bfd/
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "bfdlink.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcore.h"
29 #include "frame.h"
30 #include "target.h"
31 #include "value.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "source.h"
35 #include "gdbcmd.h"
36 #include "breakpoint.h"
37 #include "language.h"
38 #include "complaints.h"
39 #include "demangle.h"
40 #include "inferior.h" /* for write_pc */
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56
57 #include <sys/types.h>
58 #include <fcntl.h>
59 #include "gdb_string.h"
60 #include "gdb_stat.h"
61 #include <ctype.h>
62 #include <time.h>
63 #include <sys/time.h>
64
65
66 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
67 void (*deprecated_show_load_progress) (const char *section,
68 unsigned long section_sent,
69 unsigned long section_size,
70 unsigned long total_sent,
71 unsigned long total_size);
72 void (*deprecated_pre_add_symbol_hook) (const char *);
73 void (*deprecated_post_add_symbol_hook) (void);
74
75 static void clear_symtab_users_cleanup (void *ignore);
76
77 /* Global variables owned by this file */
78 int readnow_symbol_files; /* Read full symbols immediately */
79
80 /* External variables and functions referenced. */
81
82 extern void report_transfer_performance (unsigned long, time_t, time_t);
83
84 /* Functions this file defines */
85
86 #if 0
87 static int simple_read_overlay_region_table (void);
88 static void simple_free_overlay_region_table (void);
89 #endif
90
91 static void load_command (char *, int);
92
93 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94
95 static void add_symbol_file_command (char *, int);
96
97 static void add_shared_symbol_files_command (char *, int);
98
99 static void reread_separate_symbols (struct objfile *objfile);
100
101 static void cashier_psymtab (struct partial_symtab *);
102
103 bfd *symfile_bfd_open (char *);
104
105 int get_section_index (struct objfile *, char *);
106
107 static struct sym_fns *find_sym_fns (bfd *);
108
109 static void decrement_reading_symtab (void *);
110
111 static void overlay_invalidate_all (void);
112
113 static int overlay_is_mapped (struct obj_section *);
114
115 void list_overlays_command (char *, int);
116
117 void map_overlay_command (char *, int);
118
119 void unmap_overlay_command (char *, int);
120
121 static void overlay_auto_command (char *, int);
122
123 static void overlay_manual_command (char *, int);
124
125 static void overlay_off_command (char *, int);
126
127 static void overlay_load_command (char *, int);
128
129 static void overlay_command (char *, int);
130
131 static void simple_free_overlay_table (void);
132
133 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
134
135 static int simple_read_overlay_table (void);
136
137 static int simple_overlay_update_1 (struct obj_section *);
138
139 static void add_filename_language (char *ext, enum language lang);
140
141 static void info_ext_lang_command (char *args, int from_tty);
142
143 static char *find_separate_debug_file (struct objfile *objfile);
144
145 static void init_filename_language_table (void);
146
147 static void symfile_find_segment_sections (struct objfile *objfile);
148
149 void _initialize_symfile (void);
150
151 /* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155 static struct sym_fns *symtab_fns = NULL;
156
157 /* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160 #ifdef SYMBOL_RELOADING_DEFAULT
161 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162 #else
163 int symbol_reloading = 0;
164 #endif
165 static void
166 show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 fprintf_filtered (file, _("\
170 Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172 }
173
174 /* If non-zero, gdb will notify the user when it is loading symbols
175 from a file. This is almost always what users will want to have happen;
176 but for programs with lots of dynamically linked libraries, the output
177 can be more noise than signal. */
178
179 int print_symbol_loading = 1;
180
181 /* If non-zero, shared library symbols will be added automatically
182 when the inferior is created, new libraries are loaded, or when
183 attaching to the inferior. This is almost always what users will
184 want to have happen; but for very large programs, the startup time
185 will be excessive, and so if this is a problem, the user can clear
186 this flag and then add the shared library symbols as needed. Note
187 that there is a potential for confusion, since if the shared
188 library symbols are not loaded, commands like "info fun" will *not*
189 report all the functions that are actually present. */
190
191 int auto_solib_add = 1;
192
193 /* For systems that support it, a threshold size in megabytes. If
194 automatically adding a new library's symbol table to those already
195 known to the debugger would cause the total shared library symbol
196 size to exceed this threshhold, then the shlib's symbols are not
197 added. The threshold is ignored if the user explicitly asks for a
198 shlib to be added, such as when using the "sharedlibrary"
199 command. */
200
201 int auto_solib_limit;
202 \f
203
204 /* This compares two partial symbols by names, using strcmp_iw_ordered
205 for the comparison. */
206
207 static int
208 compare_psymbols (const void *s1p, const void *s2p)
209 {
210 struct partial_symbol *const *s1 = s1p;
211 struct partial_symbol *const *s2 = s2p;
212
213 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
214 SYMBOL_SEARCH_NAME (*s2));
215 }
216
217 void
218 sort_pst_symbols (struct partial_symtab *pst)
219 {
220 /* Sort the global list; don't sort the static list */
221
222 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
223 pst->n_global_syms, sizeof (struct partial_symbol *),
224 compare_psymbols);
225 }
226
227 /* Make a null terminated copy of the string at PTR with SIZE characters in
228 the obstack pointed to by OBSTACKP . Returns the address of the copy.
229 Note that the string at PTR does not have to be null terminated, I.E. it
230 may be part of a larger string and we are only saving a substring. */
231
232 char *
233 obsavestring (const char *ptr, int size, struct obstack *obstackp)
234 {
235 char *p = (char *) obstack_alloc (obstackp, size + 1);
236 /* Open-coded memcpy--saves function call time. These strings are usually
237 short. FIXME: Is this really still true with a compiler that can
238 inline memcpy? */
239 {
240 const char *p1 = ptr;
241 char *p2 = p;
242 const char *end = ptr + size;
243 while (p1 != end)
244 *p2++ = *p1++;
245 }
246 p[size] = 0;
247 return p;
248 }
249
250 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
251 in the obstack pointed to by OBSTACKP. */
252
253 char *
254 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
255 const char *s3)
256 {
257 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
258 char *val = (char *) obstack_alloc (obstackp, len);
259 strcpy (val, s1);
260 strcat (val, s2);
261 strcat (val, s3);
262 return val;
263 }
264
265 /* True if we are nested inside psymtab_to_symtab. */
266
267 int currently_reading_symtab = 0;
268
269 static void
270 decrement_reading_symtab (void *dummy)
271 {
272 currently_reading_symtab--;
273 }
274
275 /* Get the symbol table that corresponds to a partial_symtab.
276 This is fast after the first time you do it. In fact, there
277 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
278 case inline. */
279
280 struct symtab *
281 psymtab_to_symtab (struct partial_symtab *pst)
282 {
283 /* If it's been looked up before, return it. */
284 if (pst->symtab)
285 return pst->symtab;
286
287 /* If it has not yet been read in, read it. */
288 if (!pst->readin)
289 {
290 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
291 currently_reading_symtab++;
292 (*pst->read_symtab) (pst);
293 do_cleanups (back_to);
294 }
295
296 return pst->symtab;
297 }
298
299 /* Remember the lowest-addressed loadable section we've seen.
300 This function is called via bfd_map_over_sections.
301
302 In case of equal vmas, the section with the largest size becomes the
303 lowest-addressed loadable section.
304
305 If the vmas and sizes are equal, the last section is considered the
306 lowest-addressed loadable section. */
307
308 void
309 find_lowest_section (bfd *abfd, asection *sect, void *obj)
310 {
311 asection **lowest = (asection **) obj;
312
313 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
314 return;
315 if (!*lowest)
316 *lowest = sect; /* First loadable section */
317 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
318 *lowest = sect; /* A lower loadable section */
319 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
320 && (bfd_section_size (abfd, (*lowest))
321 <= bfd_section_size (abfd, sect)))
322 *lowest = sect;
323 }
324
325 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
326
327 struct section_addr_info *
328 alloc_section_addr_info (size_t num_sections)
329 {
330 struct section_addr_info *sap;
331 size_t size;
332
333 size = (sizeof (struct section_addr_info)
334 + sizeof (struct other_sections) * (num_sections - 1));
335 sap = (struct section_addr_info *) xmalloc (size);
336 memset (sap, 0, size);
337 sap->num_sections = num_sections;
338
339 return sap;
340 }
341
342
343 /* Return a freshly allocated copy of ADDRS. The section names, if
344 any, are also freshly allocated copies of those in ADDRS. */
345 struct section_addr_info *
346 copy_section_addr_info (struct section_addr_info *addrs)
347 {
348 struct section_addr_info *copy
349 = alloc_section_addr_info (addrs->num_sections);
350 int i;
351
352 copy->num_sections = addrs->num_sections;
353 for (i = 0; i < addrs->num_sections; i++)
354 {
355 copy->other[i].addr = addrs->other[i].addr;
356 if (addrs->other[i].name)
357 copy->other[i].name = xstrdup (addrs->other[i].name);
358 else
359 copy->other[i].name = NULL;
360 copy->other[i].sectindex = addrs->other[i].sectindex;
361 }
362
363 return copy;
364 }
365
366
367
368 /* Build (allocate and populate) a section_addr_info struct from
369 an existing section table. */
370
371 extern struct section_addr_info *
372 build_section_addr_info_from_section_table (const struct section_table *start,
373 const struct section_table *end)
374 {
375 struct section_addr_info *sap;
376 const struct section_table *stp;
377 int oidx;
378
379 sap = alloc_section_addr_info (end - start);
380
381 for (stp = start, oidx = 0; stp != end; stp++)
382 {
383 if (bfd_get_section_flags (stp->bfd,
384 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
385 && oidx < end - start)
386 {
387 sap->other[oidx].addr = stp->addr;
388 sap->other[oidx].name
389 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
390 sap->other[oidx].sectindex = stp->the_bfd_section->index;
391 oidx++;
392 }
393 }
394
395 return sap;
396 }
397
398
399 /* Free all memory allocated by build_section_addr_info_from_section_table. */
400
401 extern void
402 free_section_addr_info (struct section_addr_info *sap)
403 {
404 int idx;
405
406 for (idx = 0; idx < sap->num_sections; idx++)
407 if (sap->other[idx].name)
408 xfree (sap->other[idx].name);
409 xfree (sap);
410 }
411
412
413 /* Initialize OBJFILE's sect_index_* members. */
414 static void
415 init_objfile_sect_indices (struct objfile *objfile)
416 {
417 asection *sect;
418 int i;
419
420 sect = bfd_get_section_by_name (objfile->obfd, ".text");
421 if (sect)
422 objfile->sect_index_text = sect->index;
423
424 sect = bfd_get_section_by_name (objfile->obfd, ".data");
425 if (sect)
426 objfile->sect_index_data = sect->index;
427
428 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
429 if (sect)
430 objfile->sect_index_bss = sect->index;
431
432 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
433 if (sect)
434 objfile->sect_index_rodata = sect->index;
435
436 /* This is where things get really weird... We MUST have valid
437 indices for the various sect_index_* members or gdb will abort.
438 So if for example, there is no ".text" section, we have to
439 accomodate that. First, check for a file with the standard
440 one or two segments. */
441
442 symfile_find_segment_sections (objfile);
443
444 /* Except when explicitly adding symbol files at some address,
445 section_offsets contains nothing but zeros, so it doesn't matter
446 which slot in section_offsets the individual sect_index_* members
447 index into. So if they are all zero, it is safe to just point
448 all the currently uninitialized indices to the first slot. But
449 beware: if this is the main executable, it may be relocated
450 later, e.g. by the remote qOffsets packet, and then this will
451 be wrong! That's why we try segments first. */
452
453 for (i = 0; i < objfile->num_sections; i++)
454 {
455 if (ANOFFSET (objfile->section_offsets, i) != 0)
456 {
457 break;
458 }
459 }
460 if (i == objfile->num_sections)
461 {
462 if (objfile->sect_index_text == -1)
463 objfile->sect_index_text = 0;
464 if (objfile->sect_index_data == -1)
465 objfile->sect_index_data = 0;
466 if (objfile->sect_index_bss == -1)
467 objfile->sect_index_bss = 0;
468 if (objfile->sect_index_rodata == -1)
469 objfile->sect_index_rodata = 0;
470 }
471 }
472
473 /* The arguments to place_section. */
474
475 struct place_section_arg
476 {
477 struct section_offsets *offsets;
478 CORE_ADDR lowest;
479 };
480
481 /* Find a unique offset to use for loadable section SECT if
482 the user did not provide an offset. */
483
484 void
485 place_section (bfd *abfd, asection *sect, void *obj)
486 {
487 struct place_section_arg *arg = obj;
488 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
489 int done;
490 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
491
492 /* We are only interested in allocated sections. */
493 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
494 return;
495
496 /* If the user specified an offset, honor it. */
497 if (offsets[sect->index] != 0)
498 return;
499
500 /* Otherwise, let's try to find a place for the section. */
501 start_addr = (arg->lowest + align - 1) & -align;
502
503 do {
504 asection *cur_sec;
505
506 done = 1;
507
508 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
509 {
510 int indx = cur_sec->index;
511 CORE_ADDR cur_offset;
512
513 /* We don't need to compare against ourself. */
514 if (cur_sec == sect)
515 continue;
516
517 /* We can only conflict with allocated sections. */
518 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
519 continue;
520
521 /* If the section offset is 0, either the section has not been placed
522 yet, or it was the lowest section placed (in which case LOWEST
523 will be past its end). */
524 if (offsets[indx] == 0)
525 continue;
526
527 /* If this section would overlap us, then we must move up. */
528 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
529 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
530 {
531 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
532 start_addr = (start_addr + align - 1) & -align;
533 done = 0;
534 break;
535 }
536
537 /* Otherwise, we appear to be OK. So far. */
538 }
539 }
540 while (!done);
541
542 offsets[sect->index] = start_addr;
543 arg->lowest = start_addr + bfd_get_section_size (sect);
544 }
545
546 /* Parse the user's idea of an offset for dynamic linking, into our idea
547 of how to represent it for fast symbol reading. This is the default
548 version of the sym_fns.sym_offsets function for symbol readers that
549 don't need to do anything special. It allocates a section_offsets table
550 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
551
552 void
553 default_symfile_offsets (struct objfile *objfile,
554 struct section_addr_info *addrs)
555 {
556 int i;
557
558 objfile->num_sections = bfd_count_sections (objfile->obfd);
559 objfile->section_offsets = (struct section_offsets *)
560 obstack_alloc (&objfile->objfile_obstack,
561 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
562 memset (objfile->section_offsets, 0,
563 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
564
565 /* Now calculate offsets for section that were specified by the
566 caller. */
567 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
568 {
569 struct other_sections *osp ;
570
571 osp = &addrs->other[i] ;
572 if (osp->addr == 0)
573 continue;
574
575 /* Record all sections in offsets */
576 /* The section_offsets in the objfile are here filled in using
577 the BFD index. */
578 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
579 }
580
581 /* For relocatable files, all loadable sections will start at zero.
582 The zero is meaningless, so try to pick arbitrary addresses such
583 that no loadable sections overlap. This algorithm is quadratic,
584 but the number of sections in a single object file is generally
585 small. */
586 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
587 {
588 struct place_section_arg arg;
589 bfd *abfd = objfile->obfd;
590 asection *cur_sec;
591 CORE_ADDR lowest = 0;
592
593 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
594 /* We do not expect this to happen; just skip this step if the
595 relocatable file has a section with an assigned VMA. */
596 if (bfd_section_vma (abfd, cur_sec) != 0)
597 break;
598
599 if (cur_sec == NULL)
600 {
601 CORE_ADDR *offsets = objfile->section_offsets->offsets;
602
603 /* Pick non-overlapping offsets for sections the user did not
604 place explicitly. */
605 arg.offsets = objfile->section_offsets;
606 arg.lowest = 0;
607 bfd_map_over_sections (objfile->obfd, place_section, &arg);
608
609 /* Correctly filling in the section offsets is not quite
610 enough. Relocatable files have two properties that
611 (most) shared objects do not:
612
613 - Their debug information will contain relocations. Some
614 shared libraries do also, but many do not, so this can not
615 be assumed.
616
617 - If there are multiple code sections they will be loaded
618 at different relative addresses in memory than they are
619 in the objfile, since all sections in the file will start
620 at address zero.
