress));
2042 cbdata.progress_data = &total_progress;
2043
2044 make_cleanup (clear_memory_write_data, &cbdata.requests);
2045
2046 if (args == NULL)
2047 error_no_arg (_("file to load"));
2048
2049 argv = gdb_buildargv (args);
2050 make_cleanup_freeargv (argv);
2051
2052 filename = tilde_expand (argv[0]);
2053 make_cleanup (xfree, filename);
2054
2055 if (argv[1] != NULL)
2056 {
2057 char *endptr;
2058
2059 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2060
2061 /* If the last word was not a valid number then
2062 treat it as a file name with spaces in. */
2063 if (argv[1] == endptr)
2064 error (_("Invalid download offset:%s."), argv[1]);
2065
2066 if (argv[2] != NULL)
2067 error (_("Too many parameters."));
2068 }
2069
2070 /* Open the file for loading. */
2071 loadfile_bfd = bfd_openr (filename, gnutarget);
2072 if (loadfile_bfd == NULL)
2073 {
2074 perror_with_name (filename);
2075 return;
2076 }
2077
2078 /* FIXME: should be checking for errors from bfd_close (for one thing,
2079 on error it does not free all the storage associated with the
2080 bfd). */
2081 make_cleanup_bfd_close (loadfile_bfd);
2082
2083 if (!bfd_check_format (loadfile_bfd, bfd_object))
2084 {
2085 error (_("\"%s\" is not an object file: %s"), filename,
2086 bfd_errmsg (bfd_get_error ()));
2087 }
2088
2089 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2090 (void *) &total_progress.total_size);
2091
2092 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2093
2094 gettimeofday (&start_time, NULL);
2095
2096 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2097 load_progress) != 0)
2098 error (_("Load failed"));
2099
2100 gettimeofday (&end_time, NULL);
2101
2102 entry = bfd_get_start_address (loadfile_bfd);
2103 ui_out_text (uiout, "Start address ");
2104 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
2105 ui_out_text (uiout, ", load size ");
2106 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2107 ui_out_text (uiout, "\n");
2108 /* We were doing this in remote-mips.c, I suspect it is right
2109 for other targets too. */
2110 regcache_write_pc (get_current_regcache (), entry);
2111
2112 /* Reset breakpoints, now that we have changed the load image. For
2113 instance, breakpoints may have been set (or reset, by
2114 post_create_inferior) while connected to the target but before we
2115 loaded the program. In that case, the prologue analyzer could
2116 have read instructions from the target to find the right
2117 breakpoint locations. Loading has changed the contents of that
2118 memory. */
2119
2120 breakpoint_re_set ();
2121
2122 /* FIXME: are we supposed to call symbol_file_add or not? According
2123 to a comment from remote-mips.c (where a call to symbol_file_add
2124 was commented out), making the call confuses GDB if more than one
2125 file is loaded in. Some targets do (e.g., remote-vx.c) but
2126 others don't (or didn't - perhaps they have all been deleted). */
2127
2128 print_transfer_performance (gdb_stdout, total_progress.data_count,
2129 total_progress.write_count,
2130 &start_time, &end_time);
2131
2132 do_cleanups (old_cleanups);
2133 }
2134
2135 /* Report how fast the transfer went. */
2136
2137 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2138 replaced by print_transfer_performance (with a very different
2139 function signature). */
2140
2141 void
2142 report_transfer_performance (unsigned long data_count, time_t start_time,
2143 time_t end_time)
2144 {
2145 struct timeval start, end;
2146
2147 start.tv_sec = start_time;
2148 start.tv_usec = 0;
2149 end.tv_sec = end_time;
2150 end.tv_usec = 0;
2151
2152 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2153 }
2154
2155 void
2156 print_transfer_performance (struct ui_file *stream,
2157 unsigned long data_count,
2158 unsigned long write_count,
2159 const struct timeval *start_time,
2160 const struct timeval *end_time)
2161 {
2162 ULONGEST time_count;
2163 struct ui_out *uiout = current_uiout;
2164
2165 /* Compute the elapsed time in milliseconds, as a tradeoff between
2166 accuracy and overflow. */
2167 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2168 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2169
2170 ui_out_text (uiout, "Transfer rate: ");
2171 if (time_count > 0)
2172 {
2173 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2174
2175 if (ui_out_is_mi_like_p (uiout))
2176 {
2177 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2178 ui_out_text (uiout, " bits/sec");
2179 }
2180 else if (rate < 1024)
2181 {
2182 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2183 ui_out_text (uiout, " bytes/sec");
2184 }
2185 else
2186 {
2187 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2188 ui_out_text (uiout, " KB/sec");
2189 }
2190 }
2191 else
2192 {
2193 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2194 ui_out_text (uiout, " bits in <1 sec");
2195 }
2196 if (write_count > 0)
2197 {
2198 ui_out_text (uiout, ", ");
2199 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2200 ui_out_text (uiout, " bytes/write");
2201 }
2202 ui_out_text (uiout, ".\n");
2203 }
2204
2205 /* This function allows the addition of incrementally linked object files.
2206 It does not modify any state in the target, only in the debugger. */
2207 /* Note: ezannoni 2000-04-13 This function/command used to have a
2208 special case syntax for the rombug target (Rombug is the boot
2209 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2210 rombug case, the user doesn't need to supply a text address,
2211 instead a call to target_link() (in target.c) would supply the
2212 value to use. We are now discontinuing this type of ad hoc syntax. */
2213
2214 static void
2215 add_symbol_file_command (char *args, int from_tty)
2216 {
2217 struct gdbarch *gdbarch = get_current_arch ();
2218 char *filename = NULL;
2219 int flags = OBJF_USERLOADED;
2220 char *arg;
2221 int section_index = 0;
2222 int argcnt = 0;
2223 int sec_num = 0;
2224 int i;
2225 int expecting_sec_name = 0;
2226 int expecting_sec_addr = 0;
2227 char **argv;
2228
2229 struct sect_opt
2230 {
2231 char *name;
2232 char *value;
2233 };
2234
2235 struct section_addr_info *section_addrs;
2236 struct sect_opt *sect_opts = NULL;
2237 size_t num_sect_opts = 0;
2238 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2239
2240 num_sect_opts = 16;
2241 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2242 * sizeof (struct sect_opt));
2243
2244 dont_repeat ();
2245
2246 if (args == NULL)
2247 error (_("add-symbol-file takes a file name and an address"));
2248
2249 argv = gdb_buildargv (args);
2250 make_cleanup_freeargv (argv);
2251
2252 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2253 {
2254 /* Process the argument. */
2255 if (argcnt == 0)
2256 {
2257 /* The first argument is the file name. */
2258 filename = tilde_expand (arg);
2259 make_cleanup (xfree, filename);
2260 }
2261 else
2262 if (argcnt == 1)
2263 {
2264 /* The second argument is always the text address at which
2265 to load the program. */
2266 sect_opts[section_index].name = ".text";
2267 sect_opts[section_index].value = arg;
2268 if (++section_index >= num_sect_opts)
2269 {
2270 num_sect_opts *= 2;
2271 sect_opts = ((struct sect_opt *)
2272 xrealloc (sect_opts,
2273 num_sect_opts
2274 * sizeof (struct sect_opt)));
2275 }
2276 }
2277 else
2278 {
2279 /* It's an option (starting with '-') or it's an argument
2280 to an option. */
2281
2282 if (*arg == '-')
2283 {
2284 if (strcmp (arg, "-readnow") == 0)
2285 flags |= OBJF_READNOW;
2286 else if (strcmp (arg, "-s") == 0)
2287 {
2288 expecting_sec_name = 1;
2289 expecting_sec_addr = 1;
2290 }
2291 }
2292 else
2293 {
2294 if (expecting_sec_name)
2295 {
2296 sect_opts[section_index].name = arg;
2297 expecting_sec_name = 0;
2298 }
2299 else
2300 if (expecting_sec_addr)
2301 {
2302 sect_opts[section_index].value = arg;
2303 expecting_sec_addr = 0;
2304 if (++section_index >= num_sect_opts)
2305 {
2306 num_sect_opts *= 2;
2307 sect_opts = ((struct sect_opt *)
2308 xrealloc (sect_opts,
2309 num_sect_opts
2310 * sizeof (struct sect_opt)));
2311 }
2312 }
2313 else
2314 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2315 " [-readnow] [-s <secname> <addr>]*"));
2316 }
2317 }
2318 }
2319
2320 /* This command takes at least two arguments. The first one is a
2321 filename, and the second is the address where this file has been
2322 loaded. Abort now if this address hasn't been provided by the
2323 user. */
2324 if (section_index < 1)
2325 error (_("The address where %s has been loaded is missing"), filename);
2326
2327 /* Print the prompt for the query below. And save the arguments into
2328 a sect_addr_info structure to be passed around to other
2329 functions. We have to split this up into separate print
2330 statements because hex_string returns a local static
2331 string. */
2332
2333 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2334 section_addrs = alloc_section_addr_info (section_index);
2335 make_cleanup (xfree, section_addrs);
2336 for (i = 0; i < section_index; i++)
2337 {
2338 CORE_ADDR addr;
2339 char *val = sect_opts[i].value;
2340 char *sec = sect_opts[i].name;
2341
2342 addr = parse_and_eval_address (val);
2343
2344 /* Here we store the section offsets in the order they were
2345 entered on the command line. */
2346 section_addrs->other[sec_num].name = sec;
2347 section_addrs->other[sec_num].addr = addr;
2348 printf_unfiltered ("\t%s_addr = %s\n", sec,
2349 paddress (gdbarch, addr));
2350 sec_num++;
2351
2352 /* The object's sections are initialized when a
2353 call is made to build_objfile_section_table (objfile).
