2006-02-21 Andrew Stubbs <andrew.stubbs@st.com>
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 #include "defs.h"
27 #include "bfdlink.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcore.h"
31 #include "frame.h"
32 #include "target.h"
33 #include "value.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "source.h"
37 #include "gdbcmd.h"
38 #include "breakpoint.h"
39 #include "language.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "inferior.h" /* for write_pc */
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54
55 #include <sys/types.h>
56 #include <fcntl.h>
57 #include "gdb_string.h"
58 #include "gdb_stat.h"
59 #include <ctype.h>
60 #include <time.h>
61 #include <sys/time.h>
62
63 #ifndef O_BINARY
64 #define O_BINARY 0
65 #endif
66
67 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
68 void (*deprecated_show_load_progress) (const char *section,
69 unsigned long section_sent,
70 unsigned long section_size,
71 unsigned long total_sent,
72 unsigned long total_size);
73 void (*deprecated_pre_add_symbol_hook) (const char *);
74 void (*deprecated_post_add_symbol_hook) (void);
75 void (*deprecated_target_new_objfile_hook) (struct objfile *);
76
77 static void clear_symtab_users_cleanup (void *ignore);
78
79 /* Global variables owned by this file */
80 int readnow_symbol_files; /* Read full symbols immediately */
81
82 /* External variables and functions referenced. */
83
84 extern void report_transfer_performance (unsigned long, time_t, time_t);
85
86 /* Functions this file defines */
87
88 #if 0
89 static int simple_read_overlay_region_table (void);
90 static void simple_free_overlay_region_table (void);
91 #endif
92
93 static void set_initial_language (void);
94
95 static void load_command (char *, int);
96
97 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
98
99 static void add_symbol_file_command (char *, int);
100
101 static void add_shared_symbol_files_command (char *, int);
102
103 static void reread_separate_symbols (struct objfile *objfile);
104
105 static void cashier_psymtab (struct partial_symtab *);
106
107 bfd *symfile_bfd_open (char *);
108
109 int get_section_index (struct objfile *, char *);
110
111 static void find_sym_fns (struct objfile *);
112
113 static void decrement_reading_symtab (void *);
114
115 static void overlay_invalidate_all (void);
116
117 static int overlay_is_mapped (struct obj_section *);
118
119 void list_overlays_command (char *, int);
120
121 void map_overlay_command (char *, int);
122
123 void unmap_overlay_command (char *, int);
124
125 static void overlay_auto_command (char *, int);
126
127 static void overlay_manual_command (char *, int);
128
129 static void overlay_off_command (char *, int);
130
131 static void overlay_load_command (char *, int);
132
133 static void overlay_command (char *, int);
134
135 static void simple_free_overlay_table (void);
136
137 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
138
139 static int simple_read_overlay_table (void);
140
141 static int simple_overlay_update_1 (struct obj_section *);
142
143 static void add_filename_language (char *ext, enum language lang);
144
145 static void info_ext_lang_command (char *args, int from_tty);
146
147 static char *find_separate_debug_file (struct objfile *objfile);
148
149 static void init_filename_language_table (void);
150
151 void _initialize_symfile (void);
152
153 /* List of all available sym_fns. On gdb startup, each object file reader
154 calls add_symtab_fns() to register information on each format it is
155 prepared to read. */
156
157 static struct sym_fns *symtab_fns = NULL;
158
159 /* Flag for whether user will be reloading symbols multiple times.