621
622 Because GDB has very limited ability to map from an
623 address in debug info to the correct code section,
624 it relies on adding SECT_OFF_TEXT to things which might be
625 code. If we clear all the section offsets, and set the
626 section VMAs instead, then symfile_relocate_debug_section
627 will return meaningful debug information pointing at the
628 correct sections.
629
630 GDB has too many different data structures for section
631 addresses - a bfd, objfile, and so_list all have section
632 tables, as does exec_ops. Some of these could probably
633 be eliminated. */
634
635 for (cur_sec = abfd->sections; cur_sec != NULL;
636 cur_sec = cur_sec->next)
637 {
638 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
639 continue;
640
641 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
642 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
643 offsets[cur_sec->index]);
644 offsets[cur_sec->index] = 0;
645 }
646 }
647 }
648
649 /* Remember the bfd indexes for the .text, .data, .bss and
650 .rodata sections. */
651 init_objfile_sect_indices (objfile);
652 }
653
654
655 /* Divide the file into segments, which are individual relocatable units.
656 This is the default version of the sym_fns.sym_segments function for
657 symbol readers that do not have an explicit representation of segments.
658 It assumes that object files do not have segments, and fully linked
659 files have a single segment. */
660
661 struct symfile_segment_data *
662 default_symfile_segments (bfd *abfd)
663 {
664 int num_sections, i;
665 asection *sect;
666 struct symfile_segment_data *data;
667 CORE_ADDR low, high;
668
669 /* Relocatable files contain enough information to position each
670 loadable section independently; they should not be relocated
671 in segments. */
672 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
673 return NULL;
674
675 /* Make sure there is at least one loadable section in the file. */
676 for (sect = abfd->sections; sect != NULL; sect = sect->next)
677 {
678 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
679 continue;
680
681 break;
682 }
683 if (sect == NULL)
684 return NULL;
685
686 low = bfd_get_section_vma (abfd, sect);
687 high = low + bfd_get_section_size (sect);
688
689 data = XZALLOC (struct symfile_segment_data);
690 data->num_segments = 1;
691 data->segment_bases = XCALLOC (1, CORE_ADDR);
692 data->segment_sizes = XCALLOC (1, CORE_ADDR);
693
694 num_sections = bfd_count_sections (abfd);
695 data->segment_info = XCALLOC (num_sections, int);
696
697 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
698 {
699 CORE_ADDR vma;
700
701 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
702 continue;
703
704 vma = bfd_get_section_vma (abfd, sect);
705 if (vma < low)
706 low = vma;
707 if (vma + bfd_get_section_size (sect) > high)
708 high = vma + bfd_get_section_size (sect);
709
710 data->segment_info[i] = 1;
711 }
712
713 data->segment_bases[0] = low;
714 data->segment_sizes[0] = high - low;
715
716 return data;
717 }
718
719 /* Process a symbol file, as either the main file or as a dynamically
720 loaded file.
721
722 OBJFILE is where the symbols are to be read from.
723
724 ADDRS is the list of section load addresses. If the user has given
725 an 'add-symbol-file' command, then this is the list of offsets and
726 addresses he or she provided as arguments to the command; or, if
727 we're handling a shared library, these are the actual addresses the
728 sections are loaded at, according to the inferior's dynamic linker
729 (as gleaned by GDB's shared library code). We convert each address
730 into an offset from the section VMA's as it appears in the object
731 file, and then call the file's sym_offsets function to convert this
732 into a format-specific offset table --- a `struct section_offsets'.
733 If ADDRS is non-zero, OFFSETS must be zero.
734
735 OFFSETS is a table of section offsets already in the right
736 format-specific representation. NUM_OFFSETS is the number of
737 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
738 assume this is the proper table the call to sym_offsets described
739 above would produce. Instead of calling sym_offsets, we just dump
740 it right into objfile->section_offsets. (When we're re-reading
741 symbols from an objfile, we don't have the original load address
742 list any more; all we have is the section offset table.) If
743 OFFSETS is non-zero, ADDRS must be zero.
744
745 MAINLINE is nonzero if this is the main symbol file, or zero if
746 it's an extra symbol file such as dynamically loaded code.
747
748 VERBO is nonzero if the caller has printed a verbose message about
749 the symbol reading (and complaints can be more terse about it). */
750
751 void
752 syms_from_objfile (struct objfile *objfile,
753 struct section_addr_info *addrs,
754 struct section_offsets *offsets,
755 int num_offsets,
756 int mainline,
757 int verbo)
758 {
759 struct section_addr_info *local_addr = NULL;
760 struct cleanup *old_chain;
761
762 gdb_assert (! (addrs && offsets));
763
764 init_entry_point_info (objfile);
765 objfile->sf = find_sym_fns (objfile->obfd);
766
767 if (objfile->sf == NULL)
768 return; /* No symbols. */
769
770 /* Make sure that partially constructed symbol tables will be cleaned up
771 if an error occurs during symbol reading. */
772 old_chain = make_cleanup_free_objfile (objfile);
773
774 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
775 list. We now establish the convention that an addr of zero means
776 no load address was specified. */
777 if (! addrs && ! offsets)
778 {
779 local_addr
780 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
781 make_cleanup (xfree, local_addr);
782 addrs = local_addr;
783 }
784
785 /* Now either addrs or offsets is non-zero. */
786
787 if (mainline)
788 {
789 /* We will modify the main symbol table, make sure that all its users
790 will be cleaned up if an error occurs during symbol reading. */
791 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
792
793 /* Since no error yet, throw away the old symbol table. */
794
795 if (symfile_objfile != NULL)
796 {
797 free_objfile (symfile_objfile);
798 symfile_objfile = NULL;
799 }
800
801 /* Currently we keep symbols from the add-symbol-file command.
802 If the user wants to get rid of them, they should do "symbol-file"
803 without arguments first. Not sure this is the best behavior
804 (PR 2207). */
805
806 (*objfile->sf->sym_new_init) (objfile);
807 }
808
809 /* Convert addr into an offset rather than an absolute address.
810 We find the lowest address of a loaded segment in the objfile,
811 and assume that <addr> is where that got loaded.
812
813 We no longer warn if the lowest section is not a text segment (as
814 happens for the PA64 port. */
815 if (!mainline && addrs && addrs->other[0].name)
816 {
817 asection *lower_sect;
818 asection *sect;
819 CORE_ADDR lower_offset;
820 int i;
821
822 /* Find lowest loadable section to be used as starting point for
823 continguous sections. FIXME!! won't work without call to find
824 .text first, but this assumes text is lowest section. */
825 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
826 if (lower_sect == NULL)
827 bfd_map_over_sections (objfile->obfd, find_lowest_section,
828 &lower_sect);
829 if (lower_sect == NULL)
830 {
831 warning (_("no loadable sections found in added symbol-file %s"),
832 objfile->name);
833 lower_offset = 0;
834 }
835 else
836 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
837
838 /* Calculate offsets for the loadable sections.
839 FIXME! Sections must be in order of increasing loadable section
840 so that contiguous sections can use the lower-offset!!!
841
842 Adjust offsets if the segments are not contiguous.
843 If the section is contiguous, its offset should be set to
844 the offset of the highest loadable section lower than it
845 (the loadable section directly below it in memory).
846 this_offset = lower_offset = lower_addr - lower_orig_addr */
847
848 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
849 {
850 if (addrs->other[i].addr != 0)
851 {
852 sect = bfd_get_section_by_name (objfile->obfd,
853 addrs->other[i].name);
854 if (sect)
855 {
856 addrs->other[i].addr
857 -= bfd_section_vma (objfile->obfd, sect);
858 lower_offset = addrs->other[i].addr;
859 /* This is the index used by BFD. */
860 addrs->other[i].sectindex = sect->index ;
861 }
862 else
863 {
864 warning (_("section %s not found in %s"),
865 addrs->other[i].name,
866 objfile->name);
867 addrs->other[i].addr = 0;
868 }
869 }
870 else
871 addrs->other[i].addr = lower_offset;
872 }
873 }
874
875 /* Initialize symbol reading routines for this objfile, allow complaints to
876 appear for this new file, and record how verbose to be, then do the
877 initial symbol reading for this file. */
878
879 (*objfile->sf->sym_init) (objfile);
880 clear_complaints (&symfile_complaints, 1, verbo);
881
882 if (addrs)
883 (*objfile->sf->sym_offsets) (objfile, addrs);
884 else
885 {
886 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
887
888 /* Just copy in the offset table directly as given to us. */
889 objfile->num_sections = num_offsets;
890 objfile->section_offsets
891 = ((struct section_offsets *)
892 obstack_alloc (&objfile->objfile_obstack, size));
893 memcpy (objfile->section_offsets, offsets, size);
894
895 init_objfile_sect_indices (objfile);
896 }
897
898 (*objfile->sf->sym_read) (objfile, mainline);
899
900 /* Don't allow char * to have a typename (else would get caddr_t).
901 Ditto void *. FIXME: Check whether this is now done by all the
902 symbol readers themselves (many of them now do), and if so remove
903 it from here. */
904
905 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
906 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
907
908 /* Mark the objfile has having had initial symbol read attempted. Note
909 that this does not mean we found any symbols... */
910
911 objfile->flags |= OBJF_SYMS;
912
913 /* Discard cleanups as symbol reading was successful. */
914
915 discard_cleanups (old_chain);
916 }
917
918 /* Perform required actions after either reading in the initial
919 symbols for a new objfile, or mapping in the symbols from a reusable
920 objfile. */
921
922 void
923 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
924 {
925
926 /* If this is the main symbol file we have to clean up all users of the
927 old main symbol file. Otherwise it is sufficient to fixup all the
928 breakpoints that may have been redefined by this symbol file. */
929 if (mainline)
930 {
931 /* OK, make it the "real" symbol file. */
932 symfile_objfile = objfile;
933
934 clear_symtab_users ();
935 }
936 else
937 {
938 breakpoint_re_set ();
939 }
940
941 /* We're done reading the symbol file; finish off complaints. */
942 clear_complaints (&symfile_complaints, 0, verbo);
943 }
944
945 /* Process a symbol file, as either the main file or as a dynamically
946 loaded file.
947
948 ABFD is a BFD already open on the file, as from symfile_bfd_open.
949 This BFD will be closed on error, and is always consumed by this function.
950
951 FROM_TTY says how verbose to be.
952
953 MAINLINE specifies whether this is the main symbol file, or whether
954 it's an extra symbol file such as dynamically loaded code.
955
956 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
957 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
958 non-zero.
959
960 Upon success, returns a pointer to the objfile that was added.
961 Upon failure, jumps back to command level (never returns). */
962 static struct objfile *
963 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
964 struct section_addr_info *addrs,
965 struct section_offsets *offsets,
966 int num_offsets,
967 int mainline, int flags)
968 {
969 struct objfile *objfile;
970 struct partial_symtab *psymtab;
971 char *debugfile = NULL;
972 struct section_addr_info *orig_addrs = NULL;
973 struct cleanup *my_cleanups;
974 const char *name = bfd_get_filename (abfd);
975
976 my_cleanups = make_cleanup_bfd_close (abfd);
977
978 /* Give user a chance to burp if we'd be
979 interactively wiping out any existing symbols. */
980
981 if ((have_full_symbols () || have_partial_symbols ())
982 && mainline
983 && from_tty
984 && !query ("Load new symbol table from \"%s\"? ", name))
985 error (_("Not confirmed."));
986
987 objfile = allocate_objfile (abfd, flags);
988 discard_cleanups (my_cleanups);
989
990 if (addrs)
991 {
992 orig_addrs = copy_section_addr_info (addrs);
993 make_cleanup_free_section_addr_info (orig_addrs);
994 }
995
996 /* We either created a new mapped symbol table, mapped an existing
997 symbol table file which has not had initial symbol reading
998 performed, or need to read an unmapped symbol table. */
999 if (from_tty || info_verbose)
1000 {
1001 if (deprecated_pre_add_symbol_hook)
1002 deprecated_pre_add_symbol_hook (name);
1003 else
1004 {
1005 if (print_symbol_loading)
1006 {
1007 printf_unfiltered (_("Reading symbols from %s..."), name);
1008 wrap_here ("");
1009 gdb_flush (gdb_stdout);
1010 }
1011 }
1012 }
1013 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1014 mainline, from_tty);
1015
1016 /* We now have at least a partial symbol table. Check to see if the
1017 user requested that all symbols be read on initial access via either
1018 the gdb startup command line or on a per symbol file basis. Expand
1019 all partial symbol tables for this objfile if so. */
1020
1021 if ((flags & OBJF_READNOW) || readnow_symbol_files)
1022 {
1023 if ((from_tty || info_verbose) && print_symbol_loading)
1024 {
1025 printf_unfiltered (_("expanding to full symbols..."));
1026 wrap_here ("");
1027 gdb_flush (gdb_stdout);
1028 }
1029
1030 for (psymtab = objfile->psymtabs;
1031 psymtab != NULL;
1032 psymtab = psymtab->next)
1033 {
1034 psymtab_to_symtab (psymtab);
1035 }
1036 }
1037
1038 /* If the file has its own symbol tables it has no separate debug info.
1039 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1040 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1041 if (objfile->psymtabs == NULL)
1042 debugfile = find_separate_debug_file (objfile);
1043 if (debugfile)
1044 {
1045 if (addrs != NULL)
1046 {
1047 objfile->separate_debug_objfile
1048 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
1049 }
1050 else
1051 {
1052 objfile->separate_debug_objfile
1053 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
1054 }
1055 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1056 = objfile;
1057
1058 /* Put the separate debug object before the normal one, this is so that
1059 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1060 put_objfile_before (objfile->separate_debug_objfile, objfile);
1061
1062 xfree (debugfile);
1063 }
1064
1065 if (!have_partial_symbols () && !have_full_symbols ()
1066 && print_symbol_loading)
1067 {
1068 wrap_here ("");
1069 printf_filtered (_("(no debugging symbols found)"));
1070 if (from_tty || info_verbose)
1071 printf_filtered ("...");
1072 else
1073 printf_filtered ("\n");
1074 wrap_here ("");
1075 }
1076
1077 if (from_tty || info_verbose)
1078 {
1079 if (deprecated_post_add_symbol_hook)
1080 deprecated_post_add_symbol_hook ();
1081 else
1082 {
1083 if (print_symbol_loading)
1084 printf_unfiltered (_("done.\n"));
1085 }
1086 }
1087
1088 /* We print some messages regardless of whether 'from_tty ||
1089 info_verbose' is true, so make sure they go out at the right
1090 time. */
1091 gdb_flush (gdb_stdout);
1092
1093 do_cleanups (my_cleanups);
1094
1095 if (objfile->sf == NULL)
1096 return objfile; /* No symbols. */
1097
1098 new_symfile_objfile (objfile, mainline, from_tty);
1099
1100 observer_notify_new_objfile (objfile);
1101
1102 bfd_cache_close_all ();
1103 return (objfile);
1104 }
1105
1106
1107 /* Process the symbol file ABFD, as either the main file or as a
1108 dynamically loaded file.
1109
1110 See symbol_file_add_with_addrs_or_offsets's comments for
1111 details. */
1112 struct objfile *
1113 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1114 struct section_addr_info *addrs,
1115 int mainline, int flags)
1116 {
1117 return symbol_file_add_with_addrs_or_offsets (abfd,
1118 from_tty, addrs, 0, 0,
1119 mainline, flags);
1120 }
1121
1122
1123 /* Process a symbol file, as either the main file or as a dynamically
1124 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1125 for details. */
1126 struct objfile *
1127 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1128 int mainline, int flags)
1129 {
1130 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1131 addrs, mainline, flags);
1132 }
1133
1134
1135 /* Call symbol_file_add() with default values and update whatever is
1136 affected by the loading of a new main().
1137 Used when the file is supplied in the gdb command line
1138 and by some targets with special loading requirements.
