f610e673b9de1034a9ea8e3a25f79a95fdcd3cc4
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57 #include "stack.h"
58 #include "gdb_bfd.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
72 void (*deprecated_show_load_progress) (const char *section,
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
76 unsigned long total_size);
77 void (*deprecated_pre_add_symbol_hook) (const char *);
78 void (*deprecated_post_add_symbol_hook) (void);
79
80 static void clear_symtab_users_cleanup (void *ignore);
81
82 /* Global variables owned by this file. */
83 int readnow_symbol_files; /* Read full symbols immediately. */
84
85 /* Functions this file defines. */
86
87 static void load_command (char *, int);
88
89 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
90
91 static void add_symbol_file_command (char *, int);
92
93 bfd *symfile_bfd_open (char *);
94
95 int get_section_index (struct objfile *, char *);
96
97 static const struct sym_fns *find_sym_fns (bfd *);
98
99 static void decrement_reading_symtab (void *);
100
101 static void overlay_invalidate_all (void);
102
103 static void overlay_auto_command (char *, int);
104
105 static void overlay_manual_command (char *, int);
106
107 static void overlay_off_command (char *, int);
108
109 static void overlay_load_command (char *, int);
110
111 static void overlay_command (char *, int);
112
113 static void simple_free_overlay_table (void);
114
115 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
116 enum bfd_endian);
117
118 static int simple_read_overlay_table (void);
119
120 static int simple_overlay_update_1 (struct obj_section *);
121
122 static void add_filename_language (char *ext, enum language lang);
123
124 static void info_ext_lang_command (char *args, int from_tty);
125
126 static void init_filename_language_table (void);
127
128 static void symfile_find_segment_sections (struct objfile *objfile);
129
130 void _initialize_symfile (void);
131
132 /* List of all available sym_fns. On gdb startup, each object file reader
133 calls add_symtab_fns() to register information on each format it is
134 prepared to read. */
135
136 typedef const struct sym_fns *sym_fns_ptr;
137 DEF_VEC_P (sym_fns_ptr);
138
139 static VEC (sym_fns_ptr) *symtab_fns = NULL;
140
141 /* If non-zero, shared library symbols will be added automatically
142 when the inferior is created, new libraries are loaded, or when
143 attaching to the inferior. This is almost always what users will
144 want to have happen; but for very large programs, the startup time
145 will be excessive, and so if this is a problem, the user can clear
146 this flag and then add the shared library symbols as needed. Note
147 that there is a potential for confusion, since if the shared
148 library symbols are not loaded, commands like "info fun" will *not*
149 report all the functions that are actually present. */
150
151 int auto_solib_add = 1;
152 \f
153
154 /* Concatenate NULL terminated variable argument list of `const char *'
155 strings; return the new string. Space is found in the OBSTACKP.
156 Argument list must be terminated by a sentinel expression `(char *)
157 NULL'. */
158
159 char *
160 obconcat (struct obstack *obstackp, ...)
161 {
162 va_list ap;
163
164 va_start (ap, obstackp);
165 for (;;)
166 {
167 const char *s = va_arg (ap, const char *);
168
169 if (s == NULL)
170 break;
171
172 obstack_grow_str (obstackp, s);
173 }
174 va_end (ap);
175 obstack_1grow (obstackp, 0);
176
177 return obstack_finish (obstackp);
178 }
179
180 /* True if we are reading a symbol table. */
181
182 int currently_reading_symtab = 0;
183
184 static void
185 decrement_reading_symtab (void *dummy)
186 {
187 currently_reading_symtab--;
188 }
189
190 /* Increment currently_reading_symtab and return a cleanup that can be
191 used to decrement it. */
192 struct cleanup *
193 increment_reading_symtab (void)
194 {
195 ++currently_reading_symtab;
196 return make_cleanup (decrement_reading_symtab, NULL);
197 }
198
199 /* Remember the lowest-addressed loadable section we've seen.
200 This function is called via bfd_map_over_sections.
201
202 In case of equal vmas, the section with the largest size becomes the
203 lowest-addressed loadable section.
204
205 If the vmas and sizes are equal, the last section is considered the
206 lowest-addressed loadable section. */
207
208 void
209 find_lowest_section (bfd *abfd, asection *sect, void *obj)
210 {
211 asection **lowest = (asection **) obj;
212
213 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
214 return;
215 if (!*lowest)
216 *lowest = sect; /* First loadable section */
217 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
218 *lowest = sect; /* A lower loadable section */
219 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
220 && (bfd_section_size (abfd, (*lowest))
221 <= bfd_section_size (abfd, sect)))
222 *lowest = sect;
223 }
224
225 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
226
227 struct section_addr_info *
228 alloc_section_addr_info (size_t num_sections)
229 {
230 struct section_addr_info *sap;
231 size_t size;
232
233 size = (sizeof (struct section_addr_info)
234 + sizeof (struct other_sections) * (num_sections - 1));
235 sap = (struct section_addr_info *) xmalloc (size);
236 memset (sap, 0, size);
237 sap->num_sections = num_sections;
238
239 return sap;
240 }
241
242 /* Build (allocate and populate) a section_addr_info struct from
243 an existing section table. */
244
245 extern struct section_addr_info *
246 build_section_addr_info_from_section_table (const struct target_section *start,
247 const struct target_section *end)
248 {
249 struct section_addr_info *sap;
250 const struct target_section *stp;
251 int oidx;
252
253 sap = alloc_section_addr_info (end - start);
254
255 for (stp = start, oidx = 0; stp != end; stp++)
256 {
257 if (bfd_get_section_flags (stp->bfd,
258 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
259 && oidx < end - start)
260 {
261 sap->other[oidx].addr = stp->addr;
262 sap->other[oidx].name
263 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
264 sap->other[oidx].sectindex = stp->the_bfd_section->index;
265 oidx++;
266 }
267 }
268
269 return sap;
270 }
271
272 /* Create a section_addr_info from section offsets in ABFD. */
273
274 static struct section_addr_info *
275 build_section_addr_info_from_bfd (bfd *abfd)
276 {
277 struct section_addr_info *sap;
278 int i;
279 struct bfd_section *sec;
280
281 sap = alloc_section_addr_info (bfd_count_sections (abfd));
282 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
283 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
284 {
285 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
286 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
287 sap->other[i].sectindex = sec->index;
288 i++;
289 }
290 return sap;
291 }
292
293 /* Create a section_addr_info from section offsets in OBJFILE. */
294
295 struct section_addr_info *
296 build_section_addr_info_from_objfile (const struct objfile *objfile)
297 {
298 struct section_addr_info *sap;
299 int i;
300
301 /* Before reread_symbols gets rewritten it is not safe to call:
302 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
303 */
304 sap = build_section_addr_info_from_bfd (objfile->obfd);
305 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
306 {
307 int sectindex = sap->other[i].sectindex;
308
309 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
310 }
311 return sap;
312 }
313
314 /* Free all memory allocated by build_section_addr_info_from_section_table. */
315
316 extern void
317 free_section_addr_info (struct section_addr_info *sap)
318 {
319 int idx;
320
321 for (idx = 0; idx < sap->num_sections; idx++)
322 if (sap->other[idx].name)
323 xfree (sap->other[idx].name);
324 xfree (sap);
325 }
326
327
328 /* Initialize OBJFILE's sect_index_* members. */
329 static void
330 init_objfile_sect_indices (struct objfile *objfile)
331 {
332 asection *sect;
333 int i;
334
335 sect = bfd_get_section_by_name (objfile->obfd, ".text");
336 if (sect)
337 objfile->sect_index_text = sect->index;
338
339 sect = bfd_get_section_by_name (objfile->obfd, ".data");
340 if (sect)
341 objfile->sect_index_data = sect->index;
342
343 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
344 if (sect)
345 objfile->sect_index_bss = sect->index;
346
347 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
348 if (sect)
349 objfile->sect_index_rodata = sect->index;
350
351 /* This is where things get really weird... We MUST have valid
352 indices for the various sect_index_* members or gdb will abort.
353 So if for example, there is no ".text" section, we have to
354 accomodate that. First, check for a file with the standard
355 one or two segments. */
356
357 symfile_find_segment_sections (objfile);
358
359 /* Except when explicitly adding symbol files at some address,
360 section_offsets contains nothing but zeros, so it doesn't matter
361 which slot in section_offsets the individual sect_index_* members
362 index into. So if they are all zero, it is safe to just point
363 all the currently uninitialized indices to the first slot. But
364 beware: if this is the main executable, it may be relocated
365 later, e.g. by the remote qOffsets packet, and then this will
366 be wrong! That's why we try segments first. */
367
368 for (i = 0; i < objfile->num_sections; i++)
369 {
370 if (ANOFFSET (objfile->section_offsets, i) != 0)
371 {
372 break;
373 }
374 }
375 if (i == objfile->num_sections)
376 {
377 if (objfile->sect_index_text == -1)
378 objfile->sect_index_text = 0;
379 if (objfile->sect_index_data == -1)
380 objfile->sect_index_data = 0;
381 if (objfile->sect_index_bss == -1)
382 objfile->sect_index_bss = 0;
383 if (objfile->sect_index_rodata == -1)
384 objfile->sect_index_rodata = 0;
385 }
386 }
387
388 /* The arguments to place_section. */
389
390 struct place_section_arg
391 {
392 struct section_offsets *offsets;
393 CORE_ADDR lowest;
394 };
395
396 /* Find a unique offset to use for loadable section SECT if
397 the user did not provide an offset. */
398
399 static void
400 place_section (bfd *abfd, asection *sect, void *obj)
401 {
402 struct place_section_arg *arg = obj;
403 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
404 int done;
405 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
406
407 /* We are only interested in allocated sections. */
408 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
409 return;
410
411 /* If the user specified an offset, honor it. */
412 if (offsets[sect->index] != 0)
413 return;
414
415 /* Otherwise, let's try to find a place for the section. */
416 start_addr = (arg->lowest + align - 1) & -align;
417
418 do {
419 asection *cur_sec;
420
421 done = 1;
422
423 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
424 {
425 int indx = cur_sec->index;
426
427 /* We don't need to compare against ourself. */
428 if (cur_sec == sect)
429 continue;
430
431 /* We can only conflict with allocated sections. */
432 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
433 continue;
434
435 /* If the section offset is 0, either the section has not been placed
436 yet, or it was the lowest section placed (in which case LOWEST
437 will be past its end). */
438 if (offsets[indx] == 0)
439 continue;
440
441 /* If this section would overlap us, then we must move up. */
442 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
443 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
444 {
445 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
446 start_addr = (start_addr + align - 1) & -align;
447 done = 0;
448 break;
449 }
450
451 /* Otherwise, we appear to be OK. So far. */
452 }
453 }
454 while (!done);
455
456 offsets[sect->index] = start_addr;
457 arg->lowest = start_addr + bfd_get_section_size (sect);
458 }
459
460 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
461 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
462 entries. */
463
464 void
465 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
466 int num_sections,
467 struct section_addr_info *addrs)
468 {
469 int i;
470
471 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
472
473 /* Now calculate offsets for section that were specified by the caller. */
474 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
475 {
476 struct other_sections *osp;
477
478 osp = &addrs->other[i];
479 if (osp->sectindex == -1)
480 continue;
481
482 /* Record all sections in offsets. */
483 /* The section_offsets in the objfile are here filled in using
484 the BFD index. */
485 section_offsets->offsets[osp->sectindex] = osp->addr;
486 }
487 }
488
489 /* Transform section name S for a name comparison. prelink can split section
490 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
491 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
492 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
493 (`.sbss') section has invalid (increased) virtual address. */
494
495 static const char *
496 addr_section_name (const char *s)
497 {
498 if (strcmp (s, ".dynbss") == 0)
499 return ".bss";
500 if (strcmp (s, ".sdynbss") == 0)
501 return ".sbss";
502
503 return s;
504 }
505
506 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
507 their (name, sectindex) pair. sectindex makes the sort by name stable. */
508
509 static int
510 addrs_section_compar (const void *ap, const void *bp)
511 {
512 const struct other_sections *a = *((struct other_sections **) ap);
513 const struct other_sections *b = *((struct other_sections **) bp);
514 int retval;
515
516 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
517 if (retval)
518 return retval;
519
520 return a->sectindex - b->sectindex;
521 }
522
523 /* Provide sorted array of pointers to sections of ADDRS. The array is
524 terminated by NULL. Caller is responsible to call xfree for it. */
525
526 static struct other_sections **
527 addrs_section_sort (struct section_addr_info *addrs)
528 {
529 struct other_sections **array;
530 int i;
531
532 /* `+ 1' for the NULL terminator. */
533 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
534 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
535 array[i] = &addrs->other[i];
536 array[i] = NULL;
537
538 qsort (array, i, sizeof (*array), addrs_section_compar);
539
540 return array;
541 }
542
543 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
544 also SECTINDEXes specific to ABFD there. This function can be used to
545 rebase ADDRS to start referencing different BFD than before. */
546
547 void
548 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
549 {
550 asection *lower_sect;
551 CORE_ADDR lower_offset;
552 int i;
553 struct cleanup *my_cleanup;
554 struct section_addr_info *abfd_addrs;
555 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
556 struct other_sections **addrs_to_abfd_addrs;
557
558 /* Find lowest loadable section to be used as starting point for
559 continguous sections. */
560 lower_sect = NULL;
561 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
562 if (lower_sect == NULL)
563 {
564 warning (_("no loadable sections found in added symbol-file %s"),
565 bfd_get_filename (abfd));
566 lower_offset = 0;
567 }
568 else
569 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
570
571 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
572 in ABFD. Section names are not unique - there can be multiple sections of
573 the same name. Also the sections of the same name do not have to be
574 adjacent to each other. Some sections may be present only in one of the
575 files. Even sections present in both files do not have to be in the same
576 order.
577
578 Use stable sort by name for the sections in both files. Then linearly
579 scan both lists matching as most of the entries as possible. */
580
581 addrs_sorted = addrs_section_sort (addrs);
582 my_cleanup = make_cleanup (xfree, addrs_sorted);
583
584 abfd_addrs = build_section_addr_info_from_bfd (abfd);
585 make_cleanup_free_section_addr_info (abfd_addrs);
586 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
587 make_cleanup (xfree, abfd_addrs_sorted);
588
589 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
590 ABFD_ADDRS_SORTED. */
591
592 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
593 * addrs->num_sections);
594 make_cleanup (xfree, addrs_to_abfd_addrs);
595
596 while (*addrs_sorted)
597 {
598 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
599
600 while (*abfd_addrs_sorted
601 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
602 sect_name) < 0)
603 abfd_addrs_sorted++;
604
605 if (*abfd_addrs_sorted
606 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
607 sect_name) == 0)
608 {
609 int index_in_addrs;
610
611 /* Make the found item directly addressable from ADDRS. */
612 index_in_addrs = *addrs_sorted - addrs->other;
613 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
614 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
615
616 /* Never use the same ABFD entry twice. */
617 abfd_addrs_sorted++;
618 }
619
620 addrs_sorted++;
621 }
622
623 /* Calculate offsets for the loadable sections.
624 FIXME! Sections must be in order of increasing loadable section
625 so that contiguous sections can use the lower-offset!!!