2354 This happens in reread_symbols.
2355 At this point, we don't know what file type this is,
2356 so we can't determine what section names are valid. */
2357 }
2358
2359 if (from_tty && (!query ("%s", "")))
2360 error (_("Not confirmed."));
2361
2362 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2363 section_addrs, flags);
2364
2365 /* Getting new symbols may change our opinion about what is
2366 frameless. */
2367 reinit_frame_cache ();
2368 do_cleanups (my_cleanups);
2369 }
2370 \f
2371
2372 typedef struct objfile *objfilep;
2373
2374 DEF_VEC_P (objfilep);
2375
2376 /* Re-read symbols if a symbol-file has changed. */
2377 void
2378 reread_symbols (void)
2379 {
2380 struct objfile *objfile;
2381 long new_modtime;
2382 struct stat new_statbuf;
2383 int res;
2384 VEC (objfilep) *new_objfiles = NULL;
2385 struct cleanup *all_cleanups;
2386
2387 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2388
2389 /* With the addition of shared libraries, this should be modified,
2390 the load time should be saved in the partial symbol tables, since
2391 different tables may come from different source files. FIXME.
2392 This routine should then walk down each partial symbol table
2393 and see if the symbol table that it originates from has been changed. */
2394
2395 for (objfile = object_files; objfile; objfile = objfile->next)
2396 {
2397 /* solib-sunos.c creates one objfile with obfd. */
2398 if (objfile->obfd == NULL)
2399 continue;
2400
2401 /* Separate debug objfiles are handled in the main objfile. */
2402 if (objfile->separate_debug_objfile_backlink)
2403 continue;
2404
2405 /* If this object is from an archive (what you usually create with
2406 `ar', often called a `static library' on most systems, though
2407 a `shared library' on AIX is also an archive), then you should
2408 stat on the archive name, not member name. */
2409 if (objfile->obfd->my_archive)
2410 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2411 else
2412 res = stat (objfile->name, &new_statbuf);
2413 if (res != 0)
2414 {
2415 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2416 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2417 objfile->name);
2418 continue;
2419 }
2420 new_modtime = new_statbuf.st_mtime;
2421 if (new_modtime != objfile->mtime)
2422 {
2423 struct cleanup *old_cleanups;
2424 struct section_offsets *offsets;
2425 int num_offsets;
2426 char *obfd_filename;
2427
2428 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2429 objfile->name);
2430
2431 /* There are various functions like symbol_file_add,
2432 symfile_bfd_open, syms_from_objfile, etc., which might
2433 appear to do what we want. But they have various other
2434 effects which we *don't* want. So we just do stuff
2435 ourselves. We don't worry about mapped files (for one thing,
2436 any mapped file will be out of date). */
2437
2438 /* If we get an error, blow away this objfile (not sure if
2439 that is the correct response for things like shared
2440 libraries). */
2441 old_cleanups = make_cleanup_free_objfile (objfile);
2442 /* We need to do this whenever any symbols go away. */
2443 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2444
2445 if (exec_bfd != NULL
2446 && filename_cmp (bfd_get_filename (objfile->obfd),
2447 bfd_get_filename (exec_bfd)) == 0)
2448 {
2449 /* Reload EXEC_BFD without asking anything. */
2450
2451 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2452 }
2453
2454 /* Keep the calls order approx. the same as in free_objfile. */
2455
2456 /* Free the separate debug objfiles. It will be
2457 automatically recreated by sym_read. */
2458 free_objfile_separate_debug (objfile);
2459
2460 /* Remove any references to this objfile in the global
2461 value lists. */
2462 preserve_values (objfile);
2463
2464 /* Nuke all the state that we will re-read. Much of the following
2465 code which sets things to NULL really is necessary to tell
2466 other parts of GDB that there is nothing currently there.
