daily update
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcore.h"
29 #include "frame.h"
30 #include "target.h"
31 #include "value.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h" /* for write_pc */
40 #include "gdb-stabs.h"
41 #include "obstack.h"
42 #include "completer.h"
43
44 #include <sys/types.h>
45 #include <fcntl.h>
46 #include "gdb_string.h"
47 #include "gdb_stat.h"
48 #include <ctype.h>
49 #include <time.h>
50
51 #ifndef O_BINARY
52 #define O_BINARY 0
53 #endif
54
55 #ifdef HPUXHPPA
56
57 /* Some HP-UX related globals to clear when a new "main"
58 symbol file is loaded. HP-specific. */
59
60 extern int hp_som_som_object_present;
61 extern int hp_cxx_exception_support_initialized;
62 #define RESET_HP_UX_GLOBALS() do {\
63 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
64 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
65 } while (0)
66 #endif
67
68 int (*ui_load_progress_hook) (const char *section, unsigned long num);
69 void (*show_load_progress) (const char *section,
70 unsigned long section_sent,
71 unsigned long section_size,
72 unsigned long total_sent,
73 unsigned long total_size);
74 void (*pre_add_symbol_hook) (char *);
75 void (*post_add_symbol_hook) (void);
76 void (*target_new_objfile_hook) (struct objfile *);
77
78 static void clear_symtab_users_cleanup (void *ignore);
79
80 /* Global variables owned by this file */
81 int readnow_symbol_files; /* Read full symbols immediately */
82
83 struct complaint oldsyms_complaint =
84 {
85 "Replacing old symbols for `%s'", 0, 0
86 };
87
88 struct complaint empty_symtab_complaint =
89 {
90 "Empty symbol table found for `%s'", 0, 0
91 };
92
93 struct complaint unknown_option_complaint =
94 {
95 "Unknown option `%s' ignored", 0, 0
96 };
97
98 /* External variables and functions referenced. */
99
100 extern void report_transfer_performance (unsigned long, time_t, time_t);
101
102 /* Functions this file defines */
103
104 #if 0
105 static int simple_read_overlay_region_table (void);
106 static void simple_free_overlay_region_table (void);
107 #endif
108
109 static void set_initial_language (void);
110
111 static void load_command (char *, int);
112
113 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
114
115 static void add_symbol_file_command (char *, int);
116
117 static void add_shared_symbol_files_command (char *, int);
118
119 static void cashier_psymtab (struct partial_symtab *);
120
121 bfd *symfile_bfd_open (char *);
122
123 static void find_sym_fns (struct objfile *);
124
125 static void decrement_reading_symtab (void *);
126
127 static void overlay_invalidate_all (void);
128
129 static int overlay_is_mapped (struct obj_section *);
130
131 void list_overlays_command (char *, int);
132
133 void map_overlay_command (char *, int);
134
135 void unmap_overlay_command (char *, int);
136
137 static void overlay_auto_command (char *, int);
138
139 static void overlay_manual_command (char *, int);
140
141 static void overlay_off_command (char *, int);
142
143 static void overlay_load_command (char *, int);
144
145 static void overlay_command (char *, int);
146
147 static void simple_free_overlay_table (void);
148
149 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
150
151 static int simple_read_overlay_table (void);
152
153 static int simple_overlay_update_1 (struct obj_section *);
154
155 static void add_filename_language (char *ext, enum language lang);
156
157 static void set_ext_lang_command (char *args, int from_tty);
158
159 static void info_ext_lang_command (char *args, int from_tty);
160
161 static void init_filename_language_table (void);
162
163 void _initialize_symfile (void);
164
165 /* List of all available sym_fns. On gdb startup, each object file reader
166 calls add_symtab_fns() to register information on each format it is
167 prepared to read. */
168
169 static struct sym_fns *symtab_fns = NULL;
170
171 /* Flag for whether user will be reloading symbols multiple times.
172 Defaults to ON for VxWorks, otherwise OFF. */
173
174 #ifdef SYMBOL_RELOADING_DEFAULT
175 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
176 #else
177 int symbol_reloading = 0;
178 #endif
179
180 /* If non-zero, shared library symbols will be added automatically
181 when the inferior is created, new libraries are loaded, or when
182 attaching to the inferior. This is almost always what users will
183 want to have happen; but for very large programs, the startup time
184 will be excessive, and so if this is a problem, the user can clear
185 this flag and then add the shared library symbols as needed. Note
186 that there is a potential for confusion, since if the shared
187 library symbols are not loaded, commands like "info fun" will *not*
188 report all the functions that are actually present. */
189
190 int auto_solib_add = 1;
191
192 /* For systems that support it, a threshold size in megabytes. If
193 automatically adding a new library's symbol table to those already
194 known to the debugger would cause the total shared library symbol
195 size to exceed this threshhold, then the shlib's symbols are not
196 added. The threshold is ignored if the user explicitly asks for a
197 shlib to be added, such as when using the "sharedlibrary"
198 command. */
199
200 int auto_solib_limit;
201 \f
202
203 /* Since this function is called from within qsort, in an ANSI environment
204 it must conform to the prototype for qsort, which specifies that the
205 comparison function takes two "void *" pointers. */
206
207 static int
208 compare_symbols (const void *s1p, const void *s2p)
209 {
210 register struct symbol **s1, **s2;
211
212 s1 = (struct symbol **) s1p;
213 s2 = (struct symbol **) s2p;
214 return (strcmp (SYMBOL_SOURCE_NAME (*s1), SYMBOL_SOURCE_NAME (*s2)));
215 }
216
217 /*
218
219 LOCAL FUNCTION
220
221 compare_psymbols -- compare two partial symbols by name
222
223 DESCRIPTION
224
225 Given pointers to pointers to two partial symbol table entries,
226 compare them by name and return -N, 0, or +N (ala strcmp).
227 Typically used by sorting routines like qsort().
228
229 NOTES
230
231 Does direct compare of first two characters before punting
232 and passing to strcmp for longer compares. Note that the
233 original version had a bug whereby two null strings or two
234 identically named one character strings would return the
235 comparison of memory following the null byte.
236
237 */
238
239 static int
240 compare_psymbols (const void *s1p, const void *s2p)
241 {
242 register struct partial_symbol **s1, **s2;
243 register char *st1, *st2;
244
245 s1 = (struct partial_symbol **) s1p;
246 s2 = (struct partial_symbol **) s2p;
247 st1 = SYMBOL_SOURCE_NAME (*s1);
248 st2 = SYMBOL_SOURCE_NAME (*s2);
249
250
251 if ((st1[0] - st2[0]) || !st1[0])
252 {
253 return (st1[0] - st2[0]);
254 }
255 else if ((st1[1] - st2[1]) || !st1[1])
256 {
257 return (st1[1] - st2[1]);
258 }
259 else
260 {
261 return (strcmp (st1, st2));
262 }
263 }
264
265 void
266 sort_pst_symbols (struct partial_symtab *pst)
267 {
268 /* Sort the global list; don't sort the static list */
269
270 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
271 pst->n_global_syms, sizeof (struct partial_symbol *),
272 compare_psymbols);
273 }
274
275 /* Call sort_block_syms to sort alphabetically the symbols of one block. */
276
277 void
278 sort_block_syms (register struct block *b)
279 {
280 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
281 sizeof (struct symbol *), compare_symbols);
282 }
283
284 /* Call sort_symtab_syms to sort alphabetically
285 the symbols of each block of one symtab. */
286
287 void
288 sort_symtab_syms (register struct symtab *s)
289 {
290 register struct blockvector *bv;
291 int nbl;
292 int i;
293 register struct block *b;
294
295 if (s == 0)
296 return;
297 bv = BLOCKVECTOR (s);
298 nbl = BLOCKVECTOR_NBLOCKS (bv);
299 for (i = 0; i < nbl; i++)
300 {
301 b = BLOCKVECTOR_BLOCK (bv, i);
302 if (BLOCK_SHOULD_SORT (b))
303 sort_block_syms (b);
304 }
305 }
306
307 /* Make a null terminated copy of the string at PTR with SIZE characters in
308 the obstack pointed to by OBSTACKP . Returns the address of the copy.
309 Note that the string at PTR does not have to be null terminated, I.E. it
310 may be part of a larger string and we are only saving a substring. */
311
312 char *
313 obsavestring (char *ptr, int size, struct obstack *obstackp)
314 {
315 register char *p = (char *) obstack_alloc (obstackp, size + 1);
316 /* Open-coded memcpy--saves function call time. These strings are usually
317 short. FIXME: Is this really still true with a compiler that can
318 inline memcpy? */
319 {
320 register char *p1 = ptr;
321 register char *p2 = p;
322 char *end = ptr + size;
323 while (p1 != end)
324 *p2++ = *p1++;
325 }
326 p[size] = 0;
327 return p;
328 }
329
330 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
331 in the obstack pointed to by OBSTACKP. */
332
333 char *
334 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
335 const char *s3)
336 {
337 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
338 register char *val = (char *) obstack_alloc (obstackp, len);
339 strcpy (val, s1);
340 strcat (val, s2);
341 strcat (val, s3);
342 return val;
343 }
344
345 /* True if we are nested inside psymtab_to_symtab. */
346
347 int currently_reading_symtab = 0;
348
349 static void
350 decrement_reading_symtab (void *dummy)
351 {
352 currently_reading_symtab--;
353 }
354
355 /* Get the symbol table that corresponds to a partial_symtab.
356 This is fast after the first time you do it. In fact, there
357 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
358 case inline. */
359
360 struct symtab *
361 psymtab_to_symtab (register struct partial_symtab *pst)
362 {
363 /* If it's been looked up before, return it. */
364 if (pst->symtab)
365 return pst->symtab;
366
367 /* If it has not yet been read in, read it. */
368 if (!pst->readin)
369 {
370 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
371 currently_reading_symtab++;
372 (*pst->read_symtab) (pst);
373 do_cleanups (back_to);
374 }
375
376 return pst->symtab;
377 }
378
379 /* Initialize entry point information for this objfile. */
380
381 void
382 init_entry_point_info (struct objfile *objfile)
383 {
384 /* Save startup file's range of PC addresses to help blockframe.c
385 decide where the bottom of the stack is. */
386
387 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
388 {
389 /* Executable file -- record its entry point so we'll recognize
390 the startup file because it contains the entry point. */
391 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
392 }
393 else
394 {
395 /* Examination of non-executable.o files. Short-circuit this stuff. */
396 objfile->ei.entry_point = INVALID_ENTRY_POINT;
397 }
398 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
399 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
400 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
401 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
402 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
403 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
404 }
405
406 /* Get current entry point address. */
407
408 CORE_ADDR
409 entry_point_address (void)
410 {
411 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
412 }
413
414 /* Remember the lowest-addressed loadable section we've seen.
415 This function is called via bfd_map_over_sections.
416
417 In case of equal vmas, the section with the largest size becomes the
418 lowest-addressed loadable section.
419
420 If the vmas and sizes are equal, the last section is considered the
421 lowest-addressed loadable section. */
422
423 void
424 find_lowest_section (bfd *abfd, asection *sect, PTR obj)
425 {
426 asection **lowest = (asection **) obj;
427
428 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
429 return;
430 if (!*lowest)
431 *lowest = sect; /* First loadable section */
432 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
433 *lowest = sect; /* A lower loadable section */
434 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
435 && (bfd_section_size (abfd, (*lowest))
436 <= bfd_section_size (abfd, sect)))
437 *lowest = sect;
438 }
439
440
441 /* Build (allocate and populate) a section_addr_info struct from
442 an existing section table. */
443
444 extern struct section_addr_info *
445 build_section_addr_info_from_section_table (const struct section_table *start,
446 const struct section_table *end)
447 {
448 struct section_addr_info *sap;
449 const struct section_table *stp;
450 int oidx;
451
452 sap = xmalloc (sizeof (struct section_addr_info));
453 memset (sap, 0, sizeof (struct section_addr_info));
454
455 for (stp = start, oidx = 0; stp != end; stp++)
456 {
457 if (bfd_get_section_flags (stp->bfd,
458 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
459 && oidx < MAX_SECTIONS)
460 {
461 sap->other[oidx].addr = stp->addr;
462 sap->other[oidx].name
463 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
464 sap->other[oidx].sectindex = stp->the_bfd_section->index;
465 oidx++;
466 }
467 }
468
469 return sap;
470 }
471
472
473 /* Free all memory allocated by build_section_addr_info_from_section_table. */
474
475 extern void
476 free_section_addr_info (struct section_addr_info *sap)
477 {
478 int idx;
479
480 for (idx = 0; idx < MAX_SECTIONS; idx++)
481 if (sap->other[idx].name)
482 xfree (sap->other[idx].name);
483 xfree (sap);
484 }
485
486
487 /* Parse the user's idea of an offset for dynamic linking, into our idea
488 of how to represent it for fast symbol reading. This is the default
489 version of the sym_fns.sym_offsets function for symbol readers that
490 don't need to do anything special. It allocates a section_offsets table
491 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
492
493 void
494 default_symfile_offsets (struct objfile *objfile,
495 struct section_addr_info *addrs)
496 {
497 int i;
498 asection *sect = NULL;
499
500 objfile->num_sections = SECT_OFF_MAX;
501 objfile->section_offsets = (struct section_offsets *)
502 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
503 memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
504
505 /* Now calculate offsets for section that were specified by the
506 caller. */
507 for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
508 {
509 struct other_sections *osp ;
510
511 osp = &addrs->other[i] ;
512 if (osp->addr == 0)
513 continue;
514
515 /* Record all sections in offsets */
516 /* The section_offsets in the objfile are here filled in using
517 the BFD index. */
518 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
519 }
520
521 /* Remember the bfd indexes for the .text, .data, .bss and
522 .rodata sections. */
523
524 sect = bfd_get_section_by_name (objfile->obfd, ".text");
525 if (sect)
526 objfile->sect_index_text = sect->index;
527
528 sect = bfd_get_section_by_name (objfile->obfd, ".data");
529 if (sect)
530 objfile->sect_index_data = sect->index;
531
532 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
533 if (sect)
534 objfile->sect_index_bss = sect->index;
535
536 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
537 if (sect)
538 objfile->sect_index_rodata = sect->index;
539
540 }
541
542 /* Process a symbol file, as either the main file or as a dynamically
543 loaded file.