1139 The auxiliary function, symbol_file_add_main_1(), has the flags
1140 argument for the switches that can only be specified in the symbol_file
1141 command itself. */
1142
1143 void
1144 symbol_file_add_main (char *args, int from_tty)
1145 {
1146 symbol_file_add_main_1 (args, from_tty, 0);
1147 }
1148
1149 static void
1150 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1151 {
1152 symbol_file_add (args, from_tty, NULL, 1, flags);
1153
1154 /* Getting new symbols may change our opinion about
1155 what is frameless. */
1156 reinit_frame_cache ();
1157
1158 set_initial_language ();
1159 }
1160
1161 void
1162 symbol_file_clear (int from_tty)
1163 {
1164 if ((have_full_symbols () || have_partial_symbols ())
1165 && from_tty
1166 && (symfile_objfile
1167 ? !query (_("Discard symbol table from `%s'? "),
1168 symfile_objfile->name)
1169 : !query (_("Discard symbol table? "))))
1170 error (_("Not confirmed."));
1171 free_all_objfiles ();
1172
1173 /* solib descriptors may have handles to objfiles. Since their
1174 storage has just been released, we'd better wipe the solib
1175 descriptors as well.
1176 */
1177 no_shared_libraries (NULL, from_tty);
1178
1179 symfile_objfile = NULL;
1180 if (from_tty)
1181 printf_unfiltered (_("No symbol file now.\n"));
1182 }
1183
1184 struct build_id
1185 {
1186 size_t size;
1187 gdb_byte data[1];
1188 };
1189
1190 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1191
1192 static struct build_id *
1193 build_id_bfd_get (bfd *abfd)
1194 {
1195 struct build_id *retval;
1196
1197 if (!bfd_check_format (abfd, bfd_object)
1198 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1199 || elf_tdata (abfd)->build_id == NULL)
1200 return NULL;
1201
1202 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1203 retval->size = elf_tdata (abfd)->build_id_size;
1204 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1205
1206 return retval;
1207 }
1208
1209 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1210
1211 static int
1212 build_id_verify (const char *filename, struct build_id *check)
1213 {
1214 bfd *abfd;
1215 struct build_id *found = NULL;
1216 int retval = 0;
1217
1218 /* We expect to be silent on the non-existing files. */
1219 abfd = bfd_openr (filename, gnutarget);
1220 if (abfd == NULL)
1221 return 0;
1222
1223 found = build_id_bfd_get (abfd);
1224
1225 if (found == NULL)
1226 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1227 else if (found->size != check->size
1228 || memcmp (found->data, check->data, found->size) != 0)
1229 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1230 else
1231 retval = 1;
1232
1233 if (!bfd_close (abfd))
1234 warning (_("cannot close \"%s\": %s"), filename,
1235 bfd_errmsg (bfd_get_error ()));
1236 return retval;
1237 }
1238
1239 static char *
1240 build_id_to_debug_filename (struct build_id *build_id)
1241 {
1242 char *link, *s, *retval = NULL;
1243 gdb_byte *data = build_id->data;
1244 size_t size = build_id->size;
1245
1246 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1247 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1248 + 2 * size + (sizeof ".debug" - 1) + 1);
1249 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1250 if (size > 0)
1251 {
1252 size--;
1253 s += sprintf (s, "%02x", (unsigned) *data++);
1254 }
1255 if (size > 0)
1256 *s++ = '/';
1257 while (size-- > 0)
1258 s += sprintf (s, "%02x", (unsigned) *data++);
1259 strcpy (s, ".debug");
1260
1261 /* lrealpath() is expensive even for the usually non-existent files. */
1262 if (access (link, F_OK) == 0)
1263 retval = lrealpath (link);
1264 xfree (link);
1265
1266 if (retval != NULL && !build_id_verify (retval, build_id))
1267 {
1268 xfree (retval);
1269 retval = NULL;
1270 }
1271
1272 return retval;
1273 }
1274
1275 static char *
1276 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1277 {
1278 asection *sect;
1279 bfd_size_type debuglink_size;
1280 unsigned long crc32;
1281 char *contents;
1282 int crc_offset;
1283 unsigned char *p;
1284
1285 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1286
1287 if (sect == NULL)
1288 return NULL;
1289
1290 debuglink_size = bfd_section_size (objfile->obfd, sect);
1291
1292 contents = xmalloc (debuglink_size);
1293 bfd_get_section_contents (objfile->obfd, sect, contents,
1294 (file_ptr)0, (bfd_size_type)debuglink_size);
1295
1296 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1297 crc_offset = strlen (contents) + 1;
1298 crc_offset = (crc_offset + 3) & ~3;
1299
1300 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1301
1302 *crc32_out = crc32;
1303 return contents;
1304 }
1305
1306 static int
1307 separate_debug_file_exists (const char *name, unsigned long crc)
1308 {
1309 unsigned long file_crc = 0;
1310 int fd;
1311 gdb_byte buffer[8*1024];
1312 int count;
1313
1314 fd = open (name, O_RDONLY | O_BINARY);
1315 if (fd < 0)
1316 return 0;
1317
1318 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1319 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1320
1321 close (fd);
1322
1323 return crc == file_crc;
1324 }
1325
1326 char *debug_file_directory = NULL;
1327 static void
1328 show_debug_file_directory (struct ui_file *file, int from_tty,
1329 struct cmd_list_element *c, const char *value)
1330 {
1331 fprintf_filtered (file, _("\
1332 The directory where separate debug symbols are searched for is \"%s\".\n"),
1333 value);
1334 }
1335
1336 #if ! defined (DEBUG_SUBDIRECTORY)
1337 #define DEBUG_SUBDIRECTORY ".debug"
1338 #endif
1339
1340 static char *
1341 find_separate_debug_file (struct objfile *objfile)
1342 {
1343 asection *sect;
1344 char *basename;
1345 char *dir;
1346 char *debugfile;
1347 char *name_copy;
1348 char *canon_name;
1349 bfd_size_type debuglink_size;
1350 unsigned long crc32;
1351 int i;
1352 struct build_id *build_id;
1353
1354 build_id = build_id_bfd_get (objfile->obfd);
1355 if (build_id != NULL)
1356 {
1357 char *build_id_name;
1358
1359 build_id_name = build_id_to_debug_filename (build_id);
1360 free (build_id);
1361 /* Prevent looping on a stripped .debug file. */
1362 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1363 {
1364 warning (_("\"%s\": separate debug info file has no debug info"),
1365 build_id_name);
1366 xfree (build_id_name);
1367 }
1368 else if (build_id_name != NULL)
1369 return build_id_name;
1370 }
1371
1372 basename = get_debug_link_info (objfile, &crc32);
1373
1374 if (basename == NULL)
1375 return NULL;
1376
1377 dir = xstrdup (objfile->name);
1378
1379 /* Strip off the final filename part, leaving the directory name,
1380 followed by a slash. Objfile names should always be absolute and
1381 tilde-expanded, so there should always be a slash in there
1382 somewhere. */
1383 for (i = strlen(dir) - 1; i >= 0; i--)
1384 {
1385 if (IS_DIR_SEPARATOR (dir[i]))
1386 break;
1387 }
1388 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1389 dir[i+1] = '\0';
1390
1391 debugfile = alloca (strlen (debug_file_directory) + 1
1392 + strlen (dir)
1393 + strlen (DEBUG_SUBDIRECTORY)
1394 + strlen ("/")
1395 + strlen (basename)
1396 + 1);
1397
1398 /* First try in the same directory as the original file. */
1399 strcpy (debugfile, dir);
1400 strcat (debugfile, basename);
1401
1402 if (separate_debug_file_exists (debugfile, crc32))
1403 {
1404 xfree (basename);
1405 xfree (dir);
1406 return xstrdup (debugfile);
1407 }
1408
1409 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1410 strcpy (debugfile, dir);
1411 strcat (debugfile, DEBUG_SUBDIRECTORY);
1412 strcat (debugfile, "/");
1413 strcat (debugfile, basename);
1414
1415 if (separate_debug_file_exists (debugfile, crc32))
1416 {
1417 xfree (basename);
1418 xfree (dir);
1419 return xstrdup (debugfile);
1420 }
1421
1422 /* Then try in the global debugfile directory. */
1423 strcpy (debugfile, debug_file_directory);
1424 strcat (debugfile, "/");
1425 strcat (debugfile, dir);
1426 strcat (debugfile, basename);
1427
1428 if (separate_debug_file_exists (debugfile, crc32))
1429 {
1430 xfree (basename);
1431 xfree (dir);
1432 return xstrdup (debugfile);
1433 }
1434
1435 /* If the file is in the sysroot, try using its base path in the
1436 global debugfile directory. */
1437 canon_name = lrealpath (dir);
1438 if (canon_name
1439 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1440 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1441 {
1442 strcpy (debugfile, debug_file_directory);
1443 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1444 strcat (debugfile, "/");
1445 strcat (debugfile, basename);
1446
1447 if (separate_debug_file_exists (debugfile, crc32))
1448 {
1449 xfree (canon_name);
1450 xfree (basename);
1451 xfree (dir);
1452 return xstrdup (debugfile);
1453 }
1454 }
1455
1456 if (canon_name)
1457 xfree (canon_name);
1458
1459 xfree (basename);
1460 xfree (dir);
1461 return NULL;
1462 }
1463
1464
1465 /* This is the symbol-file command. Read the file, analyze its
1466 symbols, and add a struct symtab to a symtab list. The syntax of
1467 the command is rather bizarre:
1468
1469 1. The function buildargv implements various quoting conventions
1470 which are undocumented and have little or nothing in common with
1471 the way things are quoted (or not quoted) elsewhere in GDB.
1472
1473 2. Options are used, which are not generally used in GDB (perhaps
1474 "set mapped on", "set readnow on" would be better)
1475
1476 3. The order of options matters, which is contrary to GNU
1477 conventions (because it is confusing and inconvenient). */
1478
1479 void
1480 symbol_file_command (char *args, int from_tty)
1481 {
1482 dont_repeat ();
1483
1484 if (args == NULL)
1485 {
1486 symbol_file_clear (from_tty);
1487 }
1488 else
1489 {
1490 char **argv = buildargv (args);
1491 int flags = OBJF_USERLOADED;
1492 struct cleanup *cleanups;
1493 char *name = NULL;
1494
1495 if (argv == NULL)
1496 nomem (0);
1497
1498 cleanups = make_cleanup_freeargv (argv);
1499 while (*argv != NULL)
1500 {
1501 if (strcmp (*argv, "-readnow") == 0)
1502 flags |= OBJF_READNOW;
1503 else if (**argv == '-')
1504 error (_("unknown option `%s'"), *argv);
1505 else
1506 {
1507 symbol_file_add_main_1 (*argv, from_tty, flags);
1508 name = *argv;
1509 }
1510
1511 argv++;
1512 }
1513
1514 if (name == NULL)
1515 error (_("no symbol file name was specified"));
1516
1517 do_cleanups (cleanups);
1518 }
1519 }
1520
1521 /* Set the initial language.
1522
1523 FIXME: A better solution would be to record the language in the
1524 psymtab when reading partial symbols, and then use it (if known) to
1525 set the language. This would be a win for formats that encode the
1526 language in an easily discoverable place, such as DWARF. For
1527 stabs, we can jump through hoops looking for specially named
1528 symbols or try to intuit the language from the specific type of
1529 stabs we find, but we can't do that until later when we read in
1530 full symbols. */
1531
1532 void
1533 set_initial_language (void)
1534 {
1535 struct partial_symtab *pst;
1536 enum language lang = language_unknown;
1537
1538 pst = find_main_psymtab ();
1539 if (pst != NULL)
1540 {
1541 if (pst->filename != NULL)
1542 lang = deduce_language_from_filename (pst->filename);
1543
1544 if (lang == language_unknown)
1545 {
1546 /* Make C the default language */
1547 lang = language_c;
1548 }
1549
1550 set_language (lang);
1551 expected_language = current_language; /* Don't warn the user. */
1552 }
1553 }
1554
1555 /* Open the file specified by NAME and hand it off to BFD for
1556 preliminary analysis. Return a newly initialized bfd *, which
1557 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1558 absolute). In case of trouble, error() is called. */
1559
1560 bfd *
1561 symfile_bfd_open (char *name)
1562 {
1563 bfd *sym_bfd;
1564 int desc;
1565 char *absolute_name;
1566
1567 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1568
1569 /* Look down path for it, allocate 2nd new malloc'd copy. */
1570 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1571 O_RDONLY | O_BINARY, 0, &absolute_name);
1572 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1573 if (desc < 0)
1574 {
1575 char *exename = alloca (strlen (name) + 5);
1576 strcat (strcpy (exename, name), ".exe");
1577 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1578 O_RDONLY | O_BINARY, 0, &absolute_name);
1579 }
1580 #endif
1581 if (desc < 0)
1582 {
1583 make_cleanup (xfree, name);
1584 perror_with_name (name);
1585 }
1586
1587 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1588 bfd. It'll be freed in free_objfile(). */
1589 xfree (name);
1590 name = absolute_name;
1591
1592 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1593 if (!sym_bfd)
1594 {
1595 close (desc);
1596 make_cleanup (xfree, name);
1597 error (_("\"%s\": can't open to read symbols: %s."), name,
1598 bfd_errmsg (bfd_get_error ()));
1599 }
1600 bfd_set_cacheable (sym_bfd, 1);
1601
1602 if (!bfd_check_format (sym_bfd, bfd_object))
1603 {
1604 /* FIXME: should be checking for errors from bfd_close (for one
1605 thing, on error it does not free all the storage associated
1606 with the bfd). */
1607 bfd_close (sym_bfd); /* This also closes desc. */
1608 make_cleanup (xfree, name);
1609 error (_("\"%s\": can't read symbols: %s."), name,
1610 bfd_errmsg (bfd_get_error ()));
1611 }
1612
1613 return sym_bfd;
1614 }
1615
1616 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1617 the section was not found. */
1618
1619 int
1620 get_section_index (struct objfile *objfile, char *section_name)
1621 {
1622 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1623
1624 if (sect)
1625 return sect->index;
1626 else
1627 return -1;
1628 }
1629
1630 /* Link SF into the global symtab_fns list. Called on startup by the
1631 _initialize routine in each object file format reader, to register
1632 information about each format the the reader is prepared to
1633 handle. */
1634
1635 void
1636 add_symtab_fns (struct sym_fns *sf)
1637 {
1638 sf->next = symtab_fns;
1639 symtab_fns = sf;
1640 }
1641
1642 /* Initialize OBJFILE to read symbols from its associated BFD. It
1643 either returns or calls error(). The result is an initialized
1644 struct sym_fns in the objfile structure, that contains cached
1645 information about the symbol file. */
1646
1647 static struct sym_fns *
1648 find_sym_fns (bfd *abfd)
1649 {
1650 struct sym_fns *sf;
1651 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1652
1653 if (our_flavour == bfd_target_srec_flavour
1654 || our_flavour == bfd_target_ihex_flavour
1655 || our_flavour == bfd_target_tekhex_flavour)
1656 return NULL; /* No symbols. */
1657
1658 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1659 if (our_flavour == sf->sym_flavour)
1660 return sf;
1661
1662 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1663 bfd_get_target (abfd));
1664 }
1665 \f
1666
1667 /* This function runs the load command of our current target. */
1668
1669 static void
1670 load_command (char *arg, int from_tty)
1671 {
1672 /* The user might be reloading because the binary has changed. Take
1673 this opportunity to check. */
1674 reopen_exec_file ();
1675 reread_symbols ();
1676
1677 if (arg == NULL)
1678 {
1679 char *parg;
1680 int count = 0;
1681
1682 parg = arg = get_exec_file (1);
1683
1684 /* Count how many \ " ' tab space there are in the name. */
1685 while ((parg = strpbrk (parg, "\\\"'\t ")))
1686 {
1687 parg++;
1688 count++;
1689 }
1690
1691 if (count)
1692 {
1693 /* We need to quote this string so buildargv can pull it apart. */
1694 char *temp = xmalloc (strlen (arg) + count + 1 );
1695 char *ptemp = temp;
1696 char *prev;
1697
1698 make_cleanup (xfree, temp);
1699
1700 prev = parg = arg;
1701 while ((parg = strpbrk (parg, "\\\"'\t ")))
1702 {
1703 strncpy (ptemp, prev, parg - prev);
1704 ptemp += parg - prev;
1705 prev = parg++;
1706 *ptemp++ = '\\';
1707 }
1708 strcpy (ptemp, prev);
1709
1710 arg = temp;
1711 }
1712 }
1713
1714 target_load (arg, from_tty);
1715
1716 /* After re-loading the executable, we don't really know which
1717 overlays are mapped any more. */
1718 overlay_cache_invalid = 1;
1719 }
1720
1721 /* This version of "load" should be usable for any target. Currently
1722 it is just used for remote targets, not inftarg.c or core files,
1723 on the theory that only in that case is it useful.
