* i386obsd-tdep.c (i386obsd_sigtramp_p): Adjust for changed signal
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h" /* for write_pc */
42 #include "filenames.h" /* for DOSish file names */
43 #include "gdb-stabs.h"
44 #include "gdb_obstack.h"
45 #include "completer.h"
46 #include "bcache.h"
47 #include "hashtab.h"
48 #include "readline/readline.h"
49 #include "gdb_assert.h"
50 #include "block.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include <time.h>
58
59 #ifndef O_BINARY
60 #define O_BINARY 0
61 #endif
62
63 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
64 void (*deprecated_show_load_progress) (const char *section,
65 unsigned long section_sent,
66 unsigned long section_size,
67 unsigned long total_sent,
68 unsigned long total_size);
69 void (*deprecated_pre_add_symbol_hook) (const char *);
70 void (*deprecated_post_add_symbol_hook) (void);
71 void (*deprecated_target_new_objfile_hook) (struct objfile *);
72
73 static void clear_symtab_users_cleanup (void *ignore);
74
75 /* Global variables owned by this file */
76 int readnow_symbol_files; /* Read full symbols immediately */
77
78 /* External variables and functions referenced. */
79
80 extern void report_transfer_performance (unsigned long, time_t, time_t);
81
82 /* Functions this file defines */
83
84 #if 0
85 static int simple_read_overlay_region_table (void);
86 static void simple_free_overlay_region_table (void);
87 #endif
88
89 static void set_initial_language (void);
90
91 static void load_command (char *, int);
92
93 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94
95 static void add_symbol_file_command (char *, int);
96
97 static void add_shared_symbol_files_command (char *, int);
98
99 static void reread_separate_symbols (struct objfile *objfile);
100
101 static void cashier_psymtab (struct partial_symtab *);
102
103 bfd *symfile_bfd_open (char *);
104
105 int get_section_index (struct objfile *, char *);
106
107 static void find_sym_fns (struct objfile *);
108
109 static void decrement_reading_symtab (void *);
110
111 static void overlay_invalidate_all (void);
112
113 static int overlay_is_mapped (struct obj_section *);
114
115 void list_overlays_command (char *, int);
116
117 void map_overlay_command (char *, int);
118
119 void unmap_overlay_command (char *, int);
120
121 static void overlay_auto_command (char *, int);
122
123 static void overlay_manual_command (char *, int);
124
125 static void overlay_off_command (char *, int);
126
127 static void overlay_load_command (char *, int);
128
129 static void overlay_command (char *, int);
130
131 static void simple_free_overlay_table (void);
132
133 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
134
135 static int simple_read_overlay_table (void);
136
137 static int simple_overlay_update_1 (struct obj_section *);
138
139 static void add_filename_language (char *ext, enum language lang);
140
141 static void set_ext_lang_command (char *args, int from_tty);
142
143 static void info_ext_lang_command (char *args, int from_tty);
144
145 static char *find_separate_debug_file (struct objfile *objfile);
146
147 static void init_filename_language_table (void);
148
149 void _initialize_symfile (void);
150
151 /* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155 static struct sym_fns *symtab_fns = NULL;
156
157 /* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160 #ifdef SYMBOL_RELOADING_DEFAULT
161 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162 #else
163 int symbol_reloading = 0;
164 #endif
165
166 /* If non-zero, shared library symbols will be added automatically
167 when the inferior is created, new libraries are loaded, or when
168 attaching to the inferior. This is almost always what users will
169 want to have happen; but for very large programs, the startup time
170 will be excessive, and so if this is a problem, the user can clear
171 this flag and then add the shared library symbols as needed. Note
172 that there is a potential for confusion, since if the shared
173 library symbols are not loaded, commands like "info fun" will *not*
174 report all the functions that are actually present. */
175
176 int auto_solib_add = 1;
177
178 /* For systems that support it, a threshold size in megabytes. If
179 automatically adding a new library's symbol table to those already
180 known to the debugger would cause the total shared library symbol
181 size to exceed this threshhold, then the shlib's symbols are not
182 added. The threshold is ignored if the user explicitly asks for a
183 shlib to be added, such as when using the "sharedlibrary"
184 command. */
185
186 int auto_solib_limit;
187 \f
188
189 /* This compares two partial symbols by names, using strcmp_iw_ordered
190 for the comparison. */
191
192 static int
193 compare_psymbols (const void *s1p, const void *s2p)
194 {
195 struct partial_symbol *const *s1 = s1p;
196 struct partial_symbol *const *s2 = s2p;
197
198 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
199 SYMBOL_SEARCH_NAME (*s2));
200 }
201
202 void
203 sort_pst_symbols (struct partial_symtab *pst)
204 {
205 /* Sort the global list; don't sort the static list */
206
207 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
208 pst->n_global_syms, sizeof (struct partial_symbol *),
209 compare_psymbols);
210 }
211
212 /* Make a null terminated copy of the string at PTR with SIZE characters in
213 the obstack pointed to by OBSTACKP . Returns the address of the copy.
214 Note that the string at PTR does not have to be null terminated, I.E. it
215 may be part of a larger string and we are only saving a substring. */
216
217 char *
218 obsavestring (const char *ptr, int size, struct obstack *obstackp)
219 {
220 char *p = (char *) obstack_alloc (obstackp, size + 1);
221 /* Open-coded memcpy--saves function call time. These strings are usually
222 short. FIXME: Is this really still true with a compiler that can
223 inline memcpy? */
224 {
225 const char *p1 = ptr;
226 char *p2 = p;
227 const char *end = ptr + size;
228 while (p1 != end)
229 *p2++ = *p1++;
230 }
231 p[size] = 0;
232 return p;
233 }
234
235 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
236 in the obstack pointed to by OBSTACKP. */
237
238 char *
239 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
240 const char *s3)
241 {
242 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
243 char *val = (char *) obstack_alloc (obstackp, len);
244 strcpy (val, s1);
245 strcat (val, s2);
246 strcat (val, s3);
247 return val;
248 }
249
250 /* True if we are nested inside psymtab_to_symtab. */
251
252 int currently_reading_symtab = 0;
253
254 static void
255 decrement_reading_symtab (void *dummy)
256 {
257 currently_reading_symtab--;
258 }
259
260 /* Get the symbol table that corresponds to a partial_symtab.
261 This is fast after the first time you do it. In fact, there
262 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
263 case inline. */
264
265 struct symtab *
266 psymtab_to_symtab (struct partial_symtab *pst)
267 {
268 /* If it's been looked up before, return it. */
269 if (pst->symtab)
270 return pst->symtab;
271
272 /* If it has not yet been read in, read it. */
273 if (!pst->readin)
274 {
275 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
276 currently_reading_symtab++;
277 (*pst->read_symtab) (pst);
278 do_cleanups (back_to);
279 }
280
281 return pst->symtab;
282 }
283
284 /* Remember the lowest-addressed loadable section we've seen.
285 This function is called via bfd_map_over_sections.
286
287 In case of equal vmas, the section with the largest size becomes the
288 lowest-addressed loadable section.
289
290 If the vmas and sizes are equal, the last section is considered the
291 lowest-addressed loadable section. */
292
293 void
294 find_lowest_section (bfd *abfd, asection *sect, void *obj)
295 {
296 asection **lowest = (asection **) obj;
297
298 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
299 return;
300 if (!*lowest)
301 *lowest = sect; /* First loadable section */
302 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
303 *lowest = sect; /* A lower loadable section */
304 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
305 && (bfd_section_size (abfd, (*lowest))
306 <= bfd_section_size (abfd, sect)))
307 *lowest = sect;
308 }
309
310 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
311
312 struct section_addr_info *
313 alloc_section_addr_info (size_t num_sections)
314 {
315 struct section_addr_info *sap;
316 size_t size;
317
318 size = (sizeof (struct section_addr_info)
319 + sizeof (struct other_sections) * (num_sections - 1));
320 sap = (struct section_addr_info *) xmalloc (size);
321 memset (sap, 0, size);
322 sap->num_sections = num_sections;
323
324 return sap;
325 }
326
327 /* Build (allocate and populate) a section_addr_info struct from
328 an existing section table. */
329
330 extern struct section_addr_info *
331 build_section_addr_info_from_section_table (const struct section_table *start,
332 const struct section_table *end)
333 {
334 struct section_addr_info *sap;
335 const struct section_table *stp;
336 int oidx;
337
338 sap = alloc_section_addr_info (end - start);
339
340 for (stp = start, oidx = 0; stp != end; stp++)
341 {
342 if (bfd_get_section_flags (stp->bfd,
343 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
344 && oidx < end - start)
345 {
346 sap->other[oidx].addr = stp->addr;
347 sap->other[oidx].name
348 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
349 sap->other[oidx].sectindex = stp->the_bfd_section->index;
350 oidx++;
351 }
352 }
353
354 return sap;
355 }
356
357
358 /* Free all memory allocated by build_section_addr_info_from_section_table. */
359
360 extern void
361 free_section_addr_info (struct section_addr_info *sap)
362 {
363 int idx;
364
365 for (idx = 0; idx < sap->num_sections; idx++)
366 if (sap->other[idx].name)
367 xfree (sap->other[idx].name);
368 xfree (sap);
369 }
370
371
372 /* Initialize OBJFILE's sect_index_* members. */
373 static void
374 init_objfile_sect_indices (struct objfile *objfile)
375 {
376 asection *sect;
377 int i;
378
379 sect = bfd_get_section_by_name (objfile->obfd, ".text");
380 if (sect)
381 objfile->sect_index_text = sect->index;
382
383 sect = bfd_get_section_by_name (objfile->obfd, ".data");
384 if (sect)
385 objfile->sect_index_data = sect->index;
386
387 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
388 if (sect)
389 objfile->sect_index_bss = sect->index;
390
391 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
392 if (sect)
393 objfile->sect_index_rodata = sect->index;
394
395 /* This is where things get really weird... We MUST have valid
396 indices for the various sect_index_* members or gdb will abort.
397 So if for example, there is no ".text" section, we have to
398 accomodate that. Except when explicitly adding symbol files at
399 some address, section_offsets contains nothing but zeros, so it
400 doesn't matter which slot in section_offsets the individual
401 sect_index_* members index into. So if they are all zero, it is
402 safe to just point all the currently uninitialized indices to the
403 first slot. */
404
405 for (i = 0; i < objfile->num_sections; i++)
406 {
407 if (ANOFFSET (objfile->section_offsets, i) != 0)
408 {
409 break;
410 }
411 }
412 if (i == objfile->num_sections)
413 {
414 if (objfile->sect_index_text == -1)
415 objfile->sect_index_text = 0;
416 if (objfile->sect_index_data == -1)
417 objfile->sect_index_data = 0;
418 if (objfile->sect_index_bss == -1)
419 objfile->sect_index_bss = 0;
420 if (objfile->sect_index_rodata == -1)
421 objfile->sect_index_rodata = 0;
422 }
423 }
424
425
426 /* Parse the user's idea of an offset for dynamic linking, into our idea
427 of how to represent it for fast symbol reading. This is the default
428 version of the sym_fns.sym_offsets function for symbol readers that
429 don't need to do anything special. It allocates a section_offsets table
430 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
431
432 void
433 default_symfile_offsets (struct objfile *objfile,
434 struct section_addr_info *addrs)
435 {
436 int i;
437
438 objfile->num_sections = bfd_count_sections (objfile->obfd);
439 objfile->section_offsets = (struct section_offsets *)
440 obstack_alloc (&objfile->objfile_obstack,
441 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
442 memset (objfile->section_offsets, 0,
443 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
444
445 /* Now calculate offsets for section that were specified by the
446 caller. */
447 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
448 {
449 struct other_sections *osp ;
450
451 osp = &addrs->other[i] ;
452 if (osp->addr == 0)
453 continue;
454
455 /* Record all sections in offsets */
456 /* The section_offsets in the objfile are here filled in using
457 the BFD index. */
458 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
459 }
460
461 /* Remember the bfd indexes for the .text, .data, .bss and
462 .rodata sections. */
463 init_objfile_sect_indices (objfile);
464 }
465
466
467 /* Process a symbol file, as either the main file or as a dynamically
468 loaded file.
469
470 OBJFILE is where the symbols are to be read from.
471
472 ADDRS is the list of section load addresses. If the user has given
473 an 'add-symbol-file' command, then this is the list of offsets and
474 addresses he or she provided as arguments to the command; or, if
475 we're handling a shared library, these are the actual addresses the
476 sections are loaded at, according to the inferior's dynamic linker
477 (as gleaned by GDB's shared library code). We convert each address
478 into an offset from the section VMA's as it appears in the object
479 file, and then call the file's sym_offsets function to convert this
480 into a format-specific offset table --- a `struct section_offsets'.
481 If ADDRS is non-zero, OFFSETS must be zero.
482
483 OFFSETS is a table of section offsets already in the right
484 format-specific representation. NUM_OFFSETS is the number of
485 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
486 assume this is the proper table the call to sym_offsets described
487 above would produce. Instead of calling sym_offsets, we just dump
488 it right into objfile->section_offsets. (When we're re-reading
489 symbols from an objfile, we don't have the original load address
490 list any more; all we have is the section offset table.) If
491 OFFSETS is non-zero, ADDRS must be zero.
492
493 MAINLINE is nonzero if this is the main symbol file, or zero if
494 it's an extra symbol file such as dynamically loaded code.
495
496 VERBO is nonzero if the caller has printed a verbose message about
497 the symbol reading (and complaints can be more terse about it). */
498
499 void
500 syms_from_objfile (struct objfile *objfile,
501 struct section_addr_info *addrs,
502 struct section_offsets *offsets,
503 int num_offsets,
504 int mainline,
505 int verbo)
506 {
507 struct section_addr_info *local_addr = NULL;
508 struct cleanup *old_chain;
509
510 gdb_assert (! (addrs && offsets));
511
512 init_entry_point_info (objfile);
513 find_sym_fns (objfile);
514
515 if (objfile->sf == NULL)
516 return; /* No symbols. */
517
518 /* Make sure that partially constructed symbol tables will be cleaned up
519 if an error occurs during symbol reading. */
520 old_chain = make_cleanup_free_objfile (objfile);
521
522 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
523 list. We now establish the convention that an addr of zero means
524 no load address was specified. */
525 if (! addrs && ! offsets)
526 {
527 local_addr
528 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
529 make_cleanup (xfree, local_addr);
530 addrs = local_addr;
531 }
532
533 /* Now either addrs or offsets is non-zero. */
534
535 if (mainline)
536 {
537 /* We will modify the main symbol table, make sure that all its users
538 will be cleaned up if an error occurs during symbol reading. */
539 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
540
541 /* Since no error yet, throw away the old symbol table. */
542
543 if (symfile_objfile != NULL)
544 {
545 free_objfile (symfile_objfile);
546 symfile_objfile = NULL;
547 }
548
549 /* Currently we keep symbols from the add-symbol-file command.