626
627 Adjust offsets if the segments are not contiguous.
628 If the section is contiguous, its offset should be set to
629 the offset of the highest loadable section lower than it
630 (the loadable section directly below it in memory).
631 this_offset = lower_offset = lower_addr - lower_orig_addr */
632
633 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
634 {
635 struct other_sections *sect = addrs_to_abfd_addrs[i];
636
637 if (sect)
638 {
639 /* This is the index used by BFD. */
640 addrs->other[i].sectindex = sect->sectindex;
641
642 if (addrs->other[i].addr != 0)
643 {
644 addrs->other[i].addr -= sect->addr;
645 lower_offset = addrs->other[i].addr;
646 }
647 else
648 addrs->other[i].addr = lower_offset;
649 }
650 else
651 {
652 /* addr_section_name transformation is not used for SECT_NAME. */
653 const char *sect_name = addrs->other[i].name;
654
655 /* This section does not exist in ABFD, which is normally
656 unexpected and we want to issue a warning.
657
658 However, the ELF prelinker does create a few sections which are
659 marked in the main executable as loadable (they are loaded in
660 memory from the DYNAMIC segment) and yet are not present in
661 separate debug info files. This is fine, and should not cause
662 a warning. Shared libraries contain just the section
663 ".gnu.liblist" but it is not marked as loadable there. There is
664 no other way to identify them than by their name as the sections
665 created by prelink have no special flags.
666
667 For the sections `.bss' and `.sbss' see addr_section_name. */
668
669 if (!(strcmp (sect_name, ".gnu.liblist") == 0
670 || strcmp (sect_name, ".gnu.conflict") == 0
671 || (strcmp (sect_name, ".bss") == 0
672 && i > 0
673 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
674 && addrs_to_abfd_addrs[i - 1] != NULL)
675 || (strcmp (sect_name, ".sbss") == 0
676 && i > 0
677 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
678 && addrs_to_abfd_addrs[i - 1] != NULL)))
679 warning (_("section %s not found in %s"), sect_name,
680 bfd_get_filename (abfd));
681
682 addrs->other[i].addr = 0;
683 addrs->other[i].sectindex = -1;
684 }
685 }
686
687 do_cleanups (my_cleanup);
688 }
689
690 /* Parse the user's idea of an offset for dynamic linking, into our idea
691 of how to represent it for fast symbol reading. This is the default
692 version of the sym_fns.sym_offsets function for symbol readers that
693 don't need to do anything special. It allocates a section_offsets table
694 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
695
696 void
697 default_symfile_offsets (struct objfile *objfile,
698 struct section_addr_info *addrs)
699 {
700 objfile->num_sections = bfd_count_sections (objfile->obfd);
701 objfile->section_offsets = (struct section_offsets *)
702 obstack_alloc (&objfile->objfile_obstack,
703 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
704 relative_addr_info_to_section_offsets (objfile->section_offsets,
705 objfile->num_sections, addrs);
706
707 /* For relocatable files, all loadable sections will start at zero.
708 The zero is meaningless, so try to pick arbitrary addresses such
709 that no loadable sections overlap. This algorithm is quadratic,
710 but the number of sections in a single object file is generally
711 small. */
712 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
713 {
714 struct place_section_arg arg;
715 bfd *abfd = objfile->obfd;
716 asection *cur_sec;
717
718 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
719 /* We do not expect this to happen; just skip this step if the
720 relocatable file has a section with an assigned VMA. */
721 if (bfd_section_vma (abfd, cur_sec) != 0)
722 break;
723
724 if (cur_sec == NULL)
725 {
726 CORE_ADDR *offsets = objfile->section_offsets->offsets;
727
728 /* Pick non-overlapping offsets for sections the user did not
729 place explicitly. */
730 arg.offsets = objfile->section_offsets;
731 arg.lowest = 0;
732 bfd_map_over_sections (objfile->obfd, place_section, &arg);
733
734 /* Correctly filling in the section offsets is not quite
735 enough. Relocatable files have two properties that
736 (most) shared objects do not:
737
738 - Their debug information will contain relocations. Some
739 shared libraries do also, but many do not, so this can not
740 be assumed.
741
742 - If there are multiple code sections they will be loaded
743 at different relative addresses in memory than they are
744 in the objfile, since all sections in the file will start
745 at address zero.
746
747 Because GDB has very limited ability to map from an
748 address in debug info to the correct code section,
749 it relies on adding SECT_OFF_TEXT to things which might be
750 code. If we clear all the section offsets, and set the
751 section VMAs instead, then symfile_relocate_debug_section
752 will return meaningful debug information pointing at the
753 correct sections.
754
755 GDB has too many different data structures for section
756 addresses - a bfd, objfile, and so_list all have section
757 tables, as does exec_ops. Some of these could probably
758 be eliminated. */
759
760 for (cur_sec = abfd->sections; cur_sec != NULL;
761 cur_sec = cur_sec->next)
762 {
763 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
764 continue;
765
766 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
767 exec_set_section_address (bfd_get_filename (abfd),
768 cur_sec->index,
769 offsets[cur_sec->index]);
770 offsets[cur_sec->index] = 0;
771 }
772 }
773 }
774
775 /* Remember the bfd indexes for the .text, .data, .bss and
776 .rodata sections. */
777 init_objfile_sect_indices (objfile);
778 }
779
780
781 /* Divide the file into segments, which are individual relocatable units.
782 This is the default version of the sym_fns.sym_segments function for
783 symbol readers that do not have an explicit representation of segments.
784 It assumes that object files do not have segments, and fully linked
785 files have a single segment. */
786
787 struct symfile_segment_data *
788 default_symfile_segments (bfd *abfd)
789 {
790 int num_sections, i;
791 asection *sect;
792 struct symfile_segment_data *data;
793 CORE_ADDR low, high;
794
795 /* Relocatable files contain enough information to position each
796 loadable section independently; they should not be relocated
797 in segments. */
798 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
799 return NULL;
800
801 /* Make sure there is at least one loadable section in the file. */
802 for (sect = abfd->sections; sect != NULL; sect = sect->next)
803 {
804 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
805 continue;
806
807 break;
808 }
809 if (sect == NULL)
810 return NULL;
811
812 low = bfd_get_section_vma (abfd, sect);
813 high = low + bfd_get_section_size (sect);
814
815 data = XZALLOC (struct symfile_segment_data);
816 data->num_segments = 1;
817 data->segment_bases = XCALLOC (1, CORE_ADDR);
818 data->segment_sizes = XCALLOC (1, CORE_ADDR);
819
820 num_sections = bfd_count_sections (abfd);
821 data->segment_info = XCALLOC (num_sections, int);
822
823 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
824 {
825 CORE_ADDR vma;
826
827 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
828 continue;
829
830 vma = bfd_get_section_vma (abfd, sect);
831 if (vma < low)
832 low = vma;
833 if (vma + bfd_get_section_size (sect) > high)
834 high = vma + bfd_get_section_size (sect);
835
836 data->segment_info[i] = 1;
837 }
838
839 data->segment_bases[0] = low;
840 data->segment_sizes[0] = high - low;
841
842 return data;
843 }
844
845 /* This is a convenience function to call sym_read for OBJFILE and
846 possibly force the partial symbols to be read. */
847
848 static void
849 read_symbols (struct objfile *objfile, int add_flags)
850 {
851 (*objfile->sf->sym_read) (objfile, add_flags);
852 if (!objfile_has_partial_symbols (objfile))
853 {
854 bfd *abfd = find_separate_debug_file_in_section (objfile);
855 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
856
857 if (abfd != NULL)
858 symbol_file_add_separate (abfd, add_flags, objfile);
859
860 do_cleanups (cleanup);
861 }
862 if ((add_flags & SYMFILE_NO_READ) == 0)
863 require_partial_symbols (objfile, 0);
864 }
865
866 /* Initialize entry point information for this objfile. */
867
868 static void
869 init_entry_point_info (struct objfile *objfile)
870 {
871 /* Save startup file's range of PC addresses to help blockframe.c
872 decide where the bottom of the stack is. */
873
874 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
875 {
876 /* Executable file -- record its entry point so we'll recognize
877 the startup file because it contains the entry point. */
878 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
879 objfile->ei.entry_point_p = 1;
880 }
881 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
882 && bfd_get_start_address (objfile->obfd) != 0)
883 {
884 /* Some shared libraries may have entry points set and be
885 runnable. There's no clear way to indicate this, so just check
886 for values other than zero. */
887 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
888 objfile->ei.entry_point_p = 1;
889 }
890 else
891 {
892 /* Examination of non-executable.o files. Short-circuit this stuff. */
893 objfile->ei.entry_point_p = 0;
894 }
895
896 if (objfile->ei.entry_point_p)
897 {
898 CORE_ADDR entry_point = objfile->ei.entry_point;
899
900 /* Make certain that the address points at real code, and not a
901 function descriptor. */
902 entry_point
903 = gdbarch_convert_from_func_ptr_addr (objfile->gdbarch,
904 entry_point,
905 &current_target);
906
907 /* Remove any ISA markers, so that this matches entries in the
908 symbol table. */
909 objfile->ei.entry_point
910 = gdbarch_addr_bits_remove (objfile->gdbarch, entry_point);
911 }
912 }
913
914 /* Process a symbol file, as either the main file or as a dynamically
915 loaded file.
916
917 This function does not set the OBJFILE's entry-point info.
918
919 OBJFILE is where the symbols are to be read from.
920
921 ADDRS is the list of section load addresses. If the user has given
922 an 'add-symbol-file' command, then this is the list of offsets and
923 addresses he or she provided as arguments to the command; or, if
924 we're handling a shared library, these are the actual addresses the
925 sections are loaded at, according to the inferior's dynamic linker
926 (as gleaned by GDB's shared library code). We convert each address
927 into an offset from the section VMA's as it appears in the object
928 file, and then call the file's sym_offsets function to convert this
929 into a format-specific offset table --- a `struct section_offsets'.
930 If ADDRS is non-zero, OFFSETS must be zero.
931
932 OFFSETS is a table of section offsets already in the right
933 format-specific representation. NUM_OFFSETS is the number of
934 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
935 assume this is the proper table the call to sym_offsets described
936 above would produce. Instead of calling sym_offsets, we just dump
937 it right into objfile->section_offsets. (When we're re-reading
938 symbols from an objfile, we don't have the original load address
939 list any more; all we have is the section offset table.) If
940 OFFSETS is non-zero, ADDRS must be zero.
941
942 ADD_FLAGS encodes verbosity level, whether this is main symbol or
943 an extra symbol file such as dynamically loaded code, and wether
944 breakpoint reset should be deferred. */
945
946 static void
947 syms_from_objfile_1 (struct objfile *objfile,
948 struct section_addr_info *addrs,
949 struct section_offsets *offsets,
950 int num_offsets,
951 int add_flags)
952 {
953 struct section_addr_info *local_addr = NULL;
954 struct cleanup *old_chain;
955 const int mainline = add_flags & SYMFILE_MAINLINE;
956
957 gdb_assert (! (addrs && offsets));
958
959 objfile->sf = find_sym_fns (objfile->obfd);
960
961 if (objfile->sf == NULL)
962 {
963 /* No symbols to load, but we still need to make sure
964 that the section_offsets table is allocated. */
965 int num_sections = bfd_count_sections (objfile->obfd);
966 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
967
968 objfile->num_sections = num_sections;
969 objfile->section_offsets
970 = obstack_alloc (&objfile->objfile_obstack, size);
971 memset (objfile->section_offsets, 0, size);
972 return;
973 }
974
975 /* Make sure that partially constructed symbol tables will be cleaned up
976 if an error occurs during symbol reading. */
977 old_chain = make_cleanup_free_objfile (objfile);
978
979 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
980 list. We now establish the convention that an addr of zero means
981 no load address was specified. */
982 if (! addrs && ! offsets)
983 {
984 local_addr
985 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
986 make_cleanup (xfree, local_addr);
987 addrs = local_addr;
988 }
989
990 /* Now either addrs or offsets is non-zero. */
991
992 if (mainline)
993 {
994 /* We will modify the main symbol table, make sure that all its users
995 will be cleaned up if an error occurs during symbol reading. */
996 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
997
998 /* Since no error yet, throw away the old symbol table. */
999
1000 if (symfile_objfile != NULL)
1001 {
1002 free_objfile (symfile_objfile);
1003 gdb_assert (symfile_objfile == NULL);
1004 }
1005
1006 /* Currently we keep symbols from the add-symbol-file command.
1007 If the user wants to get rid of them, they should do "symbol-file"
1008 without arguments first. Not sure this is the best behavior
1009 (PR 2207). */
1010
1011 (*objfile->sf->sym_new_init) (objfile);
1012 }
1013
1014 /* Convert addr into an offset rather than an absolute address.
1015 We find the lowest address of a loaded segment in the objfile,
1016 and assume that <addr> is where that got loaded.
1017
1018 We no longer warn if the lowest section is not a text segment (as
1019 happens for the PA64 port. */
1020 if (addrs && addrs->other[0].name)
1021 addr_info_make_relative (addrs, objfile->obfd);
1022
1023 /* Initialize symbol reading routines for this objfile, allow complaints to
1024 appear for this new file, and record how verbose to be, then do the
1025 initial symbol reading for this file. */
1026
1027 (*objfile->sf->sym_init) (objfile);
1028 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1029
1030 if (addrs)
1031 (*objfile->sf->sym_offsets) (objfile, addrs);
1032 else
1033 {
1034 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1035
1036 /* Just copy in the offset table directly as given to us. */
1037 objfile->num_sections = num_offsets;
1038 objfile->section_offsets
1039 = ((struct section_offsets *)
1040 obstack_alloc (&objfile->objfile_obstack, size));
1041 memcpy (objfile->section_offsets, offsets, size);
1042
1043 init_objfile_sect_indices (objfile);
1044 }
1045
1046 read_symbols (objfile, add_flags);
1047
1048 /* Discard cleanups as symbol reading was successful. */
1049
1050 discard_cleanups (old_chain);
1051 xfree (local_addr);
1052 }
1053
1054 /* Same as syms_from_objfile_1, but also initializes the objfile
1055 entry-point info. */
1056
1057 void
1058 syms_from_objfile (struct objfile *objfile,
1059 struct section_addr_info *addrs,
1060 struct section_offsets *offsets,
1061 int num_offsets,
1062 int add_flags)
1063 {
1064 syms_from_objfile_1 (objfile, addrs, offsets, num_offsets, add_flags);
1065 init_entry_point_info (objfile);
1066 }
1067
1068 /* Perform required actions after either reading in the initial
1069 symbols for a new objfile, or mapping in the symbols from a reusable
1070 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1071
1072 void
1073 new_symfile_objfile (struct objfile *objfile, int add_flags)
1074 {
1075 /* If this is the main symbol file we have to clean up all users of the
1076 old main symbol file. Otherwise it is sufficient to fixup all the
1077 breakpoints that may have been redefined by this symbol file. */
1078 if (add_flags & SYMFILE_MAINLINE)
1079 {
1080 /* OK, make it the "real" symbol file. */
1081 symfile_objfile = objfile;
1082
1083 clear_symtab_users (add_flags);
1084 }
1085 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1086 {
1087 breakpoint_re_set ();
1088 }
1089
1090 /* We're done reading the symbol file; finish off complaints. */
1091 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1092 }
1093
1094 /* Process a symbol file, as either the main file or as a dynamically
1095 loaded file.