1724
1725 Avoiding xmodem and the like seems like a win (a) because we don't have
1726 to worry about finding it, and (b) On VMS, fork() is very slow and so
1727 we don't want to run a subprocess. On the other hand, I'm not sure how
1728 performance compares. */
1729
1730 static int validate_download = 0;
1731
1732 /* Callback service function for generic_load (bfd_map_over_sections). */
1733
1734 static void
1735 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1736 {
1737 bfd_size_type *sum = data;
1738
1739 *sum += bfd_get_section_size (asec);
1740 }
1741
1742 /* Opaque data for load_section_callback. */
1743 struct load_section_data {
1744 unsigned long load_offset;
1745 struct load_progress_data *progress_data;
1746 VEC(memory_write_request_s) *requests;
1747 };
1748
1749 /* Opaque data for load_progress. */
1750 struct load_progress_data {
1751 /* Cumulative data. */
1752 unsigned long write_count;
1753 unsigned long data_count;
1754 bfd_size_type total_size;
1755 };
1756
1757 /* Opaque data for load_progress for a single section. */
1758 struct load_progress_section_data {
1759 struct load_progress_data *cumulative;
1760
1761 /* Per-section data. */
1762 const char *section_name;
1763 ULONGEST section_sent;
1764 ULONGEST section_size;
1765 CORE_ADDR lma;
1766 gdb_byte *buffer;
1767 };
1768
1769 /* Target write callback routine for progress reporting. */
1770
1771 static void
1772 load_progress (ULONGEST bytes, void *untyped_arg)
1773 {
1774 struct load_progress_section_data *args = untyped_arg;
1775 struct load_progress_data *totals;
1776
1777 if (args == NULL)
1778 /* Writing padding data. No easy way to get at the cumulative
1779 stats, so just ignore this. */
1780 return;
1781
1782 totals = args->cumulative;
1783
1784 if (bytes == 0 && args->section_sent == 0)
1785 {
1786 /* The write is just starting. Let the user know we've started
1787 this section. */
1788 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1789 args->section_name, paddr_nz (args->section_size),
1790 paddr_nz (args->lma));
1791 return;
1792 }
1793
1794 if (validate_download)
1795 {
1796 /* Broken memories and broken monitors manifest themselves here
1797 when bring new computers to life. This doubles already slow
1798 downloads. */
1799 /* NOTE: cagney/1999-10-18: A more efficient implementation
1800 might add a verify_memory() method to the target vector and
1801 then use that. remote.c could implement that method using
1802 the ``qCRC'' packet. */
1803 gdb_byte *check = xmalloc (bytes);
1804 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1805
1806 if (target_read_memory (args->lma, check, bytes) != 0)
1807 error (_("Download verify read failed at 0x%s"),
1808 paddr (args->lma));
1809 if (memcmp (args->buffer, check, bytes) != 0)
1810 error (_("Download verify compare failed at 0x%s"),
1811 paddr (args->lma));
1812 do_cleanups (verify_cleanups);
1813 }
1814 totals->data_count += bytes;
1815 args->lma += bytes;
1816 args->buffer += bytes;
1817 totals->write_count += 1;
1818 args->section_sent += bytes;
1819 if (quit_flag
1820 || (deprecated_ui_load_progress_hook != NULL
1821 && deprecated_ui_load_progress_hook (args->section_name,
1822 args->section_sent)))
1823 error (_("Canceled the download"));
1824
1825 if (deprecated_show_load_progress != NULL)
1826 deprecated_show_load_progress (args->section_name,
1827 args->section_sent,
1828 args->section_size,
1829 totals->data_count,
1830 totals->total_size);
1831 }
1832
1833 /* Callback service function for generic_load (bfd_map_over_sections). */
1834
1835 static void
1836 load_section_callback (bfd *abfd, asection *asec, void *data)
1837 {
1838 struct memory_write_request *new_request;
1839 struct load_section_data *args = data;
1840 struct load_progress_section_data *section_data;
1841 bfd_size_type size = bfd_get_section_size (asec);
1842 gdb_byte *buffer;
1843 const char *sect_name = bfd_get_section_name (abfd, asec);
1844
1845 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1846 return;
1847
1848 if (size == 0)
1849 return;
1850
1851 new_request = VEC_safe_push (memory_write_request_s,
1852 args->requests, NULL);
1853 memset (new_request, 0, sizeof (struct memory_write_request));
1854 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1855 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1856 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1857 new_request->data = xmalloc (size);
1858 new_request->baton = section_data;
1859
1860 buffer = new_request->data;
1861
1862 section_data->cumulative = args->progress_data;
1863 section_data->section_name = sect_name;
1864 section_data->section_size = size;
1865 section_data->lma = new_request->begin;
1866 section_data->buffer = buffer;
1867
1868 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1869 }
1870
1871 /* Clean up an entire memory request vector, including load
1872 data and progress records. */
1873
1874 static void
1875 clear_memory_write_data (void *arg)
1876 {
1877 VEC(memory_write_request_s) **vec_p = arg;
1878 VEC(memory_write_request_s) *vec = *vec_p;
1879 int i;
1880 struct memory_write_request *mr;
1881
1882 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1883 {
1884 xfree (mr->data);
1885 xfree (mr->baton);
1886 }
1887 VEC_free (memory_write_request_s, vec);
1888 }
1889
1890 void
1891 generic_load (char *args, int from_tty)
1892 {
1893 bfd *loadfile_bfd;
1894 struct timeval start_time, end_time;
1895 char *filename;
1896 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1897 struct load_section_data cbdata;
1898 struct load_progress_data total_progress;
1899
1900 CORE_ADDR entry;
1901 char **argv;
1902
1903 memset (&cbdata, 0, sizeof (cbdata));
1904 memset (&total_progress, 0, sizeof (total_progress));
1905 cbdata.progress_data = &total_progress;
1906
1907 make_cleanup (clear_memory_write_data, &cbdata.requests);
1908
1909 argv = buildargv (args);
1910
1911 if (argv == NULL)
1912 nomem(0);
1913
1914 make_cleanup_freeargv (argv);
1915
1916 filename = tilde_expand (argv[0]);
1917 make_cleanup (xfree, filename);
1918
1919 if (argv[1] != NULL)
1920 {
1921 char *endptr;
1922
1923 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1924
1925 /* If the last word was not a valid number then
1926 treat it as a file name with spaces in. */
1927 if (argv[1] == endptr)
1928 error (_("Invalid download offset:%s."), argv[1]);
1929
1930 if (argv[2] != NULL)
1931 error (_("Too many parameters."));
1932 }
1933
1934 /* Open the file for loading. */
1935 loadfile_bfd = bfd_openr (filename, gnutarget);
1936 if (loadfile_bfd == NULL)
1937 {
1938 perror_with_name (filename);
1939 return;
1940 }
1941
1942 /* FIXME: should be checking for errors from bfd_close (for one thing,
1943 on error it does not free all the storage associated with the
1944 bfd). */
1945 make_cleanup_bfd_close (loadfile_bfd);
1946
1947 if (!bfd_check_format (loadfile_bfd, bfd_object))
1948 {
1949 error (_("\"%s\" is not an object file: %s"), filename,
1950 bfd_errmsg (bfd_get_error ()));
1951 }
1952
1953 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1954 (void *) &total_progress.total_size);
1955
1956 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1957
1958 gettimeofday (&start_time, NULL);
1959
1960 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1961 load_progress) != 0)
1962 error (_("Load failed"));
1963
1964 gettimeofday (&end_time, NULL);
1965
1966 entry = bfd_get_start_address (loadfile_bfd);
1967 ui_out_text (uiout, "Start address ");
1968 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1969 ui_out_text (uiout, ", load size ");
1970 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
1971 ui_out_text (uiout, "\n");
1972 /* We were doing this in remote-mips.c, I suspect it is right
1973 for other targets too. */
1974 write_pc (entry);
1975
1976 /* FIXME: are we supposed to call symbol_file_add or not? According
1977 to a comment from remote-mips.c (where a call to symbol_file_add
1978 was commented out), making the call confuses GDB if more than one
1979 file is loaded in. Some targets do (e.g., remote-vx.c) but
1980 others don't (or didn't - perhaps they have all been deleted). */
1981
1982 print_transfer_performance (gdb_stdout, total_progress.data_count,
1983 total_progress.write_count,
1984 &start_time, &end_time);
1985
1986 do_cleanups (old_cleanups);
1987 }
1988
1989 /* Report how fast the transfer went. */
1990
1991 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1992 replaced by print_transfer_performance (with a very different
1993 function signature). */
1994
1995 void
1996 report_transfer_performance (unsigned long data_count, time_t start_time,
1997 time_t end_time)
1998 {
1999 struct timeval start, end;
2000
2001 start.tv_sec = start_time;
2002 start.tv_usec = 0;
2003 end.tv_sec = end_time;
2004 end.tv_usec = 0;
2005
2006 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2007 }
2008
2009 void
2010 print_transfer_performance (struct ui_file *stream,
2011 unsigned long data_count,
2012 unsigned long write_count,
2013 const struct timeval *start_time,
2014 const struct timeval *end_time)
2015 {
2016 ULONGEST time_count;
2017
2018 /* Compute the elapsed time in milliseconds, as a tradeoff between
2019 accuracy and overflow. */
2020 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2021 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2022
2023 ui_out_text (uiout, "Transfer rate: ");
2024 if (time_count > 0)
2025 {
2026 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2027
2028 if (ui_out_is_mi_like_p (uiout))
2029 {
2030 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2031 ui_out_text (uiout, " bits/sec");
2032 }
2033 else if (rate < 1024)
2034 {
2035 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2036 ui_out_text (uiout, " bytes/sec");
2037 }
2038 else
2039 {
2040 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2041 ui_out_text (uiout, " KB/sec");
2042 }
2043 }
2044 else
2045 {
2046 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2047 ui_out_text (uiout, " bits in <1 sec");
2048 }
2049 if (write_count > 0)
2050 {
2051 ui_out_text (uiout, ", ");
2052 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2053 ui_out_text (uiout, " bytes/write");
2054 }
2055 ui_out_text (uiout, ".\n");
2056 }
2057
2058 /* This function allows the addition of incrementally linked object files.
2059 It does not modify any state in the target, only in the debugger. */
2060 /* Note: ezannoni 2000-04-13 This function/command used to have a
2061 special case syntax for the rombug target (Rombug is the boot
2062 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2063 rombug case, the user doesn't need to supply a text address,
2064 instead a call to target_link() (in target.c) would supply the
2065 value to use. We are now discontinuing this type of ad hoc syntax. */
2066
2067 static void
2068 add_symbol_file_command (char *args, int from_tty)
2069 {
2070 char *filename = NULL;
2071 int flags = OBJF_USERLOADED;
2072 char *arg;
2073 int expecting_option = 0;
2074 int section_index = 0;
2075 int argcnt = 0;
2076 int sec_num = 0;
2077 int i;
2078 int expecting_sec_name = 0;
2079 int expecting_sec_addr = 0;
2080 char **argv;
2081
2082 struct sect_opt
2083 {
2084 char *name;
2085 char *value;
2086 };
2087
2088 struct section_addr_info *section_addrs;
2089 struct sect_opt *sect_opts = NULL;
2090 size_t num_sect_opts = 0;
2091 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2092
2093 num_sect_opts = 16;
2094 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2095 * sizeof (struct sect_opt));
2096
2097 dont_repeat ();
2098
2099 if (args == NULL)
2100 error (_("add-symbol-file takes a file name and an address"));
2101
2102 argv = buildargv (args);
2103 make_cleanup_freeargv (argv);
2104
2105 if (argv == NULL)
2106 nomem (0);
2107
2108 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2109 {
2110 /* Process the argument. */
2111 if (argcnt == 0)
2112 {
2113 /* The first argument is the file name. */
2114 filename = tilde_expand (arg);
2115 make_cleanup (xfree, filename);
2116 }
2117 else
2118 if (argcnt == 1)
2119 {
2120 /* The second argument is always the text address at which
2121 to load the program. */
2122 sect_opts[section_index].name = ".text";
2123 sect_opts[section_index].value = arg;
2124 if (++section_index >= num_sect_opts)
2125 {
2126 num_sect_opts *= 2;
2127 sect_opts = ((struct sect_opt *)
2128 xrealloc (sect_opts,
2129 num_sect_opts
2130 * sizeof (struct sect_opt)));
2131 }
2132 }
2133 else
2134 {
2135 /* It's an option (starting with '-') or it's an argument
2136 to an option */
2137
2138 if (*arg == '-')
2139 {
2140 if (strcmp (arg, "-readnow") == 0)
2141 flags |= OBJF_READNOW;
2142 else if (strcmp (arg, "-s") == 0)
2143 {
2144 expecting_sec_name = 1;
2145 expecting_sec_addr = 1;
2146 }
2147 }
2148 else
2149 {
2150 if (expecting_sec_name)
2151 {
2152 sect_opts[section_index].name = arg;
2153 expecting_sec_name = 0;
2154 }
2155 else
2156 if (expecting_sec_addr)
2157 {
2158 sect_opts[section_index].value = arg;
2159 expecting_sec_addr = 0;
2160 if (++section_index >= num_sect_opts)
2161 {
2162 num_sect_opts *= 2;
2163 sect_opts = ((struct sect_opt *)
2164 xrealloc (sect_opts,
2165 num_sect_opts
2166 * sizeof (struct sect_opt)));
2167 }
2168 }
2169 else
2170 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2171 }
2172 }
2173 }
2174
2175 /* This command takes at least two arguments. The first one is a
2176 filename, and the second is the address where this file has been
2177 loaded. Abort now if this address hasn't been provided by the
2178 user. */
2179 if (section_index < 1)
2180 error (_("The address where %s has been loaded is missing"), filename);
2181
2182 /* Print the prompt for the query below. And save the arguments into
2183 a sect_addr_info structure to be passed around to other
2184 functions. We have to split this up into separate print
2185 statements because hex_string returns a local static
2186 string. */
2187
2188 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2189 section_addrs = alloc_section_addr_info (section_index);
2190 make_cleanup (xfree, section_addrs);
2191 for (i = 0; i < section_index; i++)
2192 {
2193 CORE_ADDR addr;
2194 char *val = sect_opts[i].value;
2195 char *sec = sect_opts[i].name;
2196
2197 addr = parse_and_eval_address (val);
2198
2199 /* Here we store the section offsets in the order they were
2200 entered on the command line. */
2201 section_addrs->other[sec_num].name = sec;
2202 section_addrs->other[sec_num].addr = addr;
2203 printf_unfiltered ("\t%s_addr = %s\n", sec, paddress (addr));
2204 sec_num++;
2205
2206 /* The object's sections are initialized when a
2207 call is made to build_objfile_section_table (objfile).
2208 This happens in reread_symbols.
2209 At this point, we don't know what file type this is,
2210 so we can't determine what section names are valid. */
2211 }
2212
2213 if (from_tty && (!query ("%s", "")))
2214 error (_("Not confirmed."));
2215
2216 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
2217
2218 /* Getting new symbols may change our opinion about what is
2219 frameless. */
2220 reinit_frame_cache ();
2221 do_cleanups (my_cleanups);
2222 }
2223 \f
2224 static void
2225 add_shared_symbol_files_command (char *args, int from_tty)
2226 {
2227 #ifdef ADD_SHARED_SYMBOL_FILES
2228 ADD_SHARED_SYMBOL_FILES (args, from_tty);
2229 #else
2230 error (_("This command is not available in this configuration of GDB."));
2231 #endif
2232 }
2233 \f
2234 /* Re-read symbols if a symbol-file has changed. */
2235 void
2236 reread_symbols (void)
2237 {
2238 struct objfile *objfile;
2239 long new_modtime;
2240 int reread_one = 0;
2241 struct stat new_statbuf;
2242 int res;
2243
2244 /* With the addition of shared libraries, this should be modified,
2245 the load time should be saved in the partial symbol tables, since
2246 different tables may come from different source files. FIXME.