550 If the user wants to get rid of them, they should do "symbol-file"
551 without arguments first. Not sure this is the best behavior
552 (PR 2207). */
553
554 (*objfile->sf->sym_new_init) (objfile);
555 }
556
557 /* Convert addr into an offset rather than an absolute address.
558 We find the lowest address of a loaded segment in the objfile,
559 and assume that <addr> is where that got loaded.
560
561 We no longer warn if the lowest section is not a text segment (as
562 happens for the PA64 port. */
563 if (!mainline && addrs && addrs->other[0].name)
564 {
565 asection *lower_sect;
566 asection *sect;
567 CORE_ADDR lower_offset;
568 int i;
569
570 /* Find lowest loadable section to be used as starting point for
571 continguous sections. FIXME!! won't work without call to find
572 .text first, but this assumes text is lowest section. */
573 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
574 if (lower_sect == NULL)
575 bfd_map_over_sections (objfile->obfd, find_lowest_section,
576 &lower_sect);
577 if (lower_sect == NULL)
578 warning ("no loadable sections found in added symbol-file %s",
579 objfile->name);
580 else
581 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
582 warning ("Lowest section in %s is %s at %s",
583 objfile->name,
584 bfd_section_name (objfile->obfd, lower_sect),
585 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
586 if (lower_sect != NULL)
587 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
588 else
589 lower_offset = 0;
590
591 /* Calculate offsets for the loadable sections.
592 FIXME! Sections must be in order of increasing loadable section
593 so that contiguous sections can use the lower-offset!!!
594
595 Adjust offsets if the segments are not contiguous.
596 If the section is contiguous, its offset should be set to
597 the offset of the highest loadable section lower than it
598 (the loadable section directly below it in memory).
599 this_offset = lower_offset = lower_addr - lower_orig_addr */
600
601 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
602 {
603 if (addrs->other[i].addr != 0)
604 {
605 sect = bfd_get_section_by_name (objfile->obfd,
606 addrs->other[i].name);
607 if (sect)
608 {
609 addrs->other[i].addr
610 -= bfd_section_vma (objfile->obfd, sect);
611 lower_offset = addrs->other[i].addr;
612 /* This is the index used by BFD. */
613 addrs->other[i].sectindex = sect->index ;
614 }
615 else
616 {
617 warning ("section %s not found in %s",
618 addrs->other[i].name,
619 objfile->name);
620 addrs->other[i].addr = 0;
621 }
622 }
623 else
624 addrs->other[i].addr = lower_offset;
625 }
626 }
627
628 /* Initialize symbol reading routines for this objfile, allow complaints to
629 appear for this new file, and record how verbose to be, then do the
630 initial symbol reading for this file. */
631
632 (*objfile->sf->sym_init) (objfile);
633 clear_complaints (&symfile_complaints, 1, verbo);
634
635 if (addrs)
636 (*objfile->sf->sym_offsets) (objfile, addrs);
637 else
638 {
639 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
640
641 /* Just copy in the offset table directly as given to us. */
642 objfile->num_sections = num_offsets;
643 objfile->section_offsets
644 = ((struct section_offsets *)
645 obstack_alloc (&objfile->objfile_obstack, size));
646 memcpy (objfile->section_offsets, offsets, size);
647
648 init_objfile_sect_indices (objfile);
649 }
650
651 #ifndef DEPRECATED_IBM6000_TARGET
652 /* This is a SVR4/SunOS specific hack, I think. In any event, it
653 screws RS/6000. sym_offsets should be doing this sort of thing,
654 because it knows the mapping between bfd sections and
655 section_offsets. */
656 /* This is a hack. As far as I can tell, section offsets are not
657 target dependent. They are all set to addr with a couple of
658 exceptions. The exceptions are sysvr4 shared libraries, whose
659 offsets are kept in solib structures anyway and rs6000 xcoff
660 which handles shared libraries in a completely unique way.
661
662 Section offsets are built similarly, except that they are built
663 by adding addr in all cases because there is no clear mapping
664 from section_offsets into actual sections. Note that solib.c
665 has a different algorithm for finding section offsets.
666
667 These should probably all be collapsed into some target
668 independent form of shared library support. FIXME. */
669
670 if (addrs)
671 {
672 struct obj_section *s;
673
674 /* Map section offsets in "addr" back to the object's
675 sections by comparing the section names with bfd's
676 section names. Then adjust the section address by
677 the offset. */ /* for gdb/13815 */
678
679 ALL_OBJFILE_OSECTIONS (objfile, s)
680 {
681 CORE_ADDR s_addr = 0;
682 int i;
683
684 for (i = 0;
685 !s_addr && i < addrs->num_sections && addrs->other[i].name;
686 i++)
687 if (strcmp (bfd_section_name (s->objfile->obfd,
688 s->the_bfd_section),
689 addrs->other[i].name) == 0)
690 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
691
692 s->addr -= s->offset;
693 s->addr += s_addr;
694 s->endaddr -= s->offset;
695 s->endaddr += s_addr;
696 s->offset += s_addr;
697 }
698 }
699 #endif /* not DEPRECATED_IBM6000_TARGET */
700
701 (*objfile->sf->sym_read) (objfile, mainline);
702
703 /* Don't allow char * to have a typename (else would get caddr_t).
704 Ditto void *. FIXME: Check whether this is now done by all the
705 symbol readers themselves (many of them now do), and if so remove
706 it from here. */
707
708 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
709 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
710
711 /* Mark the objfile has having had initial symbol read attempted. Note
712 that this does not mean we found any symbols... */
713
714 objfile->flags |= OBJF_SYMS;
715
716 /* Discard cleanups as symbol reading was successful. */
717
718 discard_cleanups (old_chain);
719 }
720
721 /* Perform required actions after either reading in the initial
722 symbols for a new objfile, or mapping in the symbols from a reusable
723 objfile. */
724
725 void
726 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
727 {
728
729 /* If this is the main symbol file we have to clean up all users of the
730 old main symbol file. Otherwise it is sufficient to fixup all the
731 breakpoints that may have been redefined by this symbol file. */
732 if (mainline)
733 {
734 /* OK, make it the "real" symbol file. */
735 symfile_objfile = objfile;
736
737 clear_symtab_users ();
738 }
739 else
740 {
741 breakpoint_re_set ();
742 }
743
744 /* We're done reading the symbol file; finish off complaints. */
745 clear_complaints (&symfile_complaints, 0, verbo);
746 }
747
748 /* Process a symbol file, as either the main file or as a dynamically
749 loaded file.
750
751 ABFD is a BFD already open on the file, as from symfile_bfd_open.
752 This BFD will be closed on error, and is always consumed by this function.
753
754 FROM_TTY says how verbose to be.
755
756 MAINLINE specifies whether this is the main symbol file, or whether
757 it's an extra symbol file such as dynamically loaded code.
758
759 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
760 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
761 non-zero.
762
763 Upon success, returns a pointer to the objfile that was added.
764 Upon failure, jumps back to command level (never returns). */
765 static struct objfile *
766 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
767 struct section_addr_info *addrs,
768 struct section_offsets *offsets,
769 int num_offsets,
770 int mainline, int flags)
771 {
772 struct objfile *objfile;
773 struct partial_symtab *psymtab;
774 char *debugfile;
775 struct section_addr_info *orig_addrs;
776 struct cleanup *my_cleanups;
777 const char *name = bfd_get_filename (abfd);
778
779 my_cleanups = make_cleanup_bfd_close (abfd);
780
781 /* Give user a chance to burp if we'd be
782 interactively wiping out any existing symbols. */
783
784 if ((have_full_symbols () || have_partial_symbols ())
785 && mainline
786 && from_tty
787 && !query ("Load new symbol table from \"%s\"? ", name))
788 error ("Not confirmed.");
789
790 objfile = allocate_objfile (abfd, flags);
791 discard_cleanups (my_cleanups);
792
793 orig_addrs = alloc_section_addr_info (bfd_count_sections (abfd));
794 my_cleanups = make_cleanup (xfree, orig_addrs);
795 if (addrs)
796 {
797 int i;
798 orig_addrs->num_sections = addrs->num_sections;
799 for (i = 0; i < addrs->num_sections; i++)
800 orig_addrs->other[i] = addrs->other[i];
801 }
802
803 /* We either created a new mapped symbol table, mapped an existing
804 symbol table file which has not had initial symbol reading
805 performed, or need to read an unmapped symbol table. */
806 if (from_tty || info_verbose)
807 {
808 if (deprecated_pre_add_symbol_hook)
809 deprecated_pre_add_symbol_hook (name);
810 else
811 {
812 printf_unfiltered ("Reading symbols from %s...", name);
813 wrap_here ("");
814 gdb_flush (gdb_stdout);
815 }
816 }
817 syms_from_objfile (objfile, addrs, offsets, num_offsets,
818 mainline, from_tty);
819
820 /* We now have at least a partial symbol table. Check to see if the
821 user requested that all symbols be read on initial access via either
822 the gdb startup command line or on a per symbol file basis. Expand
823 all partial symbol tables for this objfile if so. */
824
825 if ((flags & OBJF_READNOW) || readnow_symbol_files)
826 {
827 if (from_tty || info_verbose)
828 {
829 printf_unfiltered ("expanding to full symbols...");
830 wrap_here ("");
831 gdb_flush (gdb_stdout);
832 }
833
834 for (psymtab = objfile->psymtabs;
835 psymtab != NULL;
836 psymtab = psymtab->next)
837 {
838 psymtab_to_symtab (psymtab);
839 }
840 }
841
842 debugfile = find_separate_debug_file (objfile);
843 if (debugfile)
844 {
845 if (addrs != NULL)
846 {
847 objfile->separate_debug_objfile
848 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
849 }
850 else
851 {
852 objfile->separate_debug_objfile
853 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
854 }
855 objfile->separate_debug_objfile->separate_debug_objfile_backlink
856 = objfile;
857
858 /* Put the separate debug object before the normal one, this is so that
859 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
860 put_objfile_before (objfile->separate_debug_objfile, objfile);
861
862 xfree (debugfile);
863 }
864
865 if (!have_partial_symbols () && !have_full_symbols ())
866 {
867 wrap_here ("");
868 printf_unfiltered ("(no debugging symbols found)...");
869 wrap_here ("");
870 }
871
872 if (from_tty || info_verbose)
873 {
874 if (deprecated_post_add_symbol_hook)
875 deprecated_post_add_symbol_hook ();
876 else
877 {
878 printf_unfiltered ("done.\n");
879 }
880 }
881
882 /* We print some messages regardless of whether 'from_tty ||
883 info_verbose' is true, so make sure they go out at the right
884 time. */
885 gdb_flush (gdb_stdout);
886
887 do_cleanups (my_cleanups);
888
889 if (objfile->sf == NULL)
890 return objfile; /* No symbols. */
891
892 new_symfile_objfile (objfile, mainline, from_tty);
893
894 if (deprecated_target_new_objfile_hook)
895 deprecated_target_new_objfile_hook (objfile);
896
897 bfd_cache_close_all ();
898 return (objfile);
899 }
900
901
902 /* Process the symbol file ABFD, as either the main file or as a
903 dynamically loaded file.
904
905 See symbol_file_add_with_addrs_or_offsets's comments for
906 details. */
907 struct objfile *
908 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
909 struct section_addr_info *addrs,
910 int mainline, int flags)
911 {
912 return symbol_file_add_with_addrs_or_offsets (abfd,
913 from_tty, addrs, 0, 0,
914 mainline, flags);
915 }
916
917
918 /* Process a symbol file, as either the main file or as a dynamically
919 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
920 for details. */
921 struct objfile *
922 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
923 int mainline, int flags)
924 {
925 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
926 addrs, mainline, flags);
927 }
928
929
930 /* Call symbol_file_add() with default values and update whatever is
931 affected by the loading of a new main().
932 Used when the file is supplied in the gdb command line
933 and by some targets with special loading requirements.
934 The auxiliary function, symbol_file_add_main_1(), has the flags
935 argument for the switches that can only be specified in the symbol_file
936 command itself. */
937
938 void
939 symbol_file_add_main (char *args, int from_tty)
940 {
941 symbol_file_add_main_1 (args, from_tty, 0);
942 }
943
944 static void
945 symbol_file_add_main_1 (char *args, int from_tty, int flags)
946 {
947 symbol_file_add (args, from_tty, NULL, 1, flags);
948
949 /* Getting new symbols may change our opinion about
950 what is frameless. */
951 reinit_frame_cache ();
952
953 set_initial_language ();
954 }
955
956 void
957 symbol_file_clear (int from_tty)
958 {
959 if ((have_full_symbols () || have_partial_symbols ())
960 && from_tty
961 && !query ("Discard symbol table from `%s'? ",
962 symfile_objfile->name))
963 error ("Not confirmed.");
964 free_all_objfiles ();
965
966 /* solib descriptors may have handles to objfiles. Since their
967 storage has just been released, we'd better wipe the solib
968 descriptors as well.