544
545 OBJFILE is where the symbols are to be read from.
546
547 ADDR is the address where the text segment was loaded, unless the
548 objfile is the main symbol file, in which case it is zero.
549
550 MAINLINE is nonzero if this is the main symbol file, or zero if
551 it's an extra symbol file such as dynamically loaded code.
552
553 VERBO is nonzero if the caller has printed a verbose message about
554 the symbol reading (and complaints can be more terse about it). */
555
556 void
557 syms_from_objfile (struct objfile *objfile, struct section_addr_info *addrs,
558 int mainline, int verbo)
559 {
560 asection *lower_sect;
561 asection *sect;
562 CORE_ADDR lower_offset;
563 struct section_addr_info local_addr;
564 struct cleanup *old_chain;
565 int i;
566
567 /* If ADDRS is NULL, initialize the local section_addr_info struct and
568 point ADDRS to it. We now establish the convention that an addr of
569 zero means no load address was specified. */
570
571 if (addrs == NULL)
572 {
573 memset (&local_addr, 0, sizeof (local_addr));
574 addrs = &local_addr;
575 }
576
577 init_entry_point_info (objfile);
578 find_sym_fns (objfile);
579
580 /* Make sure that partially constructed symbol tables will be cleaned up
581 if an error occurs during symbol reading. */
582 old_chain = make_cleanup_free_objfile (objfile);
583
584 if (mainline)
585 {
586 /* We will modify the main symbol table, make sure that all its users
587 will be cleaned up if an error occurs during symbol reading. */
588 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
589
590 /* Since no error yet, throw away the old symbol table. */
591
592 if (symfile_objfile != NULL)
593 {
594 free_objfile (symfile_objfile);
595 symfile_objfile = NULL;
596 }
597
598 /* Currently we keep symbols from the add-symbol-file command.
599 If the user wants to get rid of them, they should do "symbol-file"
600 without arguments first. Not sure this is the best behavior
601 (PR 2207). */
602
603 (*objfile->sf->sym_new_init) (objfile);
604 }
605
606 /* Convert addr into an offset rather than an absolute address.
607 We find the lowest address of a loaded segment in the objfile,
608 and assume that <addr> is where that got loaded.
609
610 We no longer warn if the lowest section is not a text segment (as
611 happens for the PA64 port. */
612 if (!mainline)
613 {
614 /* Find lowest loadable section to be used as starting point for
615 continguous sections. FIXME!! won't work without call to find
616 .text first, but this assumes text is lowest section. */
617 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
618 if (lower_sect == NULL)
619 bfd_map_over_sections (objfile->obfd, find_lowest_section,
620 (PTR) &lower_sect);
621 if (lower_sect == NULL)
622 warning ("no loadable sections found in added symbol-file %s",
623 objfile->name);
624 else
625 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
626 warning ("Lowest section in %s is %s at %s",
627 objfile->name,
628 bfd_section_name (objfile->obfd, lower_sect),
629 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
630 if (lower_sect != NULL)
631 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
632 else
633 lower_offset = 0;
634
635 /* Calculate offsets for the loadable sections.
636 FIXME! Sections must be in order of increasing loadable section
637 so that contiguous sections can use the lower-offset!!!
638
639 Adjust offsets if the segments are not contiguous.
640 If the section is contiguous, its offset should be set to
641 the offset of the highest loadable section lower than it
642 (the loadable section directly below it in memory).
643 this_offset = lower_offset = lower_addr - lower_orig_addr */
644
645 /* Calculate offsets for sections. */
646 for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
647 {
648 if (addrs->other[i].addr != 0)
649 {
650 sect = bfd_get_section_by_name (objfile->obfd, addrs->other[i].name);
651 if (sect)
652 {
653 addrs->other[i].addr -= bfd_section_vma (objfile->obfd, sect);
654 lower_offset = addrs->other[i].addr;
655 /* This is the index used by BFD. */
656 addrs->other[i].sectindex = sect->index ;
657 }
658 else
659 {
660 warning ("section %s not found in %s", addrs->other[i].name,
661 objfile->name);
662 addrs->other[i].addr = 0;
663 }
664 }
665 else
666 addrs->other[i].addr = lower_offset;
667 }
668 }
669
670 /* Initialize symbol reading routines for this objfile, allow complaints to
671 appear for this new file, and record how verbose to be, then do the
672 initial symbol reading for this file. */
673
674 (*objfile->sf->sym_init) (objfile);
675 clear_complaints (1, verbo);
676
677 (*objfile->sf->sym_offsets) (objfile, addrs);
678
679 #ifndef IBM6000_TARGET
680 /* This is a SVR4/SunOS specific hack, I think. In any event, it
681 screws RS/6000. sym_offsets should be doing this sort of thing,
682 because it knows the mapping between bfd sections and
683 section_offsets. */
684 /* This is a hack. As far as I can tell, section offsets are not
685 target dependent. They are all set to addr with a couple of
686 exceptions. The exceptions are sysvr4 shared libraries, whose
687 offsets are kept in solib structures anyway and rs6000 xcoff
688 which handles shared libraries in a completely unique way.
689
690 Section offsets are built similarly, except that they are built
691 by adding addr in all cases because there is no clear mapping
692 from section_offsets into actual sections. Note that solib.c
693 has a different algorithm for finding section offsets.
694
695 These should probably all be collapsed into some target
696 independent form of shared library support. FIXME. */
697
698 if (addrs)
699 {
700 struct obj_section *s;
701
702 /* Map section offsets in "addr" back to the object's
703 sections by comparing the section names with bfd's
704 section names. Then adjust the section address by
705 the offset. */ /* for gdb/13815 */
706
707 ALL_OBJFILE_OSECTIONS (objfile, s)
708 {
709 CORE_ADDR s_addr = 0;
710 int i;
711
712 for (i = 0;
713 !s_addr && i < MAX_SECTIONS && addrs->other[i].name;
714 i++)
715 if (strcmp (bfd_section_name (s->objfile->obfd,
716 s->the_bfd_section),
717 addrs->other[i].name) == 0)
718 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
719
720 s->addr -= s->offset;
721 s->addr += s_addr;
722 s->endaddr -= s->offset;
723 s->endaddr += s_addr;
724 s->offset += s_addr;
725 }
726 }
727 #endif /* not IBM6000_TARGET */
728
729 (*objfile->sf->sym_read) (objfile, mainline);
730
731 if (!have_partial_symbols () && !have_full_symbols ())
732 {
733 wrap_here ("");
734 printf_filtered ("(no debugging symbols found)...");
735 wrap_here ("");
736 }
737
738 /* Don't allow char * to have a typename (else would get caddr_t).
739 Ditto void *. FIXME: Check whether this is now done by all the
740 symbol readers themselves (many of them now do), and if so remove
741 it from here. */
742
743 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
744 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
745
746 /* Mark the objfile has having had initial symbol read attempted. Note
747 that this does not mean we found any symbols... */
748
749 objfile->flags |= OBJF_SYMS;
750
751 /* Discard cleanups as symbol reading was successful. */
752
753 discard_cleanups (old_chain);
754
755 /* Call this after reading in a new symbol table to give target
756 dependent code a crack at the new symbols. For instance, this
757 could be used to update the values of target-specific symbols GDB
758 needs to keep track of (such as _sigtramp, or whatever). */
759
760 TARGET_SYMFILE_POSTREAD (objfile);
761 }
762
763 /* Perform required actions after either reading in the initial
764 symbols for a new objfile, or mapping in the symbols from a reusable
765 objfile. */
766
767 void
768 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
769 {
770
771 /* If this is the main symbol file we have to clean up all users of the
772 old main symbol file. Otherwise it is sufficient to fixup all the
773 breakpoints that may have been redefined by this symbol file. */
774 if (mainline)
775 {
776 /* OK, make it the "real" symbol file. */
777 symfile_objfile = objfile;
778
779 clear_symtab_users ();
780 }
781 else
782 {
783 breakpoint_re_set ();
784 }
785
786 /* We're done reading the symbol file; finish off complaints. */
787 clear_complaints (0, verbo);
788 }
789
790 /* Process a symbol file, as either the main file or as a dynamically
791 loaded file.
792
793 NAME is the file name (which will be tilde-expanded and made
794 absolute herein) (but we don't free or modify NAME itself).
795 FROM_TTY says how verbose to be. MAINLINE specifies whether this
796 is the main symbol file, or whether it's an extra symbol file such
797 as dynamically loaded code. If !mainline, ADDR is the address
798 where the text segment was loaded.
799
800 Upon success, returns a pointer to the objfile that was added.
801 Upon failure, jumps back to command level (never returns). */
802
803 struct objfile *
804 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
805 int mainline, int flags)
806 {
807 struct objfile *objfile;
808 struct partial_symtab *psymtab;
809 bfd *abfd;
810
811 /* Open a bfd for the file, and give user a chance to burp if we'd be
812 interactively wiping out any existing symbols. */
813
814 abfd = symfile_bfd_open (name);
815
816 if ((have_full_symbols () || have_partial_symbols ())
817 && mainline
818 && from_tty
819 && !query ("Load new symbol table from \"%s\"? ", name))
820 error ("Not confirmed.");
821
822 objfile = allocate_objfile (abfd, flags);
823
824 /* If the objfile uses a mapped symbol file, and we have a psymtab for
825 it, then skip reading any symbols at this time. */
826
827 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
828 {
829 /* We mapped in an existing symbol table file that already has had
830 initial symbol reading performed, so we can skip that part. Notify
831 the user that instead of reading the symbols, they have been mapped.
832 */
833 if (from_tty || info_verbose)
834 {
835 printf_filtered ("Mapped symbols for %s...", name);
836 wrap_here ("");
837 gdb_flush (gdb_stdout);
838 }
839 init_entry_point_info (objfile);
840 find_sym_fns (objfile);
841 }
842 else
843 {
844 /* We either created a new mapped symbol table, mapped an existing
845 symbol table file which has not had initial symbol reading
846 performed, or need to read an unmapped symbol table. */
847 if (from_tty || info_verbose)
848 {
849 if (pre_add_symbol_hook)
850 pre_add_symbol_hook (name);
851 else
852 {
853 printf_filtered ("Reading symbols from %s...", name);
854 wrap_here ("");
855 gdb_flush (gdb_stdout);
856 }
857 }
858 syms_from_objfile (objfile, addrs, mainline, from_tty);
859 }
860
861 /* We now have at least a partial symbol table. Check to see if the
862 user requested that all symbols be read on initial access via either
863 the gdb startup command line or on a per symbol file basis. Expand
864 all partial symbol tables for this objfile if so. */
865
866 if ((flags & OBJF_READNOW) || readnow_symbol_files)
867 {
868 if (from_tty || info_verbose)
869 {
870 printf_filtered ("expanding to full symbols...");
871 wrap_here ("");
872 gdb_flush (gdb_stdout);
873 }
874
875 for (psymtab = objfile->psymtabs;
876 psymtab != NULL;
877 psymtab = psymtab->next)
878 {
879 psymtab_to_symtab (psymtab);
880 }
881 }
882
883 if (from_tty || info_verbose)
884 {
885 if (post_add_symbol_hook)
886 post_add_symbol_hook ();
887 else
888 {
889 printf_filtered ("done.\n");
890 gdb_flush (gdb_stdout);
891 }
892 }
893
894 new_symfile_objfile (objfile, mainline, from_tty);
895
896 if (target_new_objfile_hook)
897 target_new_objfile_hook (objfile);
898
899 return (objfile);
900 }
901
902 /* Call symbol_file_add() with default values and update whatever is
903 affected by the loading of a new main().
904 Used when the file is supplied in the gdb command line
905 and by some targets with special loading requirements.