160 Defaults to ON for VxWorks, otherwise OFF. */
161
162 #ifdef SYMBOL_RELOADING_DEFAULT
163 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
164 #else
165 int symbol_reloading = 0;
166 #endif
167 static void
168 show_symbol_reloading (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170 {
171 fprintf_filtered (file, _("\
172 Dynamic symbol table reloading multiple times in one run is %s.\n"),
173 value);
174 }
175
176
177 /* If non-zero, shared library symbols will be added automatically
178 when the inferior is created, new libraries are loaded, or when
179 attaching to the inferior. This is almost always what users will
180 want to have happen; but for very large programs, the startup time
181 will be excessive, and so if this is a problem, the user can clear
182 this flag and then add the shared library symbols as needed. Note
183 that there is a potential for confusion, since if the shared
184 library symbols are not loaded, commands like "info fun" will *not*
185 report all the functions that are actually present. */
186
187 int auto_solib_add = 1;
188
189 /* For systems that support it, a threshold size in megabytes. If
190 automatically adding a new library's symbol table to those already
191 known to the debugger would cause the total shared library symbol
192 size to exceed this threshhold, then the shlib's symbols are not
193 added. The threshold is ignored if the user explicitly asks for a
194 shlib to be added, such as when using the "sharedlibrary"
195 command. */
196
197 int auto_solib_limit;
198 \f
199
200 /* This compares two partial symbols by names, using strcmp_iw_ordered
201 for the comparison. */
202
203 static int
204 compare_psymbols (const void *s1p, const void *s2p)
205 {
206 struct partial_symbol *const *s1 = s1p;
207 struct partial_symbol *const *s2 = s2p;
208
209 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
210 SYMBOL_SEARCH_NAME (*s2));
211 }
212
213 void
214 sort_pst_symbols (struct partial_symtab *pst)
215 {
216 /* Sort the global list; don't sort the static list */
217
218 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
219 pst->n_global_syms, sizeof (struct partial_symbol *),
220 compare_psymbols);
221 }
222
223 /* Make a null terminated copy of the string at PTR with SIZE characters in
224 the obstack pointed to by OBSTACKP . Returns the address of the copy.
225 Note that the string at PTR does not have to be null terminated, I.E. it
226 may be part of a larger string and we are only saving a substring. */
227
228 char *
229 obsavestring (const char *ptr, int size, struct obstack *obstackp)
230 {
231 char *p = (char *) obstack_alloc (obstackp, size + 1);
232 /* Open-coded memcpy--saves function call time. These strings are usually
233 short. FIXME: Is this really still true with a compiler that can
234 inline memcpy? */
235 {
236 const char *p1 = ptr;
237 char *p2 = p;
238 const char *end = ptr + size;
239 while (p1 != end)
240 *p2++ = *p1++;
241 }
242 p[size] = 0;
243 return p;
244 }
245
246 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
247 in the obstack pointed to by OBSTACKP. */
248
249 char *
250 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
251 const char *s3)
252 {
253 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
254 char *val = (char *) obstack_alloc (obstackp, len);
255 strcpy (val, s1);
256 strcat (val, s2);
257 strcat (val, s3);
258 return val;
259 }
260
261 /* True if we are nested inside psymtab_to_symtab. */
262
263 int currently_reading_symtab = 0;
264
265 static void
266 decrement_reading_symtab (void *dummy)
267 {
268 currently_reading_symtab--;
269 }
270
271 /* Get the symbol table that corresponds to a partial_symtab.
272 This is fast after the first time you do it. In fact, there
273 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
274 case inline. */
275
276 struct symtab *
277 psymtab_to_symtab (struct partial_symtab *pst)
278 {
279 /* If it's been looked up before, return it. */
280 if (pst->symtab)
281 return pst->symtab;
282
283 /* If it has not yet been read in, read it. */
284 if (!pst->readin)
285 {
286 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
287 currently_reading_symtab++;
288 (*pst->read_symtab) (pst);
289 do_cleanups (back_to);
290 }
291
292 return pst->symtab;
293 }
294
295 /* Remember the lowest-addressed loadable section we've seen.
296 This function is called via bfd_map_over_sections.
297
298 In case of equal vmas, the section with the largest size becomes the
299 lowest-addressed loadable section.