969 */
970 #if defined(SOLIB_RESTART)
971 SOLIB_RESTART ();
972 #endif
973
974 symfile_objfile = NULL;
975 if (from_tty)
976 printf_unfiltered ("No symbol file now.\n");
977 }
978
979 static char *
980 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
981 {
982 asection *sect;
983 bfd_size_type debuglink_size;
984 unsigned long crc32;
985 char *contents;
986 int crc_offset;
987 unsigned char *p;
988
989 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
990
991 if (sect == NULL)
992 return NULL;
993
994 debuglink_size = bfd_section_size (objfile->obfd, sect);
995
996 contents = xmalloc (debuglink_size);
997 bfd_get_section_contents (objfile->obfd, sect, contents,
998 (file_ptr)0, (bfd_size_type)debuglink_size);
999
1000 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1001 crc_offset = strlen (contents) + 1;
1002 crc_offset = (crc_offset + 3) & ~3;
1003
1004 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1005
1006 *crc32_out = crc32;
1007 return contents;
1008 }
1009
1010 static int
1011 separate_debug_file_exists (const char *name, unsigned long crc)
1012 {
1013 unsigned long file_crc = 0;
1014 int fd;
1015 char buffer[8*1024];
1016 int count;
1017
1018 fd = open (name, O_RDONLY | O_BINARY);
1019 if (fd < 0)
1020 return 0;
1021
1022 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1023 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1024
1025 close (fd);
1026
1027 return crc == file_crc;
1028 }
1029
1030 static char *debug_file_directory = NULL;
1031
1032 #if ! defined (DEBUG_SUBDIRECTORY)
1033 #define DEBUG_SUBDIRECTORY ".debug"
1034 #endif
1035
1036 static char *
1037 find_separate_debug_file (struct objfile *objfile)
1038 {
1039 asection *sect;
1040 char *basename;
1041 char *dir;
1042 char *debugfile;
1043 char *name_copy;
1044 bfd_size_type debuglink_size;
1045 unsigned long crc32;
1046 int i;
1047
1048 basename = get_debug_link_info (objfile, &crc32);
1049
1050 if (basename == NULL)
1051 return NULL;
1052
1053 dir = xstrdup (objfile->name);
1054
1055 /* Strip off the final filename part, leaving the directory name,
1056 followed by a slash. Objfile names should always be absolute and
1057 tilde-expanded, so there should always be a slash in there
1058 somewhere. */
1059 for (i = strlen(dir) - 1; i >= 0; i--)
1060 {
1061 if (IS_DIR_SEPARATOR (dir[i]))
1062 break;
1063 }
1064 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1065 dir[i+1] = '\0';
1066
1067 debugfile = alloca (strlen (debug_file_directory) + 1
1068 + strlen (dir)
1069 + strlen (DEBUG_SUBDIRECTORY)
1070 + strlen ("/")
1071 + strlen (basename)
1072 + 1);
1073
1074 /* First try in the same directory as the original file. */
1075 strcpy (debugfile, dir);
1076 strcat (debugfile, basename);
1077
1078 if (separate_debug_file_exists (debugfile, crc32))
1079 {
1080 xfree (basename);
1081 xfree (dir);
1082 return xstrdup (debugfile);
1083 }
1084
1085 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1086 strcpy (debugfile, dir);
1087 strcat (debugfile, DEBUG_SUBDIRECTORY);
1088 strcat (debugfile, "/");
1089 strcat (debugfile, basename);
1090
1091 if (separate_debug_file_exists (debugfile, crc32))
1092 {
1093 xfree (basename);
1094 xfree (dir);
1095 return xstrdup (debugfile);
1096 }
1097
1098 /* Then try in the global debugfile directory. */
1099 strcpy (debugfile, debug_file_directory);
1100 strcat (debugfile, "/");
1101 strcat (debugfile, dir);
1102 strcat (debugfile, basename);
1103
1104 if (separate_debug_file_exists (debugfile, crc32))
1105 {
1106 xfree (basename);
1107 xfree (dir);
1108 return xstrdup (debugfile);
1109 }
1110
1111 xfree (basename);
1112 xfree (dir);
1113 return NULL;
1114 }
1115
1116
1117 /* This is the symbol-file command. Read the file, analyze its
1118 symbols, and add a struct symtab to a symtab list. The syntax of
1119 the command is rather bizarre--(1) buildargv implements various
1120 quoting conventions which are undocumented and have little or
1121 nothing in common with the way things are quoted (or not quoted)
1122 elsewhere in GDB, (2) options are used, which are not generally
1123 used in GDB (perhaps "set mapped on", "set readnow on" would be
1124 better), (3) the order of options matters, which is contrary to GNU
1125 conventions (because it is confusing and inconvenient). */
1126 /* Note: ezannoni 2000-04-17. This function used to have support for
1127 rombug (see remote-os9k.c). It consisted of a call to target_link()
1128 (target.c) to get the address of the text segment from the target,
1129 and pass that to symbol_file_add(). This is no longer supported. */
1130
1131 void
1132 symbol_file_command (char *args, int from_tty)
1133 {
1134 char **argv;
1135 char *name = NULL;
1136 struct cleanup *cleanups;
1137 int flags = OBJF_USERLOADED;
1138
1139 dont_repeat ();
1140
1141 if (args == NULL)
1142 {
1143 symbol_file_clear (from_tty);
1144 }
1145 else
1146 {
1147 if ((argv = buildargv (args)) == NULL)
1148 {
1149 nomem (0);
1150 }
1151 cleanups = make_cleanup_freeargv (argv);
1152 while (*argv != NULL)
1153 {
1154 if (strcmp (*argv, "-readnow") == 0)
1155 flags |= OBJF_READNOW;
1156 else if (**argv == '-')
1157 error ("unknown option `%s'", *argv);
1158 else
1159 {
1160 name = *argv;
1161
1162 symbol_file_add_main_1 (name, from_tty, flags);
1163 }
1164 argv++;
1165 }
1166
1167 if (name == NULL)
1168 {
1169 error ("no symbol file name was specified");
1170 }
1171 do_cleanups (cleanups);
1172 }
1173 }
1174
1175 /* Set the initial language.
1176
1177 A better solution would be to record the language in the psymtab when reading
1178 partial symbols, and then use it (if known) to set the language. This would
1179 be a win for formats that encode the language in an easily discoverable place,
1180 such as DWARF. For stabs, we can jump through hoops looking for specially
1181 named symbols or try to intuit the language from the specific type of stabs
1182 we find, but we can't do that until later when we read in full symbols.
1183 FIXME. */
1184
1185 static void
1186 set_initial_language (void)
1187 {
1188 struct partial_symtab *pst;
1189 enum language lang = language_unknown;
1190
1191 pst = find_main_psymtab ();
1192 if (pst != NULL)
1193 {
1194 if (pst->filename != NULL)
1195 {
1196 lang = deduce_language_from_filename (pst->filename);
1197 }
1198 if (lang == language_unknown)
1199 {
1200 /* Make C the default language */
1201 lang = language_c;
1202 }
1203 set_language (lang);
1204 expected_language = current_language; /* Don't warn the user */
1205 }
1206 }
1207
1208 /* Open file specified by NAME and hand it off to BFD for preliminary
1209 analysis. Result is a newly initialized bfd *, which includes a newly
1210 malloc'd` copy of NAME (tilde-expanded and made absolute).
1211 In case of trouble, error() is called. */
1212
1213 bfd *
1214 symfile_bfd_open (char *name)
1215 {
1216 bfd *sym_bfd;
1217 int desc;
1218 char *absolute_name;
1219
1220
1221
1222 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1223
1224 /* Look down path for it, allocate 2nd new malloc'd copy. */
1225 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name, O_RDONLY | O_BINARY,
1226 0, &absolute_name);
1227 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1228 if (desc < 0)
1229 {
1230 char *exename = alloca (strlen (name) + 5);
1231 strcat (strcpy (exename, name), ".exe");
1232 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1233 O_RDONLY | O_BINARY, 0, &absolute_name);
1234 }
1235 #endif
1236 if (desc < 0)
1237 {
1238 make_cleanup (xfree, name);
1239 perror_with_name (name);
1240 }
1241 xfree (name); /* Free 1st new malloc'd copy */
1242 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1243 /* It'll be freed in free_objfile(). */
1244
1245 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1246 if (!sym_bfd)
1247 {
1248 close (desc);
1249 make_cleanup (xfree, name);
1250 error ("\"%s\": can't open to read symbols: %s.", name,
1251 bfd_errmsg (bfd_get_error ()));
1252 }
1253 bfd_set_cacheable (sym_bfd, 1);
1254
1255 if (!bfd_check_format (sym_bfd, bfd_object))
1256 {
1257 /* FIXME: should be checking for errors from bfd_close (for one thing,
1258 on error it does not free all the storage associated with the
1259 bfd). */
1260 bfd_close (sym_bfd); /* This also closes desc */
1261 make_cleanup (xfree, name);
1262 error ("\"%s\": can't read symbols: %s.", name,
1263 bfd_errmsg (bfd_get_error ()));
1264 }
1265 return (sym_bfd);
1266 }
1267
1268 /* Return the section index for the given section name. Return -1 if
1269 the section was not found. */
1270 int
1271 get_section_index (struct objfile *objfile, char *section_name)
1272 {
1273 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1274 if (sect)
1275 return sect->index;
1276 else
1277 return -1;
1278 }
1279
1280 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1281 startup by the _initialize routine in each object file format reader,
1282 to register information about each format the the reader is prepared
1283 to handle. */
1284
1285 void
1286 add_symtab_fns (struct sym_fns *sf)
1287 {
1288 sf->next = symtab_fns;
1289 symtab_fns = sf;
1290 }
1291
1292
1293 /* Initialize to read symbols from the symbol file sym_bfd. It either
1294 returns or calls error(). The result is an initialized struct sym_fns
1295 in the objfile structure, that contains cached information about the
1296 symbol file. */
1297
1298 static void
1299 find_sym_fns (struct objfile *objfile)
1300 {
1301 struct sym_fns *sf;
1302 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1303 char *our_target = bfd_get_target (objfile->obfd);
1304
1305 if (our_flavour == bfd_target_srec_flavour
1306 || our_flavour == bfd_target_ihex_flavour
1307 || our_flavour == bfd_target_tekhex_flavour)
1308 return; /* No symbols. */
1309
1310 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1311 {
1312 if (our_flavour == sf->sym_flavour)
1313 {
1314 objfile->sf = sf;
1315 return;
1316 }
1317 }
1318 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1319 bfd_get_target (objfile->obfd));
1320 }
1321 \f
1322 /* This function runs the load command of our current target. */
1323
1324 static void
1325 load_command (char *arg, int from_tty)
1326 {
1327 if (arg == NULL)
1328 arg = get_exec_file (1);
1329 target_load (arg, from_tty);
1330
1331 /* After re-loading the executable, we don't really know which
1332 overlays are mapped any more. */
1333 overlay_cache_invalid = 1;
1334 }
1335
1336 /* This version of "load" should be usable for any target. Currently
1337 it is just used for remote targets, not inftarg.c or core files,
1338 on the theory that only in that case is it useful.
1339
1340 Avoiding xmodem and the like seems like a win (a) because we don't have
1341 to worry about finding it, and (b) On VMS, fork() is very slow and so
1342 we don't want to run a subprocess. On the other hand, I'm not sure how
1343 performance compares. */
1344
1345 static int download_write_size = 512;
1346 static int validate_download = 0;
1347
1348 /* Callback service function for generic_load (bfd_map_over_sections). */
1349
1350 static void
1351 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1352 {
1353 bfd_size_type *sum = data;
1354
1355 *sum += bfd_get_section_size (asec);
1356 }
1357
1358 /* Opaque data for load_section_callback. */
1359 struct load_section_data {
1360 unsigned long load_offset;
1361 unsigned long write_count;
1362 unsigned long data_count;
1363 bfd_size_type total_size;
1364 };
1365
1366 /* Callback service function for generic_load (bfd_map_over_sections). */
1367
1368 static void
1369 load_section_callback (bfd *abfd, asection *asec, void *data)
1370 {
1371 struct load_section_data *args = data;
1372
1373 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1374 {
1375 bfd_size_type size = bfd_get_section_size (asec);
1376 if (size > 0)
1377 {
1378 char *buffer;
1379 struct cleanup *old_chain;
1380 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1381 bfd_size_type block_size;
1382 int err;
1383 const char *sect_name = bfd_get_section_name (abfd, asec);
1384 bfd_size_type sent;
1385
1386 if (download_write_size > 0 && size > download_write_size)
1387 block_size = download_write_size;
1388 else
1389 block_size = size;
1390
1391 buffer = xmalloc (size);
1392 old_chain = make_cleanup (xfree, buffer);
1393
1394 /* Is this really necessary? I guess it gives the user something
1395 to look at during a long download. */
1396 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1397 sect_name, paddr_nz (size), paddr_nz (lma));
1398
1399 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1400
1401 sent = 0;
1402 do
1403 {
1404 int len;
1405 bfd_size_type this_transfer = size - sent;
1406
1407 if (this_transfer >= block_size)
1408 this_transfer = block_size;
1409 len = target_write_memory_partial (lma, buffer,
1410 this_transfer, &err);
1411 if (err)
1412 break;
1413 if (validate_download)
1414 {
1415 /* Broken memories and broken monitors manifest
1416 themselves here when bring new computers to
1417 life. This doubles already slow downloads. */
1418 /* NOTE: cagney/1999-10-18: A more efficient
1419 implementation might add a verify_memory()
1420 method to the target vector and then use
1421 that. remote.c could implement that method
1422 using the ``qCRC'' packet. */
1423 char *check = xmalloc (len);
1424 struct cleanup *verify_cleanups =
1425 make_cleanup (xfree, check);
1426
1427 if (target_read_memory (lma, check, len) != 0)
1428 error ("Download verify read failed at 0x%s",
1429 paddr (lma));
1430 if (memcmp (buffer, check, len) != 0)
1431 error ("Download verify compare failed at 0x%s",
1432 paddr (lma));
1433 do_cleanups (verify_cleanups);
1434 }
1435 args->data_count += len;
1436 lma += len;
1437 buffer += len;
1438 args->write_count += 1;
1439 sent += len;
1440 if (quit_flag
1441 || (deprecated_ui_load_progress_hook != NULL
1442 && deprecated_ui_load_progress_hook (sect_name, sent)))
1443 error ("Canceled the download");
1444
1445 if (deprecated_show_load_progress != NULL)
1446 deprecated_show_load_progress (sect_name, sent, size,
1447 args->data_count,
1448 args->total_size);
1449 }
1450 while (sent < size);
1451
1452 if (err != 0)
1453 error ("Memory access error while loading section %s.", sect_name);
1454
1455 do_cleanups (old_chain);
1456 }
1457 }
1458 }
1459
1460 void
1461 generic_load (char *args, int from_tty)
1462 {
1463 asection *s;
1464 bfd *loadfile_bfd;
1465 time_t start_time, end_time; /* Start and end times of download */
1466 char *filename;
1467 struct cleanup *old_cleanups;
1468 char *offptr;
1469 struct load_section_data cbdata;
1470 CORE_ADDR entry;
1471
1472 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1473 cbdata.write_count = 0; /* Number of writes needed. */
1474 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1475 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1476
1477 /* Parse the input argument - the user can specify a load offset as
1478 a second argument. */
1479 filename = xmalloc (strlen (args) + 1);
1480 old_cleanups = make_cleanup (xfree, filename);
1481 strcpy (filename, args);
1482 offptr = strchr (filename, ' ');
1483 if (offptr != NULL)
1484 {
1485 char *endptr;
1486
1487 cbdata.load_offset = strtoul (offptr, &endptr, 0);
1488 if (offptr == endptr)
1489 error ("Invalid download offset:%s\n", offptr);
1490 *offptr = '\0';
1491 }
1492 else
1493 cbdata.load_offset = 0;
1494
1495 /* Open the file for loading. */
1496 loadfile_bfd = bfd_openr (filename, gnutarget);
1497 if (loadfile_bfd == NULL)
1498 {
1499 perror_with_name (filename);
1500 return;
1501 }
1502
1503 /* FIXME: should be checking for errors from bfd_close (for one thing,
1504 on error it does not free all the storage associated with the
1505 bfd). */
1506 make_cleanup_bfd_close (loadfile_bfd);
1507
1508 if (!bfd_check_format (loadfile_bfd, bfd_object))
1509 {
1510 error ("\"%s\" is not an object file: %s", filename,
1511 bfd_errmsg (bfd_get_error ()));
1512 }
1513
1514 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1515 (void *) &cbdata.total_size);
1516
1517 start_time = time (NULL);
1518
1519 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1520
1521 end_time = time (NULL);
1522
1523 entry = bfd_get_start_address (loadfile_bfd);
1524 ui_out_text (uiout, "Start address ");
1525 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1526 ui_out_text (uiout, ", load size ");
1527 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1528 ui_out_text (uiout, "\n");
1529 /* We were doing this in remote-mips.c, I suspect it is right
1530 for other targets too. */
1531 write_pc (entry);
1532
1533 /* FIXME: are we supposed to call symbol_file_add or not? According
1534 to a comment from remote-mips.c (where a call to symbol_file_add
1535 was commented out), making the call confuses GDB if more than one
1536 file is loaded in. Some targets do (e.g., remote-vx.c) but
1537 others don't (or didn't - perhaps they have all been deleted). */
1538
1539 print_transfer_performance (gdb_stdout, cbdata.data_count,
1540 cbdata.write_count, end_time - start_time);
1541
1542 do_cleanups (old_cleanups);
1543 }
1544
1545 /* Report how fast the transfer went. */
1546
1547 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1548 replaced by print_transfer_performance (with a very different
1549 function signature). */
1550
1551 void
1552 report_transfer_performance (unsigned long data_count, time_t start_time,
1553 time_t end_time)
1554 {
1555 print_transfer_performance (gdb_stdout, data_count,
1556 end_time - start_time, 0);
1557 }
1558
1559 void
1560 print_transfer_performance (struct ui_file *stream,
1561 unsigned long data_count,
1562 unsigned long write_count,
1563 unsigned long time_count)
1564 {
1565 ui_out_text (uiout, "Transfer rate: ");
1566 if (time_count > 0)
1567 {
1568 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1569 (data_count * 8) / time_count);
1570 ui_out_text (uiout, " bits/sec");
1571 }
1572 else
1573 {
1574 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1575 ui_out_text (uiout, " bits in <1 sec");
1576 }
1577 if (write_count > 0)
1578 {
1579 ui_out_text (uiout, ", ");
1580 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1581 ui_out_text (uiout, " bytes/write");
1582 }
1583 ui_out_text (uiout, ".\n");
1584 }
1585
1586 /* This function allows the addition of incrementally linked object files.