2247 This routine should then walk down each partial symbol table
2248 and see if the symbol table that it originates from has been changed */
2249
2250 for (objfile = object_files; objfile; objfile = objfile->next)
2251 {
2252 if (objfile->obfd)
2253 {
2254 #ifdef DEPRECATED_IBM6000_TARGET
2255 /* If this object is from a shared library, then you should
2256 stat on the library name, not member name. */
2257
2258 if (objfile->obfd->my_archive)
2259 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2260 else
2261 #endif
2262 res = stat (objfile->name, &new_statbuf);
2263 if (res != 0)
2264 {
2265 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2266 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2267 objfile->name);
2268 continue;
2269 }
2270 new_modtime = new_statbuf.st_mtime;
2271 if (new_modtime != objfile->mtime)
2272 {
2273 struct cleanup *old_cleanups;
2274 struct section_offsets *offsets;
2275 int num_offsets;
2276 char *obfd_filename;
2277
2278 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2279 objfile->name);
2280
2281 /* There are various functions like symbol_file_add,
2282 symfile_bfd_open, syms_from_objfile, etc., which might
2283 appear to do what we want. But they have various other
2284 effects which we *don't* want. So we just do stuff
2285 ourselves. We don't worry about mapped files (for one thing,
2286 any mapped file will be out of date). */
2287
2288 /* If we get an error, blow away this objfile (not sure if
2289 that is the correct response for things like shared
2290 libraries). */
2291 old_cleanups = make_cleanup_free_objfile (objfile);
2292 /* We need to do this whenever any symbols go away. */
2293 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2294
2295 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2296 bfd_get_filename (exec_bfd)) == 0)
2297 {
2298 /* Reload EXEC_BFD without asking anything. */
2299
2300 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2301 }
2302
2303 /* Clean up any state BFD has sitting around. We don't need
2304 to close the descriptor but BFD lacks a way of closing the
2305 BFD without closing the descriptor. */
2306 obfd_filename = bfd_get_filename (objfile->obfd);
2307 if (!bfd_close (objfile->obfd))
2308 error (_("Can't close BFD for %s: %s"), objfile->name,
2309 bfd_errmsg (bfd_get_error ()));
2310 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2311 if (objfile->obfd == NULL)
2312 error (_("Can't open %s to read symbols."), objfile->name);
2313 /* bfd_openr sets cacheable to true, which is what we want. */
2314 if (!bfd_check_format (objfile->obfd, bfd_object))
2315 error (_("Can't read symbols from %s: %s."), objfile->name,
2316 bfd_errmsg (bfd_get_error ()));
2317
2318 /* Save the offsets, we will nuke them with the rest of the
2319 objfile_obstack. */
2320 num_offsets = objfile->num_sections;
2321 offsets = ((struct section_offsets *)
2322 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2323 memcpy (offsets, objfile->section_offsets,
2324 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2325
2326 /* Remove any references to this objfile in the global
2327 value lists. */
2328 preserve_values (objfile);
2329
2330 /* Nuke all the state that we will re-read. Much of the following
2331 code which sets things to NULL really is necessary to tell
2332 other parts of GDB that there is nothing currently there. */
2333
2334 /* FIXME: Do we have to free a whole linked list, or is this
2335 enough? */
2336 if (objfile->global_psymbols.list)
2337 xfree (objfile->global_psymbols.list);
2338 memset (&objfile->global_psymbols, 0,
2339 sizeof (objfile->global_psymbols));
2340 if (objfile->static_psymbols.list)
2341 xfree (objfile->static_psymbols.list);
2342 memset (&objfile->static_psymbols, 0,
2343 sizeof (objfile->static_psymbols));
2344
2345 /* Free the obstacks for non-reusable objfiles */
2346 bcache_xfree (objfile->psymbol_cache);
2347 objfile->psymbol_cache = bcache_xmalloc ();
2348 bcache_xfree (objfile->macro_cache);
2349 objfile->macro_cache = bcache_xmalloc ();
2350 if (objfile->demangled_names_hash != NULL)
2351 {
2352 htab_delete (objfile->demangled_names_hash);
2353 objfile->demangled_names_hash = NULL;
2354 }
2355 obstack_free (&objfile->objfile_obstack, 0);
2356 objfile->sections = NULL;
2357 objfile->symtabs = NULL;
2358 objfile->psymtabs = NULL;
2359 objfile->free_psymtabs = NULL;
2360 objfile->cp_namespace_symtab = NULL;
2361 objfile->msymbols = NULL;
2362 objfile->deprecated_sym_private = NULL;
2363 objfile->minimal_symbol_count = 0;
2364 memset (&objfile->msymbol_hash, 0,
2365 sizeof (objfile->msymbol_hash));
2366 memset (&objfile->msymbol_demangled_hash, 0,
2367 sizeof (objfile->msymbol_demangled_hash));
2368 clear_objfile_data (objfile);
2369 if (objfile->sf != NULL)
2370 {
2371 (*objfile->sf->sym_finish) (objfile);
2372 }
2373
2374 objfile->psymbol_cache = bcache_xmalloc ();
2375 objfile->macro_cache = bcache_xmalloc ();
2376 /* obstack_init also initializes the obstack so it is
2377 empty. We could use obstack_specify_allocation but
2378 gdb_obstack.h specifies the alloc/dealloc
2379 functions. */
2380 obstack_init (&objfile->objfile_obstack);
2381 if (build_objfile_section_table (objfile))
2382 {
2383 error (_("Can't find the file sections in `%s': %s"),
2384 objfile->name, bfd_errmsg (bfd_get_error ()));
2385 }
2386 terminate_minimal_symbol_table (objfile);
2387
2388 /* We use the same section offsets as from last time. I'm not
2389 sure whether that is always correct for shared libraries. */
2390 objfile->section_offsets = (struct section_offsets *)
2391 obstack_alloc (&objfile->objfile_obstack,
2392 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2393 memcpy (objfile->section_offsets, offsets,
2394 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2395 objfile->num_sections = num_offsets;
2396
2397 /* What the hell is sym_new_init for, anyway? The concept of
2398 distinguishing between the main file and additional files
2399 in this way seems rather dubious. */
2400 if (objfile == symfile_objfile)
2401 {
2402 (*objfile->sf->sym_new_init) (objfile);
2403 }
2404
2405 (*objfile->sf->sym_init) (objfile);
2406 clear_complaints (&symfile_complaints, 1, 1);
2407 /* The "mainline" parameter is a hideous hack; I think leaving it
2408 zero is OK since dbxread.c also does what it needs to do if
2409 objfile->global_psymbols.size is 0. */
2410 (*objfile->sf->sym_read) (objfile, 0);
2411 if (!have_partial_symbols () && !have_full_symbols ())
2412 {
2413 wrap_here ("");
2414 printf_unfiltered (_("(no debugging symbols found)\n"));
2415 wrap_here ("");
2416 }
2417 objfile->flags |= OBJF_SYMS;
2418
2419 /* We're done reading the symbol file; finish off complaints. */
2420 clear_complaints (&symfile_complaints, 0, 1);
2421
2422 /* Getting new symbols may change our opinion about what is
2423 frameless. */
2424
2425 reinit_frame_cache ();
2426
2427 /* Discard cleanups as symbol reading was successful. */
2428 discard_cleanups (old_cleanups);
2429
2430 /* If the mtime has changed between the time we set new_modtime
2431 and now, we *want* this to be out of date, so don't call stat
2432 again now. */
2433 objfile->mtime = new_modtime;
2434 reread_one = 1;
2435 reread_separate_symbols (objfile);
2436 init_entry_point_info (objfile);
2437 }
2438 }
2439 }
2440
2441 if (reread_one)
2442 {
2443 clear_symtab_users ();
2444 /* At least one objfile has changed, so we can consider that
2445 the executable we're debugging has changed too. */
2446 observer_notify_executable_changed ();
2447 }
2448
2449 }
2450
2451
2452 /* Handle separate debug info for OBJFILE, which has just been
2453 re-read:
2454 - If we had separate debug info before, but now we don't, get rid
2455 of the separated objfile.
2456 - If we didn't have separated debug info before, but now we do,
2457 read in the new separated debug info file.
2458 - If the debug link points to a different file, toss the old one
2459 and read the new one.
2460 This function does *not* handle the case where objfile is still
2461 using the same separate debug info file, but that file's timestamp
2462 has changed. That case should be handled by the loop in
2463 reread_symbols already. */
2464 static void
2465 reread_separate_symbols (struct objfile *objfile)
2466 {
2467 char *debug_file;
2468 unsigned long crc32;
2469
2470 /* Does the updated objfile's debug info live in a
2471 separate file? */
2472 debug_file = find_separate_debug_file (objfile);
2473
2474 if (objfile->separate_debug_objfile)
2475 {
2476 /* There are two cases where we need to get rid of
2477 the old separated debug info objfile:
2478 - if the new primary objfile doesn't have
2479 separated debug info, or
2480 - if the new primary objfile has separate debug
2481 info, but it's under a different filename.
2482
2483 If the old and new objfiles both have separate
2484 debug info, under the same filename, then we're
2485 okay --- if the separated file's contents have
2486 changed, we will have caught that when we
2487 visited it in this function's outermost
2488 loop. */
2489 if (! debug_file
2490 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2491 free_objfile (objfile->separate_debug_objfile);
2492 }
2493
2494 /* If the new objfile has separate debug info, and we
2495 haven't loaded it already, do so now. */
2496 if (debug_file
2497 && ! objfile->separate_debug_objfile)
2498 {
2499 /* Use the same section offset table as objfile itself.
2500 Preserve the flags from objfile that make sense. */
2501 objfile->separate_debug_objfile
2502 = (symbol_file_add_with_addrs_or_offsets
2503 (symfile_bfd_open (debug_file),
2504 info_verbose, /* from_tty: Don't override the default. */
2505 0, /* No addr table. */
2506 objfile->section_offsets, objfile->num_sections,
2507 0, /* Not mainline. See comments about this above. */
2508 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2509 | OBJF_USERLOADED)));
2510 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2511 = objfile;
2512 }
2513 if (debug_file)
2514 xfree (debug_file);
2515 }
2516
2517
2518 \f
2519
2520
2521 typedef struct
2522 {
2523 char *ext;
2524 enum language lang;
2525 }
2526 filename_language;
2527
2528 static filename_language *filename_language_table;
2529 static int fl_table_size, fl_table_next;
2530
2531 static void
2532 add_filename_language (char *ext, enum language lang)
2533 {
2534 if (fl_table_next >= fl_table_size)
2535 {
2536 fl_table_size += 10;
2537 filename_language_table =
2538 xrealloc (filename_language_table,
2539 fl_table_size * sizeof (*filename_language_table));
2540 }
2541
2542 filename_language_table[fl_table_next].ext = xstrdup (ext);
2543 filename_language_table[fl_table_next].lang = lang;
2544 fl_table_next++;
2545 }
2546
2547 static char *ext_args;
2548 static void
2549 show_ext_args (struct ui_file *file, int from_tty,
2550 struct cmd_list_element *c, const char *value)
2551 {
2552 fprintf_filtered (file, _("\
2553 Mapping between filename extension and source language is \"%s\".\n"),
2554 value);
2555 }
2556
2557 static void
2558 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2559 {
2560 int i;
2561 char *cp = ext_args;
2562 enum language lang;
2563
2564 /* First arg is filename extension, starting with '.' */
2565 if (*cp != '.')
2566 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2567
2568 /* Find end of first arg. */
2569 while (*cp && !isspace (*cp))
2570 cp++;
2571
2572 if (*cp == '\0')
2573 error (_("'%s': two arguments required -- filename extension and language"),
2574 ext_args);
2575
2576 /* Null-terminate first arg */
2577 *cp++ = '\0';
2578
2579 /* Find beginning of second arg, which should be a source language. */
2580 while (*cp && isspace (*cp))
2581 cp++;
2582
2583 if (*cp == '\0')
2584 error (_("'%s': two arguments required -- filename extension and language"),
2585 ext_args);
2586
2587 /* Lookup the language from among those we know. */
2588 lang = language_enum (cp);
2589
2590 /* Now lookup the filename extension: do we already know it? */
2591 for (i = 0; i < fl_table_next; i++)
2592 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2593 break;
2594
2595 if (i >= fl_table_next)
2596 {
2597 /* new file extension */
2598 add_filename_language (ext_args, lang);
2599 }
2600 else
2601 {
2602 /* redefining a previously known filename extension */
2603
2604 /* if (from_tty) */
2605 /* query ("Really make files of type %s '%s'?", */
2606 /* ext_args, language_str (lang)); */
2607
2608 xfree (filename_language_table[i].ext);
2609 filename_language_table[i].ext = xstrdup (ext_args);
2610 filename_language_table[i].lang = lang;
2611 }
2612 }
2613
2614 static void
2615 info_ext_lang_command (char *args, int from_tty)
2616 {
2617 int i;
2618
2619 printf_filtered (_("Filename extensions and the languages they represent:"));
2620 printf_filtered ("\n\n");
2621 for (i = 0; i < fl_table_next; i++)
2622 printf_filtered ("\t%s\t- %s\n",
2623 filename_language_table[i].ext,
2624 language_str (filename_language_table[i].lang));
2625 }
2626
2627 static void
2628 init_filename_language_table (void)
2629 {
2630 if (fl_table_size == 0) /* protect against repetition */
2631 {
2632 fl_table_size = 20;
2633 fl_table_next = 0;
2634 filename_language_table =
2635 xmalloc (fl_table_size * sizeof (*filename_language_table));
2636 add_filename_language (".c", language_c);
2637 add_filename_language (".C", language_cplus);
2638 add_filename_language (".cc", language_cplus);
2639 add_filename_language (".cp", language_cplus);
2640 add_filename_language (".cpp", language_cplus);
2641 add_filename_language (".cxx", language_cplus);
2642 add_filename_language (".c++", language_cplus);
2643 add_filename_language (".java", language_java);
2644 add_filename_language (".class", language_java);
2645 add_filename_language (".m", language_objc);
2646 add_filename_language (".f", language_fortran);
2647 add_filename_language (".F", language_fortran);
2648 add_filename_language (".s", language_asm);
2649 add_filename_language (".sx", language_asm);
2650 add_filename_language (".S", language_asm);
2651 add_filename_language (".pas", language_pascal);
2652 add_filename_language (".p", language_pascal);
2653 add_filename_language (".pp", language_pascal);
2654 add_filename_language (".adb", language_ada);
2655 add_filename_language (".ads", language_ada);
2656 add_filename_language (".a", language_ada);
2657 add_filename_language (".ada", language_ada);
2658 }
2659 }
2660
2661 enum language
2662 deduce_language_from_filename (char *filename)
2663 {
2664 int i;
2665 char *cp;
2666
2667 if (filename != NULL)
2668 if ((cp = strrchr (filename, '.')) != NULL)
2669 for (i = 0; i < fl_table_next; i++)
2670 if (strcmp (cp, filename_language_table[i].ext) == 0)
2671 return filename_language_table[i].lang;
2672
2673 return language_unknown;
2674 }
2675 \f
2676 /* allocate_symtab:
2677
2678 Allocate and partly initialize a new symbol table. Return a pointer
2679 to it. error() if no space.
2680
2681 Caller must set these fields:
2682 LINETABLE(symtab)
2683 symtab->blockvector
2684 symtab->dirname
2685 symtab->free_code
2686 symtab->free_ptr
2687 possibly free_named_symtabs (symtab->filename);
2688 */
2689
2690 struct symtab *
2691 allocate_symtab (char *filename, struct objfile *objfile)
2692 {
2693 struct symtab *symtab;
2694
2695 symtab = (struct symtab *)
2696 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2697 memset (symtab, 0, sizeof (*symtab));
2698 symtab->filename = obsavestring (filename, strlen (filename),
2699 &objfile->objfile_obstack);
2700 symtab->fullname = NULL;
2701 symtab->language = deduce_language_from_filename (filename);
2702 symtab->debugformat = obsavestring ("unknown", 7,
2703 &objfile->objfile_obstack);
2704
2705 /* Hook it to the objfile it comes from */
2706
2707 symtab->objfile = objfile;
2708 symtab->next = objfile->symtabs;
2709 objfile->symtabs = symtab;
2710
2711 return (symtab);
2712 }
2713
2714 struct partial_symtab *
2715 allocate_psymtab (char *filename, struct objfile *objfile)
2716 {
2717 struct partial_symtab *psymtab;
2718
2719 if (objfile->free_psymtabs)
2720 {
2721 psymtab = objfile->free_psymtabs;
2722 objfile->free_psymtabs = psymtab->next;
2723 }
2724 else
2725 psymtab = (struct partial_symtab *)
2726 obstack_alloc (&objfile->objfile_obstack,
2727 sizeof (struct partial_symtab));
2728
2729 memset (psymtab, 0, sizeof (struct partial_symtab));
2730 psymtab->filename = obsavestring (filename, strlen (filename),
2731 &objfile->objfile_obstack);
2732 psymtab->symtab = NULL;
2733
2734 /* Prepend it to the psymtab list for the objfile it belongs to.
