ed41b5b70fffe90930343fb8ee7b955e644892ab
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observable.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "common/byte-vector.h"
60 #include "selftest.h"
61
62 #include <sys/types.h>
63 #include <fcntl.h>
64 #include <sys/stat.h>
65 #include <ctype.h>
66 #include <chrono>
67 #include <algorithm>
68
69 #include "psymtab.h"
70
71 int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
73 void (*deprecated_show_load_progress) (const char *section,
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
77 unsigned long total_size);
78 void (*deprecated_pre_add_symbol_hook) (const char *);
79 void (*deprecated_post_add_symbol_hook) (void);
80
81 static void clear_symtab_users_cleanup (void *ignore);
82
83 /* Global variables owned by this file. */
84 int readnow_symbol_files; /* Read full symbols immediately. */
85 int readnever_symbol_files; /* Never read full symbols. */
86
87 /* Functions this file defines. */
88
89 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
90 objfile_flags flags, CORE_ADDR reloff);
91
92 static const struct sym_fns *find_sym_fns (bfd *);
93
94 static void overlay_invalidate_all (void);
95
96 static void simple_free_overlay_table (void);
97
98 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
99 enum bfd_endian);
100
101 static int simple_read_overlay_table (void);
102
103 static int simple_overlay_update_1 (struct obj_section *);
104
105 static void symfile_find_segment_sections (struct objfile *objfile);
106
107 /* List of all available sym_fns. On gdb startup, each object file reader
108 calls add_symtab_fns() to register information on each format it is
109 prepared to read. */
110
111 struct registered_sym_fns
112 {
113 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
114 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
115 {}
116
117 /* BFD flavour that we handle. */
118 enum bfd_flavour sym_flavour;
119
120 /* The "vtable" of symbol functions. */
121 const struct sym_fns *sym_fns;
122 };
123
124 static std::vector<registered_sym_fns> symtab_fns;
125
126 /* Values for "set print symbol-loading". */
127
128 const char print_symbol_loading_off[] = "off";
129 const char print_symbol_loading_brief[] = "brief";
130 const char print_symbol_loading_full[] = "full";
131 static const char *print_symbol_loading_enums[] =
132 {
133 print_symbol_loading_off,
134 print_symbol_loading_brief,
135 print_symbol_loading_full,
136 NULL
137 };
138 static const char *print_symbol_loading = print_symbol_loading_full;
139
140 /* If non-zero, shared library symbols will be added automatically
141 when the inferior is created, new libraries are loaded, or when
142 attaching to the inferior. This is almost always what users will
143 want to have happen; but for very large programs, the startup time
144 will be excessive, and so if this is a problem, the user can clear
145 this flag and then add the shared library symbols as needed. Note
146 that there is a potential for confusion, since if the shared
147 library symbols are not loaded, commands like "info fun" will *not*
148 report all the functions that are actually present. */
149
150 int auto_solib_add = 1;
151 \f
152
153 /* Return non-zero if symbol-loading messages should be printed.
154 FROM_TTY is the standard from_tty argument to gdb commands.
155 If EXEC is non-zero the messages are for the executable.
156 Otherwise, messages are for shared libraries.
157 If FULL is non-zero then the caller is printing a detailed message.
158 E.g., the message includes the shared library name.
159 Otherwise, the caller is printing a brief "summary" message. */
160
161 int
162 print_symbol_loading_p (int from_tty, int exec, int full)
163 {
164 if (!from_tty && !info_verbose)
165 return 0;
166
167 if (exec)
168 {
169 /* We don't check FULL for executables, there are few such
170 messages, therefore brief == full. */
171 return print_symbol_loading != print_symbol_loading_off;
172 }
173 if (full)
174 return print_symbol_loading == print_symbol_loading_full;
175 return print_symbol_loading == print_symbol_loading_brief;
176 }
177
178 /* True if we are reading a symbol table. */
179
180 int currently_reading_symtab = 0;
181
182 /* Increment currently_reading_symtab and return a cleanup that can be
183 used to decrement it. */
184
185 scoped_restore_tmpl<int>
186 increment_reading_symtab (void)
187 {
188 gdb_assert (currently_reading_symtab >= 0);
189 return make_scoped_restore (&currently_reading_symtab,
190 currently_reading_symtab + 1);
191 }
192
193 /* Remember the lowest-addressed loadable section we've seen.
194 This function is called via bfd_map_over_sections.
195
196 In case of equal vmas, the section with the largest size becomes the
197 lowest-addressed loadable section.
198
199 If the vmas and sizes are equal, the last section is considered the
200 lowest-addressed loadable section. */
201
202 void
203 find_lowest_section (bfd *abfd, asection *sect, void *obj)
204 {
205 asection **lowest = (asection **) obj;
206
207 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
208 return;
209 if (!*lowest)
210 *lowest = sect; /* First loadable section */
211 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
212 *lowest = sect; /* A lower loadable section */
213 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
214 && (bfd_section_size (abfd, (*lowest))
215 <= bfd_section_size (abfd, sect)))
216 *lowest = sect;
217 }
218
219 /* Build (allocate and populate) a section_addr_info struct from
220 an existing section table. */
221
222 section_addr_info
223 build_section_addr_info_from_section_table (const struct target_section *start,
224 const struct target_section *end)
225 {
226 const struct target_section *stp;
227
228 section_addr_info sap;
229
230 for (stp = start; stp != end; stp++)
231 {
232 struct bfd_section *asect = stp->the_bfd_section;
233 bfd *abfd = asect->owner;
234
235 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
236 && sap.size () < end - start)
237 sap.emplace_back (stp->addr,
238 bfd_section_name (abfd, asect),
239 gdb_bfd_section_index (abfd, asect));
240 }
241
242 return sap;
243 }
244
245 /* Create a section_addr_info from section offsets in ABFD. */
246
247 static section_addr_info
248 build_section_addr_info_from_bfd (bfd *abfd)
249 {
250 struct bfd_section *sec;
251
252 section_addr_info sap;
253 for (sec = abfd->sections; sec != NULL; sec = sec->next)
254 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
255 sap.emplace_back (bfd_get_section_vma (abfd, sec),
256 bfd_get_section_name (abfd, sec),
257 gdb_bfd_section_index (abfd, sec));
258
259 return sap;
260 }
261
262 /* Create a section_addr_info from section offsets in OBJFILE. */
263
264 section_addr_info
265 build_section_addr_info_from_objfile (const struct objfile *objfile)
266 {
267 int i;
268
269 /* Before reread_symbols gets rewritten it is not safe to call:
270 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
271 */
272 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
273 for (i = 0; i < sap.size (); i++)
274 {
275 int sectindex = sap[i].sectindex;
276
277 sap[i].addr += objfile->section_offsets->offsets[sectindex];
278 }
279 return sap;
280 }
281
282 /* Initialize OBJFILE's sect_index_* members. */
283
284 static void
285 init_objfile_sect_indices (struct objfile *objfile)
286 {
287 asection *sect;
288 int i;
289
290 sect = bfd_get_section_by_name (objfile->obfd, ".text");
291 if (sect)
292 objfile->sect_index_text = sect->index;
293
294 sect = bfd_get_section_by_name (objfile->obfd, ".data");
295 if (sect)
296 objfile->sect_index_data = sect->index;
297
298 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
299 if (sect)
300 objfile->sect_index_bss = sect->index;
301
302 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
303 if (sect)
304 objfile->sect_index_rodata = sect->index;
305
306 /* This is where things get really weird... We MUST have valid
307 indices for the various sect_index_* members or gdb will abort.
308 So if for example, there is no ".text" section, we have to
309 accomodate that. First, check for a file with the standard
310 one or two segments. */
311
312 symfile_find_segment_sections (objfile);
313
314 /* Except when explicitly adding symbol files at some address,
315 section_offsets contains nothing but zeros, so it doesn't matter
316 which slot in section_offsets the individual sect_index_* members
317 index into. So if they are all zero, it is safe to just point
318 all the currently uninitialized indices to the first slot. But
319 beware: if this is the main executable, it may be relocated
320 later, e.g. by the remote qOffsets packet, and then this will
321 be wrong! That's why we try segments first. */
322
323 for (i = 0; i < objfile->num_sections; i++)
324 {
325 if (ANOFFSET (objfile->section_offsets, i) != 0)
326 {
327 break;
328 }
329 }
330 if (i == objfile->num_sections)
331 {
332 if (objfile->sect_index_text == -1)
333 objfile->sect_index_text = 0;
334 if (objfile->sect_index_data == -1)
335 objfile->sect_index_data = 0;
336 if (objfile->sect_index_bss == -1)
337 objfile->sect_index_bss = 0;
338 if (objfile->sect_index_rodata == -1)
339 objfile->sect_index_rodata = 0;
340 }
341 }
342
343 /* The arguments to place_section. */
344
345 struct place_section_arg
346 {
347 struct section_offsets *offsets;
348 CORE_ADDR lowest;
349 };
350
351 /* Find a unique offset to use for loadable section SECT if
352 the user did not provide an offset. */
353
354 static void
355 place_section (bfd *abfd, asection *sect, void *obj)
356 {
357 struct place_section_arg *arg = (struct place_section_arg *) obj;
358 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
359 int done;
360 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
361
362 /* We are only interested in allocated sections. */
363 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
364 return;
365
366 /* If the user specified an offset, honor it. */
367 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
368 return;
369
370 /* Otherwise, let's try to find a place for the section. */
371 start_addr = (arg->lowest + align - 1) & -align;
372
373 do {
374 asection *cur_sec;
375
376 done = 1;
377
378 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
379 {
380 int indx = cur_sec->index;
381
382 /* We don't need to compare against ourself. */
383 if (cur_sec == sect)
384 continue;
385
386 /* We can only conflict with allocated sections. */
387 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
388 continue;
389
390 /* If the section offset is 0, either the section has not been placed
391 yet, or it was the lowest section placed (in which case LOWEST
392 will be past its end). */
393 if (offsets[indx] == 0)
394 continue;
395
396 /* If this section would overlap us, then we must move up. */
397 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
398 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
399 {
400 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
401 start_addr = (start_addr + align - 1) & -align;
402 done = 0;
403 break;
404 }
405
406 /* Otherwise, we appear to be OK. So far. */
407 }
408 }
409 while (!done);
410
411 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
412 arg->lowest = start_addr + bfd_get_section_size (sect);
413 }
414
415 /* Store section_addr_info as prepared (made relative and with SECTINDEX
416 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
417 entries. */
418
419 void
420 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
421 int num_sections,
422 const section_addr_info &addrs)
423 {
424 int i;
425
426 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
427
428 /* Now calculate offsets for section that were specified by the caller. */
429 for (i = 0; i < addrs.size (); i++)
430 {
431 const struct other_sections *osp;
432
433 osp = &addrs[i];
434 if (osp->sectindex == -1)
435 continue;
436
437 /* Record all sections in offsets. */
438 /* The section_offsets in the objfile are here filled in using
439 the BFD index. */
440 section_offsets->offsets[osp->sectindex] = osp->addr;
441 }
442 }
443
444 /* Transform section name S for a name comparison. prelink can split section
445 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
446 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
447 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
448 (`.sbss') section has invalid (increased) virtual address. */
449
450 static const char *
451 addr_section_name (const char *s)
452 {
453 if (strcmp (s, ".dynbss") == 0)
454 return ".bss";
455 if (strcmp (s, ".sdynbss") == 0)
456 return ".sbss";
457
458 return s;
459 }
460
461 /* std::sort comparator for addrs_section_sort. Sort entries in
462 ascending order by their (name, sectindex) pair. sectindex makes
463 the sort by name stable. */
464
465 static bool
466 addrs_section_compar (const struct other_sections *a,
467 const struct other_sections *b)
468 {
469 int retval;
470
471 retval = strcmp (addr_section_name (a->name.c_str ()),
472 addr_section_name (b->name.c_str ()));
473 if (retval != 0)
474 return retval < 0;
475
476 return a->sectindex < b->sectindex;
477 }
478
479 /* Provide sorted array of pointers to sections of ADDRS. */
480
481 static std::vector<const struct other_sections *>
482 addrs_section_sort (const section_addr_info &addrs)
483 {
484 int i;
485
486 std::vector<const struct other_sections *> array (addrs.size ());
487 for (i = 0; i < addrs.size (); i++)
488 array[i] = &addrs[i];
489
490 std::sort (array.begin (), array.end (), addrs_section_compar);
491
492 return array;
493 }
494
495 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
496 also SECTINDEXes specific to ABFD there. This function can be used to
497 rebase ADDRS to start referencing different BFD than before. */
498
499 void
500 addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
501 {
502 asection *lower_sect;
503 CORE_ADDR lower_offset;
504 int i;
505
506 /* Find lowest loadable section to be used as starting point for
507 continguous sections. */
508 lower_sect = NULL;
509 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
510 if (lower_sect == NULL)
511 {
512 warning (_("no loadable sections found in added symbol-file %s"),
513 bfd_get_filename (abfd));
514 lower_offset = 0;
515 }
516 else
517 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
518
519 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
520 in ABFD. Section names are not unique - there can be multiple sections of
521 the same name. Also the sections of the same name do not have to be
522 adjacent to each other. Some sections may be present only in one of the
523 files. Even sections present in both files do not have to be in the same
524 order.
525
526 Use stable sort by name for the sections in both files. Then linearly
527 scan both lists matching as most of the entries as possible. */
528
529 std::vector<const struct other_sections *> addrs_sorted
530 = addrs_section_sort (*addrs);
531
532 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
533 std::vector<const struct other_sections *> abfd_addrs_sorted
534 = addrs_section_sort (abfd_addrs);
535
536 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
537 ABFD_ADDRS_SORTED. */
538
539 std::vector<const struct other_sections *>
540 addrs_to_abfd_addrs (addrs->size (), nullptr);
541
542 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
543 = abfd_addrs_sorted.begin ();
544 for (const other_sections *sect : addrs_sorted)
545 {
546 const char *sect_name = addr_section_name (sect->name.c_str ());
547
548 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
549 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
550 sect_name) < 0)
551 abfd_sorted_iter++;
552
553 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
554 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
555 sect_name) == 0)
556 {
557 int index_in_addrs;
558
559 /* Make the found item directly addressable from ADDRS. */
560 index_in_addrs = sect - addrs->data ();
561 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
562 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
563
564 /* Never use the same ABFD entry twice. */
565 abfd_sorted_iter++;
566 }
567 }
568
569 /* Calculate offsets for the loadable sections.
570 FIXME! Sections must be in order of increasing loadable section
571 so that contiguous sections can use the lower-offset!!!
572
573 Adjust offsets if the segments are not contiguous.
574 If the section is contiguous, its offset should be set to
575 the offset of the highest loadable section lower than it
576 (the loadable section directly below it in memory).
577 this_offset = lower_offset = lower_addr - lower_orig_addr */
578
579 for (i = 0; i < addrs->size (); i++)
580 {
581 const struct other_sections *sect = addrs_to_abfd_addrs[i];
582
583 if (sect)
584 {
585 /* This is the index used by BFD. */
586 (*addrs)[i].sectindex = sect->sectindex;
587
588 if ((*addrs)[i].addr != 0)
589 {
590 (*addrs)[i].addr -= sect->addr;
591 lower_offset = (*addrs)[i].addr;
592 }
593 else
594 (*addrs)[i].addr = lower_offset;
595 }
596 else
597 {
598 /* addr_section_name transformation is not used for SECT_NAME. */
599 const std::string &sect_name = (*addrs)[i].name;
600
601 /* This section does not exist in ABFD, which is normally
602 unexpected and we want to issue a warning.