1096
1097 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1098 A new reference is acquired by this function.
1099
1100 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1101 extra, such as dynamically loaded code, and what to do with breakpoins.
1102
1103 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1104 syms_from_objfile, above.
1105 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1106
1107 PARENT is the original objfile if ABFD is a separate debug info file.
1108 Otherwise PARENT is NULL.
1109
1110 Upon success, returns a pointer to the objfile that was added.
1111 Upon failure, jumps back to command level (never returns). */
1112
1113 static struct objfile *
1114 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1115 int add_flags,
1116 struct section_addr_info *addrs,
1117 struct section_offsets *offsets,
1118 int num_offsets,
1119 int flags, struct objfile *parent)
1120 {
1121 struct objfile *objfile;
1122 const char *name = bfd_get_filename (abfd);
1123 const int from_tty = add_flags & SYMFILE_VERBOSE;
1124 const int mainline = add_flags & SYMFILE_MAINLINE;
1125 const int should_print = ((from_tty || info_verbose)
1126 && (readnow_symbol_files
1127 || (add_flags & SYMFILE_NO_READ) == 0));
1128
1129 if (readnow_symbol_files)
1130 {
1131 flags |= OBJF_READNOW;
1132 add_flags &= ~SYMFILE_NO_READ;
1133 }
1134
1135 /* Give user a chance to burp if we'd be
1136 interactively wiping out any existing symbols. */
1137
1138 if ((have_full_symbols () || have_partial_symbols ())
1139 && mainline
1140 && from_tty
1141 && !query (_("Load new symbol table from \"%s\"? "), name))
1142 error (_("Not confirmed."));
1143
1144 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
1145
1146 if (parent)
1147 add_separate_debug_objfile (objfile, parent);
1148
1149 /* We either created a new mapped symbol table, mapped an existing
1150 symbol table file which has not had initial symbol reading
1151 performed, or need to read an unmapped symbol table. */
1152 if (should_print)
1153 {
1154 if (deprecated_pre_add_symbol_hook)
1155 deprecated_pre_add_symbol_hook (name);
1156 else
1157 {
1158 printf_unfiltered (_("Reading symbols from %s..."), name);
1159 wrap_here ("");
1160 gdb_flush (gdb_stdout);
1161 }
1162 }
1163 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1164 add_flags);
1165
1166 /* We now have at least a partial symbol table. Check to see if the
1167 user requested that all symbols be read on initial access via either
1168 the gdb startup command line or on a per symbol file basis. Expand
1169 all partial symbol tables for this objfile if so. */
1170
1171 if ((flags & OBJF_READNOW))
1172 {
1173 if (should_print)
1174 {
1175 printf_unfiltered (_("expanding to full symbols..."));
1176 wrap_here ("");
1177 gdb_flush (gdb_stdout);
1178 }
1179
1180 if (objfile->sf)
1181 objfile->sf->qf->expand_all_symtabs (objfile);
1182 }
1183
1184 if (should_print && !objfile_has_symbols (objfile))
1185 {
1186 wrap_here ("");
1187 printf_unfiltered (_("(no debugging symbols found)..."));
1188 wrap_here ("");
1189 }
1190
1191 if (should_print)
1192 {
1193 if (deprecated_post_add_symbol_hook)
1194 deprecated_post_add_symbol_hook ();
1195 else
1196 printf_unfiltered (_("done.\n"));
1197 }
1198
1199 /* We print some messages regardless of whether 'from_tty ||
1200 info_verbose' is true, so make sure they go out at the right
1201 time. */
1202 gdb_flush (gdb_stdout);
1203
1204 if (objfile->sf == NULL)
1205 {
1206 observer_notify_new_objfile (objfile);
1207 return objfile; /* No symbols. */
1208 }
1209
1210 new_symfile_objfile (objfile, add_flags);
1211
1212 observer_notify_new_objfile (objfile);
1213
1214 bfd_cache_close_all ();
1215 return (objfile);
1216 }
1217
1218 /* Add BFD as a separate debug file for OBJFILE. */
1219
1220 void
1221 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1222 {
1223 struct objfile *new_objfile;
1224 struct section_addr_info *sap;
1225 struct cleanup *my_cleanup;
1226
1227 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1228 because sections of BFD may not match sections of OBJFILE and because
1229 vma may have been modified by tools such as prelink. */
1230 sap = build_section_addr_info_from_objfile (objfile);
1231 my_cleanup = make_cleanup_free_section_addr_info (sap);
1232
1233 new_objfile = symbol_file_add_with_addrs_or_offsets
1234 (bfd, symfile_flags,
1235 sap, NULL, 0,
1236 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1237 | OBJF_USERLOADED),
1238 objfile);
1239
1240 do_cleanups (my_cleanup);
1241 }
1242
1243 /* Process the symbol file ABFD, as either the main file or as a
1244 dynamically loaded file.
1245
1246 See symbol_file_add_with_addrs_or_offsets's comments for
1247 details. */
1248 struct objfile *
1249 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1250 struct section_addr_info *addrs,
1251 int flags, struct objfile *parent)
1252 {
1253 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1254 flags, parent);
1255 }
1256
1257
1258 /* Process a symbol file, as either the main file or as a dynamically
1259 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1260 for details. */
1261 struct objfile *
1262 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1263 int flags)
1264 {
1265 bfd *bfd = symfile_bfd_open (name);
1266 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1267 struct objfile *objf;
1268
1269 objf = symbol_file_add_from_bfd (bfd, add_flags, addrs, flags, NULL);
1270 do_cleanups (cleanup);
1271 return objf;
1272 }
1273
1274
1275 /* Call symbol_file_add() with default values and update whatever is
1276 affected by the loading of a new main().
1277 Used when the file is supplied in the gdb command line
1278 and by some targets with special loading requirements.
1279 The auxiliary function, symbol_file_add_main_1(), has the flags
1280 argument for the switches that can only be specified in the symbol_file
1281 command itself. */
1282
1283 void
1284 symbol_file_add_main (char *args, int from_tty)
1285 {
1286 symbol_file_add_main_1 (args, from_tty, 0);
1287 }
1288
1289 static void
1290 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1291 {
1292 const int add_flags = (current_inferior ()->symfile_flags
1293 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1294
1295 symbol_file_add (args, add_flags, NULL, flags);
1296
1297 /* Getting new symbols may change our opinion about
1298 what is frameless. */
1299 reinit_frame_cache ();
1300
1301 if ((flags & SYMFILE_NO_READ) == 0)
1302 set_initial_language ();
1303 }
1304
1305 void
1306 symbol_file_clear (int from_tty)
1307 {
1308 if ((have_full_symbols () || have_partial_symbols ())
1309 && from_tty
1310 && (symfile_objfile
1311 ? !query (_("Discard symbol table from `%s'? "),
1312 symfile_objfile->name)
1313 : !query (_("Discard symbol table? "))))
1314 error (_("Not confirmed."));
1315
1316 /* solib descriptors may have handles to objfiles. Wipe them before their
1317 objfiles get stale by free_all_objfiles. */
1318 no_shared_libraries (NULL, from_tty);
1319
1320 free_all_objfiles ();
1321
1322 gdb_assert (symfile_objfile == NULL);
1323 if (from_tty)
1324 printf_unfiltered (_("No symbol file now.\n"));
1325 }
1326
1327 static char *
1328 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1329 {
1330 asection *sect;
1331 bfd_size_type debuglink_size;
1332 unsigned long crc32;
1333 char *contents;
1334 int crc_offset;
1335
1336 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1337
1338 if (sect == NULL)
1339 return NULL;
1340
1341 debuglink_size = bfd_section_size (objfile->obfd, sect);
1342
1343 contents = xmalloc (debuglink_size);
1344 bfd_get_section_contents (objfile->obfd, sect, contents,
1345 (file_ptr)0, (bfd_size_type)debuglink_size);
1346
1347 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1348 crc_offset = strlen (contents) + 1;
1349 crc_offset = (crc_offset + 3) & ~3;
1350
1351 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1352
1353 *crc32_out = crc32;
1354 return contents;
1355 }
1356
1357 /* Return 32-bit CRC for ABFD. If successful store it to *FILE_CRC_RETURN and
1358 return 1. Otherwise print a warning and return 0. ABFD seek position is
1359 not preserved. */
1360
1361 static int
1362 get_file_crc (bfd *abfd, unsigned long *file_crc_return)
1363 {
1364 unsigned long file_crc = 0;
1365
1366 if (bfd_seek (abfd, 0, SEEK_SET) != 0)
1367 {
1368 warning (_("Problem reading \"%s\" for CRC: %s"),
1369 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1370 return 0;
1371 }
1372
1373 for (;;)
1374 {
1375 gdb_byte buffer[8 * 1024];
1376 bfd_size_type count;
1377
1378 count = bfd_bread (buffer, sizeof (buffer), abfd);
1379 if (count == (bfd_size_type) -1)
1380 {
1381 warning (_("Problem reading \"%s\" for CRC: %s"),
1382 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1383 return 0;
1384 }
1385 if (count == 0)
1386 break;
1387 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1388 }
1389
1390 *file_crc_return = file_crc;
1391 return 1;
1392 }
1393
1394 static int
1395 separate_debug_file_exists (const char *name, unsigned long crc,
1396 struct objfile *parent_objfile)
1397 {
1398 unsigned long file_crc;
1399 int file_crc_p;
1400 bfd *abfd;
1401 struct stat parent_stat, abfd_stat;
1402 int verified_as_different;
1403
1404 /* Find a separate debug info file as if symbols would be present in
1405 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1406 section can contain just the basename of PARENT_OBJFILE without any
1407 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1408 the separate debug infos with the same basename can exist. */
1409
1410 if (filename_cmp (name, parent_objfile->name) == 0)
1411 return 0;
1412
1413 abfd = gdb_bfd_open_maybe_remote (name);
1414
1415 if (!abfd)
1416 return 0;
1417
1418 /* Verify symlinks were not the cause of filename_cmp name difference above.
1419
1420 Some operating systems, e.g. Windows, do not provide a meaningful
1421 st_ino; they always set it to zero. (Windows does provide a
1422 meaningful st_dev.) Do not indicate a duplicate library in that
1423 case. While there is no guarantee that a system that provides
1424 meaningful inode numbers will never set st_ino to zero, this is
1425 merely an optimization, so we do not need to worry about false
1426 negatives. */
1427
1428 if (bfd_stat (abfd, &abfd_stat) == 0
1429 && abfd_stat.st_ino != 0
1430 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1431 {
1432 if (abfd_stat.st_dev == parent_stat.st_dev
1433 && abfd_stat.st_ino == parent_stat.st_ino)
1434 {
1435 gdb_bfd_unref (abfd);
1436 return 0;
1437 }
1438 verified_as_different = 1;
1439 }
1440 else
1441 verified_as_different = 0;
1442
1443 file_crc_p = get_file_crc (abfd, &file_crc);
1444
1445 gdb_bfd_unref (abfd);
1446
1447 if (!file_crc_p)
1448 return 0;
1449
1450 if (crc != file_crc)
1451 {
1452 /* If one (or both) the files are accessed for example the via "remote:"
1453 gdbserver way it does not support the bfd_stat operation. Verify
1454 whether those two files are not the same manually. */
1455
1456 if (!verified_as_different && !parent_objfile->crc32_p)
1457 {
1458 parent_objfile->crc32_p = get_file_crc (parent_objfile->obfd,
1459 &parent_objfile->crc32);
1460 if (!parent_objfile->crc32_p)
1461 return 0;
1462 }
1463
1464 if (verified_as_different || parent_objfile->crc32 != file_crc)
1465 warning (_("the debug information found in \"%s\""
1466 " does not match \"%s\" (CRC mismatch).\n"),
1467 name, parent_objfile->name);
1468
1469 return 0;
1470 }
1471
1472 return 1;
1473 }
1474
1475 char *debug_file_directory = NULL;
1476 static void
1477 show_debug_file_directory (struct ui_file *file, int from_tty,
1478 struct cmd_list_element *c, const char *value)
1479 {
1480 fprintf_filtered (file,
1481 _("The directory where separate debug "
1482 "symbols are searched for is \"%s\".\n"),
1483 value);
1484 }
1485
1486 #if ! defined (DEBUG_SUBDIRECTORY)
1487 #define DEBUG_SUBDIRECTORY ".debug"
1488 #endif
1489
1490 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1491 where the original file resides (may not be the same as
1492 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1493 looking for. Returns the name of the debuginfo, of NULL. */
1494
1495 static char *
1496 find_separate_debug_file (const char *dir,
1497 const char *canon_dir,
1498 const char *debuglink,
1499 unsigned long crc32, struct objfile *objfile)
1500 {
1501 char *debugdir;
1502 char *debugfile;
1503 int i;
1504 VEC (char_ptr) *debugdir_vec;
1505 struct cleanup *back_to;
1506 int ix;
1507
1508 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1509 i = strlen (dir);
1510 if (canon_dir != NULL && strlen (canon_dir) > i)
1511 i = strlen (canon_dir);
1512
1513 debugfile = xmalloc (strlen (debug_file_directory) + 1
1514 + i
1515 + strlen (DEBUG_SUBDIRECTORY)
1516 + strlen ("/")
1517 + strlen (debuglink)
1518 + 1);
1519
1520 /* First try in the same directory as the original file. */
1521 strcpy (debugfile, dir);
1522 strcat (debugfile, debuglink);
1523
1524 if (separate_debug_file_exists (debugfile, crc32, objfile))
1525 return debugfile;
1526
1527 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1528 strcpy (debugfile, dir);
1529 strcat (debugfile, DEBUG_SUBDIRECTORY);
1530 strcat (debugfile, "/");
1531 strcat (debugfile, debuglink);
1532
1533 if (separate_debug_file_exists (debugfile, crc32, objfile))
1534 return debugfile;
1535
1536 /* Then try in the global debugfile directories.
1537
1538 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1539 cause "/..." lookups. */
1540
1541 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1542 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1543
1544 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1545 {
1546 strcpy (debugfile, debugdir);
1547 strcat (debugfile, "/");
1548 strcat (debugfile, dir);
1549 strcat (debugfile, debuglink);
1550
1551 if (separate_debug_file_exists (debugfile, crc32, objfile))
1552 return debugfile;
1553
1554 /* If the file is in the sysroot, try using its base path in the
1555 global debugfile directory. */
1556 if (canon_dir != NULL
1557 && filename_ncmp (canon_dir, gdb_sysroot,
1558 strlen (gdb_sysroot)) == 0
1559 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1560 {
1561 strcpy (debugfile, debugdir);
1562 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1563 strcat (debugfile, "/");
1564 strcat (debugfile, debuglink);
1565
1566 if (separate_debug_file_exists (debugfile, crc32, objfile))
1567 return debugfile;
1568 }
1569 }
1570
1571 do_cleanups (back_to);
1572 xfree (debugfile);
1573 return NULL;
1574 }
1575
1576 /* Modify PATH to contain only "directory/" part of PATH.
