2004-04-08 Roland McGrath <roland@redhat.com>
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h" /* for write_pc */
42 #include "filenames.h" /* for DOSish file names */
43 #include "gdb-stabs.h"
44 #include "gdb_obstack.h"
45 #include "completer.h"
46 #include "bcache.h"
47 #include "hashtab.h"
48 #include "readline/readline.h"
49 #include "gdb_assert.h"
50 #include "block.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include <time.h>
58
59 #ifndef O_BINARY
60 #define O_BINARY 0
61 #endif
62
63 #ifdef HPUXHPPA
64
65 /* Some HP-UX related globals to clear when a new "main"
66 symbol file is loaded. HP-specific. */
67
68 extern int hp_cxx_exception_support_initialized;
69 #define RESET_HP_UX_GLOBALS() do {\
70 deprecated_hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
71 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
72 } while (0)
73 #endif
74
75 int (*ui_load_progress_hook) (const char *section, unsigned long num);
76 void (*show_load_progress) (const char *section,
77 unsigned long section_sent,
78 unsigned long section_size,
79 unsigned long total_sent,
80 unsigned long total_size);
81 void (*pre_add_symbol_hook) (const char *);
82 void (*post_add_symbol_hook) (void);
83 void (*target_new_objfile_hook) (struct objfile *);
84
85 static void clear_symtab_users_cleanup (void *ignore);
86
87 /* Global variables owned by this file */
88 int readnow_symbol_files; /* Read full symbols immediately */
89
90 /* External variables and functions referenced. */
91
92 extern void report_transfer_performance (unsigned long, time_t, time_t);
93
94 /* Functions this file defines */
95
96 #if 0
97 static int simple_read_overlay_region_table (void);
98 static void simple_free_overlay_region_table (void);
99 #endif
100
101 static void set_initial_language (void);
102
103 static void load_command (char *, int);
104
105 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
106
107 static void add_symbol_file_command (char *, int);
108
109 static void add_shared_symbol_files_command (char *, int);
110
111 static void reread_separate_symbols (struct objfile *objfile);
112
113 static void cashier_psymtab (struct partial_symtab *);
114
115 bfd *symfile_bfd_open (char *);
116
117 int get_section_index (struct objfile *, char *);
118
119 static void find_sym_fns (struct objfile *);
120
121 static void decrement_reading_symtab (void *);
122
123 static void overlay_invalidate_all (void);
124
125 static int overlay_is_mapped (struct obj_section *);
126
127 void list_overlays_command (char *, int);
128
129 void map_overlay_command (char *, int);
130
131 void unmap_overlay_command (char *, int);
132
133 static void overlay_auto_command (char *, int);
134
135 static void overlay_manual_command (char *, int);
136
137 static void overlay_off_command (char *, int);
138
139 static void overlay_load_command (char *, int);
140
141 static void overlay_command (char *, int);
142
143 static void simple_free_overlay_table (void);
144
145 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
146
147 static int simple_read_overlay_table (void);
148
149 static int simple_overlay_update_1 (struct obj_section *);
150
151 static void add_filename_language (char *ext, enum language lang);
152
153 static void set_ext_lang_command (char *args, int from_tty);
154
155 static void info_ext_lang_command (char *args, int from_tty);
156
157 static char *find_separate_debug_file (struct objfile *objfile);
158
159 static void init_filename_language_table (void);
160
161 void _initialize_symfile (void);
162
163 /* List of all available sym_fns. On gdb startup, each object file reader
164 calls add_symtab_fns() to register information on each format it is
165 prepared to read. */
166
167 static struct sym_fns *symtab_fns = NULL;
168
169 /* Flag for whether user will be reloading symbols multiple times.
170 Defaults to ON for VxWorks, otherwise OFF. */
171
172 #ifdef SYMBOL_RELOADING_DEFAULT
173 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
174 #else
175 int symbol_reloading = 0;
176 #endif
177
178 /* If non-zero, shared library symbols will be added automatically
179 when the inferior is created, new libraries are loaded, or when
180 attaching to the inferior. This is almost always what users will
181 want to have happen; but for very large programs, the startup time
182 will be excessive, and so if this is a problem, the user can clear
183 this flag and then add the shared library symbols as needed. Note
184 that there is a potential for confusion, since if the shared
185 library symbols are not loaded, commands like "info fun" will *not*
186 report all the functions that are actually present. */
187
188 int auto_solib_add = 1;
189
190 /* For systems that support it, a threshold size in megabytes. If
191 automatically adding a new library's symbol table to those already
192 known to the debugger would cause the total shared library symbol
193 size to exceed this threshhold, then the shlib's symbols are not
194 added. The threshold is ignored if the user explicitly asks for a
195 shlib to be added, such as when using the "sharedlibrary"
196 command. */
197
198 int auto_solib_limit;
199 \f
200
201 /* This compares two partial symbols by names, using strcmp_iw_ordered
202 for the comparison. */
203
204 static int
205 compare_psymbols (const void *s1p, const void *s2p)
206 {
207 struct partial_symbol *const *s1 = s1p;
208 struct partial_symbol *const *s2 = s2p;
209
210 return strcmp_iw_ordered (SYMBOL_NATURAL_NAME (*s1),
211 SYMBOL_NATURAL_NAME (*s2));
212 }
213
214 void
215 sort_pst_symbols (struct partial_symtab *pst)
216 {
217 /* Sort the global list; don't sort the static list */
218
219 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
220 pst->n_global_syms, sizeof (struct partial_symbol *),
221 compare_psymbols);
222 }
223
224 /* Make a null terminated copy of the string at PTR with SIZE characters in
225 the obstack pointed to by OBSTACKP . Returns the address of the copy.
226 Note that the string at PTR does not have to be null terminated, I.E. it
227 may be part of a larger string and we are only saving a substring. */
228
229 char *
230 obsavestring (const char *ptr, int size, struct obstack *obstackp)
231 {
232 char *p = (char *) obstack_alloc (obstackp, size + 1);
233 /* Open-coded memcpy--saves function call time. These strings are usually
234 short. FIXME: Is this really still true with a compiler that can
235 inline memcpy? */
236 {
237 const char *p1 = ptr;
238 char *p2 = p;
239 const char *end = ptr + size;
240 while (p1 != end)
241 *p2++ = *p1++;
242 }
243 p[size] = 0;
244 return p;
245 }
246
247 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
248 in the obstack pointed to by OBSTACKP. */
249
250 char *
251 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
252 const char *s3)
253 {
254 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
255 char *val = (char *) obstack_alloc (obstackp, len);
256 strcpy (val, s1);
257 strcat (val, s2);
258 strcat (val, s3);
259 return val;
260 }
261
262 /* True if we are nested inside psymtab_to_symtab. */
263
264 int currently_reading_symtab = 0;
265
266 static void
267 decrement_reading_symtab (void *dummy)
268 {
269 currently_reading_symtab--;
270 }
271
272 /* Get the symbol table that corresponds to a partial_symtab.
273 This is fast after the first time you do it. In fact, there
274 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
275 case inline. */
276
277 struct symtab *
278 psymtab_to_symtab (struct partial_symtab *pst)
279 {
280 /* If it's been looked up before, return it. */
281 if (pst->symtab)
282 return pst->symtab;
283
284 /* If it has not yet been read in, read it. */
285 if (!pst->readin)
286 {
287 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
288 currently_reading_symtab++;
289 (*pst->read_symtab) (pst);
290 do_cleanups (back_to);
291 }
292
293 return pst->symtab;
294 }
295
296 /* Remember the lowest-addressed loadable section we've seen.
297 This function is called via bfd_map_over_sections.
298
299 In case of equal vmas, the section with the largest size becomes the
300 lowest-addressed loadable section.
301
302 If the vmas and sizes are equal, the last section is considered the
303 lowest-addressed loadable section. */
304
305 void
306 find_lowest_section (bfd *abfd, asection *sect, void *obj)
307 {
308 asection **lowest = (asection **) obj;
309
310 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
311 return;
312 if (!*lowest)
313 *lowest = sect; /* First loadable section */
314 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
315 *lowest = sect; /* A lower loadable section */
316 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
317 && (bfd_section_size (abfd, (*lowest))
318 <= bfd_section_size (abfd, sect)))
319 *lowest = sect;
320 }
321
322 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
323
324 struct section_addr_info *
325 alloc_section_addr_info (size_t num_sections)
326 {
327 struct section_addr_info *sap;
328 size_t size;
329
330 size = (sizeof (struct section_addr_info)
331 + sizeof (struct other_sections) * (num_sections - 1));
332 sap = (struct section_addr_info *) xmalloc (size);
333 memset (sap, 0, size);
334 sap->num_sections = num_sections;
335
336 return sap;
337 }
338
339 /* Build (allocate and populate) a section_addr_info struct from
340 an existing section table. */
341
342 extern struct section_addr_info *
343 build_section_addr_info_from_section_table (const struct section_table *start,
344 const struct section_table *end)
345 {
346 struct section_addr_info *sap;
347 const struct section_table *stp;
348 int oidx;
349
350 sap = alloc_section_addr_info (end - start);
351
352 for (stp = start, oidx = 0; stp != end; stp++)
353 {
354 if (bfd_get_section_flags (stp->bfd,
355 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
356 && oidx < end - start)
357 {
358 sap->other[oidx].addr = stp->addr;
359 sap->other[oidx].name
360 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
361 sap->other[oidx].sectindex = stp->the_bfd_section->index;
362 oidx++;
363 }
364 }
365
366 return sap;
367 }
368
369
370 /* Free all memory allocated by build_section_addr_info_from_section_table. */
371
372 extern void
373 free_section_addr_info (struct section_addr_info *sap)
374 {
375 int idx;
376
377 for (idx = 0; idx < sap->num_sections; idx++)
378 if (sap->other[idx].name)
379 xfree (sap->other[idx].name);
380 xfree (sap);
381 }
382
383
384 /* Initialize OBJFILE's sect_index_* members. */
385 static void
386 init_objfile_sect_indices (struct objfile *objfile)
387 {
388 asection *sect;
389 int i;
390
391 sect = bfd_get_section_by_name (objfile->obfd, ".text");
392 if (sect)
393 objfile->sect_index_text = sect->index;
394
395 sect = bfd_get_section_by_name (objfile->obfd, ".data");
396 if (sect)
397 objfile->sect_index_data = sect->index;
398
399 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
400 if (sect)
401 objfile->sect_index_bss = sect->index;
402
403 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
404 if (sect)
405 objfile->sect_index_rodata = sect->index;
406
407 /* This is where things get really weird... We MUST have valid
408 indices for the various sect_index_* members or gdb will abort.
409 So if for example, there is no ".text" section, we have to
410 accomodate that. Except when explicitly adding symbol files at
411 some address, section_offsets contains nothing but zeros, so it
412 doesn't matter which slot in section_offsets the individual
413 sect_index_* members index into. So if they are all zero, it is
414 safe to just point all the currently uninitialized indices to the
415 first slot. */
416
417 for (i = 0; i < objfile->num_sections; i++)
418 {
419 if (ANOFFSET (objfile->section_offsets, i) != 0)
420 {
421 break;
422 }
423 }
424 if (i == objfile->num_sections)
425 {
426 if (objfile->sect_index_text == -1)
427 objfile->sect_index_text = 0;
428 if (objfile->sect_index_data == -1)
429 objfile->sect_index_data = 0;
430 if (objfile->sect_index_bss == -1)
431 objfile->sect_index_bss = 0;
432 if (objfile->sect_index_rodata == -1)
433 objfile->sect_index_rodata = 0;
434 }
435 }
436
437
438 /* Parse the user's idea of an offset for dynamic linking, into our idea
439 of how to represent it for fast symbol reading. This is the default
440 version of the sym_fns.sym_offsets function for symbol readers that
441 don't need to do anything special. It allocates a section_offsets table
442 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
443
444 void
445 default_symfile_offsets (struct objfile *objfile,
446 struct section_addr_info *addrs)
447 {
448 int i;
449
450 objfile->num_sections = bfd_count_sections (objfile->obfd);
451 objfile->section_offsets = (struct section_offsets *)
452 obstack_alloc (&objfile->objfile_obstack,
453 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
454 memset (objfile->section_offsets, 0,
455 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
456
457 /* Now calculate offsets for section that were specified by the
458 caller. */
459 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
460 {
461 struct other_sections *osp ;
462
463 osp = &addrs->other[i] ;
464 if (osp->addr == 0)
465 continue;
466
467 /* Record all sections in offsets */
468 /* The section_offsets in the objfile are here filled in using
469 the BFD index. */
470 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
471 }
472
473 /* Remember the bfd indexes for the .text, .data, .bss and
474 .rodata sections. */
475 init_objfile_sect_indices (objfile);
476 }
477
478
479 /* Process a symbol file, as either the main file or as a dynamically
480 loaded file.
481
482 OBJFILE is where the symbols are to be read from.
483
484 ADDRS is the list of section load addresses. If the user has given
485 an 'add-symbol-file' command, then this is the list of offsets and
486 addresses he or she provided as arguments to the command; or, if
487 we're handling a shared library, these are the actual addresses the
488 sections are loaded at, according to the inferior's dynamic linker
489 (as gleaned by GDB's shared library code). We convert each address
490 into an offset from the section VMA's as it appears in the object
491 file, and then call the file's sym_offsets function to convert this
492 into a format-specific offset table --- a `struct section_offsets'.
493 If ADDRS is non-zero, OFFSETS must be zero.
494
495 OFFSETS is a table of section offsets already in the right
496 format-specific representation. NUM_OFFSETS is the number of
497 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
498 assume this is the proper table the call to sym_offsets described
499 above would produce. Instead of calling sym_offsets, we just dump
500 it right into objfile->section_offsets. (When we're re-reading
501 symbols from an objfile, we don't have the original load address
502 list any more; all we have is the section offset table.) If
503 OFFSETS is non-zero, ADDRS must be zero.
504
505 MAINLINE is nonzero if this is the main symbol file, or zero if
506 it's an extra symbol file such as dynamically loaded code.
507
508 VERBO is nonzero if the caller has printed a verbose message about
509 the symbol reading (and complaints can be more terse about it). */
510
511 void
512 syms_from_objfile (struct objfile *objfile,
513 struct section_addr_info *addrs,
514 struct section_offsets *offsets,
515 int num_offsets,
516 int mainline,
517 int verbo)
518 {
519 struct section_addr_info *local_addr = NULL;
520 struct cleanup *old_chain;
521
522 gdb_assert (! (addrs && offsets));
523
524 init_entry_point_info (objfile);
525 find_sym_fns (objfile);
526
527 if (objfile->sf == NULL)
528 return; /* No symbols. */
529
530 /* Make sure that partially constructed symbol tables will be cleaned up
531 if an error occurs during symbol reading. */
532 old_chain = make_cleanup_free_objfile (objfile);
533
534 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
535 list. We now establish the convention that an addr of zero means
536 no load address was specified. */
537 if (! addrs && ! offsets)
538 {
539 local_addr
540 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
541 make_cleanup (xfree, local_addr);
542 addrs = local_addr;
543 }
544
545 /* Now either addrs or offsets is non-zero. */
546
547 if (mainline)
548 {
549 /* We will modify the main symbol table, make sure that all its users
550 will be cleaned up if an error occurs during symbol reading. */
551 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
552
553 /* Since no error yet, throw away the old symbol table. */
554
555 if (symfile_objfile != NULL)
556 {
557 free_objfile (symfile_objfile);
558 symfile_objfile = NULL;
559 }
560
561 /* Currently we keep symbols from the add-symbol-file command.