603
604 However, the ELF prelinker does create a few sections which are
605 marked in the main executable as loadable (they are loaded in
606 memory from the DYNAMIC segment) and yet are not present in
607 separate debug info files. This is fine, and should not cause
608 a warning. Shared libraries contain just the section
609 ".gnu.liblist" but it is not marked as loadable there. There is
610 no other way to identify them than by their name as the sections
611 created by prelink have no special flags.
612
613 For the sections `.bss' and `.sbss' see addr_section_name. */
614
615 if (!(sect_name == ".gnu.liblist"
616 || sect_name == ".gnu.conflict"
617 || (sect_name == ".bss"
618 && i > 0
619 && (*addrs)[i - 1].name == ".dynbss"
620 && addrs_to_abfd_addrs[i - 1] != NULL)
621 || (sect_name == ".sbss"
622 && i > 0
623 && (*addrs)[i - 1].name == ".sdynbss"
624 && addrs_to_abfd_addrs[i - 1] != NULL)))
625 warning (_("section %s not found in %s"), sect_name.c_str (),
626 bfd_get_filename (abfd));
627
628 (*addrs)[i].addr = 0;
629 (*addrs)[i].sectindex = -1;
630 }
631 }
632 }
633
634 /* Parse the user's idea of an offset for dynamic linking, into our idea
635 of how to represent it for fast symbol reading. This is the default
636 version of the sym_fns.sym_offsets function for symbol readers that
637 don't need to do anything special. It allocates a section_offsets table
638 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
639
640 void
641 default_symfile_offsets (struct objfile *objfile,
642 const section_addr_info &addrs)
643 {
644 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
645 objfile->section_offsets = (struct section_offsets *)
646 obstack_alloc (&objfile->objfile_obstack,
647 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
648 relative_addr_info_to_section_offsets (objfile->section_offsets,
649 objfile->num_sections, addrs);
650
651 /* For relocatable files, all loadable sections will start at zero.
652 The zero is meaningless, so try to pick arbitrary addresses such
653 that no loadable sections overlap. This algorithm is quadratic,
654 but the number of sections in a single object file is generally
655 small. */
656 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
657 {
658 struct place_section_arg arg;
659 bfd *abfd = objfile->obfd;
660 asection *cur_sec;
661
662 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
663 /* We do not expect this to happen; just skip this step if the
664 relocatable file has a section with an assigned VMA. */
665 if (bfd_section_vma (abfd, cur_sec) != 0)
666 break;
667
668 if (cur_sec == NULL)
669 {
670 CORE_ADDR *offsets = objfile->section_offsets->offsets;
671
672 /* Pick non-overlapping offsets for sections the user did not
673 place explicitly. */
674 arg.offsets = objfile->section_offsets;
675 arg.lowest = 0;
676 bfd_map_over_sections (objfile->obfd, place_section, &arg);
677
678 /* Correctly filling in the section offsets is not quite
679 enough. Relocatable files have two properties that
680 (most) shared objects do not:
681
682 - Their debug information will contain relocations. Some
683 shared libraries do also, but many do not, so this can not
684 be assumed.
685
686 - If there are multiple code sections they will be loaded
687 at different relative addresses in memory than they are
688 in the objfile, since all sections in the file will start
689 at address zero.
690
691 Because GDB has very limited ability to map from an
692 address in debug info to the correct code section,
693 it relies on adding SECT_OFF_TEXT to things which might be
694 code. If we clear all the section offsets, and set the
695 section VMAs instead, then symfile_relocate_debug_section
696 will return meaningful debug information pointing at the
697 correct sections.
698
699 GDB has too many different data structures for section
700 addresses - a bfd, objfile, and so_list all have section
701 tables, as does exec_ops. Some of these could probably
702 be eliminated. */
703
704 for (cur_sec = abfd->sections; cur_sec != NULL;
705 cur_sec = cur_sec->next)
706 {
707 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
708 continue;
709
710 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
711 exec_set_section_address (bfd_get_filename (abfd),
712 cur_sec->index,
713 offsets[cur_sec->index]);
714 offsets[cur_sec->index] = 0;
715 }
716 }
717 }
718
719 /* Remember the bfd indexes for the .text, .data, .bss and
720 .rodata sections. */
721 init_objfile_sect_indices (objfile);
722 }
723
724 /* Divide the file into segments, which are individual relocatable units.
725 This is the default version of the sym_fns.sym_segments function for
726 symbol readers that do not have an explicit representation of segments.
727 It assumes that object files do not have segments, and fully linked
728 files have a single segment. */
729
730 struct symfile_segment_data *
731 default_symfile_segments (bfd *abfd)
732 {
733 int num_sections, i;
734 asection *sect;
735 struct symfile_segment_data *data;
736 CORE_ADDR low, high;
737
738 /* Relocatable files contain enough information to position each
739 loadable section independently; they should not be relocated
740 in segments. */
741 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
742 return NULL;
743
744 /* Make sure there is at least one loadable section in the file. */
745 for (sect = abfd->sections; sect != NULL; sect = sect->next)
746 {
747 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
748 continue;
749
750 break;
751 }
752 if (sect == NULL)
753 return NULL;
754
755 low = bfd_get_section_vma (abfd, sect);
756 high = low + bfd_get_section_size (sect);
757
758 data = XCNEW (struct symfile_segment_data);
759 data->num_segments = 1;
760 data->segment_bases = XCNEW (CORE_ADDR);
761 data->segment_sizes = XCNEW (CORE_ADDR);
762
763 num_sections = bfd_count_sections (abfd);
764 data->segment_info = XCNEWVEC (int, num_sections);
765
766 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
767 {
768 CORE_ADDR vma;
769
770 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
771 continue;
772
773 vma = bfd_get_section_vma (abfd, sect);
774 if (vma < low)
775 low = vma;
776 if (vma + bfd_get_section_size (sect) > high)
777 high = vma + bfd_get_section_size (sect);
778
779 data->segment_info[i] = 1;
780 }
781
782 data->segment_bases[0] = low;
783 data->segment_sizes[0] = high - low;
784
785 return data;
786 }
787
788 /* This is a convenience function to call sym_read for OBJFILE and
789 possibly force the partial symbols to be read. */
790
791 static void
792 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
793 {
794 (*objfile->sf->sym_read) (objfile, add_flags);
795 objfile->per_bfd->minsyms_read = true;
796
797 /* find_separate_debug_file_in_section should be called only if there is
798 single binary with no existing separate debug info file. */
799 if (!objfile_has_partial_symbols (objfile)
800 && objfile->separate_debug_objfile == NULL
801 && objfile->separate_debug_objfile_backlink == NULL)
802 {
803 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
804
805 if (abfd != NULL)
806 {
807 /* find_separate_debug_file_in_section uses the same filename for the
808 virtual section-as-bfd like the bfd filename containing the
809 section. Therefore use also non-canonical name form for the same
810 file containing the section. */
811 symbol_file_add_separate (abfd.get (),
812 bfd_get_filename (abfd.get ()),
813 add_flags | SYMFILE_NOT_FILENAME, objfile);
814 }
815 }
816 if ((add_flags & SYMFILE_NO_READ) == 0)
817 require_partial_symbols (objfile, 0);
818 }
819
820 /* Initialize entry point information for this objfile. */
821
822 static void
823 init_entry_point_info (struct objfile *objfile)
824 {
825 struct entry_info *ei = &objfile->per_bfd->ei;
826
827 if (ei->initialized)
828 return;
829 ei->initialized = 1;
830
831 /* Save startup file's range of PC addresses to help blockframe.c
832 decide where the bottom of the stack is. */
833
834 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
835 {
836 /* Executable file -- record its entry point so we'll recognize
837 the startup file because it contains the entry point. */
838 ei->entry_point = bfd_get_start_address (objfile->obfd);
839 ei->entry_point_p = 1;
840 }
841 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
842 && bfd_get_start_address (objfile->obfd) != 0)
843 {
844 /* Some shared libraries may have entry points set and be
845 runnable. There's no clear way to indicate this, so just check
846 for values other than zero. */
847 ei->entry_point = bfd_get_start_address (objfile->obfd);
848 ei->entry_point_p = 1;
849 }
850 else
851 {
852 /* Examination of non-executable.o files. Short-circuit this stuff. */
853 ei->entry_point_p = 0;
854 }
855
856 if (ei->entry_point_p)
857 {
858 struct obj_section *osect;
859 CORE_ADDR entry_point = ei->entry_point;
860 int found;
861
862 /* Make certain that the address points at real code, and not a
863 function descriptor. */
864 entry_point
865 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
866 entry_point,
867 current_top_target ());
868
869 /* Remove any ISA markers, so that this matches entries in the
870 symbol table. */
871 ei->entry_point
872 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
873
874 found = 0;
875 ALL_OBJFILE_OSECTIONS (objfile, osect)
876 {
877 struct bfd_section *sect = osect->the_bfd_section;
878
879 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
880 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
881 + bfd_get_section_size (sect)))
882 {
883 ei->the_bfd_section_index
884 = gdb_bfd_section_index (objfile->obfd, sect);
885 found = 1;
886 break;
887 }
888 }
889
890 if (!found)
891 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
892 }
893 }
894
895 /* Process a symbol file, as either the main file or as a dynamically
896 loaded file.
897
898 This function does not set the OBJFILE's entry-point info.
899
900 OBJFILE is where the symbols are to be read from.
901
902 ADDRS is the list of section load addresses. If the user has given
903 an 'add-symbol-file' command, then this is the list of offsets and
904 addresses he or she provided as arguments to the command; or, if
905 we're handling a shared library, these are the actual addresses the
906 sections are loaded at, according to the inferior's dynamic linker
907 (as gleaned by GDB's shared library code). We convert each address
908 into an offset from the section VMA's as it appears in the object
909 file, and then call the file's sym_offsets function to convert this
910 into a format-specific offset table --- a `struct section_offsets'.
911 The sectindex field is used to control the ordering of sections
912 with the same name. Upon return, it is updated to contain the
913 correspondig BFD section index, or -1 if the section was not found.
914
915 ADD_FLAGS encodes verbosity level, whether this is main symbol or
916 an extra symbol file such as dynamically loaded code, and wether
917 breakpoint reset should be deferred. */
918
919 static void
920 syms_from_objfile_1 (struct objfile *objfile,
921 section_addr_info *addrs,
922 symfile_add_flags add_flags)
923 {
924 section_addr_info local_addr;
925 struct cleanup *old_chain;
926 const int mainline = add_flags & SYMFILE_MAINLINE;
927
928 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
929
930 if (objfile->sf == NULL)
931 {
932 /* No symbols to load, but we still need to make sure
933 that the section_offsets table is allocated. */
934 int num_sections = gdb_bfd_count_sections (objfile->obfd);
935 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
936
937 objfile->num_sections = num_sections;
938 objfile->section_offsets
939 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
940 size);
941 memset (objfile->section_offsets, 0, size);
942 return;
943 }
944
945 /* Make sure that partially constructed symbol tables will be cleaned up
946 if an error occurs during symbol reading. */
947 old_chain = make_cleanup (null_cleanup, NULL);
948 std::unique_ptr<struct objfile> objfile_holder (objfile);
949
950 /* If ADDRS is NULL, put together a dummy address list.
951 We now establish the convention that an addr of zero means
952 no load address was specified. */
953 if (! addrs)
954 addrs = &local_addr;
955
956 if (mainline)
957 {
958 /* We will modify the main symbol table, make sure that all its users
959 will be cleaned up if an error occurs during symbol reading. */
960 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
961
962 /* Since no error yet, throw away the old symbol table. */
963
964 if (symfile_objfile != NULL)
965 {
966 delete symfile_objfile;
967 gdb_assert (symfile_objfile == NULL);
968 }
969
970 /* Currently we keep symbols from the add-symbol-file command.
971 If the user wants to get rid of them, they should do "symbol-file"
972 without arguments first. Not sure this is the best behavior
973 (PR 2207). */
974
975 (*objfile->sf->sym_new_init) (objfile);
976 }
977
978 /* Convert addr into an offset rather than an absolute address.
979 We find the lowest address of a loaded segment in the objfile,
980 and assume that <addr> is where that got loaded.
981
982 We no longer warn if the lowest section is not a text segment (as
983 happens for the PA64 port. */
984 if (addrs->size () > 0)
985 addr_info_make_relative (addrs, objfile->obfd);
986
987 /* Initialize symbol reading routines for this objfile, allow complaints to
988 appear for this new file, and record how verbose to be, then do the
989 initial symbol reading for this file. */
990
991 (*objfile->sf->sym_init) (objfile);
992 clear_complaints (1);
993
994 (*objfile->sf->sym_offsets) (objfile, *addrs);
995
996 read_symbols (objfile, add_flags);
997
998 /* Discard cleanups as symbol reading was successful. */
999
1000 objfile_holder.release ();
1001 discard_cleanups (old_chain);
1002 }
1003
1004 /* Same as syms_from_objfile_1, but also initializes the objfile
1005 entry-point info. */
1006
1007 static void
1008 syms_from_objfile (struct objfile *objfile,
1009 section_addr_info *addrs,
1010 symfile_add_flags add_flags)
1011 {
1012 syms_from_objfile_1 (objfile, addrs, add_flags);
1013 init_entry_point_info (objfile);
1014 }
1015
1016 /* Perform required actions after either reading in the initial
1017 symbols for a new objfile, or mapping in the symbols from a reusable
1018 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1019
1020 static void
1021 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1022 {
1023 /* If this is the main symbol file we have to clean up all users of the
1024 old main symbol file. Otherwise it is sufficient to fixup all the
1025 breakpoints that may have been redefined by this symbol file. */
1026 if (add_flags & SYMFILE_MAINLINE)
1027 {
1028 /* OK, make it the "real" symbol file. */
1029 symfile_objfile = objfile;
1030
1031 clear_symtab_users (add_flags);
1032 }
1033 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1034 {
1035 breakpoint_re_set ();
1036 }
1037
1038 /* We're done reading the symbol file; finish off complaints. */
1039 clear_complaints (0);
1040 }
1041
1042 /* Process a symbol file, as either the main file or as a dynamically
1043 loaded file.
1044
1045 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1046 A new reference is acquired by this function.
1047
1048 For NAME description see the objfile constructor.
1049
1050 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1051 extra, such as dynamically loaded code, and what to do with breakpoins.