1577 If there were no directory separators in PATH, PATH will be empty
1578 string on return. */
1579
1580 static void
1581 terminate_after_last_dir_separator (char *path)
1582 {
1583 int i;
1584
1585 /* Strip off the final filename part, leaving the directory name,
1586 followed by a slash. The directory can be relative or absolute. */
1587 for (i = strlen(path) - 1; i >= 0; i--)
1588 if (IS_DIR_SEPARATOR (path[i]))
1589 break;
1590
1591 /* If I is -1 then no directory is present there and DIR will be "". */
1592 path[i + 1] = '\0';
1593 }
1594
1595 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1596 Returns pathname, or NULL. */
1597
1598 char *
1599 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1600 {
1601 char *debuglink;
1602 char *dir, *canon_dir;
1603 char *debugfile;
1604 unsigned long crc32;
1605 struct cleanup *cleanups;
1606
1607 debuglink = get_debug_link_info (objfile, &crc32);
1608
1609 if (debuglink == NULL)
1610 {
1611 /* There's no separate debug info, hence there's no way we could
1612 load it => no warning. */
1613 return NULL;
1614 }
1615
1616 cleanups = make_cleanup (xfree, debuglink);
1617 dir = xstrdup (objfile->name);
1618 make_cleanup (xfree, dir);
1619 terminate_after_last_dir_separator (dir);
1620 canon_dir = lrealpath (dir);
1621
1622 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1623 crc32, objfile);
1624 xfree (canon_dir);
1625
1626 if (debugfile == NULL)
1627 {
1628 #ifdef HAVE_LSTAT
1629 /* For PR gdb/9538, try again with realpath (if different from the
1630 original). */
1631
1632 struct stat st_buf;
1633
1634 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1635 {
1636 char *symlink_dir;
1637
1638 symlink_dir = lrealpath (objfile->name);
1639 if (symlink_dir != NULL)
1640 {
1641 make_cleanup (xfree, symlink_dir);
1642 terminate_after_last_dir_separator (symlink_dir);
1643 if (strcmp (dir, symlink_dir) != 0)
1644 {
1645 /* Different directory, so try using it. */
1646 debugfile = find_separate_debug_file (symlink_dir,
1647 symlink_dir,
1648 debuglink,
1649 crc32,
1650 objfile);
1651 }
1652 }
1653 }
1654 #endif /* HAVE_LSTAT */
1655 }
1656
1657 do_cleanups (cleanups);
1658 return debugfile;
1659 }
1660
1661
1662 /* This is the symbol-file command. Read the file, analyze its
1663 symbols, and add a struct symtab to a symtab list. The syntax of
1664 the command is rather bizarre:
1665
1666 1. The function buildargv implements various quoting conventions
1667 which are undocumented and have little or nothing in common with
1668 the way things are quoted (or not quoted) elsewhere in GDB.
1669
1670 2. Options are used, which are not generally used in GDB (perhaps
1671 "set mapped on", "set readnow on" would be better)
1672
1673 3. The order of options matters, which is contrary to GNU
1674 conventions (because it is confusing and inconvenient). */
1675
1676 void
1677 symbol_file_command (char *args, int from_tty)
1678 {
1679 dont_repeat ();
1680
1681 if (args == NULL)
1682 {
1683 symbol_file_clear (from_tty);
1684 }
1685 else
1686 {
1687 char **argv = gdb_buildargv (args);
1688 int flags = OBJF_USERLOADED;
1689 struct cleanup *cleanups;
1690 char *name = NULL;
1691
1692 cleanups = make_cleanup_freeargv (argv);
1693 while (*argv != NULL)
1694 {
1695 if (strcmp (*argv, "-readnow") == 0)
1696 flags |= OBJF_READNOW;
1697 else if (**argv == '-')
1698 error (_("unknown option `%s'"), *argv);
1699 else
1700 {
1701 symbol_file_add_main_1 (*argv, from_tty, flags);
1702 name = *argv;
1703 }
1704
1705 argv++;
1706 }
1707
1708 if (name == NULL)
1709 error (_("no symbol file name was specified"));
1710
1711 do_cleanups (cleanups);
1712 }
1713 }
1714
1715 /* Set the initial language.
1716
1717 FIXME: A better solution would be to record the language in the
1718 psymtab when reading partial symbols, and then use it (if known) to
1719 set the language. This would be a win for formats that encode the
1720 language in an easily discoverable place, such as DWARF. For
1721 stabs, we can jump through hoops looking for specially named
1722 symbols or try to intuit the language from the specific type of
1723 stabs we find, but we can't do that until later when we read in
1724 full symbols. */
1725
1726 void
1727 set_initial_language (void)
1728 {
1729 enum language lang = language_unknown;
1730
1731 if (language_of_main != language_unknown)
1732 lang = language_of_main;
1733 else
1734 {
1735 const char *filename;
1736
1737 filename = find_main_filename ();
1738 if (filename != NULL)
1739 lang = deduce_language_from_filename (filename);
1740 }
1741
1742 if (lang == language_unknown)
1743 {
1744 /* Make C the default language */
1745 lang = language_c;
1746 }
1747
1748 set_language (lang);
1749 expected_language = current_language; /* Don't warn the user. */
1750 }
1751
1752 /* If NAME is a remote name open the file using remote protocol, otherwise
1753 open it normally. Returns a new reference to the BFD. On error,
1754 returns NULL with the BFD error set. */
1755
1756 bfd *
1757 gdb_bfd_open_maybe_remote (const char *name)
1758 {
1759 bfd *result;
1760
1761 if (remote_filename_p (name))
1762 result = remote_bfd_open (name, gnutarget);
1763 else
1764 result = gdb_bfd_open (name, gnutarget, -1);
1765
1766 return result;
1767 }
1768
1769
1770 /* Open the file specified by NAME and hand it off to BFD for
1771 preliminary analysis. Return a newly initialized bfd *, which
1772 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1773 absolute). In case of trouble, error() is called. */
1774
1775 bfd *
1776 symfile_bfd_open (char *name)
1777 {
1778 bfd *sym_bfd;
1779 int desc;
1780 char *absolute_name;
1781
1782 if (remote_filename_p (name))
1783 {
1784 sym_bfd = remote_bfd_open (name, gnutarget);
1785 if (!sym_bfd)
1786 error (_("`%s': can't open to read symbols: %s."), name,
1787 bfd_errmsg (bfd_get_error ()));
1788
1789 if (!bfd_check_format (sym_bfd, bfd_object))
1790 {
1791 make_cleanup_bfd_unref (sym_bfd);
1792 error (_("`%s': can't read symbols: %s."), name,
1793 bfd_errmsg (bfd_get_error ()));
1794 }
1795
1796 return sym_bfd;
1797 }
1798
1799 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1800
1801 /* Look down path for it, allocate 2nd new malloc'd copy. */
1802 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1803 O_RDONLY | O_BINARY, &absolute_name);
1804 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1805 if (desc < 0)
1806 {
1807 char *exename = alloca (strlen (name) + 5);
1808
1809 strcat (strcpy (exename, name), ".exe");
1810 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1811 O_RDONLY | O_BINARY, &absolute_name);
1812 }
1813 #endif
1814 if (desc < 0)
1815 {
1816 make_cleanup (xfree, name);
1817 perror_with_name (name);
1818 }
1819
1820 xfree (name);
1821 name = absolute_name;
1822 make_cleanup (xfree, name);
1823
1824 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1825 if (!sym_bfd)
1826 {
1827 make_cleanup (xfree, name);
1828 error (_("`%s': can't open to read symbols: %s."), name,
1829 bfd_errmsg (bfd_get_error ()));
1830 }
1831 bfd_set_cacheable (sym_bfd, 1);
1832
1833 if (!bfd_check_format (sym_bfd, bfd_object))
1834 {
1835 make_cleanup_bfd_unref (sym_bfd);
1836 error (_("`%s': can't read symbols: %s."), name,
1837 bfd_errmsg (bfd_get_error ()));
1838 }
1839
1840 return sym_bfd;
1841 }
1842
1843 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1844 the section was not found. */
1845
1846 int
1847 get_section_index (struct objfile *objfile, char *section_name)
1848 {
1849 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1850
1851 if (sect)
1852 return sect->index;
1853 else
1854 return -1;
1855 }
1856
1857 /* Link SF into the global symtab_fns list. Called on startup by the
1858 _initialize routine in each object file format reader, to register
1859 information about each format the reader is prepared to handle. */
1860
1861 void
1862 add_symtab_fns (const struct sym_fns *sf)
1863 {
1864 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1865 }
1866
1867 /* Initialize OBJFILE to read symbols from its associated BFD. It
1868 either returns or calls error(). The result is an initialized
1869 struct sym_fns in the objfile structure, that contains cached
1870 information about the symbol file. */
1871
1872 static const struct sym_fns *
1873 find_sym_fns (bfd *abfd)
1874 {
1875 const struct sym_fns *sf;
1876 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1877 int i;
1878
1879 if (our_flavour == bfd_target_srec_flavour
1880 || our_flavour == bfd_target_ihex_flavour
1881 || our_flavour == bfd_target_tekhex_flavour)
1882 return NULL; /* No symbols. */
1883
1884 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1885 if (our_flavour == sf->sym_flavour)
1886 return sf;
1887
1888 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1889 bfd_get_target (abfd));
1890 }
1891 \f
1892
1893 /* This function runs the load command of our current target. */
1894
1895 static void
1896 load_command (char *arg, int from_tty)
1897 {
1898 dont_repeat ();
1899
1900 /* The user might be reloading because the binary has changed. Take
1901 this opportunity to check. */
1902 reopen_exec_file ();
1903 reread_symbols ();
1904
1905 if (arg == NULL)
1906 {
1907 char *parg;
1908 int count = 0;
1909
1910 parg = arg = get_exec_file (1);
1911
1912 /* Count how many \ " ' tab space there are in the name. */
1913 while ((parg = strpbrk (parg, "\\\"'\t ")))
1914 {
1915 parg++;
1916 count++;
1917 }
1918
1919 if (count)
1920 {
1921 /* We need to quote this string so buildargv can pull it apart. */
1922 char *temp = xmalloc (strlen (arg) + count + 1 );
1923 char *ptemp = temp;
1924 char *prev;
1925
1926 make_cleanup (xfree, temp);
1927
1928 prev = parg = arg;
1929 while ((parg = strpbrk (parg, "\\\"'\t ")))
1930 {
1931 strncpy (ptemp, prev, parg - prev);
1932 ptemp += parg - prev;
1933 prev = parg++;
1934 *ptemp++ = '\\';
1935 }
1936 strcpy (ptemp, prev);
1937
1938 arg = temp;
1939 }
1940 }
1941
1942 target_load (arg, from_tty);
1943
1944 /* After re-loading the executable, we don't really know which
1945 overlays are mapped any more. */
1946 overlay_cache_invalid = 1;
1947 }
1948
1949 /* This version of "load" should be usable for any target. Currently
1950 it is just used for remote targets, not inftarg.c or core files,
1951 on the theory that only in that case is it useful.