562 If the user wants to get rid of them, they should do "symbol-file"
563 without arguments first. Not sure this is the best behavior
564 (PR 2207). */
565
566 (*objfile->sf->sym_new_init) (objfile);
567 }
568
569 /* Convert addr into an offset rather than an absolute address.
570 We find the lowest address of a loaded segment in the objfile,
571 and assume that <addr> is where that got loaded.
572
573 We no longer warn if the lowest section is not a text segment (as
574 happens for the PA64 port. */
575 if (!mainline && addrs && addrs->other[0].name)
576 {
577 asection *lower_sect;
578 asection *sect;
579 CORE_ADDR lower_offset;
580 int i;
581
582 /* Find lowest loadable section to be used as starting point for
583 continguous sections. FIXME!! won't work without call to find
584 .text first, but this assumes text is lowest section. */
585 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
586 if (lower_sect == NULL)
587 bfd_map_over_sections (objfile->obfd, find_lowest_section,
588 &lower_sect);
589 if (lower_sect == NULL)
590 warning ("no loadable sections found in added symbol-file %s",
591 objfile->name);
592 else
593 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
594 warning ("Lowest section in %s is %s at %s",
595 objfile->name,
596 bfd_section_name (objfile->obfd, lower_sect),
597 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
598 if (lower_sect != NULL)
599 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
600 else
601 lower_offset = 0;
602
603 /* Calculate offsets for the loadable sections.
604 FIXME! Sections must be in order of increasing loadable section
605 so that contiguous sections can use the lower-offset!!!
606
607 Adjust offsets if the segments are not contiguous.
608 If the section is contiguous, its offset should be set to
609 the offset of the highest loadable section lower than it
610 (the loadable section directly below it in memory).
611 this_offset = lower_offset = lower_addr - lower_orig_addr */
612
613 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
614 {
615 if (addrs->other[i].addr != 0)
616 {
617 sect = bfd_get_section_by_name (objfile->obfd,
618 addrs->other[i].name);
619 if (sect)
620 {
621 addrs->other[i].addr
622 -= bfd_section_vma (objfile->obfd, sect);
623 lower_offset = addrs->other[i].addr;
624 /* This is the index used by BFD. */
625 addrs->other[i].sectindex = sect->index ;
626 }
627 else
628 {
629 warning ("section %s not found in %s",
630 addrs->other[i].name,
631 objfile->name);
632 addrs->other[i].addr = 0;
633 }
634 }
635 else
636 addrs->other[i].addr = lower_offset;
637 }
638 }
639
640 /* Initialize symbol reading routines for this objfile, allow complaints to
641 appear for this new file, and record how verbose to be, then do the
642 initial symbol reading for this file. */
643
644 (*objfile->sf->sym_init) (objfile);
645 clear_complaints (&symfile_complaints, 1, verbo);
646
647 if (addrs)
648 (*objfile->sf->sym_offsets) (objfile, addrs);
649 else
650 {
651 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
652
653 /* Just copy in the offset table directly as given to us. */
654 objfile->num_sections = num_offsets;
655 objfile->section_offsets
656 = ((struct section_offsets *)
657 obstack_alloc (&objfile->objfile_obstack, size));
658 memcpy (objfile->section_offsets, offsets, size);
659
660 init_objfile_sect_indices (objfile);
661 }
662
663 #ifndef DEPRECATED_IBM6000_TARGET
664 /* This is a SVR4/SunOS specific hack, I think. In any event, it
665 screws RS/6000. sym_offsets should be doing this sort of thing,
666 because it knows the mapping between bfd sections and
667 section_offsets. */
668 /* This is a hack. As far as I can tell, section offsets are not
669 target dependent. They are all set to addr with a couple of
670 exceptions. The exceptions are sysvr4 shared libraries, whose
671 offsets are kept in solib structures anyway and rs6000 xcoff
672 which handles shared libraries in a completely unique way.
673
674 Section offsets are built similarly, except that they are built
675 by adding addr in all cases because there is no clear mapping
676 from section_offsets into actual sections. Note that solib.c
677 has a different algorithm for finding section offsets.
678
679 These should probably all be collapsed into some target
680 independent form of shared library support. FIXME. */
681
682 if (addrs)
683 {
684 struct obj_section *s;
685
686 /* Map section offsets in "addr" back to the object's
687 sections by comparing the section names with bfd's
688 section names. Then adjust the section address by
689 the offset. */ /* for gdb/13815 */
690
691 ALL_OBJFILE_OSECTIONS (objfile, s)
692 {
693 CORE_ADDR s_addr = 0;
694 int i;
695
696 for (i = 0;
697 !s_addr && i < addrs->num_sections && addrs->other[i].name;
698 i++)
699 if (strcmp (bfd_section_name (s->objfile->obfd,
700 s->the_bfd_section),
701 addrs->other[i].name) == 0)
702 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
703
704 s->addr -= s->offset;
705 s->addr += s_addr;
706 s->endaddr -= s->offset;
707 s->endaddr += s_addr;
708 s->offset += s_addr;
709 }
710 }
711 #endif /* not DEPRECATED_IBM6000_TARGET */
712
713 (*objfile->sf->sym_read) (objfile, mainline);
714
715 /* Don't allow char * to have a typename (else would get caddr_t).
716 Ditto void *. FIXME: Check whether this is now done by all the
717 symbol readers themselves (many of them now do), and if so remove
718 it from here. */
719
720 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
721 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
722
723 /* Mark the objfile has having had initial symbol read attempted. Note
724 that this does not mean we found any symbols... */
725
726 objfile->flags |= OBJF_SYMS;
727
728 /* Discard cleanups as symbol reading was successful. */
729
730 discard_cleanups (old_chain);
731 }
732
733 /* Perform required actions after either reading in the initial
734 symbols for a new objfile, or mapping in the symbols from a reusable
735 objfile. */
736
737 void
738 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
739 {
740
741 /* If this is the main symbol file we have to clean up all users of the
742 old main symbol file. Otherwise it is sufficient to fixup all the
743 breakpoints that may have been redefined by this symbol file. */
744 if (mainline)
745 {
746 /* OK, make it the "real" symbol file. */
747 symfile_objfile = objfile;
748
749 clear_symtab_users ();
750 }
751 else
752 {
753 breakpoint_re_set ();
754 }
755
756 /* We're done reading the symbol file; finish off complaints. */
757 clear_complaints (&symfile_complaints, 0, verbo);
758 }
759
760 /* Process a symbol file, as either the main file or as a dynamically
761 loaded file.
762
763 ABFD is a BFD already open on the file, as from symfile_bfd_open.
764 This BFD will be closed on error, and is always consumed by this function.
765
766 FROM_TTY says how verbose to be.
767
768 MAINLINE specifies whether this is the main symbol file, or whether
769 it's an extra symbol file such as dynamically loaded code.
770
771 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
772 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
773 non-zero.
774
775 Upon success, returns a pointer to the objfile that was added.
776 Upon failure, jumps back to command level (never returns). */
777 static struct objfile *
778 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
779 struct section_addr_info *addrs,
780 struct section_offsets *offsets,
781 int num_offsets,
782 int mainline, int flags)
783 {
784 struct objfile *objfile;
785 struct partial_symtab *psymtab;
786 char *debugfile;
787 struct section_addr_info *orig_addrs;
788 struct cleanup *my_cleanups;
789 const char *name = bfd_get_filename (abfd);
790
791 my_cleanups = make_cleanup_bfd_close (abfd);
792
793 /* Give user a chance to burp if we'd be
794 interactively wiping out any existing symbols. */
795
796 if ((have_full_symbols () || have_partial_symbols ())
797 && mainline
798 && from_tty
799 && !query ("Load new symbol table from \"%s\"? ", name))
800 error ("Not confirmed.");
801
802 objfile = allocate_objfile (abfd, flags);
803 discard_cleanups (my_cleanups);
804
805 orig_addrs = alloc_section_addr_info (bfd_count_sections (abfd));
806 my_cleanups = make_cleanup (xfree, orig_addrs);
807 if (addrs)
808 {
809 int i;
810 orig_addrs->num_sections = addrs->num_sections;
811 for (i = 0; i < addrs->num_sections; i++)
812 orig_addrs->other[i] = addrs->other[i];
813 }
814
815 /* We either created a new mapped symbol table, mapped an existing
816 symbol table file which has not had initial symbol reading
817 performed, or need to read an unmapped symbol table. */
818 if (from_tty || info_verbose)
819 {
820 if (pre_add_symbol_hook)
821 pre_add_symbol_hook (name);
822 else
823 {
824 printf_unfiltered ("Reading symbols from %s...", name);
825 wrap_here ("");
826 gdb_flush (gdb_stdout);
827 }
828 }
829 syms_from_objfile (objfile, addrs, offsets, num_offsets,
830 mainline, from_tty);
831
832 /* We now have at least a partial symbol table. Check to see if the
833 user requested that all symbols be read on initial access via either
834 the gdb startup command line or on a per symbol file basis. Expand
835 all partial symbol tables for this objfile if so. */
836
837 if ((flags & OBJF_READNOW) || readnow_symbol_files)
838 {
839 if (from_tty || info_verbose)
840 {
841 printf_unfiltered ("expanding to full symbols...");
842 wrap_here ("");
843 gdb_flush (gdb_stdout);
844 }
845
846 for (psymtab = objfile->psymtabs;
847 psymtab != NULL;
848 psymtab = psymtab->next)
849 {
850 psymtab_to_symtab (psymtab);
851 }
852 }
853
854 debugfile = find_separate_debug_file (objfile);
855 if (debugfile)
856 {
857 if (addrs != NULL)
858 {
859 objfile->separate_debug_objfile
860 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
861 }
862 else
863 {
864 objfile->separate_debug_objfile
865 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
866 }
867 objfile->separate_debug_objfile->separate_debug_objfile_backlink
868 = objfile;
869
870 /* Put the separate debug object before the normal one, this is so that
871 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
872 put_objfile_before (objfile->separate_debug_objfile, objfile);
873
874 xfree (debugfile);
875 }
876
877 if (!have_partial_symbols () && !have_full_symbols ())
878 {
879 wrap_here ("");
880 printf_unfiltered ("(no debugging symbols found)...");
881 wrap_here ("");
882 }
883
884 if (from_tty || info_verbose)
885 {
886 if (post_add_symbol_hook)
887 post_add_symbol_hook ();
888 else
889 {
890 printf_unfiltered ("done.\n");
891 }
892 }
893
894 /* We print some messages regardless of whether 'from_tty ||
895 info_verbose' is true, so make sure they go out at the right
896 time. */
897 gdb_flush (gdb_stdout);
898
899 do_cleanups (my_cleanups);
900
901 if (objfile->sf == NULL)
902 return objfile; /* No symbols. */
903
904 new_symfile_objfile (objfile, mainline, from_tty);
905
906 if (target_new_objfile_hook)
907 target_new_objfile_hook (objfile);
908
909 return (objfile);
910 }
911
912
913 /* Process a symbol file, as either the main file or as a dynamically
914 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
915 for details. */
916 struct objfile *
917 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
918 int mainline, int flags)
919 {
920 return symbol_file_add_with_addrs_or_offsets (symfile_bfd_open (name),
921 from_tty, addrs, 0, 0,
922 mainline, flags);
923 }
924
925
926 /* Call symbol_file_add() with default values and update whatever is
927 affected by the loading of a new main().
928 Used when the file is supplied in the gdb command line
929 and by some targets with special loading requirements.
930 The auxiliary function, symbol_file_add_main_1(), has the flags
931 argument for the switches that can only be specified in the symbol_file
932 command itself. */
933
934 void
935 symbol_file_add_main (char *args, int from_tty)
936 {
937 symbol_file_add_main_1 (args, from_tty, 0);
938 }
939
940 static void
941 symbol_file_add_main_1 (char *args, int from_tty, int flags)
942 {
943 symbol_file_add (args, from_tty, NULL, 1, flags);
944
945 #ifdef HPUXHPPA
946 RESET_HP_UX_GLOBALS ();
947 #endif
948
949 /* Getting new symbols may change our opinion about
950 what is frameless. */
951 reinit_frame_cache ();
952
953 set_initial_language ();
954 }
955
956 void
957 symbol_file_clear (int from_tty)
958 {
959 if ((have_full_symbols () || have_partial_symbols ())
960 && from_tty
961 && !query ("Discard symbol table from `%s'? ",
962 symfile_objfile->name))
963 error ("Not confirmed.");
964 free_all_objfiles ();
965
966 /* solib descriptors may have handles to objfiles. Since their
967 storage has just been released, we'd better wipe the solib
968 descriptors as well.