906 The auxiliary function, symbol_file_add_main_1(), has the flags
907 argument for the switches that can only be specified in the symbol_file
908 command itself. */
909
910 void
911 symbol_file_add_main (char *args, int from_tty)
912 {
913 symbol_file_add_main_1 (args, from_tty, 0);
914 }
915
916 static void
917 symbol_file_add_main_1 (char *args, int from_tty, int flags)
918 {
919 symbol_file_add (args, from_tty, NULL, 1, flags);
920
921 #ifdef HPUXHPPA
922 RESET_HP_UX_GLOBALS ();
923 #endif
924
925 /* Getting new symbols may change our opinion about
926 what is frameless. */
927 reinit_frame_cache ();
928
929 set_initial_language ();
930 }
931
932 void
933 symbol_file_clear (int from_tty)
934 {
935 if ((have_full_symbols () || have_partial_symbols ())
936 && from_tty
937 && !query ("Discard symbol table from `%s'? ",
938 symfile_objfile->name))
939 error ("Not confirmed.");
940 free_all_objfiles ();
941
942 /* solib descriptors may have handles to objfiles. Since their
943 storage has just been released, we'd better wipe the solib
944 descriptors as well.
945 */
946 #if defined(SOLIB_RESTART)
947 SOLIB_RESTART ();
948 #endif
949
950 symfile_objfile = NULL;
951 if (from_tty)
952 printf_unfiltered ("No symbol file now.\n");
953 #ifdef HPUXHPPA
954 RESET_HP_UX_GLOBALS ();
955 #endif
956 }
957
958 /* This is the symbol-file command. Read the file, analyze its
959 symbols, and add a struct symtab to a symtab list. The syntax of
960 the command is rather bizarre--(1) buildargv implements various
961 quoting conventions which are undocumented and have little or
962 nothing in common with the way things are quoted (or not quoted)
963 elsewhere in GDB, (2) options are used, which are not generally
964 used in GDB (perhaps "set mapped on", "set readnow on" would be
965 better), (3) the order of options matters, which is contrary to GNU
966 conventions (because it is confusing and inconvenient). */
967 /* Note: ezannoni 2000-04-17. This function used to have support for
968 rombug (see remote-os9k.c). It consisted of a call to target_link()
969 (target.c) to get the address of the text segment from the target,
970 and pass that to symbol_file_add(). This is no longer supported. */
971
972 void
973 symbol_file_command (char *args, int from_tty)
974 {
975 char **argv;
976 char *name = NULL;
977 struct cleanup *cleanups;
978 int flags = OBJF_USERLOADED;
979
980 dont_repeat ();
981
982 if (args == NULL)
983 {
984 symbol_file_clear (from_tty);
985 }
986 else
987 {
988 if ((argv = buildargv (args)) == NULL)
989 {
990 nomem (0);
991 }
992 cleanups = make_cleanup_freeargv (argv);
993 while (*argv != NULL)
994 {
995 if (STREQ (*argv, "-mapped"))
996 flags |= OBJF_MAPPED;
997 else
998 if (STREQ (*argv, "-readnow"))
999 flags |= OBJF_READNOW;
1000 else
1001 if (**argv == '-')
1002 error ("unknown option `%s'", *argv);
1003 else
1004 {
1005 name = *argv;
1006
1007 symbol_file_add_main_1 (name, from_tty, flags);
1008 }
1009 argv++;
1010 }
1011
1012 if (name == NULL)
1013 {
1014 error ("no symbol file name was specified");
1015 }
1016 do_cleanups (cleanups);
1017 }
1018 }
1019
1020 /* Set the initial language.
1021
1022 A better solution would be to record the language in the psymtab when reading
1023 partial symbols, and then use it (if known) to set the language. This would
1024 be a win for formats that encode the language in an easily discoverable place,
1025 such as DWARF. For stabs, we can jump through hoops looking for specially
1026 named symbols or try to intuit the language from the specific type of stabs
1027 we find, but we can't do that until later when we read in full symbols.
1028 FIXME. */
1029
1030 static void
1031 set_initial_language (void)
1032 {
1033 struct partial_symtab *pst;
1034 enum language lang = language_unknown;
1035
1036 pst = find_main_psymtab ();
1037 if (pst != NULL)
1038 {
1039 if (pst->filename != NULL)
1040 {
1041 lang = deduce_language_from_filename (pst->filename);
1042 }
1043 if (lang == language_unknown)
1044 {
1045 /* Make C the default language */
1046 lang = language_c;
1047 }
1048 set_language (lang);
1049 expected_language = current_language; /* Don't warn the user */
1050 }
1051 }
1052
1053 /* Open file specified by NAME and hand it off to BFD for preliminary
1054 analysis. Result is a newly initialized bfd *, which includes a newly
1055 malloc'd` copy of NAME (tilde-expanded and made absolute).
1056 In case of trouble, error() is called. */
1057
1058 bfd *
1059 symfile_bfd_open (char *name)
1060 {
1061 bfd *sym_bfd;
1062 int desc;
1063 char *absolute_name;
1064
1065
1066
1067 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1068
1069 /* Look down path for it, allocate 2nd new malloc'd copy. */
1070 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1071 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1072 if (desc < 0)
1073 {
1074 char *exename = alloca (strlen (name) + 5);
1075 strcat (strcpy (exename, name), ".exe");
1076 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1077 0, &absolute_name);
1078 }
1079 #endif
1080 if (desc < 0)
1081 {
1082 make_cleanup (xfree, name);
1083 perror_with_name (name);
1084 }
1085 xfree (name); /* Free 1st new malloc'd copy */
1086 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1087 /* It'll be freed in free_objfile(). */
1088
1089 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1090 if (!sym_bfd)
1091 {
1092 close (desc);
1093 make_cleanup (xfree, name);
1094 error ("\"%s\": can't open to read symbols: %s.", name,
1095 bfd_errmsg (bfd_get_error ()));
1096 }
1097 sym_bfd->cacheable = true;
1098
1099 if (!bfd_check_format (sym_bfd, bfd_object))
1100 {
1101 /* FIXME: should be checking for errors from bfd_close (for one thing,
1102 on error it does not free all the storage associated with the
1103 bfd). */
1104 bfd_close (sym_bfd); /* This also closes desc */
1105 make_cleanup (xfree, name);
1106 error ("\"%s\": can't read symbols: %s.", name,
1107 bfd_errmsg (bfd_get_error ()));
1108 }
1109 return (sym_bfd);
1110 }
1111
1112 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1113 startup by the _initialize routine in each object file format reader,
1114 to register information about each format the the reader is prepared
1115 to handle. */
1116
1117 void
1118 add_symtab_fns (struct sym_fns *sf)
1119 {
1120 sf->next = symtab_fns;
1121 symtab_fns = sf;
1122 }
1123
1124
1125 /* Initialize to read symbols from the symbol file sym_bfd. It either
1126 returns or calls error(). The result is an initialized struct sym_fns
1127 in the objfile structure, that contains cached information about the
1128 symbol file. */
1129
1130 static void
1131 find_sym_fns (struct objfile *objfile)
1132 {
1133 struct sym_fns *sf;
1134 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1135 char *our_target = bfd_get_target (objfile->obfd);
1136
1137 /* Special kludge for apollo. See dstread.c. */
1138 if (STREQN (our_target, "apollo", 6))
1139 our_flavour = (enum bfd_flavour) -2;
1140
1141 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1142 {
1143 if (our_flavour == sf->sym_flavour)
1144 {
1145 objfile->sf = sf;
1146 return;
1147 }
1148 }
1149 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1150 bfd_get_target (objfile->obfd));
1151 }
1152 \f
1153 /* This function runs the load command of our current target. */
1154
1155 static void
1156 load_command (char *arg, int from_tty)
1157 {
1158 if (arg == NULL)
1159 arg = get_exec_file (1);
1160 target_load (arg, from_tty);
1161
1162 /* After re-loading the executable, we don't really know which
1163 overlays are mapped any more. */
1164 overlay_cache_invalid = 1;
1165 }
1166
1167 /* This version of "load" should be usable for any target. Currently
1168 it is just used for remote targets, not inftarg.c or core files,
1169 on the theory that only in that case is it useful.
1170
1171 Avoiding xmodem and the like seems like a win (a) because we don't have
1172 to worry about finding it, and (b) On VMS, fork() is very slow and so
1173 we don't want to run a subprocess. On the other hand, I'm not sure how
1174 performance compares. */
1175
1176 static int download_write_size = 512;
1177 static int validate_download = 0;
1178
1179 /* Callback service function for generic_load (bfd_map_over_sections). */
1180
1181 static void
1182 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1183 {
1184 bfd_size_type *sum = data;
1185
1186 *sum += bfd_get_section_size_before_reloc (asec);
1187 }
1188
1189 /* Opaque data for load_section_callback. */
1190 struct load_section_data {
1191 unsigned long load_offset;
1192 unsigned long write_count;
1193 unsigned long data_count;
1194 bfd_size_type total_size;
1195 };
1196
1197 /* Callback service function for generic_load (bfd_map_over_sections). */
1198
1199 static void
1200 load_section_callback (bfd *abfd, asection *asec, void *data)
1201 {
1202 struct load_section_data *args = data;
1203
1204 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1205 {
1206 bfd_size_type size = bfd_get_section_size_before_reloc (asec);
1207 if (size > 0)
1208 {
1209 char *buffer;
1210 struct cleanup *old_chain;
1211 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1212 bfd_size_type block_size;
1213 int err;
1214 const char *sect_name = bfd_get_section_name (abfd, asec);
1215 bfd_size_type sent;
1216
1217 if (download_write_size > 0 && size > download_write_size)
1218 block_size = download_write_size;
1219 else
1220 block_size = size;
1221
1222 buffer = xmalloc (size);
1223 old_chain = make_cleanup (xfree, buffer);
1224
1225 /* Is this really necessary? I guess it gives the user something
1226 to look at during a long download. */
1227 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1228 sect_name, paddr_nz (size), paddr_nz (lma));
1229
1230 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1231
1232 sent = 0;
1233 do
1234 {
1235 int len;
1236 bfd_size_type this_transfer = size - sent;
1237
1238 if (this_transfer >= block_size)
1239 this_transfer = block_size;
1240 len = target_write_memory_partial (lma, buffer,
1241 this_transfer, &err);
1242 if (err)
1243 break;
1244 if (validate_download)
1245 {
1246 /* Broken memories and broken monitors manifest
1247 themselves here when bring new computers to
1248 life. This doubles already slow downloads. */
1249 /* NOTE: cagney/1999-10-18: A more efficient
1250 implementation might add a verify_memory()
1251 method to the target vector and then use
1252 that. remote.c could implement that method
1253 using the ``qCRC'' packet. */
1254 char *check = xmalloc (len);
1255 struct cleanup *verify_cleanups =
1256 make_cleanup (xfree, check);
1257
1258 if (target_read_memory (lma, check, len) != 0)
1259 error ("Download verify read failed at 0x%s",
1260 paddr (lma));
1261 if (memcmp (buffer, check, len) != 0)
1262 error ("Download verify compare failed at 0x%s",
1263 paddr (lma));
1264 do_cleanups (verify_cleanups);
1265 }
1266 args->data_count += len;
1267 lma += len;
1268 buffer += len;
1269 args->write_count += 1;
1270 sent += len;
1271 if (quit_flag
1272 || (ui_load_progress_hook != NULL
1273 && ui_load_progress_hook (sect_name, sent)))
1274 error ("Canceled the download");
1275
1276 if (show_load_progress != NULL)
1277 show_load_progress (sect_name, sent, size,
1278 args->data_count, args->total_size);
1279 }
1280 while (sent < size);
1281
1282 if (err != 0)
1283 error ("Memory access error while loading section %s.", sect_name);
1284
1285 do_cleanups (old_chain);
1286 }
1287 }
1288 }
1289
1290 void
1291 generic_load (char *args, int from_tty)
1292 {
1293 asection *s;
1294 bfd *loadfile_bfd;
1295 time_t start_time, end_time; /* Start and end times of download */
1296 char *filename;
1297 struct cleanup *old_cleanups;
1298 char *offptr;
1299 struct load_section_data cbdata;
1300 CORE_ADDR entry;
1301
1302 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1303 cbdata.write_count = 0; /* Number of writes needed. */
1304 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1305 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1306
1307 /* Parse the input argument - the user can specify a load offset as
1308 a second argument. */
1309 filename = xmalloc (strlen (args) + 1);
1310 old_cleanups = make_cleanup (xfree, filename);
1311 strcpy (filename, args);
1312 offptr = strchr (filename, ' ');
1313 if (offptr != NULL)
1314 {
1315 char *endptr;
1316
1317 cbdata.load_offset = strtoul (offptr, &endptr, 0);
1318 if (offptr == endptr)
1319 error ("Invalid download offset:%s\n", offptr);
1320 *offptr = '\0';
1321 }
1322 else
1323 cbdata.load_offset = 0;
1324
1325 /* Open the file for loading. */
1326 loadfile_bfd = bfd_openr (filename, gnutarget);
1327 if (loadfile_bfd == NULL)
1328 {
1329 perror_with_name (filename);
1330 return;
1331 }
1332
1333 /* FIXME: should be checking for errors from bfd_close (for one thing,
1334 on error it does not free all the storage associated with the
1335 bfd). */
1336 make_cleanup_bfd_close (loadfile_bfd);
1337
1338 if (!bfd_check_format (loadfile_bfd, bfd_object))
1339 {
1340 error ("\"%s\" is not an object file: %s", filename,
1341 bfd_errmsg (bfd_get_error ()));
1342 }
1343
1344 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1345 (void *) &cbdata.total_size);
1346
1347 start_time = time (NULL);
1348
1349 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1350
1351 end_time = time (NULL);
1352
1353 entry = bfd_get_start_address (loadfile_bfd);
1354 ui_out_text (uiout, "Start address ");
1355 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1356 ui_out_text (uiout, ", load size ");
1357 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1358 ui_out_text (uiout, "\n");
1359 /* We were doing this in remote-mips.c, I suspect it is right
1360 for other targets too. */
1361 write_pc (entry);
1362
1363 /* FIXME: are we supposed to call symbol_file_add or not? According to
1364 a comment from remote-mips.c (where a call to symbol_file_add was
1365 commented out), making the call confuses GDB if more than one file is
1366 loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
1367 does. */
1368
1369 print_transfer_performance (gdb_stdout, cbdata.data_count,
1370 cbdata.write_count, end_time - start_time);
1371
1372 do_cleanups (old_cleanups);
1373 }
1374
1375 /* Report how fast the transfer went. */
1376
1377 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1378 replaced by print_transfer_performance (with a very different
1379 function signature). */
1380
1381 void
1382 report_transfer_performance (unsigned long data_count, time_t start_time,
1383 time_t end_time)
1384 {
1385 print_transfer_performance (gdb_stdout, data_count,
1386 end_time - start_time, 0);
1387 }
1388
1389 void
1390 print_transfer_performance (struct ui_file *stream,
1391 unsigned long data_count,
1392 unsigned long write_count,
1393 unsigned long time_count)
1394 {
1395 ui_out_text (uiout, "Transfer rate: ");
1396 if (time_count > 0)
1397 {
1398 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1399 (data_count * 8) / time_count);
1400 ui_out_text (uiout, " bits/sec");
1401 }
1402 else
1403 {
1404 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1405 ui_out_text (uiout, " bits in <1 sec");
1406 }
1407 if (write_count > 0)
1408 {
1409 ui_out_text (uiout, ", ");
1410 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1411 ui_out_text (uiout, " bytes/write");
1412 }
1413 ui_out_text (uiout, ".\n");
1414 }
1415
1416 /* This function allows the addition of incrementally linked object files.