1952
1953 Avoiding xmodem and the like seems like a win (a) because we don't have
1954 to worry about finding it, and (b) On VMS, fork() is very slow and so
1955 we don't want to run a subprocess. On the other hand, I'm not sure how
1956 performance compares. */
1957
1958 static int validate_download = 0;
1959
1960 /* Callback service function for generic_load (bfd_map_over_sections). */
1961
1962 static void
1963 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1964 {
1965 bfd_size_type *sum = data;
1966
1967 *sum += bfd_get_section_size (asec);
1968 }
1969
1970 /* Opaque data for load_section_callback. */
1971 struct load_section_data {
1972 unsigned long load_offset;
1973 struct load_progress_data *progress_data;
1974 VEC(memory_write_request_s) *requests;
1975 };
1976
1977 /* Opaque data for load_progress. */
1978 struct load_progress_data {
1979 /* Cumulative data. */
1980 unsigned long write_count;
1981 unsigned long data_count;
1982 bfd_size_type total_size;
1983 };
1984
1985 /* Opaque data for load_progress for a single section. */
1986 struct load_progress_section_data {
1987 struct load_progress_data *cumulative;
1988
1989 /* Per-section data. */
1990 const char *section_name;
1991 ULONGEST section_sent;
1992 ULONGEST section_size;
1993 CORE_ADDR lma;
1994 gdb_byte *buffer;
1995 };
1996
1997 /* Target write callback routine for progress reporting. */
1998
1999 static void
2000 load_progress (ULONGEST bytes, void *untyped_arg)
2001 {
2002 struct load_progress_section_data *args = untyped_arg;
2003 struct load_progress_data *totals;
2004
2005 if (args == NULL)
2006 /* Writing padding data. No easy way to get at the cumulative
2007 stats, so just ignore this. */
2008 return;
2009
2010 totals = args->cumulative;
2011
2012 if (bytes == 0 && args->section_sent == 0)
2013 {
2014 /* The write is just starting. Let the user know we've started
2015 this section. */
2016 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
2017 args->section_name, hex_string (args->section_size),
2018 paddress (target_gdbarch (), args->lma));
2019 return;
2020 }
2021
2022 if (validate_download)
2023 {
2024 /* Broken memories and broken monitors manifest themselves here
2025 when bring new computers to life. This doubles already slow
2026 downloads. */
2027 /* NOTE: cagney/1999-10-18: A more efficient implementation
2028 might add a verify_memory() method to the target vector and
2029 then use that. remote.c could implement that method using
2030 the ``qCRC'' packet. */
2031 gdb_byte *check = xmalloc (bytes);
2032 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
2033
2034 if (target_read_memory (args->lma, check, bytes) != 0)
2035 error (_("Download verify read failed at %s"),
2036 paddress (target_gdbarch (), args->lma));
2037 if (memcmp (args->buffer, check, bytes) != 0)
2038 error (_("Download verify compare failed at %s"),
2039 paddress (target_gdbarch (), args->lma));
2040 do_cleanups (verify_cleanups);
2041 }
2042 totals->data_count += bytes;
2043 args->lma += bytes;
2044 args->buffer += bytes;
2045 totals->write_count += 1;
2046 args->section_sent += bytes;
2047 if (check_quit_flag ()
2048 || (deprecated_ui_load_progress_hook != NULL
2049 && deprecated_ui_load_progress_hook (args->section_name,
2050 args->section_sent)))
2051 error (_("Canceled the download"));
2052
2053 if (deprecated_show_load_progress != NULL)
2054 deprecated_show_load_progress (args->section_name,
2055 args->section_sent,
2056 args->section_size,
2057 totals->data_count,
2058 totals->total_size);
2059 }
2060
2061 /* Callback service function for generic_load (bfd_map_over_sections). */
2062
2063 static void
2064 load_section_callback (bfd *abfd, asection *asec, void *data)
2065 {
2066 struct memory_write_request *new_request;
2067 struct load_section_data *args = data;
2068 struct load_progress_section_data *section_data;
2069 bfd_size_type size = bfd_get_section_size (asec);
2070 gdb_byte *buffer;
2071 const char *sect_name = bfd_get_section_name (abfd, asec);
2072
2073 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2074 return;
2075
2076 if (size == 0)
2077 return;
2078
2079 new_request = VEC_safe_push (memory_write_request_s,
2080 args->requests, NULL);
2081 memset (new_request, 0, sizeof (struct memory_write_request));
2082 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2083 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2084 new_request->end = new_request->begin + size; /* FIXME Should size
2085 be in instead? */
2086 new_request->data = xmalloc (size);
2087 new_request->baton = section_data;
2088
2089 buffer = new_request->data;
2090
2091 section_data->cumulative = args->progress_data;
2092 section_data->section_name = sect_name;
2093 section_data->section_size = size;
2094 section_data->lma = new_request->begin;
2095 section_data->buffer = buffer;
2096
2097 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2098 }
2099
2100 /* Clean up an entire memory request vector, including load
2101 data and progress records. */
2102
2103 static void
2104 clear_memory_write_data (void *arg)
2105 {
2106 VEC(memory_write_request_s) **vec_p = arg;
2107 VEC(memory_write_request_s) *vec = *vec_p;
2108 int i;
2109 struct memory_write_request *mr;
2110
2111 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2112 {
2113 xfree (mr->data);
2114 xfree (mr->baton);
2115 }
2116 VEC_free (memory_write_request_s, vec);
2117 }
2118
2119 void
2120 generic_load (char *args, int from_tty)
2121 {
2122 bfd *loadfile_bfd;
2123 struct timeval start_time, end_time;
2124 char *filename;
2125 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2126 struct load_section_data cbdata;
2127 struct load_progress_data total_progress;
2128 struct ui_out *uiout = current_uiout;
2129
2130 CORE_ADDR entry;
2131 char **argv;
2132
2133 memset (&cbdata, 0, sizeof (cbdata));
2134 memset (&total_progress, 0, sizeof (total_progress));
2135 cbdata.progress_data = &total_progress;
2136
2137 make_cleanup (clear_memory_write_data, &cbdata.requests);
2138
2139 if (args == NULL)
2140 error_no_arg (_("file to load"));
2141
2142 argv = gdb_buildargv (args);
2143 make_cleanup_freeargv (argv);
2144
2145 filename = tilde_expand (argv[0]);
2146 make_cleanup (xfree, filename);
2147
2148 if (argv[1] != NULL)
2149 {
2150 char *endptr;
2151
2152 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2153
2154 /* If the last word was not a valid number then
2155 treat it as a file name with spaces in. */
2156 if (argv[1] == endptr)
2157 error (_("Invalid download offset:%s."), argv[1]);
2158
2159 if (argv[2] != NULL)
2160 error (_("Too many parameters."));
2161 }
2162
2163 /* Open the file for loading. */
2164 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2165 if (loadfile_bfd == NULL)
2166 {
2167 perror_with_name (filename);
2168 return;
2169 }
2170
2171 make_cleanup_bfd_unref (loadfile_bfd);
2172
2173 if (!bfd_check_format (loadfile_bfd, bfd_object))
2174 {
2175 error (_("\"%s\" is not an object file: %s"), filename,
2176 bfd_errmsg (bfd_get_error ()));
2177 }
2178
2179 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2180 (void *) &total_progress.total_size);
2181
2182 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2183
2184 gettimeofday (&start_time, NULL);
2185
2186 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2187 load_progress) != 0)
2188 error (_("Load failed"));
2189
2190 gettimeofday (&end_time, NULL);
2191
2192 entry = bfd_get_start_address (loadfile_bfd);
2193 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2194 ui_out_text (uiout, "Start address ");
2195 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2196 ui_out_text (uiout, ", load size ");
2197 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2198 ui_out_text (uiout, "\n");
2199 /* We were doing this in remote-mips.c, I suspect it is right
2200 for other targets too. */
2201 regcache_write_pc (get_current_regcache (), entry);
2202
2203 /* Reset breakpoints, now that we have changed the load image. For
2204 instance, breakpoints may have been set (or reset, by
2205 post_create_inferior) while connected to the target but before we
2206 loaded the program. In that case, the prologue analyzer could
2207 have read instructions from the target to find the right
2208 breakpoint locations. Loading has changed the contents of that
2209 memory. */
2210
2211 breakpoint_re_set ();
2212
2213 /* FIXME: are we supposed to call symbol_file_add or not? According
2214 to a comment from remote-mips.c (where a call to symbol_file_add
2215 was commented out), making the call confuses GDB if more than one
2216 file is loaded in. Some targets do (e.g., remote-vx.c) but
2217 others don't (or didn't - perhaps they have all been deleted). */
2218
2219 print_transfer_performance (gdb_stdout, total_progress.data_count,
2220 total_progress.write_count,
2221 &start_time, &end_time);
2222
2223 do_cleanups (old_cleanups);
2224 }
2225
2226 /* Report how fast the transfer went. */
2227
2228 void
2229 print_transfer_performance (struct ui_file *stream,
2230 unsigned long data_count,
2231 unsigned long write_count,
2232 const struct timeval *start_time,
2233 const struct timeval *end_time)
2234 {
2235 ULONGEST time_count;
2236 struct ui_out *uiout = current_uiout;
2237
2238 /* Compute the elapsed time in milliseconds, as a tradeoff between
2239 accuracy and overflow. */
2240 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2241 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2242
2243 ui_out_text (uiout, "Transfer rate: ");
2244 if (time_count > 0)
2245 {
2246 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2247
2248 if (ui_out_is_mi_like_p (uiout))
2249 {
2250 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2251 ui_out_text (uiout, " bits/sec");
2252 }
2253 else if (rate < 1024)
2254 {
2255 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2256 ui_out_text (uiout, " bytes/sec");
2257 }
2258 else
2259 {
2260 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2261 ui_out_text (uiout, " KB/sec");
2262 }
2263 }
2264 else
2265 {
2266 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2267 ui_out_text (uiout, " bits in <1 sec");
2268 }
2269 if (write_count > 0)
2270 {
2271 ui_out_text (uiout, ", ");
2272 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2273 ui_out_text (uiout, " bytes/write");
2274 }
2275 ui_out_text (uiout, ".\n");
2276 }
2277
2278 /* This function allows the addition of incrementally linked object files.
2279 It does not modify any state in the target, only in the debugger. */
2280 /* Note: ezannoni 2000-04-13 This function/command used to have a
2281 special case syntax for the rombug target (Rombug is the boot
2282 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2283 rombug case, the user doesn't need to supply a text address,
2284 instead a call to target_link() (in target.c) would supply the
2285 value to use. We are now discontinuing this type of ad hoc syntax. */
2286
2287 static void
2288 add_symbol_file_command (char *args, int from_tty)
2289 {
2290 struct gdbarch *gdbarch = get_current_arch ();
2291 char *filename = NULL;
2292 int flags = OBJF_USERLOADED;
2293 char *arg;
2294 int section_index = 0;
2295 int argcnt = 0;
2296 int sec_num = 0;
2297 int i;
2298 int expecting_sec_name = 0;
2299 int expecting_sec_addr = 0;
2300 char **argv;
2301
2302 struct sect_opt
2303 {
2304 char *name;
2305 char *value;
2306 };
2307
2308 struct section_addr_info *section_addrs;
2309 struct sect_opt *sect_opts = NULL;
2310 size_t num_sect_opts = 0;
2311 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2312
2313 num_sect_opts = 16;
2314 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2315 * sizeof (struct sect_opt));
2316
2317 dont_repeat ();
2318
2319 if (args == NULL)
2320 error (_("add-symbol-file takes a file name and an address"));
2321
2322 argv = gdb_buildargv (args);
2323 make_cleanup_freeargv (argv);
2324
2325 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2326 {
2327 /* Process the argument. */
2328 if (argcnt == 0)
2329 {
2330 /* The first argument is the file name. */
2331 filename = tilde_expand (arg);
2332 make_cleanup (xfree, filename);
2333 }
2334 else
2335 if (argcnt == 1)
2336 {
2337 /* The second argument is always the text address at which
2338 to load the program. */
2339 sect_opts[section_index].name = ".text";
2340 sect_opts[section_index].value = arg;
2341 if (++section_index >= num_sect_opts)
2342 {
2343 num_sect_opts *= 2;
2344 sect_opts = ((struct sect_opt *)
2345 xrealloc (sect_opts,
2346 num_sect_opts
2347 * sizeof (struct sect_opt)));
2348 }
2349 }
2350 else
2351 {
2352 /* It's an option (starting with '-') or it's an argument
2353 to an option. */
2354
2355 if (*arg == '-')
2356 {
2357 if (strcmp (arg, "-readnow") == 0)
2358 flags |= OBJF_READNOW;
2359 else if (strcmp (arg, "-s") == 0)
2360 {
2361 expecting_sec_name = 1;
2362 expecting_sec_addr = 1;
2363 }
2364 }
2365 else
2366 {
2367 if (expecting_sec_name)
2368 {
2369 sect_opts[section_index].name = arg;
2370 expecting_sec_name = 0;
2371 }
2372 else
2373 if (expecting_sec_addr)
2374 {
2375 sect_opts[section_index].value = arg;
2376 expecting_sec_addr = 0;
2377 if (++section_index >= num_sect_opts)
2378 {
2379 num_sect_opts *= 2;
2380 sect_opts = ((struct sect_opt *)
2381 xrealloc (sect_opts,
2382 num_sect_opts
2383 * sizeof (struct sect_opt)));
2384 }
2385 }
2386 else
2387 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2388 " [-readnow] [-s <secname> <addr>]*"));
2389 }
2390 }
2391 }
2392
2393 /* This command takes at least two arguments. The first one is a
2394 filename, and the second is the address where this file has been
2395 loaded. Abort now if this address hasn't been provided by the
2396 user. */
2397 if (section_index < 1)
2398 error (_("The address where %s has been loaded is missing"), filename);
2399
2400 /* Print the prompt for the query below. And save the arguments into
2401 a sect_addr_info structure to be passed around to other
2402 functions. We have to split this up into separate print
2403 statements because hex_string returns a local static
2404 string. */
2405
2406 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2407 section_addrs = alloc_section_addr_info (section_index);
2408 make_cleanup (xfree, section_addrs);
2409 for (i = 0; i < section_index; i++)
2410 {
2411 CORE_ADDR addr;
2412 char *val = sect_opts[i].value;
2413 char *sec = sect_opts[i].name;
2414
2415 addr = parse_and_eval_address (val);
2416
2417 /* Here we store the section offsets in the order they were
2418 entered on the command line. */
2419 section_addrs->other[sec_num].name = sec;
2420 section_addrs->other[sec_num].addr = addr;
2421 printf_unfiltered ("\t%s_addr = %s\n", sec,
2422 paddress (gdbarch, addr));
2423 sec_num++;
2424
2425 /* The object's sections are initialized when a
2426 call is made to build_objfile_section_table (objfile).
2427 This happens in reread_symbols.
2428 At this point, we don't know what file type this is,
2429 so we can't determine what section names are valid. */
2430 }
2431
2432 if (from_tty && (!query ("%s", "")))
2433 error (_("Not confirmed."));
2434
2435 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2436 section_addrs, flags);
2437
2438 /* Getting new symbols may change our opinion about what is
2439 frameless. */
2440 reinit_frame_cache ();
2441 do_cleanups (my_cleanups);
2442 }
2443 \f
2444
2445 typedef struct objfile *objfilep;
2446
2447 DEF_VEC_P (objfilep);
2448
2449 /* Re-read symbols if a symbol-file has changed. */
2450 void
2451 reread_symbols (void)
2452 {
2453 struct objfile *objfile;
2454 long new_modtime;
2455 struct stat new_statbuf;
2456 int res;
2457 VEC (objfilep) *new_objfiles = NULL;
2458 struct cleanup *all_cleanups;
2459
2460 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2461
2462 /* With the addition of shared libraries, this should be modified,
2463 the load time should be saved in the partial symbol tables, since
2464 different tables may come from different source files. FIXME.
2465 This routine should then walk down each partial symbol table
2466 and see if the symbol table that it originates from has been changed. */
2467
2468 for (objfile = object_files; objfile; objfile = objfile->next)
2469 {
2470 /* solib-sunos.c creates one objfile with obfd. */
2471 if (objfile->obfd == NULL)
2472 continue;
2473
2474 /* Separate debug objfiles are handled in the main objfile. */
2475 if (objfile->separate_debug_objfile_backlink)
2476 continue;
2477
2478 /* If this object is from an archive (what you usually create with
2479 `ar', often called a `static library' on most systems, though
2480 a `shared library' on AIX is also an archive), then you should
2481 stat on the archive name, not member name. */
2482 if (objfile->obfd->my_archive)
2483 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2484 else
2485 res = stat (objfile->name, &new_statbuf);
2486 if (res != 0)
2487 {
2488 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2489 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2490 objfile->name);
2491 continue;
2492 }
2493 new_modtime = new_statbuf.st_mtime;
2494 if (new_modtime != objfile->mtime)
2495 {
2496 struct cleanup *old_cleanups;
2497 struct section_offsets *offsets;
2498 int num_offsets;
2499 char *obfd_filename;
2500
2501 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2502 objfile->name);
2503
2504 /* There are various functions like symbol_file_add,
2505 symfile_bfd_open, syms_from_objfile, etc., which might
2506 appear to do what we want. But they have various other
2507 effects which we *don't* want. So we just do stuff
2508 ourselves. We don't worry about mapped files (for one thing,
2509 any mapped file will be out of date). */
2510
2511 /* If we get an error, blow away this objfile (not sure if
2512 that is the correct response for things like shared
2513 libraries). */
2514 old_cleanups = make_cleanup_free_objfile (objfile);
2515 /* We need to do this whenever any symbols go away. */
2516 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2517
2518 if (exec_bfd != NULL
2519 && filename_cmp (bfd_get_filename (objfile->obfd),
2520 bfd_get_filename (exec_bfd)) == 0)
2521 {
2522 /* Reload EXEC_BFD without asking anything. */
2523
2524 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2525 }
2526
2527 /* Keep the calls order approx. the same as in free_objfile. */
2528
2529 /* Free the separate debug objfiles. It will be
2530 automatically recreated by sym_read. */
2531 free_objfile_separate_debug (objfile);
2532
2533 /* Remove any references to this objfile in the global
2534 value lists. */
2535 preserve_values (objfile);
2536
2537 /* Nuke all the state that we will re-read. Much of the following
2538 code which sets things to NULL really is necessary to tell
2539 other parts of GDB that there is nothing currently there.