969 */
970 #if defined(SOLIB_RESTART)
971 SOLIB_RESTART ();
972 #endif
973
974 symfile_objfile = NULL;
975 if (from_tty)
976 printf_unfiltered ("No symbol file now.\n");
977 #ifdef HPUXHPPA
978 RESET_HP_UX_GLOBALS ();
979 #endif
980 }
981
982 static char *
983 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
984 {
985 asection *sect;
986 bfd_size_type debuglink_size;
987 unsigned long crc32;
988 char *contents;
989 int crc_offset;
990 unsigned char *p;
991
992 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
993
994 if (sect == NULL)
995 return NULL;
996
997 debuglink_size = bfd_section_size (objfile->obfd, sect);
998
999 contents = xmalloc (debuglink_size);
1000 bfd_get_section_contents (objfile->obfd, sect, contents,
1001 (file_ptr)0, (bfd_size_type)debuglink_size);
1002
1003 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1004 crc_offset = strlen (contents) + 1;
1005 crc_offset = (crc_offset + 3) & ~3;
1006
1007 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1008
1009 *crc32_out = crc32;
1010 return contents;
1011 }
1012
1013 static int
1014 separate_debug_file_exists (const char *name, unsigned long crc)
1015 {
1016 unsigned long file_crc = 0;
1017 int fd;
1018 char buffer[8*1024];
1019 int count;
1020
1021 fd = open (name, O_RDONLY | O_BINARY);
1022 if (fd < 0)
1023 return 0;
1024
1025 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1026 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1027
1028 close (fd);
1029
1030 return crc == file_crc;
1031 }
1032
1033 static char *debug_file_directory = NULL;
1034
1035 #if ! defined (DEBUG_SUBDIRECTORY)
1036 #define DEBUG_SUBDIRECTORY ".debug"
1037 #endif
1038
1039 static char *
1040 find_separate_debug_file (struct objfile *objfile)
1041 {
1042 asection *sect;
1043 char *basename;
1044 char *dir;
1045 char *debugfile;
1046 char *name_copy;
1047 bfd_size_type debuglink_size;
1048 unsigned long crc32;
1049 int i;
1050
1051 basename = get_debug_link_info (objfile, &crc32);
1052
1053 if (basename == NULL)
1054 return NULL;
1055
1056 dir = xstrdup (objfile->name);
1057
1058 /* Strip off the final filename part, leaving the directory name,
1059 followed by a slash. Objfile names should always be absolute and
1060 tilde-expanded, so there should always be a slash in there
1061 somewhere. */
1062 for (i = strlen(dir) - 1; i >= 0; i--)
1063 {
1064 if (IS_DIR_SEPARATOR (dir[i]))
1065 break;
1066 }
1067 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1068 dir[i+1] = '\0';
1069
1070 debugfile = alloca (strlen (debug_file_directory) + 1
1071 + strlen (dir)
1072 + strlen (DEBUG_SUBDIRECTORY)
1073 + strlen ("/")
1074 + strlen (basename)
1075 + 1);
1076
1077 /* First try in the same directory as the original file. */
1078 strcpy (debugfile, dir);
1079 strcat (debugfile, basename);
1080
1081 if (separate_debug_file_exists (debugfile, crc32))
1082 {
1083 xfree (basename);
1084 xfree (dir);
1085 return xstrdup (debugfile);
1086 }
1087
1088 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1089 strcpy (debugfile, dir);
1090 strcat (debugfile, DEBUG_SUBDIRECTORY);
1091 strcat (debugfile, "/");
1092 strcat (debugfile, basename);
1093
1094 if (separate_debug_file_exists (debugfile, crc32))
1095 {
1096 xfree (basename);
1097 xfree (dir);
1098 return xstrdup (debugfile);
1099 }
1100
1101 /* Then try in the global debugfile directory. */
1102 strcpy (debugfile, debug_file_directory);
1103 strcat (debugfile, "/");
1104 strcat (debugfile, dir);
1105 strcat (debugfile, basename);
1106
1107 if (separate_debug_file_exists (debugfile, crc32))
1108 {
1109 xfree (basename);
1110 xfree (dir);
1111 return xstrdup (debugfile);
1112 }
1113
1114 xfree (basename);
1115 xfree (dir);
1116 return NULL;
1117 }
1118
1119
1120 /* This is the symbol-file command. Read the file, analyze its
1121 symbols, and add a struct symtab to a symtab list. The syntax of
1122 the command is rather bizarre--(1) buildargv implements various
1123 quoting conventions which are undocumented and have little or
1124 nothing in common with the way things are quoted (or not quoted)
1125 elsewhere in GDB, (2) options are used, which are not generally
1126 used in GDB (perhaps "set mapped on", "set readnow on" would be
1127 better), (3) the order of options matters, which is contrary to GNU
1128 conventions (because it is confusing and inconvenient). */
1129 /* Note: ezannoni 2000-04-17. This function used to have support for
1130 rombug (see remote-os9k.c). It consisted of a call to target_link()
1131 (target.c) to get the address of the text segment from the target,
1132 and pass that to symbol_file_add(). This is no longer supported. */
1133
1134 void
1135 symbol_file_command (char *args, int from_tty)
1136 {
1137 char **argv;
1138 char *name = NULL;
1139 struct cleanup *cleanups;
1140 int flags = OBJF_USERLOADED;
1141
1142 dont_repeat ();
1143
1144 if (args == NULL)
1145 {
1146 symbol_file_clear (from_tty);
1147 }
1148 else
1149 {
1150 if ((argv = buildargv (args)) == NULL)
1151 {
1152 nomem (0);
1153 }
1154 cleanups = make_cleanup_freeargv (argv);
1155 while (*argv != NULL)
1156 {
1157 if (strcmp (*argv, "-readnow") == 0)
1158 flags |= OBJF_READNOW;
1159 else if (**argv == '-')
1160 error ("unknown option `%s'", *argv);
1161 else
1162 {
1163 name = *argv;
1164
1165 symbol_file_add_main_1 (name, from_tty, flags);
1166 }
1167 argv++;
1168 }
1169
1170 if (name == NULL)
1171 {
1172 error ("no symbol file name was specified");
1173 }
1174 do_cleanups (cleanups);
1175 }
1176 }
1177
1178 /* Set the initial language.
1179
1180 A better solution would be to record the language in the psymtab when reading
1181 partial symbols, and then use it (if known) to set the language. This would
1182 be a win for formats that encode the language in an easily discoverable place,
1183 such as DWARF. For stabs, we can jump through hoops looking for specially
1184 named symbols or try to intuit the language from the specific type of stabs
1185 we find, but we can't do that until later when we read in full symbols.
1186 FIXME. */
1187
1188 static void
1189 set_initial_language (void)
1190 {
1191 struct partial_symtab *pst;
1192 enum language lang = language_unknown;
1193
1194 pst = find_main_psymtab ();
1195 if (pst != NULL)
1196 {
1197 if (pst->filename != NULL)
1198 {
1199 lang = deduce_language_from_filename (pst->filename);
1200 }
1201 if (lang == language_unknown)
1202 {
1203 /* Make C the default language */
1204 lang = language_c;
1205 }
1206 set_language (lang);
1207 expected_language = current_language; /* Don't warn the user */
1208 }
1209 }
1210
1211 /* Open file specified by NAME and hand it off to BFD for preliminary
1212 analysis. Result is a newly initialized bfd *, which includes a newly
1213 malloc'd` copy of NAME (tilde-expanded and made absolute).
1214 In case of trouble, error() is called. */
1215
1216 bfd *
1217 symfile_bfd_open (char *name)
1218 {
1219 bfd *sym_bfd;
1220 int desc;
1221 char *absolute_name;
1222
1223
1224
1225 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1226
1227 /* Look down path for it, allocate 2nd new malloc'd copy. */
1228 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1229 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1230 if (desc < 0)
1231 {
1232 char *exename = alloca (strlen (name) + 5);
1233 strcat (strcpy (exename, name), ".exe");
1234 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1235 0, &absolute_name);
1236 }
1237 #endif
1238 if (desc < 0)
1239 {
1240 make_cleanup (xfree, name);
1241 perror_with_name (name);
1242 }
1243 xfree (name); /* Free 1st new malloc'd copy */
1244 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1245 /* It'll be freed in free_objfile(). */
1246
1247 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1248 if (!sym_bfd)
1249 {
1250 close (desc);
1251 make_cleanup (xfree, name);
1252 error ("\"%s\": can't open to read symbols: %s.", name,
1253 bfd_errmsg (bfd_get_error ()));
1254 }
1255 bfd_set_cacheable (sym_bfd, 1);
1256
1257 if (!bfd_check_format (sym_bfd, bfd_object))
1258 {
1259 /* FIXME: should be checking for errors from bfd_close (for one thing,
1260 on error it does not free all the storage associated with the
1261 bfd). */
1262 bfd_close (sym_bfd); /* This also closes desc */
1263 make_cleanup (xfree, name);
1264 error ("\"%s\": can't read symbols: %s.", name,
1265 bfd_errmsg (bfd_get_error ()));
1266 }
1267 return (sym_bfd);
1268 }
1269
1270 /* Return the section index for the given section name. Return -1 if
1271 the section was not found. */
1272 int
1273 get_section_index (struct objfile *objfile, char *section_name)
1274 {
1275 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1276 if (sect)
1277 return sect->index;
1278 else
1279 return -1;
1280 }
1281
1282 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1283 startup by the _initialize routine in each object file format reader,
1284 to register information about each format the the reader is prepared
1285 to handle. */
1286
1287 void
1288 add_symtab_fns (struct sym_fns *sf)
1289 {
1290 sf->next = symtab_fns;
1291 symtab_fns = sf;
1292 }
1293
1294
1295 /* Initialize to read symbols from the symbol file sym_bfd. It either
1296 returns or calls error(). The result is an initialized struct sym_fns
1297 in the objfile structure, that contains cached information about the
1298 symbol file. */
1299
1300 static void
1301 find_sym_fns (struct objfile *objfile)
1302 {
1303 struct sym_fns *sf;
1304 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1305 char *our_target = bfd_get_target (objfile->obfd);
1306
1307 if (our_flavour == bfd_target_srec_flavour
1308 || our_flavour == bfd_target_ihex_flavour
1309 || our_flavour == bfd_target_tekhex_flavour)
1310 return; /* No symbols. */
1311
1312 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1313 {
1314 if (our_flavour == sf->sym_flavour)
1315 {
1316 objfile->sf = sf;
1317 return;
1318 }
1319 }
1320 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1321 bfd_get_target (objfile->obfd));
1322 }
1323 \f
1324 /* This function runs the load command of our current target. */
1325
1326 static void
1327 load_command (char *arg, int from_tty)
1328 {
1329 if (arg == NULL)
1330 arg = get_exec_file (1);
1331 target_load (arg, from_tty);
1332
1333 /* After re-loading the executable, we don't really know which
1334 overlays are mapped any more. */
1335 overlay_cache_invalid = 1;
1336 }
1337
1338 /* This version of "load" should be usable for any target. Currently
1339 it is just used for remote targets, not inftarg.c or core files,
1340 on the theory that only in that case is it useful.
1341
1342 Avoiding xmodem and the like seems like a win (a) because we don't have
1343 to worry about finding it, and (b) On VMS, fork() is very slow and so
1344 we don't want to run a subprocess. On the other hand, I'm not sure how
1345 performance compares. */
1346
1347 static int download_write_size = 512;
1348 static int validate_download = 0;
1349
1350 /* Callback service function for generic_load (bfd_map_over_sections). */
1351
1352 static void
1353 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1354 {
1355 bfd_size_type *sum = data;
1356
1357 *sum += bfd_get_section_size_before_reloc (asec);
1358 }
1359
1360 /* Opaque data for load_section_callback. */
1361 struct load_section_data {
1362 unsigned long load_offset;
1363 unsigned long write_count;
1364 unsigned long data_count;
1365 bfd_size_type total_size;
1366 };
1367
1368 /* Callback service function for generic_load (bfd_map_over_sections). */
1369
1370 static void
1371 load_section_callback (bfd *abfd, asection *asec, void *data)
1372 {
1373 struct load_section_data *args = data;
1374
1375 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1376 {
1377 bfd_size_type size = bfd_get_section_size_before_reloc (asec);
1378 if (size > 0)
1379 {
1380 char *buffer;
1381 struct cleanup *old_chain;
1382 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1383 bfd_size_type block_size;
1384 int err;
1385 const char *sect_name = bfd_get_section_name (abfd, asec);
1386 bfd_size_type sent;
1387
1388 if (download_write_size > 0 && size > download_write_size)
1389 block_size = download_write_size;
1390 else
1391 block_size = size;
1392
1393 buffer = xmalloc (size);
1394 old_chain = make_cleanup (xfree, buffer);
1395
1396 /* Is this really necessary? I guess it gives the user something
1397 to look at during a long download. */
1398 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1399 sect_name, paddr_nz (size), paddr_nz (lma));
1400
1401 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1402
1403 sent = 0;
1404 do
1405 {
1406 int len;
1407 bfd_size_type this_transfer = size - sent;
1408
1409 if (this_transfer >= block_size)
1410 this_transfer = block_size;
1411 len = target_write_memory_partial (lma, buffer,
1412 this_transfer, &err);
1413 if (err)
1414 break;
1415 if (validate_download)
1416 {
1417 /* Broken memories and broken monitors manifest
1418 themselves here when bring new computers to
1419 life. This doubles already slow downloads. */
1420 /* NOTE: cagney/1999-10-18: A more efficient
1421 implementation might add a verify_memory()
1422 method to the target vector and then use
1423 that. remote.c could implement that method
1424 using the ``qCRC'' packet. */
1425 char *check = xmalloc (len);
1426 struct cleanup *verify_cleanups =
1427 make_cleanup (xfree, check);
1428
1429 if (target_read_memory (lma, check, len) != 0)
1430 error ("Download verify read failed at 0x%s",
1431 paddr (lma));
1432 if (memcmp (buffer, check, len) != 0)
1433 error ("Download verify compare failed at 0x%s",
1434 paddr (lma));
1435 do_cleanups (verify_cleanups);
1436 }
1437 args->data_count += len;
1438 lma += len;
1439 buffer += len;
1440 args->write_count += 1;
1441 sent += len;
1442 if (quit_flag
1443 || (ui_load_progress_hook != NULL
1444 && ui_load_progress_hook (sect_name, sent)))
1445 error ("Canceled the download");
1446
1447 if (show_load_progress != NULL)
1448 show_load_progress (sect_name, sent, size,
1449 args->data_count, args->total_size);
1450 }
1451 while (sent < size);
1452
1453 if (err != 0)
1454 error ("Memory access error while loading section %s.", sect_name);
1455
1456 do_cleanups (old_chain);
1457 }
1458 }
1459 }
1460
1461 void
1462 generic_load (char *args, int from_tty)
1463 {
1464 asection *s;
1465 bfd *loadfile_bfd;
1466 time_t start_time, end_time; /* Start and end times of download */
1467 char *filename;
1468 struct cleanup *old_cleanups;
1469 char *offptr;
1470 struct load_section_data cbdata;
1471 CORE_ADDR entry;
1472
1473 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1474 cbdata.write_count = 0; /* Number of writes needed. */
1475 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1476 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1477
1478 /* Parse the input argument - the user can specify a load offset as
1479 a second argument. */
1480 filename = xmalloc (strlen (args) + 1);
1481 old_cleanups = make_cleanup (xfree, filename);
1482 strcpy (filename, args);
1483 offptr = strchr (filename, ' ');
1484 if (offptr != NULL)
1485 {
1486 char *endptr;
1487
1488 cbdata.load_offset = strtoul (offptr, &endptr, 0);
1489 if (offptr == endptr)
1490 error ("Invalid download offset:%s\n", offptr);
1491 *offptr = '\0';
1492 }
1493 else
1494 cbdata.load_offset = 0;
1495
1496 /* Open the file for loading. */
1497 loadfile_bfd = bfd_openr (filename, gnutarget);
1498 if (loadfile_bfd == NULL)
1499 {
1500 perror_with_name (filename);
1501 return;
1502 }
1503
1504 /* FIXME: should be checking for errors from bfd_close (for one thing,
1505 on error it does not free all the storage associated with the
1506 bfd). */
1507 make_cleanup_bfd_close (loadfile_bfd);
1508
1509 if (!bfd_check_format (loadfile_bfd, bfd_object))
1510 {
1511 error ("\"%s\" is not an object file: %s", filename,
1512 bfd_errmsg (bfd_get_error ()));
1513 }
1514
1515 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1516 (void *) &cbdata.total_size);
1517
1518 start_time = time (NULL);
1519
1520 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1521
1522 end_time = time (NULL);
1523
1524 entry = bfd_get_start_address (loadfile_bfd);
1525 ui_out_text (uiout, "Start address ");
1526 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1527 ui_out_text (uiout, ", load size ");
1528 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1529 ui_out_text (uiout, "\n");
1530 /* We were doing this in remote-mips.c, I suspect it is right
1531 for other targets too. */
1532 write_pc (entry);
1533
1534 /* FIXME: are we supposed to call symbol_file_add or not? According
1535 to a comment from remote-mips.c (where a call to symbol_file_add
1536 was commented out), making the call confuses GDB if more than one
1537 file is loaded in. Some targets do (e.g., remote-vx.c) but
1538 others don't (or didn't - perhaphs they have all been deleted). */
1539
1540 print_transfer_performance (gdb_stdout, cbdata.data_count,
1541 cbdata.write_count, end_time - start_time);
1542
1543 do_cleanups (old_cleanups);
1544 }
1545
1546 /* Report how fast the transfer went. */
1547
1548 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1549 replaced by print_transfer_performance (with a very different
1550 function signature). */
1551
1552 void
1553 report_transfer_performance (unsigned long data_count, time_t start_time,
1554 time_t end_time)
1555 {
1556 print_transfer_performance (gdb_stdout, data_count,
1557 end_time - start_time, 0);
1558 }
1559
1560 void
1561 print_transfer_performance (struct ui_file *stream,
1562 unsigned long data_count,
1563 unsigned long write_count,
1564 unsigned long time_count)
1565 {
1566 ui_out_text (uiout, "Transfer rate: ");
1567 if (time_count > 0)
1568 {
1569 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1570 (data_count * 8) / time_count);
1571 ui_out_text (uiout, " bits/sec");
1572 }
1573 else
1574 {
1575 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1576 ui_out_text (uiout, " bits in <1 sec");
1577 }
1578 if (write_count > 0)
1579 {
1580 ui_out_text (uiout, ", ");
1581 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1582 ui_out_text (uiout, " bytes/write");
1583 }
1584 ui_out_text (uiout, ".\n");
1585 }
1586
1587 /* This function allows the addition of incrementally linked object files.