2735 Psymtabs are searched in most recent inserted -> least recent
2736 inserted order. */
2737
2738 psymtab->objfile = objfile;
2739 psymtab->next = objfile->psymtabs;
2740 objfile->psymtabs = psymtab;
2741 #if 0
2742 {
2743 struct partial_symtab **prev_pst;
2744 psymtab->objfile = objfile;
2745 psymtab->next = NULL;
2746 prev_pst = &(objfile->psymtabs);
2747 while ((*prev_pst) != NULL)
2748 prev_pst = &((*prev_pst)->next);
2749 (*prev_pst) = psymtab;
2750 }
2751 #endif
2752
2753 return (psymtab);
2754 }
2755
2756 void
2757 discard_psymtab (struct partial_symtab *pst)
2758 {
2759 struct partial_symtab **prev_pst;
2760
2761 /* From dbxread.c:
2762 Empty psymtabs happen as a result of header files which don't
2763 have any symbols in them. There can be a lot of them. But this
2764 check is wrong, in that a psymtab with N_SLINE entries but
2765 nothing else is not empty, but we don't realize that. Fixing
2766 that without slowing things down might be tricky. */
2767
2768 /* First, snip it out of the psymtab chain */
2769
2770 prev_pst = &(pst->objfile->psymtabs);
2771 while ((*prev_pst) != pst)
2772 prev_pst = &((*prev_pst)->next);
2773 (*prev_pst) = pst->next;
2774
2775 /* Next, put it on a free list for recycling */
2776
2777 pst->next = pst->objfile->free_psymtabs;
2778 pst->objfile->free_psymtabs = pst;
2779 }
2780 \f
2781
2782 /* Reset all data structures in gdb which may contain references to symbol
2783 table data. */
2784
2785 void
2786 clear_symtab_users (void)
2787 {
2788 /* Someday, we should do better than this, by only blowing away
2789 the things that really need to be blown. */
2790
2791 /* Clear the "current" symtab first, because it is no longer valid.
2792 breakpoint_re_set may try to access the current symtab. */
2793 clear_current_source_symtab_and_line ();
2794
2795 clear_displays ();
2796 breakpoint_re_set ();
2797 set_default_breakpoint (0, 0, 0, 0);
2798 clear_pc_function_cache ();
2799 observer_notify_new_objfile (NULL);
2800
2801 /* Clear globals which might have pointed into a removed objfile.
2802 FIXME: It's not clear which of these are supposed to persist
2803 between expressions and which ought to be reset each time. */
2804 expression_context_block = NULL;
2805 innermost_block = NULL;
2806
2807 /* Varobj may refer to old symbols, perform a cleanup. */
2808 varobj_invalidate ();
2809
2810 }
2811
2812 static void
2813 clear_symtab_users_cleanup (void *ignore)
2814 {
2815 clear_symtab_users ();
2816 }
2817
2818 /* clear_symtab_users_once:
2819
2820 This function is run after symbol reading, or from a cleanup.
2821 If an old symbol table was obsoleted, the old symbol table
2822 has been blown away, but the other GDB data structures that may
2823 reference it have not yet been cleared or re-directed. (The old
2824 symtab was zapped, and the cleanup queued, in free_named_symtab()
2825 below.)
2826
2827 This function can be queued N times as a cleanup, or called
2828 directly; it will do all the work the first time, and then will be a
2829 no-op until the next time it is queued. This works by bumping a
2830 counter at queueing time. Much later when the cleanup is run, or at
2831 the end of symbol processing (in case the cleanup is discarded), if
2832 the queued count is greater than the "done-count", we do the work
2833 and set the done-count to the queued count. If the queued count is
2834 less than or equal to the done-count, we just ignore the call. This
2835 is needed because reading a single .o file will often replace many
2836 symtabs (one per .h file, for example), and we don't want to reset
2837 the breakpoints N times in the user's face.
2838
2839 The reason we both queue a cleanup, and call it directly after symbol
2840 reading, is because the cleanup protects us in case of errors, but is
2841 discarded if symbol reading is successful. */
2842
2843 #if 0
2844 /* FIXME: As free_named_symtabs is currently a big noop this function
2845 is no longer needed. */
2846 static void clear_symtab_users_once (void);
2847
2848 static int clear_symtab_users_queued;
2849 static int clear_symtab_users_done;
2850
2851 static void
2852 clear_symtab_users_once (void)
2853 {
2854 /* Enforce once-per-`do_cleanups'-semantics */
2855 if (clear_symtab_users_queued <= clear_symtab_users_done)
2856 return;
2857 clear_symtab_users_done = clear_symtab_users_queued;
2858
2859 clear_symtab_users ();
2860 }
2861 #endif
2862
2863 /* Delete the specified psymtab, and any others that reference it. */
2864
2865 static void
2866 cashier_psymtab (struct partial_symtab *pst)
2867 {
2868 struct partial_symtab *ps, *pprev = NULL;
2869 int i;
2870
2871 /* Find its previous psymtab in the chain */
2872 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2873 {
2874 if (ps == pst)
2875 break;
2876 pprev = ps;
2877 }
2878
2879 if (ps)
2880 {
2881 /* Unhook it from the chain. */
2882 if (ps == pst->objfile->psymtabs)
2883 pst->objfile->psymtabs = ps->next;
2884 else
2885 pprev->next = ps->next;
2886
2887 /* FIXME, we can't conveniently deallocate the entries in the
2888 partial_symbol lists (global_psymbols/static_psymbols) that
2889 this psymtab points to. These just take up space until all
2890 the psymtabs are reclaimed. Ditto the dependencies list and
2891 filename, which are all in the objfile_obstack. */
2892
2893 /* We need to cashier any psymtab that has this one as a dependency... */
2894 again:
2895 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2896 {
2897 for (i = 0; i < ps->number_of_dependencies; i++)
2898 {
2899 if (ps->dependencies[i] == pst)
2900 {
2901 cashier_psymtab (ps);
2902 goto again; /* Must restart, chain has been munged. */
2903 }
2904 }
2905 }
2906 }
2907 }
2908
2909 /* If a symtab or psymtab for filename NAME is found, free it along
2910 with any dependent breakpoints, displays, etc.
2911 Used when loading new versions of object modules with the "add-file"
2912 command. This is only called on the top-level symtab or psymtab's name;
2913 it is not called for subsidiary files such as .h files.
2914
2915 Return value is 1 if we blew away the environment, 0 if not.
2916 FIXME. The return value appears to never be used.
2917
2918 FIXME. I think this is not the best way to do this. We should
2919 work on being gentler to the environment while still cleaning up
2920 all stray pointers into the freed symtab. */
2921
2922 int
2923 free_named_symtabs (char *name)
2924 {
2925 #if 0
2926 /* FIXME: With the new method of each objfile having it's own
2927 psymtab list, this function needs serious rethinking. In particular,
2928 why was it ever necessary to toss psymtabs with specific compilation
2929 unit filenames, as opposed to all psymtabs from a particular symbol
2930 file? -- fnf
2931 Well, the answer is that some systems permit reloading of particular
2932 compilation units. We want to blow away any old info about these
2933 compilation units, regardless of which objfiles they arrived in. --gnu. */
2934
2935 struct symtab *s;
2936 struct symtab *prev;
2937 struct partial_symtab *ps;
2938 struct blockvector *bv;
2939 int blewit = 0;
2940
2941 /* We only wack things if the symbol-reload switch is set. */
2942 if (!symbol_reloading)
2943 return 0;
2944
2945 /* Some symbol formats have trouble providing file names... */
2946 if (name == 0 || *name == '\0')
2947 return 0;
2948
2949 /* Look for a psymtab with the specified name. */
2950
2951 again2:
2952 for (ps = partial_symtab_list; ps; ps = ps->next)
2953 {
2954 if (strcmp (name, ps->filename) == 0)
2955 {
2956 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2957 goto again2; /* Must restart, chain has been munged */
2958 }
2959 }
2960
2961 /* Look for a symtab with the specified name. */
2962
2963 for (s = symtab_list; s; s = s->next)
2964 {
2965 if (strcmp (name, s->filename) == 0)
2966 break;
2967 prev = s;
2968 }
2969
2970 if (s)
2971 {
2972 if (s == symtab_list)
2973 symtab_list = s->next;
2974 else
2975 prev->next = s->next;
2976
2977 /* For now, queue a delete for all breakpoints, displays, etc., whether
2978 or not they depend on the symtab being freed. This should be
2979 changed so that only those data structures affected are deleted. */
2980
2981 /* But don't delete anything if the symtab is empty.
2982 This test is necessary due to a bug in "dbxread.c" that
2983 causes empty symtabs to be created for N_SO symbols that
2984 contain the pathname of the object file. (This problem
2985 has been fixed in GDB 3.9x). */
2986
2987 bv = BLOCKVECTOR (s);
2988 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2989 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2990 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2991 {
2992 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
2993 name);
2994 clear_symtab_users_queued++;
2995 make_cleanup (clear_symtab_users_once, 0);
2996 blewit = 1;
2997 }
2998 else
2999 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3000 name);
3001
3002 free_symtab (s);
3003 }
3004 else
3005 {
3006 /* It is still possible that some breakpoints will be affected
3007 even though no symtab was found, since the file might have
3008 been compiled without debugging, and hence not be associated
3009 with a symtab. In order to handle this correctly, we would need
3010 to keep a list of text address ranges for undebuggable files.
3011 For now, we do nothing, since this is a fairly obscure case. */
3012 ;
3013 }
3014
3015 /* FIXME, what about the minimal symbol table? */
3016 return blewit;
3017 #else
3018 return (0);
3019 #endif
3020 }
3021 \f
3022 /* Allocate and partially fill a partial symtab. It will be
3023 completely filled at the end of the symbol list.
3024
3025 FILENAME is the name of the symbol-file we are reading from. */
3026
3027 struct partial_symtab *
3028 start_psymtab_common (struct objfile *objfile,
3029 struct section_offsets *section_offsets, char *filename,
3030 CORE_ADDR textlow, struct partial_symbol **global_syms,
3031 struct partial_symbol **static_syms)
3032 {
3033 struct partial_symtab *psymtab;
3034
3035 psymtab = allocate_psymtab (filename, objfile);
3036 psymtab->section_offsets = section_offsets;
3037 psymtab->textlow = textlow;
3038 psymtab->texthigh = psymtab->textlow; /* default */
3039 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3040 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
3041 return (psymtab);
3042 }
3043 \f
3044 /* Helper function, initialises partial symbol structure and stashes
3045 it into objfile's bcache. Note that our caching mechanism will
3046 use all fields of struct partial_symbol to determine hash value of the
3047 structure. In other words, having two symbols with the same name but
3048 different domain (or address) is possible and correct. */
3049
3050 static const struct partial_symbol *
3051 add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3052 enum address_class class,
3053 long val, /* Value as a long */
3054 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3055 enum language language, struct objfile *objfile,
3056 int *added)
3057 {
3058 char *buf = name;
3059 /* psymbol is static so that there will be no uninitialized gaps in the
3060 structure which might contain random data, causing cache misses in
3061 bcache. */
3062 static struct partial_symbol psymbol;
3063
3064 if (name[namelength] != '\0')
3065 {
3066 buf = alloca (namelength + 1);
3067 /* Create local copy of the partial symbol */
3068 memcpy (buf, name, namelength);
3069 buf[namelength] = '\0';
3070 }
3071 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3072 if (val != 0)
3073 {
3074 SYMBOL_VALUE (&psymbol) = val;
3075 }
3076 else
3077 {
3078 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3079 }
3080 SYMBOL_SECTION (&psymbol) = 0;
3081 SYMBOL_LANGUAGE (&psymbol) = language;
3082 PSYMBOL_DOMAIN (&psymbol) = domain;
3083 PSYMBOL_CLASS (&psymbol) = class;
3084
3085 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3086
3087 /* Stash the partial symbol away in the cache */
3088 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3089 objfile->psymbol_cache, added);
3090 }
3091
3092 /* Helper function, adds partial symbol to the given partial symbol
3093 list. */
3094
3095 static void
3096 append_psymbol_to_list (struct psymbol_allocation_list *list,
3097 const struct partial_symbol *psym,
3098 struct objfile *objfile)
3099 {
3100 if (list->next >= list->list + list->size)
3101 extend_psymbol_list (list, objfile);
3102 *list->next++ = (struct partial_symbol *) psym;
3103 OBJSTAT (objfile, n_psyms++);
3104 }
3105
3106 /* Add a symbol with a long value to a psymtab.
3107 Since one arg is a struct, we pass in a ptr and deref it (sigh).
3108 Return the partial symbol that has been added. */
3109
3110 /* NOTE: carlton/2003-09-11: The reason why we return the partial
3111 symbol is so that callers can get access to the symbol's demangled
3112 name, which they don't have any cheap way to determine otherwise.
3113 (Currenly, dwarf2read.c is the only file who uses that information,
3114 though it's possible that other readers might in the future.)
3115 Elena wasn't thrilled about that, and I don't blame her, but we
3116 couldn't come up with a better way to get that information. If
3117 it's needed in other situations, we could consider breaking up
3118 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3119 cache. */
3120
3121 const struct partial_symbol *
3122 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
3123 enum address_class class,
3124 struct psymbol_allocation_list *list,
3125 long val, /* Value as a long */
3126 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3127 enum language language, struct objfile *objfile)
3128 {
3129 const struct partial_symbol *psym;
3130
3131 int added;
3132
3133 /* Stash the partial symbol away in the cache */
3134 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3135 val, coreaddr, language, objfile, &added);
3136
3137 /* Do not duplicate global partial symbols. */
3138 if (list == &objfile->global_psymbols
3139 && !added)
3140 return psym;
3141
3142 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3143 append_psymbol_to_list (list, psym, objfile);
3144 return psym;
3145 }
3146
3147 /* Initialize storage for partial symbols. */
3148
3149 void
3150 init_psymbol_list (struct objfile *objfile, int total_symbols)
3151 {
3152 /* Free any previously allocated psymbol lists. */
3153
3154 if (objfile->global_psymbols.list)
3155 {
3156 xfree (objfile->global_psymbols.list);
3157 }
3158 if (objfile->static_psymbols.list)
3159 {
3160 xfree (objfile->static_psymbols.list);
3161 }
3162
3163 /* Current best guess is that approximately a twentieth
3164 of the total symbols (in a debugging file) are global or static
3165 oriented symbols */
3166
3167 objfile->global_psymbols.size = total_symbols / 10;
3168 objfile->static_psymbols.size = total_symbols / 10;
3169
3170 if (objfile->global_psymbols.size > 0)
3171 {
3172 objfile->global_psymbols.next =
3173 objfile->global_psymbols.list = (struct partial_symbol **)
3174 xmalloc ((objfile->global_psymbols.size
3175 * sizeof (struct partial_symbol *)));
3176 }
3177 if (objfile->static_psymbols.size > 0)
3178 {
3179 objfile->static_psymbols.next =
3180 objfile->static_psymbols.list = (struct partial_symbol **)
3181 xmalloc ((objfile->static_psymbols.size
3182 * sizeof (struct partial_symbol *)));
3183 }
3184 }
3185
3186 /* OVERLAYS:
3187 The following code implements an abstraction for debugging overlay sections.
3188
3189 The target model is as follows:
3190 1) The gnu linker will permit multiple sections to be mapped into the
3191 same VMA, each with its own unique LMA (or load address).
3192 2) It is assumed that some runtime mechanism exists for mapping the
3193 sections, one by one, from the load address into the VMA address.
3194 3) This code provides a mechanism for gdb to keep track of which
3195 sections should be considered to be mapped from the VMA to the LMA.