2540
2541 Try to keep the freeing order compatible with free_objfile. */
2542
2543 if (objfile->sf != NULL)
2544 {
2545 (*objfile->sf->sym_finish) (objfile);
2546 }
2547
2548 clear_objfile_data (objfile);
2549
2550 /* Clean up any state BFD has sitting around. */
2551 {
2552 struct bfd *obfd = objfile->obfd;
2553
2554 obfd_filename = bfd_get_filename (objfile->obfd);
2555 /* Open the new BFD before freeing the old one, so that
2556 the filename remains live. */
2557 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
2558 if (objfile->obfd == NULL)
2559 {
2560 /* We have to make a cleanup and error here, rather
2561 than erroring later, because once we unref OBFD,
2562 OBFD_FILENAME will be freed. */
2563 make_cleanup_bfd_unref (obfd);
2564 error (_("Can't open %s to read symbols."), obfd_filename);
2565 }
2566 gdb_bfd_unref (obfd);
2567 }
2568
2569 objfile->name = bfd_get_filename (objfile->obfd);
2570 /* bfd_openr sets cacheable to true, which is what we want. */
2571 if (!bfd_check_format (objfile->obfd, bfd_object))
2572 error (_("Can't read symbols from %s: %s."), objfile->name,
2573 bfd_errmsg (bfd_get_error ()));
2574
2575 /* Save the offsets, we will nuke them with the rest of the
2576 objfile_obstack. */
2577 num_offsets = objfile->num_sections;
2578 offsets = ((struct section_offsets *)
2579 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2580 memcpy (offsets, objfile->section_offsets,
2581 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2582
2583 /* FIXME: Do we have to free a whole linked list, or is this
2584 enough? */
2585 if (objfile->global_psymbols.list)
2586 xfree (objfile->global_psymbols.list);
2587 memset (&objfile->global_psymbols, 0,
2588 sizeof (objfile->global_psymbols));
2589 if (objfile->static_psymbols.list)
2590 xfree (objfile->static_psymbols.list);
2591 memset (&objfile->static_psymbols, 0,
2592 sizeof (objfile->static_psymbols));
2593
2594 /* Free the obstacks for non-reusable objfiles. */
2595 psymbol_bcache_free (objfile->psymbol_cache);
2596 objfile->psymbol_cache = psymbol_bcache_init ();
2597 if (objfile->demangled_names_hash != NULL)
2598 {
2599 htab_delete (objfile->demangled_names_hash);
2600 objfile->demangled_names_hash = NULL;
2601 }
2602 obstack_free (&objfile->objfile_obstack, 0);
2603 objfile->sections = NULL;
2604 objfile->symtabs = NULL;
2605 objfile->psymtabs = NULL;
2606 objfile->psymtabs_addrmap = NULL;
2607 objfile->free_psymtabs = NULL;
2608 objfile->template_symbols = NULL;
2609 objfile->msymbols = NULL;
2610 objfile->minimal_symbol_count = 0;
2611 memset (&objfile->msymbol_hash, 0,
2612 sizeof (objfile->msymbol_hash));
2613 memset (&objfile->msymbol_demangled_hash, 0,
2614 sizeof (objfile->msymbol_demangled_hash));
2615
2616 set_objfile_per_bfd (objfile);
2617
2618 /* obstack_init also initializes the obstack so it is
2619 empty. We could use obstack_specify_allocation but
2620 gdb_obstack.h specifies the alloc/dealloc functions. */
2621 obstack_init (&objfile->objfile_obstack);
2622 build_objfile_section_table (objfile);
2623 terminate_minimal_symbol_table (objfile);
2624
2625 /* We use the same section offsets as from last time. I'm not
2626 sure whether that is always correct for shared libraries. */
2627 objfile->section_offsets = (struct section_offsets *)
2628 obstack_alloc (&objfile->objfile_obstack,
2629 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2630 memcpy (objfile->section_offsets, offsets,
2631 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2632 objfile->num_sections = num_offsets;
2633
2634 /* What the hell is sym_new_init for, anyway? The concept of
2635 distinguishing between the main file and additional files
2636 in this way seems rather dubious. */
2637 if (objfile == symfile_objfile)
2638 {
2639 (*objfile->sf->sym_new_init) (objfile);
2640 }
2641
2642 (*objfile->sf->sym_init) (objfile);
2643 clear_complaints (&symfile_complaints, 1, 1);
2644
2645 objfile->flags &= ~OBJF_PSYMTABS_READ;
2646 read_symbols (objfile, 0);
2647
2648 if (!objfile_has_symbols (objfile))
2649 {
2650 wrap_here ("");
2651 printf_unfiltered (_("(no debugging symbols found)\n"));
2652 wrap_here ("");
2653 }
2654
2655 /* We're done reading the symbol file; finish off complaints. */
2656 clear_complaints (&symfile_complaints, 0, 1);
2657
2658 /* Getting new symbols may change our opinion about what is
2659 frameless. */
2660
2661 reinit_frame_cache ();
2662
2663 /* Discard cleanups as symbol reading was successful. */
2664 discard_cleanups (old_cleanups);
2665
2666 /* If the mtime has changed between the time we set new_modtime
2667 and now, we *want* this to be out of date, so don't call stat
2668 again now. */
2669 objfile->mtime = new_modtime;
2670 init_entry_point_info (objfile);
2671
2672 VEC_safe_push (objfilep, new_objfiles, objfile);
2673 }
2674 }
2675
2676 if (new_objfiles)
2677 {
2678 int ix;
2679
2680 /* Notify objfiles that we've modified objfile sections. */
2681 objfiles_changed ();
2682
2683 clear_symtab_users (0);
2684
2685 /* clear_objfile_data for each objfile was called before freeing it and
2686 observer_notify_new_objfile (NULL) has been called by
2687 clear_symtab_users above. Notify the new files now. */
2688 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2689 observer_notify_new_objfile (objfile);
2690
2691 /* At least one objfile has changed, so we can consider that
2692 the executable we're debugging has changed too. */
2693 observer_notify_executable_changed ();
2694 }
2695
2696 do_cleanups (all_cleanups);
2697 }
2698 \f
2699
2700
2701 typedef struct
2702 {
2703 char *ext;
2704 enum language lang;
2705 }
2706 filename_language;
2707
2708 static filename_language *filename_language_table;
2709 static int fl_table_size, fl_table_next;
2710
2711 static void
2712 add_filename_language (char *ext, enum language lang)
2713 {
2714 if (fl_table_next >= fl_table_size)
2715 {
2716 fl_table_size += 10;
2717 filename_language_table =
2718 xrealloc (filename_language_table,
2719 fl_table_size * sizeof (*filename_language_table));
2720 }
2721
2722 filename_language_table[fl_table_next].ext = xstrdup (ext);
2723 filename_language_table[fl_table_next].lang = lang;
2724 fl_table_next++;
2725 }
2726
2727 static char *ext_args;
2728 static void
2729 show_ext_args (struct ui_file *file, int from_tty,
2730 struct cmd_list_element *c, const char *value)
2731 {
2732 fprintf_filtered (file,
2733 _("Mapping between filename extension "
2734 "and source language is \"%s\".\n"),
2735 value);
2736 }
2737
2738 static void
2739 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2740 {
2741 int i;
2742 char *cp = ext_args;
2743 enum language lang;
2744
2745 /* First arg is filename extension, starting with '.' */
2746 if (*cp != '.')
2747 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2748
2749 /* Find end of first arg. */
2750 while (*cp && !isspace (*cp))
2751 cp++;
2752
2753 if (*cp == '\0')
2754 error (_("'%s': two arguments required -- "
2755 "filename extension and language"),
2756 ext_args);
2757
2758 /* Null-terminate first arg. */
2759 *cp++ = '\0';
2760
2761 /* Find beginning of second arg, which should be a source language. */
2762 while (*cp && isspace (*cp))
2763 cp++;
2764
2765 if (*cp == '\0')
2766 error (_("'%s': two arguments required -- "
2767 "filename extension and language"),
2768 ext_args);
2769
2770 /* Lookup the language from among those we know. */
2771 lang = language_enum (cp);
2772
2773 /* Now lookup the filename extension: do we already know it? */
2774 for (i = 0; i < fl_table_next; i++)
2775 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2776 break;
2777
2778 if (i >= fl_table_next)
2779 {
2780 /* New file extension. */
2781 add_filename_language (ext_args, lang);
2782 }
2783 else
2784 {
2785 /* Redefining a previously known filename extension. */
2786
2787 /* if (from_tty) */
2788 /* query ("Really make files of type %s '%s'?", */
2789 /* ext_args, language_str (lang)); */
2790
2791 xfree (filename_language_table[i].ext);
2792 filename_language_table[i].ext = xstrdup (ext_args);
2793 filename_language_table[i].lang = lang;
2794 }
2795 }
2796
2797 static void
2798 info_ext_lang_command (char *args, int from_tty)
2799 {
2800 int i;
2801
2802 printf_filtered (_("Filename extensions and the languages they represent:"));
2803 printf_filtered ("\n\n");
2804 for (i = 0; i < fl_table_next; i++)
2805 printf_filtered ("\t%s\t- %s\n",
2806 filename_language_table[i].ext,
2807 language_str (filename_language_table[i].lang));
2808 }
2809
2810 static void
2811 init_filename_language_table (void)
2812 {
2813 if (fl_table_size == 0) /* Protect against repetition. */
2814 {
2815 fl_table_size = 20;
2816 fl_table_next = 0;
2817 filename_language_table =
2818 xmalloc (fl_table_size * sizeof (*filename_language_table));
2819 add_filename_language (".c", language_c);
2820 add_filename_language (".d", language_d);
2821 add_filename_language (".C", language_cplus);
2822 add_filename_language (".cc", language_cplus);
2823 add_filename_language (".cp", language_cplus);
2824 add_filename_language (".cpp", language_cplus);
2825 add_filename_language (".cxx", language_cplus);
2826 add_filename_language (".c++", language_cplus);
2827 add_filename_language (".java", language_java);
2828 add_filename_language (".class", language_java);
2829 add_filename_language (".m", language_objc);
2830 add_filename_language (".f", language_fortran);
2831 add_filename_language (".F", language_fortran);
2832 add_filename_language (".for", language_fortran);
2833 add_filename_language (".FOR", language_fortran);
2834 add_filename_language (".ftn", language_fortran);
2835 add_filename_language (".FTN", language_fortran);
2836 add_filename_language (".fpp", language_fortran);
2837 add_filename_language (".FPP", language_fortran);
2838 add_filename_language (".f90", language_fortran);
2839 add_filename_language (".F90", language_fortran);
2840 add_filename_language (".f95", language_fortran);
2841 add_filename_language (".F95", language_fortran);
2842 add_filename_language (".f03", language_fortran);
2843 add_filename_language (".F03", language_fortran);
2844 add_filename_language (".f08", language_fortran);
2845 add_filename_language (".F08", language_fortran);
2846 add_filename_language (".s", language_asm);
2847 add_filename_language (".sx", language_asm);
2848 add_filename_language (".S", language_asm);
2849 add_filename_language (".pas", language_pascal);
2850 add_filename_language (".p", language_pascal);
2851 add_filename_language (".pp", language_pascal);
2852 add_filename_language (".adb", language_ada);
2853 add_filename_language (".ads", language_ada);
2854 add_filename_language (".a", language_ada);
2855 add_filename_language (".ada", language_ada);
2856 add_filename_language (".dg", language_ada);
2857 }
2858 }
2859
2860 enum language
2861 deduce_language_from_filename (const char *filename)
2862 {
2863 int i;
2864 char *cp;
2865
2866 if (filename != NULL)
2867 if ((cp = strrchr (filename, '.')) != NULL)
2868 for (i = 0; i < fl_table_next; i++)
2869 if (strcmp (cp, filename_language_table[i].ext) == 0)
2870 return filename_language_table[i].lang;
2871
2872 return language_unknown;
2873 }
2874 \f
2875 /* allocate_symtab:
2876
2877 Allocate and partly initialize a new symbol table. Return a pointer
2878 to it. error() if no space.
2879
2880 Caller must set these fields:
2881 LINETABLE(symtab)
2882 symtab->blockvector
2883 symtab->dirname
2884 symtab->free_code
2885 symtab->free_ptr
2886 */
2887
2888 struct symtab *
2889 allocate_symtab (const char *filename, struct objfile *objfile)
2890 {
2891 struct symtab *symtab;
2892
2893 symtab = (struct symtab *)
2894 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2895 memset (symtab, 0, sizeof (*symtab));
2896 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2897 objfile->per_bfd->filename_cache);
2898 symtab->fullname = NULL;
2899 symtab->language = deduce_language_from_filename (filename);
2900 symtab->debugformat = "unknown";
2901
2902 /* Hook it to the objfile it comes from. */
2903
2904 symtab->objfile = objfile;
2905 symtab->next = objfile->symtabs;
2906 objfile->symtabs = symtab;
2907
2908 if (symtab_create_debug)
2909 {
2910 /* Be a bit clever with debugging messages, and don't print objfile
2911 every time, only when it changes. */
2912 static char *last_objfile_name = NULL;
2913
2914 if (last_objfile_name == NULL
2915 || strcmp (last_objfile_name, objfile->name) != 0)
2916 {
2917 xfree (last_objfile_name);
2918 last_objfile_name = xstrdup (objfile->name);
2919 fprintf_unfiltered (gdb_stdlog,
2920 "Creating one or more symtabs for objfile %s ...\n",
2921 last_objfile_name);
2922 }
2923 fprintf_unfiltered (gdb_stdlog,
2924 "Created symtab %s for module %s.\n",
2925 host_address_to_string (symtab), filename);
2926 }
2927
2928 return (symtab);
2929 }
2930 \f
2931
2932 /* Reset all data structures in gdb which may contain references to symbol
2933 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2934
2935 void
2936 clear_symtab_users (int add_flags)
2937 {
2938 /* Someday, we should do better than this, by only blowing away
2939 the things that really need to be blown. */
2940
2941 /* Clear the "current" symtab first, because it is no longer valid.
2942 breakpoint_re_set may try to access the current symtab. */
2943 clear_current_source_symtab_and_line ();
2944
2945 clear_displays ();
2946 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2947 breakpoint_re_set ();
2948 clear_last_displayed_sal ();
2949 clear_pc_function_cache ();
2950 observer_notify_new_objfile (NULL);
2951
2952 /* Clear globals which might have pointed into a removed objfile.
2953 FIXME: It's not clear which of these are supposed to persist
2954 between expressions and which ought to be reset each time. */
2955 expression_context_block = NULL;
2956 innermost_block = NULL;
2957
2958 /* Varobj may refer to old symbols, perform a cleanup. */
2959 varobj_invalidate ();
2960
2961 }
2962
2963 static void
2964 clear_symtab_users_cleanup (void *ignore)
2965 {
2966 clear_symtab_users (0);
2967 }
2968 \f
2969 /* OVERLAYS:
2970 The following code implements an abstraction for debugging overlay sections.
2971
2972 The target model is as follows:
2973 1) The gnu linker will permit multiple sections to be mapped into the
2974 same VMA, each with its own unique LMA (or load address).
2975 2) It is assumed that some runtime mechanism exists for mapping the
2976 sections, one by one, from the load address into the VMA address.
2977 3) This code provides a mechanism for gdb to keep track of which
2978 sections should be considered to be mapped from the VMA to the LMA.
2979 This information is used for symbol lookup, and memory read/write.
2980 For instance, if a section has been mapped then its contents
2981 should be read from the VMA, otherwise from the LMA.
2982
2983 Two levels of debugger support for overlays are available. One is
2984 "manual", in which the debugger relies on the user to tell it which
2985 overlays are currently mapped. This level of support is
2986 implemented entirely in the core debugger, and the information about
2987 whether a section is mapped is kept in the objfile->obj_section table.