2467
2468 Try to keep the freeing order compatible with free_objfile. */
2469
2470 if (objfile->sf != NULL)
2471 {
2472 (*objfile->sf->sym_finish) (objfile);
2473 }
2474
2475 clear_objfile_data (objfile);
2476
2477 /* Clean up any state BFD has sitting around. We don't need
2478 to close the descriptor but BFD lacks a way of closing the
2479 BFD without closing the descriptor. */
2480 obfd_filename = bfd_get_filename (objfile->obfd);
2481 if (!bfd_close (objfile->obfd))
2482 error (_("Can't close BFD for %s: %s"), objfile->name,
2483 bfd_errmsg (bfd_get_error ()));
2484 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
2485 if (objfile->obfd == NULL)
2486 error (_("Can't open %s to read symbols."), objfile->name);
2487 else
2488 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2489 /* bfd_openr sets cacheable to true, which is what we want. */
2490 if (!bfd_check_format (objfile->obfd, bfd_object))
2491 error (_("Can't read symbols from %s: %s."), objfile->name,
2492 bfd_errmsg (bfd_get_error ()));
2493
2494 /* Save the offsets, we will nuke them with the rest of the
2495 objfile_obstack. */
2496 num_offsets = objfile->num_sections;
2497 offsets = ((struct section_offsets *)
2498 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2499 memcpy (offsets, objfile->section_offsets,
2500 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2501
2502 /* FIXME: Do we have to free a whole linked list, or is this
2503 enough? */
2504 if (objfile->global_psymbols.list)
2505 xfree (objfile->global_psymbols.list);
2506 memset (&objfile->global_psymbols, 0,
2507 sizeof (objfile->global_psymbols));
2508 if (objfile->static_psymbols.list)
2509 xfree (objfile->static_psymbols.list);
2510 memset (&objfile->static_psymbols, 0,
2511 sizeof (objfile->static_psymbols));
2512
2513 /* Free the obstacks for non-reusable objfiles. */
2514 psymbol_bcache_free (objfile->psymbol_cache);
2515 objfile->psymbol_cache = psymbol_bcache_init ();
2516 bcache_xfree (objfile->macro_cache);
2517 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2518 bcache_xfree (objfile->filename_cache);
2519 objfile->filename_cache = bcache_xmalloc (NULL,NULL);
2520 if (objfile->demangled_names_hash != NULL)
2521 {
2522 htab_delete (objfile->demangled_names_hash);
2523 objfile->demangled_names_hash = NULL;
2524 }
2525 obstack_free (&objfile->objfile_obstack, 0);
2526 objfile->sections = NULL;
2527 objfile->symtabs = NULL;
2528 objfile->psymtabs = NULL;
2529 objfile->psymtabs_addrmap = NULL;
2530 objfile->free_psymtabs = NULL;
2531 objfile->template_symbols = NULL;
2532 objfile->msymbols = NULL;
2533 objfile->deprecated_sym_private = NULL;
2534 objfile->minimal_symbol_count = 0;
2535 memset (&objfile->msymbol_hash, 0,
2536 sizeof (objfile->msymbol_hash));
2537 memset (&objfile->msymbol_demangled_hash, 0,
2538 sizeof (objfile->msymbol_demangled_hash));
2539
2540 /* obstack_init also initializes the obstack so it is
2541 empty. We could use obstack_specify_allocation but
2542 gdb_obstack.h specifies the alloc/dealloc
2543 functions. */
2544 obstack_init (&objfile->objfile_obstack);
2545 if (build_objfile_section_table (objfile))
2546 {
2547 error (_("Can't find the file sections in `%s': %s"),
2548 objfile->name, bfd_errmsg (bfd_get_error ()));
2549 }
2550 terminate_minimal_symbol_table (objfile);
2551
2552 /* We use the same section offsets as from last time. I'm not
2553 sure whether that is always correct for shared libraries. */
2554 objfile->section_offsets = (struct section_offsets *)
2555 obstack_alloc (&objfile->objfile_obstack,
2556 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2557 memcpy (objfile->section_offsets, offsets,
2558 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2559 objfile->num_sections = num_offsets;
2560
2561 /* What the hell is sym_new_init for, anyway? The concept of
2562 distinguishing between the main file and additional files
2563 in this way seems rather dubious. */
2564 if (objfile == symfile_objfile)
2565 {
2566 (*objfile->sf->sym_new_init) (objfile);
2567 }
2568
2569 (*objfile->sf->sym_init) (objfile);
2570 clear_complaints (&symfile_complaints, 1, 1);
2571 /* Do not set flags as this is safe and we don't want to be
2572 verbose. */
2573 (*objfile->sf->sym_read) (objfile, 0);
2574 if ((objfile->flags & OBJF_PSYMTABS_READ) != 0)
2575 {
2576 objfile->flags &= ~OBJF_PSYMTABS_READ;
2577 require_partial_symbols (objfile, 0);
2578 }
2579
2580 if (!objfile_has_symbols (objfile))
2581 {
2582 wrap_here ("");
2583 printf_unfiltered (_("(no debugging symbols found)\n"));
2584 wrap_here ("");
2585 }
2586
2587 /* We're done reading the symbol file; finish off complaints. */
2588 clear_complaints (&symfile_complaints, 0, 1);
2589
2590 /* Getting new symbols may change our opinion about what is
2591 frameless. */
2592
2593 reinit_frame_cache ();
2594
2595 /* Discard cleanups as symbol reading was successful. */
2596 discard_cleanups (old_cleanups);
2597
2598 /* If the mtime has changed between the time we set new_modtime
2599 and now, we *want* this to be out of date, so don't call stat
2600 again now. */
2601 objfile->mtime = new_modtime;
2602 init_entry_point_info (objfile);
2603
2604 VEC_safe_push (objfilep, new_objfiles, objfile);
2605 }
2606 }
2607
2608 if (new_objfiles)
2609 {
2610 int ix;
2611
2612 /* Notify objfiles that we've modified objfile sections. */
2613 objfiles_changed ();
2614
2615 clear_symtab_users (0);
2616
2617 /* clear_objfile_data for each objfile was called before freeing it and
2618 observer_notify_new_objfile (NULL) has been called by
2619 clear_symtab_users above. Notify the new files now. */
2620 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2621 observer_notify_new_objfile (objfile);
2622
2623 /* At least one objfile has changed, so we can consider that
2624 the executable we're debugging has changed too. */
2625 observer_notify_executable_changed ();
2626 }
2627
2628 do_cleanups (all_cleanups);
2629 }
2630 \f
2631
2632
2633 typedef struct
2634 {
2635 char *ext;
2636 enum language lang;
2637 }
2638 filename_language;
2639
2640 static filename_language *filename_language_table;
2641 static int fl_table_size, fl_table_next;
2642
2643 static void
2644 add_filename_language (char *ext, enum language lang)
2645 {
2646 if (fl_table_next >= fl_table_size)
2647 {
2648 fl_table_size += 10;
2649 filename_language_table =
2650 xrealloc (filename_language_table,
2651 fl_table_size * sizeof (*filename_language_table));
2652 }
2653
2654 filename_language_table[fl_table_next].ext = xstrdup (ext);
2655 filename_language_table[fl_table_next].lang = lang;
2656 fl_table_next++;
2657 }
2658
2659 static char *ext_args;
2660 static void
2661 show_ext_args (struct ui_file *file, int from_tty,
2662 struct cmd_list_element *c, const char *value)
2663 {
2664 fprintf_filtered (file,
2665 _("Mapping between filename extension "
2666 "and source language is \"%s\".\n"),
2667 value);
2668 }
2669
2670 static void
2671 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2672 {
2673 int i;
2674 char *cp = ext_args;
2675 enum language lang;
2676
2677 /* First arg is filename extension, starting with '.' */
2678 if (*cp != '.')