1588 It does not modify any state in the target, only in the debugger. */
1589 /* Note: ezannoni 2000-04-13 This function/command used to have a
1590 special case syntax for the rombug target (Rombug is the boot
1591 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1592 rombug case, the user doesn't need to supply a text address,
1593 instead a call to target_link() (in target.c) would supply the
1594 value to use. We are now discontinuing this type of ad hoc syntax. */
1595
1596 static void
1597 add_symbol_file_command (char *args, int from_tty)
1598 {
1599 char *filename = NULL;
1600 int flags = OBJF_USERLOADED;
1601 char *arg;
1602 int expecting_option = 0;
1603 int section_index = 0;
1604 int argcnt = 0;
1605 int sec_num = 0;
1606 int i;
1607 int expecting_sec_name = 0;
1608 int expecting_sec_addr = 0;
1609
1610 struct sect_opt
1611 {
1612 char *name;
1613 char *value;
1614 };
1615
1616 struct section_addr_info *section_addrs;
1617 struct sect_opt *sect_opts = NULL;
1618 size_t num_sect_opts = 0;
1619 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1620
1621 num_sect_opts = 16;
1622 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1623 * sizeof (struct sect_opt));
1624
1625 dont_repeat ();
1626
1627 if (args == NULL)
1628 error ("add-symbol-file takes a file name and an address");
1629
1630 /* Make a copy of the string that we can safely write into. */
1631 args = xstrdup (args);
1632
1633 while (*args != '\000')
1634 {
1635 /* Any leading spaces? */
1636 while (isspace (*args))
1637 args++;
1638
1639 /* Point arg to the beginning of the argument. */
1640 arg = args;
1641
1642 /* Move args pointer over the argument. */
1643 while ((*args != '\000') && !isspace (*args))
1644 args++;
1645
1646 /* If there are more arguments, terminate arg and
1647 proceed past it. */
1648 if (*args != '\000')
1649 *args++ = '\000';
1650
1651 /* Now process the argument. */
1652 if (argcnt == 0)
1653 {
1654 /* The first argument is the file name. */
1655 filename = tilde_expand (arg);
1656 make_cleanup (xfree, filename);
1657 }
1658 else
1659 if (argcnt == 1)
1660 {
1661 /* The second argument is always the text address at which
1662 to load the program. */
1663 sect_opts[section_index].name = ".text";
1664 sect_opts[section_index].value = arg;
1665 if (++section_index > num_sect_opts)
1666 {
1667 num_sect_opts *= 2;
1668 sect_opts = ((struct sect_opt *)
1669 xrealloc (sect_opts,
1670 num_sect_opts
1671 * sizeof (struct sect_opt)));
1672 }
1673 }
1674 else
1675 {
1676 /* It's an option (starting with '-') or it's an argument
1677 to an option */
1678
1679 if (*arg == '-')
1680 {
1681 if (strcmp (arg, "-readnow") == 0)
1682 flags |= OBJF_READNOW;
1683 else if (strcmp (arg, "-s") == 0)
1684 {
1685 expecting_sec_name = 1;
1686 expecting_sec_addr = 1;
1687 }
1688 }
1689 else
1690 {
1691 if (expecting_sec_name)
1692 {
1693 sect_opts[section_index].name = arg;
1694 expecting_sec_name = 0;
1695 }
1696 else
1697 if (expecting_sec_addr)
1698 {
1699 sect_opts[section_index].value = arg;
1700 expecting_sec_addr = 0;
1701 if (++section_index > num_sect_opts)
1702 {
1703 num_sect_opts *= 2;
1704 sect_opts = ((struct sect_opt *)
1705 xrealloc (sect_opts,
1706 num_sect_opts
1707 * sizeof (struct sect_opt)));
1708 }
1709 }
1710 else
1711 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1712 }
1713 }
1714 argcnt++;
1715 }
1716
1717 /* Print the prompt for the query below. And save the arguments into
1718 a sect_addr_info structure to be passed around to other
1719 functions. We have to split this up into separate print
1720 statements because local_hex_string returns a local static
1721 string. */
1722
1723 printf_unfiltered ("add symbol table from file \"%s\" at\n", filename);
1724 section_addrs = alloc_section_addr_info (section_index);
1725 make_cleanup (xfree, section_addrs);
1726 for (i = 0; i < section_index; i++)
1727 {
1728 CORE_ADDR addr;
1729 char *val = sect_opts[i].value;
1730 char *sec = sect_opts[i].name;
1731
1732 addr = parse_and_eval_address (val);
1733
1734 /* Here we store the section offsets in the order they were
1735 entered on the command line. */
1736 section_addrs->other[sec_num].name = sec;
1737 section_addrs->other[sec_num].addr = addr;
1738 printf_unfiltered ("\t%s_addr = %s\n",
1739 sec,
1740 local_hex_string ((unsigned long)addr));
1741 sec_num++;
1742
1743 /* The object's sections are initialized when a
1744 call is made to build_objfile_section_table (objfile).
1745 This happens in reread_symbols.
1746 At this point, we don't know what file type this is,
1747 so we can't determine what section names are valid. */
1748 }
1749
1750 if (from_tty && (!query ("%s", "")))
1751 error ("Not confirmed.");
1752
1753 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
1754
1755 /* Getting new symbols may change our opinion about what is
1756 frameless. */
1757 reinit_frame_cache ();
1758 do_cleanups (my_cleanups);
1759 }
1760 \f
1761 static void
1762 add_shared_symbol_files_command (char *args, int from_tty)
1763 {
1764 #ifdef ADD_SHARED_SYMBOL_FILES
1765 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1766 #else
1767 error ("This command is not available in this configuration of GDB.");
1768 #endif
1769 }
1770 \f
1771 /* Read inferior memory at ADDR to find the header of a loaded object file
1772 and read its in-core symbols out of inferior memory. TEMPL is a bfd
1773 representing the target's format. */
1774 struct objfile *
1775 symbol_file_add_from_memory (bfd *templ, CORE_ADDR addr, int from_tty)
1776 {
1777 struct objfile *objf;
1778 bfd *nbfd;
1779 asection *sec;
1780 bfd_vma loadbase;
1781 struct section_addr_info *sai;
1782 unsigned int i;
1783
1784 if (bfd_get_flavour (templ) != bfd_target_elf_flavour)
1785 error ("add-symbol-file-from-memory not supported for this target");
1786
1787 nbfd = bfd_elf_bfd_from_remote_memory (templ, addr, &loadbase,
1788 target_read_memory);
1789 if (nbfd == NULL)
1790 {
1791 error ("Failed to read a valid object file image from memory.");
1792 return NULL;
1793 }
1794
1795 nbfd->filename = xstrdup ("shared object read from target memory");
1796
1797 if (!bfd_check_format (nbfd, bfd_object))
1798 {
1799 /* FIXME: should be checking for errors from bfd_close (for one thing,
1800 on error it does not free all the storage associated with the
1801 bfd). */
1802 bfd_close (nbfd);
1803 error ("Got object file from memory but can't read symbols: %s.",
1804 bfd_errmsg (bfd_get_error ()));
1805 return NULL;
1806 }
1807
1808 sai = alloc_section_addr_info (bfd_count_sections (nbfd));
1809 make_cleanup (xfree, sai);
1810 i = 0;
1811 for (sec = nbfd->sections; sec != NULL; sec = sec->next)
1812 if ((bfd_get_section_flags (nbfd, sec) & (SEC_ALLOC|SEC_LOAD)) != 0)
1813 {
1814 sai->other[i].addr = bfd_get_section_vma (nbfd, sec) + loadbase;
1815 sai->other[i].name = (char *) bfd_get_section_name (nbfd, sec);
1816 sai->other[i].sectindex = sec->index;
1817 ++i;
1818 }
1819
1820 objf = symbol_file_add_with_addrs_or_offsets (nbfd, from_tty,
1821 sai, NULL, 0, 0, OBJF_SHARED);
1822
1823 /* This might change our ideas about frames already looked at. */
1824 reinit_frame_cache ();
1825
1826 return objf;
1827 }
1828
1829 static void
1830 add_symbol_file_from_memory_command (char *args, int from_tty)
1831 {
1832 CORE_ADDR addr;
1833 bfd *templ;
1834
1835 if (args == NULL)
1836 error ("add-symbol-file-from-memory requires an expression argument");
1837
1838 addr = parse_and_eval_address (args);
1839
1840 /* We need some representative bfd to know the target we are looking at. */
1841 if (symfile_objfile != NULL)
1842 templ = symfile_objfile->obfd;
1843 else
1844 templ = exec_bfd;
1845 if (templ == NULL)
1846 error ("\
1847 Must use symbol-file or exec-file before add-symbol-file-from-memory.");
1848
1849 (void) symbol_file_add_from_memory (templ, addr, from_tty);
1850 }
1851 \f
1852 /* Re-read symbols if a symbol-file has changed. */
1853 void
1854 reread_symbols (void)
1855 {
1856 struct objfile *objfile;
1857 long new_modtime;
1858 int reread_one = 0;
1859 struct stat new_statbuf;
1860 int res;
1861
1862 /* With the addition of shared libraries, this should be modified,
1863 the load time should be saved in the partial symbol tables, since
1864 different tables may come from different source files. FIXME.