1417 It does not modify any state in the target, only in the debugger. */
1418 /* Note: ezannoni 2000-04-13 This function/command used to have a
1419 special case syntax for the rombug target (Rombug is the boot
1420 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1421 rombug case, the user doesn't need to supply a text address,
1422 instead a call to target_link() (in target.c) would supply the
1423 value to use. We are now discontinuing this type of ad hoc syntax. */
1424
1425 /* ARGSUSED */
1426 static void
1427 add_symbol_file_command (char *args, int from_tty)
1428 {
1429 char *filename = NULL;
1430 int flags = OBJF_USERLOADED;
1431 char *arg;
1432 int expecting_option = 0;
1433 int section_index = 0;
1434 int argcnt = 0;
1435 int sec_num = 0;
1436 int i;
1437 int expecting_sec_name = 0;
1438 int expecting_sec_addr = 0;
1439
1440 struct
1441 {
1442 char *name;
1443 char *value;
1444 } sect_opts[SECT_OFF_MAX];
1445
1446 struct section_addr_info section_addrs;
1447 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1448
1449 dont_repeat ();
1450
1451 if (args == NULL)
1452 error ("add-symbol-file takes a file name and an address");
1453
1454 /* Make a copy of the string that we can safely write into. */
1455 args = xstrdup (args);
1456
1457 /* Ensure section_addrs is initialized */
1458 memset (&section_addrs, 0, sizeof (section_addrs));
1459
1460 while (*args != '\000')
1461 {
1462 /* Any leading spaces? */
1463 while (isspace (*args))
1464 args++;
1465
1466 /* Point arg to the beginning of the argument. */
1467 arg = args;
1468
1469 /* Move args pointer over the argument. */
1470 while ((*args != '\000') && !isspace (*args))
1471 args++;
1472
1473 /* If there are more arguments, terminate arg and
1474 proceed past it. */
1475 if (*args != '\000')
1476 *args++ = '\000';
1477
1478 /* Now process the argument. */
1479 if (argcnt == 0)
1480 {
1481 /* The first argument is the file name. */
1482 filename = tilde_expand (arg);
1483 make_cleanup (xfree, filename);
1484 }
1485 else
1486 if (argcnt == 1)
1487 {
1488 /* The second argument is always the text address at which
1489 to load the program. */
1490 sect_opts[section_index].name = ".text";
1491 sect_opts[section_index].value = arg;
1492 section_index++;
1493 }
1494 else
1495 {
1496 /* It's an option (starting with '-') or it's an argument
1497 to an option */
1498
1499 if (*arg == '-')
1500 {
1501 if (strcmp (arg, "-mapped") == 0)
1502 flags |= OBJF_MAPPED;
1503 else
1504 if (strcmp (arg, "-readnow") == 0)
1505 flags |= OBJF_READNOW;
1506 else
1507 if (strcmp (arg, "-s") == 0)
1508 {
1509 if (section_index >= SECT_OFF_MAX)
1510 error ("Too many sections specified.");
1511 expecting_sec_name = 1;
1512 expecting_sec_addr = 1;
1513 }
1514 }
1515 else
1516 {
1517 if (expecting_sec_name)
1518 {
1519 sect_opts[section_index].name = arg;
1520 expecting_sec_name = 0;
1521 }
1522 else
1523 if (expecting_sec_addr)
1524 {
1525 sect_opts[section_index].value = arg;
1526 expecting_sec_addr = 0;
1527 section_index++;
1528 }
1529 else
1530 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1531 }
1532 }
1533 argcnt++;
1534 }
1535
1536 /* Print the prompt for the query below. And save the arguments into
1537 a sect_addr_info structure to be passed around to other
1538 functions. We have to split this up into separate print
1539 statements because local_hex_string returns a local static
1540 string. */
1541
1542 printf_filtered ("add symbol table from file \"%s\" at\n", filename);
1543 for (i = 0; i < section_index; i++)
1544 {
1545 CORE_ADDR addr;
1546 char *val = sect_opts[i].value;
1547 char *sec = sect_opts[i].name;
1548
1549 val = sect_opts[i].value;
1550 if (val[0] == '0' && val[1] == 'x')
1551 addr = strtoul (val+2, NULL, 16);
1552 else
1553 addr = strtoul (val, NULL, 10);
1554
1555 /* Here we store the section offsets in the order they were
1556 entered on the command line. */
1557 section_addrs.other[sec_num].name = sec;
1558 section_addrs.other[sec_num].addr = addr;
1559 printf_filtered ("\t%s_addr = %s\n",
1560 sec,
1561 local_hex_string ((unsigned long)addr));
1562 sec_num++;
1563
1564 /* The object's sections are initialized when a
1565 call is made to build_objfile_section_table (objfile).
1566 This happens in reread_symbols.
1567 At this point, we don't know what file type this is,
1568 so we can't determine what section names are valid. */
1569 }
1570
1571 if (from_tty && (!query ("%s", "")))
1572 error ("Not confirmed.");
1573
1574 symbol_file_add (filename, from_tty, &section_addrs, 0, flags);
1575
1576 /* Getting new symbols may change our opinion about what is
1577 frameless. */
1578 reinit_frame_cache ();
1579 do_cleanups (my_cleanups);
1580 }
1581 \f
1582 static void
1583 add_shared_symbol_files_command (char *args, int from_tty)
1584 {
1585 #ifdef ADD_SHARED_SYMBOL_FILES
1586 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1587 #else
1588 error ("This command is not available in this configuration of GDB.");
1589 #endif
1590 }
1591 \f
1592 /* Re-read symbols if a symbol-file has changed. */
1593 void
1594 reread_symbols (void)
1595 {
1596 struct objfile *objfile;
1597 long new_modtime;
1598 int reread_one = 0;
1599 struct stat new_statbuf;
1600 int res;
1601
1602 /* With the addition of shared libraries, this should be modified,
1603 the load time should be saved in the partial symbol tables, since
1604 different tables may come from different source files. FIXME.
1605 This routine should then walk down each partial symbol table
1606 and see if the symbol table that it originates from has been changed */
1607
1608 for (objfile = object_files; objfile; objfile = objfile->next)
1609 {
1610 if (objfile->obfd)
1611 {
1612 #ifdef IBM6000_TARGET
1613 /* If this object is from a shared library, then you should
1614 stat on the library name, not member name. */
1615
1616 if (objfile->obfd->my_archive)
1617 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1618 else
1619 #endif
1620 res = stat (objfile->name, &new_statbuf);
1621 if (res != 0)
1622 {
1623 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1624 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1625 objfile->name);
1626 continue;
1627 }
1628 new_modtime = new_statbuf.st_mtime;
1629 if (new_modtime != objfile->mtime)
1630 {
1631 struct cleanup *old_cleanups;
1632 struct section_offsets *offsets;
1633 int num_offsets;
1634 char *obfd_filename;
1635
1636 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1637 objfile->name);
1638
1639 /* There are various functions like symbol_file_add,
1640 symfile_bfd_open, syms_from_objfile, etc., which might
1641 appear to do what we want. But they have various other
1642 effects which we *don't* want. So we just do stuff
1643 ourselves. We don't worry about mapped files (for one thing,
1644 any mapped file will be out of date). */
1645
1646 /* If we get an error, blow away this objfile (not sure if
1647 that is the correct response for things like shared
1648 libraries). */
1649 old_cleanups = make_cleanup_free_objfile (objfile);
1650 /* We need to do this whenever any symbols go away. */
1651 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1652
1653 /* Clean up any state BFD has sitting around. We don't need
1654 to close the descriptor but BFD lacks a way of closing the
1655 BFD without closing the descriptor. */
1656 obfd_filename = bfd_get_filename (objfile->obfd);
1657 if (!bfd_close (objfile->obfd))
1658 error ("Can't close BFD for %s: %s", objfile->name,
1659 bfd_errmsg (bfd_get_error ()));
1660 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1661 if (objfile->obfd == NULL)
1662 error ("Can't open %s to read symbols.", objfile->name);
1663 /* bfd_openr sets cacheable to true, which is what we want. */
1664 if (!bfd_check_format (objfile->obfd, bfd_object))
1665 error ("Can't read symbols from %s: %s.", objfile->name,
1666 bfd_errmsg (bfd_get_error ()));
1667
1668 /* Save the offsets, we will nuke them with the rest of the
1669 psymbol_obstack. */
1670 num_offsets = objfile->num_sections;
1671 offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1672 memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1673
1674 /* Nuke all the state that we will re-read. Much of the following
1675 code which sets things to NULL really is necessary to tell
1676 other parts of GDB that there is nothing currently there. */
1677
1678 /* FIXME: Do we have to free a whole linked list, or is this
1679 enough? */
1680 if (objfile->global_psymbols.list)
1681 xmfree (objfile->md, objfile->global_psymbols.list);
1682 memset (&objfile->global_psymbols, 0,
1683 sizeof (objfile->global_psymbols));
1684 if (objfile->static_psymbols.list)
1685 xmfree (objfile->md, objfile->static_psymbols.list);
1686 memset (&objfile->static_psymbols, 0,
1687 sizeof (objfile->static_psymbols));
1688
1689 /* Free the obstacks for non-reusable objfiles */
1690 free_bcache (&objfile->psymbol_cache);
1691 obstack_free (&objfile->psymbol_obstack, 0);
1692 obstack_free (&objfile->symbol_obstack, 0);
1693 obstack_free (&objfile->type_obstack, 0);
1694 objfile->sections = NULL;
1695 objfile->symtabs = NULL;
1696 objfile->psymtabs = NULL;
1697 objfile->free_psymtabs = NULL;
1698 objfile->msymbols = NULL;
1699 objfile->minimal_symbol_count = 0;
1700 memset (&objfile->msymbol_hash, 0,
1701 sizeof (objfile->msymbol_hash));
1702 memset (&objfile->msymbol_demangled_hash, 0,
1703 sizeof (objfile->msymbol_demangled_hash));
1704 objfile->fundamental_types = NULL;
1705 if (objfile->sf != NULL)
1706 {
1707 (*objfile->sf->sym_finish) (objfile);
1708 }
1709
1710 /* We never make this a mapped file. */
1711 objfile->md = NULL;
1712 /* obstack_specify_allocation also initializes the obstack so
1713 it is empty. */
1714 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
1715 xmalloc, xfree);
1716 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
1717 xmalloc, xfree);
1718 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
1719 xmalloc, xfree);
1720 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
1721 xmalloc, xfree);
1722 if (build_objfile_section_table (objfile))
1723 {
1724 error ("Can't find the file sections in `%s': %s",
1725 objfile->name, bfd_errmsg (bfd_get_error ()));
1726 }
1727
1728 /* We use the same section offsets as from last time. I'm not
1729 sure whether that is always correct for shared libraries. */
1730 objfile->section_offsets = (struct section_offsets *)
1731 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
1732 memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
1733 objfile->num_sections = num_offsets;
1734
1735 /* What the hell is sym_new_init for, anyway? The concept of
1736 distinguishing between the main file and additional files
1737 in this way seems rather dubious. */
1738 if (objfile == symfile_objfile)
1739 {
1740 (*objfile->sf->sym_new_init) (objfile);
1741 #ifdef HPUXHPPA
1742 RESET_HP_UX_GLOBALS ();
1743 #endif
1744 }
1745
1746 (*objfile->sf->sym_init) (objfile);
1747 clear_complaints (1, 1);
1748 /* The "mainline" parameter is a hideous hack; I think leaving it
1749 zero is OK since dbxread.c also does what it needs to do if
1750 objfile->global_psymbols.size is 0. */
1751 (*objfile->sf->sym_read) (objfile, 0);
1752 if (!have_partial_symbols () && !have_full_symbols ())
1753 {
1754 wrap_here ("");
1755 printf_filtered ("(no debugging symbols found)\n");
1756 wrap_here ("");
1757 }
1758 objfile->flags |= OBJF_SYMS;
1759
1760 /* We're done reading the symbol file; finish off complaints. */
1761 clear_complaints (0, 1);
1762
1763 /* Getting new symbols may change our opinion about what is
1764 frameless. */
1765
1766 reinit_frame_cache ();
1767
1768 /* Discard cleanups as symbol reading was successful. */
1769 discard_cleanups (old_cleanups);
1770
1771 /* If the mtime has changed between the time we set new_modtime
1772 and now, we *want* this to be out of date, so don't call stat
1773 again now. */
1774 objfile->mtime = new_modtime;
1775 reread_one = 1;
1776
1777 /* Call this after reading in a new symbol table to give target
1778 dependent code a crack at the new symbols. For instance, this
1779 could be used to update the values of target-specific symbols GDB
1780 needs to keep track of (such as _sigtramp, or whatever). */
1781
1782 TARGET_SYMFILE_POSTREAD (objfile);
1783 }
1784 }
1785 }
1786
1787 if (reread_one)
1788 clear_symtab_users ();
1789 }
1790 \f
1791
1792
1793 typedef struct
1794 {
1795 char *ext;
1796 enum language lang;
1797 }
1798 filename_language;
1799
1800 static filename_language *filename_language_table;
1801 static int fl_table_size, fl_table_next;
1802
1803 static void
1804 add_filename_language (char *ext, enum language lang)
1805 {
1806 if (fl_table_next >= fl_table_size)
1807 {
1808 fl_table_size += 10;
1809 filename_language_table = xrealloc (filename_language_table,
1810 fl_table_size);
1811 }
1812
1813 filename_language_table[fl_table_next].ext = xstrdup (ext);
1814 filename_language_table[fl_table_next].lang = lang;
1815 fl_table_next++;
1816 }
1817
1818 static char *ext_args;
1819
1820 static void
1821 set_ext_lang_command (char *args, int from_tty)
1822 {
1823 int i;
1824 char *cp = ext_args;
1825 enum language lang;
1826
1827 /* First arg is filename extension, starting with '.' */
1828 if (*cp != '.')