2679 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2680
2681 /* Find end of first arg. */
2682 while (*cp && !isspace (*cp))
2683 cp++;
2684
2685 if (*cp == '\0')
2686 error (_("'%s': two arguments required -- "
2687 "filename extension and language"),
2688 ext_args);
2689
2690 /* Null-terminate first arg. */
2691 *cp++ = '\0';
2692
2693 /* Find beginning of second arg, which should be a source language. */
2694 while (*cp && isspace (*cp))
2695 cp++;
2696
2697 if (*cp == '\0')
2698 error (_("'%s': two arguments required -- "
2699 "filename extension and language"),
2700 ext_args);
2701
2702 /* Lookup the language from among those we know. */
2703 lang = language_enum (cp);
2704
2705 /* Now lookup the filename extension: do we already know it? */
2706 for (i = 0; i < fl_table_next; i++)
2707 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2708 break;
2709
2710 if (i >= fl_table_next)
2711 {
2712 /* New file extension. */
2713 add_filename_language (ext_args, lang);
2714 }
2715 else
2716 {
2717 /* Redefining a previously known filename extension. */
2718
2719 /* if (from_tty) */
2720 /* query ("Really make files of type %s '%s'?", */
2721 /* ext_args, language_str (lang)); */
2722
2723 xfree (filename_language_table[i].ext);
2724 filename_language_table[i].ext = xstrdup (ext_args);
2725 filename_language_table[i].lang = lang;
2726 }
2727 }
2728
2729 static void
2730 info_ext_lang_command (char *args, int from_tty)
2731 {
2732 int i;
2733
2734 printf_filtered (_("Filename extensions and the languages they represent:"));
2735 printf_filtered ("\n\n");
2736 for (i = 0; i < fl_table_next; i++)
2737 printf_filtered ("\t%s\t- %s\n",
2738 filename_language_table[i].ext,
2739 language_str (filename_language_table[i].lang));
2740 }
2741
2742 static void
2743 init_filename_language_table (void)
2744 {
2745 if (fl_table_size == 0) /* Protect against repetition. */
2746 {
2747 fl_table_size = 20;
2748 fl_table_next = 0;
2749 filename_language_table =
2750 xmalloc (fl_table_size * sizeof (*filename_language_table));
2751 add_filename_language (".c", language_c);
2752 add_filename_language (".d", language_d);
2753 add_filename_language (".C", language_cplus);
2754 add_filename_language (".cc", language_cplus);
2755 add_filename_language (".cp", language_cplus);
2756 add_filename_language (".cpp", language_cplus);
2757 add_filename_language (".cxx", language_cplus);
2758 add_filename_language (".c++", language_cplus);
2759 add_filename_language (".java", language_java);
2760 add_filename_language (".class", language_java);
2761 add_filename_language (".m", language_objc);
2762 add_filename_language (".f", language_fortran);
2763 add_filename_language (".F", language_fortran);
2764 add_filename_language (".for", language_fortran);
2765 add_filename_language (".FOR", language_fortran);
2766 add_filename_language (".ftn", language_fortran);
2767 add_filename_language (".FTN", language_fortran);
2768 add_filename_language (".fpp", language_fortran);
2769 add_filename_language (".FPP", language_fortran);
2770 add_filename_language (".f90", language_fortran);
2771 add_filename_language (".F90", language_fortran);
2772 add_filename_language (".f95", language_fortran);
2773 add_filename_language (".F95", language_fortran);
2774 add_filename_language (".f03", language_fortran);
2775 add_filename_language (".F03", language_fortran);
2776 add_filename_language (".f08", language_fortran);
2777 add_filename_language (".F08", language_fortran);
2778 add_filename_language (".s", language_asm);
2779 add_filename_language (".sx", language_asm);
2780 add_filename_language (".S", language_asm);
2781 add_filename_language (".pas", language_pascal);
2782 add_filename_language (".p", language_pascal);
2783 add_filename_language (".pp", language_pascal);
2784 add_filename_language (".adb", language_ada);
2785 add_filename_language (".ads", language_ada);
2786 add_filename_language (".a", language_ada);
2787 add_filename_language (".ada", language_ada);
2788 add_filename_language (".dg", language_ada);
2789 }
2790 }
2791
2792 enum language
2793 deduce_language_from_filename (const char *filename)
2794 {
2795 int i;
2796 char *cp;
2797
2798 if (filename != NULL)
2799 if ((cp = strrchr (filename, '.')) != NULL)
2800 for (i = 0; i < fl_table_next; i++)
2801 if (strcmp (cp, filename_language_table[i].ext) == 0)
2802 return filename_language_table[i].lang;
2803
2804 return language_unknown;
2805 }
2806 \f
2807 /* allocate_symtab:
2808
2809 Allocate and partly initialize a new symbol table. Return a pointer
2810 to it. error() if no space.
2811
2812 Caller must set these fields:
2813 LINETABLE(symtab)
2814 symtab->blockvector
2815 symtab->dirname
2816 symtab->free_code
2817 symtab->free_ptr
2818 */
2819
2820 struct symtab *
2821 allocate_symtab (const char *filename, struct objfile *objfile)
2822 {
2823 struct symtab *symtab;
2824
2825 symtab = (struct symtab *)
2826 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2827 memset (symtab, 0, sizeof (*symtab));
2828 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2829 objfile->filename_cache);
2830 symtab->fullname = NULL;
2831 symtab->language = deduce_language_from_filename (filename);
2832 symtab->debugformat = "unknown";
2833
2834 /* Hook it to the objfile it comes from. */
2835
2836 symtab->objfile = objfile;
2837 symtab->next = objfile->symtabs;
2838 objfile->symtabs = symtab;
2839
2840 return (symtab);
2841 }
2842 \f
2843
2844 /* Reset all data structures in gdb which may contain references to symbol
2845 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2846
2847 void
2848 clear_symtab_users (int add_flags)
2849 {
2850 /* Someday, we should do better than this, by only blowing away
2851 the things that really need to be blown. */
2852
2853 /* Clear the "current" symtab first, because it is no longer valid.
2854 breakpoint_re_set may try to access the current symtab. */
2855 clear_current_source_symtab_and_line ();
2856
2857 clear_displays ();
2858 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2859 breakpoint_re_set ();
2860 clear_last_displayed_sal ();
2861 clear_pc_function_cache ();
2862 observer_notify_new_objfile (NULL);
2863
2864 /* Clear globals which might have pointed into a removed objfile.
2865 FIXME: It's not clear which of these are supposed to persist
2866 between expressions and which ought to be reset each time. */
2867 expression_context_block = NULL;
2868 innermost_block = NULL;
2869
2870 /* Varobj may refer to old symbols, perform a cleanup. */
2871 varobj_invalidate ();
2872
2873 }
2874
2875 static void
2876 clear_symtab_users_cleanup (void *ignore)
2877 {
2878 clear_symtab_users (0);
2879 }
2880 \f
2881 /* OVERLAYS:
2882 The following code implements an abstraction for debugging overlay sections.
2883
2884 The target model is as follows:
2885 1) The gnu linker will permit multiple sections to be mapped into the
2886 same VMA, each with its own unique LMA (or load address).
2887 2) It is assumed that some runtime mechanism exists for mapping the
2888 sections, one by one, from the load address into the VMA address.
2889 3) This code provides a mechanism for gdb to keep track of which
2890 sections should be considered to be mapped from the VMA to the LMA.
2891 This information is used for symbol lookup, and memory read/write.
2892 For instance, if a section has been mapped then its contents
2893 should be read from the VMA, otherwise from the LMA.
2894
2895 Two levels of debugger support for overlays are available. One is
2896 "manual", in which the debugger relies on the user to tell it which
2897 overlays are currently mapped. This level of support is
2898 implemented entirely in the core debugger, and the information about
2899 whether a section is mapped is kept in the objfile->obj_section table.
2900
2901 The second level of support is "automatic", and is only available if
2902 the target-specific code provides functionality to read the target's
2903 overlay mapping table, and translate its contents for the debugger
2904 (by updating the mapped state information in the obj_section tables).
2905
2906 The interface is as follows:
2907 User commands:
2908 overlay map <name> -- tell gdb to consider this section mapped
2909 overlay unmap <name> -- tell gdb to consider this section unmapped
2910 overlay list -- list the sections that GDB thinks are mapped
2911 overlay read-target -- get the target's state of what's mapped
2912 overlay off/manual/auto -- set overlay debugging state
2913 Functional interface:
2914 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2915 section, return that section.