1052
1053 ADDRS is as described for syms_from_objfile_1, above.
1054 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1055
1056 PARENT is the original objfile if ABFD is a separate debug info file.
1057 Otherwise PARENT is NULL.
1058
1059 Upon success, returns a pointer to the objfile that was added.
1060 Upon failure, jumps back to command level (never returns). */
1061
1062 static struct objfile *
1063 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1064 symfile_add_flags add_flags,
1065 section_addr_info *addrs,
1066 objfile_flags flags, struct objfile *parent)
1067 {
1068 struct objfile *objfile;
1069 const int from_tty = add_flags & SYMFILE_VERBOSE;
1070 const int mainline = add_flags & SYMFILE_MAINLINE;
1071 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1072 && (readnow_symbol_files
1073 || (add_flags & SYMFILE_NO_READ) == 0));
1074
1075 if (readnow_symbol_files)
1076 {
1077 flags |= OBJF_READNOW;
1078 add_flags &= ~SYMFILE_NO_READ;
1079 }
1080 else if (readnever_symbol_files
1081 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1082 {
1083 flags |= OBJF_READNEVER;
1084 add_flags |= SYMFILE_NO_READ;
1085 }
1086 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1087 flags |= OBJF_NOT_FILENAME;
1088
1089 /* Give user a chance to burp if we'd be
1090 interactively wiping out any existing symbols. */
1091
1092 if ((have_full_symbols () || have_partial_symbols ())
1093 && mainline
1094 && from_tty
1095 && !query (_("Load new symbol table from \"%s\"? "), name))
1096 error (_("Not confirmed."));
1097
1098 if (mainline)
1099 flags |= OBJF_MAINLINE;
1100 objfile = new struct objfile (abfd, name, flags);
1101
1102 if (parent)
1103 add_separate_debug_objfile (objfile, parent);
1104
1105 /* We either created a new mapped symbol table, mapped an existing
1106 symbol table file which has not had initial symbol reading
1107 performed, or need to read an unmapped symbol table. */
1108 if (should_print)
1109 {
1110 if (deprecated_pre_add_symbol_hook)
1111 deprecated_pre_add_symbol_hook (name);
1112 else
1113 printf_filtered (_("Reading symbols from %s...\n"), name);
1114 }
1115 syms_from_objfile (objfile, addrs, add_flags);
1116
1117 /* We now have at least a partial symbol table. Check to see if the
1118 user requested that all symbols be read on initial access via either
1119 the gdb startup command line or on a per symbol file basis. Expand
1120 all partial symbol tables for this objfile if so. */
1121
1122 if ((flags & OBJF_READNOW))
1123 {
1124 if (should_print)
1125 printf_filtered (_("Expanding full symbols from %s...\n"), name);
1126
1127 if (objfile->sf)
1128 objfile->sf->qf->expand_all_symtabs (objfile);
1129 }
1130
1131 if (should_print && !objfile_has_symbols (objfile))
1132 printf_filtered (_("(No debugging symbols found in %s)\n"), name);
1133
1134 if (should_print)
1135 {
1136 if (deprecated_post_add_symbol_hook)
1137 deprecated_post_add_symbol_hook ();
1138 }
1139
1140 /* We print some messages regardless of whether 'from_tty ||
1141 info_verbose' is true, so make sure they go out at the right
1142 time. */
1143 gdb_flush (gdb_stdout);
1144
1145 if (objfile->sf == NULL)
1146 {
1147 gdb::observers::new_objfile.notify (objfile);
1148 return objfile; /* No symbols. */
1149 }
1150
1151 finish_new_objfile (objfile, add_flags);
1152
1153 gdb::observers::new_objfile.notify (objfile);
1154
1155 bfd_cache_close_all ();
1156 return (objfile);
1157 }
1158
1159 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1160 see the objfile constructor. */
1161
1162 void
1163 symbol_file_add_separate (bfd *bfd, const char *name,
1164 symfile_add_flags symfile_flags,
1165 struct objfile *objfile)
1166 {
1167 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1168 because sections of BFD may not match sections of OBJFILE and because
1169 vma may have been modified by tools such as prelink. */
1170 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
1171
1172 symbol_file_add_with_addrs
1173 (bfd, name, symfile_flags, &sap,
1174 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1175 | OBJF_USERLOADED),
1176 objfile);
1177 }
1178
1179 /* Process the symbol file ABFD, as either the main file or as a
1180 dynamically loaded file.
1181 See symbol_file_add_with_addrs's comments for details. */
1182
1183 struct objfile *
1184 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1185 symfile_add_flags add_flags,
1186 section_addr_info *addrs,
1187 objfile_flags flags, struct objfile *parent)
1188 {
1189 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1190 parent);
1191 }
1192
1193 /* Process a symbol file, as either the main file or as a dynamically
1194 loaded file. See symbol_file_add_with_addrs's comments for details. */
1195
1196 struct objfile *
1197 symbol_file_add (const char *name, symfile_add_flags add_flags,
1198 section_addr_info *addrs, objfile_flags flags)
1199 {
1200 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1201
1202 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1203 flags, NULL);
1204 }
1205
1206 /* Call symbol_file_add() with default values and update whatever is
1207 affected by the loading of a new main().
1208 Used when the file is supplied in the gdb command line
1209 and by some targets with special loading requirements.
1210 The auxiliary function, symbol_file_add_main_1(), has the flags
1211 argument for the switches that can only be specified in the symbol_file
1212 command itself. */
1213
1214 void
1215 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1216 {
1217 symbol_file_add_main_1 (args, add_flags, 0, 0);
1218 }
1219
1220 static void
1221 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1222 objfile_flags flags, CORE_ADDR reloff)
1223 {
1224 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1225
1226 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1227 if (reloff != 0)
1228 objfile_rebase (objfile, reloff);
1229
1230 /* Getting new symbols may change our opinion about
1231 what is frameless. */
1232 reinit_frame_cache ();
1233
1234 if ((add_flags & SYMFILE_NO_READ) == 0)
1235 set_initial_language ();
1236 }
1237
1238 void
1239 symbol_file_clear (int from_tty)
1240 {
1241 if ((have_full_symbols () || have_partial_symbols ())
1242 && from_tty
1243 && (symfile_objfile
1244 ? !query (_("Discard symbol table from `%s'? "),
1245 objfile_name (symfile_objfile))
1246 : !query (_("Discard symbol table? "))))
1247 error (_("Not confirmed."));
1248
1249 /* solib descriptors may have handles to objfiles. Wipe them before their
1250 objfiles get stale by free_all_objfiles. */
1251 no_shared_libraries (NULL, from_tty);
1252
1253 free_all_objfiles ();
1254
1255 gdb_assert (symfile_objfile == NULL);
1256 if (from_tty)
1257 printf_filtered (_("No symbol file now.\n"));
1258 }
1259
1260 /* See symfile.h. */
1261
1262 int separate_debug_file_debug = 0;
1263
1264 static int
1265 separate_debug_file_exists (const std::string &name, unsigned long crc,
1266 struct objfile *parent_objfile)
1267 {
1268 unsigned long file_crc;
1269 int file_crc_p;
1270 struct stat parent_stat, abfd_stat;
1271 int verified_as_different;
1272
1273 /* Find a separate debug info file as if symbols would be present in
1274 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1275 section can contain just the basename of PARENT_OBJFILE without any
1276 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1277 the separate debug infos with the same basename can exist. */
1278
1279 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1280 return 0;
1281
1282 if (separate_debug_file_debug)
1283 printf_filtered (_(" Trying %s\n"), name.c_str ());
1284
1285 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
1286
1287 if (abfd == NULL)
1288 return 0;
1289
1290 /* Verify symlinks were not the cause of filename_cmp name difference above.
1291
1292 Some operating systems, e.g. Windows, do not provide a meaningful
1293 st_ino; they always set it to zero. (Windows does provide a
1294 meaningful st_dev.) Files accessed from gdbservers that do not
1295 support the vFile:fstat packet will also have st_ino set to zero.
1296 Do not indicate a duplicate library in either case. While there
1297 is no guarantee that a system that provides meaningful inode
1298 numbers will never set st_ino to zero, this is merely an
1299 optimization, so we do not need to worry about false negatives. */
1300
1301 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1302 && abfd_stat.st_ino != 0
1303 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1304 {
1305 if (abfd_stat.st_dev == parent_stat.st_dev
1306 && abfd_stat.st_ino == parent_stat.st_ino)
1307 return 0;
1308 verified_as_different = 1;
1309 }
1310 else
1311 verified_as_different = 0;
1312
1313 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1314
1315 if (!file_crc_p)
1316 return 0;
1317
1318 if (crc != file_crc)
1319 {
1320 unsigned long parent_crc;
1321
1322 /* If the files could not be verified as different with
1323 bfd_stat then we need to calculate the parent's CRC
1324 to verify whether the files are different or not. */
1325
1326 if (!verified_as_different)
1327 {
1328 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1329 return 0;
1330 }
1331
1332 if (verified_as_different || parent_crc != file_crc)
1333 warning (_("the debug information found in \"%s\""
1334 " does not match \"%s\" (CRC mismatch).\n"),
1335 name.c_str (), objfile_name (parent_objfile));
1336
1337 return 0;
1338 }
1339
1340 return 1;
1341 }
1342
1343 char *debug_file_directory = NULL;
1344 static void
1345 show_debug_file_directory (struct ui_file *file, int from_tty,
1346 struct cmd_list_element *c, const char *value)
1347 {
1348 fprintf_filtered (file,
1349 _("The directory where separate debug "
1350 "symbols are searched for is \"%s\".\n"),
1351 value);
1352 }
1353
1354 #if ! defined (DEBUG_SUBDIRECTORY)
1355 #define DEBUG_SUBDIRECTORY ".debug"
1356 #endif
1357
1358 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1359 where the original file resides (may not be the same as
1360 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1361 looking for. CANON_DIR is the "realpath" form of DIR.
1362 DIR must contain a trailing '/'.
1363 Returns the path of the file with separate debug info, or an empty
1364 string. */
1365
1366 static std::string
1367 find_separate_debug_file (const char *dir,
1368 const char *canon_dir,
1369 const char *debuglink,
1370 unsigned long crc32, struct objfile *objfile)
1371 {
1372 if (separate_debug_file_debug)
1373 printf_filtered (_("\nLooking for separate debug info (debug link) for "
1374 "%s\n"), objfile_name (objfile));
1375
1376 /* First try in the same directory as the original file. */
1377 std::string debugfile = dir;
1378 debugfile += debuglink;
1379
1380 if (separate_debug_file_exists (debugfile, crc32, objfile))
1381 return debugfile;
1382
1383 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1384 debugfile = dir;
1385 debugfile += DEBUG_SUBDIRECTORY;
1386 debugfile += "/";
1387 debugfile += debuglink;
1388
1389 if (separate_debug_file_exists (debugfile, crc32, objfile))
1390 return debugfile;
1391
1392 /* Then try in the global debugfile directories.
1393
1394 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1395 cause "/..." lookups. */
1396
1397 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1398 = dirnames_to_char_ptr_vec (debug_file_directory);
1399
1400 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1401 {
1402 debugfile = debugdir.get ();
1403 debugfile += "/";
1404 debugfile += dir;
1405 debugfile += debuglink;
1406
1407 if (separate_debug_file_exists (debugfile, crc32, objfile))
1408 return debugfile;
1409
1410 /* If the file is in the sysroot, try using its base path in the
1411 global debugfile directory. */
1412 if (canon_dir != NULL
1413 && filename_ncmp (canon_dir, gdb_sysroot,
1414 strlen (gdb_sysroot)) == 0
1415 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1416 {
1417 debugfile = debugdir.get ();
1418 debugfile += (canon_dir + strlen (gdb_sysroot));
1419 debugfile += "/";
1420 debugfile += debuglink;
1421
1422 if (separate_debug_file_exists (debugfile, crc32, objfile))
1423 return debugfile;
1424 }
1425 }
1426
1427 return std::string ();
1428 }
1429
1430 /* Modify PATH to contain only "[/]directory/" part of PATH.
1431 If there were no directory separators in PATH, PATH will be empty
1432 string on return. */
1433
1434 static void
1435 terminate_after_last_dir_separator (char *path)
1436 {
1437 int i;
1438
1439 /* Strip off the final filename part, leaving the directory name,
1440 followed by a slash. The directory can be relative or absolute. */
1441 for (i = strlen(path) - 1; i >= 0; i--)
1442 if (IS_DIR_SEPARATOR (path[i]))
1443 break;
1444
1445 /* If I is -1 then no directory is present there and DIR will be "". */
1446 path[i + 1] = '\0';
1447 }
1448
1449 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1450 Returns pathname, or an empty string. */
1451
1452 std::string
1453 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1454 {
1455 unsigned long crc32;
1456
1457 gdb::unique_xmalloc_ptr<char> debuglink
1458 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1459
1460 if (debuglink == NULL)
1461 {
1462 /* There's no separate debug info, hence there's no way we could
1463 load it => no warning. */
1464 return std::string ();
1465 }
1466
1467 std::string dir = objfile_name (objfile);
1468 terminate_after_last_dir_separator (&dir[0]);
1469 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1470
1471 std::string debugfile
1472 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1473 debuglink.get (), crc32, objfile);
1474
1475 if (debugfile.empty ())
1476 {
1477 /* For PR gdb/9538, try again with realpath (if different from the
1478 original). */
1479
1480 struct stat st_buf;
1481
1482 if (lstat (objfile_name (objfile), &st_buf) == 0
1483 && S_ISLNK (st_buf.st_mode))
1484 {
1485 gdb::unique_xmalloc_ptr<char> symlink_dir
1486 (lrealpath (objfile_name (objfile)));
1487 if (symlink_dir != NULL)
1488 {
1489 terminate_after_last_dir_separator (symlink_dir.get ());
1490 if (dir != symlink_dir.get ())
1491 {
1492 /* Different directory, so try using it. */
1493 debugfile = find_separate_debug_file (symlink_dir.get (),
1494 symlink_dir.get (),
1495 debuglink.get (),
1496 crc32,
1497 objfile);
1498 }
1499 }
1500 }
1501 }
1502
1503 return debugfile;
1504 }
1505
1506 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1507 simultaneously. */
1508
1509 static void
1510 validate_readnow_readnever (objfile_flags flags)
1511 {
1512 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1513 error (_("-readnow and -readnever cannot be used simultaneously"));
1514 }
1515
1516 /* This is the symbol-file command. Read the file, analyze its
1517 symbols, and add a struct symtab to a symtab list. The syntax of
1518 the command is rather bizarre:
1519
1520 1. The function buildargv implements various quoting conventions
1521 which are undocumented and have little or nothing in common with
1522 the way things are quoted (or not quoted) elsewhere in GDB.
1523
1524 2. Options are used, which are not generally used in GDB (perhaps
1525 "set mapped on", "set readnow on" would be better)
1526
1527 3. The order of options matters, which is contrary to GNU
1528 conventions (because it is confusing and inconvenient). */
1529
1530 void
1531 symbol_file_command (const char *args, int from_tty)
1532 {
1533 dont_repeat ();
1534
1535 if (args == NULL)
1536 {
1537 symbol_file_clear (from_tty);
1538 }
1539 else
1540 {
1541 objfile_flags flags = OBJF_USERLOADED;
1542 symfile_add_flags add_flags = 0;
1543 char *name = NULL;
1544 bool stop_processing_options = false;
1545 CORE_ADDR offset = 0;
1546 int idx;
1547 char *arg;
1548
1549 if (from_tty)
1550 add_flags |= SYMFILE_VERBOSE;
1551
1552 gdb_argv built_argv (args);
1553 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1554 {
1555 if (stop_processing_options || *arg != '-')
1556 {
1557 if (name == NULL)
1558 name = arg;
1559 else
1560 error (_("Unrecognized argument \"%s\""), arg);
1561 }
1562 else if (strcmp (arg, "-readnow") == 0)
1563 flags |= OBJF_READNOW;
1564 else if (strcmp (arg, "-readnever") == 0)
1565 flags |= OBJF_READNEVER;
1566 else if (strcmp (arg, "-o") == 0)
1567 {
1568 arg = built_argv[++idx];
1569 if (arg == NULL)
1570 error (_("Missing argument to -o"));
1571
1572 offset = parse_and_eval_address (arg);
1573 }
1574 else if (strcmp (arg, "--") == 0)
1575 stop_processing_options = true;
1576 else
1577 error (_("Unrecognized argument \"%s\""), arg);
1578 }
1579
1580 if (name == NULL)
1581 error (_("no symbol file name was specified"));
1582
1583 validate_readnow_readnever (flags);
1584
1585 symbol_file_add_main_1 (name, add_flags, flags, offset);
1586 }
1587 }
1588
1589 /* Set the initial language.