3196 This information is used for symbol lookup, and memory read/write.
3197 For instance, if a section has been mapped then its contents
3198 should be read from the VMA, otherwise from the LMA.
3199
3200 Two levels of debugger support for overlays are available. One is
3201 "manual", in which the debugger relies on the user to tell it which
3202 overlays are currently mapped. This level of support is
3203 implemented entirely in the core debugger, and the information about
3204 whether a section is mapped is kept in the objfile->obj_section table.
3205
3206 The second level of support is "automatic", and is only available if
3207 the target-specific code provides functionality to read the target's
3208 overlay mapping table, and translate its contents for the debugger
3209 (by updating the mapped state information in the obj_section tables).
3210
3211 The interface is as follows:
3212 User commands:
3213 overlay map <name> -- tell gdb to consider this section mapped
3214 overlay unmap <name> -- tell gdb to consider this section unmapped
3215 overlay list -- list the sections that GDB thinks are mapped
3216 overlay read-target -- get the target's state of what's mapped
3217 overlay off/manual/auto -- set overlay debugging state
3218 Functional interface:
3219 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3220 section, return that section.
3221 find_pc_overlay(pc): find any overlay section that contains
3222 the pc, either in its VMA or its LMA
3223 overlay_is_mapped(sect): true if overlay is marked as mapped
3224 section_is_overlay(sect): true if section's VMA != LMA
3225 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3226 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3227 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3228 overlay_mapped_address(...): map an address from section's LMA to VMA
3229 overlay_unmapped_address(...): map an address from section's VMA to LMA
3230 symbol_overlayed_address(...): Return a "current" address for symbol:
3231 either in VMA or LMA depending on whether
3232 the symbol's section is currently mapped
3233 */
3234
3235 /* Overlay debugging state: */
3236
3237 enum overlay_debugging_state overlay_debugging = ovly_off;
3238 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3239
3240 /* Function: section_is_overlay (SECTION)
3241 Returns true if SECTION has VMA not equal to LMA, ie.
3242 SECTION is loaded at an address different from where it will "run". */
3243
3244 int
3245 section_is_overlay (asection *section)
3246 {
3247 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3248
3249 if (overlay_debugging)
3250 if (section && section->lma != 0 &&
3251 section->vma != section->lma)
3252 return 1;
3253
3254 return 0;
3255 }
3256
3257 /* Function: overlay_invalidate_all (void)
3258 Invalidate the mapped state of all overlay sections (mark it as stale). */
3259
3260 static void
3261 overlay_invalidate_all (void)
3262 {
3263 struct objfile *objfile;
3264 struct obj_section *sect;
3265
3266 ALL_OBJSECTIONS (objfile, sect)
3267 if (section_is_overlay (sect->the_bfd_section))
3268 sect->ovly_mapped = -1;
3269 }
3270
3271 /* Function: overlay_is_mapped (SECTION)
3272 Returns true if section is an overlay, and is currently mapped.
3273 Private: public access is thru function section_is_mapped.
3274
3275 Access to the ovly_mapped flag is restricted to this function, so
3276 that we can do automatic update. If the global flag
3277 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3278 overlay_invalidate_all. If the mapped state of the particular
3279 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3280
3281 static int
3282 overlay_is_mapped (struct obj_section *osect)
3283 {
3284 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3285 return 0;
3286
3287 switch (overlay_debugging)
3288 {
3289 default:
3290 case ovly_off:
3291 return 0; /* overlay debugging off */
3292 case ovly_auto: /* overlay debugging automatic */
3293 /* Unles there is a gdbarch_overlay_update function,
3294 there's really nothing useful to do here (can't really go auto) */
3295 if (gdbarch_overlay_update_p (current_gdbarch))
3296 {
3297 if (overlay_cache_invalid)
3298 {
3299 overlay_invalidate_all ();
3300 overlay_cache_invalid = 0;
3301 }
3302 if (osect->ovly_mapped == -1)
3303 gdbarch_overlay_update (current_gdbarch, osect);
3304 }
3305 /* fall thru to manual case */
3306 case ovly_on: /* overlay debugging manual */
3307 return osect->ovly_mapped == 1;
3308 }
3309 }
3310
3311 /* Function: section_is_mapped
3312 Returns true if section is an overlay, and is currently mapped. */
3313
3314 int
3315 section_is_mapped (asection *section)
3316 {
3317 struct objfile *objfile;
3318 struct obj_section *osect;
3319
3320 if (overlay_debugging)
3321 if (section && section_is_overlay (section))
3322 ALL_OBJSECTIONS (objfile, osect)
3323 if (osect->the_bfd_section == section)
3324 return overlay_is_mapped (osect);
3325
3326 return 0;
3327 }
3328
3329 /* Function: pc_in_unmapped_range
3330 If PC falls into the lma range of SECTION, return true, else false. */
3331
3332 CORE_ADDR
3333 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
3334 {
3335 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3336
3337 int size;
3338
3339 if (overlay_debugging)
3340 if (section && section_is_overlay (section))
3341 {
3342 size = bfd_get_section_size (section);
3343 if (section->lma <= pc && pc < section->lma + size)
3344 return 1;
3345 }
3346 return 0;
3347 }
3348
3349 /* Function: pc_in_mapped_range
3350 If PC falls into the vma range of SECTION, return true, else false. */
3351
3352 CORE_ADDR
3353 pc_in_mapped_range (CORE_ADDR pc, asection *section)
3354 {
3355 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3356
3357 int size;
3358
3359 if (overlay_debugging)
3360 if (section && section_is_overlay (section))
3361 {
3362 size = bfd_get_section_size (section);
3363 if (section->vma <= pc && pc < section->vma + size)
3364 return 1;
3365 }
3366 return 0;
3367 }
3368
3369
3370 /* Return true if the mapped ranges of sections A and B overlap, false
3371 otherwise. */
3372 static int
3373 sections_overlap (asection *a, asection *b)
3374 {
3375 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3376
3377 CORE_ADDR a_start = a->vma;
3378 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
3379 CORE_ADDR b_start = b->vma;
3380 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
3381
3382 return (a_start < b_end && b_start < a_end);
3383 }
3384
3385 /* Function: overlay_unmapped_address (PC, SECTION)
3386 Returns the address corresponding to PC in the unmapped (load) range.
3387 May be the same as PC. */
3388
3389 CORE_ADDR
3390 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3391 {
3392 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3393
3394 if (overlay_debugging)
3395 if (section && section_is_overlay (section) &&
3396 pc_in_mapped_range (pc, section))
3397 return pc + section->lma - section->vma;
3398
3399 return pc;
3400 }
3401
3402 /* Function: overlay_mapped_address (PC, SECTION)
3403 Returns the address corresponding to PC in the mapped (runtime) range.
3404 May be the same as PC. */
3405
3406 CORE_ADDR
3407 overlay_mapped_address (CORE_ADDR pc, asection *section)
3408 {
3409 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3410
3411 if (overlay_debugging)
3412 if (section && section_is_overlay (section) &&
3413 pc_in_unmapped_range (pc, section))
3414 return pc + section->vma - section->lma;
3415
3416 return pc;
3417 }
3418
3419
3420 /* Function: symbol_overlayed_address
3421 Return one of two addresses (relative to the VMA or to the LMA),
3422 depending on whether the section is mapped or not. */
3423
3424 CORE_ADDR
3425 symbol_overlayed_address (CORE_ADDR address, asection *section)
3426 {
3427 if (overlay_debugging)
3428 {
3429 /* If the symbol has no section, just return its regular address. */
3430 if (section == 0)
3431 return address;
3432 /* If the symbol's section is not an overlay, just return its address */
3433 if (!section_is_overlay (section))
3434 return address;
3435 /* If the symbol's section is mapped, just return its address */
3436 if (section_is_mapped (section))
3437 return address;
3438 /*
3439 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3440 * then return its LOADED address rather than its vma address!!
3441 */
3442 return overlay_unmapped_address (address, section);
3443 }
3444 return address;
3445 }
3446
3447 /* Function: find_pc_overlay (PC)
3448 Return the best-match overlay section for PC:
3449 If PC matches a mapped overlay section's VMA, return that section.
3450 Else if PC matches an unmapped section's VMA, return that section.
3451 Else if PC matches an unmapped section's LMA, return that section. */
3452
3453 asection *
3454 find_pc_overlay (CORE_ADDR pc)
3455 {
3456 struct objfile *objfile;
3457 struct obj_section *osect, *best_match = NULL;
3458
3459 if (overlay_debugging)
3460 ALL_OBJSECTIONS (objfile, osect)
3461 if (section_is_overlay (osect->the_bfd_section))
3462 {
3463 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3464 {
3465 if (overlay_is_mapped (osect))
3466 return osect->the_bfd_section;
3467 else
3468 best_match = osect;
3469 }
3470 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3471 best_match = osect;
3472 }
3473 return best_match ? best_match->the_bfd_section : NULL;
3474 }
3475
3476 /* Function: find_pc_mapped_section (PC)
3477 If PC falls into the VMA address range of an overlay section that is
3478 currently marked as MAPPED, return that section. Else return NULL. */
3479
3480 asection *
3481 find_pc_mapped_section (CORE_ADDR pc)
3482 {
3483 struct objfile *objfile;
3484 struct obj_section *osect;
3485
3486 if (overlay_debugging)
3487 ALL_OBJSECTIONS (objfile, osect)
3488 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3489 overlay_is_mapped (osect))
3490 return osect->the_bfd_section;
3491
3492 return NULL;
3493 }
3494
3495 /* Function: list_overlays_command
3496 Print a list of mapped sections and their PC ranges */
3497
3498 void
3499 list_overlays_command (char *args, int from_tty)
3500 {
3501 int nmapped = 0;
3502 struct objfile *objfile;
3503 struct obj_section *osect;
3504
3505 if (overlay_debugging)
3506 ALL_OBJSECTIONS (objfile, osect)
3507 if (overlay_is_mapped (osect))
3508 {
3509 const char *name;
3510 bfd_vma lma, vma;
3511 int size;
3512
3513 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3514 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3515 size = bfd_get_section_size (osect->the_bfd_section);
3516 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3517
3518 printf_filtered ("Section %s, loaded at ", name);
3519 fputs_filtered (paddress (lma), gdb_stdout);
3520 puts_filtered (" - ");
3521 fputs_filtered (paddress (lma + size), gdb_stdout);
3522 printf_filtered (", mapped at ");
3523 fputs_filtered (paddress (vma), gdb_stdout);
3524 puts_filtered (" - ");
3525 fputs_filtered (paddress (vma + size), gdb_stdout);
3526 puts_filtered ("\n");
3527
3528 nmapped++;
3529 }
3530 if (nmapped == 0)
3531 printf_filtered (_("No sections are mapped.\n"));
3532 }
3533
3534 /* Function: map_overlay_command
3535 Mark the named section as mapped (ie. residing at its VMA address). */
3536
3537 void
3538 map_overlay_command (char *args, int from_tty)
3539 {
3540 struct objfile *objfile, *objfile2;
3541 struct obj_section *sec, *sec2;
3542 asection *bfdsec;
3543
3544 if (!overlay_debugging)
3545 error (_("\
3546 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3547 the 'overlay manual' command."));
3548
3549 if (args == 0 || *args == 0)
3550 error (_("Argument required: name of an overlay section"));
3551
3552 /* First, find a section matching the user supplied argument */
3553 ALL_OBJSECTIONS (objfile, sec)
3554 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3555 {
3556 /* Now, check to see if the section is an overlay. */
3557 bfdsec = sec->the_bfd_section;
3558 if (!section_is_overlay (bfdsec))
3559 continue; /* not an overlay section */
3560
3561 /* Mark the overlay as "mapped" */
3562 sec->ovly_mapped = 1;
3563
3564 /* Next, make a pass and unmap any sections that are
3565 overlapped by this new section: */
3566 ALL_OBJSECTIONS (objfile2, sec2)
3567 if (sec2->ovly_mapped
3568 && sec != sec2
3569 && sec->the_bfd_section != sec2->the_bfd_section
3570 && sections_overlap (sec->the_bfd_section,
3571 sec2->the_bfd_section))
3572 {
3573 if (info_verbose)
3574 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3575 bfd_section_name (objfile->obfd,
3576 sec2->the_bfd_section));
3577 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3578 }
3579 return;
3580 }
3581 error (_("No overlay section called %s"), args);
3582 }
3583
3584 /* Function: unmap_overlay_command
3585 Mark the overlay section as unmapped
3586 (ie. resident in its LMA address range, rather than the VMA range). */
3587
3588 void
3589 unmap_overlay_command (char *args, int from_tty)
3590 {
3591 struct objfile *objfile;
3592 struct obj_section *sec;
3593
3594 if (!overlay_debugging)
3595 error (_("\
3596 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3597 the 'overlay manual' command."));
3598
3599 if (args == 0 || *args == 0)
3600 error (_("Argument required: name of an overlay section"));
3601
3602 /* First, find a section matching the user supplied argument */
3603 ALL_OBJSECTIONS (objfile, sec)
3604 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3605 {
3606 if (!sec->ovly_mapped)
3607 error (_("Section %s is not mapped"), args);
3608 sec->ovly_mapped = 0;
3609 return;
3610 }
3611 error (_("No overlay section called %s"), args);
3612 }
3613
3614 /* Function: overlay_auto_command
3615 A utility command to turn on overlay debugging.
3616 Possibly this should be done via a set/show command. */
3617
3618 static void
3619 overlay_auto_command (char *args, int from_tty)
3620 {
3621 overlay_debugging = ovly_auto;
3622 enable_overlay_breakpoints ();
3623 if (info_verbose)
3624 printf_unfiltered (_("Automatic overlay debugging enabled."));
3625 }
3626
3627 /* Function: overlay_manual_command
3628 A utility command to turn on overlay debugging.
3629 Possibly this should be done via a set/show command. */
3630
3631 static void
3632 overlay_manual_command (char *args, int from_tty)
3633 {
3634 overlay_debugging = ovly_on;
3635 disable_overlay_breakpoints ();
3636 if (info_verbose)
3637 printf_unfiltered (_("Overlay debugging enabled."));
3638 }
3639
3640 /* Function: overlay_off_command
3641 A utility command to turn on overlay debugging.
3642 Possibly this should be done via a set/show command. */
3643
3644 static void
3645 overlay_off_command (char *args, int from_tty)
3646 {
3647 overlay_debugging = ovly_off;
3648 disable_overlay_breakpoints ();
3649 if (info_verbose)
3650 printf_unfiltered (_("Overlay debugging disabled."));
3651 }
3652
3653 static void
3654 overlay_load_command (char *args, int from_tty)
3655 {
3656 if (gdbarch_overlay_update_p (current_gdbarch))
3657 gdbarch_overlay_update (current_gdbarch, NULL);
3658 else
3659 error (_("This target does not know how to read its overlay state."));
3660 }
3661
3662 /* Function: overlay_command
3663 A place-holder for a mis-typed command */
3664
3665 /* Command list chain containing all defined "overlay" subcommands. */
3666 struct cmd_list_element *overlaylist;
3667
3668 static void
3669 overlay_command (char *args, int from_tty)
3670 {
3671 printf_unfiltered
3672 ("\"overlay\" must be followed by the name of an overlay command.\n");
3673 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3674 }
3675
3676
3677 /* Target Overlays for the "Simplest" overlay manager:
3678
3679 This is GDB's default target overlay layer. It works with the
3680 minimal overlay manager supplied as an example by Cygnus. The
3681 entry point is via a function pointer "gdbarch_overlay_update",
3682 so targets that use a different runtime overlay manager can
3683 substitute their own overlay_update function and take over the
3684 function pointer.
3685
3686 The overlay_update function pokes around in the target's data structures
3687 to see what overlays are mapped, and updates GDB's overlay mapping with
3688 this information.
3689
3690 In this simple implementation, the target data structures are as follows:
3691 unsigned _novlys; /# number of overlay sections #/
3692 unsigned _ovly_table[_novlys][4] = {
3693 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3694 {..., ..., ..., ...},
3695 }
3696 unsigned _novly_regions; /# number of overlay regions #/
3697 unsigned _ovly_region_table[_novly_regions][3] = {
3698 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3699 {..., ..., ...},
3700 }
3701 These functions will attempt to update GDB's mappedness state in the
3702 symbol section table, based on the target's mappedness state.