2916 find_pc_overlay(pc): find any overlay section that contains
2917 the pc, either in its VMA or its LMA
2918 section_is_mapped(sect): true if overlay is marked as mapped
2919 section_is_overlay(sect): true if section's VMA != LMA
2920 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2921 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2922 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2923 overlay_mapped_address(...): map an address from section's LMA to VMA
2924 overlay_unmapped_address(...): map an address from section's VMA to LMA
2925 symbol_overlayed_address(...): Return a "current" address for symbol:
2926 either in VMA or LMA depending on whether
2927 the symbol's section is currently mapped. */
2928
2929 /* Overlay debugging state: */
2930
2931 enum overlay_debugging_state overlay_debugging = ovly_off;
2932 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2933
2934 /* Function: section_is_overlay (SECTION)
2935 Returns true if SECTION has VMA not equal to LMA, ie.
2936 SECTION is loaded at an address different from where it will "run". */
2937
2938 int
2939 section_is_overlay (struct obj_section *section)
2940 {
2941 if (overlay_debugging && section)
2942 {
2943 bfd *abfd = section->objfile->obfd;
2944 asection *bfd_section = section->the_bfd_section;
2945
2946 if (bfd_section_lma (abfd, bfd_section) != 0
2947 && bfd_section_lma (abfd, bfd_section)
2948 != bfd_section_vma (abfd, bfd_section))
2949 return 1;
2950 }
2951
2952 return 0;
2953 }
2954
2955 /* Function: overlay_invalidate_all (void)
2956 Invalidate the mapped state of all overlay sections (mark it as stale). */
2957
2958 static void
2959 overlay_invalidate_all (void)
2960 {
2961 struct objfile *objfile;
2962 struct obj_section *sect;
2963
2964 ALL_OBJSECTIONS (objfile, sect)
2965 if (section_is_overlay (sect))
2966 sect->ovly_mapped = -1;
2967 }
2968
2969 /* Function: section_is_mapped (SECTION)
2970 Returns true if section is an overlay, and is currently mapped.
2971
2972 Access to the ovly_mapped flag is restricted to this function, so
2973 that we can do automatic update. If the global flag
2974 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2975 overlay_invalidate_all. If the mapped state of the particular
2976 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2977
2978 int
2979 section_is_mapped (struct obj_section *osect)
2980 {
2981 struct gdbarch *gdbarch;
2982
2983 if (osect == 0 || !section_is_overlay (osect))
2984 return 0;
2985
2986 switch (overlay_debugging)
2987 {
2988 default:
2989 case ovly_off:
2990 return 0; /* overlay debugging off */
2991 case ovly_auto: /* overlay debugging automatic */
2992 /* Unles there is a gdbarch_overlay_update function,
2993 there's really nothing useful to do here (can't really go auto). */
2994 gdbarch = get_objfile_arch (osect->objfile);
2995 if (gdbarch_overlay_update_p (gdbarch))
2996 {
2997 if (overlay_cache_invalid)
2998 {
2999 overlay_invalidate_all ();
3000 overlay_cache_invalid = 0;
3001 }
3002 if (osect->ovly_mapped == -1)
3003 gdbarch_overlay_update (gdbarch, osect);
3004 }
3005 /* fall thru to manual case */
3006 case ovly_on: /* overlay debugging manual */
3007 return osect->ovly_mapped == 1;
3008 }
3009 }
3010
3011 /* Function: pc_in_unmapped_range
3012 If PC falls into the lma range of SECTION, return true, else false. */
3013
3014 CORE_ADDR
3015 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3016 {
3017 if (section_is_overlay (section))
3018 {
3019 bfd *abfd = section->objfile->obfd;
3020 asection *bfd_section = section->the_bfd_section;
3021
3022 /* We assume the LMA is relocated by the same offset as the VMA. */
3023 bfd_vma size = bfd_get_section_size (bfd_section);
3024 CORE_ADDR offset = obj_section_offset (section);
3025
3026 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3027 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3028 return 1;
3029 }
3030
3031 return 0;
3032 }
3033
3034 /* Function: pc_in_mapped_range
3035 If PC falls into the vma range of SECTION, return true, else false. */
3036
3037 CORE_ADDR
3038 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3039 {
3040 if (section_is_overlay (section))
3041 {
3042 if (obj_section_addr (section) <= pc
3043 && pc < obj_section_endaddr (section))
3044 return 1;
3045 }
3046
3047 return 0;
3048 }
3049
3050
3051 /* Return true if the mapped ranges of sections A and B overlap, false
3052 otherwise. */
3053 static int
3054 sections_overlap (struct obj_section *a, struct obj_section *b)
3055 {
3056 CORE_ADDR a_start = obj_section_addr (a);
3057 CORE_ADDR a_end = obj_section_endaddr (a);
3058 CORE_ADDR b_start = obj_section_addr (b);
3059 CORE_ADDR b_end = obj_section_endaddr (b);
3060
3061 return (a_start < b_end && b_start < a_end);
3062 }
3063
3064 /* Function: overlay_unmapped_address (PC, SECTION)
3065 Returns the address corresponding to PC in the unmapped (load) range.
3066 May be the same as PC. */
3067
3068 CORE_ADDR
3069 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3070 {
3071 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3072 {
3073 bfd *abfd = section->objfile->obfd;
3074 asection *bfd_section = section->the_bfd_section;
3075
3076 return pc + bfd_section_lma (abfd, bfd_section)
3077 - bfd_section_vma (abfd, bfd_section);
3078 }
3079
3080 return pc;
3081 }
3082
3083 /* Function: overlay_mapped_address (PC, SECTION)
3084 Returns the address corresponding to PC in the mapped (runtime) range.
3085 May be the same as PC. */
3086
3087 CORE_ADDR
3088 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3089 {
3090 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3091 {
3092 bfd *abfd = section->objfile->obfd;
3093 asection *bfd_section = section->the_bfd_section;
3094
3095 return pc + bfd_section_vma (abfd, bfd_section)
3096 - bfd_section_lma (abfd, bfd_section);
3097 }
3098
3099 return pc;
3100 }
3101
3102
3103 /* Function: symbol_overlayed_address
3104 Return one of two addresses (relative to the VMA or to the LMA),
3105 depending on whether the section is mapped or not. */
3106
3107 CORE_ADDR
3108 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3109 {
3110 if (overlay_debugging)
3111 {
3112 /* If the symbol has no section, just return its regular address. */
3113 if (section == 0)
3114 return address;
3115 /* If the symbol's section is not an overlay, just return its
3116 address. */
3117 if (!section_is_overlay (section))
3118 return address;
3119 /* If the symbol's section is mapped, just return its address. */
3120 if (section_is_mapped (section))
3121 return address;
3122 /*
3123 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3124 * then return its LOADED address rather than its vma address!!