1587 It does not modify any state in the target, only in the debugger. */
1588 /* Note: ezannoni 2000-04-13 This function/command used to have a
1589 special case syntax for the rombug target (Rombug is the boot
1590 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1591 rombug case, the user doesn't need to supply a text address,
1592 instead a call to target_link() (in target.c) would supply the
1593 value to use. We are now discontinuing this type of ad hoc syntax. */
1594
1595 static void
1596 add_symbol_file_command (char *args, int from_tty)
1597 {
1598 char *filename = NULL;
1599 int flags = OBJF_USERLOADED;
1600 char *arg;
1601 int expecting_option = 0;
1602 int section_index = 0;
1603 int argcnt = 0;
1604 int sec_num = 0;
1605 int i;
1606 int expecting_sec_name = 0;
1607 int expecting_sec_addr = 0;
1608
1609 struct sect_opt
1610 {
1611 char *name;
1612 char *value;
1613 };
1614
1615 struct section_addr_info *section_addrs;
1616 struct sect_opt *sect_opts = NULL;
1617 size_t num_sect_opts = 0;
1618 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1619
1620 num_sect_opts = 16;
1621 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1622 * sizeof (struct sect_opt));
1623
1624 dont_repeat ();
1625
1626 if (args == NULL)
1627 error ("add-symbol-file takes a file name and an address");
1628
1629 /* Make a copy of the string that we can safely write into. */
1630 args = xstrdup (args);
1631
1632 while (*args != '\000')
1633 {
1634 /* Any leading spaces? */
1635 while (isspace (*args))
1636 args++;
1637
1638 /* Point arg to the beginning of the argument. */
1639 arg = args;
1640
1641 /* Move args pointer over the argument. */
1642 while ((*args != '\000') && !isspace (*args))
1643 args++;
1644
1645 /* If there are more arguments, terminate arg and
1646 proceed past it. */
1647 if (*args != '\000')
1648 *args++ = '\000';
1649
1650 /* Now process the argument. */
1651 if (argcnt == 0)
1652 {
1653 /* The first argument is the file name. */
1654 filename = tilde_expand (arg);
1655 make_cleanup (xfree, filename);
1656 }
1657 else
1658 if (argcnt == 1)
1659 {
1660 /* The second argument is always the text address at which
1661 to load the program. */
1662 sect_opts[section_index].name = ".text";
1663 sect_opts[section_index].value = arg;
1664 if (++section_index > num_sect_opts)
1665 {
1666 num_sect_opts *= 2;
1667 sect_opts = ((struct sect_opt *)
1668 xrealloc (sect_opts,
1669 num_sect_opts
1670 * sizeof (struct sect_opt)));
1671 }
1672 }
1673 else
1674 {
1675 /* It's an option (starting with '-') or it's an argument
1676 to an option */
1677
1678 if (*arg == '-')
1679 {
1680 if (strcmp (arg, "-readnow") == 0)
1681 flags |= OBJF_READNOW;
1682 else if (strcmp (arg, "-s") == 0)
1683 {
1684 expecting_sec_name = 1;
1685 expecting_sec_addr = 1;
1686 }
1687 }
1688 else
1689 {
1690 if (expecting_sec_name)
1691 {
1692 sect_opts[section_index].name = arg;
1693 expecting_sec_name = 0;
1694 }
1695 else
1696 if (expecting_sec_addr)
1697 {
1698 sect_opts[section_index].value = arg;
1699 expecting_sec_addr = 0;
1700 if (++section_index > num_sect_opts)
1701 {
1702 num_sect_opts *= 2;
1703 sect_opts = ((struct sect_opt *)
1704 xrealloc (sect_opts,
1705 num_sect_opts
1706 * sizeof (struct sect_opt)));
1707 }
1708 }
1709 else
1710 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1711 }
1712 }
1713 argcnt++;
1714 }
1715
1716 /* Print the prompt for the query below. And save the arguments into
1717 a sect_addr_info structure to be passed around to other
1718 functions. We have to split this up into separate print
1719 statements because local_hex_string returns a local static
1720 string. */
1721
1722 printf_unfiltered ("add symbol table from file \"%s\" at\n", filename);
1723 section_addrs = alloc_section_addr_info (section_index);
1724 make_cleanup (xfree, section_addrs);
1725 for (i = 0; i < section_index; i++)
1726 {
1727 CORE_ADDR addr;
1728 char *val = sect_opts[i].value;
1729 char *sec = sect_opts[i].name;
1730
1731 addr = parse_and_eval_address (val);
1732
1733 /* Here we store the section offsets in the order they were
1734 entered on the command line. */
1735 section_addrs->other[sec_num].name = sec;
1736 section_addrs->other[sec_num].addr = addr;
1737 printf_unfiltered ("\t%s_addr = %s\n",
1738 sec,
1739 local_hex_string ((unsigned long)addr));
1740 sec_num++;
1741
1742 /* The object's sections are initialized when a
1743 call is made to build_objfile_section_table (objfile).
1744 This happens in reread_symbols.
1745 At this point, we don't know what file type this is,
1746 so we can't determine what section names are valid. */
1747 }
1748
1749 if (from_tty && (!query ("%s", "")))
1750 error ("Not confirmed.");
1751
1752 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
1753
1754 /* Getting new symbols may change our opinion about what is
1755 frameless. */
1756 reinit_frame_cache ();
1757 do_cleanups (my_cleanups);
1758 }
1759 \f
1760 static void
1761 add_shared_symbol_files_command (char *args, int from_tty)
1762 {
1763 #ifdef ADD_SHARED_SYMBOL_FILES
1764 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1765 #else
1766 error ("This command is not available in this configuration of GDB.");
1767 #endif
1768 }
1769 \f
1770 /* Re-read symbols if a symbol-file has changed. */
1771 void
1772 reread_symbols (void)
1773 {
1774 struct objfile *objfile;
1775 long new_modtime;
1776 int reread_one = 0;
1777 struct stat new_statbuf;
1778 int res;
1779
1780 /* With the addition of shared libraries, this should be modified,
1781 the load time should be saved in the partial symbol tables, since
1782 different tables may come from different source files. FIXME.
1783 This routine should then walk down each partial symbol table
1784 and see if the symbol table that it originates from has been changed */
1785
1786 for (objfile = object_files; objfile; objfile = objfile->next)
1787 {
1788 if (objfile->obfd)
1789 {
1790 #ifdef DEPRECATED_IBM6000_TARGET
1791 /* If this object is from a shared library, then you should
1792 stat on the library name, not member name. */
1793
1794 if (objfile->obfd->my_archive)
1795 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1796 else
1797 #endif
1798 res = stat (objfile->name, &new_statbuf);
1799 if (res != 0)
1800 {
1801 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1802 printf_unfiltered ("`%s' has disappeared; keeping its symbols.\n",
1803 objfile->name);
1804 continue;
1805 }
1806 new_modtime = new_statbuf.st_mtime;
1807 if (new_modtime != objfile->mtime)
1808 {
1809 struct cleanup *old_cleanups;
1810 struct section_offsets *offsets;
1811 int num_offsets;
1812 char *obfd_filename;
1813
1814 printf_unfiltered ("`%s' has changed; re-reading symbols.\n",
1815 objfile->name);
1816
1817 /* There are various functions like symbol_file_add,
1818 symfile_bfd_open, syms_from_objfile, etc., which might
1819 appear to do what we want. But they have various other
1820 effects which we *don't* want. So we just do stuff
1821 ourselves. We don't worry about mapped files (for one thing,
1822 any mapped file will be out of date). */
1823
1824 /* If we get an error, blow away this objfile (not sure if
1825 that is the correct response for things like shared
1826 libraries). */
1827 old_cleanups = make_cleanup_free_objfile (objfile);
1828 /* We need to do this whenever any symbols go away. */
1829 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1830
1831 /* Clean up any state BFD has sitting around. We don't need
1832 to close the descriptor but BFD lacks a way of closing the
1833 BFD without closing the descriptor. */
1834 obfd_filename = bfd_get_filename (objfile->obfd);
1835 if (!bfd_close (objfile->obfd))
1836 error ("Can't close BFD for %s: %s", objfile->name,
1837 bfd_errmsg (bfd_get_error ()));
1838 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1839 if (objfile->obfd == NULL)
1840 error ("Can't open %s to read symbols.", objfile->name);
1841 /* bfd_openr sets cacheable to true, which is what we want. */
1842 if (!bfd_check_format (objfile->obfd, bfd_object))
1843 error ("Can't read symbols from %s: %s.", objfile->name,
1844 bfd_errmsg (bfd_get_error ()));
1845
1846 /* Save the offsets, we will nuke them with the rest of the
1847 objfile_obstack. */
1848 num_offsets = objfile->num_sections;
1849 offsets = ((struct section_offsets *)
1850 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
1851 memcpy (offsets, objfile->section_offsets,
1852 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1853
1854 /* Nuke all the state that we will re-read. Much of the following
1855 code which sets things to NULL really is necessary to tell
1856 other parts of GDB that there is nothing currently there. */
1857
1858 /* FIXME: Do we have to free a whole linked list, or is this
1859 enough? */
1860 if (objfile->global_psymbols.list)
1861 xmfree (objfile->md, objfile->global_psymbols.list);
1862 memset (&objfile->global_psymbols, 0,
1863 sizeof (objfile->global_psymbols));
1864 if (objfile->static_psymbols.list)
1865 xmfree (objfile->md, objfile->static_psymbols.list);
1866 memset (&objfile->static_psymbols, 0,
1867 sizeof (objfile->static_psymbols));
1868
1869 /* Free the obstacks for non-reusable objfiles */
1870 bcache_xfree (objfile->psymbol_cache);
1871 objfile->psymbol_cache = bcache_xmalloc ();
1872 bcache_xfree (objfile->macro_cache);
1873 objfile->macro_cache = bcache_xmalloc ();
1874 if (objfile->demangled_names_hash != NULL)
1875 {
1876 htab_delete (objfile->demangled_names_hash);
1877 objfile->demangled_names_hash = NULL;
1878 }
1879 obstack_free (&objfile->objfile_obstack, 0);
1880 objfile->sections = NULL;
1881 objfile->symtabs = NULL;
1882 objfile->psymtabs = NULL;
1883 objfile->free_psymtabs = NULL;
1884 objfile->cp_namespace_symtab = NULL;
1885 objfile->msymbols = NULL;
1886 objfile->sym_private = NULL;
1887 objfile->minimal_symbol_count = 0;
1888 memset (&objfile->msymbol_hash, 0,
1889 sizeof (objfile->msymbol_hash));
1890 memset (&objfile->msymbol_demangled_hash, 0,
1891 sizeof (objfile->msymbol_demangled_hash));
1892 objfile->fundamental_types = NULL;
1893 clear_objfile_data (objfile);
1894 if (objfile->sf != NULL)
1895 {
1896 (*objfile->sf->sym_finish) (objfile);
1897 }
1898
1899 /* We never make this a mapped file. */
1900 objfile->md = NULL;
1901 objfile->psymbol_cache = bcache_xmalloc ();
1902 objfile->macro_cache = bcache_xmalloc ();
1903 /* obstack_init also initializes the obstack so it is
1904 empty. We could use obstack_specify_allocation but
1905 gdb_obstack.h specifies the alloc/dealloc
1906 functions. */
1907 obstack_init (&objfile->objfile_obstack);
1908 if (build_objfile_section_table (objfile))
1909 {
1910 error ("Can't find the file sections in `%s': %s",
1911 objfile->name, bfd_errmsg (bfd_get_error ()));
1912 }
1913 terminate_minimal_symbol_table (objfile);
1914
1915 /* We use the same section offsets as from last time. I'm not
1916 sure whether that is always correct for shared libraries. */
1917 objfile->section_offsets = (struct section_offsets *)
1918 obstack_alloc (&objfile->objfile_obstack,
1919 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1920 memcpy (objfile->section_offsets, offsets,
1921 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1922 objfile->num_sections = num_offsets;
1923
1924 /* What the hell is sym_new_init for, anyway? The concept of
1925 distinguishing between the main file and additional files
1926 in this way seems rather dubious. */
1927 if (objfile == symfile_objfile)
1928 {
1929 (*objfile->sf->sym_new_init) (objfile);
1930 }
1931
1932 (*objfile->sf->sym_init) (objfile);
1933 clear_complaints (&symfile_complaints, 1, 1);
1934 /* The "mainline" parameter is a hideous hack; I think leaving it
1935 zero is OK since dbxread.c also does what it needs to do if
1936 objfile->global_psymbols.size is 0. */
1937 (*objfile->sf->sym_read) (objfile, 0);
1938 if (!have_partial_symbols () && !have_full_symbols ())
1939 {
1940 wrap_here ("");
1941 printf_unfiltered ("(no debugging symbols found)\n");
1942 wrap_here ("");
1943 }
1944 objfile->flags |= OBJF_SYMS;
1945
1946 /* We're done reading the symbol file; finish off complaints. */
1947 clear_complaints (&symfile_complaints, 0, 1);
1948
1949 /* Getting new symbols may change our opinion about what is
1950 frameless. */
1951
1952 reinit_frame_cache ();
1953
1954 /* Discard cleanups as symbol reading was successful. */
1955 discard_cleanups (old_cleanups);
1956
1957 /* If the mtime has changed between the time we set new_modtime
1958 and now, we *want* this to be out of date, so don't call stat
1959 again now. */
1960 objfile->mtime = new_modtime;
1961 reread_one = 1;
1962 reread_separate_symbols (objfile);
1963 }
1964 }
1965 }
1966
1967 if (reread_one)
1968 clear_symtab_users ();
1969 }
1970
1971
1972 /* Handle separate debug info for OBJFILE, which has just been
1973 re-read:
1974 - If we had separate debug info before, but now we don't, get rid
1975 of the separated objfile.