1590
1591 FIXME: A better solution would be to record the language in the
1592 psymtab when reading partial symbols, and then use it (if known) to
1593 set the language. This would be a win for formats that encode the
1594 language in an easily discoverable place, such as DWARF. For
1595 stabs, we can jump through hoops looking for specially named
1596 symbols or try to intuit the language from the specific type of
1597 stabs we find, but we can't do that until later when we read in
1598 full symbols. */
1599
1600 void
1601 set_initial_language (void)
1602 {
1603 enum language lang = main_language ();
1604
1605 if (lang == language_unknown)
1606 {
1607 char *name = main_name ();
1608 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1609
1610 if (sym != NULL)
1611 lang = SYMBOL_LANGUAGE (sym);
1612 }
1613
1614 if (lang == language_unknown)
1615 {
1616 /* Make C the default language */
1617 lang = language_c;
1618 }
1619
1620 set_language (lang);
1621 expected_language = current_language; /* Don't warn the user. */
1622 }
1623
1624 /* Open the file specified by NAME and hand it off to BFD for
1625 preliminary analysis. Return a newly initialized bfd *, which
1626 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1627 absolute). In case of trouble, error() is called. */
1628
1629 gdb_bfd_ref_ptr
1630 symfile_bfd_open (const char *name)
1631 {
1632 int desc = -1;
1633
1634 gdb::unique_xmalloc_ptr<char> absolute_name;
1635 if (!is_target_filename (name))
1636 {
1637 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1638
1639 /* Look down path for it, allocate 2nd new malloc'd copy. */
1640 desc = openp (getenv ("PATH"),
1641 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1642 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1643 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1644 if (desc < 0)
1645 {
1646 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1647
1648 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1649 desc = openp (getenv ("PATH"),
1650 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1651 exename, O_RDONLY | O_BINARY, &absolute_name);
1652 }
1653 #endif
1654 if (desc < 0)
1655 perror_with_name (expanded_name.get ());
1656
1657 name = absolute_name.get ();
1658 }
1659
1660 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1661 if (sym_bfd == NULL)
1662 error (_("`%s': can't open to read symbols: %s."), name,
1663 bfd_errmsg (bfd_get_error ()));
1664
1665 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1666 bfd_set_cacheable (sym_bfd.get (), 1);
1667
1668 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1669 error (_("`%s': can't read symbols: %s."), name,
1670 bfd_errmsg (bfd_get_error ()));
1671
1672 return sym_bfd;
1673 }
1674
1675 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1676 the section was not found. */
1677
1678 int
1679 get_section_index (struct objfile *objfile, const char *section_name)
1680 {
1681 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1682
1683 if (sect)
1684 return sect->index;
1685 else
1686 return -1;
1687 }
1688
1689 /* Link SF into the global symtab_fns list.
1690 FLAVOUR is the file format that SF handles.
1691 Called on startup by the _initialize routine in each object file format
1692 reader, to register information about each format the reader is prepared
1693 to handle. */
1694
1695 void
1696 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1697 {
1698 symtab_fns.emplace_back (flavour, sf);
1699 }
1700
1701 /* Initialize OBJFILE to read symbols from its associated BFD. It
1702 either returns or calls error(). The result is an initialized
1703 struct sym_fns in the objfile structure, that contains cached
1704 information about the symbol file. */
1705
1706 static const struct sym_fns *
1707 find_sym_fns (bfd *abfd)
1708 {
1709 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1710
1711 if (our_flavour == bfd_target_srec_flavour
1712 || our_flavour == bfd_target_ihex_flavour
1713 || our_flavour == bfd_target_tekhex_flavour)
1714 return NULL; /* No symbols. */
1715
1716 for (const registered_sym_fns &rsf : symtab_fns)
1717 if (our_flavour == rsf.sym_flavour)
1718 return rsf.sym_fns;
1719
1720 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1721 bfd_get_target (abfd));
1722 }
1723 \f
1724
1725 /* This function runs the load command of our current target. */
1726
1727 static void
1728 load_command (const char *arg, int from_tty)
1729 {
1730 dont_repeat ();
1731
1732 /* The user might be reloading because the binary has changed. Take
1733 this opportunity to check. */
1734 reopen_exec_file ();
1735 reread_symbols ();
1736
1737 std::string temp;
1738 if (arg == NULL)
1739 {
1740 const char *parg, *prev;
1741
1742 arg = get_exec_file (1);
1743
1744 /* We may need to quote this string so buildargv can pull it
1745 apart. */
1746 prev = parg = arg;
1747 while ((parg = strpbrk (parg, "\\\"'\t ")))
1748 {
1749 temp.append (prev, parg - prev);
1750 prev = parg++;
1751 temp.push_back ('\\');
1752 }
1753 /* If we have not copied anything yet, then we didn't see a
1754 character to quote, and we can just leave ARG unchanged. */
1755 if (!temp.empty ())
1756 {
1757 temp.append (prev);
1758 arg = temp.c_str ();
1759 }
1760 }
1761
1762 target_load (arg, from_tty);
1763
1764 /* After re-loading the executable, we don't really know which
1765 overlays are mapped any more. */
1766 overlay_cache_invalid = 1;
1767 }
1768
1769 /* This version of "load" should be usable for any target. Currently
1770 it is just used for remote targets, not inftarg.c or core files,
1771 on the theory that only in that case is it useful.
1772
1773 Avoiding xmodem and the like seems like a win (a) because we don't have
1774 to worry about finding it, and (b) On VMS, fork() is very slow and so
1775 we don't want to run a subprocess. On the other hand, I'm not sure how
1776 performance compares. */
1777
1778 static int validate_download = 0;
1779
1780 /* Callback service function for generic_load (bfd_map_over_sections). */
1781
1782 static void
1783 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1784 {
1785 bfd_size_type *sum = (bfd_size_type *) data;
1786
1787 *sum += bfd_get_section_size (asec);
1788 }
1789
1790 /* Opaque data for load_progress. */
1791 struct load_progress_data
1792 {
1793 /* Cumulative data. */
1794 unsigned long write_count = 0;
1795 unsigned long data_count = 0;
1796 bfd_size_type total_size = 0;
1797 };
1798
1799 /* Opaque data for load_progress for a single section. */
1800 struct load_progress_section_data
1801 {
1802 load_progress_section_data (load_progress_data *cumulative_,
1803 const char *section_name_, ULONGEST section_size_,
1804 CORE_ADDR lma_, gdb_byte *buffer_)
1805 : cumulative (cumulative_), section_name (section_name_),
1806 section_size (section_size_), lma (lma_), buffer (buffer_)
1807 {}
1808
1809 struct load_progress_data *cumulative;
1810
1811 /* Per-section data. */
1812 const char *section_name;
1813 ULONGEST section_sent = 0;
1814 ULONGEST section_size;
1815 CORE_ADDR lma;
1816 gdb_byte *buffer;
1817 };
1818
1819 /* Opaque data for load_section_callback. */
1820 struct load_section_data
1821 {
1822 load_section_data (load_progress_data *progress_data_)
1823 : progress_data (progress_data_)
1824 {}
1825
1826 ~load_section_data ()
1827 {
1828 for (auto &&request : requests)
1829 {
1830 xfree (request.data);
1831 delete ((load_progress_section_data *) request.baton);
1832 }
1833 }
1834
1835 CORE_ADDR load_offset = 0;
1836 struct load_progress_data *progress_data;
1837 std::vector<struct memory_write_request> requests;
1838 };
1839
1840 /* Target write callback routine for progress reporting. */
1841
1842 static void
1843 load_progress (ULONGEST bytes, void *untyped_arg)
1844 {
1845 struct load_progress_section_data *args
1846 = (struct load_progress_section_data *) untyped_arg;
1847 struct load_progress_data *totals;
1848
1849 if (args == NULL)
1850 /* Writing padding data. No easy way to get at the cumulative
1851 stats, so just ignore this. */
1852 return;
1853
1854 totals = args->cumulative;
1855
1856 if (bytes == 0 && args->section_sent == 0)
1857 {
1858 /* The write is just starting. Let the user know we've started
1859 this section. */
1860 current_uiout->message ("Loading section %s, size %s lma %s\n",
1861 args->section_name,
1862 hex_string (args->section_size),
1863 paddress (target_gdbarch (), args->lma));
1864 return;
1865 }
1866
1867 if (validate_download)
1868 {
1869 /* Broken memories and broken monitors manifest themselves here
1870 when bring new computers to life. This doubles already slow
1871 downloads. */
1872 /* NOTE: cagney/1999-10-18: A more efficient implementation
1873 might add a verify_memory() method to the target vector and
1874 then use that. remote.c could implement that method using
1875 the ``qCRC'' packet. */
1876 gdb::byte_vector check (bytes);
1877
1878 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1879 error (_("Download verify read failed at %s"),
1880 paddress (target_gdbarch (), args->lma));
1881 if (memcmp (args->buffer, check.data (), bytes) != 0)
1882 error (_("Download verify compare failed at %s"),
1883 paddress (target_gdbarch (), args->lma));
1884 }
1885 totals->data_count += bytes;
1886 args->lma += bytes;
1887 args->buffer += bytes;
1888 totals->write_count += 1;
1889 args->section_sent += bytes;
1890 if (check_quit_flag ()
1891 || (deprecated_ui_load_progress_hook != NULL
1892 && deprecated_ui_load_progress_hook (args->section_name,
1893 args->section_sent)))
1894 error (_("Canceled the download"));
1895
1896 if (deprecated_show_load_progress != NULL)
1897 deprecated_show_load_progress (args->section_name,
1898 args->section_sent,
1899 args->section_size,
1900 totals->data_count,
1901 totals->total_size);
1902 }
1903
1904 /* Callback service function for generic_load (bfd_map_over_sections). */
1905
1906 static void
1907 load_section_callback (bfd *abfd, asection *asec, void *data)
1908 {
1909 struct load_section_data *args = (struct load_section_data *) data;
1910 bfd_size_type size = bfd_get_section_size (asec);
1911 const char *sect_name = bfd_get_section_name (abfd, asec);
1912
1913 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1914 return;
1915
1916 if (size == 0)
1917 return;
1918
1919 ULONGEST begin = bfd_section_lma (abfd, asec) + args->load_offset;
1920 ULONGEST end = begin + size;
1921 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
1922 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1923
1924 load_progress_section_data *section_data
1925 = new load_progress_section_data (args->progress_data, sect_name, size,
1926 begin, buffer);
1927
1928 args->requests.emplace_back (begin, end, buffer, section_data);
1929 }
1930
1931 static void print_transfer_performance (struct ui_file *stream,
1932 unsigned long data_count,
1933 unsigned long write_count,
1934 std::chrono::steady_clock::duration d);
1935
1936 void
1937 generic_load (const char *args, int from_tty)
1938 {
1939 struct load_progress_data total_progress;
1940 struct load_section_data cbdata (&total_progress);
1941 struct ui_out *uiout = current_uiout;
1942
1943 if (args == NULL)
1944 error_no_arg (_("file to load"));
1945
1946 gdb_argv argv (args);
1947
1948 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
1949
1950 if (argv[1] != NULL)
1951 {
1952 const char *endptr;
1953
1954 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1955
1956 /* If the last word was not a valid number then
1957 treat it as a file name with spaces in. */
1958 if (argv[1] == endptr)
1959 error (_("Invalid download offset:%s."), argv[1]);
1960
1961 if (argv[2] != NULL)
1962 error (_("Too many parameters."));
1963 }
1964
1965 /* Open the file for loading. */
1966 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
1967 if (loadfile_bfd == NULL)
1968 perror_with_name (filename.get ());
1969
1970 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
1971 {
1972 error (_("\"%s\" is not an object file: %s"), filename.get (),
1973 bfd_errmsg (bfd_get_error ()));
1974 }
1975
1976 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
1977 (void *) &total_progress.total_size);
1978
1979 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
1980
1981 using namespace std::chrono;
1982
1983 steady_clock::time_point start_time = steady_clock::now ();
1984
1985 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1986 load_progress) != 0)
1987 error (_("Load failed"));
1988
1989 steady_clock::time_point end_time = steady_clock::now ();
1990
1991 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
1992 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
1993 uiout->text ("Start address ");
1994 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
1995 uiout->text (", load size ");
1996 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
1997 uiout->text ("\n");
1998 regcache_write_pc (get_current_regcache (), entry);
1999
2000 /* Reset breakpoints, now that we have changed the load image. For
2001 instance, breakpoints may have been set (or reset, by
2002 post_create_inferior) while connected to the target but before we
2003 loaded the program. In that case, the prologue analyzer could
2004 have read instructions from the target to find the right
2005 breakpoint locations. Loading has changed the contents of that
2006 memory. */
2007
2008 breakpoint_re_set ();
2009
2010 print_transfer_performance (gdb_stdout, total_progress.data_count,
2011 total_progress.write_count,
2012 end_time - start_time);
2013 }
2014
2015 /* Report on STREAM the performance of a memory transfer operation,
2016 such as 'load'. DATA_COUNT is the number of bytes transferred.
2017 WRITE_COUNT is the number of separate write operations, or 0, if
2018 that information is not available. TIME is how long the operation
2019 lasted. */
2020
2021 static void
2022 print_transfer_performance (struct ui_file *stream,
2023 unsigned long data_count,
2024 unsigned long write_count,
2025 std::chrono::steady_clock::duration time)
2026 {
2027 using namespace std::chrono;
2028 struct ui_out *uiout = current_uiout;
2029
2030 milliseconds ms = duration_cast<milliseconds> (time);
2031
2032 uiout->text ("Transfer rate: ");
2033 if (ms.count () > 0)
2034 {
2035 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2036
2037 if (uiout->is_mi_like_p ())
2038 {
2039 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2040 uiout->text (" bits/sec");
2041 }
2042 else if (rate < 1024)
2043 {
2044 uiout->field_fmt ("transfer-rate", "%lu", rate);
2045 uiout->text (" bytes/sec");
2046 }
2047 else
2048 {
2049 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2050 uiout->text (" KB/sec");
2051 }
2052 }
2053 else
2054 {
2055 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2056 uiout->text (" bits in <1 sec");
2057 }
2058 if (write_count > 0)
2059 {
2060 uiout->text (", ");
2061 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2062 uiout->text (" bytes/write");
2063 }
2064 uiout->text (".\n");
2065 }
2066
2067 /* Add an OFFSET to the start address of each section in OBJF, except
2068 sections that were specified in ADDRS. */
2069
2070 static void
2071 set_objfile_default_section_offset (struct objfile *objf,
2072 const section_addr_info &addrs,
2073 CORE_ADDR offset)
2074 {
2075 /* Add OFFSET to all sections by default. */
2076 std::vector<struct section_offsets> offsets (objf->num_sections,
2077 { { offset } });
2078
2079 /* Create sorted lists of all sections in ADDRS as well as all
2080 sections in OBJF. */
2081
2082 std::vector<const struct other_sections *> addrs_sorted
2083 = addrs_section_sort (addrs);
2084
2085 section_addr_info objf_addrs
2086 = build_section_addr_info_from_objfile (objf);
2087 std::vector<const struct other_sections *> objf_addrs_sorted
2088 = addrs_section_sort (objf_addrs);
2089
2090 /* Walk the BFD section list, and if a matching section is found in
2091 ADDRS_SORTED_LIST, set its offset to zero to keep its address
2092 unchanged.