1865 This routine should then walk down each partial symbol table
1866 and see if the symbol table that it originates from has been changed */
1867
1868 for (objfile = object_files; objfile; objfile = objfile->next)
1869 {
1870 if (objfile->obfd)
1871 {
1872 #ifdef DEPRECATED_IBM6000_TARGET
1873 /* If this object is from a shared library, then you should
1874 stat on the library name, not member name. */
1875
1876 if (objfile->obfd->my_archive)
1877 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1878 else
1879 #endif
1880 res = stat (objfile->name, &new_statbuf);
1881 if (res != 0)
1882 {
1883 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1884 printf_unfiltered ("`%s' has disappeared; keeping its symbols.\n",
1885 objfile->name);
1886 continue;
1887 }
1888 new_modtime = new_statbuf.st_mtime;
1889 if (new_modtime != objfile->mtime)
1890 {
1891 struct cleanup *old_cleanups;
1892 struct section_offsets *offsets;
1893 int num_offsets;
1894 char *obfd_filename;
1895
1896 printf_unfiltered ("`%s' has changed; re-reading symbols.\n",
1897 objfile->name);
1898
1899 /* There are various functions like symbol_file_add,
1900 symfile_bfd_open, syms_from_objfile, etc., which might
1901 appear to do what we want. But they have various other
1902 effects which we *don't* want. So we just do stuff
1903 ourselves. We don't worry about mapped files (for one thing,
1904 any mapped file will be out of date). */
1905
1906 /* If we get an error, blow away this objfile (not sure if
1907 that is the correct response for things like shared
1908 libraries). */
1909 old_cleanups = make_cleanup_free_objfile (objfile);
1910 /* We need to do this whenever any symbols go away. */
1911 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1912
1913 /* Clean up any state BFD has sitting around. We don't need
1914 to close the descriptor but BFD lacks a way of closing the
1915 BFD without closing the descriptor. */
1916 obfd_filename = bfd_get_filename (objfile->obfd);
1917 if (!bfd_close (objfile->obfd))
1918 error ("Can't close BFD for %s: %s", objfile->name,
1919 bfd_errmsg (bfd_get_error ()));
1920 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1921 if (objfile->obfd == NULL)
1922 error ("Can't open %s to read symbols.", objfile->name);
1923 /* bfd_openr sets cacheable to true, which is what we want. */
1924 if (!bfd_check_format (objfile->obfd, bfd_object))
1925 error ("Can't read symbols from %s: %s.", objfile->name,
1926 bfd_errmsg (bfd_get_error ()));
1927
1928 /* Save the offsets, we will nuke them with the rest of the
1929 objfile_obstack. */
1930 num_offsets = objfile->num_sections;
1931 offsets = ((struct section_offsets *)
1932 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
1933 memcpy (offsets, objfile->section_offsets,
1934 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1935
1936 /* Nuke all the state that we will re-read. Much of the following
1937 code which sets things to NULL really is necessary to tell
1938 other parts of GDB that there is nothing currently there. */
1939
1940 /* FIXME: Do we have to free a whole linked list, or is this
1941 enough? */
1942 if (objfile->global_psymbols.list)
1943 xmfree (objfile->md, objfile->global_psymbols.list);
1944 memset (&objfile->global_psymbols, 0,
1945 sizeof (objfile->global_psymbols));
1946 if (objfile->static_psymbols.list)
1947 xmfree (objfile->md, objfile->static_psymbols.list);
1948 memset (&objfile->static_psymbols, 0,
1949 sizeof (objfile->static_psymbols));
1950
1951 /* Free the obstacks for non-reusable objfiles */
1952 bcache_xfree (objfile->psymbol_cache);
1953 objfile->psymbol_cache = bcache_xmalloc ();
1954 bcache_xfree (objfile->macro_cache);
1955 objfile->macro_cache = bcache_xmalloc ();
1956 if (objfile->demangled_names_hash != NULL)
1957 {
1958 htab_delete (objfile->demangled_names_hash);
1959 objfile->demangled_names_hash = NULL;
1960 }
1961 obstack_free (&objfile->objfile_obstack, 0);
1962 objfile->sections = NULL;
1963 objfile->symtabs = NULL;
1964 objfile->psymtabs = NULL;
1965 objfile->free_psymtabs = NULL;
1966 objfile->cp_namespace_symtab = NULL;
1967 objfile->msymbols = NULL;
1968 objfile->sym_private = NULL;
1969 objfile->minimal_symbol_count = 0;
1970 memset (&objfile->msymbol_hash, 0,
1971 sizeof (objfile->msymbol_hash));
1972 memset (&objfile->msymbol_demangled_hash, 0,
1973 sizeof (objfile->msymbol_demangled_hash));
1974 objfile->fundamental_types = NULL;
1975 clear_objfile_data (objfile);
1976 if (objfile->sf != NULL)
1977 {
1978 (*objfile->sf->sym_finish) (objfile);
1979 }
1980
1981 /* We never make this a mapped file. */
1982 objfile->md = NULL;
1983 objfile->psymbol_cache = bcache_xmalloc ();
1984 objfile->macro_cache = bcache_xmalloc ();
1985 /* obstack_init also initializes the obstack so it is
1986 empty. We could use obstack_specify_allocation but
1987 gdb_obstack.h specifies the alloc/dealloc
1988 functions. */
1989 obstack_init (&objfile->objfile_obstack);
1990 if (build_objfile_section_table (objfile))
1991 {
1992 error ("Can't find the file sections in `%s': %s",
1993 objfile->name, bfd_errmsg (bfd_get_error ()));
1994 }
1995 terminate_minimal_symbol_table (objfile);
1996
1997 /* We use the same section offsets as from last time. I'm not
1998 sure whether that is always correct for shared libraries. */
1999 objfile->section_offsets = (struct section_offsets *)
2000 obstack_alloc (&objfile->objfile_obstack,
2001 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2002 memcpy (objfile->section_offsets, offsets,
2003 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2004 objfile->num_sections = num_offsets;
2005
2006 /* What the hell is sym_new_init for, anyway? The concept of
2007 distinguishing between the main file and additional files
2008 in this way seems rather dubious. */
2009 if (objfile == symfile_objfile)
2010 {
2011 (*objfile->sf->sym_new_init) (objfile);
2012 #ifdef HPUXHPPA
2013 RESET_HP_UX_GLOBALS ();
2014 #endif
2015 }
2016
2017 (*objfile->sf->sym_init) (objfile);
2018 clear_complaints (&symfile_complaints, 1, 1);
2019 /* The "mainline" parameter is a hideous hack; I think leaving it
2020 zero is OK since dbxread.c also does what it needs to do if
2021 objfile->global_psymbols.size is 0. */
2022 (*objfile->sf->sym_read) (objfile, 0);
2023 if (!have_partial_symbols () && !have_full_symbols ())
2024 {
2025 wrap_here ("");
2026 printf_unfiltered ("(no debugging symbols found)\n");
2027 wrap_here ("");
2028 }
2029 objfile->flags |= OBJF_SYMS;
2030
2031 /* We're done reading the symbol file; finish off complaints. */
2032 clear_complaints (&symfile_complaints, 0, 1);
2033
2034 /* Getting new symbols may change our opinion about what is
2035 frameless. */
2036
2037 reinit_frame_cache ();
2038
2039 /* Discard cleanups as symbol reading was successful. */
2040 discard_cleanups (old_cleanups);
2041
2042 /* If the mtime has changed between the time we set new_modtime
2043 and now, we *want* this to be out of date, so don't call stat
2044 again now. */
2045 objfile->mtime = new_modtime;
2046 reread_one = 1;
2047 reread_separate_symbols (objfile);
2048 }
2049 }
2050 }
2051
2052 if (reread_one)
2053 clear_symtab_users ();
2054 }
2055
2056
2057 /* Handle separate debug info for OBJFILE, which has just been
2058 re-read:
2059 - If we had separate debug info before, but now we don't, get rid
2060 of the separated objfile.
2061 - If we didn't have separated debug info before, but now we do,
2062 read in the new separated debug info file.
2063 - If the debug link points to a different file, toss the old one
2064 and read the new one.
2065 This function does *not* handle the case where objfile is still
2066 using the same separate debug info file, but that file's timestamp
2067 has changed. That case should be handled by the loop in
2068 reread_symbols already. */
2069 static void
2070 reread_separate_symbols (struct objfile *objfile)
2071 {
2072 char *debug_file;
2073 unsigned long crc32;
2074
2075 /* Does the updated objfile's debug info live in a
2076 separate file? */
2077 debug_file = find_separate_debug_file (objfile);
2078
2079 if (objfile->separate_debug_objfile)
2080 {
2081 /* There are two cases where we need to get rid of
2082 the old separated debug info objfile:
2083 - if the new primary objfile doesn't have
2084 separated debug info, or
2085 - if the new primary objfile has separate debug
2086 info, but it's under a different filename.
2087
2088 If the old and new objfiles both have separate
2089 debug info, under the same filename, then we're
2090 okay --- if the separated file's contents have
2091 changed, we will have caught that when we
2092 visited it in this function's outermost
2093 loop. */
2094 if (! debug_file
2095 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2096 free_objfile (objfile->separate_debug_objfile);
2097 }
2098
2099 /* If the new objfile has separate debug info, and we
2100 haven't loaded it already, do so now. */
2101 if (debug_file
2102 && ! objfile->separate_debug_objfile)
2103 {
2104 /* Use the same section offset table as objfile itself.
2105 Preserve the flags from objfile that make sense. */
2106 objfile->separate_debug_objfile
2107 = (symbol_file_add_with_addrs_or_offsets
2108 (symfile_bfd_open (debug_file),
2109 info_verbose, /* from_tty: Don't override the default. */
2110 0, /* No addr table. */
2111 objfile->section_offsets, objfile->num_sections,
2112 0, /* Not mainline. See comments about this above. */
2113 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2114 | OBJF_USERLOADED)));
2115 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2116 = objfile;
2117 }
2118 }
2119
2120
2121 \f
2122
2123
2124 typedef struct
2125 {
2126 char *ext;
2127 enum language lang;
2128 }
2129 filename_language;
2130
2131 static filename_language *filename_language_table;
2132 static int fl_table_size, fl_table_next;
2133
2134 static void
2135 add_filename_language (char *ext, enum language lang)
2136 {
2137 if (fl_table_next >= fl_table_size)
2138 {
2139 fl_table_size += 10;
2140 filename_language_table =
2141 xrealloc (filename_language_table,
2142 fl_table_size * sizeof (*filename_language_table));
2143 }
2144
2145 filename_language_table[fl_table_next].ext = xstrdup (ext);
2146 filename_language_table[fl_table_next].lang = lang;
2147 fl_table_next++;
2148 }
2149
2150 static char *ext_args;
2151
2152 static void
2153 set_ext_lang_command (char *args, int from_tty)
2154 {
2155 int i;
2156 char *cp = ext_args;
2157 enum language lang;
2158
2159 /* First arg is filename extension, starting with '.' */
2160 if (*cp != '.')
2161 error ("'%s': Filename extension must begin with '.'", ext_args);
2162
2163 /* Find end of first arg. */
2164 while (*cp && !isspace (*cp))
2165 cp++;
2166
2167 if (*cp == '\0')
2168 error ("'%s': two arguments required -- filename extension and language",
2169 ext_args);
2170
2171 /* Null-terminate first arg */
2172 *cp++ = '\0';
2173
2174 /* Find beginning of second arg, which should be a source language. */
2175 while (*cp && isspace (*cp))
2176 cp++;
2177
2178 if (*cp == '\0')
2179 error ("'%s': two arguments required -- filename extension and language",
2180 ext_args);
2181
2182 /* Lookup the language from among those we know. */
2183 lang = language_enum (cp);
2184
2185 /* Now lookup the filename extension: do we already know it? */
2186 for (i = 0; i < fl_table_next; i++)
2187 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2188 break;
2189
2190 if (i >= fl_table_next)
2191 {
2192 /* new file extension */
2193 add_filename_language (ext_args, lang);
2194 }
2195 else
2196 {
2197 /* redefining a previously known filename extension */
2198
2199 /* if (from_tty) */
2200 /* query ("Really make files of type %s '%s'?", */
2201 /* ext_args, language_str (lang)); */
2202
2203 xfree (filename_language_table[i].ext);
2204 filename_language_table[i].ext = xstrdup (ext_args);
2205 filename_language_table[i].lang = lang;
2206 }
2207 }
2208
2209 static void
2210 info_ext_lang_command (char *args, int from_tty)
2211 {
2212 int i;
2213
2214 printf_filtered ("Filename extensions and the languages they represent:");
2215 printf_filtered ("\n\n");
2216 for (i = 0; i < fl_table_next; i++)
2217 printf_filtered ("\t%s\t- %s\n",
2218 filename_language_table[i].ext,
2219 language_str (filename_language_table[i].lang));
2220 }
2221
2222 static void
2223 init_filename_language_table (void)
2224 {
2225 if (fl_table_size == 0) /* protect against repetition */
2226 {
2227 fl_table_size = 20;
2228 fl_table_next = 0;
2229 filename_language_table =
2230 xmalloc (fl_table_size * sizeof (*filename_language_table));
2231 add_filename_language (".c", language_c);
2232 add_filename_language (".C", language_cplus);
2233 add_filename_language (".cc", language_cplus);
2234 add_filename_language (".cp", language_cplus);
2235 add_filename_language (".cpp", language_cplus);
2236 add_filename_language (".cxx", language_cplus);
2237 add_filename_language (".c++", language_cplus);
2238 add_filename_language (".java", language_java);
2239 add_filename_language (".class", language_java);
2240 add_filename_language (".m", language_objc);
2241 add_filename_language (".f", language_fortran);
2242 add_filename_language (".F", language_fortran);
2243 add_filename_language (".s", language_asm);
2244 add_filename_language (".S", language_asm);
2245 add_filename_language (".pas", language_pascal);
2246 add_filename_language (".p", language_pascal);
2247 add_filename_language (".pp", language_pascal);
2248 }
2249 }
2250
2251 enum language
2252 deduce_language_from_filename (char *filename)
2253 {
2254 int i;
2255 char *cp;
2256
2257 if (filename != NULL)
2258 if ((cp = strrchr (filename, '.')) != NULL)
2259 for (i = 0; i < fl_table_next; i++)
2260 if (strcmp (cp, filename_language_table[i].ext) == 0)
2261 return filename_language_table[i].lang;
2262
2263 return language_unknown;
2264 }
2265 \f
2266 /* allocate_symtab:
2267
2268 Allocate and partly initialize a new symbol table. Return a pointer
2269 to it. error() if no space.
2270
2271 Caller must set these fields:
2272 LINETABLE(symtab)
2273 symtab->blockvector
2274 symtab->dirname
2275 symtab->free_code
2276 symtab->free_ptr
2277 possibly free_named_symtabs (symtab->filename);
2278 */
2279
2280 struct symtab *
2281 allocate_symtab (char *filename, struct objfile *objfile)
2282 {
2283 struct symtab *symtab;
2284
2285 symtab = (struct symtab *)
2286 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2287 memset (symtab, 0, sizeof (*symtab));
2288 symtab->filename = obsavestring (filename, strlen (filename),
2289 &objfile->objfile_obstack);
2290 symtab->fullname = NULL;
2291 symtab->language = deduce_language_from_filename (filename);
2292 symtab->debugformat = obsavestring ("unknown", 7,
2293 &objfile->objfile_obstack);
2294
2295 /* Hook it to the objfile it comes from */
2296
2297 symtab->objfile = objfile;
2298 symtab->next = objfile->symtabs;
2299 objfile->symtabs = symtab;
2300
2301 /* FIXME: This should go away. It is only defined for the Z8000,
2302 and the Z8000 definition of this macro doesn't have anything to
2303 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2304 here for convenience. */
2305 #ifdef INIT_EXTRA_SYMTAB_INFO
2306 INIT_EXTRA_SYMTAB_INFO (symtab);
2307 #endif
2308
2309 return (symtab);
2310 }
2311
2312 struct partial_symtab *
2313 allocate_psymtab (char *filename, struct objfile *objfile)
2314 {
2315 struct partial_symtab *psymtab;
2316
2317 if (objfile->free_psymtabs)
2318 {
2319 psymtab = objfile->free_psymtabs;
2320 objfile->free_psymtabs = psymtab->next;
2321 }
2322 else
2323 psymtab = (struct partial_symtab *)
2324 obstack_alloc (&objfile->objfile_obstack,
2325 sizeof (struct partial_symtab));
2326
2327 memset (psymtab, 0, sizeof (struct partial_symtab));
2328 psymtab->filename = obsavestring (filename, strlen (filename),
2329 &objfile->objfile_obstack);
2330 psymtab->symtab = NULL;
2331
2332 /* Prepend it to the psymtab list for the objfile it belongs to.