1976 - If we didn't have separated debug info before, but now we do,
1977 read in the new separated debug info file.
1978 - If the debug link points to a different file, toss the old one
1979 and read the new one.
1980 This function does *not* handle the case where objfile is still
1981 using the same separate debug info file, but that file's timestamp
1982 has changed. That case should be handled by the loop in
1983 reread_symbols already. */
1984 static void
1985 reread_separate_symbols (struct objfile *objfile)
1986 {
1987 char *debug_file;
1988 unsigned long crc32;
1989
1990 /* Does the updated objfile's debug info live in a
1991 separate file? */
1992 debug_file = find_separate_debug_file (objfile);
1993
1994 if (objfile->separate_debug_objfile)
1995 {
1996 /* There are two cases where we need to get rid of
1997 the old separated debug info objfile:
1998 - if the new primary objfile doesn't have
1999 separated debug info, or
2000 - if the new primary objfile has separate debug
2001 info, but it's under a different filename.
2002
2003 If the old and new objfiles both have separate
2004 debug info, under the same filename, then we're
2005 okay --- if the separated file's contents have
2006 changed, we will have caught that when we
2007 visited it in this function's outermost
2008 loop. */
2009 if (! debug_file
2010 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2011 free_objfile (objfile->separate_debug_objfile);
2012 }
2013
2014 /* If the new objfile has separate debug info, and we
2015 haven't loaded it already, do so now. */
2016 if (debug_file
2017 && ! objfile->separate_debug_objfile)
2018 {
2019 /* Use the same section offset table as objfile itself.
2020 Preserve the flags from objfile that make sense. */
2021 objfile->separate_debug_objfile
2022 = (symbol_file_add_with_addrs_or_offsets
2023 (symfile_bfd_open (debug_file),
2024 info_verbose, /* from_tty: Don't override the default. */
2025 0, /* No addr table. */
2026 objfile->section_offsets, objfile->num_sections,
2027 0, /* Not mainline. See comments about this above. */
2028 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2029 | OBJF_USERLOADED)));
2030 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2031 = objfile;
2032 }
2033 }
2034
2035
2036 \f
2037
2038
2039 typedef struct
2040 {
2041 char *ext;
2042 enum language lang;
2043 }
2044 filename_language;
2045
2046 static filename_language *filename_language_table;
2047 static int fl_table_size, fl_table_next;
2048
2049 static void
2050 add_filename_language (char *ext, enum language lang)
2051 {
2052 if (fl_table_next >= fl_table_size)
2053 {
2054 fl_table_size += 10;
2055 filename_language_table =
2056 xrealloc (filename_language_table,
2057 fl_table_size * sizeof (*filename_language_table));
2058 }
2059
2060 filename_language_table[fl_table_next].ext = xstrdup (ext);
2061 filename_language_table[fl_table_next].lang = lang;
2062 fl_table_next++;
2063 }
2064
2065 static char *ext_args;
2066
2067 static void
2068 set_ext_lang_command (char *args, int from_tty)
2069 {
2070 int i;
2071 char *cp = ext_args;
2072 enum language lang;
2073
2074 /* First arg is filename extension, starting with '.' */
2075 if (*cp != '.')
2076 error ("'%s': Filename extension must begin with '.'", ext_args);
2077
2078 /* Find end of first arg. */
2079 while (*cp && !isspace (*cp))
2080 cp++;
2081
2082 if (*cp == '\0')
2083 error ("'%s': two arguments required -- filename extension and language",
2084 ext_args);
2085
2086 /* Null-terminate first arg */
2087 *cp++ = '\0';
2088
2089 /* Find beginning of second arg, which should be a source language. */
2090 while (*cp && isspace (*cp))
2091 cp++;
2092
2093 if (*cp == '\0')
2094 error ("'%s': two arguments required -- filename extension and language",
2095 ext_args);
2096
2097 /* Lookup the language from among those we know. */
2098 lang = language_enum (cp);
2099
2100 /* Now lookup the filename extension: do we already know it? */
2101 for (i = 0; i < fl_table_next; i++)
2102 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2103 break;
2104
2105 if (i >= fl_table_next)
2106 {
2107 /* new file extension */
2108 add_filename_language (ext_args, lang);
2109 }
2110 else
2111 {
2112 /* redefining a previously known filename extension */
2113
2114 /* if (from_tty) */
2115 /* query ("Really make files of type %s '%s'?", */
2116 /* ext_args, language_str (lang)); */
2117
2118 xfree (filename_language_table[i].ext);
2119 filename_language_table[i].ext = xstrdup (ext_args);
2120 filename_language_table[i].lang = lang;
2121 }
2122 }
2123
2124 static void
2125 info_ext_lang_command (char *args, int from_tty)
2126 {
2127 int i;
2128
2129 printf_filtered ("Filename extensions and the languages they represent:");
2130 printf_filtered ("\n\n");
2131 for (i = 0; i < fl_table_next; i++)
2132 printf_filtered ("\t%s\t- %s\n",
2133 filename_language_table[i].ext,
2134 language_str (filename_language_table[i].lang));
2135 }
2136
2137 static void
2138 init_filename_language_table (void)
2139 {
2140 if (fl_table_size == 0) /* protect against repetition */
2141 {
2142 fl_table_size = 20;
2143 fl_table_next = 0;
2144 filename_language_table =
2145 xmalloc (fl_table_size * sizeof (*filename_language_table));
2146 add_filename_language (".c", language_c);
2147 add_filename_language (".C", language_cplus);
2148 add_filename_language (".cc", language_cplus);
2149 add_filename_language (".cp", language_cplus);
2150 add_filename_language (".cpp", language_cplus);
2151 add_filename_language (".cxx", language_cplus);
2152 add_filename_language (".c++", language_cplus);
2153 add_filename_language (".java", language_java);
2154 add_filename_language (".class", language_java);
2155 add_filename_language (".m", language_objc);
2156 add_filename_language (".f", language_fortran);
2157 add_filename_language (".F", language_fortran);
2158 add_filename_language (".s", language_asm);
2159 add_filename_language (".S", language_asm);
2160 add_filename_language (".pas", language_pascal);
2161 add_filename_language (".p", language_pascal);
2162 add_filename_language (".pp", language_pascal);
2163 }
2164 }
2165
2166 enum language
2167 deduce_language_from_filename (char *filename)
2168 {
2169 int i;
2170 char *cp;
2171
2172 if (filename != NULL)
2173 if ((cp = strrchr (filename, '.')) != NULL)
2174 for (i = 0; i < fl_table_next; i++)
2175 if (strcmp (cp, filename_language_table[i].ext) == 0)
2176 return filename_language_table[i].lang;
2177
2178 return language_unknown;
2179 }
2180 \f
2181 /* allocate_symtab:
2182
2183 Allocate and partly initialize a new symbol table. Return a pointer
2184 to it. error() if no space.
2185
2186 Caller must set these fields:
2187 LINETABLE(symtab)
2188 symtab->blockvector
2189 symtab->dirname
2190 symtab->free_code
2191 symtab->free_ptr
2192 possibly free_named_symtabs (symtab->filename);
2193 */
2194
2195 struct symtab *
2196 allocate_symtab (char *filename, struct objfile *objfile)
2197 {
2198 struct symtab *symtab;
2199
2200 symtab = (struct symtab *)
2201 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2202 memset (symtab, 0, sizeof (*symtab));
2203 symtab->filename = obsavestring (filename, strlen (filename),
2204 &objfile->objfile_obstack);
2205 symtab->fullname = NULL;
2206 symtab->language = deduce_language_from_filename (filename);
2207 symtab->debugformat = obsavestring ("unknown", 7,
2208 &objfile->objfile_obstack);
2209
2210 /* Hook it to the objfile it comes from */
2211
2212 symtab->objfile = objfile;
2213 symtab->next = objfile->symtabs;
2214 objfile->symtabs = symtab;
2215
2216 /* FIXME: This should go away. It is only defined for the Z8000,
2217 and the Z8000 definition of this macro doesn't have anything to
2218 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2219 here for convenience. */
2220 #ifdef INIT_EXTRA_SYMTAB_INFO
2221 INIT_EXTRA_SYMTAB_INFO (symtab);
2222 #endif
2223
2224 return (symtab);
2225 }
2226
2227 struct partial_symtab *
2228 allocate_psymtab (char *filename, struct objfile *objfile)
2229 {
2230 struct partial_symtab *psymtab;
2231
2232 if (objfile->free_psymtabs)
2233 {
2234 psymtab = objfile->free_psymtabs;
2235 objfile->free_psymtabs = psymtab->next;
2236 }
2237 else
2238 psymtab = (struct partial_symtab *)
2239 obstack_alloc (&objfile->objfile_obstack,
2240 sizeof (struct partial_symtab));
2241
2242 memset (psymtab, 0, sizeof (struct partial_symtab));
2243 psymtab->filename = obsavestring (filename, strlen (filename),
2244 &objfile->objfile_obstack);
2245 psymtab->symtab = NULL;
2246
2247 /* Prepend it to the psymtab list for the objfile it belongs to.
2248 Psymtabs are searched in most recent inserted -> least recent
2249 inserted order. */
2250
2251 psymtab->objfile = objfile;
2252 psymtab->next = objfile->psymtabs;
2253 objfile->psymtabs = psymtab;
2254 #if 0
2255 {
2256 struct partial_symtab **prev_pst;
2257 psymtab->objfile = objfile;
2258 psymtab->next = NULL;
2259 prev_pst = &(objfile->psymtabs);
2260 while ((*prev_pst) != NULL)
2261 prev_pst = &((*prev_pst)->next);
2262 (*prev_pst) = psymtab;
2263 }
2264 #endif
2265
2266 return (psymtab);
2267 }
2268
2269 void
2270 discard_psymtab (struct partial_symtab *pst)
2271 {
2272 struct partial_symtab **prev_pst;
2273
2274 /* From dbxread.c:
2275 Empty psymtabs happen as a result of header files which don't
2276 have any symbols in them. There can be a lot of them. But this
2277 check is wrong, in that a psymtab with N_SLINE entries but
2278 nothing else is not empty, but we don't realize that. Fixing
2279 that without slowing things down might be tricky. */
2280
2281 /* First, snip it out of the psymtab chain */
2282
2283 prev_pst = &(pst->objfile->psymtabs);
2284 while ((*prev_pst) != pst)
2285 prev_pst = &((*prev_pst)->next);
2286 (*prev_pst) = pst->next;
2287
2288 /* Next, put it on a free list for recycling */
2289
2290 pst->next = pst->objfile->free_psymtabs;
2291 pst->objfile->free_psymtabs = pst;
2292 }
2293 \f
2294
2295 /* Reset all data structures in gdb which may contain references to symbol
2296 table data. */
2297
2298 void
2299 clear_symtab_users (void)
2300 {
2301 /* Someday, we should do better than this, by only blowing away
2302 the things that really need to be blown. */
2303 clear_value_history ();
2304 clear_displays ();
2305 clear_internalvars ();
2306 breakpoint_re_set ();
2307 set_default_breakpoint (0, 0, 0, 0);
2308 clear_current_source_symtab_and_line ();
2309 clear_pc_function_cache ();
2310 if (deprecated_target_new_objfile_hook)
2311 deprecated_target_new_objfile_hook (NULL);
2312 }
2313
2314 static void
2315 clear_symtab_users_cleanup (void *ignore)
2316 {
2317 clear_symtab_users ();
2318 }
2319
2320 /* clear_symtab_users_once:
2321
2322 This function is run after symbol reading, or from a cleanup.
2323 If an old symbol table was obsoleted, the old symbol table
2324 has been blown away, but the other GDB data structures that may
2325 reference it have not yet been cleared or re-directed. (The old
2326 symtab was zapped, and the cleanup queued, in free_named_symtab()
2327 below.)