2093
2094 Note that both lists may contain multiple sections with the same
2095 name, and then the sections from ADDRS are matched in BFD order
2096 (thanks to sectindex). */
2097
2098 std::vector<const struct other_sections *>::iterator addrs_sorted_iter
2099 = addrs_sorted.begin ();
2100 for (const other_sections *objf_sect : objf_addrs_sorted)
2101 {
2102 const char *objf_name = addr_section_name (objf_sect->name.c_str ());
2103 int cmp = -1;
2104
2105 while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ())
2106 {
2107 const struct other_sections *sect = *addrs_sorted_iter;
2108 const char *sect_name = addr_section_name (sect->name.c_str ());
2109 cmp = strcmp (sect_name, objf_name);
2110 if (cmp <= 0)
2111 ++addrs_sorted_iter;
2112 }
2113
2114 if (cmp == 0)
2115 offsets[objf_sect->sectindex].offsets[0] = 0;
2116 }
2117
2118 /* Apply the new section offsets. */
2119 objfile_relocate (objf, offsets.data ());
2120 }
2121
2122 /* This function allows the addition of incrementally linked object files.
2123 It does not modify any state in the target, only in the debugger. */
2124 /* Note: ezannoni 2000-04-13 This function/command used to have a
2125 special case syntax for the rombug target (Rombug is the boot
2126 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2127 rombug case, the user doesn't need to supply a text address,
2128 instead a call to target_link() (in target.c) would supply the
2129 value to use. We are now discontinuing this type of ad hoc syntax. */
2130
2131 static void
2132 add_symbol_file_command (const char *args, int from_tty)
2133 {
2134 struct gdbarch *gdbarch = get_current_arch ();
2135 gdb::unique_xmalloc_ptr<char> filename;
2136 char *arg;
2137 int argcnt = 0;
2138 struct objfile *objf;
2139 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2140 symfile_add_flags add_flags = 0;
2141
2142 if (from_tty)
2143 add_flags |= SYMFILE_VERBOSE;
2144
2145 struct sect_opt
2146 {
2147 const char *name;
2148 const char *value;
2149 };
2150
2151 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2152 bool stop_processing_options = false;
2153 CORE_ADDR offset = 0;
2154
2155 dont_repeat ();
2156
2157 if (args == NULL)
2158 error (_("add-symbol-file takes a file name and an address"));
2159
2160 bool seen_addr = false;
2161 bool seen_offset = false;
2162 gdb_argv argv (args);
2163
2164 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2165 {
2166 if (stop_processing_options || *arg != '-')
2167 {
2168 if (filename == NULL)
2169 {
2170 /* First non-option argument is always the filename. */
2171 filename.reset (tilde_expand (arg));
2172 }
2173 else if (!seen_addr)
2174 {
2175 /* The second non-option argument is always the text
2176 address at which to load the program. */
2177 sect_opts[0].value = arg;
2178 seen_addr = true;
2179 }
2180 else
2181 error (_("Unrecognized argument \"%s\""), arg);
2182 }
2183 else if (strcmp (arg, "-readnow") == 0)
2184 flags |= OBJF_READNOW;
2185 else if (strcmp (arg, "-readnever") == 0)
2186 flags |= OBJF_READNEVER;
2187 else if (strcmp (arg, "-s") == 0)
2188 {
2189 if (argv[argcnt + 1] == NULL)
2190 error (_("Missing section name after \"-s\""));
2191 else if (argv[argcnt + 2] == NULL)
2192 error (_("Missing section address after \"-s\""));
2193
2194 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2195
2196 sect_opts.push_back (sect);
2197 argcnt += 2;
2198 }
2199 else if (strcmp (arg, "-o") == 0)
2200 {
2201 arg = argv[++argcnt];
2202 if (arg == NULL)
2203 error (_("Missing argument to -o"));
2204
2205 offset = parse_and_eval_address (arg);
2206 seen_offset = true;
2207 }
2208 else if (strcmp (arg, "--") == 0)
2209 stop_processing_options = true;
2210 else
2211 error (_("Unrecognized argument \"%s\""), arg);
2212 }
2213
2214 if (filename == NULL)
2215 error (_("You must provide a filename to be loaded."));
2216
2217 validate_readnow_readnever (flags);
2218
2219 /* Print the prompt for the query below. And save the arguments into
2220 a sect_addr_info structure to be passed around to other
2221 functions. We have to split this up into separate print
2222 statements because hex_string returns a local static
2223 string. */
2224
2225 printf_unfiltered (_("add symbol table from file \"%s\""),
2226 filename.get ());
2227 section_addr_info section_addrs;
2228 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2229 if (!seen_addr)
2230 ++it;
2231 for (; it != sect_opts.end (); ++it)
2232 {
2233 CORE_ADDR addr;
2234 const char *val = it->value;
2235 const char *sec = it->name;
2236
2237 if (section_addrs.empty ())
2238 printf_unfiltered (_(" at\n"));
2239 addr = parse_and_eval_address (val);
2240
2241 /* Here we store the section offsets in the order they were
2242 entered on the command line. Every array element is
2243 assigned an ascending section index to preserve the above
2244 order over an unstable sorting algorithm. This dummy
2245 index is not used for any other purpose.
2246 */
2247 section_addrs.emplace_back (addr, sec, section_addrs.size ());
2248 printf_filtered ("\t%s_addr = %s\n", sec,
2249 paddress (gdbarch, addr));
2250
2251 /* The object's sections are initialized when a
2252 call is made to build_objfile_section_table (objfile).
2253 This happens in reread_symbols.
2254 At this point, we don't know what file type this is,
2255 so we can't determine what section names are valid. */
2256 }
2257 if (seen_offset)
2258 printf_unfiltered (_("%s offset by %s\n"),
2259 (section_addrs.empty ()
2260 ? _(" with all sections")
2261 : _("with other sections")),
2262 paddress (gdbarch, offset));
2263 else if (section_addrs.empty ())
2264 printf_unfiltered ("\n");
2265
2266 if (from_tty && (!query ("%s", "")))
2267 error (_("Not confirmed."));
2268
2269 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2270 flags);
2271
2272 if (seen_offset)
2273 set_objfile_default_section_offset (objf, section_addrs, offset);
2274
2275 add_target_sections_of_objfile (objf);
2276
2277 /* Getting new symbols may change our opinion about what is
2278 frameless. */
2279 reinit_frame_cache ();
2280 }
2281 \f
2282
2283 /* This function removes a symbol file that was added via add-symbol-file. */
2284
2285 static void
2286 remove_symbol_file_command (const char *args, int from_tty)
2287 {
2288 struct objfile *objf = NULL;
2289 struct program_space *pspace = current_program_space;
2290
2291 dont_repeat ();
2292
2293 if (args == NULL)
2294 error (_("remove-symbol-file: no symbol file provided"));
2295
2296 gdb_argv argv (args);
2297
2298 if (strcmp (argv[0], "-a") == 0)
2299 {
2300 /* Interpret the next argument as an address. */
2301 CORE_ADDR addr;
2302
2303 if (argv[1] == NULL)
2304 error (_("Missing address argument"));
2305
2306 if (argv[2] != NULL)
2307 error (_("Junk after %s"), argv[1]);
2308
2309 addr = parse_and_eval_address (argv[1]);
2310
2311 ALL_OBJFILES (objf)
2312 {
2313 if ((objf->flags & OBJF_USERLOADED) != 0
2314 && (objf->flags & OBJF_SHARED) != 0
2315 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2316 break;
2317 }
2318 }
2319 else if (argv[0] != NULL)
2320 {
2321 /* Interpret the current argument as a file name. */
2322
2323 if (argv[1] != NULL)
2324 error (_("Junk after %s"), argv[0]);
2325
2326 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2327
2328 ALL_OBJFILES (objf)
2329 {
2330 if ((objf->flags & OBJF_USERLOADED) != 0
2331 && (objf->flags & OBJF_SHARED) != 0
2332 && objf->pspace == pspace
2333 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
2334 break;
2335 }
2336 }
2337
2338 if (objf == NULL)
2339 error (_("No symbol file found"));
2340
2341 if (from_tty
2342 && !query (_("Remove symbol table from file \"%s\"? "),
2343 objfile_name (objf)))
2344 error (_("Not confirmed."));
2345
2346 delete objf;
2347 clear_symtab_users (0);
2348 }
2349
2350 /* Re-read symbols if a symbol-file has changed. */
2351
2352 void
2353 reread_symbols (void)
2354 {
2355 struct objfile *objfile;
2356 long new_modtime;
2357 struct stat new_statbuf;
2358 int res;
2359 std::vector<struct objfile *> new_objfiles;
2360
2361 /* With the addition of shared libraries, this should be modified,
2362 the load time should be saved in the partial symbol tables, since
2363 different tables may come from different source files. FIXME.
2364 This routine should then walk down each partial symbol table
2365 and see if the symbol table that it originates from has been changed. */
2366
2367 for (objfile = object_files; objfile; objfile = objfile->next)
2368 {
2369 if (objfile->obfd == NULL)
2370 continue;
2371
2372 /* Separate debug objfiles are handled in the main objfile. */
2373 if (objfile->separate_debug_objfile_backlink)
2374 continue;
2375
2376 /* If this object is from an archive (what you usually create with
2377 `ar', often called a `static library' on most systems, though
2378 a `shared library' on AIX is also an archive), then you should
2379 stat on the archive name, not member name. */
2380 if (objfile->obfd->my_archive)
2381 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2382 else
2383 res = stat (objfile_name (objfile), &new_statbuf);
2384 if (res != 0)
2385 {
2386 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2387 printf_filtered (_("`%s' has disappeared; keeping its symbols.\n"),
2388 objfile_name (objfile));
2389 continue;
2390 }
2391 new_modtime = new_statbuf.st_mtime;
2392 if (new_modtime != objfile->mtime)
2393 {
2394 struct cleanup *old_cleanups;
2395 struct section_offsets *offsets;
2396 int num_offsets;
2397
2398 printf_filtered (_("`%s' has changed; re-reading symbols.\n"),
2399 objfile_name (objfile));
2400
2401 /* There are various functions like symbol_file_add,
2402 symfile_bfd_open, syms_from_objfile, etc., which might
2403 appear to do what we want. But they have various other
2404 effects which we *don't* want. So we just do stuff
2405 ourselves. We don't worry about mapped files (for one thing,
2406 any mapped file will be out of date). */
2407
2408 /* If we get an error, blow away this objfile (not sure if
2409 that is the correct response for things like shared
2410 libraries). */
2411 std::unique_ptr<struct objfile> objfile_holder (objfile);
2412
2413 /* We need to do this whenever any symbols go away. */
2414 old_cleanups = make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2415
2416 if (exec_bfd != NULL
2417 && filename_cmp (bfd_get_filename (objfile->obfd),
2418 bfd_get_filename (exec_bfd)) == 0)
2419 {
2420 /* Reload EXEC_BFD without asking anything. */
2421
2422 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2423 }
2424
2425 /* Keep the calls order approx. the same as in free_objfile. */
2426
2427 /* Free the separate debug objfiles. It will be
2428 automatically recreated by sym_read. */
2429 free_objfile_separate_debug (objfile);
2430
2431 /* Remove any references to this objfile in the global
2432 value lists. */
2433 preserve_values (objfile);
2434
2435 /* Nuke all the state that we will re-read. Much of the following
2436 code which sets things to NULL really is necessary to tell
2437 other parts of GDB that there is nothing currently there.
2438
2439 Try to keep the freeing order compatible with free_objfile. */
2440
2441 if (objfile->sf != NULL)
2442 {
2443 (*objfile->sf->sym_finish) (objfile);
2444 }
2445
2446 clear_objfile_data (objfile);
2447
2448 /* Clean up any state BFD has sitting around. */
2449 {
2450 gdb_bfd_ref_ptr obfd (objfile->obfd);
2451 char *obfd_filename;
2452
2453 obfd_filename = bfd_get_filename (objfile->obfd);
2454 /* Open the new BFD before freeing the old one, so that
2455 the filename remains live. */
2456 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2457 objfile->obfd = temp.release ();
2458 if (objfile->obfd == NULL)
2459 error (_("Can't open %s to read symbols."), obfd_filename);
2460 }
2461
2462 std::string original_name = objfile->original_name;
2463
2464 /* bfd_openr sets cacheable to true, which is what we want. */
2465 if (!bfd_check_format (objfile->obfd, bfd_object))
2466 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2467 bfd_errmsg (bfd_get_error ()));
2468
2469 /* Save the offsets, we will nuke them with the rest of the
2470 objfile_obstack. */
2471 num_offsets = objfile->num_sections;
2472 offsets = ((struct section_offsets *)
2473 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2474 memcpy (offsets, objfile->section_offsets,
2475 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2476
2477 /* FIXME: Do we have to free a whole linked list, or is this
2478 enough? */
2479 objfile->global_psymbols.clear ();
2480 objfile->static_psymbols.clear ();
2481
2482 /* Free the obstacks for non-reusable objfiles. */
2483 psymbol_bcache_free (objfile->psymbol_cache);
2484 objfile->psymbol_cache = psymbol_bcache_init ();
2485
2486 /* NB: after this call to obstack_free, objfiles_changed
2487 will need to be called (see discussion below). */
2488 obstack_free (&objfile->objfile_obstack, 0);
2489 objfile->sections = NULL;
2490 objfile->compunit_symtabs = NULL;
2491 objfile->psymtabs = NULL;
2492 objfile->psymtabs_addrmap = NULL;
2493 objfile->free_psymtabs = NULL;
2494 objfile->template_symbols = NULL;
2495
2496 /* obstack_init also initializes the obstack so it is
2497 empty. We could use obstack_specify_allocation but
2498 gdb_obstack.h specifies the alloc/dealloc functions. */
2499 obstack_init (&objfile->objfile_obstack);
2500
2501 /* set_objfile_per_bfd potentially allocates the per-bfd
2502 data on the objfile's obstack (if sharing data across
2503 multiple users is not possible), so it's important to
2504 do it *after* the obstack has been initialized. */
2505 set_objfile_per_bfd (objfile);
2506
2507 objfile->original_name
2508 = (char *) obstack_copy0 (&objfile->objfile_obstack,
2509 original_name.c_str (),
2510 original_name.size ());
2511
2512 /* Reset the sym_fns pointer. The ELF reader can change it
2513 based on whether .gdb_index is present, and we need it to
2514 start over. PR symtab/15885 */
2515 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2516
2517 build_objfile_section_table (objfile);
2518 terminate_minimal_symbol_table (objfile);
2519
2520 /* We use the same section offsets as from last time. I'm not
2521 sure whether that is always correct for shared libraries. */
2522 objfile->section_offsets = (struct section_offsets *)
2523 obstack_alloc (&objfile->objfile_obstack,
2524 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2525 memcpy (objfile->section_offsets, offsets,
2526 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2527 objfile->num_sections = num_offsets;
2528
2529 /* What the hell is sym_new_init for, anyway? The concept of
2530 distinguishing between the main file and additional files
2531 in this way seems rather dubious. */
2532 if (objfile == symfile_objfile)
2533 {
2534 (*objfile->sf->sym_new_init) (objfile);
2535 }
2536
2537 (*objfile->sf->sym_init) (objfile);
2538 clear_complaints (1);
2539
2540 objfile->flags &= ~OBJF_PSYMTABS_READ;
2541
2542 /* We are about to read new symbols and potentially also
2543 DWARF information. Some targets may want to pass addresses
2544 read from DWARF DIE's through an adjustment function before
2545 saving them, like MIPS, which may call into
2546 "find_pc_section". When called, that function will make
2547 use of per-objfile program space data.