2333 Psymtabs are searched in most recent inserted -> least recent
2334 inserted order. */
2335
2336 psymtab->objfile = objfile;
2337 psymtab->next = objfile->psymtabs;
2338 objfile->psymtabs = psymtab;
2339 #if 0
2340 {
2341 struct partial_symtab **prev_pst;
2342 psymtab->objfile = objfile;
2343 psymtab->next = NULL;
2344 prev_pst = &(objfile->psymtabs);
2345 while ((*prev_pst) != NULL)
2346 prev_pst = &((*prev_pst)->next);
2347 (*prev_pst) = psymtab;
2348 }
2349 #endif
2350
2351 return (psymtab);
2352 }
2353
2354 void
2355 discard_psymtab (struct partial_symtab *pst)
2356 {
2357 struct partial_symtab **prev_pst;
2358
2359 /* From dbxread.c:
2360 Empty psymtabs happen as a result of header files which don't
2361 have any symbols in them. There can be a lot of them. But this
2362 check is wrong, in that a psymtab with N_SLINE entries but
2363 nothing else is not empty, but we don't realize that. Fixing
2364 that without slowing things down might be tricky. */
2365
2366 /* First, snip it out of the psymtab chain */
2367
2368 prev_pst = &(pst->objfile->psymtabs);
2369 while ((*prev_pst) != pst)
2370 prev_pst = &((*prev_pst)->next);
2371 (*prev_pst) = pst->next;
2372
2373 /* Next, put it on a free list for recycling */
2374
2375 pst->next = pst->objfile->free_psymtabs;
2376 pst->objfile->free_psymtabs = pst;
2377 }
2378 \f
2379
2380 /* Reset all data structures in gdb which may contain references to symbol
2381 table data. */
2382
2383 void
2384 clear_symtab_users (void)
2385 {
2386 /* Someday, we should do better than this, by only blowing away
2387 the things that really need to be blown. */
2388 clear_value_history ();
2389 clear_displays ();
2390 clear_internalvars ();
2391 breakpoint_re_set ();
2392 set_default_breakpoint (0, 0, 0, 0);
2393 clear_current_source_symtab_and_line ();
2394 clear_pc_function_cache ();
2395 if (target_new_objfile_hook)
2396 target_new_objfile_hook (NULL);
2397 }
2398
2399 static void
2400 clear_symtab_users_cleanup (void *ignore)
2401 {
2402 clear_symtab_users ();
2403 }
2404
2405 /* clear_symtab_users_once:
2406
2407 This function is run after symbol reading, or from a cleanup.
2408 If an old symbol table was obsoleted, the old symbol table
2409 has been blown away, but the other GDB data structures that may
2410 reference it have not yet been cleared or re-directed. (The old
2411 symtab was zapped, and the cleanup queued, in free_named_symtab()
2412 below.)
2413
2414 This function can be queued N times as a cleanup, or called
2415 directly; it will do all the work the first time, and then will be a
2416 no-op until the next time it is queued. This works by bumping a
2417 counter at queueing time. Much later when the cleanup is run, or at
2418 the end of symbol processing (in case the cleanup is discarded), if
2419 the queued count is greater than the "done-count", we do the work
2420 and set the done-count to the queued count. If the queued count is
2421 less than or equal to the done-count, we just ignore the call. This
2422 is needed because reading a single .o file will often replace many
2423 symtabs (one per .h file, for example), and we don't want to reset
2424 the breakpoints N times in the user's face.
2425
2426 The reason we both queue a cleanup, and call it directly after symbol
2427 reading, is because the cleanup protects us in case of errors, but is
2428 discarded if symbol reading is successful. */
2429
2430 #if 0
2431 /* FIXME: As free_named_symtabs is currently a big noop this function
2432 is no longer needed. */
2433 static void clear_symtab_users_once (void);
2434
2435 static int clear_symtab_users_queued;
2436 static int clear_symtab_users_done;
2437
2438 static void
2439 clear_symtab_users_once (void)
2440 {
2441 /* Enforce once-per-`do_cleanups'-semantics */
2442 if (clear_symtab_users_queued <= clear_symtab_users_done)
2443 return;
2444 clear_symtab_users_done = clear_symtab_users_queued;
2445
2446 clear_symtab_users ();
2447 }
2448 #endif
2449
2450 /* Delete the specified psymtab, and any others that reference it. */
2451
2452 static void
2453 cashier_psymtab (struct partial_symtab *pst)
2454 {
2455 struct partial_symtab *ps, *pprev = NULL;
2456 int i;
2457
2458 /* Find its previous psymtab in the chain */
2459 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2460 {
2461 if (ps == pst)
2462 break;
2463 pprev = ps;
2464 }
2465
2466 if (ps)
2467 {
2468 /* Unhook it from the chain. */
2469 if (ps == pst->objfile->psymtabs)
2470 pst->objfile->psymtabs = ps->next;
2471 else
2472 pprev->next = ps->next;
2473
2474 /* FIXME, we can't conveniently deallocate the entries in the
2475 partial_symbol lists (global_psymbols/static_psymbols) that
2476 this psymtab points to. These just take up space until all
2477 the psymtabs are reclaimed. Ditto the dependencies list and
2478 filename, which are all in the objfile_obstack. */
2479
2480 /* We need to cashier any psymtab that has this one as a dependency... */
2481 again:
2482 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2483 {
2484 for (i = 0; i < ps->number_of_dependencies; i++)
2485 {
2486 if (ps->dependencies[i] == pst)
2487 {
2488 cashier_psymtab (ps);
2489 goto again; /* Must restart, chain has been munged. */
2490 }
2491 }
2492 }
2493 }
2494 }
2495
2496 /* If a symtab or psymtab for filename NAME is found, free it along
2497 with any dependent breakpoints, displays, etc.
2498 Used when loading new versions of object modules with the "add-file"
2499 command. This is only called on the top-level symtab or psymtab's name;
2500 it is not called for subsidiary files such as .h files.
2501
2502 Return value is 1 if we blew away the environment, 0 if not.
2503 FIXME. The return value appears to never be used.
2504
2505 FIXME. I think this is not the best way to do this. We should
2506 work on being gentler to the environment while still cleaning up
2507 all stray pointers into the freed symtab. */
2508
2509 int
2510 free_named_symtabs (char *name)
2511 {
2512 #if 0
2513 /* FIXME: With the new method of each objfile having it's own
2514 psymtab list, this function needs serious rethinking. In particular,
2515 why was it ever necessary to toss psymtabs with specific compilation
2516 unit filenames, as opposed to all psymtabs from a particular symbol
2517 file? -- fnf
2518 Well, the answer is that some systems permit reloading of particular
2519 compilation units. We want to blow away any old info about these
2520 compilation units, regardless of which objfiles they arrived in. --gnu. */
2521
2522 struct symtab *s;
2523 struct symtab *prev;
2524 struct partial_symtab *ps;
2525 struct blockvector *bv;
2526 int blewit = 0;
2527
2528 /* We only wack things if the symbol-reload switch is set. */
2529 if (!symbol_reloading)
2530 return 0;
2531
2532 /* Some symbol formats have trouble providing file names... */
2533 if (name == 0 || *name == '\0')
2534 return 0;
2535
2536 /* Look for a psymtab with the specified name. */
2537
2538 again2:
2539 for (ps = partial_symtab_list; ps; ps = ps->next)
2540 {
2541 if (strcmp (name, ps->filename) == 0)
2542 {
2543 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2544 goto again2; /* Must restart, chain has been munged */
2545 }
2546 }
2547
2548 /* Look for a symtab with the specified name. */
2549
2550 for (s = symtab_list; s; s = s->next)
2551 {
2552 if (strcmp (name, s->filename) == 0)
2553 break;
2554 prev = s;
2555 }
2556
2557 if (s)
2558 {
2559 if (s == symtab_list)
2560 symtab_list = s->next;
2561 else
2562 prev->next = s->next;
2563
2564 /* For now, queue a delete for all breakpoints, displays, etc., whether
2565 or not they depend on the symtab being freed. This should be
2566 changed so that only those data structures affected are deleted. */
2567
2568 /* But don't delete anything if the symtab is empty.
2569 This test is necessary due to a bug in "dbxread.c" that
2570 causes empty symtabs to be created for N_SO symbols that
2571 contain the pathname of the object file. (This problem
2572 has been fixed in GDB 3.9x). */
2573
2574 bv = BLOCKVECTOR (s);
2575 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2576 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2577 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2578 {
2579 complaint (&symfile_complaints, "Replacing old symbols for `%s'",
2580 name);
2581 clear_symtab_users_queued++;
2582 make_cleanup (clear_symtab_users_once, 0);
2583 blewit = 1;
2584 }
2585 else
2586 {
2587 complaint (&symfile_complaints, "Empty symbol table found for `%s'",
2588 name);
2589 }
2590
2591 free_symtab (s);
2592 }
2593 else
2594 {
2595 /* It is still possible that some breakpoints will be affected
2596 even though no symtab was found, since the file might have
2597 been compiled without debugging, and hence not be associated
2598 with a symtab. In order to handle this correctly, we would need
2599 to keep a list of text address ranges for undebuggable files.
2600 For now, we do nothing, since this is a fairly obscure case. */
2601 ;
2602 }
2603
2604 /* FIXME, what about the minimal symbol table? */
2605 return blewit;
2606 #else
2607 return (0);
2608 #endif
2609 }
2610 \f
2611 /* Allocate and partially fill a partial symtab. It will be
2612 completely filled at the end of the symbol list.
2613
2614 FILENAME is the name of the symbol-file we are reading from. */
2615
2616 struct partial_symtab *
2617 start_psymtab_common (struct objfile *objfile,
2618 struct section_offsets *section_offsets, char *filename,
2619 CORE_ADDR textlow, struct partial_symbol **global_syms,
2620 struct partial_symbol **static_syms)
2621 {
2622 struct partial_symtab *psymtab;
2623
2624 psymtab = allocate_psymtab (filename, objfile);
2625 psymtab->section_offsets = section_offsets;
2626 psymtab->textlow = textlow;
2627 psymtab->texthigh = psymtab->textlow; /* default */
2628 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2629 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2630 return (psymtab);
2631 }
2632 \f
2633 /* Add a symbol with a long value to a psymtab.
2634 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2635 Return the partial symbol that has been added. */
2636
2637 /* NOTE: carlton/2003-09-11: The reason why we return the partial
2638 symbol is so that callers can get access to the symbol's demangled
2639 name, which they don't have any cheap way to determine otherwise.
2640 (Currenly, dwarf2read.c is the only file who uses that information,
2641 though it's possible that other readers might in the future.)
2642 Elena wasn't thrilled about that, and I don't blame her, but we
2643 couldn't come up with a better way to get that information. If
2644 it's needed in other situations, we could consider breaking up
2645 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2646 cache. */
2647
2648 const struct partial_symbol *
2649 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2650 enum address_class class,
2651 struct psymbol_allocation_list *list, long val, /* Value as a long */
2652 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2653 enum language language, struct objfile *objfile)
2654 {
2655 struct partial_symbol *psym;
2656 char *buf = alloca (namelength + 1);
2657 /* psymbol is static so that there will be no uninitialized gaps in the
2658 structure which might contain random data, causing cache misses in
2659 bcache. */
2660 static struct partial_symbol psymbol;
2661
2662 /* Create local copy of the partial symbol */
2663 memcpy (buf, name, namelength);
2664 buf[namelength] = '\0';
2665 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2666 if (val != 0)
2667 {
2668 SYMBOL_VALUE (&psymbol) = val;
2669 }
2670 else
2671 {
2672 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2673 }
2674 SYMBOL_SECTION (&psymbol) = 0;
2675 SYMBOL_LANGUAGE (&psymbol) = language;
2676 PSYMBOL_DOMAIN (&psymbol) = domain;
2677 PSYMBOL_CLASS (&psymbol) = class;
2678
2679 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2680
2681 /* Stash the partial symbol away in the cache */
2682 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2683 objfile->psymbol_cache);
2684
2685 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2686 if (list->next >= list->list + list->size)
2687 {
2688 extend_psymbol_list (list, objfile);
2689 }
2690 *list->next++ = psym;
2691 OBJSTAT (objfile, n_psyms++);
2692
2693 return psym;
2694 }
2695
2696 /* Add a symbol with a long value to a psymtab. This differs from
2697 * add_psymbol_to_list above in taking both a mangled and a demangled
2698 * name. */
2699
2700 void
2701 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2702 int dem_namelength, domain_enum domain,
2703 enum address_class class,
2704 struct psymbol_allocation_list *list, long val, /* Value as a long */
2705 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2706 enum language language,
2707 struct objfile *objfile)
2708 {
2709 struct partial_symbol *psym;
2710 char *buf = alloca (namelength + 1);
2711 /* psymbol is static so that there will be no uninitialized gaps in the
2712 structure which might contain random data, causing cache misses in
2713 bcache. */
2714 static struct partial_symbol psymbol;
2715
2716 /* Create local copy of the partial symbol */
2717
2718 memcpy (buf, name, namelength);
2719 buf[namelength] = '\0';
2720 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2721 objfile->psymbol_cache);
2722
2723 buf = alloca (dem_namelength + 1);
2724 memcpy (buf, dem_name, dem_namelength);
2725 buf[dem_namelength] = '\0';
2726
2727 switch (language)
2728 {
2729 case language_c:
2730 case language_cplus:
2731 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2732 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2733 break;
2734 /* FIXME What should be done for the default case? Ignoring for now. */
2735 }
2736
2737 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2738 if (val != 0)
2739 {
2740 SYMBOL_VALUE (&psymbol) = val;
2741 }
2742 else
2743 {
2744 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2745 }
2746 SYMBOL_SECTION (&psymbol) = 0;
2747 SYMBOL_LANGUAGE (&psymbol) = language;
2748 PSYMBOL_DOMAIN (&psymbol) = domain;
2749 PSYMBOL_CLASS (&psymbol) = class;
2750 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2751
2752 /* Stash the partial symbol away in the cache */
2753 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2754 objfile->psymbol_cache);
2755
2756 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2757 if (list->next >= list->list + list->size)
2758 {
2759 extend_psymbol_list (list, objfile);
2760 }
2761 *list->next++ = psym;
2762 OBJSTAT (objfile, n_psyms++);
2763 }
2764
2765 /* Initialize storage for partial symbols. */
2766
2767 void
2768 init_psymbol_list (struct objfile *objfile, int total_symbols)
2769 {
2770 /* Free any previously allocated psymbol lists. */
2771
2772 if (objfile->global_psymbols.list)
2773 {
2774 xmfree (objfile->md, objfile->global_psymbols.list);
2775 }
2776 if (objfile->static_psymbols.list)
2777 {
2778 xmfree (objfile->md, objfile->static_psymbols.list);
2779 }
2780
2781 /* Current best guess is that approximately a twentieth
2782 of the total symbols (in a debugging file) are global or static
2783 oriented symbols */
2784
2785 objfile->global_psymbols.size = total_symbols / 10;
2786 objfile->static_psymbols.size = total_symbols / 10;
2787
2788 if (objfile->global_psymbols.size > 0)
2789 {
2790 objfile->global_psymbols.next =
2791 objfile->global_psymbols.list = (struct partial_symbol **)
2792 xmmalloc (objfile->md, (objfile->global_psymbols.size
2793 * sizeof (struct partial_symbol *)));
2794 }
2795 if (objfile->static_psymbols.size > 0)
2796 {
2797 objfile->static_psymbols.next =
2798 objfile->static_psymbols.list = (struct partial_symbol **)
2799 xmmalloc (objfile->md, (objfile->static_psymbols.size
2800 * sizeof (struct partial_symbol *)));
2801 }
2802 }
2803
2804 /* OVERLAYS:
2805 The following code implements an abstraction for debugging overlay sections.
2806
2807 The target model is as follows:
2808 1) The gnu linker will permit multiple sections to be mapped into the
2809 same VMA, each with its own unique LMA (or load address).
2810 2) It is assumed that some runtime mechanism exists for mapping the
2811 sections, one by one, from the load address into the VMA address.