2328
2329 This function can be queued N times as a cleanup, or called
2330 directly; it will do all the work the first time, and then will be a
2331 no-op until the next time it is queued. This works by bumping a
2332 counter at queueing time. Much later when the cleanup is run, or at
2333 the end of symbol processing (in case the cleanup is discarded), if
2334 the queued count is greater than the "done-count", we do the work
2335 and set the done-count to the queued count. If the queued count is
2336 less than or equal to the done-count, we just ignore the call. This
2337 is needed because reading a single .o file will often replace many
2338 symtabs (one per .h file, for example), and we don't want to reset
2339 the breakpoints N times in the user's face.
2340
2341 The reason we both queue a cleanup, and call it directly after symbol
2342 reading, is because the cleanup protects us in case of errors, but is
2343 discarded if symbol reading is successful. */
2344
2345 #if 0
2346 /* FIXME: As free_named_symtabs is currently a big noop this function
2347 is no longer needed. */
2348 static void clear_symtab_users_once (void);
2349
2350 static int clear_symtab_users_queued;
2351 static int clear_symtab_users_done;
2352
2353 static void
2354 clear_symtab_users_once (void)
2355 {
2356 /* Enforce once-per-`do_cleanups'-semantics */
2357 if (clear_symtab_users_queued <= clear_symtab_users_done)
2358 return;
2359 clear_symtab_users_done = clear_symtab_users_queued;
2360
2361 clear_symtab_users ();
2362 }
2363 #endif
2364
2365 /* Delete the specified psymtab, and any others that reference it. */
2366
2367 static void
2368 cashier_psymtab (struct partial_symtab *pst)
2369 {
2370 struct partial_symtab *ps, *pprev = NULL;
2371 int i;
2372
2373 /* Find its previous psymtab in the chain */
2374 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2375 {
2376 if (ps == pst)
2377 break;
2378 pprev = ps;
2379 }
2380
2381 if (ps)
2382 {
2383 /* Unhook it from the chain. */
2384 if (ps == pst->objfile->psymtabs)
2385 pst->objfile->psymtabs = ps->next;
2386 else
2387 pprev->next = ps->next;
2388
2389 /* FIXME, we can't conveniently deallocate the entries in the
2390 partial_symbol lists (global_psymbols/static_psymbols) that
2391 this psymtab points to. These just take up space until all
2392 the psymtabs are reclaimed. Ditto the dependencies list and
2393 filename, which are all in the objfile_obstack. */
2394
2395 /* We need to cashier any psymtab that has this one as a dependency... */
2396 again:
2397 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2398 {
2399 for (i = 0; i < ps->number_of_dependencies; i++)
2400 {
2401 if (ps->dependencies[i] == pst)
2402 {
2403 cashier_psymtab (ps);
2404 goto again; /* Must restart, chain has been munged. */
2405 }
2406 }
2407 }
2408 }
2409 }
2410
2411 /* If a symtab or psymtab for filename NAME is found, free it along
2412 with any dependent breakpoints, displays, etc.
2413 Used when loading new versions of object modules with the "add-file"
2414 command. This is only called on the top-level symtab or psymtab's name;
2415 it is not called for subsidiary files such as .h files.
2416
2417 Return value is 1 if we blew away the environment, 0 if not.
2418 FIXME. The return value appears to never be used.
2419
2420 FIXME. I think this is not the best way to do this. We should
2421 work on being gentler to the environment while still cleaning up
2422 all stray pointers into the freed symtab. */
2423
2424 int
2425 free_named_symtabs (char *name)
2426 {
2427 #if 0
2428 /* FIXME: With the new method of each objfile having it's own
2429 psymtab list, this function needs serious rethinking. In particular,
2430 why was it ever necessary to toss psymtabs with specific compilation
2431 unit filenames, as opposed to all psymtabs from a particular symbol
2432 file? -- fnf
2433 Well, the answer is that some systems permit reloading of particular
2434 compilation units. We want to blow away any old info about these
2435 compilation units, regardless of which objfiles they arrived in. --gnu. */
2436
2437 struct symtab *s;
2438 struct symtab *prev;
2439 struct partial_symtab *ps;
2440 struct blockvector *bv;
2441 int blewit = 0;
2442
2443 /* We only wack things if the symbol-reload switch is set. */
2444 if (!symbol_reloading)
2445 return 0;
2446
2447 /* Some symbol formats have trouble providing file names... */
2448 if (name == 0 || *name == '\0')
2449 return 0;
2450
2451 /* Look for a psymtab with the specified name. */
2452
2453 again2:
2454 for (ps = partial_symtab_list; ps; ps = ps->next)
2455 {
2456 if (strcmp (name, ps->filename) == 0)
2457 {
2458 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2459 goto again2; /* Must restart, chain has been munged */
2460 }
2461 }
2462
2463 /* Look for a symtab with the specified name. */
2464
2465 for (s = symtab_list; s; s = s->next)
2466 {
2467 if (strcmp (name, s->filename) == 0)
2468 break;
2469 prev = s;
2470 }
2471
2472 if (s)
2473 {
2474 if (s == symtab_list)
2475 symtab_list = s->next;
2476 else
2477 prev->next = s->next;
2478
2479 /* For now, queue a delete for all breakpoints, displays, etc., whether
2480 or not they depend on the symtab being freed. This should be
2481 changed so that only those data structures affected are deleted. */
2482
2483 /* But don't delete anything if the symtab is empty.
2484 This test is necessary due to a bug in "dbxread.c" that
2485 causes empty symtabs to be created for N_SO symbols that
2486 contain the pathname of the object file. (This problem
2487 has been fixed in GDB 3.9x). */
2488
2489 bv = BLOCKVECTOR (s);
2490 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2491 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2492 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2493 {
2494 complaint (&symfile_complaints, "Replacing old symbols for `%s'",
2495 name);
2496 clear_symtab_users_queued++;
2497 make_cleanup (clear_symtab_users_once, 0);
2498 blewit = 1;
2499 }
2500 else
2501 {
2502 complaint (&symfile_complaints, "Empty symbol table found for `%s'",
2503 name);
2504 }
2505
2506 free_symtab (s);
2507 }
2508 else
2509 {
2510 /* It is still possible that some breakpoints will be affected
2511 even though no symtab was found, since the file might have
2512 been compiled without debugging, and hence not be associated
2513 with a symtab. In order to handle this correctly, we would need
2514 to keep a list of text address ranges for undebuggable files.
2515 For now, we do nothing, since this is a fairly obscure case. */
2516 ;
2517 }
2518
2519 /* FIXME, what about the minimal symbol table? */
2520 return blewit;
2521 #else
2522 return (0);
2523 #endif
2524 }
2525 \f
2526 /* Allocate and partially fill a partial symtab. It will be
2527 completely filled at the end of the symbol list.
2528
2529 FILENAME is the name of the symbol-file we are reading from. */
2530
2531 struct partial_symtab *
2532 start_psymtab_common (struct objfile *objfile,
2533 struct section_offsets *section_offsets, char *filename,
2534 CORE_ADDR textlow, struct partial_symbol **global_syms,
2535 struct partial_symbol **static_syms)
2536 {
2537 struct partial_symtab *psymtab;
2538
2539 psymtab = allocate_psymtab (filename, objfile);
2540 psymtab->section_offsets = section_offsets;
2541 psymtab->textlow = textlow;
2542 psymtab->texthigh = psymtab->textlow; /* default */
2543 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2544 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2545 return (psymtab);
2546 }
2547 \f
2548 /* Add a symbol with a long value to a psymtab.
2549 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2550 Return the partial symbol that has been added. */
2551
2552 /* NOTE: carlton/2003-09-11: The reason why we return the partial
2553 symbol is so that callers can get access to the symbol's demangled
2554 name, which they don't have any cheap way to determine otherwise.
2555 (Currenly, dwarf2read.c is the only file who uses that information,
2556 though it's possible that other readers might in the future.)
2557 Elena wasn't thrilled about that, and I don't blame her, but we
2558 couldn't come up with a better way to get that information. If
2559 it's needed in other situations, we could consider breaking up
2560 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2561 cache. */
2562
2563 const struct partial_symbol *
2564 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2565 enum address_class class,
2566 struct psymbol_allocation_list *list, long val, /* Value as a long */
2567 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2568 enum language language, struct objfile *objfile)
2569 {
2570 struct partial_symbol *psym;
2571 char *buf = alloca (namelength + 1);
2572 /* psymbol is static so that there will be no uninitialized gaps in the
2573 structure which might contain random data, causing cache misses in
2574 bcache. */
2575 static struct partial_symbol psymbol;
2576
2577 /* Create local copy of the partial symbol */
2578 memcpy (buf, name, namelength);
2579 buf[namelength] = '\0';
2580 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2581 if (val != 0)
2582 {
2583 SYMBOL_VALUE (&psymbol) = val;
2584 }
2585 else
2586 {
2587 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2588 }
2589 SYMBOL_SECTION (&psymbol) = 0;
2590 SYMBOL_LANGUAGE (&psymbol) = language;
2591 PSYMBOL_DOMAIN (&psymbol) = domain;
2592 PSYMBOL_CLASS (&psymbol) = class;
2593
2594 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2595
2596 /* Stash the partial symbol away in the cache */
2597 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2598 objfile->psymbol_cache);
2599
2600 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2601 if (list->next >= list->list + list->size)
2602 {
2603 extend_psymbol_list (list, objfile);
2604 }
2605 *list->next++ = psym;
2606 OBJSTAT (objfile, n_psyms++);
2607
2608 return psym;
2609 }
2610
2611 /* Add a symbol with a long value to a psymtab. This differs from
2612 * add_psymbol_to_list above in taking both a mangled and a demangled
2613 * name. */
2614
2615 void
2616 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2617 int dem_namelength, domain_enum domain,
2618 enum address_class class,
2619 struct psymbol_allocation_list *list, long val, /* Value as a long */
2620 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2621 enum language language,
2622 struct objfile *objfile)
2623 {
2624 struct partial_symbol *psym;
2625 char *buf = alloca (namelength + 1);
2626 /* psymbol is static so that there will be no uninitialized gaps in the
2627 structure which might contain random data, causing cache misses in
2628 bcache. */
2629 static struct partial_symbol psymbol;
2630
2631 /* Create local copy of the partial symbol */
2632
2633 memcpy (buf, name, namelength);
2634 buf[namelength] = '\0';
2635 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2636 objfile->psymbol_cache);
2637
2638 buf = alloca (dem_namelength + 1);
2639 memcpy (buf, dem_name, dem_namelength);
2640 buf[dem_namelength] = '\0';
2641
2642 switch (language)
2643 {
2644 case language_c:
2645 case language_cplus:
2646 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2647 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2648 break;
2649 /* FIXME What should be done for the default case? Ignoring for now. */
2650 }
2651
2652 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2653 if (val != 0)
2654 {
2655 SYMBOL_VALUE (&psymbol) = val;
2656 }
2657 else
2658 {
2659 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2660 }
2661 SYMBOL_SECTION (&psymbol) = 0;
2662 SYMBOL_LANGUAGE (&psymbol) = language;
2663 PSYMBOL_DOMAIN (&psymbol) = domain;
2664 PSYMBOL_CLASS (&psymbol) = class;
2665 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2666
2667 /* Stash the partial symbol away in the cache */
2668 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2669 objfile->psymbol_cache);
2670
2671 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2672 if (list->next >= list->list + list->size)
2673 {
2674 extend_psymbol_list (list, objfile);
2675 }
2676 *list->next++ = psym;
2677 OBJSTAT (objfile, n_psyms++);
2678 }
2679
2680 /* Initialize storage for partial symbols. */
2681
2682 void
2683 init_psymbol_list (struct objfile *objfile, int total_symbols)
2684 {
2685 /* Free any previously allocated psymbol lists. */
2686
2687 if (objfile->global_psymbols.list)
2688 {
2689 xmfree (objfile->md, objfile->global_psymbols.list);
2690 }
2691 if (objfile->static_psymbols.list)
2692 {
2693 xmfree (objfile->md, objfile->static_psymbols.list);
2694 }
2695
2696 /* Current best guess is that approximately a twentieth
2697 of the total symbols (in a debugging file) are global or static
2698 oriented symbols */
2699
2700 objfile->global_psymbols.size = total_symbols / 10;
2701 objfile->static_psymbols.size = total_symbols / 10;
2702
2703 if (objfile->global_psymbols.size > 0)
2704 {
2705 objfile->global_psymbols.next =
2706 objfile->global_psymbols.list = (struct partial_symbol **)
2707 xmmalloc (objfile->md, (objfile->global_psymbols.size
2708 * sizeof (struct partial_symbol *)));
2709 }
2710 if (objfile->static_psymbols.size > 0)
2711 {
2712 objfile->static_psymbols.next =
2713 objfile->static_psymbols.list = (struct partial_symbol **)
2714 xmmalloc (objfile->md, (objfile->static_psymbols.size
2715 * sizeof (struct partial_symbol *)));
2716 }
2717 }
2718
2719 /* OVERLAYS:
2720 The following code implements an abstraction for debugging overlay sections.
2721
2722 The target model is as follows:
2723 1) The gnu linker will permit multiple sections to be mapped into the
2724 same VMA, each with its own unique LMA (or load address).
2725 2) It is assumed that some runtime mechanism exists for mapping the
2726 sections, one by one, from the load address into the VMA address.
2727 3) This code provides a mechanism for gdb to keep track of which
2728 sections should be considered to be mapped from the VMA to the LMA.
2729 This information is used for symbol lookup, and memory read/write.
2730 For instance, if a section has been mapped then its contents
2731 should be read from the VMA, otherwise from the LMA.
2732
2733 Two levels of debugger support for overlays are available. One is
2734 "manual", in which the debugger relies on the user to tell it which
2735 overlays are currently mapped. This level of support is
2736 implemented entirely in the core debugger, and the information about
2737 whether a section is mapped is kept in the objfile->obj_section table.
2738
2739 The second level of support is "automatic", and is only available if
2740 the target-specific code provides functionality to read the target's
2741 overlay mapping table, and translate its contents for the debugger
2742 (by updating the mapped state information in the obj_section tables).