2548
2549 Since we discarded our section information above, we have
2550 dangling pointers in the per-objfile program space data
2551 structure. Force GDB to update the section mapping
2552 information by letting it know the objfile has changed,
2553 making the dangling pointers point to correct data
2554 again. */
2555
2556 objfiles_changed ();
2557
2558 read_symbols (objfile, 0);
2559
2560 if (!objfile_has_symbols (objfile))
2561 {
2562 wrap_here ("");
2563 printf_filtered (_("(no debugging symbols found)\n"));
2564 wrap_here ("");
2565 }
2566
2567 /* We're done reading the symbol file; finish off complaints. */
2568 clear_complaints (0);
2569
2570 /* Getting new symbols may change our opinion about what is
2571 frameless. */
2572
2573 reinit_frame_cache ();
2574
2575 /* Discard cleanups as symbol reading was successful. */
2576 objfile_holder.release ();
2577 discard_cleanups (old_cleanups);
2578
2579 /* If the mtime has changed between the time we set new_modtime
2580 and now, we *want* this to be out of date, so don't call stat
2581 again now. */
2582 objfile->mtime = new_modtime;
2583 init_entry_point_info (objfile);
2584
2585 new_objfiles.push_back (objfile);
2586 }
2587 }
2588
2589 if (!new_objfiles.empty ())
2590 {
2591 clear_symtab_users (0);
2592
2593 /* clear_objfile_data for each objfile was called before freeing it and
2594 gdb::observers::new_objfile.notify (NULL) has been called by
2595 clear_symtab_users above. Notify the new files now. */
2596 for (auto iter : new_objfiles)
2597 gdb::observers::new_objfile.notify (iter);
2598
2599 /* At least one objfile has changed, so we can consider that
2600 the executable we're debugging has changed too. */
2601 gdb::observers::executable_changed.notify ();
2602 }
2603 }
2604 \f
2605
2606 struct filename_language
2607 {
2608 filename_language (const std::string &ext_, enum language lang_)
2609 : ext (ext_), lang (lang_)
2610 {}
2611
2612 std::string ext;
2613 enum language lang;
2614 };
2615
2616 static std::vector<filename_language> filename_language_table;
2617
2618 /* See symfile.h. */
2619
2620 void
2621 add_filename_language (const char *ext, enum language lang)
2622 {
2623 filename_language_table.emplace_back (ext, lang);
2624 }
2625
2626 static char *ext_args;
2627 static void
2628 show_ext_args (struct ui_file *file, int from_tty,
2629 struct cmd_list_element *c, const char *value)
2630 {
2631 fprintf_filtered (file,
2632 _("Mapping between filename extension "
2633 "and source language is \"%s\".\n"),
2634 value);
2635 }
2636
2637 static void
2638 set_ext_lang_command (const char *args,
2639 int from_tty, struct cmd_list_element *e)
2640 {
2641 char *cp = ext_args;
2642 enum language lang;
2643
2644 /* First arg is filename extension, starting with '.' */
2645 if (*cp != '.')
2646 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2647
2648 /* Find end of first arg. */
2649 while (*cp && !isspace (*cp))
2650 cp++;
2651
2652 if (*cp == '\0')
2653 error (_("'%s': two arguments required -- "
2654 "filename extension and language"),
2655 ext_args);
2656
2657 /* Null-terminate first arg. */
2658 *cp++ = '\0';
2659
2660 /* Find beginning of second arg, which should be a source language. */
2661 cp = skip_spaces (cp);
2662
2663 if (*cp == '\0')
2664 error (_("'%s': two arguments required -- "
2665 "filename extension and language"),
2666 ext_args);
2667
2668 /* Lookup the language from among those we know. */
2669 lang = language_enum (cp);
2670
2671 auto it = filename_language_table.begin ();
2672 /* Now lookup the filename extension: do we already know it? */
2673 for (; it != filename_language_table.end (); it++)
2674 {
2675 if (it->ext == ext_args)
2676 break;
2677 }
2678
2679 if (it == filename_language_table.end ())
2680 {
2681 /* New file extension. */
2682 add_filename_language (ext_args, lang);
2683 }
2684 else
2685 {
2686 /* Redefining a previously known filename extension. */
2687
2688 /* if (from_tty) */
2689 /* query ("Really make files of type %s '%s'?", */
2690 /* ext_args, language_str (lang)); */
2691
2692 it->lang = lang;
2693 }
2694 }
2695
2696 static void
2697 info_ext_lang_command (const char *args, int from_tty)
2698 {
2699 printf_filtered (_("Filename extensions and the languages they represent:"));
2700 printf_filtered ("\n\n");
2701 for (const filename_language &entry : filename_language_table)
2702 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2703 language_str (entry.lang));
2704 }
2705
2706 enum language
2707 deduce_language_from_filename (const char *filename)
2708 {
2709 const char *cp;
2710
2711 if (filename != NULL)
2712 if ((cp = strrchr (filename, '.')) != NULL)
2713 {
2714 for (const filename_language &entry : filename_language_table)
2715 if (entry.ext == cp)
2716 return entry.lang;
2717 }
2718
2719 return language_unknown;
2720 }
2721 \f
2722 /* Allocate and initialize a new symbol table.
2723 CUST is from the result of allocate_compunit_symtab. */
2724
2725 struct symtab *
2726 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2727 {
2728 struct objfile *objfile = cust->objfile;
2729 struct symtab *symtab
2730 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2731
2732 symtab->filename
2733 = (const char *) bcache (filename, strlen (filename) + 1,
2734 objfile->per_bfd->filename_cache);
2735 symtab->fullname = NULL;
2736 symtab->language = deduce_language_from_filename (filename);
2737
2738 /* This can be very verbose with lots of headers.
2739 Only print at higher debug levels. */
2740 if (symtab_create_debug >= 2)
2741 {
2742 /* Be a bit clever with debugging messages, and don't print objfile
2743 every time, only when it changes. */
2744 static char *last_objfile_name = NULL;
2745
2746 if (last_objfile_name == NULL
2747 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2748 {
2749 xfree (last_objfile_name);
2750 last_objfile_name = xstrdup (objfile_name (objfile));
2751 fprintf_filtered (gdb_stdlog,
2752 "Creating one or more symtabs for objfile %s ...\n",
2753 last_objfile_name);
2754 }
2755 fprintf_filtered (gdb_stdlog,
2756 "Created symtab %s for module %s.\n",
2757 host_address_to_string (symtab), filename);
2758 }
2759
2760 /* Add it to CUST's list of symtabs. */
2761 if (cust->filetabs == NULL)
2762 {
2763 cust->filetabs = symtab;
2764 cust->last_filetab = symtab;
2765 }
2766 else
2767 {
2768 cust->last_filetab->next = symtab;
2769 cust->last_filetab = symtab;
2770 }
2771
2772 /* Backlink to the containing compunit symtab. */
2773 symtab->compunit_symtab = cust;
2774
2775 return symtab;
2776 }
2777
2778 /* Allocate and initialize a new compunit.
2779 NAME is the name of the main source file, if there is one, or some
2780 descriptive text if there are no source files. */
2781
2782 struct compunit_symtab *
2783 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2784 {
2785 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2786 struct compunit_symtab);
2787 const char *saved_name;
2788
2789 cu->objfile = objfile;
2790
2791 /* The name we record here is only for display/debugging purposes.
2792 Just save the basename to avoid path issues (too long for display,
2793 relative vs absolute, etc.). */
2794 saved_name = lbasename (name);
2795 cu->name
2796 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2797 strlen (saved_name));
2798
2799 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2800
2801 if (symtab_create_debug)
2802 {
2803 fprintf_filtered (gdb_stdlog,
2804 "Created compunit symtab %s for %s.\n",
2805 host_address_to_string (cu),
2806 cu->name);
2807 }
2808
2809 return cu;
2810 }
2811
2812 /* Hook CU to the objfile it comes from. */
2813
2814 void
2815 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2816 {
2817 cu->next = cu->objfile->compunit_symtabs;
2818 cu->objfile->compunit_symtabs = cu;
2819 }
2820 \f
2821
2822 /* Reset all data structures in gdb which may contain references to
2823 symbol table data. */
2824
2825 void
2826 clear_symtab_users (symfile_add_flags add_flags)
2827 {
2828 /* Someday, we should do better than this, by only blowing away
2829 the things that really need to be blown. */
2830
2831 /* Clear the "current" symtab first, because it is no longer valid.
2832 breakpoint_re_set may try to access the current symtab. */
2833 clear_current_source_symtab_and_line ();
2834
2835 clear_displays ();
2836 clear_last_displayed_sal ();
2837 clear_pc_function_cache ();
2838 gdb::observers::new_objfile.notify (NULL);
2839
2840 /* Clear globals which might have pointed into a removed objfile.
2841 FIXME: It's not clear which of these are supposed to persist
2842 between expressions and which ought to be reset each time. */
2843 expression_context_block = NULL;
2844 innermost_block.reset ();
2845
2846 /* Varobj may refer to old symbols, perform a cleanup. */
2847 varobj_invalidate ();
2848
2849 /* Now that the various caches have been cleared, we can re_set
2850 our breakpoints without risking it using stale data. */
2851 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2852 breakpoint_re_set ();
2853 }
2854
2855 static void
2856 clear_symtab_users_cleanup (void *ignore)
2857 {
2858 clear_symtab_users (0);
2859 }
2860 \f
2861 /* OVERLAYS:
2862 The following code implements an abstraction for debugging overlay sections.
2863
2864 The target model is as follows:
2865 1) The gnu linker will permit multiple sections to be mapped into the
2866 same VMA, each with its own unique LMA (or load address).
2867 2) It is assumed that some runtime mechanism exists for mapping the
2868 sections, one by one, from the load address into the VMA address.
2869 3) This code provides a mechanism for gdb to keep track of which
2870 sections should be considered to be mapped from the VMA to the LMA.
2871 This information is used for symbol lookup, and memory read/write.
2872 For instance, if a section has been mapped then its contents
2873 should be read from the VMA, otherwise from the LMA.
2874
2875 Two levels of debugger support for overlays are available. One is
2876 "manual", in which the debugger relies on the user to tell it which
2877 overlays are currently mapped. This level of support is
2878 implemented entirely in the core debugger, and the information about
2879 whether a section is mapped is kept in the objfile->obj_section table.
2880
2881 The second level of support is "automatic", and is only available if
2882 the target-specific code provides functionality to read the target's
2883 overlay mapping table, and translate its contents for the debugger
2884 (by updating the mapped state information in the obj_section tables).
2885
2886 The interface is as follows:
2887 User commands:
2888 overlay map <name> -- tell gdb to consider this section mapped
2889 overlay unmap <name> -- tell gdb to consider this section unmapped
2890 overlay list -- list the sections that GDB thinks are mapped
2891 overlay read-target -- get the target's state of what's mapped
2892 overlay off/manual/auto -- set overlay debugging state
2893 Functional interface:
2894 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2895 section, return that section.
2896 find_pc_overlay(pc): find any overlay section that contains
2897 the pc, either in its VMA or its LMA
2898 section_is_mapped(sect): true if overlay is marked as mapped
2899 section_is_overlay(sect): true if section's VMA != LMA
2900 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2901 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2902 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2903 overlay_mapped_address(...): map an address from section's LMA to VMA
2904 overlay_unmapped_address(...): map an address from section's VMA to LMA
2905 symbol_overlayed_address(...): Return a "current" address for symbol:
2906 either in VMA or LMA depending on whether
2907 the symbol's section is currently mapped. */
2908
2909 /* Overlay debugging state: */
2910
2911 enum overlay_debugging_state overlay_debugging = ovly_off;
2912 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2913
2914 /* Function: section_is_overlay (SECTION)
2915 Returns true if SECTION has VMA not equal to LMA, ie.
2916 SECTION is loaded at an address different from where it will "run". */
2917
2918 int
2919 section_is_overlay (struct obj_section *section)
2920 {
2921 if (overlay_debugging && section)
2922 {
2923 asection *bfd_section = section->the_bfd_section;
2924
2925 if (bfd_section_lma (abfd, bfd_section) != 0
2926 && bfd_section_lma (abfd, bfd_section)
2927 != bfd_section_vma (abfd, bfd_section))
2928 return 1;
2929 }
2930
2931 return 0;
2932 }
2933
2934 /* Function: overlay_invalidate_all (void)
2935 Invalidate the mapped state of all overlay sections (mark it as stale). */
2936
2937 static void
2938 overlay_invalidate_all (void)
2939 {
2940 struct objfile *objfile;
2941 struct obj_section *sect;
2942
2943 ALL_OBJSECTIONS (objfile, sect)
2944 if (section_is_overlay (sect))
2945 sect->ovly_mapped = -1;
2946 }
2947
2948 /* Function: section_is_mapped (SECTION)
2949 Returns true if section is an overlay, and is currently mapped.
2950
2951 Access to the ovly_mapped flag is restricted to this function, so
2952 that we can do automatic update. If the global flag
2953 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2954 overlay_invalidate_all. If the mapped state of the particular
2955 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2956
2957 int
2958 section_is_mapped (struct obj_section *osect)
2959 {
2960 struct gdbarch *gdbarch;
2961
2962 if (osect == 0 || !section_is_overlay (osect))
2963 return 0;
2964
2965 switch (overlay_debugging)
2966 {
2967 default:
2968 case ovly_off:
2969 return 0; /* overlay debugging off */
2970 case ovly_auto: /* overlay debugging automatic */
2971 /* Unles there is a gdbarch_overlay_update function,
2972 there's really nothing useful to do here (can't really go auto). */
2973 gdbarch = get_objfile_arch (osect->objfile);
2974 if (gdbarch_overlay_update_p (gdbarch))
2975 {
2976 if (overlay_cache_invalid)
2977 {
2978 overlay_invalidate_all ();
2979 overlay_cache_invalid = 0;
2980 }
2981 if (osect->ovly_mapped == -1)
2982 gdbarch_overlay_update (gdbarch, osect);
2983 }
2984 /* fall thru */
2985 case ovly_on: /* overlay debugging manual */
2986 return osect->ovly_mapped == 1;
2987 }
2988 }
2989
2990 /* Function: pc_in_unmapped_range
2991 If PC falls into the lma range of SECTION, return true, else false. */
2992
2993 CORE_ADDR
2994 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
2995 {
2996 if (section_is_overlay (section))
2997 {
2998 bfd *abfd = section->objfile->obfd;
2999 asection *bfd_section = section->the_bfd_section;
3000
3001 /* We assume the LMA is relocated by the same offset as the VMA. */
3002 bfd_vma size = bfd_get_section_size (bfd_section);
3003 CORE_ADDR offset = obj_section_offset (section);
3004
3005 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3006 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3007 return 1;
3008 }
3009
3010 return 0;
3011 }
3012
3013 /* Function: pc_in_mapped_range
3014 If PC falls into the vma range of SECTION, return true, else false. */
3015
3016 CORE_ADDR
3017 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3018 {
3019 if (section_is_overlay (section))
3020 {
3021 if (obj_section_addr (section) <= pc
3022 && pc < obj_section_endaddr (section))
3023 return 1;
3024 }
3025
3026 return 0;
3027 }
3028
3029 /* Return true if the mapped ranges of sections A and B overlap, false
3030 otherwise. */
3031
3032 static int
3033 sections_overlap (struct obj_section *a, struct obj_section *b)
3034 {
3035 CORE_ADDR a_start = obj_section_addr (a);
3036 CORE_ADDR a_end = obj_section_endaddr (a);
3037 CORE_ADDR b_start = obj_section_addr (b);
3038 CORE_ADDR b_end = obj_section_endaddr (b);
3039
3040 return (a_start < b_end && b_start < a_end);
3041 }
3042
3043 /* Function: overlay_unmapped_address (PC, SECTION)