2988
2989 The second level of support is "automatic", and is only available if
2990 the target-specific code provides functionality to read the target's
2991 overlay mapping table, and translate its contents for the debugger
2992 (by updating the mapped state information in the obj_section tables).
2993
2994 The interface is as follows:
2995 User commands:
2996 overlay map <name> -- tell gdb to consider this section mapped
2997 overlay unmap <name> -- tell gdb to consider this section unmapped
2998 overlay list -- list the sections that GDB thinks are mapped
2999 overlay read-target -- get the target's state of what's mapped
3000 overlay off/manual/auto -- set overlay debugging state
3001 Functional interface:
3002 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3003 section, return that section.
3004 find_pc_overlay(pc): find any overlay section that contains
3005 the pc, either in its VMA or its LMA
3006 section_is_mapped(sect): true if overlay is marked as mapped
3007 section_is_overlay(sect): true if section's VMA != LMA
3008 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3009 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3010 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3011 overlay_mapped_address(...): map an address from section's LMA to VMA
3012 overlay_unmapped_address(...): map an address from section's VMA to LMA
3013 symbol_overlayed_address(...): Return a "current" address for symbol:
3014 either in VMA or LMA depending on whether
3015 the symbol's section is currently mapped. */
3016
3017 /* Overlay debugging state: */
3018
3019 enum overlay_debugging_state overlay_debugging = ovly_off;
3020 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
3021
3022 /* Function: section_is_overlay (SECTION)
3023 Returns true if SECTION has VMA not equal to LMA, ie.
3024 SECTION is loaded at an address different from where it will "run". */
3025
3026 int
3027 section_is_overlay (struct obj_section *section)
3028 {
3029 if (overlay_debugging && section)
3030 {
3031 bfd *abfd = section->objfile->obfd;
3032 asection *bfd_section = section->the_bfd_section;
3033
3034 if (bfd_section_lma (abfd, bfd_section) != 0
3035 && bfd_section_lma (abfd, bfd_section)
3036 != bfd_section_vma (abfd, bfd_section))
3037 return 1;
3038 }
3039
3040 return 0;
3041 }
3042
3043 /* Function: overlay_invalidate_all (void)
3044 Invalidate the mapped state of all overlay sections (mark it as stale). */
3045
3046 static void
3047 overlay_invalidate_all (void)
3048 {
3049 struct objfile *objfile;
3050 struct obj_section *sect;
3051
3052 ALL_OBJSECTIONS (objfile, sect)
3053 if (section_is_overlay (sect))
3054 sect->ovly_mapped = -1;
3055 }
3056
3057 /* Function: section_is_mapped (SECTION)
3058 Returns true if section is an overlay, and is currently mapped.
3059
3060 Access to the ovly_mapped flag is restricted to this function, so
3061 that we can do automatic update. If the global flag
3062 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3063 overlay_invalidate_all. If the mapped state of the particular
3064 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3065
3066 int
3067 section_is_mapped (struct obj_section *osect)
3068 {
3069 struct gdbarch *gdbarch;
3070
3071 if (osect == 0 || !section_is_overlay (osect))
3072 return 0;
3073
3074 switch (overlay_debugging)
3075 {
3076 default:
3077 case ovly_off:
3078 return 0; /* overlay debugging off */
3079 case ovly_auto: /* overlay debugging automatic */
3080 /* Unles there is a gdbarch_overlay_update function,
3081 there's really nothing useful to do here (can't really go auto). */
3082 gdbarch = get_objfile_arch (osect->objfile);
3083 if (gdbarch_overlay_update_p (gdbarch))
3084 {
3085 if (overlay_cache_invalid)
3086 {
3087 overlay_invalidate_all ();
3088 overlay_cache_invalid = 0;
3089 }
3090 if (osect->ovly_mapped == -1)
3091 gdbarch_overlay_update (gdbarch, osect);
3092 }
3093 /* fall thru to manual case */
3094 case ovly_on: /* overlay debugging manual */
3095 return osect->ovly_mapped == 1;
3096 }
3097 }
3098
3099 /* Function: pc_in_unmapped_range
3100 If PC falls into the lma range of SECTION, return true, else false. */
3101
3102 CORE_ADDR
3103 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3104 {
3105 if (section_is_overlay (section))
3106 {
3107 bfd *abfd = section->objfile->obfd;
3108 asection *bfd_section = section->the_bfd_section;
3109
3110 /* We assume the LMA is relocated by the same offset as the VMA. */
3111 bfd_vma size = bfd_get_section_size (bfd_section);
3112 CORE_ADDR offset = obj_section_offset (section);
3113
3114 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3115 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3116 return 1;
3117 }
3118
3119 return 0;
3120 }
3121
3122 /* Function: pc_in_mapped_range
3123 If PC falls into the vma range of SECTION, return true, else false. */
3124
3125 CORE_ADDR
3126 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3127 {
3128 if (section_is_overlay (section))
3129 {
3130 if (obj_section_addr (section) <= pc
3131 && pc < obj_section_endaddr (section))
3132 return 1;
3133 }
3134
3135 return 0;
3136 }
3137
3138
3139 /* Return true if the mapped ranges of sections A and B overlap, false
3140 otherwise. */
3141 static int
3142 sections_overlap (struct obj_section *a, struct obj_section *b)
3143 {
3144 CORE_ADDR a_start = obj_section_addr (a);
3145 CORE_ADDR a_end = obj_section_endaddr (a);
3146 CORE_ADDR b_start = obj_section_addr (b);
3147 CORE_ADDR b_end = obj_section_endaddr (b);
3148
3149 return (a_start < b_end && b_start < a_end);
3150 }
3151
3152 /* Function: overlay_unmapped_address (PC, SECTION)
3153 Returns the address corresponding to PC in the unmapped (load) range.
3154 May be the same as PC. */
3155
3156 CORE_ADDR
3157 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3158 {
3159 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3160 {
3161 bfd *abfd = section->objfile->obfd;
3162 asection *bfd_section = section->the_bfd_section;
3163
3164 return pc + bfd_section_lma (abfd, bfd_section)
3165 - bfd_section_vma (abfd, bfd_section);
3166 }
3167
3168 return pc;
3169 }
3170
3171 /* Function: overlay_mapped_address (PC, SECTION)
3172 Returns the address corresponding to PC in the mapped (runtime) range.
3173 May be the same as PC. */
3174
3175 CORE_ADDR
3176 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3177 {
3178 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3179 {
3180 bfd *abfd = section->objfile->obfd;
3181 asection *bfd_section = section->the_bfd_section;
3182
3183 return pc + bfd_section_vma (abfd, bfd_section)
3184 - bfd_section_lma (abfd, bfd_section);
3185 }
3186
3187 return pc;
3188 }
3189
3190
3191 /* Function: symbol_overlayed_address
3192 Return one of two addresses (relative to the VMA or to the LMA),
3193 depending on whether the section is mapped or not. */
3194
3195 CORE_ADDR
3196 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3197 {
3198 if (overlay_debugging)
3199 {
3200 /* If the symbol has no section, just return its regular address. */
3201 if (section == 0)
3202 return address;
3203 /* If the symbol's section is not an overlay, just return its
3204 address. */
3205 if (!section_is_overlay (section))
3206 return address;
3207 /* If the symbol's section is mapped, just return its address. */
3208 if (section_is_mapped (section))
3209 return address;
3210 /*
3211 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3212 * then return its LOADED address rather than its vma address!!
3213 */
3214 return overlay_unmapped_address (address, section);
3215 }
3216 return address;
3217 }
3218
3219 /* Function: find_pc_overlay (PC)
3220 Return the best-match overlay section for PC:
3221 If PC matches a mapped overlay section's VMA, return that section.
3222 Else if PC matches an unmapped section's VMA, return that section.
3223 Else if PC matches an unmapped section's LMA, return that section. */
3224
3225 struct obj_section *
3226 find_pc_overlay (CORE_ADDR pc)
3227 {
3228 struct objfile *objfile;
3229 struct obj_section *osect, *best_match = NULL;
3230
3231 if (overlay_debugging)
3232 ALL_OBJSECTIONS (objfile, osect)
3233 if (section_is_overlay (osect))
3234 {
3235 if (pc_in_mapped_range (pc, osect))
3236 {
3237 if (section_is_mapped (osect))
3238 return osect;
3239 else
3240 best_match = osect;
3241 }
3242 else if (pc_in_unmapped_range (pc, osect))
3243 best_match = osect;
3244 }
3245 return best_match;
3246 }
3247
3248 /* Function: find_pc_mapped_section (PC)
3249 If PC falls into the VMA address range of an overlay section that is
3250 currently marked as MAPPED, return that section. Else return NULL. */
3251
3252 struct obj_section *
3253 find_pc_mapped_section (CORE_ADDR pc)
3254 {
3255 struct objfile *objfile;
3256 struct obj_section *osect;
3257
3258 if (overlay_debugging)
3259 ALL_OBJSECTIONS (objfile, osect)
3260 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3261 return osect;
3262
3263 return NULL;
3264 }
3265
3266 /* Function: list_overlays_command
3267 Print a list of mapped sections and their PC ranges. */
3268
3269 static void
3270 list_overlays_command (char *args, int from_tty)
3271 {
3272 int nmapped = 0;
3273 struct objfile *objfile;
3274 struct obj_section *osect;
3275
3276 if (overlay_debugging)
3277 ALL_OBJSECTIONS (objfile, osect)
3278 if (section_is_mapped (osect))
3279 {
3280 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3281 const char *name;
3282 bfd_vma lma, vma;
3283 int size;
3284
3285 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3286 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3287 size = bfd_get_section_size (osect->the_bfd_section);
3288 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3289
3290 printf_filtered ("Section %s, loaded at ", name);
3291 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3292 puts_filtered (" - ");
3293 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3294 printf_filtered (", mapped at ");
3295 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3296 puts_filtered (" - ");
3297 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3298 puts_filtered ("\n");
3299
3300 nmapped++;
3301 }
3302 if (nmapped == 0)
3303 printf_filtered (_("No sections are mapped.\n"));
3304 }
3305
3306 /* Function: map_overlay_command
3307 Mark the named section as mapped (ie. residing at its VMA address). */
3308
3309 static void
3310 map_overlay_command (char *args, int from_tty)
3311 {
3312 struct objfile *objfile, *objfile2;
3313 struct obj_section *sec, *sec2;
3314
3315 if (!overlay_debugging)
3316 error (_("Overlay debugging not enabled. Use "
3317 "either the 'overlay auto' or\n"
3318 "the 'overlay manual' command."));
3319
3320 if (args == 0 || *args == 0)
3321 error (_("Argument required: name of an overlay section"));
3322
3323 /* First, find a section matching the user supplied argument. */
3324 ALL_OBJSECTIONS (objfile, sec)
3325 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3326 {
3327 /* Now, check to see if the section is an overlay. */
3328 if (!section_is_overlay (sec))
3329 continue; /* not an overlay section */
3330
3331 /* Mark the overlay as "mapped". */
3332 sec->ovly_mapped = 1;
3333
3334 /* Next, make a pass and unmap any sections that are
3335 overlapped by this new section: */
3336 ALL_OBJSECTIONS (objfile2, sec2)
3337 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3338 {
3339 if (info_verbose)
3340 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3341 bfd_section_name (objfile->obfd,
3342 sec2->the_bfd_section));
3343 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3344 }
3345 return;
3346 }
3347 error (_("No overlay section called %s"), args);
3348 }
3349
3350 /* Function: unmap_overlay_command
3351 Mark the overlay section as unmapped
3352 (ie. resident in its LMA address range, rather than the VMA range). */
3353
3354 static void
3355 unmap_overlay_command (char *args, int from_tty)
3356 {
3357 struct objfile *objfile;
3358 struct obj_section *sec;
3359
3360 if (!overlay_debugging)
3361 error (_("Overlay debugging not enabled. "
3362 "Use either the 'overlay auto' or\n"
3363 "the 'overlay manual' command."));
3364
3365 if (args == 0 || *args == 0)
3366 error (_("Argument required: name of an overlay section"));
3367
3368 /* First, find a section matching the user supplied argument. */
3369 ALL_OBJSECTIONS (objfile, sec)
3370 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3371 {
3372 if (!sec->ovly_mapped)
3373 error (_("Section %s is not mapped"), args);
3374 sec->ovly_mapped = 0;
3375 return;
3376 }
3377 error (_("No overlay section called %s"), args);
3378 }
3379
3380 /* Function: overlay_auto_command
3381 A utility command to turn on overlay debugging.
3382 Possibly this should be done via a set/show command. */
3383
3384 static void
3385 overlay_auto_command (char *args, int from_tty)
3386 {
3387 overlay_debugging = ovly_auto;
3388 enable_overlay_breakpoints ();
3389 if (info_verbose)
3390 printf_unfiltered (_("Automatic overlay debugging enabled."));
3391 }
3392
3393 /* Function: overlay_manual_command
3394 A utility command to turn on overlay debugging.
3395 Possibly this should be done via a set/show command. */
3396
3397 static void
3398 overlay_manual_command (char *args, int from_tty)
3399 {
3400 overlay_debugging = ovly_on;
3401 disable_overlay_breakpoints ();
3402 if (info_verbose)
3403 printf_unfiltered (_("Overlay debugging enabled."));
3404 }
3405
3406 /* Function: overlay_off_command
3407 A utility command to turn on overlay debugging.
3408 Possibly this should be done via a set/show command. */
3409
3410 static void
3411 overlay_off_command (char *args, int from_tty)
3412 {
3413 overlay_debugging = ovly_off;
3414 disable_overlay_breakpoints ();
3415 if (info_verbose)
3416 printf_unfiltered (_("Overlay debugging disabled."));
3417 }
3418
3419 static void
3420 overlay_load_command (char *args, int from_tty)
3421 {
3422 struct gdbarch *gdbarch = get_current_arch ();
3423
3424 if (gdbarch_overlay_update_p (gdbarch))
3425 gdbarch_overlay_update (gdbarch, NULL);
3426 else
3427 error (_("This target does not know how to read its overlay state."));
3428 }
3429
3430 /* Function: overlay_command
3431 A place-holder for a mis-typed command. */
3432
3433 /* Command list chain containing all defined "overlay" subcommands. */
3434 static struct cmd_list_element *overlaylist;
3435
3436 static void
3437 overlay_command (char *args, int from_tty)
3438 {
3439 printf_unfiltered
3440 ("\"overlay\" must be followed by the name of an overlay command.\n");
3441 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3442 }
3443
3444
3445 /* Target Overlays for the "Simplest" overlay manager:
3446
3447 This is GDB's default target overlay layer. It works with the
3448 minimal overlay manager supplied as an example by Cygnus. The
3449 entry point is via a function pointer "gdbarch_overlay_update",
3450 so targets that use a different runtime overlay manager can
3451 substitute their own overlay_update function and take over the
3452 function pointer.
3453
3454 The overlay_update function pokes around in the target's data structures
3455 to see what overlays are mapped, and updates GDB's overlay mapping with
3456 this information.