3125 */
3126 return overlay_unmapped_address (address, section);
3127 }
3128 return address;
3129 }
3130
3131 /* Function: find_pc_overlay (PC)
3132 Return the best-match overlay section for PC:
3133 If PC matches a mapped overlay section's VMA, return that section.
3134 Else if PC matches an unmapped section's VMA, return that section.
3135 Else if PC matches an unmapped section's LMA, return that section. */
3136
3137 struct obj_section *
3138 find_pc_overlay (CORE_ADDR pc)
3139 {
3140 struct objfile *objfile;
3141 struct obj_section *osect, *best_match = NULL;
3142
3143 if (overlay_debugging)
3144 ALL_OBJSECTIONS (objfile, osect)
3145 if (section_is_overlay (osect))
3146 {
3147 if (pc_in_mapped_range (pc, osect))
3148 {
3149 if (section_is_mapped (osect))
3150 return osect;
3151 else
3152 best_match = osect;
3153 }
3154 else if (pc_in_unmapped_range (pc, osect))
3155 best_match = osect;
3156 }
3157 return best_match;
3158 }
3159
3160 /* Function: find_pc_mapped_section (PC)
3161 If PC falls into the VMA address range of an overlay section that is
3162 currently marked as MAPPED, return that section. Else return NULL. */
3163
3164 struct obj_section *
3165 find_pc_mapped_section (CORE_ADDR pc)
3166 {
3167 struct objfile *objfile;
3168 struct obj_section *osect;
3169
3170 if (overlay_debugging)
3171 ALL_OBJSECTIONS (objfile, osect)
3172 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3173 return osect;
3174
3175 return NULL;
3176 }
3177
3178 /* Function: list_overlays_command
3179 Print a list of mapped sections and their PC ranges. */
3180
3181 void
3182 list_overlays_command (char *args, int from_tty)
3183 {
3184 int nmapped = 0;
3185 struct objfile *objfile;
3186 struct obj_section *osect;
3187
3188 if (overlay_debugging)
3189 ALL_OBJSECTIONS (objfile, osect)
3190 if (section_is_mapped (osect))
3191 {
3192 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3193 const char *name;
3194 bfd_vma lma, vma;
3195 int size;
3196
3197 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3198 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3199 size = bfd_get_section_size (osect->the_bfd_section);
3200 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3201
3202 printf_filtered ("Section %s, loaded at ", name);
3203 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3204 puts_filtered (" - ");
3205 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3206 printf_filtered (", mapped at ");
3207 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3208 puts_filtered (" - ");
3209 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3210 puts_filtered ("\n");
3211
3212 nmapped++;
3213 }
3214 if (nmapped == 0)
3215 printf_filtered (_("No sections are mapped.\n"));
3216 }
3217
3218 /* Function: map_overlay_command
3219 Mark the named section as mapped (ie. residing at its VMA address). */
3220
3221 void
3222 map_overlay_command (char *args, int from_tty)
3223 {
3224 struct objfile *objfile, *objfile2;
3225 struct obj_section *sec, *sec2;
3226
3227 if (!overlay_debugging)
3228 error (_("Overlay debugging not enabled. Use "
3229 "either the 'overlay auto' or\n"
3230 "the 'overlay manual' command."));
3231
3232 if (args == 0 || *args == 0)
3233 error (_("Argument required: name of an overlay section"));
3234
3235 /* First, find a section matching the user supplied argument. */
3236 ALL_OBJSECTIONS (objfile, sec)
3237 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3238 {
3239 /* Now, check to see if the section is an overlay. */
3240 if (!section_is_overlay (sec))
3241 continue; /* not an overlay section */
3242
3243 /* Mark the overlay as "mapped". */
3244 sec->ovly_mapped = 1;
3245
3246 /* Next, make a pass and unmap any sections that are
3247 overlapped by this new section: */
3248 ALL_OBJSECTIONS (objfile2, sec2)
3249 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3250 {
3251 if (info_verbose)
3252 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3253 bfd_section_name (objfile->obfd,
3254 sec2->the_bfd_section));
3255 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3256 }
3257 return;
3258 }
3259 error (_("No overlay section called %s"), args);
3260 }
3261
3262 /* Function: unmap_overlay_command
3263 Mark the overlay section as unmapped
3264 (ie. resident in its LMA address range, rather than the VMA range). */
3265
3266 void
3267 unmap_overlay_command (char *args, int from_tty)
3268 {
3269 struct objfile *objfile;
3270 struct obj_section *sec;
3271
3272 if (!overlay_debugging)
3273 error (_("Overlay debugging not enabled. "
3274 "Use either the 'overlay auto' or\n"
3275 "the 'overlay manual' command."));
3276
3277 if (args == 0 || *args == 0)
3278 error (_("Argument required: name of an overlay section"));
3279
3280 /* First, find a section matching the user supplied argument. */
3281 ALL_OBJSECTIONS (objfile, sec)
3282 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3283 {
3284 if (!sec->ovly_mapped)
3285 error (_("Section %s is not mapped"), args);
3286 sec->ovly_mapped = 0;
3287 return;
3288 }
3289 error (_("No overlay section called %s"), args);
3290 }
3291
3292 /* Function: overlay_auto_command
3293 A utility command to turn on overlay debugging.
3294 Possibly this should be done via a set/show command. */
3295
3296 static void
3297 overlay_auto_command (char *args, int from_tty)
3298 {
3299 overlay_debugging = ovly_auto;
3300 enable_overlay_breakpoints ();
3301 if (info_verbose)
3302 printf_unfiltered (_("Automatic overlay debugging enabled."));
3303 }
3304
3305 /* Function: overlay_manual_command
3306 A utility command to turn on overlay debugging.
3307 Possibly this should be done via a set/show command. */
3308
3309 static void
3310 overlay_manual_command (char *args, int from_tty)
3311 {
3312 overlay_debugging = ovly_on;
3313 disable_overlay_breakpoints ();
3314 if (info_verbose)
3315 printf_unfiltered (_("Overlay debugging enabled."));
3316 }
3317
3318 /* Function: overlay_off_command
3319 A utility command to turn on overlay debugging.
3320 Possibly this should be done via a set/show command. */
3321
3322 static void
3323 overlay_off_command (char *args, int from_tty)
3324 {
3325 overlay_debugging = ovly_off;
3326 disable_overlay_breakpoints ();
3327 if (info_verbose)
3328 printf_unfiltered (_("Overlay debugging disabled."));
3329 }
3330
3331 static void
3332 overlay_load_command (char *args, int from_tty)
3333 {
3334 struct gdbarch *gdbarch = get_current_arch ();
3335
3336 if (gdbarch_overlay_update_p (gdbarch))
3337 gdbarch_overlay_update (gdbarch, NULL);
3338 else
3339 error (_("This target does not know how to read its overlay state."));
3340 }
3341
3342 /* Function: overlay_command
3343 A place-holder for a mis-typed command. */
3344
3345 /* Command list chain containing all defined "overlay" subcommands. */
3346 struct cmd_list_element *overlaylist;
3347
3348 static void
3349 overlay_command (char *args, int from_tty)
3350 {
3351 printf_unfiltered
3352 ("\"overlay\" must be followed by the name of an overlay command.\n");
3353 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3354 }
3355
3356
3357 /* Target Overlays for the "Simplest" overlay manager:
3358
3359 This is GDB's default target overlay layer. It works with the
3360 minimal overlay manager supplied as an example by Cygnus. The
3361 entry point is via a function pointer "gdbarch_overlay_update",
3362 so targets that use a different runtime overlay manager can
3363 substitute their own overlay_update function and take over the
3364 function pointer.
3365
3366 The overlay_update function pokes around in the target's data structures
3367 to see what overlays are mapped, and updates GDB's overlay mapping with
3368 this information.
3369
3370 In this simple implementation, the target data structures are as follows:
3371 unsigned _novlys; /# number of overlay sections #/
3372 unsigned _ovly_table[_novlys][4] = {
3373 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3374 {..., ..., ..., ...},
3375 }
3376 unsigned _novly_regions; /# number of overlay regions #/
3377 unsigned _ovly_region_table[_novly_regions][3] = {
3378 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3379 {..., ..., ...},
3380 }
3381 These functions will attempt to update GDB's mappedness state in the
3382 symbol section table, based on the target's mappedness state.