1829 error ("'%s': Filename extension must begin with '.'", ext_args);
1830
1831 /* Find end of first arg. */
1832 while (*cp && !isspace (*cp))
1833 cp++;
1834
1835 if (*cp == '\0')
1836 error ("'%s': two arguments required -- filename extension and language",
1837 ext_args);
1838
1839 /* Null-terminate first arg */
1840 *cp++ = '\0';
1841
1842 /* Find beginning of second arg, which should be a source language. */
1843 while (*cp && isspace (*cp))
1844 cp++;
1845
1846 if (*cp == '\0')
1847 error ("'%s': two arguments required -- filename extension and language",
1848 ext_args);
1849
1850 /* Lookup the language from among those we know. */
1851 lang = language_enum (cp);
1852
1853 /* Now lookup the filename extension: do we already know it? */
1854 for (i = 0; i < fl_table_next; i++)
1855 if (0 == strcmp (ext_args, filename_language_table[i].ext))
1856 break;
1857
1858 if (i >= fl_table_next)
1859 {
1860 /* new file extension */
1861 add_filename_language (ext_args, lang);
1862 }
1863 else
1864 {
1865 /* redefining a previously known filename extension */
1866
1867 /* if (from_tty) */
1868 /* query ("Really make files of type %s '%s'?", */
1869 /* ext_args, language_str (lang)); */
1870
1871 xfree (filename_language_table[i].ext);
1872 filename_language_table[i].ext = xstrdup (ext_args);
1873 filename_language_table[i].lang = lang;
1874 }
1875 }
1876
1877 static void
1878 info_ext_lang_command (char *args, int from_tty)
1879 {
1880 int i;
1881
1882 printf_filtered ("Filename extensions and the languages they represent:");
1883 printf_filtered ("\n\n");
1884 for (i = 0; i < fl_table_next; i++)
1885 printf_filtered ("\t%s\t- %s\n",
1886 filename_language_table[i].ext,
1887 language_str (filename_language_table[i].lang));
1888 }
1889
1890 static void
1891 init_filename_language_table (void)
1892 {
1893 if (fl_table_size == 0) /* protect against repetition */
1894 {
1895 fl_table_size = 20;
1896 fl_table_next = 0;
1897 filename_language_table =
1898 xmalloc (fl_table_size * sizeof (*filename_language_table));
1899 add_filename_language (".c", language_c);
1900 add_filename_language (".C", language_cplus);
1901 add_filename_language (".cc", language_cplus);
1902 add_filename_language (".cp", language_cplus);
1903 add_filename_language (".cpp", language_cplus);
1904 add_filename_language (".cxx", language_cplus);
1905 add_filename_language (".c++", language_cplus);
1906 add_filename_language (".java", language_java);
1907 add_filename_language (".class", language_java);
1908 add_filename_language (".ch", language_chill);
1909 add_filename_language (".c186", language_chill);
1910 add_filename_language (".c286", language_chill);
1911 add_filename_language (".f", language_fortran);
1912 add_filename_language (".F", language_fortran);
1913 add_filename_language (".s", language_asm);
1914 add_filename_language (".S", language_asm);
1915 add_filename_language (".pas", language_pascal);
1916 add_filename_language (".p", language_pascal);
1917 add_filename_language (".pp", language_pascal);
1918 }
1919 }
1920
1921 enum language
1922 deduce_language_from_filename (char *filename)
1923 {
1924 int i;
1925 char *cp;
1926
1927 if (filename != NULL)
1928 if ((cp = strrchr (filename, '.')) != NULL)
1929 for (i = 0; i < fl_table_next; i++)
1930 if (strcmp (cp, filename_language_table[i].ext) == 0)
1931 return filename_language_table[i].lang;
1932
1933 return language_unknown;
1934 }
1935 \f
1936 /* allocate_symtab:
1937
1938 Allocate and partly initialize a new symbol table. Return a pointer
1939 to it. error() if no space.
1940
1941 Caller must set these fields:
1942 LINETABLE(symtab)
1943 symtab->blockvector
1944 symtab->dirname
1945 symtab->free_code
1946 symtab->free_ptr
1947 possibly free_named_symtabs (symtab->filename);
1948 */
1949
1950 struct symtab *
1951 allocate_symtab (char *filename, struct objfile *objfile)
1952 {
1953 register struct symtab *symtab;
1954
1955 symtab = (struct symtab *)
1956 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
1957 memset (symtab, 0, sizeof (*symtab));
1958 symtab->filename = obsavestring (filename, strlen (filename),
1959 &objfile->symbol_obstack);
1960 symtab->fullname = NULL;
1961 symtab->language = deduce_language_from_filename (filename);
1962 symtab->debugformat = obsavestring ("unknown", 7,
1963 &objfile->symbol_obstack);
1964
1965 /* Hook it to the objfile it comes from */
1966
1967 symtab->objfile = objfile;
1968 symtab->next = objfile->symtabs;
1969 objfile->symtabs = symtab;
1970
1971 /* FIXME: This should go away. It is only defined for the Z8000,
1972 and the Z8000 definition of this macro doesn't have anything to
1973 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
1974 here for convenience. */
1975 #ifdef INIT_EXTRA_SYMTAB_INFO
1976 INIT_EXTRA_SYMTAB_INFO (symtab);
1977 #endif
1978
1979 return (symtab);
1980 }
1981
1982 struct partial_symtab *
1983 allocate_psymtab (char *filename, struct objfile *objfile)
1984 {
1985 struct partial_symtab *psymtab;
1986
1987 if (objfile->free_psymtabs)
1988 {
1989 psymtab = objfile->free_psymtabs;
1990 objfile->free_psymtabs = psymtab->next;
1991 }
1992 else
1993 psymtab = (struct partial_symtab *)
1994 obstack_alloc (&objfile->psymbol_obstack,
1995 sizeof (struct partial_symtab));
1996
1997 memset (psymtab, 0, sizeof (struct partial_symtab));
1998 psymtab->filename = obsavestring (filename, strlen (filename),
1999 &objfile->psymbol_obstack);
2000 psymtab->symtab = NULL;
2001
2002 /* Prepend it to the psymtab list for the objfile it belongs to.
2003 Psymtabs are searched in most recent inserted -> least recent
2004 inserted order. */
2005
2006 psymtab->objfile = objfile;
2007 psymtab->next = objfile->psymtabs;
2008 objfile->psymtabs = psymtab;
2009 #if 0
2010 {
2011 struct partial_symtab **prev_pst;
2012 psymtab->objfile = objfile;
2013 psymtab->next = NULL;
2014 prev_pst = &(objfile->psymtabs);
2015 while ((*prev_pst) != NULL)
2016 prev_pst = &((*prev_pst)->next);
2017 (*prev_pst) = psymtab;
2018 }
2019 #endif
2020
2021 return (psymtab);
2022 }
2023
2024 void
2025 discard_psymtab (struct partial_symtab *pst)
2026 {
2027 struct partial_symtab **prev_pst;
2028
2029 /* From dbxread.c:
2030 Empty psymtabs happen as a result of header files which don't
2031 have any symbols in them. There can be a lot of them. But this
2032 check is wrong, in that a psymtab with N_SLINE entries but
2033 nothing else is not empty, but we don't realize that. Fixing
2034 that without slowing things down might be tricky. */
2035
2036 /* First, snip it out of the psymtab chain */
2037
2038 prev_pst = &(pst->objfile->psymtabs);
2039 while ((*prev_pst) != pst)
2040 prev_pst = &((*prev_pst)->next);
2041 (*prev_pst) = pst->next;
2042
2043 /* Next, put it on a free list for recycling */
2044
2045 pst->next = pst->objfile->free_psymtabs;
2046 pst->objfile->free_psymtabs = pst;
2047 }
2048 \f
2049
2050 /* Reset all data structures in gdb which may contain references to symbol
2051 table data. */
2052
2053 void
2054 clear_symtab_users (void)
2055 {
2056 /* Someday, we should do better than this, by only blowing away
2057 the things that really need to be blown. */
2058 clear_value_history ();
2059 clear_displays ();
2060 clear_internalvars ();
2061 breakpoint_re_set ();
2062 set_default_breakpoint (0, 0, 0, 0);
2063 current_source_symtab = 0;
2064 current_source_line = 0;
2065 clear_pc_function_cache ();
2066 if (target_new_objfile_hook)
2067 target_new_objfile_hook (NULL);
2068 }
2069
2070 static void
2071 clear_symtab_users_cleanup (void *ignore)
2072 {
2073 clear_symtab_users ();
2074 }
2075
2076 /* clear_symtab_users_once:
2077
2078 This function is run after symbol reading, or from a cleanup.
2079 If an old symbol table was obsoleted, the old symbol table
2080 has been blown away, but the other GDB data structures that may
2081 reference it have not yet been cleared or re-directed. (The old
2082 symtab was zapped, and the cleanup queued, in free_named_symtab()
2083 below.)
2084
2085 This function can be queued N times as a cleanup, or called
2086 directly; it will do all the work the first time, and then will be a
2087 no-op until the next time it is queued. This works by bumping a
2088 counter at queueing time. Much later when the cleanup is run, or at
2089 the end of symbol processing (in case the cleanup is discarded), if
2090 the queued count is greater than the "done-count", we do the work
2091 and set the done-count to the queued count. If the queued count is
2092 less than or equal to the done-count, we just ignore the call. This
2093 is needed because reading a single .o file will often replace many
2094 symtabs (one per .h file, for example), and we don't want to reset
2095 the breakpoints N times in the user's face.