2812 3) This code provides a mechanism for gdb to keep track of which
2813 sections should be considered to be mapped from the VMA to the LMA.
2814 This information is used for symbol lookup, and memory read/write.
2815 For instance, if a section has been mapped then its contents
2816 should be read from the VMA, otherwise from the LMA.
2817
2818 Two levels of debugger support for overlays are available. One is
2819 "manual", in which the debugger relies on the user to tell it which
2820 overlays are currently mapped. This level of support is
2821 implemented entirely in the core debugger, and the information about
2822 whether a section is mapped is kept in the objfile->obj_section table.
2823
2824 The second level of support is "automatic", and is only available if
2825 the target-specific code provides functionality to read the target's
2826 overlay mapping table, and translate its contents for the debugger
2827 (by updating the mapped state information in the obj_section tables).
2828
2829 The interface is as follows:
2830 User commands:
2831 overlay map <name> -- tell gdb to consider this section mapped
2832 overlay unmap <name> -- tell gdb to consider this section unmapped
2833 overlay list -- list the sections that GDB thinks are mapped
2834 overlay read-target -- get the target's state of what's mapped
2835 overlay off/manual/auto -- set overlay debugging state
2836 Functional interface:
2837 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2838 section, return that section.
2839 find_pc_overlay(pc): find any overlay section that contains
2840 the pc, either in its VMA or its LMA
2841 overlay_is_mapped(sect): true if overlay is marked as mapped
2842 section_is_overlay(sect): true if section's VMA != LMA
2843 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2844 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2845 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2846 overlay_mapped_address(...): map an address from section's LMA to VMA
2847 overlay_unmapped_address(...): map an address from section's VMA to LMA
2848 symbol_overlayed_address(...): Return a "current" address for symbol:
2849 either in VMA or LMA depending on whether
2850 the symbol's section is currently mapped
2851 */
2852
2853 /* Overlay debugging state: */
2854
2855 enum overlay_debugging_state overlay_debugging = ovly_off;
2856 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2857
2858 /* Target vector for refreshing overlay mapped state */
2859 static void simple_overlay_update (struct obj_section *);
2860 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2861
2862 /* Function: section_is_overlay (SECTION)
2863 Returns true if SECTION has VMA not equal to LMA, ie.
2864 SECTION is loaded at an address different from where it will "run". */
2865
2866 int
2867 section_is_overlay (asection *section)
2868 {
2869 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2870
2871 if (overlay_debugging)
2872 if (section && section->lma != 0 &&
2873 section->vma != section->lma)
2874 return 1;
2875
2876 return 0;
2877 }
2878
2879 /* Function: overlay_invalidate_all (void)
2880 Invalidate the mapped state of all overlay sections (mark it as stale). */
2881
2882 static void
2883 overlay_invalidate_all (void)
2884 {
2885 struct objfile *objfile;
2886 struct obj_section *sect;
2887
2888 ALL_OBJSECTIONS (objfile, sect)
2889 if (section_is_overlay (sect->the_bfd_section))
2890 sect->ovly_mapped = -1;
2891 }
2892
2893 /* Function: overlay_is_mapped (SECTION)
2894 Returns true if section is an overlay, and is currently mapped.
2895 Private: public access is thru function section_is_mapped.
2896
2897 Access to the ovly_mapped flag is restricted to this function, so
2898 that we can do automatic update. If the global flag
2899 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2900 overlay_invalidate_all. If the mapped state of the particular
2901 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2902
2903 static int
2904 overlay_is_mapped (struct obj_section *osect)
2905 {
2906 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2907 return 0;
2908
2909 switch (overlay_debugging)
2910 {
2911 default:
2912 case ovly_off:
2913 return 0; /* overlay debugging off */
2914 case ovly_auto: /* overlay debugging automatic */
2915 /* Unles there is a target_overlay_update function,
2916 there's really nothing useful to do here (can't really go auto) */
2917 if (target_overlay_update)
2918 {
2919 if (overlay_cache_invalid)
2920 {
2921 overlay_invalidate_all ();
2922 overlay_cache_invalid = 0;
2923 }
2924 if (osect->ovly_mapped == -1)
2925 (*target_overlay_update) (osect);
2926 }
2927 /* fall thru to manual case */
2928 case ovly_on: /* overlay debugging manual */
2929 return osect->ovly_mapped == 1;
2930 }
2931 }
2932
2933 /* Function: section_is_mapped
2934 Returns true if section is an overlay, and is currently mapped. */
2935
2936 int
2937 section_is_mapped (asection *section)
2938 {
2939 struct objfile *objfile;
2940 struct obj_section *osect;
2941
2942 if (overlay_debugging)
2943 if (section && section_is_overlay (section))
2944 ALL_OBJSECTIONS (objfile, osect)
2945 if (osect->the_bfd_section == section)
2946 return overlay_is_mapped (osect);
2947
2948 return 0;
2949 }
2950
2951 /* Function: pc_in_unmapped_range
2952 If PC falls into the lma range of SECTION, return true, else false. */
2953
2954 CORE_ADDR
2955 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
2956 {
2957 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2958
2959 int size;
2960
2961 if (overlay_debugging)
2962 if (section && section_is_overlay (section))
2963 {
2964 size = bfd_get_section_size_before_reloc (section);
2965 if (section->lma <= pc && pc < section->lma + size)
2966 return 1;
2967 }
2968 return 0;
2969 }
2970
2971 /* Function: pc_in_mapped_range
2972 If PC falls into the vma range of SECTION, return true, else false. */
2973
2974 CORE_ADDR
2975 pc_in_mapped_range (CORE_ADDR pc, asection *section)
2976 {
2977 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2978
2979 int size;
2980
2981 if (overlay_debugging)
2982 if (section && section_is_overlay (section))
2983 {
2984 size = bfd_get_section_size_before_reloc (section);
2985 if (section->vma <= pc && pc < section->vma + size)
2986 return 1;
2987 }
2988 return 0;
2989 }
2990
2991
2992 /* Return true if the mapped ranges of sections A and B overlap, false
2993 otherwise. */
2994 static int
2995 sections_overlap (asection *a, asection *b)
2996 {
2997 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2998
2999 CORE_ADDR a_start = a->vma;
3000 CORE_ADDR a_end = a->vma + bfd_get_section_size_before_reloc (a);
3001 CORE_ADDR b_start = b->vma;
3002 CORE_ADDR b_end = b->vma + bfd_get_section_size_before_reloc (b);
3003
3004 return (a_start < b_end && b_start < a_end);
3005 }
3006
3007 /* Function: overlay_unmapped_address (PC, SECTION)
3008 Returns the address corresponding to PC in the unmapped (load) range.
3009 May be the same as PC. */
3010
3011 CORE_ADDR
3012 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3013 {
3014 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3015
3016 if (overlay_debugging)
3017 if (section && section_is_overlay (section) &&
3018 pc_in_mapped_range (pc, section))
3019 return pc + section->lma - section->vma;
3020
3021 return pc;
3022 }
3023
3024 /* Function: overlay_mapped_address (PC, SECTION)
3025 Returns the address corresponding to PC in the mapped (runtime) range.
3026 May be the same as PC. */
3027
3028 CORE_ADDR
3029 overlay_mapped_address (CORE_ADDR pc, asection *section)
3030 {
3031 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3032
3033 if (overlay_debugging)
3034 if (section && section_is_overlay (section) &&
3035 pc_in_unmapped_range (pc, section))
3036 return pc + section->vma - section->lma;
3037
3038 return pc;
3039 }
3040
3041
3042 /* Function: symbol_overlayed_address
3043 Return one of two addresses (relative to the VMA or to the LMA),
3044 depending on whether the section is mapped or not. */
3045
3046 CORE_ADDR
3047 symbol_overlayed_address (CORE_ADDR address, asection *section)
3048 {
3049 if (overlay_debugging)
3050 {
3051 /* If the symbol has no section, just return its regular address. */
3052 if (section == 0)
3053 return address;
3054 /* If the symbol's section is not an overlay, just return its address */
3055 if (!section_is_overlay (section))
3056 return address;
3057 /* If the symbol's section is mapped, just return its address */
3058 if (section_is_mapped (section))
3059 return address;
3060 /*
3061 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3062 * then return its LOADED address rather than its vma address!!
3063 */
3064 return overlay_unmapped_address (address, section);
3065 }
3066 return address;
3067 }
3068
3069 /* Function: find_pc_overlay (PC)
3070 Return the best-match overlay section for PC:
3071 If PC matches a mapped overlay section's VMA, return that section.
3072 Else if PC matches an unmapped section's VMA, return that section.
3073 Else if PC matches an unmapped section's LMA, return that section. */
3074
3075 asection *
3076 find_pc_overlay (CORE_ADDR pc)
3077 {
3078 struct objfile *objfile;
3079 struct obj_section *osect, *best_match = NULL;
3080
3081 if (overlay_debugging)
3082 ALL_OBJSECTIONS (objfile, osect)
3083 if (section_is_overlay (osect->the_bfd_section))
3084 {
3085 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3086 {
3087 if (overlay_is_mapped (osect))
3088 return osect->the_bfd_section;
3089 else
3090 best_match = osect;
3091 }
3092 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3093 best_match = osect;
3094 }
3095 return best_match ? best_match->the_bfd_section : NULL;
3096 }
3097
3098 /* Function: find_pc_mapped_section (PC)
3099 If PC falls into the VMA address range of an overlay section that is
3100 currently marked as MAPPED, return that section. Else return NULL. */
3101
3102 asection *
3103 find_pc_mapped_section (CORE_ADDR pc)
3104 {
3105 struct objfile *objfile;
3106 struct obj_section *osect;
3107
3108 if (overlay_debugging)
3109 ALL_OBJSECTIONS (objfile, osect)
3110 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3111 overlay_is_mapped (osect))
3112 return osect->the_bfd_section;
3113
3114 return NULL;
3115 }
3116
3117 /* Function: list_overlays_command
3118 Print a list of mapped sections and their PC ranges */
3119
3120 void
3121 list_overlays_command (char *args, int from_tty)
3122 {
3123 int nmapped = 0;
3124 struct objfile *objfile;
3125 struct obj_section *osect;
3126
3127 if (overlay_debugging)
3128 ALL_OBJSECTIONS (objfile, osect)
3129 if (overlay_is_mapped (osect))
3130 {
3131 const char *name;
3132 bfd_vma lma, vma;
3133 int size;
3134
3135 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3136 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3137 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3138 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3139
3140 printf_filtered ("Section %s, loaded at ", name);
3141 print_address_numeric (lma, 1, gdb_stdout);
3142 puts_filtered (" - ");
3143 print_address_numeric (lma + size, 1, gdb_stdout);
3144 printf_filtered (", mapped at ");
3145 print_address_numeric (vma, 1, gdb_stdout);
3146 puts_filtered (" - ");
3147 print_address_numeric (vma + size, 1, gdb_stdout);
3148 puts_filtered ("\n");
3149
3150 nmapped++;
3151 }
3152 if (nmapped == 0)
3153 printf_filtered ("No sections are mapped.\n");
3154 }
3155
3156 /* Function: map_overlay_command
3157 Mark the named section as mapped (ie. residing at its VMA address). */
3158
3159 void
3160 map_overlay_command (char *args, int from_tty)
3161 {
3162 struct objfile *objfile, *objfile2;
3163 struct obj_section *sec, *sec2;
3164 asection *bfdsec;
3165
3166 if (!overlay_debugging)
3167 error ("\
3168 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3169 the 'overlay manual' command.");
3170
3171 if (args == 0 || *args == 0)
3172 error ("Argument required: name of an overlay section");
3173
3174 /* First, find a section matching the user supplied argument */
3175 ALL_OBJSECTIONS (objfile, sec)
3176 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3177 {
3178 /* Now, check to see if the section is an overlay. */
3179 bfdsec = sec->the_bfd_section;
3180 if (!section_is_overlay (bfdsec))
3181 continue; /* not an overlay section */
3182
3183 /* Mark the overlay as "mapped" */
3184 sec->ovly_mapped = 1;
3185
3186 /* Next, make a pass and unmap any sections that are
3187 overlapped by this new section: */
3188 ALL_OBJSECTIONS (objfile2, sec2)
3189 if (sec2->ovly_mapped
3190 && sec != sec2
3191 && sec->the_bfd_section != sec2->the_bfd_section
3192 && sections_overlap (sec->the_bfd_section,
3193 sec2->the_bfd_section))
3194 {
3195 if (info_verbose)
3196 printf_unfiltered ("Note: section %s unmapped by overlap\n",
3197 bfd_section_name (objfile->obfd,
3198 sec2->the_bfd_section));
3199 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3200 }
3201 return;
3202 }
3203 error ("No overlay section called %s", args);
3204 }
3205
3206 /* Function: unmap_overlay_command
3207 Mark the overlay section as unmapped
3208 (ie. resident in its LMA address range, rather than the VMA range). */
3209
3210 void
3211 unmap_overlay_command (char *args, int from_tty)
3212 {
3213 struct objfile *objfile;
3214 struct obj_section *sec;
3215
3216 if (!overlay_debugging)
3217 error ("\
3218 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3219 the 'overlay manual' command.");
3220
3221 if (args == 0 || *args == 0)
3222 error ("Argument required: name of an overlay section");
3223
3224 /* First, find a section matching the user supplied argument */
3225 ALL_OBJSECTIONS (objfile, sec)
3226 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3227 {
3228 if (!sec->ovly_mapped)
3229 error ("Section %s is not mapped", args);
3230 sec->ovly_mapped = 0;
3231 return;
3232 }
3233 error ("No overlay section called %s", args);
3234 }
3235
3236 /* Function: overlay_auto_command
3237 A utility command to turn on overlay debugging.
3238 Possibly this should be done via a set/show command. */
3239
3240 static void
3241 overlay_auto_command (char *args, int from_tty)
3242 {
3243 overlay_debugging = ovly_auto;
3244 enable_overlay_breakpoints ();
3245 if (info_verbose)
3246 printf_unfiltered ("Automatic overlay debugging enabled.");
3247 }
3248
3249 /* Function: overlay_manual_command
3250 A utility command to turn on overlay debugging.
3251 Possibly this should be done via a set/show command. */
3252
3253 static void
3254 overlay_manual_command (char *args, int from_tty)
3255 {
3256 overlay_debugging = ovly_on;
3257 disable_overlay_breakpoints ();
3258 if (info_verbose)
3259 printf_unfiltered ("Overlay debugging enabled.");
3260 }
3261
3262 /* Function: overlay_off_command
3263 A utility command to turn on overlay debugging.
3264 Possibly this should be done via a set/show command. */
3265
3266 static void
3267 overlay_off_command (char *args, int from_tty)
3268 {
3269 overlay_debugging = ovly_off;
3270 disable_overlay_breakpoints ();
3271 if (info_verbose)
3272 printf_unfiltered ("Overlay debugging disabled.");
3273 }
3274
3275 static void
3276 overlay_load_command (char *args, int from_tty)
3277 {
3278 if (target_overlay_update)
3279 (*target_overlay_update) (NULL);
3280 else
3281 error ("This target does not know how to read its overlay state.");
3282 }
3283
3284 /* Function: overlay_command
3285 A place-holder for a mis-typed command */
3286
3287 /* Command list chain containing all defined "overlay" subcommands. */
3288 struct cmd_list_element *overlaylist;
3289
3290 static void
3291 overlay_command (char *args, int from_tty)
3292 {
3293 printf_unfiltered
3294 ("\"overlay\" must be followed by the name of an overlay command.\n");
3295 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3296 }
3297
3298
3299 /* Target Overlays for the "Simplest" overlay manager:
3300
3301 This is GDB's default target overlay layer. It works with the
3302 minimal overlay manager supplied as an example by Cygnus. The
3303 entry point is via a function pointer "target_overlay_update",
3304 so targets that use a different runtime overlay manager can
3305 substitute their own overlay_update function and take over the
3306 function pointer.