3703
3704 To do this, we keep a cached copy of the target's _ovly_table, and
3705 attempt to detect when the cached copy is invalidated. The main
3706 entry point is "simple_overlay_update(SECT), which looks up SECT in
3707 the cached table and re-reads only the entry for that section from
3708 the target (whenever possible).
3709 */
3710
3711 /* Cached, dynamically allocated copies of the target data structures: */
3712 static unsigned (*cache_ovly_table)[4] = 0;
3713 #if 0
3714 static unsigned (*cache_ovly_region_table)[3] = 0;
3715 #endif
3716 static unsigned cache_novlys = 0;
3717 #if 0
3718 static unsigned cache_novly_regions = 0;
3719 #endif
3720 static CORE_ADDR cache_ovly_table_base = 0;
3721 #if 0
3722 static CORE_ADDR cache_ovly_region_table_base = 0;
3723 #endif
3724 enum ovly_index
3725 {
3726 VMA, SIZE, LMA, MAPPED
3727 };
3728 #define TARGET_LONG_BYTES (gdbarch_long_bit (current_gdbarch) \
3729 / TARGET_CHAR_BIT)
3730
3731 /* Throw away the cached copy of _ovly_table */
3732 static void
3733 simple_free_overlay_table (void)
3734 {
3735 if (cache_ovly_table)
3736 xfree (cache_ovly_table);
3737 cache_novlys = 0;
3738 cache_ovly_table = NULL;
3739 cache_ovly_table_base = 0;
3740 }
3741
3742 #if 0
3743 /* Throw away the cached copy of _ovly_region_table */
3744 static void
3745 simple_free_overlay_region_table (void)
3746 {
3747 if (cache_ovly_region_table)
3748 xfree (cache_ovly_region_table);
3749 cache_novly_regions = 0;
3750 cache_ovly_region_table = NULL;
3751 cache_ovly_region_table_base = 0;
3752 }
3753 #endif
3754
3755 /* Read an array of ints from the target into a local buffer.
3756 Convert to host order. int LEN is number of ints */
3757 static void
3758 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3759 {
3760 /* FIXME (alloca): Not safe if array is very large. */
3761 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3762 int i;
3763
3764 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3765 for (i = 0; i < len; i++)
3766 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3767 TARGET_LONG_BYTES);
3768 }
3769
3770 /* Find and grab a copy of the target _ovly_table
3771 (and _novlys, which is needed for the table's size) */
3772 static int
3773 simple_read_overlay_table (void)
3774 {
3775 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3776
3777 simple_free_overlay_table ();
3778 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3779 if (! novlys_msym)
3780 {
3781 error (_("Error reading inferior's overlay table: "
3782 "couldn't find `_novlys' variable\n"
3783 "in inferior. Use `overlay manual' mode."));
3784 return 0;
3785 }
3786
3787 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3788 if (! ovly_table_msym)
3789 {
3790 error (_("Error reading inferior's overlay table: couldn't find "
3791 "`_ovly_table' array\n"
3792 "in inferior. Use `overlay manual' mode."));
3793 return 0;
3794 }
3795
3796 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3797 cache_ovly_table
3798 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3799 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3800 read_target_long_array (cache_ovly_table_base,
3801 (unsigned int *) cache_ovly_table,
3802 cache_novlys * 4);
3803
3804 return 1; /* SUCCESS */
3805 }
3806
3807 #if 0
3808 /* Find and grab a copy of the target _ovly_region_table
3809 (and _novly_regions, which is needed for the table's size) */
3810 static int
3811 simple_read_overlay_region_table (void)
3812 {
3813 struct minimal_symbol *msym;
3814
3815 simple_free_overlay_region_table ();
3816 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3817 if (msym != NULL)
3818 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3819 else
3820 return 0; /* failure */
3821 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3822 if (cache_ovly_region_table != NULL)
3823 {
3824 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3825 if (msym != NULL)
3826 {
3827 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3828 read_target_long_array (cache_ovly_region_table_base,
3829 (unsigned int *) cache_ovly_region_table,
3830 cache_novly_regions * 3);
3831 }
3832 else
3833 return 0; /* failure */
3834 }
3835 else
3836 return 0; /* failure */
3837 return 1; /* SUCCESS */
3838 }
3839 #endif
3840
3841 /* Function: simple_overlay_update_1
3842 A helper function for simple_overlay_update. Assuming a cached copy
3843 of _ovly_table exists, look through it to find an entry whose vma,
3844 lma and size match those of OSECT. Re-read the entry and make sure
3845 it still matches OSECT (else the table may no longer be valid).
3846 Set OSECT's mapped state to match the entry. Return: 1 for
3847 success, 0 for failure. */
3848
3849 static int
3850 simple_overlay_update_1 (struct obj_section *osect)
3851 {
3852 int i, size;
3853 bfd *obfd = osect->objfile->obfd;
3854 asection *bsect = osect->the_bfd_section;
3855
3856 size = bfd_get_section_size (osect->the_bfd_section);
3857 for (i = 0; i < cache_novlys; i++)
3858 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3859 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3860 /* && cache_ovly_table[i][SIZE] == size */ )
3861 {
3862 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3863 (unsigned int *) cache_ovly_table[i], 4);
3864 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3865 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3866 /* && cache_ovly_table[i][SIZE] == size */ )
3867 {
3868 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3869 return 1;
3870 }
3871 else /* Warning! Warning! Target's ovly table has changed! */
3872 return 0;
3873 }
3874 return 0;
3875 }
3876
3877 /* Function: simple_overlay_update
3878 If OSECT is NULL, then update all sections' mapped state
3879 (after re-reading the entire target _ovly_table).
3880 If OSECT is non-NULL, then try to find a matching entry in the
3881 cached ovly_table and update only OSECT's mapped state.
3882 If a cached entry can't be found or the cache isn't valid, then
3883 re-read the entire cache, and go ahead and update all sections. */
3884
3885 void
3886 simple_overlay_update (struct obj_section *osect)
3887 {
3888 struct objfile *objfile;
3889
3890 /* Were we given an osect to look up? NULL means do all of them. */
3891 if (osect)
3892 /* Have we got a cached copy of the target's overlay table? */
3893 if (cache_ovly_table != NULL)
3894 /* Does its cached location match what's currently in the symtab? */
3895 if (cache_ovly_table_base ==
3896 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3897 /* Then go ahead and try to look up this single section in the cache */
3898 if (simple_overlay_update_1 (osect))
3899 /* Found it! We're done. */
3900 return;
3901
3902 /* Cached table no good: need to read the entire table anew.
3903 Or else we want all the sections, in which case it's actually
3904 more efficient to read the whole table in one block anyway. */
3905
3906 if (! simple_read_overlay_table ())
3907 return;
3908
3909 /* Now may as well update all sections, even if only one was requested. */
3910 ALL_OBJSECTIONS (objfile, osect)
3911 if (section_is_overlay (osect->the_bfd_section))
3912 {
3913 int i, size;
3914 bfd *obfd = osect->objfile->obfd;
3915 asection *bsect = osect->the_bfd_section;
3916
3917 size = bfd_get_section_size (bsect);
3918 for (i = 0; i < cache_novlys; i++)
3919 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3920 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3921 /* && cache_ovly_table[i][SIZE] == size */ )
3922 { /* obj_section matches i'th entry in ovly_table */
3923 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3924 break; /* finished with inner for loop: break out */
3925 }
3926 }
3927 }
3928
3929 /* Set the output sections and output offsets for section SECTP in
3930 ABFD. The relocation code in BFD will read these offsets, so we
3931 need to be sure they're initialized. We map each section to itself,
3932 with no offset; this means that SECTP->vma will be honored. */
3933
3934 static void
3935 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3936 {
3937 sectp->output_section = sectp;
3938 sectp->output_offset = 0;
3939 }
3940
3941 /* Relocate the contents of a debug section SECTP in ABFD. The
3942 contents are stored in BUF if it is non-NULL, or returned in a
3943 malloc'd buffer otherwise.
3944
3945 For some platforms and debug info formats, shared libraries contain
3946 relocations against the debug sections (particularly for DWARF-2;
3947 one affected platform is PowerPC GNU/Linux, although it depends on
3948 the version of the linker in use). Also, ELF object files naturally
3949 have unresolved relocations for their debug sections. We need to apply
3950 the relocations in order to get the locations of symbols correct. */
3951
3952 bfd_byte *
3953 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3954 {
3955 /* We're only interested in debugging sections with relocation
3956 information. */
3957 if ((sectp->flags & SEC_RELOC) == 0)
3958 return NULL;
3959 if ((sectp->flags & SEC_DEBUGGING) == 0)
3960 return NULL;
3961
3962 /* We will handle section offsets properly elsewhere, so relocate as if
3963 all sections begin at 0. */
3964 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3965
3966 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3967 }
3968
3969 struct symfile_segment_data *
3970 get_symfile_segment_data (bfd *abfd)
3971 {
3972 struct sym_fns *sf = find_sym_fns (abfd);
3973
3974 if (sf == NULL)
3975 return NULL;
3976
3977 return sf->sym_segments (abfd);
3978 }
3979
3980 void
3981 free_symfile_segment_data (struct symfile_segment_data *data)
3982 {
3983 xfree (data->segment_bases);
3984 xfree (data->segment_sizes);
3985 xfree (data->segment_info);
3986 xfree (data);
3987 }
3988
3989
3990 /* Given:
3991 - DATA, containing segment addresses from the object file ABFD, and
3992 the mapping from ABFD's sections onto the segments that own them,
3993 and
3994 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3995 segment addresses reported by the target,
3996 store the appropriate offsets for each section in OFFSETS.
3997
3998 If there are fewer entries in SEGMENT_BASES than there are segments
3999 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4000
4001 If there are more entries, then ignore the extra. The target may
4002 not be able to distinguish between an empty data segment and a
4003 missing data segment; a missing text segment is less plausible. */
4004 int
4005 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4006 struct section_offsets *offsets,
4007 int num_segment_bases,
4008 const CORE_ADDR *segment_bases)
4009 {
4010 int i;
4011 asection *sect;
4012
4013 /* It doesn't make sense to call this function unless you have some
4014 segment base addresses. */
4015 gdb_assert (segment_bases > 0);
4016
4017 /* If we do not have segment mappings for the object file, we
4018 can not relocate it by segments. */
4019 gdb_assert (data != NULL);
4020 gdb_assert (data->num_segments > 0);
4021
4022 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4023 {
4024 int which = data->segment_info[i];
4025
4026 gdb_assert (0 <= which && which <= data->num_segments);
4027
4028 /* Don't bother computing offsets for sections that aren't
4029 loaded as part of any segment. */
4030 if (! which)
4031 continue;
4032
4033 /* Use the last SEGMENT_BASES entry as the address of any extra
4034 segments mentioned in DATA->segment_info. */
4035 if (which > num_segment_bases)
4036 which = num_segment_bases;
4037
4038 offsets->offsets[i] = (segment_bases[which - 1]
4039 - data->segment_bases[which - 1]);
4040 }
4041
4042 return 1;
4043 }
4044
4045 static void
4046 symfile_find_segment_sections (struct objfile *objfile)
4047 {
4048 bfd *abfd = objfile->obfd;
4049 int i;
4050 asection *sect;
4051 struct symfile_segment_data *data;
4052
4053 data = get_symfile_segment_data (objfile->obfd);
4054 if (data == NULL)
4055 return;
4056
4057 if (data->num_segments != 1 && data->num_segments != 2)
4058 {
4059 free_symfile_segment_data (data);
4060 return;
4061 }
4062
4063 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4064 {
4065 CORE_ADDR vma;
4066 int which = data->segment_info[i];
4067
4068 if (which == 1)
4069 {
4070 if (objfile->sect_index_text == -1)
4071 objfile->sect_index_text = sect->index;
4072
4073 if (objfile->sect_index_rodata == -1)
4074 objfile->sect_index_rodata = sect->index;
4075 }
4076 else if (which == 2)
4077 {
4078 if (objfile->sect_index_data == -1)
4079 objfile->sect_index_data = sect->index;
4080
4081 if (objfile->sect_index_bss == -1)
4082 objfile->sect_index_bss = sect->index;
4083 }
4084 }
4085
4086 free_symfile_segment_data (data);
4087 }
4088
4089 void
4090 _initialize_symfile (void)
4091 {
4092 struct cmd_list_element *c;
4093
4094 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4095 Load symbol table from executable file FILE.\n\
4096 The `file' command can also load symbol tables, as well as setting the file\n\
4097 to execute."), &cmdlist);
4098 set_cmd_completer (c, filename_completer);
4099
4100 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
4101 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
4102 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
4103 ADDR is the starting address of the file's text.\n\
4104 The optional arguments are section-name section-address pairs and\n\
4105 should be specified if the data and bss segments are not contiguous\n\
4106 with the text. SECT is a section name to be loaded at SECT_ADDR."),
4107 &cmdlist);
4108 set_cmd_completer (c, filename_completer);
4109
4110 c = add_cmd ("add-shared-symbol-files", class_files,
4111 add_shared_symbol_files_command, _("\
4112 Load the symbols from shared objects in the dynamic linker's link map."),
4113 &cmdlist);
4114 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
4115 &cmdlist);
4116
4117 c = add_cmd ("load", class_files, load_command, _("\
4118 Dynamically load FILE into the running program, and record its symbols\n\
4119 for access from GDB.\n\
4120 A load OFFSET may also be given."), &cmdlist);
4121 set_cmd_completer (c, filename_completer);
4122
4123 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4124 &symbol_reloading, _("\
4125 Set dynamic symbol table reloading multiple times in one run."), _("\
4126 Show dynamic symbol table reloading multiple times in one run."), NULL,
4127 NULL,
4128 show_symbol_reloading,
4129 &setlist, &showlist);
4130
4131 add_prefix_cmd ("overlay", class_support, overlay_command,
4132 _("Commands for debugging overlays."), &overlaylist,
4133 "overlay ", 0, &cmdlist);
4134
4135 add_com_alias ("ovly", "overlay", class_alias, 1);
4136 add_com_alias ("ov", "overlay", class_alias, 1);
4137
4138 add_cmd ("map-overlay", class_support, map_overlay_command,
4139 _("Assert that an overlay section is mapped."), &overlaylist);
4140
4141 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4142 _("Assert that an overlay section is unmapped."), &overlaylist);
4143
4144 add_cmd ("list-overlays", class_support, list_overlays_command,
4145 _("List mappings of overlay sections."), &overlaylist);
4146
4147 add_cmd ("manual", class_support, overlay_manual_command,
4148 _("Enable overlay debugging."), &overlaylist);
4149 add_cmd ("off", class_support, overlay_off_command,
4150 _("Disable overlay debugging."), &overlaylist);
4151 add_cmd ("auto", class_support, overlay_auto_command,
4152 _("Enable automatic overlay debugging."), &overlaylist);
4153 add_cmd ("load-target", class_support, overlay_load_command,
4154 _("Read the overlay mapping state from the target."), &overlaylist);
4155
4156 /* Filename extension to source language lookup table: */
4157 init_filename_language_table ();
4158 add_setshow_string_noescape_cmd ("extension-language", class_files,
4159 &ext_args, _("\
4160 Set mapping between filename extension and source language."), _("\
4161 Show mapping between filename extension and source language."), _("\
4162 Usage: set extension-language .foo bar"),
4163 set_ext_lang_command,
4164 show_ext_args,
4165 &setlist, &showlist);
4166
4167 add_info ("extensions", info_ext_lang_command,
4168 _("All filename extensions associated with a source language."));
4169
4170 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4171 &debug_file_directory, _("\
4172 Set the directory where separate debug symbols are searched for."), _("\
4173 Show the directory where separate debug symbols are searched for."), _("\
4174 Separate debug symbols are first searched for in the same\n\
4175 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4176 and lastly at the path of the directory of the binary with\n\
4177 the global debug-file directory prepended."),
4178 NULL,
4179 show_debug_file_directory,
4180 &setlist, &showlist);
4181
4182 add_setshow_boolean_cmd ("symbol-loading", no_class,
4183 &print_symbol_loading, _("\
4184 Set printing of symbol loading messages."), _("\
4185 Show printing of symbol loading messages."), NULL,
4186 NULL,
4187 NULL,
4188 &setprintlist, &showprintlist);
4189 }
This page took 0.172612 seconds and 4 git commands to generate.