2096
2097 The reason we both queue a cleanup, and call it directly after symbol
2098 reading, is because the cleanup protects us in case of errors, but is
2099 discarded if symbol reading is successful. */
2100
2101 #if 0
2102 /* FIXME: As free_named_symtabs is currently a big noop this function
2103 is no longer needed. */
2104 static void clear_symtab_users_once (void);
2105
2106 static int clear_symtab_users_queued;
2107 static int clear_symtab_users_done;
2108
2109 static void
2110 clear_symtab_users_once (void)
2111 {
2112 /* Enforce once-per-`do_cleanups'-semantics */
2113 if (clear_symtab_users_queued <= clear_symtab_users_done)
2114 return;
2115 clear_symtab_users_done = clear_symtab_users_queued;
2116
2117 clear_symtab_users ();
2118 }
2119 #endif
2120
2121 /* Delete the specified psymtab, and any others that reference it. */
2122
2123 static void
2124 cashier_psymtab (struct partial_symtab *pst)
2125 {
2126 struct partial_symtab *ps, *pprev = NULL;
2127 int i;
2128
2129 /* Find its previous psymtab in the chain */
2130 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2131 {
2132 if (ps == pst)
2133 break;
2134 pprev = ps;
2135 }
2136
2137 if (ps)
2138 {
2139 /* Unhook it from the chain. */
2140 if (ps == pst->objfile->psymtabs)
2141 pst->objfile->psymtabs = ps->next;
2142 else
2143 pprev->next = ps->next;
2144
2145 /* FIXME, we can't conveniently deallocate the entries in the
2146 partial_symbol lists (global_psymbols/static_psymbols) that
2147 this psymtab points to. These just take up space until all
2148 the psymtabs are reclaimed. Ditto the dependencies list and
2149 filename, which are all in the psymbol_obstack. */
2150
2151 /* We need to cashier any psymtab that has this one as a dependency... */
2152 again:
2153 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2154 {
2155 for (i = 0; i < ps->number_of_dependencies; i++)
2156 {
2157 if (ps->dependencies[i] == pst)
2158 {
2159 cashier_psymtab (ps);
2160 goto again; /* Must restart, chain has been munged. */
2161 }
2162 }
2163 }
2164 }
2165 }
2166
2167 /* If a symtab or psymtab for filename NAME is found, free it along
2168 with any dependent breakpoints, displays, etc.
2169 Used when loading new versions of object modules with the "add-file"
2170 command. This is only called on the top-level symtab or psymtab's name;
2171 it is not called for subsidiary files such as .h files.
2172
2173 Return value is 1 if we blew away the environment, 0 if not.
2174 FIXME. The return value appears to never be used.
2175
2176 FIXME. I think this is not the best way to do this. We should
2177 work on being gentler to the environment while still cleaning up
2178 all stray pointers into the freed symtab. */
2179
2180 int
2181 free_named_symtabs (char *name)
2182 {
2183 #if 0
2184 /* FIXME: With the new method of each objfile having it's own
2185 psymtab list, this function needs serious rethinking. In particular,
2186 why was it ever necessary to toss psymtabs with specific compilation
2187 unit filenames, as opposed to all psymtabs from a particular symbol
2188 file? -- fnf
2189 Well, the answer is that some systems permit reloading of particular
2190 compilation units. We want to blow away any old info about these
2191 compilation units, regardless of which objfiles they arrived in. --gnu. */
2192
2193 register struct symtab *s;
2194 register struct symtab *prev;
2195 register struct partial_symtab *ps;
2196 struct blockvector *bv;
2197 int blewit = 0;
2198
2199 /* We only wack things if the symbol-reload switch is set. */
2200 if (!symbol_reloading)
2201 return 0;
2202
2203 /* Some symbol formats have trouble providing file names... */
2204 if (name == 0 || *name == '\0')
2205 return 0;
2206
2207 /* Look for a psymtab with the specified name. */
2208
2209 again2:
2210 for (ps = partial_symtab_list; ps; ps = ps->next)
2211 {
2212 if (STREQ (name, ps->filename))
2213 {
2214 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2215 goto again2; /* Must restart, chain has been munged */
2216 }
2217 }
2218
2219 /* Look for a symtab with the specified name. */
2220
2221 for (s = symtab_list; s; s = s->next)
2222 {
2223 if (STREQ (name, s->filename))
2224 break;
2225 prev = s;
2226 }
2227
2228 if (s)
2229 {
2230 if (s == symtab_list)
2231 symtab_list = s->next;
2232 else
2233 prev->next = s->next;
2234
2235 /* For now, queue a delete for all breakpoints, displays, etc., whether
2236 or not they depend on the symtab being freed. This should be
2237 changed so that only those data structures affected are deleted. */
2238
2239 /* But don't delete anything if the symtab is empty.
2240 This test is necessary due to a bug in "dbxread.c" that
2241 causes empty symtabs to be created for N_SO symbols that
2242 contain the pathname of the object file. (This problem
2243 has been fixed in GDB 3.9x). */
2244
2245 bv = BLOCKVECTOR (s);
2246 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2247 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2248 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2249 {
2250 complain (&oldsyms_complaint, name);
2251
2252 clear_symtab_users_queued++;
2253 make_cleanup (clear_symtab_users_once, 0);
2254 blewit = 1;
2255 }
2256 else
2257 {
2258 complain (&empty_symtab_complaint, name);
2259 }
2260
2261 free_symtab (s);
2262 }
2263 else
2264 {
2265 /* It is still possible that some breakpoints will be affected
2266 even though no symtab was found, since the file might have
2267 been compiled without debugging, and hence not be associated
2268 with a symtab. In order to handle this correctly, we would need
2269 to keep a list of text address ranges for undebuggable files.
2270 For now, we do nothing, since this is a fairly obscure case. */
2271 ;
2272 }
2273
2274 /* FIXME, what about the minimal symbol table? */
2275 return blewit;
2276 #else
2277 return (0);
2278 #endif
2279 }
2280 \f
2281 /* Allocate and partially fill a partial symtab. It will be
2282 completely filled at the end of the symbol list.
2283
2284 FILENAME is the name of the symbol-file we are reading from. */
2285
2286 struct partial_symtab *
2287 start_psymtab_common (struct objfile *objfile,
2288 struct section_offsets *section_offsets, char *filename,
2289 CORE_ADDR textlow, struct partial_symbol **global_syms,
2290 struct partial_symbol **static_syms)
2291 {
2292 struct partial_symtab *psymtab;
2293
2294 psymtab = allocate_psymtab (filename, objfile);
2295 psymtab->section_offsets = section_offsets;
2296 psymtab->textlow = textlow;
2297 psymtab->texthigh = psymtab->textlow; /* default */
2298 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2299 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2300 return (psymtab);
2301 }
2302 \f
2303 /* Add a symbol with a long value to a psymtab.
2304 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2305
2306 void
2307 add_psymbol_to_list (char *name, int namelength, namespace_enum namespace,
2308 enum address_class class,
2309 struct psymbol_allocation_list *list, long val, /* Value as a long */
2310 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2311 enum language language, struct objfile *objfile)
2312 {
2313 register struct partial_symbol *psym;
2314 char *buf = alloca (namelength + 1);
2315 /* psymbol is static so that there will be no uninitialized gaps in the
2316 structure which might contain random data, causing cache misses in
2317 bcache. */
2318 static struct partial_symbol psymbol;
2319
2320 /* Create local copy of the partial symbol */
2321 memcpy (buf, name, namelength);
2322 buf[namelength] = '\0';
2323 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2324 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2325 if (val != 0)
2326 {
2327 SYMBOL_VALUE (&psymbol) = val;
2328 }
2329 else
2330 {
2331 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2332 }
2333 SYMBOL_SECTION (&psymbol) = 0;
2334 SYMBOL_LANGUAGE (&psymbol) = language;
2335 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2336 PSYMBOL_CLASS (&psymbol) = class;
2337 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2338
2339 /* Stash the partial symbol away in the cache */
2340 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2341
2342 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2343 if (list->next >= list->list + list->size)
2344 {
2345 extend_psymbol_list (list, objfile);
2346 }
2347 *list->next++ = psym;
2348 OBJSTAT (objfile, n_psyms++);
2349 }
2350
2351 /* Add a symbol with a long value to a psymtab. This differs from
2352 * add_psymbol_to_list above in taking both a mangled and a demangled
2353 * name. */
2354
2355 void
2356 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2357 int dem_namelength, namespace_enum namespace,
2358 enum address_class class,
2359 struct psymbol_allocation_list *list, long val, /* Value as a long */
2360 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2361 enum language language,
2362 struct objfile *objfile)
2363 {
2364 register struct partial_symbol *psym;
2365 char *buf = alloca (namelength + 1);
2366 /* psymbol is static so that there will be no uninitialized gaps in the
2367 structure which might contain random data, causing cache misses in
2368 bcache. */
2369 static struct partial_symbol psymbol;
2370
2371 /* Create local copy of the partial symbol */
2372
2373 memcpy (buf, name, namelength);
2374 buf[namelength] = '\0';
2375 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2376
2377 buf = alloca (dem_namelength + 1);
2378 memcpy (buf, dem_name, dem_namelength);
2379 buf[dem_namelength] = '\0';
2380
2381 switch (language)
2382 {
2383 case language_c:
2384 case language_cplus:
2385 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2386 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2387 break;
2388 case language_chill:
2389 SYMBOL_CHILL_DEMANGLED_NAME (&psymbol) =
2390 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2391
2392 /* FIXME What should be done for the default case? Ignoring for now. */
2393 }
2394
2395 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2396 if (val != 0)
2397 {
2398 SYMBOL_VALUE (&psymbol) = val;
2399 }
2400 else
2401 {
2402 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2403 }
2404 SYMBOL_SECTION (&psymbol) = 0;
2405 SYMBOL_LANGUAGE (&psymbol) = language;
2406 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2407 PSYMBOL_CLASS (&psymbol) = class;
2408 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2409
2410 /* Stash the partial symbol away in the cache */
2411 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2412
2413 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2414 if (list->next >= list->list + list->size)
2415 {
2416 extend_psymbol_list (list, objfile);
2417 }
2418 *list->next++ = psym;
2419 OBJSTAT (objfile, n_psyms++);
2420 }
2421
2422 /* Initialize storage for partial symbols. */
2423
2424 void
2425 init_psymbol_list (struct objfile *objfile, int total_symbols)
2426 {
2427 /* Free any previously allocated psymbol lists. */
2428
2429 if (objfile->global_psymbols.list)
2430 {
2431 xmfree (objfile->md, (PTR) objfile->global_psymbols.list);
2432 }
2433 if (objfile->static_psymbols.list)
2434 {
2435 xmfree (objfile->md, (PTR) objfile->static_psymbols.list);
2436 }
2437
2438 /* Current best guess is that approximately a twentieth
2439 of the total symbols (in a debugging file) are global or static
2440 oriented symbols */
2441
2442 objfile->global_psymbols.size = total_symbols / 10;
2443 objfile->static_psymbols.size = total_symbols / 10;
2444
2445 if (objfile->global_psymbols.size > 0)
2446 {
2447 objfile->global_psymbols.next =
2448 objfile->global_psymbols.list = (struct partial_symbol **)
2449 xmmalloc (objfile->md, (objfile->global_psymbols.size
2450 * sizeof (struct partial_symbol *)));
2451 }
2452 if (objfile->static_psymbols.size > 0)
2453 {
2454 objfile->static_psymbols.next =
2455 objfile->static_psymbols.list = (struct partial_symbol **)
2456 xmmalloc (objfile->md, (objfile->static_psymbols.size
2457 * sizeof (struct partial_symbol *)));
2458 }
2459 }
2460
2461 /* OVERLAYS:
2462 The following code implements an abstraction for debugging overlay sections.
2463
2464 The target model is as follows:
2465 1) The gnu linker will permit multiple sections to be mapped into the
2466 same VMA, each with its own unique LMA (or load address).
2467 2) It is assumed that some runtime mechanism exists for mapping the
2468 sections, one by one, from the load address into the VMA address.
2469 3) This code provides a mechanism for gdb to keep track of which
2470 sections should be considered to be mapped from the VMA to the LMA.
2471 This information is used for symbol lookup, and memory read/write.
2472 For instance, if a section has been mapped then its contents
2473 should be read from the VMA, otherwise from the LMA.
2474
2475 Two levels of debugger support for overlays are available. One is
2476 "manual", in which the debugger relies on the user to tell it which
2477 overlays are currently mapped. This level of support is
2478 implemented entirely in the core debugger, and the information about
2479 whether a section is mapped is kept in the objfile->obj_section table.
2480
2481 The second level of support is "automatic", and is only available if
2482 the target-specific code provides functionality to read the target's
2483 overlay mapping table, and translate its contents for the debugger
2484 (by updating the mapped state information in the obj_section tables).
2485
2486 The interface is as follows:
2487 User commands:
2488 overlay map <name> -- tell gdb to consider this section mapped
2489 overlay unmap <name> -- tell gdb to consider this section unmapped
2490 overlay list -- list the sections that GDB thinks are mapped
2491 overlay read-target -- get the target's state of what's mapped
2492 overlay off/manual/auto -- set overlay debugging state
2493 Functional interface:
2494 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2495 section, return that section.