3044 Returns the address corresponding to PC in the unmapped (load) range.
3045 May be the same as PC. */
3046
3047 CORE_ADDR
3048 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3049 {
3050 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3051 {
3052 asection *bfd_section = section->the_bfd_section;
3053
3054 return pc + bfd_section_lma (abfd, bfd_section)
3055 - bfd_section_vma (abfd, bfd_section);
3056 }
3057
3058 return pc;
3059 }
3060
3061 /* Function: overlay_mapped_address (PC, SECTION)
3062 Returns the address corresponding to PC in the mapped (runtime) range.
3063 May be the same as PC. */
3064
3065 CORE_ADDR
3066 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3067 {
3068 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3069 {
3070 asection *bfd_section = section->the_bfd_section;
3071
3072 return pc + bfd_section_vma (abfd, bfd_section)
3073 - bfd_section_lma (abfd, bfd_section);
3074 }
3075
3076 return pc;
3077 }
3078
3079 /* Function: symbol_overlayed_address
3080 Return one of two addresses (relative to the VMA or to the LMA),
3081 depending on whether the section is mapped or not. */
3082
3083 CORE_ADDR
3084 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3085 {
3086 if (overlay_debugging)
3087 {
3088 /* If the symbol has no section, just return its regular address. */
3089 if (section == 0)
3090 return address;
3091 /* If the symbol's section is not an overlay, just return its
3092 address. */
3093 if (!section_is_overlay (section))
3094 return address;
3095 /* If the symbol's section is mapped, just return its address. */
3096 if (section_is_mapped (section))
3097 return address;
3098 /*
3099 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3100 * then return its LOADED address rather than its vma address!!
3101 */
3102 return overlay_unmapped_address (address, section);
3103 }
3104 return address;
3105 }
3106
3107 /* Function: find_pc_overlay (PC)
3108 Return the best-match overlay section for PC:
3109 If PC matches a mapped overlay section's VMA, return that section.
3110 Else if PC matches an unmapped section's VMA, return that section.
3111 Else if PC matches an unmapped section's LMA, return that section. */
3112
3113 struct obj_section *
3114 find_pc_overlay (CORE_ADDR pc)
3115 {
3116 struct objfile *objfile;
3117 struct obj_section *osect, *best_match = NULL;
3118
3119 if (overlay_debugging)
3120 {
3121 ALL_OBJSECTIONS (objfile, osect)
3122 if (section_is_overlay (osect))
3123 {
3124 if (pc_in_mapped_range (pc, osect))
3125 {
3126 if (section_is_mapped (osect))
3127 return osect;
3128 else
3129 best_match = osect;
3130 }
3131 else if (pc_in_unmapped_range (pc, osect))
3132 best_match = osect;
3133 }
3134 }
3135 return best_match;
3136 }
3137
3138 /* Function: find_pc_mapped_section (PC)
3139 If PC falls into the VMA address range of an overlay section that is
3140 currently marked as MAPPED, return that section. Else return NULL. */
3141
3142 struct obj_section *
3143 find_pc_mapped_section (CORE_ADDR pc)
3144 {
3145 struct objfile *objfile;
3146 struct obj_section *osect;
3147
3148 if (overlay_debugging)
3149 {
3150 ALL_OBJSECTIONS (objfile, osect)
3151 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3152 return osect;
3153 }
3154
3155 return NULL;
3156 }
3157
3158 /* Function: list_overlays_command
3159 Print a list of mapped sections and their PC ranges. */
3160
3161 static void
3162 list_overlays_command (const char *args, int from_tty)
3163 {
3164 int nmapped = 0;
3165 struct objfile *objfile;
3166 struct obj_section *osect;
3167
3168 if (overlay_debugging)
3169 {
3170 ALL_OBJSECTIONS (objfile, osect)
3171 if (section_is_mapped (osect))
3172 {
3173 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3174 const char *name;
3175 bfd_vma lma, vma;
3176 int size;
3177
3178 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3179 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3180 size = bfd_get_section_size (osect->the_bfd_section);
3181 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3182
3183 printf_filtered ("Section %s, loaded at ", name);
3184 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3185 puts_filtered (" - ");
3186 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3187 printf_filtered (", mapped at ");
3188 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3189 puts_filtered (" - ");
3190 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3191 puts_filtered ("\n");
3192
3193 nmapped++;
3194 }
3195 }
3196 if (nmapped == 0)
3197 printf_filtered (_("No sections are mapped.\n"));
3198 }
3199
3200 /* Function: map_overlay_command
3201 Mark the named section as mapped (ie. residing at its VMA address). */
3202
3203 static void
3204 map_overlay_command (const char *args, int from_tty)
3205 {
3206 struct objfile *objfile, *objfile2;
3207 struct obj_section *sec, *sec2;
3208
3209 if (!overlay_debugging)
3210 error (_("Overlay debugging not enabled. Use "
3211 "either the 'overlay auto' or\n"
3212 "the 'overlay manual' command."));
3213
3214 if (args == 0 || *args == 0)
3215 error (_("Argument required: name of an overlay section"));
3216
3217 /* First, find a section matching the user supplied argument. */
3218 ALL_OBJSECTIONS (objfile, sec)
3219 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3220 {
3221 /* Now, check to see if the section is an overlay. */
3222 if (!section_is_overlay (sec))
3223 continue; /* not an overlay section */
3224
3225 /* Mark the overlay as "mapped". */
3226 sec->ovly_mapped = 1;
3227
3228 /* Next, make a pass and unmap any sections that are
3229 overlapped by this new section: */
3230 ALL_OBJSECTIONS (objfile2, sec2)
3231 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3232 {
3233 if (info_verbose)
3234 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3235 bfd_section_name (objfile->obfd,
3236 sec2->the_bfd_section));
3237 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3238 }
3239 return;
3240 }
3241 error (_("No overlay section called %s"), args);
3242 }
3243
3244 /* Function: unmap_overlay_command
3245 Mark the overlay section as unmapped
3246 (ie. resident in its LMA address range, rather than the VMA range). */
3247
3248 static void
3249 unmap_overlay_command (const char *args, int from_tty)
3250 {
3251 struct objfile *objfile;
3252 struct obj_section *sec = NULL;
3253
3254 if (!overlay_debugging)
3255 error (_("Overlay debugging not enabled. "
3256 "Use either the 'overlay auto' or\n"
3257 "the 'overlay manual' command."));
3258
3259 if (args == 0 || *args == 0)
3260 error (_("Argument required: name of an overlay section"));
3261
3262 /* First, find a section matching the user supplied argument. */
3263 ALL_OBJSECTIONS (objfile, sec)
3264 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3265 {
3266 if (!sec->ovly_mapped)
3267 error (_("Section %s is not mapped"), args);
3268 sec->ovly_mapped = 0;
3269 return;
3270 }
3271 error (_("No overlay section called %s"), args);
3272 }
3273
3274 /* Function: overlay_auto_command
3275 A utility command to turn on overlay debugging.
3276 Possibly this should be done via a set/show command. */
3277
3278 static void
3279 overlay_auto_command (const char *args, int from_tty)
3280 {
3281 overlay_debugging = ovly_auto;
3282 enable_overlay_breakpoints ();
3283 if (info_verbose)
3284 printf_unfiltered (_("Automatic overlay debugging enabled."));
3285 }
3286
3287 /* Function: overlay_manual_command
3288 A utility command to turn on overlay debugging.
3289 Possibly this should be done via a set/show command. */
3290
3291 static void
3292 overlay_manual_command (const char *args, int from_tty)
3293 {
3294 overlay_debugging = ovly_on;
3295 disable_overlay_breakpoints ();
3296 if (info_verbose)
3297 printf_unfiltered (_("Overlay debugging enabled."));
3298 }
3299
3300 /* Function: overlay_off_command
3301 A utility command to turn on overlay debugging.
3302 Possibly this should be done via a set/show command. */
3303
3304 static void
3305 overlay_off_command (const char *args, int from_tty)
3306 {
3307 overlay_debugging = ovly_off;
3308 disable_overlay_breakpoints ();
3309 if (info_verbose)
3310 printf_unfiltered (_("Overlay debugging disabled."));
3311 }
3312
3313 static void
3314 overlay_load_command (const char *args, int from_tty)
3315 {
3316 struct gdbarch *gdbarch = get_current_arch ();
3317
3318 if (gdbarch_overlay_update_p (gdbarch))
3319 gdbarch_overlay_update (gdbarch, NULL);
3320 else
3321 error (_("This target does not know how to read its overlay state."));
3322 }
3323
3324 /* Function: overlay_command
3325 A place-holder for a mis-typed command. */
3326
3327 /* Command list chain containing all defined "overlay" subcommands. */
3328 static struct cmd_list_element *overlaylist;
3329
3330 static void
3331 overlay_command (const char *args, int from_tty)
3332 {
3333 printf_unfiltered
3334 ("\"overlay\" must be followed by the name of an overlay command.\n");
3335 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3336 }
3337
3338 /* Target Overlays for the "Simplest" overlay manager:
3339
3340 This is GDB's default target overlay layer. It works with the
3341 minimal overlay manager supplied as an example by Cygnus. The
3342 entry point is via a function pointer "gdbarch_overlay_update",
3343 so targets that use a different runtime overlay manager can
3344 substitute their own overlay_update function and take over the
3345 function pointer.
3346
3347 The overlay_update function pokes around in the target's data structures
3348 to see what overlays are mapped, and updates GDB's overlay mapping with
3349 this information.
3350
3351 In this simple implementation, the target data structures are as follows:
3352 unsigned _novlys; /# number of overlay sections #/
3353 unsigned _ovly_table[_novlys][4] = {
3354 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3355 {..., ..., ..., ...},
3356 }
3357 unsigned _novly_regions; /# number of overlay regions #/
3358 unsigned _ovly_region_table[_novly_regions][3] = {
3359 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3360 {..., ..., ...},
3361 }
3362 These functions will attempt to update GDB's mappedness state in the
3363 symbol section table, based on the target's mappedness state.
3364
3365 To do this, we keep a cached copy of the target's _ovly_table, and
3366 attempt to detect when the cached copy is invalidated. The main
3367 entry point is "simple_overlay_update(SECT), which looks up SECT in
3368 the cached table and re-reads only the entry for that section from
3369 the target (whenever possible). */
3370
3371 /* Cached, dynamically allocated copies of the target data structures: */
3372 static unsigned (*cache_ovly_table)[4] = 0;
3373 static unsigned cache_novlys = 0;
3374 static CORE_ADDR cache_ovly_table_base = 0;
3375 enum ovly_index
3376 {
3377 VMA, OSIZE, LMA, MAPPED
3378 };
3379
3380 /* Throw away the cached copy of _ovly_table. */
3381
3382 static void
3383 simple_free_overlay_table (void)
3384 {
3385 if (cache_ovly_table)
3386 xfree (cache_ovly_table);
3387 cache_novlys = 0;
3388 cache_ovly_table = NULL;
3389 cache_ovly_table_base = 0;
3390 }
3391
3392 /* Read an array of ints of size SIZE from the target into a local buffer.
3393 Convert to host order. int LEN is number of ints. */
3394
3395 static void
3396 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3397 int len, int size, enum bfd_endian byte_order)
3398 {
3399 /* FIXME (alloca): Not safe if array is very large. */
3400 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3401 int i;
3402
3403 read_memory (memaddr, buf, len * size);
3404 for (i = 0; i < len; i++)
3405 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3406 }
3407
3408 /* Find and grab a copy of the target _ovly_table
3409 (and _novlys, which is needed for the table's size). */
3410
3411 static int
3412 simple_read_overlay_table (void)
3413 {
3414 struct bound_minimal_symbol novlys_msym;
3415 struct bound_minimal_symbol ovly_table_msym;
3416 struct gdbarch *gdbarch;
3417 int word_size;
3418 enum bfd_endian byte_order;
3419
3420 simple_free_overlay_table ();
3421 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3422 if (! novlys_msym.minsym)
3423 {
3424 error (_("Error reading inferior's overlay table: "
3425 "couldn't find `_novlys' variable\n"
3426 "in inferior. Use `overlay manual' mode."));
3427 return 0;
3428 }
3429
3430 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3431 if (! ovly_table_msym.minsym)
3432 {
3433 error (_("Error reading inferior's overlay table: couldn't find "
3434 "`_ovly_table' array\n"
3435 "in inferior. Use `overlay manual' mode."));
3436 return 0;
3437 }
3438
3439 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3440 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3441 byte_order = gdbarch_byte_order (gdbarch);
3442
3443 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3444 4, byte_order);
3445 cache_ovly_table
3446 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3447 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3448 read_target_long_array (cache_ovly_table_base,
3449 (unsigned int *) cache_ovly_table,
3450 cache_novlys * 4, word_size, byte_order);
3451
3452 return 1; /* SUCCESS */
3453 }
3454
3455 /* Function: simple_overlay_update_1
3456 A helper function for simple_overlay_update. Assuming a cached copy
3457 of _ovly_table exists, look through it to find an entry whose vma,
3458 lma and size match those of OSECT. Re-read the entry and make sure
3459 it still matches OSECT (else the table may no longer be valid).
3460 Set OSECT's mapped state to match the entry. Return: 1 for
3461 success, 0 for failure. */
3462
3463 static int
3464 simple_overlay_update_1 (struct obj_section *osect)
3465 {
3466 int i;
3467 asection *bsect = osect->the_bfd_section;
3468 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3469 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3470 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3471
3472 for (i = 0; i < cache_novlys; i++)
3473 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3474 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3475 {
3476 read_target_long_array (cache_ovly_table_base + i * word_size,
3477 (unsigned int *) cache_ovly_table[i],
3478 4, word_size, byte_order);
3479 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3480 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3481 {
3482 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3483 return 1;
3484 }
3485 else /* Warning! Warning! Target's ovly table has changed! */
3486 return 0;
3487 }
3488 return 0;
3489 }
3490
3491 /* Function: simple_overlay_update
3492 If OSECT is NULL, then update all sections' mapped state
3493 (after re-reading the entire target _ovly_table).
3494 If OSECT is non-NULL, then try to find a matching entry in the
3495 cached ovly_table and update only OSECT's mapped state.