2743
2744 The interface is as follows:
2745 User commands:
2746 overlay map <name> -- tell gdb to consider this section mapped
2747 overlay unmap <name> -- tell gdb to consider this section unmapped
2748 overlay list -- list the sections that GDB thinks are mapped
2749 overlay read-target -- get the target's state of what's mapped
2750 overlay off/manual/auto -- set overlay debugging state
2751 Functional interface:
2752 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2753 section, return that section.
2754 find_pc_overlay(pc): find any overlay section that contains
2755 the pc, either in its VMA or its LMA
2756 overlay_is_mapped(sect): true if overlay is marked as mapped
2757 section_is_overlay(sect): true if section's VMA != LMA
2758 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2759 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2760 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2761 overlay_mapped_address(...): map an address from section's LMA to VMA
2762 overlay_unmapped_address(...): map an address from section's VMA to LMA
2763 symbol_overlayed_address(...): Return a "current" address for symbol:
2764 either in VMA or LMA depending on whether
2765 the symbol's section is currently mapped
2766 */
2767
2768 /* Overlay debugging state: */
2769
2770 enum overlay_debugging_state overlay_debugging = ovly_off;
2771 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2772
2773 /* Target vector for refreshing overlay mapped state */
2774 static void simple_overlay_update (struct obj_section *);
2775 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2776
2777 /* Function: section_is_overlay (SECTION)
2778 Returns true if SECTION has VMA not equal to LMA, ie.
2779 SECTION is loaded at an address different from where it will "run". */
2780
2781 int
2782 section_is_overlay (asection *section)
2783 {
2784 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2785
2786 if (overlay_debugging)
2787 if (section && section->lma != 0 &&
2788 section->vma != section->lma)
2789 return 1;
2790
2791 return 0;
2792 }
2793
2794 /* Function: overlay_invalidate_all (void)
2795 Invalidate the mapped state of all overlay sections (mark it as stale). */
2796
2797 static void
2798 overlay_invalidate_all (void)
2799 {
2800 struct objfile *objfile;
2801 struct obj_section *sect;
2802
2803 ALL_OBJSECTIONS (objfile, sect)
2804 if (section_is_overlay (sect->the_bfd_section))
2805 sect->ovly_mapped = -1;
2806 }
2807
2808 /* Function: overlay_is_mapped (SECTION)
2809 Returns true if section is an overlay, and is currently mapped.
2810 Private: public access is thru function section_is_mapped.
2811
2812 Access to the ovly_mapped flag is restricted to this function, so
2813 that we can do automatic update. If the global flag
2814 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2815 overlay_invalidate_all. If the mapped state of the particular
2816 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2817
2818 static int
2819 overlay_is_mapped (struct obj_section *osect)
2820 {
2821 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2822 return 0;
2823
2824 switch (overlay_debugging)
2825 {
2826 default:
2827 case ovly_off:
2828 return 0; /* overlay debugging off */
2829 case ovly_auto: /* overlay debugging automatic */
2830 /* Unles there is a target_overlay_update function,
2831 there's really nothing useful to do here (can't really go auto) */
2832 if (target_overlay_update)
2833 {
2834 if (overlay_cache_invalid)
2835 {
2836 overlay_invalidate_all ();
2837 overlay_cache_invalid = 0;
2838 }
2839 if (osect->ovly_mapped == -1)
2840 (*target_overlay_update) (osect);
2841 }
2842 /* fall thru to manual case */
2843 case ovly_on: /* overlay debugging manual */
2844 return osect->ovly_mapped == 1;
2845 }
2846 }
2847
2848 /* Function: section_is_mapped
2849 Returns true if section is an overlay, and is currently mapped. */
2850
2851 int
2852 section_is_mapped (asection *section)
2853 {
2854 struct objfile *objfile;
2855 struct obj_section *osect;
2856
2857 if (overlay_debugging)
2858 if (section && section_is_overlay (section))
2859 ALL_OBJSECTIONS (objfile, osect)
2860 if (osect->the_bfd_section == section)
2861 return overlay_is_mapped (osect);
2862
2863 return 0;
2864 }
2865
2866 /* Function: pc_in_unmapped_range
2867 If PC falls into the lma range of SECTION, return true, else false. */
2868
2869 CORE_ADDR
2870 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
2871 {
2872 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2873
2874 int size;
2875
2876 if (overlay_debugging)
2877 if (section && section_is_overlay (section))
2878 {
2879 size = bfd_get_section_size (section);
2880 if (section->lma <= pc && pc < section->lma + size)
2881 return 1;
2882 }
2883 return 0;
2884 }
2885
2886 /* Function: pc_in_mapped_range
2887 If PC falls into the vma range of SECTION, return true, else false. */
2888
2889 CORE_ADDR
2890 pc_in_mapped_range (CORE_ADDR pc, asection *section)
2891 {
2892 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2893
2894 int size;
2895
2896 if (overlay_debugging)
2897 if (section && section_is_overlay (section))
2898 {
2899 size = bfd_get_section_size (section);
2900 if (section->vma <= pc && pc < section->vma + size)
2901 return 1;
2902 }
2903 return 0;
2904 }
2905
2906
2907 /* Return true if the mapped ranges of sections A and B overlap, false
2908 otherwise. */
2909 static int
2910 sections_overlap (asection *a, asection *b)
2911 {
2912 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2913
2914 CORE_ADDR a_start = a->vma;
2915 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
2916 CORE_ADDR b_start = b->vma;
2917 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
2918
2919 return (a_start < b_end && b_start < a_end);
2920 }
2921
2922 /* Function: overlay_unmapped_address (PC, SECTION)
2923 Returns the address corresponding to PC in the unmapped (load) range.
2924 May be the same as PC. */
2925
2926 CORE_ADDR
2927 overlay_unmapped_address (CORE_ADDR pc, asection *section)
2928 {
2929 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2930
2931 if (overlay_debugging)
2932 if (section && section_is_overlay (section) &&
2933 pc_in_mapped_range (pc, section))
2934 return pc + section->lma - section->vma;
2935
2936 return pc;
2937 }
2938
2939 /* Function: overlay_mapped_address (PC, SECTION)
2940 Returns the address corresponding to PC in the mapped (runtime) range.
2941 May be the same as PC. */
2942
2943 CORE_ADDR
2944 overlay_mapped_address (CORE_ADDR pc, asection *section)
2945 {
2946 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2947
2948 if (overlay_debugging)
2949 if (section && section_is_overlay (section) &&
2950 pc_in_unmapped_range (pc, section))
2951 return pc + section->vma - section->lma;
2952
2953 return pc;
2954 }
2955
2956
2957 /* Function: symbol_overlayed_address
2958 Return one of two addresses (relative to the VMA or to the LMA),
2959 depending on whether the section is mapped or not. */
2960
2961 CORE_ADDR
2962 symbol_overlayed_address (CORE_ADDR address, asection *section)
2963 {
2964 if (overlay_debugging)
2965 {
2966 /* If the symbol has no section, just return its regular address. */
2967 if (section == 0)
2968 return address;
2969 /* If the symbol's section is not an overlay, just return its address */
2970 if (!section_is_overlay (section))
2971 return address;
2972 /* If the symbol's section is mapped, just return its address */
2973 if (section_is_mapped (section))
2974 return address;
2975 /*
2976 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2977 * then return its LOADED address rather than its vma address!!
2978 */
2979 return overlay_unmapped_address (address, section);
2980 }
2981 return address;
2982 }
2983
2984 /* Function: find_pc_overlay (PC)
2985 Return the best-match overlay section for PC:
2986 If PC matches a mapped overlay section's VMA, return that section.
2987 Else if PC matches an unmapped section's VMA, return that section.
2988 Else if PC matches an unmapped section's LMA, return that section. */
2989
2990 asection *
2991 find_pc_overlay (CORE_ADDR pc)
2992 {
2993 struct objfile *objfile;
2994 struct obj_section *osect, *best_match = NULL;
2995
2996 if (overlay_debugging)
2997 ALL_OBJSECTIONS (objfile, osect)
2998 if (section_is_overlay (osect->the_bfd_section))
2999 {
3000 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3001 {
3002 if (overlay_is_mapped (osect))
3003 return osect->the_bfd_section;
3004 else
3005 best_match = osect;
3006 }
3007 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3008 best_match = osect;
3009 }
3010 return best_match ? best_match->the_bfd_section : NULL;
3011 }
3012
3013 /* Function: find_pc_mapped_section (PC)
3014 If PC falls into the VMA address range of an overlay section that is
3015 currently marked as MAPPED, return that section. Else return NULL. */
3016
3017 asection *
3018 find_pc_mapped_section (CORE_ADDR pc)
3019 {
3020 struct objfile *objfile;
3021 struct obj_section *osect;
3022
3023 if (overlay_debugging)
3024 ALL_OBJSECTIONS (objfile, osect)
3025 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3026 overlay_is_mapped (osect))
3027 return osect->the_bfd_section;
3028
3029 return NULL;
3030 }
3031
3032 /* Function: list_overlays_command
3033 Print a list of mapped sections and their PC ranges */
3034
3035 void
3036 list_overlays_command (char *args, int from_tty)
3037 {
3038 int nmapped = 0;
3039 struct objfile *objfile;
3040 struct obj_section *osect;
3041
3042 if (overlay_debugging)
3043 ALL_OBJSECTIONS (objfile, osect)
3044 if (overlay_is_mapped (osect))
3045 {
3046 const char *name;
3047 bfd_vma lma, vma;
3048 int size;
3049
3050 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3051 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3052 size = bfd_get_section_size (osect->the_bfd_section);
3053 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3054
3055 printf_filtered ("Section %s, loaded at ", name);
3056 print_address_numeric (lma, 1, gdb_stdout);
3057 puts_filtered (" - ");
3058 print_address_numeric (lma + size, 1, gdb_stdout);
3059 printf_filtered (", mapped at ");
3060 print_address_numeric (vma, 1, gdb_stdout);
3061 puts_filtered (" - ");
3062 print_address_numeric (vma + size, 1, gdb_stdout);
3063 puts_filtered ("\n");
3064
3065 nmapped++;
3066 }
3067 if (nmapped == 0)
3068 printf_filtered ("No sections are mapped.\n");
3069 }
3070
3071 /* Function: map_overlay_command
3072 Mark the named section as mapped (ie. residing at its VMA address). */
3073
3074 void
3075 map_overlay_command (char *args, int from_tty)
3076 {
3077 struct objfile *objfile, *objfile2;
3078 struct obj_section *sec, *sec2;
3079 asection *bfdsec;
3080
3081 if (!overlay_debugging)
3082 error ("\
3083 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3084 the 'overlay manual' command.");
3085
3086 if (args == 0 || *args == 0)
3087 error ("Argument required: name of an overlay section");
3088
3089 /* First, find a section matching the user supplied argument */
3090 ALL_OBJSECTIONS (objfile, sec)
3091 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3092 {
3093 /* Now, check to see if the section is an overlay. */
3094 bfdsec = sec->the_bfd_section;
3095 if (!section_is_overlay (bfdsec))
3096 continue; /* not an overlay section */
3097
3098 /* Mark the overlay as "mapped" */
3099 sec->ovly_mapped = 1;
3100
3101 /* Next, make a pass and unmap any sections that are
3102 overlapped by this new section: */
3103 ALL_OBJSECTIONS (objfile2, sec2)
3104 if (sec2->ovly_mapped
3105 && sec != sec2
3106 && sec->the_bfd_section != sec2->the_bfd_section
3107 && sections_overlap (sec->the_bfd_section,
3108 sec2->the_bfd_section))
3109 {
3110 if (info_verbose)
3111 printf_unfiltered ("Note: section %s unmapped by overlap\n",
3112 bfd_section_name (objfile->obfd,
3113 sec2->the_bfd_section));
3114 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3115 }
3116 return;
3117 }
3118 error ("No overlay section called %s", args);
3119 }
3120
3121 /* Function: unmap_overlay_command
3122 Mark the overlay section as unmapped
3123 (ie. resident in its LMA address range, rather than the VMA range). */
3124
3125 void
3126 unmap_overlay_command (char *args, int from_tty)
3127 {
3128 struct objfile *objfile;
3129 struct obj_section *sec;
3130
3131 if (!overlay_debugging)
3132 error ("\
3133 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3134 the 'overlay manual' command.");
3135
3136 if (args == 0 || *args == 0)
3137 error ("Argument required: name of an overlay section");
3138
3139 /* First, find a section matching the user supplied argument */
3140 ALL_OBJSECTIONS (objfile, sec)
3141 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3142 {
3143 if (!sec->ovly_mapped)
3144 error ("Section %s is not mapped", args);
3145 sec->ovly_mapped = 0;
3146 return;
3147 }
3148 error ("No overlay section called %s", args);
3149 }
3150
3151 /* Function: overlay_auto_command
3152 A utility command to turn on overlay debugging.
3153 Possibly this should be done via a set/show command. */
3154
3155 static void
3156 overlay_auto_command (char *args, int from_tty)
3157 {
3158 overlay_debugging = ovly_auto;
3159 enable_overlay_breakpoints ();
3160 if (info_verbose)
3161 printf_unfiltered ("Automatic overlay debugging enabled.");
3162 }
3163
3164 /* Function: overlay_manual_command
3165 A utility command to turn on overlay debugging.
3166 Possibly this should be done via a set/show command. */
3167
3168 static void
3169 overlay_manual_command (char *args, int from_tty)
3170 {
3171 overlay_debugging = ovly_on;
3172 disable_overlay_breakpoints ();
3173 if (info_verbose)
3174 printf_unfiltered ("Overlay debugging enabled.");
3175 }
3176
3177 /* Function: overlay_off_command
3178 A utility command to turn on overlay debugging.
3179 Possibly this should be done via a set/show command. */
3180
3181 static void
3182 overlay_off_command (char *args, int from_tty)
3183 {
3184 overlay_debugging = ovly_off;
3185 disable_overlay_breakpoints ();
3186 if (info_verbose)
3187 printf_unfiltered ("Overlay debugging disabled.");
3188 }
3189
3190 static void
3191 overlay_load_command (char *args, int from_tty)
3192 {
3193 if (target_overlay_update)
3194 (*target_overlay_update) (NULL);
3195 else
3196 error ("This target does not know how to read its overlay state.");
3197 }
3198
3199 /* Function: overlay_command
3200 A place-holder for a mis-typed command */
3201
3202 /* Command list chain containing all defined "overlay" subcommands. */
3203 struct cmd_list_element *overlaylist;
3204
3205 static void
3206 overlay_command (char *args, int from_tty)
3207 {
3208 printf_unfiltered
3209 ("\"overlay\" must be followed by the name of an overlay command.\n");
3210 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3211 }
3212
3213
3214 /* Target Overlays for the "Simplest" overlay manager:
3215
3216 This is GDB's default target overlay layer. It works with the
3217 minimal overlay manager supplied as an example by Cygnus. The
3218 entry point is via a function pointer "target_overlay_update",
3219 so targets that use a different runtime overlay manager can
3220 substitute their own overlay_update function and take over the
3221 function pointer.