3383
3384 To do this, we keep a cached copy of the target's _ovly_table, and
3385 attempt to detect when the cached copy is invalidated. The main
3386 entry point is "simple_overlay_update(SECT), which looks up SECT in
3387 the cached table and re-reads only the entry for that section from
3388 the target (whenever possible). */
3389
3390 /* Cached, dynamically allocated copies of the target data structures: */
3391 static unsigned (*cache_ovly_table)[4] = 0;
3392 static unsigned cache_novlys = 0;
3393 static CORE_ADDR cache_ovly_table_base = 0;
3394 enum ovly_index
3395 {
3396 VMA, SIZE, LMA, MAPPED
3397 };
3398
3399 /* Throw away the cached copy of _ovly_table. */
3400 static void
3401 simple_free_overlay_table (void)
3402 {
3403 if (cache_ovly_table)
3404 xfree (cache_ovly_table);
3405 cache_novlys = 0;
3406 cache_ovly_table = NULL;
3407 cache_ovly_table_base = 0;
3408 }
3409
3410 /* Read an array of ints of size SIZE from the target into a local buffer.
3411 Convert to host order. int LEN is number of ints. */
3412 static void
3413 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3414 int len, int size, enum bfd_endian byte_order)
3415 {
3416 /* FIXME (alloca): Not safe if array is very large. */
3417 gdb_byte *buf = alloca (len * size);
3418 int i;
3419
3420 read_memory (memaddr, buf, len * size);
3421 for (i = 0; i < len; i++)
3422 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3423 }
3424
3425 /* Find and grab a copy of the target _ovly_table
3426 (and _novlys, which is needed for the table's size). */
3427 static int
3428 simple_read_overlay_table (void)
3429 {
3430 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3431 struct gdbarch *gdbarch;
3432 int word_size;
3433 enum bfd_endian byte_order;
3434
3435 simple_free_overlay_table ();
3436 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3437 if (! novlys_msym)
3438 {
3439 error (_("Error reading inferior's overlay table: "
3440 "couldn't find `_novlys' variable\n"
3441 "in inferior. Use `overlay manual' mode."));
3442 return 0;
3443 }
3444
3445 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3446 if (! ovly_table_msym)
3447 {
3448 error (_("Error reading inferior's overlay table: couldn't find "
3449 "`_ovly_table' array\n"
3450 "in inferior. Use `overlay manual' mode."));
3451 return 0;
3452 }
3453
3454 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3455 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3456 byte_order = gdbarch_byte_order (gdbarch);
3457
3458 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3459 4, byte_order);
3460 cache_ovly_table
3461 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3462 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3463 read_target_long_array (cache_ovly_table_base,
3464 (unsigned int *) cache_ovly_table,
3465 cache_novlys * 4, word_size, byte_order);
3466
3467 return 1; /* SUCCESS */
3468 }
3469
3470 /* Function: simple_overlay_update_1
3471 A helper function for simple_overlay_update. Assuming a cached copy
3472 of _ovly_table exists, look through it to find an entry whose vma,
3473 lma and size match those of OSECT. Re-read the entry and make sure
3474 it still matches OSECT (else the table may no longer be valid).
3475 Set OSECT's mapped state to match the entry. Return: 1 for
3476 success, 0 for failure. */
3477
3478 static int
3479 simple_overlay_update_1 (struct obj_section *osect)
3480 {
3481 int i, size;
3482 bfd *obfd = osect->objfile->obfd;
3483 asection *bsect = osect->the_bfd_section;
3484 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3485 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3486 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3487
3488 size = bfd_get_section_size (osect->the_bfd_section);
3489 for (i = 0; i < cache_novlys; i++)
3490 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3491 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3492 /* && cache_ovly_table[i][SIZE] == size */ )
3493 {
3494 read_target_long_array (cache_ovly_table_base + i * word_size,
3495 (unsigned int *) cache_ovly_table[i],
3496 4, word_size, byte_order);
3497 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3498 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3499 /* && cache_ovly_table[i][SIZE] == size */ )
3500 {
3501 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3502 return 1;
3503 }
3504 else /* Warning! Warning! Target's ovly table has changed! */
3505 return 0;
3506 }
3507 return 0;
3508 }
3509
3510 /* Function: simple_overlay_update
3511 If OSECT is NULL, then update all sections' mapped state
3512 (after re-reading the entire target _ovly_table).
3513 If OSECT is non-NULL, then try to find a matching entry in the
3514 cached ovly_table and update only OSECT's mapped state.
3515 If a cached entry can't be found or the cache isn't valid, then
3516 re-read the entire cache, and go ahead and update all sections. */
3517
3518 void
3519 simple_overlay_update (struct obj_section *osect)
3520 {
3521 struct objfile *objfile;
3522
3523 /* Were we given an osect to look up? NULL means do all of them. */
3524 if (osect)
3525 /* Have we got a cached copy of the target's overlay table? */
3526 if (cache_ovly_table != NULL)
3527 {
3528 /* Does its cached location match what's currently in the
3529 symtab? */
3530 struct minimal_symbol *minsym
3531 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3532
3533 if (minsym == NULL)
3534 error (_("Error reading inferior's overlay table: couldn't "
3535 "find `_ovly_table' array\n"
3536 "in inferior. Use `overlay manual' mode."));
3537
3538 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3539 /* Then go ahead and try to look up this single section in
3540 the cache. */
3541 if (simple_overlay_update_1 (osect))
3542 /* Found it! We're done. */
3543 return;
3544 }
3545
3546 /* Cached table no good: need to read the entire table anew.
3547 Or else we want all the sections, in which case it's actually
3548 more efficient to read the whole table in one block anyway. */
3549
3550 if (! simple_read_overlay_table ())
3551 return;
3552
3553 /* Now may as well update all sections, even if only one was requested. */
3554 ALL_OBJSECTIONS (objfile, osect)
3555 if (section_is_overlay (osect))
3556 {
3557 int i, size;
3558 bfd *obfd = osect->objfile->obfd;
3559 asection *bsect = osect->the_bfd_section;
3560
3561 size = bfd_get_section_size (bsect);
3562 for (i = 0; i < cache_novlys; i++)
3563 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3564 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3565 /* && cache_ovly_table[i][SIZE] == size */ )
3566 { /* obj_section matches i'th entry in ovly_table. */
3567 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3568 break; /* finished with inner for loop: break out. */
3569 }
3570 }
3571 }
3572
3573 /* Set the output sections and output offsets for section SECTP in
3574 ABFD. The relocation code in BFD will read these offsets, so we
3575 need to be sure they're initialized. We map each section to itself,
3576 with no offset; this means that SECTP->vma will be honored. */
3577
3578 static void
3579 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3580 {
3581 sectp->output_section = sectp;
3582 sectp->output_offset = 0;
3583 }
3584
3585 /* Default implementation for sym_relocate. */
3586
3587
3588 bfd_byte *
3589 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3590 bfd_byte *buf)
3591 {
3592 bfd *abfd = objfile->obfd;
3593
3594 /* We're only interested in sections with relocation
3595 information. */
3596 if ((sectp->flags & SEC_RELOC) == 0)
3597 return NULL;
3598
3599 /* We will handle section offsets properly elsewhere, so relocate as if
3600 all sections begin at 0. */
3601 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3602
3603 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3604 }
3605
3606 /* Relocate the contents of a debug section SECTP in ABFD. The
3607 contents are stored in BUF if it is non-NULL, or returned in a
3608 malloc'd buffer otherwise.
3609
3610 For some platforms and debug info formats, shared libraries contain
3611 relocations against the debug sections (particularly for DWARF-2;
3612 one affected platform is PowerPC GNU/Linux, although it depends on
3613 the version of the linker in use). Also, ELF object files naturally
3614 have unresolved relocations for their debug sections. We need to apply
3615 the relocations in order to get the locations of symbols correct.