3496 If a cached entry can't be found or the cache isn't valid, then
3497 re-read the entire cache, and go ahead and update all sections. */
3498
3499 void
3500 simple_overlay_update (struct obj_section *osect)
3501 {
3502 struct objfile *objfile;
3503
3504 /* Were we given an osect to look up? NULL means do all of them. */
3505 if (osect)
3506 /* Have we got a cached copy of the target's overlay table? */
3507 if (cache_ovly_table != NULL)
3508 {
3509 /* Does its cached location match what's currently in the
3510 symtab? */
3511 struct bound_minimal_symbol minsym
3512 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3513
3514 if (minsym.minsym == NULL)
3515 error (_("Error reading inferior's overlay table: couldn't "
3516 "find `_ovly_table' array\n"
3517 "in inferior. Use `overlay manual' mode."));
3518
3519 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3520 /* Then go ahead and try to look up this single section in
3521 the cache. */
3522 if (simple_overlay_update_1 (osect))
3523 /* Found it! We're done. */
3524 return;
3525 }
3526
3527 /* Cached table no good: need to read the entire table anew.
3528 Or else we want all the sections, in which case it's actually
3529 more efficient to read the whole table in one block anyway. */
3530
3531 if (! simple_read_overlay_table ())
3532 return;
3533
3534 /* Now may as well update all sections, even if only one was requested. */
3535 ALL_OBJSECTIONS (objfile, osect)
3536 if (section_is_overlay (osect))
3537 {
3538 int i;
3539 asection *bsect = osect->the_bfd_section;
3540
3541 for (i = 0; i < cache_novlys; i++)
3542 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3543 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3544 { /* obj_section matches i'th entry in ovly_table. */
3545 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3546 break; /* finished with inner for loop: break out. */
3547 }
3548 }
3549 }
3550
3551 /* Set the output sections and output offsets for section SECTP in
3552 ABFD. The relocation code in BFD will read these offsets, so we
3553 need to be sure they're initialized. We map each section to itself,
3554 with no offset; this means that SECTP->vma will be honored. */
3555
3556 static void
3557 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3558 {
3559 sectp->output_section = sectp;
3560 sectp->output_offset = 0;
3561 }
3562
3563 /* Default implementation for sym_relocate. */
3564
3565 bfd_byte *
3566 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3567 bfd_byte *buf)
3568 {
3569 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3570 DWO file. */
3571 bfd *abfd = sectp->owner;
3572
3573 /* We're only interested in sections with relocation
3574 information. */
3575 if ((sectp->flags & SEC_RELOC) == 0)
3576 return NULL;
3577
3578 /* We will handle section offsets properly elsewhere, so relocate as if
3579 all sections begin at 0. */
3580 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3581
3582 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3583 }
3584
3585 /* Relocate the contents of a debug section SECTP in ABFD. The
3586 contents are stored in BUF if it is non-NULL, or returned in a
3587 malloc'd buffer otherwise.
3588
3589 For some platforms and debug info formats, shared libraries contain
3590 relocations against the debug sections (particularly for DWARF-2;
3591 one affected platform is PowerPC GNU/Linux, although it depends on
3592 the version of the linker in use). Also, ELF object files naturally
3593 have unresolved relocations for their debug sections. We need to apply
3594 the relocations in order to get the locations of symbols correct.
3595 Another example that may require relocation processing, is the
3596 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3597 debug section. */
3598
3599 bfd_byte *
3600 symfile_relocate_debug_section (struct objfile *objfile,
3601 asection *sectp, bfd_byte *buf)
3602 {
3603 gdb_assert (objfile->sf->sym_relocate);
3604
3605 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3606 }
3607
3608 struct symfile_segment_data *
3609 get_symfile_segment_data (bfd *abfd)
3610 {
3611 const struct sym_fns *sf = find_sym_fns (abfd);
3612
3613 if (sf == NULL)
3614 return NULL;
3615
3616 return sf->sym_segments (abfd);
3617 }
3618
3619 void
3620 free_symfile_segment_data (struct symfile_segment_data *data)
3621 {
3622 xfree (data->segment_bases);
3623 xfree (data->segment_sizes);
3624 xfree (data->segment_info);
3625 xfree (data);
3626 }
3627
3628 /* Given:
3629 - DATA, containing segment addresses from the object file ABFD, and
3630 the mapping from ABFD's sections onto the segments that own them,
3631 and
3632 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3633 segment addresses reported by the target,
3634 store the appropriate offsets for each section in OFFSETS.
3635
3636 If there are fewer entries in SEGMENT_BASES than there are segments
3637 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3638
3639 If there are more entries, then ignore the extra. The target may
3640 not be able to distinguish between an empty data segment and a
3641 missing data segment; a missing text segment is less plausible. */
3642
3643 int
3644 symfile_map_offsets_to_segments (bfd *abfd,
3645 const struct symfile_segment_data *data,
3646 struct section_offsets *offsets,
3647 int num_segment_bases,
3648 const CORE_ADDR *segment_bases)
3649 {
3650 int i;
3651 asection *sect;
3652
3653 /* It doesn't make sense to call this function unless you have some
3654 segment base addresses. */
3655 gdb_assert (num_segment_bases > 0);
3656
3657 /* If we do not have segment mappings for the object file, we
3658 can not relocate it by segments. */
3659 gdb_assert (data != NULL);
3660 gdb_assert (data->num_segments > 0);
3661
3662 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3663 {
3664 int which = data->segment_info[i];
3665
3666 gdb_assert (0 <= which && which <= data->num_segments);
3667
3668 /* Don't bother computing offsets for sections that aren't
3669 loaded as part of any segment. */
3670 if (! which)
3671 continue;
3672
3673 /* Use the last SEGMENT_BASES entry as the address of any extra
3674 segments mentioned in DATA->segment_info. */
3675 if (which > num_segment_bases)
3676 which = num_segment_bases;
3677
3678 offsets->offsets[i] = (segment_bases[which - 1]
3679 - data->segment_bases[which - 1]);
3680 }
3681
3682 return 1;
3683 }
3684
3685 static void
3686 symfile_find_segment_sections (struct objfile *objfile)
3687 {
3688 bfd *abfd = objfile->obfd;
3689 int i;
3690 asection *sect;
3691 struct symfile_segment_data *data;
3692
3693 data = get_symfile_segment_data (objfile->obfd);
3694 if (data == NULL)
3695 return;
3696
3697 if (data->num_segments != 1 && data->num_segments != 2)
3698 {
3699 free_symfile_segment_data (data);
3700 return;
3701 }
3702
3703 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3704 {
3705 int which = data->segment_info[i];
3706
3707 if (which == 1)
3708 {
3709 if (objfile->sect_index_text == -1)
3710 objfile->sect_index_text = sect->index;
3711
3712 if (objfile->sect_index_rodata == -1)
3713 objfile->sect_index_rodata = sect->index;
3714 }
3715 else if (which == 2)
3716 {
3717 if (objfile->sect_index_data == -1)
3718 objfile->sect_index_data = sect->index;
3719
3720 if (objfile->sect_index_bss == -1)
3721 objfile->sect_index_bss = sect->index;
3722 }
3723 }
3724
3725 free_symfile_segment_data (data);
3726 }
3727
3728 /* Listen for free_objfile events. */
3729
3730 static void
3731 symfile_free_objfile (struct objfile *objfile)
3732 {
3733 /* Remove the target sections owned by this objfile. */
3734 if (objfile != NULL)
3735 remove_target_sections ((void *) objfile);
3736 }
3737
3738 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3739 Expand all symtabs that match the specified criteria.
3740 See quick_symbol_functions.expand_symtabs_matching for details. */
3741
3742 void
3743 expand_symtabs_matching
3744 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3745 const lookup_name_info &lookup_name,
3746 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3747 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3748 enum search_domain kind)
3749 {
3750 struct objfile *objfile;
3751
3752 ALL_OBJFILES (objfile)
3753 {
3754 if (objfile->sf)
3755 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3756 lookup_name,
3757 symbol_matcher,
3758 expansion_notify, kind);
3759 }
3760 }
3761
3762 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3763 Map function FUN over every file.
3764 See quick_symbol_functions.map_symbol_filenames for details. */
3765
3766 void
3767 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3768 int need_fullname)
3769 {
3770 struct objfile *objfile;
3771
3772 ALL_OBJFILES (objfile)
3773 {
3774 if (objfile->sf)
3775 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3776 need_fullname);
3777 }
3778 }
3779
3780 #if GDB_SELF_TEST
3781
3782 namespace selftests {
3783 namespace filename_language {
3784
3785 static void test_filename_language ()
3786 {
3787 /* This test messes up the filename_language_table global. */
3788 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3789
3790 /* Test deducing an unknown extension. */
3791 language lang = deduce_language_from_filename ("myfile.blah");
3792 SELF_CHECK (lang == language_unknown);
3793
3794 /* Test deducing a known extension. */
3795 lang = deduce_language_from_filename ("myfile.c");
3796 SELF_CHECK (lang == language_c);
3797
3798 /* Test adding a new extension using the internal API. */
3799 add_filename_language (".blah", language_pascal);
3800 lang = deduce_language_from_filename ("myfile.blah");
3801 SELF_CHECK (lang == language_pascal);
3802 }
3803
3804 static void
3805 test_set_ext_lang_command ()
3806 {
3807 /* This test messes up the filename_language_table global. */
3808 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3809
3810 /* Confirm that the .hello extension is not known. */
3811 language lang = deduce_language_from_filename ("cake.hello");
3812 SELF_CHECK (lang == language_unknown);
3813
3814 /* Test adding a new extension using the CLI command. */
3815 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3816 ext_args = args_holder.get ();
3817 set_ext_lang_command (NULL, 1, NULL);
3818
3819 lang = deduce_language_from_filename ("cake.hello");
3820 SELF_CHECK (lang == language_rust);
3821
3822 /* Test overriding an existing extension using the CLI command. */
3823 int size_before = filename_language_table.size ();
3824 args_holder.reset (xstrdup (".hello pascal"));
3825 ext_args = args_holder.get ();
3826 set_ext_lang_command (NULL, 1, NULL);
3827 int size_after = filename_language_table.size ();
3828
3829 lang = deduce_language_from_filename ("cake.hello");
3830 SELF_CHECK (lang == language_pascal);
3831 SELF_CHECK (size_before == size_after);
3832 }
3833
3834 } /* namespace filename_language */
3835 } /* namespace selftests */
3836
3837 #endif /* GDB_SELF_TEST */
3838
3839 void
3840 _initialize_symfile (void)
3841 {
3842 struct cmd_list_element *c;
3843
3844 gdb::observers::free_objfile.attach (symfile_free_objfile);
3845
3846 #define READNOW_READNEVER_HELP \
3847 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3848 immediately. This makes the command slower, but may make future operations\n\
3849 faster.\n\
3850 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3851 symbolic debug information."
3852
3853 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3854 Load symbol table from executable file FILE.\n\
3855 Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3856 OFF is an optional offset which is added to each section address.\n\
3857 The `file' command can also load symbol tables, as well as setting the file\n\
3858 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3859 set_cmd_completer (c, filename_completer);
3860
3861 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3862 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3863 Usage: add-symbol-file FILE [-readnow | -readnever] [-o OFF] [ADDR] \
3864 [-s SECT-NAME SECT-ADDR]...\n\
3865 ADDR is the starting address of the file's text.\n\
3866 Each '-s' argument provides a section name and address, and\n\
3867 should be specified if the data and bss segments are not contiguous\n\
3868 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n\
3869 OFF is an optional offset which is added to the default load addresses\n\
3870 of all sections for which no other address was specified.\n"
3871 READNOW_READNEVER_HELP),
3872 &cmdlist);
3873 set_cmd_completer (c, filename_completer);
3874
3875 c = add_cmd ("remove-symbol-file", class_files,
3876 remove_symbol_file_command, _("\
3877 Remove a symbol file added via the add-symbol-file command.\n\
3878 Usage: remove-symbol-file FILENAME\n\
3879 remove-symbol-file -a ADDRESS\n\
3880 The file to remove can be identified by its filename or by an address\n\
3881 that lies within the boundaries of this symbol file in memory."),
3882 &cmdlist);
3883
3884 c = add_cmd ("load", class_files, load_command, _("\
3885 Dynamically load FILE into the running program, and record its symbols\n\
3886 for access from GDB.\n\
3887 Usage: load [FILE] [OFFSET]\n\
3888 An optional load OFFSET may also be given as a literal address.\n\
3889 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3890 on its own."), &cmdlist);
3891 set_cmd_completer (c, filename_completer);
3892
3893 add_prefix_cmd ("overlay", class_support, overlay_command,
3894 _("Commands for debugging overlays."), &overlaylist,
3895 "overlay ", 0, &cmdlist);
3896
3897 add_com_alias ("ovly", "overlay", class_alias, 1);
3898 add_com_alias ("ov", "overlay", class_alias, 1);
3899
3900 add_cmd ("map-overlay", class_support, map_overlay_command,
3901 _("Assert that an overlay section is mapped."), &overlaylist);
3902
3903 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3904 _("Assert that an overlay section is unmapped."), &overlaylist);
3905
3906 add_cmd ("list-overlays", class_support, list_overlays_command,
3907 _("List mappings of overlay sections."), &overlaylist);
3908
3909 add_cmd ("manual", class_support, overlay_manual_command,
3910 _("Enable overlay debugging."), &overlaylist);
3911 add_cmd ("off", class_support, overlay_off_command,
3912 _("Disable overlay debugging."), &overlaylist);
3913 add_cmd ("auto", class_support, overlay_auto_command,
3914 _("Enable automatic overlay debugging."), &overlaylist);
3915 add_cmd ("load-target", class_support, overlay_load_command,
3916 _("Read the overlay mapping state from the target."), &overlaylist);
3917
3918 /* Filename extension to source language lookup table: */
3919 add_setshow_string_noescape_cmd ("extension-language", class_files,
3920 &ext_args, _("\
3921 Set mapping between filename extension and source language."), _("\
3922 Show mapping between filename extension and source language."), _("\
3923 Usage: set extension-language .foo bar"),
3924 set_ext_lang_command,
3925 show_ext_args,
3926 &setlist, &showlist);
3927
3928 add_info ("extensions", info_ext_lang_command,
3929 _("All filename extensions associated with a source language."));
3930
3931 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3932 &debug_file_directory, _("\
3933 Set the directories where separate debug symbols are searched for."), _("\
3934 Show the directories where separate debug symbols are searched for."), _("\
3935 Separate debug symbols are first searched for in the same\n\
3936 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3937 and lastly at the path of the directory of the binary with\n\
3938 each global debug-file-directory component prepended."),
3939 NULL,
3940 show_debug_file_directory,
3941 &setlist, &showlist);
3942
3943 add_setshow_enum_cmd ("symbol-loading", no_class,
3944 print_symbol_loading_enums, &print_symbol_loading,
3945 _("\
3946 Set printing of symbol loading messages."), _("\
3947 Show printing of symbol loading messages."), _("\
3948 off == turn all messages off\n\
3949 brief == print messages for the executable,\n\
3950 and brief messages for shared libraries\n\
3951 full == print messages for the executable,\n\
3952 and messages for each shared library."),
3953 NULL,
3954 NULL,
3955 &setprintlist, &showprintlist);
3956
3957 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3958 &separate_debug_file_debug, _("\
3959 Set printing of separate debug info file search debug."), _("\
3960 Show printing of separate debug info file search debug."), _("\
3961 When on, GDB prints the searched locations while looking for separate debug \
3962 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3963
3964 #if GDB_SELF_TEST
3965 selftests::register_test
3966 ("filename_language", selftests::filename_language::test_filename_language);
3967 selftests::register_test
3968 ("set_ext_lang_command",
3969 selftests::filename_language::test_set_ext_lang_command);
3970 #endif
3971 }
This page took 0.167098 seconds and 3 git commands to generate.