3222
3223 The overlay_update function pokes around in the target's data structures
3224 to see what overlays are mapped, and updates GDB's overlay mapping with
3225 this information.
3226
3227 In this simple implementation, the target data structures are as follows:
3228 unsigned _novlys; /# number of overlay sections #/
3229 unsigned _ovly_table[_novlys][4] = {
3230 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3231 {..., ..., ..., ...},
3232 }
3233 unsigned _novly_regions; /# number of overlay regions #/
3234 unsigned _ovly_region_table[_novly_regions][3] = {
3235 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3236 {..., ..., ...},
3237 }
3238 These functions will attempt to update GDB's mappedness state in the
3239 symbol section table, based on the target's mappedness state.
3240
3241 To do this, we keep a cached copy of the target's _ovly_table, and
3242 attempt to detect when the cached copy is invalidated. The main
3243 entry point is "simple_overlay_update(SECT), which looks up SECT in
3244 the cached table and re-reads only the entry for that section from
3245 the target (whenever possible).
3246 */
3247
3248 /* Cached, dynamically allocated copies of the target data structures: */
3249 static unsigned (*cache_ovly_table)[4] = 0;
3250 #if 0
3251 static unsigned (*cache_ovly_region_table)[3] = 0;
3252 #endif
3253 static unsigned cache_novlys = 0;
3254 #if 0
3255 static unsigned cache_novly_regions = 0;
3256 #endif
3257 static CORE_ADDR cache_ovly_table_base = 0;
3258 #if 0
3259 static CORE_ADDR cache_ovly_region_table_base = 0;
3260 #endif
3261 enum ovly_index
3262 {
3263 VMA, SIZE, LMA, MAPPED
3264 };
3265 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3266
3267 /* Throw away the cached copy of _ovly_table */
3268 static void
3269 simple_free_overlay_table (void)
3270 {
3271 if (cache_ovly_table)
3272 xfree (cache_ovly_table);
3273 cache_novlys = 0;
3274 cache_ovly_table = NULL;
3275 cache_ovly_table_base = 0;
3276 }
3277
3278 #if 0
3279 /* Throw away the cached copy of _ovly_region_table */
3280 static void
3281 simple_free_overlay_region_table (void)
3282 {
3283 if (cache_ovly_region_table)
3284 xfree (cache_ovly_region_table);
3285 cache_novly_regions = 0;
3286 cache_ovly_region_table = NULL;
3287 cache_ovly_region_table_base = 0;
3288 }
3289 #endif
3290
3291 /* Read an array of ints from the target into a local buffer.
3292 Convert to host order. int LEN is number of ints */
3293 static void
3294 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3295 {
3296 /* FIXME (alloca): Not safe if array is very large. */
3297 char *buf = alloca (len * TARGET_LONG_BYTES);
3298 int i;
3299
3300 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3301 for (i = 0; i < len; i++)
3302 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3303 TARGET_LONG_BYTES);
3304 }
3305
3306 /* Find and grab a copy of the target _ovly_table
3307 (and _novlys, which is needed for the table's size) */
3308 static int
3309 simple_read_overlay_table (void)
3310 {
3311 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3312
3313 simple_free_overlay_table ();
3314 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3315 if (! novlys_msym)
3316 {
3317 error ("Error reading inferior's overlay table: "
3318 "couldn't find `_novlys' variable\n"
3319 "in inferior. Use `overlay manual' mode.");
3320 return 0;
3321 }
3322
3323 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3324 if (! ovly_table_msym)
3325 {
3326 error ("Error reading inferior's overlay table: couldn't find "
3327 "`_ovly_table' array\n"
3328 "in inferior. Use `overlay manual' mode.");
3329 return 0;
3330 }
3331
3332 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3333 cache_ovly_table
3334 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3335 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3336 read_target_long_array (cache_ovly_table_base,
3337 (int *) cache_ovly_table,
3338 cache_novlys * 4);
3339
3340 return 1; /* SUCCESS */
3341 }
3342
3343 #if 0
3344 /* Find and grab a copy of the target _ovly_region_table
3345 (and _novly_regions, which is needed for the table's size) */
3346 static int
3347 simple_read_overlay_region_table (void)
3348 {
3349 struct minimal_symbol *msym;
3350
3351 simple_free_overlay_region_table ();
3352 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3353 if (msym != NULL)
3354 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3355 else
3356 return 0; /* failure */
3357 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3358 if (cache_ovly_region_table != NULL)
3359 {
3360 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3361 if (msym != NULL)
3362 {
3363 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3364 read_target_long_array (cache_ovly_region_table_base,
3365 (int *) cache_ovly_region_table,
3366 cache_novly_regions * 3);
3367 }
3368 else
3369 return 0; /* failure */
3370 }
3371 else
3372 return 0; /* failure */
3373 return 1; /* SUCCESS */
3374 }
3375 #endif
3376
3377 /* Function: simple_overlay_update_1
3378 A helper function for simple_overlay_update. Assuming a cached copy
3379 of _ovly_table exists, look through it to find an entry whose vma,
3380 lma and size match those of OSECT. Re-read the entry and make sure
3381 it still matches OSECT (else the table may no longer be valid).
3382 Set OSECT's mapped state to match the entry. Return: 1 for
3383 success, 0 for failure. */
3384
3385 static int
3386 simple_overlay_update_1 (struct obj_section *osect)
3387 {
3388 int i, size;
3389 bfd *obfd = osect->objfile->obfd;
3390 asection *bsect = osect->the_bfd_section;
3391
3392 size = bfd_get_section_size (osect->the_bfd_section);
3393 for (i = 0; i < cache_novlys; i++)
3394 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3395 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3396 /* && cache_ovly_table[i][SIZE] == size */ )
3397 {
3398 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3399 (int *) cache_ovly_table[i], 4);
3400 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3401 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3402 /* && cache_ovly_table[i][SIZE] == size */ )
3403 {
3404 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3405 return 1;
3406 }
3407 else /* Warning! Warning! Target's ovly table has changed! */
3408 return 0;
3409 }
3410 return 0;
3411 }
3412
3413 /* Function: simple_overlay_update
3414 If OSECT is NULL, then update all sections' mapped state
3415 (after re-reading the entire target _ovly_table).
3416 If OSECT is non-NULL, then try to find a matching entry in the
3417 cached ovly_table and update only OSECT's mapped state.
3418 If a cached entry can't be found or the cache isn't valid, then
3419 re-read the entire cache, and go ahead and update all sections. */
3420
3421 static void
3422 simple_overlay_update (struct obj_section *osect)
3423 {
3424 struct objfile *objfile;
3425
3426 /* Were we given an osect to look up? NULL means do all of them. */
3427 if (osect)
3428 /* Have we got a cached copy of the target's overlay table? */
3429 if (cache_ovly_table != NULL)
3430 /* Does its cached location match what's currently in the symtab? */
3431 if (cache_ovly_table_base ==
3432 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3433 /* Then go ahead and try to look up this single section in the cache */
3434 if (simple_overlay_update_1 (osect))
3435 /* Found it! We're done. */
3436 return;
3437
3438 /* Cached table no good: need to read the entire table anew.
3439 Or else we want all the sections, in which case it's actually
3440 more efficient to read the whole table in one block anyway. */
3441
3442 if (! simple_read_overlay_table ())
3443 return;
3444
3445 /* Now may as well update all sections, even if only one was requested. */
3446 ALL_OBJSECTIONS (objfile, osect)
3447 if (section_is_overlay (osect->the_bfd_section))
3448 {
3449 int i, size;
3450 bfd *obfd = osect->objfile->obfd;
3451 asection *bsect = osect->the_bfd_section;
3452
3453 size = bfd_get_section_size (bsect);
3454 for (i = 0; i < cache_novlys; i++)
3455 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3456 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3457 /* && cache_ovly_table[i][SIZE] == size */ )
3458 { /* obj_section matches i'th entry in ovly_table */
3459 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3460 break; /* finished with inner for loop: break out */
3461 }
3462 }
3463 }
3464
3465 /* Set the output sections and output offsets for section SECTP in
3466 ABFD. The relocation code in BFD will read these offsets, so we
3467 need to be sure they're initialized. We map each section to itself,
3468 with no offset; this means that SECTP->vma will be honored. */
3469
3470 static void
3471 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3472 {
3473 sectp->output_section = sectp;
3474 sectp->output_offset = 0;
3475 }
3476
3477 /* Relocate the contents of a debug section SECTP in ABFD. The
3478 contents are stored in BUF if it is non-NULL, or returned in a
3479 malloc'd buffer otherwise.
3480
3481 For some platforms and debug info formats, shared libraries contain
3482 relocations against the debug sections (particularly for DWARF-2;
3483 one affected platform is PowerPC GNU/Linux, although it depends on
3484 the version of the linker in use). Also, ELF object files naturally
3485 have unresolved relocations for their debug sections. We need to apply
3486 the relocations in order to get the locations of symbols correct. */
3487
3488 bfd_byte *
3489 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3490 {
3491 /* We're only interested in debugging sections with relocation
3492 information. */
3493 if ((sectp->flags & SEC_RELOC) == 0)
3494 return NULL;
3495 if ((sectp->flags & SEC_DEBUGGING) == 0)
3496 return NULL;
3497
3498 /* We will handle section offsets properly elsewhere, so relocate as if
3499 all sections begin at 0. */
3500 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3501
3502 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3503 }
3504
3505 void
3506 _initialize_symfile (void)
3507 {
3508 struct cmd_list_element *c;
3509
3510 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3511 "Load symbol table from executable file FILE.\n\
3512 The `file' command can also load symbol tables, as well as setting the file\n\
3513 to execute.", &cmdlist);
3514 set_cmd_completer (c, filename_completer);
3515
3516 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3517 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3518 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3519 ADDR is the starting address of the file's text.\n\
3520 The optional arguments are section-name section-address pairs and\n\
3521 should be specified if the data and bss segments are not contiguous\n\
3522 with the text. SECT is a section name to be loaded at SECT_ADDR.",
3523 &cmdlist);
3524 set_cmd_completer (c, filename_completer);
3525
3526 c = add_cmd ("add-shared-symbol-files", class_files,
3527 add_shared_symbol_files_command,
3528 "Load the symbols from shared objects in the dynamic linker's link map.",
3529 &cmdlist);
3530 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3531 &cmdlist);
3532
3533 c = add_cmd ("load", class_files, load_command,
3534 "Dynamically load FILE into the running program, and record its symbols\n\
3535 for access from GDB.", &cmdlist);
3536 set_cmd_completer (c, filename_completer);
3537
3538 deprecated_add_show_from_set
3539 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3540 (char *) &symbol_reloading,
3541 "Set dynamic symbol table reloading multiple times in one run.",
3542 &setlist),
3543 &showlist);
3544
3545 add_prefix_cmd ("overlay", class_support, overlay_command,
3546 "Commands for debugging overlays.", &overlaylist,
3547 "overlay ", 0, &cmdlist);
3548
3549 add_com_alias ("ovly", "overlay", class_alias, 1);
3550 add_com_alias ("ov", "overlay", class_alias, 1);
3551
3552 add_cmd ("map-overlay", class_support, map_overlay_command,
3553 "Assert that an overlay section is mapped.", &overlaylist);
3554
3555 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3556 "Assert that an overlay section is unmapped.", &overlaylist);
3557
3558 add_cmd ("list-overlays", class_support, list_overlays_command,
3559 "List mappings of overlay sections.", &overlaylist);
3560
3561 add_cmd ("manual", class_support, overlay_manual_command,
3562 "Enable overlay debugging.", &overlaylist);
3563 add_cmd ("off", class_support, overlay_off_command,
3564 "Disable overlay debugging.", &overlaylist);
3565 add_cmd ("auto", class_support, overlay_auto_command,
3566 "Enable automatic overlay debugging.", &overlaylist);
3567 add_cmd ("load-target", class_support, overlay_load_command,
3568 "Read the overlay mapping state from the target.", &overlaylist);
3569
3570 /* Filename extension to source language lookup table: */
3571 init_filename_language_table ();
3572 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3573 (char *) &ext_args,
3574 "Set mapping between filename extension and source language.\n\
3575 Usage: set extension-language .foo bar",
3576 &setlist);
3577 set_cmd_cfunc (c, set_ext_lang_command);
3578
3579 add_info ("extensions", info_ext_lang_command,
3580 "All filename extensions associated with a source language.");
3581
3582 deprecated_add_show_from_set
3583 (add_set_cmd ("download-write-size", class_obscure,
3584 var_integer, (char *) &download_write_size,
3585 "Set the write size used when downloading a program.\n"
3586 "Only used when downloading a program onto a remote\n"
3587 "target. Specify zero, or a negative value, to disable\n"
3588 "blocked writes. The actual size of each transfer is also\n"
3589 "limited by the size of the target packet and the memory\n"
3590 "cache.\n",
3591 &setlist),
3592 &showlist);
3593
3594 debug_file_directory = xstrdup (DEBUGDIR);
3595 c = (add_set_cmd
3596 ("debug-file-directory", class_support, var_string,
3597 (char *) &debug_file_directory,
3598 "Set the directory where separate debug symbols are searched for.\n"
3599 "Separate debug symbols are first searched for in the same\n"
3600 "directory as the binary, then in the `" DEBUG_SUBDIRECTORY
3601 "' subdirectory,\n"
3602 "and lastly at the path of the directory of the binary with\n"
3603 "the global debug-file directory prepended\n",
3604 &setlist));
3605 deprecated_add_show_from_set (c, &showlist);
3606 set_cmd_completer (c, filename_completer);
3607 }
This page took 0.104995 seconds and 4 git commands to generate.