3457
3458 In this simple implementation, the target data structures are as follows:
3459 unsigned _novlys; /# number of overlay sections #/
3460 unsigned _ovly_table[_novlys][4] = {
3461 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3462 {..., ..., ..., ...},
3463 }
3464 unsigned _novly_regions; /# number of overlay regions #/
3465 unsigned _ovly_region_table[_novly_regions][3] = {
3466 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3467 {..., ..., ...},
3468 }
3469 These functions will attempt to update GDB's mappedness state in the
3470 symbol section table, based on the target's mappedness state.
3471
3472 To do this, we keep a cached copy of the target's _ovly_table, and
3473 attempt to detect when the cached copy is invalidated. The main
3474 entry point is "simple_overlay_update(SECT), which looks up SECT in
3475 the cached table and re-reads only the entry for that section from
3476 the target (whenever possible). */
3477
3478 /* Cached, dynamically allocated copies of the target data structures: */
3479 static unsigned (*cache_ovly_table)[4] = 0;
3480 static unsigned cache_novlys = 0;
3481 static CORE_ADDR cache_ovly_table_base = 0;
3482 enum ovly_index
3483 {
3484 VMA, SIZE, LMA, MAPPED
3485 };
3486
3487 /* Throw away the cached copy of _ovly_table. */
3488 static void
3489 simple_free_overlay_table (void)
3490 {
3491 if (cache_ovly_table)
3492 xfree (cache_ovly_table);
3493 cache_novlys = 0;
3494 cache_ovly_table = NULL;
3495 cache_ovly_table_base = 0;
3496 }
3497
3498 /* Read an array of ints of size SIZE from the target into a local buffer.
3499 Convert to host order. int LEN is number of ints. */
3500 static void
3501 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3502 int len, int size, enum bfd_endian byte_order)
3503 {
3504 /* FIXME (alloca): Not safe if array is very large. */
3505 gdb_byte *buf = alloca (len * size);
3506 int i;
3507
3508 read_memory (memaddr, buf, len * size);
3509 for (i = 0; i < len; i++)
3510 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3511 }
3512
3513 /* Find and grab a copy of the target _ovly_table
3514 (and _novlys, which is needed for the table's size). */
3515 static int
3516 simple_read_overlay_table (void)
3517 {
3518 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3519 struct gdbarch *gdbarch;
3520 int word_size;
3521 enum bfd_endian byte_order;
3522
3523 simple_free_overlay_table ();
3524 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3525 if (! novlys_msym)
3526 {
3527 error (_("Error reading inferior's overlay table: "
3528 "couldn't find `_novlys' variable\n"
3529 "in inferior. Use `overlay manual' mode."));
3530 return 0;
3531 }
3532
3533 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3534 if (! ovly_table_msym)
3535 {
3536 error (_("Error reading inferior's overlay table: couldn't find "
3537 "`_ovly_table' array\n"
3538 "in inferior. Use `overlay manual' mode."));
3539 return 0;
3540 }
3541
3542 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3543 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3544 byte_order = gdbarch_byte_order (gdbarch);
3545
3546 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3547 4, byte_order);
3548 cache_ovly_table
3549 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3550 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3551 read_target_long_array (cache_ovly_table_base,
3552 (unsigned int *) cache_ovly_table,
3553 cache_novlys * 4, word_size, byte_order);
3554
3555 return 1; /* SUCCESS */
3556 }
3557
3558 /* Function: simple_overlay_update_1
3559 A helper function for simple_overlay_update. Assuming a cached copy
3560 of _ovly_table exists, look through it to find an entry whose vma,
3561 lma and size match those of OSECT. Re-read the entry and make sure
3562 it still matches OSECT (else the table may no longer be valid).
3563 Set OSECT's mapped state to match the entry. Return: 1 for
3564 success, 0 for failure. */
3565
3566 static int
3567 simple_overlay_update_1 (struct obj_section *osect)
3568 {
3569 int i, size;
3570 bfd *obfd = osect->objfile->obfd;
3571 asection *bsect = osect->the_bfd_section;
3572 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3573 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3574 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3575
3576 size = bfd_get_section_size (osect->the_bfd_section);
3577 for (i = 0; i < cache_novlys; i++)
3578 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3579 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3580 /* && cache_ovly_table[i][SIZE] == size */ )
3581 {
3582 read_target_long_array (cache_ovly_table_base + i * word_size,
3583 (unsigned int *) cache_ovly_table[i],
3584 4, word_size, byte_order);
3585 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3586 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3587 /* && cache_ovly_table[i][SIZE] == size */ )
3588 {
3589 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3590 return 1;
3591 }
3592 else /* Warning! Warning! Target's ovly table has changed! */
3593 return 0;
3594 }
3595 return 0;
3596 }
3597
3598 /* Function: simple_overlay_update
3599 If OSECT is NULL, then update all sections' mapped state
3600 (after re-reading the entire target _ovly_table).
3601 If OSECT is non-NULL, then try to find a matching entry in the
3602 cached ovly_table and update only OSECT's mapped state.
3603 If a cached entry can't be found or the cache isn't valid, then
3604 re-read the entire cache, and go ahead and update all sections. */
3605
3606 void
3607 simple_overlay_update (struct obj_section *osect)
3608 {
3609 struct objfile *objfile;
3610
3611 /* Were we given an osect to look up? NULL means do all of them. */
3612 if (osect)
3613 /* Have we got a cached copy of the target's overlay table? */
3614 if (cache_ovly_table != NULL)
3615 {
3616 /* Does its cached location match what's currently in the
3617 symtab? */
3618 struct minimal_symbol *minsym
3619 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3620
3621 if (minsym == NULL)
3622 error (_("Error reading inferior's overlay table: couldn't "
3623 "find `_ovly_table' array\n"
3624 "in inferior. Use `overlay manual' mode."));
3625
3626 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3627 /* Then go ahead and try to look up this single section in
3628 the cache. */
3629 if (simple_overlay_update_1 (osect))
3630 /* Found it! We're done. */
3631 return;
3632 }
3633
3634 /* Cached table no good: need to read the entire table anew.
3635 Or else we want all the sections, in which case it's actually
3636 more efficient to read the whole table in one block anyway. */
3637
3638 if (! simple_read_overlay_table ())
3639 return;
3640
3641 /* Now may as well update all sections, even if only one was requested. */
3642 ALL_OBJSECTIONS (objfile, osect)
3643 if (section_is_overlay (osect))
3644 {
3645 int i, size;
3646 bfd *obfd = osect->objfile->obfd;
3647 asection *bsect = osect->the_bfd_section;
3648
3649 size = bfd_get_section_size (bsect);
3650 for (i = 0; i < cache_novlys; i++)
3651 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3652 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3653 /* && cache_ovly_table[i][SIZE] == size */ )
3654 { /* obj_section matches i'th entry in ovly_table. */
3655 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3656 break; /* finished with inner for loop: break out. */
3657 }
3658 }
3659 }
3660
3661 /* Set the output sections and output offsets for section SECTP in
3662 ABFD. The relocation code in BFD will read these offsets, so we
3663 need to be sure they're initialized. We map each section to itself,
3664 with no offset; this means that SECTP->vma will be honored. */
3665
3666 static void
3667 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3668 {
3669 sectp->output_section = sectp;
3670 sectp->output_offset = 0;
3671 }
3672
3673 /* Default implementation for sym_relocate. */
3674
3675
3676 bfd_byte *
3677 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3678 bfd_byte *buf)
3679 {
3680 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3681 DWO file. */
3682 bfd *abfd = sectp->owner;
3683
3684 /* We're only interested in sections with relocation
3685 information. */
3686 if ((sectp->flags & SEC_RELOC) == 0)
3687 return NULL;
3688
3689 /* We will handle section offsets properly elsewhere, so relocate as if
3690 all sections begin at 0. */
3691 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3692
3693 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3694 }
3695
3696 /* Relocate the contents of a debug section SECTP in ABFD. The
3697 contents are stored in BUF if it is non-NULL, or returned in a
3698 malloc'd buffer otherwise.
3699
3700 For some platforms and debug info formats, shared libraries contain
3701 relocations against the debug sections (particularly for DWARF-2;
3702 one affected platform is PowerPC GNU/Linux, although it depends on
3703 the version of the linker in use). Also, ELF object files naturally
3704 have unresolved relocations for their debug sections. We need to apply
3705 the relocations in order to get the locations of symbols correct.
3706 Another example that may require relocation processing, is the
3707 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3708 debug section. */
3709
3710 bfd_byte *
3711 symfile_relocate_debug_section (struct objfile *objfile,
3712 asection *sectp, bfd_byte *buf)
3713 {
3714 gdb_assert (objfile->sf->sym_relocate);
3715
3716 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3717 }
3718
3719 struct symfile_segment_data *
3720 get_symfile_segment_data (bfd *abfd)
3721 {
3722 const struct sym_fns *sf = find_sym_fns (abfd);
3723
3724 if (sf == NULL)
3725 return NULL;
3726
3727 return sf->sym_segments (abfd);
3728 }
3729
3730 void
3731 free_symfile_segment_data (struct symfile_segment_data *data)
3732 {
3733 xfree (data->segment_bases);
3734 xfree (data->segment_sizes);
3735 xfree (data->segment_info);
3736 xfree (data);
3737 }
3738
3739
3740 /* Given:
3741 - DATA, containing segment addresses from the object file ABFD, and
3742 the mapping from ABFD's sections onto the segments that own them,
3743 and
3744 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3745 segment addresses reported by the target,
3746 store the appropriate offsets for each section in OFFSETS.
3747
3748 If there are fewer entries in SEGMENT_BASES than there are segments
3749 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3750
3751 If there are more entries, then ignore the extra. The target may
3752 not be able to distinguish between an empty data segment and a
3753 missing data segment; a missing text segment is less plausible. */
3754 int
3755 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3756 struct section_offsets *offsets,
3757 int num_segment_bases,
3758 const CORE_ADDR *segment_bases)
3759 {
3760 int i;
3761 asection *sect;
3762
3763 /* It doesn't make sense to call this function unless you have some
3764 segment base addresses. */
3765 gdb_assert (num_segment_bases > 0);
3766
3767 /* If we do not have segment mappings for the object file, we
3768 can not relocate it by segments. */
3769 gdb_assert (data != NULL);
3770 gdb_assert (data->num_segments > 0);
3771
3772 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3773 {
3774 int which = data->segment_info[i];
3775
3776 gdb_assert (0 <= which && which <= data->num_segments);
3777
3778 /* Don't bother computing offsets for sections that aren't
3779 loaded as part of any segment. */
3780 if (! which)
3781 continue;
3782
3783 /* Use the last SEGMENT_BASES entry as the address of any extra
3784 segments mentioned in DATA->segment_info. */
3785 if (which > num_segment_bases)
3786 which = num_segment_bases;
3787
3788 offsets->offsets[i] = (segment_bases[which - 1]
3789 - data->segment_bases[which - 1]);
3790 }
3791
3792 return 1;
3793 }
3794
3795 static void
3796 symfile_find_segment_sections (struct objfile *objfile)
3797 {
3798 bfd *abfd = objfile->obfd;
3799 int i;
3800 asection *sect;
3801 struct symfile_segment_data *data;
3802
3803 data = get_symfile_segment_data (objfile->obfd);
3804 if (data == NULL)
3805 return;
3806
3807 if (data->num_segments != 1 && data->num_segments != 2)
3808 {
3809 free_symfile_segment_data (data);
3810 return;
3811 }
3812
3813 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3814 {
3815 int which = data->segment_info[i];
3816
3817 if (which == 1)
3818 {
3819 if (objfile->sect_index_text == -1)
3820 objfile->sect_index_text = sect->index;
3821
3822 if (objfile->sect_index_rodata == -1)
3823 objfile->sect_index_rodata = sect->index;
3824 }
3825 else if (which == 2)
3826 {
3827 if (objfile->sect_index_data == -1)
3828 objfile->sect_index_data = sect->index;
3829
3830 if (objfile->sect_index_bss == -1)
3831 objfile->sect_index_bss = sect->index;
3832 }
3833 }
3834
3835 free_symfile_segment_data (data);
3836 }
3837
3838 void
3839 _initialize_symfile (void)
3840 {
3841 struct cmd_list_element *c;
3842
3843 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3844 Load symbol table from executable file FILE.\n\
3845 The `file' command can also load symbol tables, as well as setting the file\n\
3846 to execute."), &cmdlist);
3847 set_cmd_completer (c, filename_completer);
3848
3849 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3850 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3851 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3852 ...]\nADDR is the starting address of the file's text.\n\
3853 The optional arguments are section-name section-address pairs and\n\
3854 should be specified if the data and bss segments are not contiguous\n\
3855 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3856 &cmdlist);
3857 set_cmd_completer (c, filename_completer);
3858
3859 c = add_cmd ("load", class_files, load_command, _("\
3860 Dynamically load FILE into the running program, and record its symbols\n\
3861 for access from GDB.\n\
3862 A load OFFSET may also be given."), &cmdlist);
3863 set_cmd_completer (c, filename_completer);
3864
3865 add_prefix_cmd ("overlay", class_support, overlay_command,
3866 _("Commands for debugging overlays."), &overlaylist,
3867 "overlay ", 0, &cmdlist);
3868
3869 add_com_alias ("ovly", "overlay", class_alias, 1);
3870 add_com_alias ("ov", "overlay", class_alias, 1);
3871
3872 add_cmd ("map-overlay", class_support, map_overlay_command,
3873 _("Assert that an overlay section is mapped."), &overlaylist);
3874
3875 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3876 _("Assert that an overlay section is unmapped."), &overlaylist);
3877
3878 add_cmd ("list-overlays", class_support, list_overlays_command,
3879 _("List mappings of overlay sections."), &overlaylist);
3880
3881 add_cmd ("manual", class_support, overlay_manual_command,
3882 _("Enable overlay debugging."), &overlaylist);
3883 add_cmd ("off", class_support, overlay_off_command,
3884 _("Disable overlay debugging."), &overlaylist);
3885 add_cmd ("auto", class_support, overlay_auto_command,
3886 _("Enable automatic overlay debugging."), &overlaylist);
3887 add_cmd ("load-target", class_support, overlay_load_command,
3888 _("Read the overlay mapping state from the target."), &overlaylist);
3889
3890 /* Filename extension to source language lookup table: */
3891 init_filename_language_table ();
3892 add_setshow_string_noescape_cmd ("extension-language", class_files,
3893 &ext_args, _("\
3894 Set mapping between filename extension and source language."), _("\
3895 Show mapping between filename extension and source language."), _("\
3896 Usage: set extension-language .foo bar"),
3897 set_ext_lang_command,
3898 show_ext_args,
3899 &setlist, &showlist);
3900
3901 add_info ("extensions", info_ext_lang_command,
3902 _("All filename extensions associated with a source language."));
3903
3904 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3905 &debug_file_directory, _("\
3906 Set the directories where separate debug symbols are searched for."), _("\
3907 Show the directories where separate debug symbols are searched for."), _("\
3908 Separate debug symbols are first searched for in the same\n\
3909 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3910 and lastly at the path of the directory of the binary with\n\
3911 each global debug-file-directory component prepended."),
3912 NULL,
3913 show_debug_file_directory,
3914 &setlist, &showlist);
3915 }
This page took 0.135118 seconds and 4 git commands to generate.