2496 find_pc_overlay(pc): find any overlay section that contains
2497 the pc, either in its VMA or its LMA
2498 overlay_is_mapped(sect): true if overlay is marked as mapped
2499 section_is_overlay(sect): true if section's VMA != LMA
2500 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2501 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2502 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2503 overlay_mapped_address(...): map an address from section's LMA to VMA
2504 overlay_unmapped_address(...): map an address from section's VMA to LMA
2505 symbol_overlayed_address(...): Return a "current" address for symbol:
2506 either in VMA or LMA depending on whether
2507 the symbol's section is currently mapped
2508 */
2509
2510 /* Overlay debugging state: */
2511
2512 enum overlay_debugging_state overlay_debugging = ovly_off;
2513 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2514
2515 /* Target vector for refreshing overlay mapped state */
2516 static void simple_overlay_update (struct obj_section *);
2517 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2518
2519 /* Function: section_is_overlay (SECTION)
2520 Returns true if SECTION has VMA not equal to LMA, ie.
2521 SECTION is loaded at an address different from where it will "run". */
2522
2523 int
2524 section_is_overlay (asection *section)
2525 {
2526 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2527
2528 if (overlay_debugging)
2529 if (section && section->lma != 0 &&
2530 section->vma != section->lma)
2531 return 1;
2532
2533 return 0;
2534 }
2535
2536 /* Function: overlay_invalidate_all (void)
2537 Invalidate the mapped state of all overlay sections (mark it as stale). */
2538
2539 static void
2540 overlay_invalidate_all (void)
2541 {
2542 struct objfile *objfile;
2543 struct obj_section *sect;
2544
2545 ALL_OBJSECTIONS (objfile, sect)
2546 if (section_is_overlay (sect->the_bfd_section))
2547 sect->ovly_mapped = -1;
2548 }
2549
2550 /* Function: overlay_is_mapped (SECTION)
2551 Returns true if section is an overlay, and is currently mapped.
2552 Private: public access is thru function section_is_mapped.
2553
2554 Access to the ovly_mapped flag is restricted to this function, so
2555 that we can do automatic update. If the global flag
2556 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2557 overlay_invalidate_all. If the mapped state of the particular
2558 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2559
2560 static int
2561 overlay_is_mapped (struct obj_section *osect)
2562 {
2563 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2564 return 0;
2565
2566 switch (overlay_debugging)
2567 {
2568 default:
2569 case ovly_off:
2570 return 0; /* overlay debugging off */
2571 case ovly_auto: /* overlay debugging automatic */
2572 /* Unles there is a target_overlay_update function,
2573 there's really nothing useful to do here (can't really go auto) */
2574 if (target_overlay_update)
2575 {
2576 if (overlay_cache_invalid)
2577 {
2578 overlay_invalidate_all ();
2579 overlay_cache_invalid = 0;
2580 }
2581 if (osect->ovly_mapped == -1)
2582 (*target_overlay_update) (osect);
2583 }
2584 /* fall thru to manual case */
2585 case ovly_on: /* overlay debugging manual */
2586 return osect->ovly_mapped == 1;
2587 }
2588 }
2589
2590 /* Function: section_is_mapped
2591 Returns true if section is an overlay, and is currently mapped. */
2592
2593 int
2594 section_is_mapped (asection *section)
2595 {
2596 struct objfile *objfile;
2597 struct obj_section *osect;
2598
2599 if (overlay_debugging)
2600 if (section && section_is_overlay (section))
2601 ALL_OBJSECTIONS (objfile, osect)
2602 if (osect->the_bfd_section == section)
2603 return overlay_is_mapped (osect);
2604
2605 return 0;
2606 }
2607
2608 /* Function: pc_in_unmapped_range
2609 If PC falls into the lma range of SECTION, return true, else false. */
2610
2611 CORE_ADDR
2612 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
2613 {
2614 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2615
2616 int size;
2617
2618 if (overlay_debugging)
2619 if (section && section_is_overlay (section))
2620 {
2621 size = bfd_get_section_size_before_reloc (section);
2622 if (section->lma <= pc && pc < section->lma + size)
2623 return 1;
2624 }
2625 return 0;
2626 }
2627
2628 /* Function: pc_in_mapped_range
2629 If PC falls into the vma range of SECTION, return true, else false. */
2630
2631 CORE_ADDR
2632 pc_in_mapped_range (CORE_ADDR pc, asection *section)
2633 {
2634 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2635
2636 int size;
2637
2638 if (overlay_debugging)
2639 if (section && section_is_overlay (section))
2640 {
2641 size = bfd_get_section_size_before_reloc (section);
2642 if (section->vma <= pc && pc < section->vma + size)
2643 return 1;
2644 }
2645 return 0;
2646 }
2647
2648
2649 /* Return true if the mapped ranges of sections A and B overlap, false
2650 otherwise. */
2651 int
2652 sections_overlap (asection *a, asection *b)
2653 {
2654 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2655
2656 CORE_ADDR a_start = a->vma;
2657 CORE_ADDR a_end = a->vma + bfd_get_section_size_before_reloc (a);
2658 CORE_ADDR b_start = b->vma;
2659 CORE_ADDR b_end = b->vma + bfd_get_section_size_before_reloc (b);
2660
2661 return (a_start < b_end && b_start < a_end);
2662 }
2663
2664 /* Function: overlay_unmapped_address (PC, SECTION)
2665 Returns the address corresponding to PC in the unmapped (load) range.
2666 May be the same as PC. */
2667
2668 CORE_ADDR
2669 overlay_unmapped_address (CORE_ADDR pc, asection *section)
2670 {
2671 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2672
2673 if (overlay_debugging)
2674 if (section && section_is_overlay (section) &&
2675 pc_in_mapped_range (pc, section))
2676 return pc + section->lma - section->vma;
2677
2678 return pc;
2679 }
2680
2681 /* Function: overlay_mapped_address (PC, SECTION)
2682 Returns the address corresponding to PC in the mapped (runtime) range.
2683 May be the same as PC. */
2684
2685 CORE_ADDR
2686 overlay_mapped_address (CORE_ADDR pc, asection *section)
2687 {
2688 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2689
2690 if (overlay_debugging)
2691 if (section && section_is_overlay (section) &&
2692 pc_in_unmapped_range (pc, section))
2693 return pc + section->vma - section->lma;
2694
2695 return pc;
2696 }
2697
2698
2699 /* Function: symbol_overlayed_address
2700 Return one of two addresses (relative to the VMA or to the LMA),
2701 depending on whether the section is mapped or not. */
2702
2703 CORE_ADDR
2704 symbol_overlayed_address (CORE_ADDR address, asection *section)
2705 {
2706 if (overlay_debugging)
2707 {
2708 /* If the symbol has no section, just return its regular address. */
2709 if (section == 0)
2710 return address;
2711 /* If the symbol's section is not an overlay, just return its address */
2712 if (!section_is_overlay (section))
2713 return address;
2714 /* If the symbol's section is mapped, just return its address */
2715 if (section_is_mapped (section))
2716 return address;
2717 /*
2718 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2719 * then return its LOADED address rather than its vma address!!
2720 */
2721 return overlay_unmapped_address (address, section);
2722 }
2723 return address;
2724 }
2725
2726 /* Function: find_pc_overlay (PC)
2727 Return the best-match overlay section for PC:
2728 If PC matches a mapped overlay section's VMA, return that section.
2729 Else if PC matches an unmapped section's VMA, return that section.
2730 Else if PC matches an unmapped section's LMA, return that section. */
2731
2732 asection *
2733 find_pc_overlay (CORE_ADDR pc)
2734 {
2735 struct objfile *objfile;
2736 struct obj_section *osect, *best_match = NULL;
2737
2738 if (overlay_debugging)
2739 ALL_OBJSECTIONS (objfile, osect)
2740 if (section_is_overlay (osect->the_bfd_section))
2741 {
2742 if (pc_in_mapped_range (pc, osect->the_bfd_section))
2743 {
2744 if (overlay_is_mapped (osect))
2745 return osect->the_bfd_section;
2746 else
2747 best_match = osect;
2748 }
2749 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
2750 best_match = osect;
2751 }
2752 return best_match ? best_match->the_bfd_section : NULL;
2753 }
2754
2755 /* Function: find_pc_mapped_section (PC)
2756 If PC falls into the VMA address range of an overlay section that is
2757 currently marked as MAPPED, return that section. Else return NULL. */
2758
2759 asection *
2760 find_pc_mapped_section (CORE_ADDR pc)
2761 {
2762 struct objfile *objfile;
2763 struct obj_section *osect;
2764
2765 if (overlay_debugging)
2766 ALL_OBJSECTIONS (objfile, osect)
2767 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
2768 overlay_is_mapped (osect))
2769 return osect->the_bfd_section;
2770
2771 return NULL;
2772 }
2773
2774 /* Function: list_overlays_command
2775 Print a list of mapped sections and their PC ranges */
2776
2777 void
2778 list_overlays_command (char *args, int from_tty)
2779 {
2780 int nmapped = 0;
2781 struct objfile *objfile;
2782 struct obj_section *osect;
2783
2784 if (overlay_debugging)
2785 ALL_OBJSECTIONS (objfile, osect)
2786 if (overlay_is_mapped (osect))
2787 {
2788 const char *name;
2789 bfd_vma lma, vma;
2790 int size;
2791
2792 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
2793 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2794 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2795 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
2796
2797 printf_filtered ("Section %s, loaded at ", name);
2798 print_address_numeric (lma, 1, gdb_stdout);
2799 puts_filtered (" - ");
2800 print_address_numeric (lma + size, 1, gdb_stdout);
2801 printf_filtered (", mapped at ");
2802 print_address_numeric (vma, 1, gdb_stdout);
2803 puts_filtered (" - ");
2804 print_address_numeric (vma + size, 1, gdb_stdout);
2805 puts_filtered ("\n");
2806
2807 nmapped++;
2808 }
2809 if (nmapped == 0)
2810 printf_filtered ("No sections are mapped.\n");
2811 }
2812
2813 /* Function: map_overlay_command
2814 Mark the named section as mapped (ie. residing at its VMA address). */
2815
2816 void
2817 map_overlay_command (char *args, int from_tty)
2818 {
2819 struct objfile *objfile, *objfile2;
2820 struct obj_section *sec, *sec2;
2821 asection *bfdsec;
2822
2823 if (!overlay_debugging)
2824 error ("\
2825 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2826 the 'overlay manual' command.");
2827
2828 if (args == 0 || *args == 0)
2829 error ("Argument required: name of an overlay section");
2830
2831 /* First, find a section matching the user supplied argument */
2832 ALL_OBJSECTIONS (objfile, sec)
2833 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2834 {
2835 /* Now, check to see if the section is an overlay. */
2836 bfdsec = sec->the_bfd_section;
2837 if (!section_is_overlay (bfdsec))
2838 continue; /* not an overlay section */
2839
2840 /* Mark the overlay as "mapped" */
2841 sec->ovly_mapped = 1;
2842
2843 /* Next, make a pass and unmap any sections that are
2844 overlapped by this new section: */
2845 ALL_OBJSECTIONS (objfile2, sec2)
2846 if (sec2->ovly_mapped
2847 && sec != sec2
2848 && sec->the_bfd_section != sec2->the_bfd_section
2849 && sections_overlap (sec->the_bfd_section,
2850 sec2->the_bfd_section))
2851 {
2852 if (info_verbose)
2853 printf_filtered ("Note: section %s unmapped by overlap\n",
2854 bfd_section_name (objfile->obfd,
2855 sec2->the_bfd_section));
2856 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
2857 }
2858 return;
2859 }
2860 error ("No overlay section called %s", args);
2861 }
2862
2863 /* Function: unmap_overlay_command
2864 Mark the overlay section as unmapped
2865 (ie. resident in its LMA address range, rather than the VMA range). */
2866
2867 void
2868 unmap_overlay_command (char *args, int from_tty)
2869 {
2870 struct objfile *objfile;
2871 struct obj_section *sec;
2872
2873 if (!overlay_debugging)
2874 error ("\
2875 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2876 the 'overlay manual' command.");
2877
2878 if (args == 0 || *args == 0)
2879 error ("Argument required: name of an overlay section");
2880
2881 /* First, find a section matching the user supplied argument */
2882 ALL_OBJSECTIONS (objfile, sec)
2883 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2884 {
2885 if (!sec->ovly_mapped)
2886 error ("Section %s is not mapped", args);
2887 sec->ovly_mapped = 0;
2888 return;
2889 }
2890 error ("No overlay section called %s", args);
2891 }
2892
2893 /* Function: overlay_auto_command
2894 A utility command to turn on overlay debugging.
2895 Possibly this should be done via a set/show command. */
2896
2897 static void
2898 overlay_auto_command (char *args, int from_tty)
2899 {
2900 overlay_debugging = ovly_auto;
2901 enable_overlay_breakpoints ();
2902 if (info_verbose)
2903 printf_filtered ("Automatic overlay debugging enabled.");
2904 }
2905
2906 /* Function: overlay_manual_command
2907 A utility command to turn on overlay debugging.
2908 Possibly this should be done via a set/show command. */
2909
2910 static void
2911 overlay_manual_command (char *args, int from_tty)
2912 {
2913 overlay_debugging = ovly_on;
2914 disable_overlay_breakpoints ();
2915 if (info_verbose)
2916 printf_filtered ("Overlay debugging enabled.");
2917 }
2918
2919 /* Function: overlay_off_command
2920 A utility command to turn on overlay debugging.
2921 Possibly this should be done via a set/show command. */
2922
2923 static void
2924 overlay_off_command (char *args, int from_tty)
2925 {
2926 overlay_debugging = ovly_off;
2927 disable_overlay_breakpoints ();
2928 if (info_verbose)
2929 printf_filtered ("Overlay debugging disabled.");
2930 }
2931
2932 static void
2933 overlay_load_command (char *args, int from_tty)
2934 {
2935 if (target_overlay_update)
2936 (*target_overlay_update) (NULL);
2937 else
2938 error ("This target does not know how to read its overlay state.");
2939 }
2940
2941 /* Function: overlay_command
2942 A place-holder for a mis-typed command */
2943
2944 /* Command list chain containing all defined "overlay" subcommands. */
2945 struct cmd_list_element *overlaylist;
2946
2947 static void
2948 overlay_command (char *args, int from_tty)
2949 {
2950 printf_unfiltered
2951 ("\"overlay\" must be followed by the name of an overlay command.\n");
2952 help_list (overlaylist, "overlay ", -1, gdb_stdout);
2953 }
2954
2955
2956 /* Target Overlays for the "Simplest" overlay manager:
2957
2958 This is GDB's default target overlay layer. It works with the
2959 minimal overlay manager supplied as an example by Cygnus. The
2960 entry point is via a function pointer "target_overlay_update",
2961 so targets that use a different runtime overlay manager can
2962 substitute their own overlay_update function and take over the
2963 function pointer.