3616 Another example that may require relocation processing, is the
3617 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3618 debug section. */
3619
3620 bfd_byte *
3621 symfile_relocate_debug_section (struct objfile *objfile,
3622 asection *sectp, bfd_byte *buf)
3623 {
3624 gdb_assert (objfile->sf->sym_relocate);
3625
3626 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3627 }
3628
3629 struct symfile_segment_data *
3630 get_symfile_segment_data (bfd *abfd)
3631 {
3632 const struct sym_fns *sf = find_sym_fns (abfd);
3633
3634 if (sf == NULL)
3635 return NULL;
3636
3637 return sf->sym_segments (abfd);
3638 }
3639
3640 void
3641 free_symfile_segment_data (struct symfile_segment_data *data)
3642 {
3643 xfree (data->segment_bases);
3644 xfree (data->segment_sizes);
3645 xfree (data->segment_info);
3646 xfree (data);
3647 }
3648
3649
3650 /* Given:
3651 - DATA, containing segment addresses from the object file ABFD, and
3652 the mapping from ABFD's sections onto the segments that own them,
3653 and
3654 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3655 segment addresses reported by the target,
3656 store the appropriate offsets for each section in OFFSETS.
3657
3658 If there are fewer entries in SEGMENT_BASES than there are segments
3659 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3660
3661 If there are more entries, then ignore the extra. The target may
3662 not be able to distinguish between an empty data segment and a
3663 missing data segment; a missing text segment is less plausible. */
3664 int
3665 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3666 struct section_offsets *offsets,
3667 int num_segment_bases,
3668 const CORE_ADDR *segment_bases)
3669 {
3670 int i;
3671 asection *sect;
3672
3673 /* It doesn't make sense to call this function unless you have some
3674 segment base addresses. */
3675 gdb_assert (num_segment_bases > 0);
3676
3677 /* If we do not have segment mappings for the object file, we
3678 can not relocate it by segments. */
3679 gdb_assert (data != NULL);
3680 gdb_assert (data->num_segments > 0);
3681
3682 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3683 {
3684 int which = data->segment_info[i];
3685
3686 gdb_assert (0 <= which && which <= data->num_segments);
3687
3688 /* Don't bother computing offsets for sections that aren't
3689 loaded as part of any segment. */
3690 if (! which)
3691 continue;
3692
3693 /* Use the last SEGMENT_BASES entry as the address of any extra
3694 segments mentioned in DATA->segment_info. */
3695 if (which > num_segment_bases)
3696 which = num_segment_bases;
3697
3698 offsets->offsets[i] = (segment_bases[which - 1]
3699 - data->segment_bases[which - 1]);
3700 }
3701
3702 return 1;
3703 }
3704
3705 static void
3706 symfile_find_segment_sections (struct objfile *objfile)
3707 {
3708 bfd *abfd = objfile->obfd;
3709 int i;
3710 asection *sect;
3711 struct symfile_segment_data *data;
3712
3713 data = get_symfile_segment_data (objfile->obfd);
3714 if (data == NULL)
3715 return;
3716
3717 if (data->num_segments != 1 && data->num_segments != 2)
3718 {
3719 free_symfile_segment_data (data);
3720 return;
3721 }
3722
3723 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3724 {
3725 int which = data->segment_info[i];
3726
3727 if (which == 1)
3728 {
3729 if (objfile->sect_index_text == -1)
3730 objfile->sect_index_text = sect->index;
3731
3732 if (objfile->sect_index_rodata == -1)
3733 objfile->sect_index_rodata = sect->index;
3734 }
3735 else if (which == 2)
3736 {
3737 if (objfile->sect_index_data == -1)
3738 objfile->sect_index_data = sect->index;
3739
3740 if (objfile->sect_index_bss == -1)
3741 objfile->sect_index_bss = sect->index;
3742 }
3743 }
3744
3745 free_symfile_segment_data (data);
3746 }
3747
3748 void
3749 _initialize_symfile (void)
3750 {
3751 struct cmd_list_element *c;
3752
3753 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3754 Load symbol table from executable file FILE.\n\
3755 The `file' command can also load symbol tables, as well as setting the file\n\
3756 to execute."), &cmdlist);
3757 set_cmd_completer (c, filename_completer);
3758
3759 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3760 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3761 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3762 ...]\nADDR is the starting address of the file's text.\n\
3763 The optional arguments are section-name section-address pairs and\n\
3764 should be specified if the data and bss segments are not contiguous\n\
3765 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3766 &cmdlist);
3767 set_cmd_completer (c, filename_completer);
3768
3769 c = add_cmd ("load", class_files, load_command, _("\
3770 Dynamically load FILE into the running program, and record its symbols\n\
3771 for access from GDB.\n\
3772 A load OFFSET may also be given."), &cmdlist);
3773 set_cmd_completer (c, filename_completer);
3774
3775 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3776 &symbol_reloading, _("\
3777 Set dynamic symbol table reloading multiple times in one run."), _("\
3778 Show dynamic symbol table reloading multiple times in one run."), NULL,
3779 NULL,
3780 show_symbol_reloading,
3781 &setlist, &showlist);
3782
3783 add_prefix_cmd ("overlay", class_support, overlay_command,
3784 _("Commands for debugging overlays."), &overlaylist,
3785 "overlay ", 0, &cmdlist);
3786
3787 add_com_alias ("ovly", "overlay", class_alias, 1);
3788 add_com_alias ("ov", "overlay", class_alias, 1);
3789
3790 add_cmd ("map-overlay", class_support, map_overlay_command,
3791 _("Assert that an overlay section is mapped."), &overlaylist);
3792
3793 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3794 _("Assert that an overlay section is unmapped."), &overlaylist);
3795
3796 add_cmd ("list-overlays", class_support, list_overlays_command,
3797 _("List mappings of overlay sections."), &overlaylist);
3798
3799 add_cmd ("manual", class_support, overlay_manual_command,
3800 _("Enable overlay debugging."), &overlaylist);
3801 add_cmd ("off", class_support, overlay_off_command,
3802 _("Disable overlay debugging."), &overlaylist);
3803 add_cmd ("auto", class_support, overlay_auto_command,
3804 _("Enable automatic overlay debugging."), &overlaylist);
3805 add_cmd ("load-target", class_support, overlay_load_command,
3806 _("Read the overlay mapping state from the target."), &overlaylist);
3807
3808 /* Filename extension to source language lookup table: */
3809 init_filename_language_table ();
3810 add_setshow_string_noescape_cmd ("extension-language", class_files,
3811 &ext_args, _("\
3812 Set mapping between filename extension and source language."), _("\
3813 Show mapping between filename extension and source language."), _("\
3814 Usage: set extension-language .foo bar"),
3815 set_ext_lang_command,
3816 show_ext_args,
3817 &setlist, &showlist);
3818
3819 add_info ("extensions", info_ext_lang_command,
3820 _("All filename extensions associated with a source language."));
3821
3822 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3823 &debug_file_directory, _("\
3824 Set the directories where separate debug symbols are searched for."), _("\
3825 Show the directories where separate debug symbols are searched for."), _("\
3826 Separate debug symbols are first searched for in the same\n\
3827 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3828 and lastly at the path of the directory of the binary with\n\
3829 each global debug-file-directory component prepended."),
3830 NULL,
3831 show_debug_file_directory,
3832 &setlist, &showlist);
3833 }
This page took 0.116208 seconds and 4 git commands to generate.