3307
3308 The overlay_update function pokes around in the target's data structures
3309 to see what overlays are mapped, and updates GDB's overlay mapping with
3310 this information.
3311
3312 In this simple implementation, the target data structures are as follows:
3313 unsigned _novlys; /# number of overlay sections #/
3314 unsigned _ovly_table[_novlys][4] = {
3315 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3316 {..., ..., ..., ...},
3317 }
3318 unsigned _novly_regions; /# number of overlay regions #/
3319 unsigned _ovly_region_table[_novly_regions][3] = {
3320 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3321 {..., ..., ...},
3322 }
3323 These functions will attempt to update GDB's mappedness state in the
3324 symbol section table, based on the target's mappedness state.
3325
3326 To do this, we keep a cached copy of the target's _ovly_table, and
3327 attempt to detect when the cached copy is invalidated. The main
3328 entry point is "simple_overlay_update(SECT), which looks up SECT in
3329 the cached table and re-reads only the entry for that section from
3330 the target (whenever possible).
3331 */
3332
3333 /* Cached, dynamically allocated copies of the target data structures: */
3334 static unsigned (*cache_ovly_table)[4] = 0;
3335 #if 0
3336 static unsigned (*cache_ovly_region_table)[3] = 0;
3337 #endif
3338 static unsigned cache_novlys = 0;
3339 #if 0
3340 static unsigned cache_novly_regions = 0;
3341 #endif
3342 static CORE_ADDR cache_ovly_table_base = 0;
3343 #if 0
3344 static CORE_ADDR cache_ovly_region_table_base = 0;
3345 #endif
3346 enum ovly_index
3347 {
3348 VMA, SIZE, LMA, MAPPED
3349 };
3350 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3351
3352 /* Throw away the cached copy of _ovly_table */
3353 static void
3354 simple_free_overlay_table (void)
3355 {
3356 if (cache_ovly_table)
3357 xfree (cache_ovly_table);
3358 cache_novlys = 0;
3359 cache_ovly_table = NULL;
3360 cache_ovly_table_base = 0;
3361 }
3362
3363 #if 0
3364 /* Throw away the cached copy of _ovly_region_table */
3365 static void
3366 simple_free_overlay_region_table (void)
3367 {
3368 if (cache_ovly_region_table)
3369 xfree (cache_ovly_region_table);
3370 cache_novly_regions = 0;
3371 cache_ovly_region_table = NULL;
3372 cache_ovly_region_table_base = 0;
3373 }
3374 #endif
3375
3376 /* Read an array of ints from the target into a local buffer.
3377 Convert to host order. int LEN is number of ints */
3378 static void
3379 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3380 {
3381 /* FIXME (alloca): Not safe if array is very large. */
3382 char *buf = alloca (len * TARGET_LONG_BYTES);
3383 int i;
3384
3385 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3386 for (i = 0; i < len; i++)
3387 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3388 TARGET_LONG_BYTES);
3389 }
3390
3391 /* Find and grab a copy of the target _ovly_table
3392 (and _novlys, which is needed for the table's size) */
3393 static int
3394 simple_read_overlay_table (void)
3395 {
3396 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3397
3398 simple_free_overlay_table ();
3399 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3400 if (! novlys_msym)
3401 {
3402 error ("Error reading inferior's overlay table: "
3403 "couldn't find `_novlys' variable\n"
3404 "in inferior. Use `overlay manual' mode.");
3405 return 0;
3406 }
3407
3408 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3409 if (! ovly_table_msym)
3410 {
3411 error ("Error reading inferior's overlay table: couldn't find "
3412 "`_ovly_table' array\n"
3413 "in inferior. Use `overlay manual' mode.");
3414 return 0;
3415 }
3416
3417 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3418 cache_ovly_table
3419 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3420 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3421 read_target_long_array (cache_ovly_table_base,
3422 (int *) cache_ovly_table,
3423 cache_novlys * 4);
3424
3425 return 1; /* SUCCESS */
3426 }
3427
3428 #if 0
3429 /* Find and grab a copy of the target _ovly_region_table
3430 (and _novly_regions, which is needed for the table's size) */
3431 static int
3432 simple_read_overlay_region_table (void)
3433 {
3434 struct minimal_symbol *msym;
3435
3436 simple_free_overlay_region_table ();
3437 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3438 if (msym != NULL)
3439 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3440 else
3441 return 0; /* failure */
3442 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3443 if (cache_ovly_region_table != NULL)
3444 {
3445 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3446 if (msym != NULL)
3447 {
3448 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3449 read_target_long_array (cache_ovly_region_table_base,
3450 (int *) cache_ovly_region_table,
3451 cache_novly_regions * 3);
3452 }
3453 else
3454 return 0; /* failure */
3455 }
3456 else
3457 return 0; /* failure */
3458 return 1; /* SUCCESS */
3459 }
3460 #endif
3461
3462 /* Function: simple_overlay_update_1
3463 A helper function for simple_overlay_update. Assuming a cached copy
3464 of _ovly_table exists, look through it to find an entry whose vma,
3465 lma and size match those of OSECT. Re-read the entry and make sure
3466 it still matches OSECT (else the table may no longer be valid).
3467 Set OSECT's mapped state to match the entry. Return: 1 for
3468 success, 0 for failure. */
3469
3470 static int
3471 simple_overlay_update_1 (struct obj_section *osect)
3472 {
3473 int i, size;
3474 bfd *obfd = osect->objfile->obfd;
3475 asection *bsect = osect->the_bfd_section;
3476
3477 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3478 for (i = 0; i < cache_novlys; i++)
3479 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3480 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3481 /* && cache_ovly_table[i][SIZE] == size */ )
3482 {
3483 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3484 (int *) cache_ovly_table[i], 4);
3485 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3486 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3487 /* && cache_ovly_table[i][SIZE] == size */ )
3488 {
3489 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3490 return 1;
3491 }
3492 else /* Warning! Warning! Target's ovly table has changed! */
3493 return 0;
3494 }
3495 return 0;
3496 }
3497
3498 /* Function: simple_overlay_update
3499 If OSECT is NULL, then update all sections' mapped state
3500 (after re-reading the entire target _ovly_table).
3501 If OSECT is non-NULL, then try to find a matching entry in the
3502 cached ovly_table and update only OSECT's mapped state.
3503 If a cached entry can't be found or the cache isn't valid, then
3504 re-read the entire cache, and go ahead and update all sections. */
3505
3506 static void
3507 simple_overlay_update (struct obj_section *osect)
3508 {
3509 struct objfile *objfile;
3510
3511 /* Were we given an osect to look up? NULL means do all of them. */
3512 if (osect)
3513 /* Have we got a cached copy of the target's overlay table? */
3514 if (cache_ovly_table != NULL)
3515 /* Does its cached location match what's currently in the symtab? */
3516 if (cache_ovly_table_base ==
3517 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3518 /* Then go ahead and try to look up this single section in the cache */
3519 if (simple_overlay_update_1 (osect))
3520 /* Found it! We're done. */
3521 return;
3522
3523 /* Cached table no good: need to read the entire table anew.
3524 Or else we want all the sections, in which case it's actually
3525 more efficient to read the whole table in one block anyway. */
3526
3527 if (! simple_read_overlay_table ())
3528 return;
3529
3530 /* Now may as well update all sections, even if only one was requested. */
3531 ALL_OBJSECTIONS (objfile, osect)
3532 if (section_is_overlay (osect->the_bfd_section))
3533 {
3534 int i, size;
3535 bfd *obfd = osect->objfile->obfd;
3536 asection *bsect = osect->the_bfd_section;
3537
3538 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3539 for (i = 0; i < cache_novlys; i++)
3540 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3541 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3542 /* && cache_ovly_table[i][SIZE] == size */ )
3543 { /* obj_section matches i'th entry in ovly_table */
3544 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3545 break; /* finished with inner for loop: break out */
3546 }
3547 }
3548 }
3549
3550 /* Set the output sections and output offsets for section SECTP in
3551 ABFD. The relocation code in BFD will read these offsets, so we
3552 need to be sure they're initialized. We map each section to itself,
3553 with no offset; this means that SECTP->vma will be honored. */
3554
3555 static void
3556 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3557 {
3558 sectp->output_section = sectp;
3559 sectp->output_offset = 0;
3560 }
3561
3562 /* Relocate the contents of a debug section SECTP in ABFD. The
3563 contents are stored in BUF if it is non-NULL, or returned in a
3564 malloc'd buffer otherwise.
3565
3566 For some platforms and debug info formats, shared libraries contain
3567 relocations against the debug sections (particularly for DWARF-2;
3568 one affected platform is PowerPC GNU/Linux, although it depends on
3569 the version of the linker in use). Also, ELF object files naturally
3570 have unresolved relocations for their debug sections. We need to apply
3571 the relocations in order to get the locations of symbols correct. */
3572
3573 bfd_byte *
3574 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3575 {
3576 /* We're only interested in debugging sections with relocation
3577 information. */
3578 if ((sectp->flags & SEC_RELOC) == 0)
3579 return NULL;
3580 if ((sectp->flags & SEC_DEBUGGING) == 0)
3581 return NULL;
3582
3583 /* We will handle section offsets properly elsewhere, so relocate as if
3584 all sections begin at 0. */
3585 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3586
3587 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3588 }
3589
3590 void
3591 _initialize_symfile (void)
3592 {
3593 struct cmd_list_element *c;
3594
3595 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3596 "Load symbol table from executable file FILE.\n\
3597 The `file' command can also load symbol tables, as well as setting the file\n\
3598 to execute.", &cmdlist);
3599 set_cmd_completer (c, filename_completer);
3600
3601 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3602 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3603 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3604 ADDR is the starting address of the file's text.\n\
3605 The optional arguments are section-name section-address pairs and\n\
3606 should be specified if the data and bss segments are not contiguous\n\
3607 with the text. SECT is a section name to be loaded at SECT_ADDR.",
3608 &cmdlist);
3609 set_cmd_completer (c, filename_completer);
3610
3611 c = add_cmd ("add-symbol-file-from-memory", class_files,
3612 add_symbol_file_from_memory_command,
3613 "\
3614 Load the symbols out of memory from a dynamically loaded object file.\n\
3615 Give an expression for the address of the file's shared object file header.",
3616 &cmdlist);
3617
3618 c = add_cmd ("add-shared-symbol-files", class_files,
3619 add_shared_symbol_files_command,
3620 "Load the symbols from shared objects in the dynamic linker's link map.",
3621 &cmdlist);
3622 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3623 &cmdlist);
3624
3625 c = add_cmd ("load", class_files, load_command,
3626 "Dynamically load FILE into the running program, and record its symbols\n\
3627 for access from GDB.", &cmdlist);
3628 set_cmd_completer (c, filename_completer);
3629
3630 add_show_from_set
3631 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3632 (char *) &symbol_reloading,
3633 "Set dynamic symbol table reloading multiple times in one run.",
3634 &setlist),
3635 &showlist);
3636
3637 add_prefix_cmd ("overlay", class_support, overlay_command,
3638 "Commands for debugging overlays.", &overlaylist,
3639 "overlay ", 0, &cmdlist);
3640
3641 add_com_alias ("ovly", "overlay", class_alias, 1);
3642 add_com_alias ("ov", "overlay", class_alias, 1);
3643
3644 add_cmd ("map-overlay", class_support, map_overlay_command,
3645 "Assert that an overlay section is mapped.", &overlaylist);
3646
3647 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3648 "Assert that an overlay section is unmapped.", &overlaylist);
3649
3650 add_cmd ("list-overlays", class_support, list_overlays_command,
3651 "List mappings of overlay sections.", &overlaylist);
3652
3653 add_cmd ("manual", class_support, overlay_manual_command,
3654 "Enable overlay debugging.", &overlaylist);
3655 add_cmd ("off", class_support, overlay_off_command,
3656 "Disable overlay debugging.", &overlaylist);
3657 add_cmd ("auto", class_support, overlay_auto_command,
3658 "Enable automatic overlay debugging.", &overlaylist);
3659 add_cmd ("load-target", class_support, overlay_load_command,
3660 "Read the overlay mapping state from the target.", &overlaylist);
3661
3662 /* Filename extension to source language lookup table: */
3663 init_filename_language_table ();
3664 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3665 (char *) &ext_args,
3666 "Set mapping between filename extension and source language.\n\
3667 Usage: set extension-language .foo bar",
3668 &setlist);
3669 set_cmd_cfunc (c, set_ext_lang_command);
3670
3671 add_info ("extensions", info_ext_lang_command,
3672 "All filename extensions associated with a source language.");
3673
3674 add_show_from_set
3675 (add_set_cmd ("download-write-size", class_obscure,
3676 var_integer, (char *) &download_write_size,
3677 "Set the write size used when downloading a program.\n"
3678 "Only used when downloading a program onto a remote\n"
3679 "target. Specify zero, or a negative value, to disable\n"
3680 "blocked writes. The actual size of each transfer is also\n"
3681 "limited by the size of the target packet and the memory\n"
3682 "cache.\n",
3683 &setlist),
3684 &showlist);
3685
3686 debug_file_directory = xstrdup (DEBUGDIR);
3687 c = (add_set_cmd
3688 ("debug-file-directory", class_support, var_string,
3689 (char *) &debug_file_directory,
3690 "Set the directory where separate debug symbols are searched for.\n"
3691 "Separate debug symbols are first searched for in the same\n"
3692 "directory as the binary, then in the `" DEBUG_SUBDIRECTORY
3693 "' subdirectory,\n"
3694 "and lastly at the path of the directory of the binary with\n"
3695 "the global debug-file directory prepended\n",
3696 &setlist));
3697 add_show_from_set (c, &showlist);
3698 set_cmd_completer (c, filename_completer);
3699 }
This page took 0.114589 seconds and 4 git commands to generate.