2964
2965 The overlay_update function pokes around in the target's data structures
2966 to see what overlays are mapped, and updates GDB's overlay mapping with
2967 this information.
2968
2969 In this simple implementation, the target data structures are as follows:
2970 unsigned _novlys; /# number of overlay sections #/
2971 unsigned _ovly_table[_novlys][4] = {
2972 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
2973 {..., ..., ..., ...},
2974 }
2975 unsigned _novly_regions; /# number of overlay regions #/
2976 unsigned _ovly_region_table[_novly_regions][3] = {
2977 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
2978 {..., ..., ...},
2979 }
2980 These functions will attempt to update GDB's mappedness state in the
2981 symbol section table, based on the target's mappedness state.
2982
2983 To do this, we keep a cached copy of the target's _ovly_table, and
2984 attempt to detect when the cached copy is invalidated. The main
2985 entry point is "simple_overlay_update(SECT), which looks up SECT in
2986 the cached table and re-reads only the entry for that section from
2987 the target (whenever possible).
2988 */
2989
2990 /* Cached, dynamically allocated copies of the target data structures: */
2991 static unsigned (*cache_ovly_table)[4] = 0;
2992 #if 0
2993 static unsigned (*cache_ovly_region_table)[3] = 0;
2994 #endif
2995 static unsigned cache_novlys = 0;
2996 #if 0
2997 static unsigned cache_novly_regions = 0;
2998 #endif
2999 static CORE_ADDR cache_ovly_table_base = 0;
3000 #if 0
3001 static CORE_ADDR cache_ovly_region_table_base = 0;
3002 #endif
3003 enum ovly_index
3004 {
3005 VMA, SIZE, LMA, MAPPED
3006 };
3007 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3008
3009 /* Throw away the cached copy of _ovly_table */
3010 static void
3011 simple_free_overlay_table (void)
3012 {
3013 if (cache_ovly_table)
3014 xfree (cache_ovly_table);
3015 cache_novlys = 0;
3016 cache_ovly_table = NULL;
3017 cache_ovly_table_base = 0;
3018 }
3019
3020 #if 0
3021 /* Throw away the cached copy of _ovly_region_table */
3022 static void
3023 simple_free_overlay_region_table (void)
3024 {
3025 if (cache_ovly_region_table)
3026 xfree (cache_ovly_region_table);
3027 cache_novly_regions = 0;
3028 cache_ovly_region_table = NULL;
3029 cache_ovly_region_table_base = 0;
3030 }
3031 #endif
3032
3033 /* Read an array of ints from the target into a local buffer.
3034 Convert to host order. int LEN is number of ints */
3035 static void
3036 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3037 {
3038 /* FIXME (alloca): Not safe if array is very large. */
3039 char *buf = alloca (len * TARGET_LONG_BYTES);
3040 int i;
3041
3042 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3043 for (i = 0; i < len; i++)
3044 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3045 TARGET_LONG_BYTES);
3046 }
3047
3048 /* Find and grab a copy of the target _ovly_table
3049 (and _novlys, which is needed for the table's size) */
3050 static int
3051 simple_read_overlay_table (void)
3052 {
3053 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3054
3055 simple_free_overlay_table ();
3056 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3057 if (! novlys_msym)
3058 {
3059 error ("Error reading inferior's overlay table: "
3060 "couldn't find `_novlys' variable\n"
3061 "in inferior. Use `overlay manual' mode.");
3062 return 0;
3063 }
3064
3065 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3066 if (! ovly_table_msym)
3067 {
3068 error ("Error reading inferior's overlay table: couldn't find "
3069 "`_ovly_table' array\n"
3070 "in inferior. Use `overlay manual' mode.");
3071 return 0;
3072 }
3073
3074 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3075 cache_ovly_table
3076 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3077 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3078 read_target_long_array (cache_ovly_table_base,
3079 (int *) cache_ovly_table,
3080 cache_novlys * 4);
3081
3082 return 1; /* SUCCESS */
3083 }
3084
3085 #if 0
3086 /* Find and grab a copy of the target _ovly_region_table
3087 (and _novly_regions, which is needed for the table's size) */
3088 static int
3089 simple_read_overlay_region_table (void)
3090 {
3091 struct minimal_symbol *msym;
3092
3093 simple_free_overlay_region_table ();
3094 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3095 if (msym != NULL)
3096 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3097 else
3098 return 0; /* failure */
3099 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3100 if (cache_ovly_region_table != NULL)
3101 {
3102 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3103 if (msym != NULL)
3104 {
3105 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3106 read_target_long_array (cache_ovly_region_table_base,
3107 (int *) cache_ovly_region_table,
3108 cache_novly_regions * 3);
3109 }
3110 else
3111 return 0; /* failure */
3112 }
3113 else
3114 return 0; /* failure */
3115 return 1; /* SUCCESS */
3116 }
3117 #endif
3118
3119 /* Function: simple_overlay_update_1
3120 A helper function for simple_overlay_update. Assuming a cached copy
3121 of _ovly_table exists, look through it to find an entry whose vma,
3122 lma and size match those of OSECT. Re-read the entry and make sure
3123 it still matches OSECT (else the table may no longer be valid).
3124 Set OSECT's mapped state to match the entry. Return: 1 for
3125 success, 0 for failure. */
3126
3127 static int
3128 simple_overlay_update_1 (struct obj_section *osect)
3129 {
3130 int i, size;
3131 bfd *obfd = osect->objfile->obfd;
3132 asection *bsect = osect->the_bfd_section;
3133
3134 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3135 for (i = 0; i < cache_novlys; i++)
3136 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3137 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3138 /* && cache_ovly_table[i][SIZE] == size */ )
3139 {
3140 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3141 (int *) cache_ovly_table[i], 4);
3142 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3143 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3144 /* && cache_ovly_table[i][SIZE] == size */ )
3145 {
3146 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3147 return 1;
3148 }
3149 else /* Warning! Warning! Target's ovly table has changed! */
3150 return 0;
3151 }
3152 return 0;
3153 }
3154
3155 /* Function: simple_overlay_update
3156 If OSECT is NULL, then update all sections' mapped state
3157 (after re-reading the entire target _ovly_table).
3158 If OSECT is non-NULL, then try to find a matching entry in the
3159 cached ovly_table and update only OSECT's mapped state.
3160 If a cached entry can't be found or the cache isn't valid, then
3161 re-read the entire cache, and go ahead and update all sections. */
3162
3163 static void
3164 simple_overlay_update (struct obj_section *osect)
3165 {
3166 struct objfile *objfile;
3167
3168 /* Were we given an osect to look up? NULL means do all of them. */
3169 if (osect)
3170 /* Have we got a cached copy of the target's overlay table? */
3171 if (cache_ovly_table != NULL)
3172 /* Does its cached location match what's currently in the symtab? */
3173 if (cache_ovly_table_base ==
3174 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3175 /* Then go ahead and try to look up this single section in the cache */
3176 if (simple_overlay_update_1 (osect))
3177 /* Found it! We're done. */
3178 return;
3179
3180 /* Cached table no good: need to read the entire table anew.
3181 Or else we want all the sections, in which case it's actually
3182 more efficient to read the whole table in one block anyway. */
3183
3184 if (! simple_read_overlay_table ())
3185 return;
3186
3187 /* Now may as well update all sections, even if only one was requested. */
3188 ALL_OBJSECTIONS (objfile, osect)
3189 if (section_is_overlay (osect->the_bfd_section))
3190 {
3191 int i, size;
3192 bfd *obfd = osect->objfile->obfd;
3193 asection *bsect = osect->the_bfd_section;
3194
3195 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3196 for (i = 0; i < cache_novlys; i++)
3197 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3198 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3199 /* && cache_ovly_table[i][SIZE] == size */ )
3200 { /* obj_section matches i'th entry in ovly_table */
3201 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3202 break; /* finished with inner for loop: break out */
3203 }
3204 }
3205 }
3206
3207
3208 void
3209 _initialize_symfile (void)
3210 {
3211 struct cmd_list_element *c;
3212
3213 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3214 "Load symbol table from executable file FILE.\n\
3215 The `file' command can also load symbol tables, as well as setting the file\n\
3216 to execute.", &cmdlist);
3217 c->completer = filename_completer;
3218
3219 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3220 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3221 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3222 ADDR is the starting address of the file's text.\n\
3223 The optional arguments are section-name section-address pairs and\n\
3224 should be specified if the data and bss segments are not contiguous\n\
3225 with the text. SECT is a section name to be loaded at SECT_ADDR.",
3226 &cmdlist);
3227 c->completer = filename_completer;
3228
3229 c = add_cmd ("add-shared-symbol-files", class_files,
3230 add_shared_symbol_files_command,
3231 "Load the symbols from shared objects in the dynamic linker's link map.",
3232 &cmdlist);
3233 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3234 &cmdlist);
3235
3236 c = add_cmd ("load", class_files, load_command,
3237 "Dynamically load FILE into the running program, and record its symbols\n\
3238 for access from GDB.", &cmdlist);
3239 c->completer = filename_completer;
3240
3241 add_show_from_set
3242 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3243 (char *) &symbol_reloading,
3244 "Set dynamic symbol table reloading multiple times in one run.",
3245 &setlist),
3246 &showlist);
3247
3248 add_prefix_cmd ("overlay", class_support, overlay_command,
3249 "Commands for debugging overlays.", &overlaylist,
3250 "overlay ", 0, &cmdlist);
3251
3252 add_com_alias ("ovly", "overlay", class_alias, 1);
3253 add_com_alias ("ov", "overlay", class_alias, 1);
3254
3255 add_cmd ("map-overlay", class_support, map_overlay_command,
3256 "Assert that an overlay section is mapped.", &overlaylist);
3257
3258 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3259 "Assert that an overlay section is unmapped.", &overlaylist);
3260
3261 add_cmd ("list-overlays", class_support, list_overlays_command,
3262 "List mappings of overlay sections.", &overlaylist);
3263
3264 add_cmd ("manual", class_support, overlay_manual_command,
3265 "Enable overlay debugging.", &overlaylist);
3266 add_cmd ("off", class_support, overlay_off_command,
3267 "Disable overlay debugging.", &overlaylist);
3268 add_cmd ("auto", class_support, overlay_auto_command,
3269 "Enable automatic overlay debugging.", &overlaylist);
3270 add_cmd ("load-target", class_support, overlay_load_command,
3271 "Read the overlay mapping state from the target.", &overlaylist);
3272
3273 /* Filename extension to source language lookup table: */
3274 init_filename_language_table ();
3275 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3276 (char *) &ext_args,
3277 "Set mapping between filename extension and source language.\n\
3278 Usage: set extension-language .foo bar",
3279 &setlist);
3280 set_cmd_cfunc (c, set_ext_lang_command);
3281
3282 add_info ("extensions", info_ext_lang_command,
3283 "All filename extensions associated with a source language.");
3284
3285 add_show_from_set
3286 (add_set_cmd ("download-write-size", class_obscure,
3287 var_integer, (char *) &download_write_size,
3288 "Set the write size used when downloading a program.\n"
3289 "Only used when downloading a program onto a remote\n"
3290 "target. Specify zero, or a negative value, to disable\n"
3291 "blocked writes. The actual size of each transfer is also\n"
3292 "limited by the size of the target packet and the memory\n"
3293 "cache.\n",
3294 &setlist),
3295 &showlist);
3296 }
This page took 0.099672 seconds and 4 git commands to generate.