300
301 If the vmas and sizes are equal, the last section is considered the
302 lowest-addressed loadable section. */
303
304 void
305 find_lowest_section (bfd *abfd, asection *sect, void *obj)
306 {
307 asection **lowest = (asection **) obj;
308
309 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
310 return;
311 if (!*lowest)
312 *lowest = sect; /* First loadable section */
313 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
314 *lowest = sect; /* A lower loadable section */
315 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
316 && (bfd_section_size (abfd, (*lowest))
317 <= bfd_section_size (abfd, sect)))
318 *lowest = sect;
319 }
320
321 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
322
323 struct section_addr_info *
324 alloc_section_addr_info (size_t num_sections)
325 {
326 struct section_addr_info *sap;
327 size_t size;
328
329 size = (sizeof (struct section_addr_info)
330 + sizeof (struct other_sections) * (num_sections - 1));
331 sap = (struct section_addr_info *) xmalloc (size);
332 memset (sap, 0, size);
333 sap->num_sections = num_sections;
334
335 return sap;
336 }
337
338
339 /* Return a freshly allocated copy of ADDRS. The section names, if
340 any, are also freshly allocated copies of those in ADDRS. */
341 struct section_addr_info *
342 copy_section_addr_info (struct section_addr_info *addrs)
343 {
344 struct section_addr_info *copy
345 = alloc_section_addr_info (addrs->num_sections);
346 int i;
347
348 copy->num_sections = addrs->num_sections;
349 for (i = 0; i < addrs->num_sections; i++)
350 {
351 copy->other[i].addr = addrs->other[i].addr;
352 if (addrs->other[i].name)
353 copy->other[i].name = xstrdup (addrs->other[i].name);
354 else
355 copy->other[i].name = NULL;
356 copy->other[i].sectindex = addrs->other[i].sectindex;
357 }
358
359 return copy;
360 }
361
362
363
364 /* Build (allocate and populate) a section_addr_info struct from
365 an existing section table. */
366
367 extern struct section_addr_info *
368 build_section_addr_info_from_section_table (const struct section_table *start,
369 const struct section_table *end)
370 {
371 struct section_addr_info *sap;
372 const struct section_table *stp;
373 int oidx;
374
375 sap = alloc_section_addr_info (end - start);
376
377 for (stp = start, oidx = 0; stp != end; stp++)
378 {
379 if (bfd_get_section_flags (stp->bfd,
380 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
381 && oidx < end - start)
382 {
383 sap->other[oidx].addr = stp->addr;
384 sap->other[oidx].name
385 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
386 sap->other[oidx].sectindex = stp->the_bfd_section->index;
387 oidx++;
388 }
389 }
390
391 return sap;
392 }
393
394
395 /* Free all memory allocated by build_section_addr_info_from_section_table. */
396
397 extern void
398 free_section_addr_info (struct section_addr_info *sap)
399 {
400 int idx;
401
402 for (idx = 0; idx < sap->num_sections; idx++)
403 if (sap->other[idx].name)
404 xfree (sap->other[idx].name);
405 xfree (sap);
406 }
407
408
409 /* Initialize OBJFILE's sect_index_* members. */
410 static void
411 init_objfile_sect_indices (struct objfile *objfile)
412 {
413 asection *sect;
414 int i;
415
416 sect = bfd_get_section_by_name (objfile->obfd, ".text");
417 if (sect)
418 objfile->sect_index_text = sect->index;
419
420 sect = bfd_get_section_by_name (objfile->obfd, ".data");
421 if (sect)
422 objfile->sect_index_data = sect->index;
423
424 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
425 if (sect)
426 objfile->sect_index_bss = sect->index;
427
428 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
429 if (sect)
430 objfile->sect_index_rodata = sect->index;
431
432 /* This is where things get really weird... We MUST have valid
433 indices for the various sect_index_* members or gdb will abort.
434 So if for example, there is no ".text" section, we have to
435 accomodate that. Except when explicitly adding symbol files at
436 some address, section_offsets contains nothing but zeros, so it
437 doesn't matter which slot in section_offsets the individual
438 sect_index_* members index into. So if they are all zero, it is
439 safe to just point all the currently uninitialized indices to the
440 first slot. */
441
442 for (i = 0; i < objfile->num_sections; i++)
443 {
444 if (ANOFFSET (objfile->section_offsets, i) != 0)
445 {
446 break;
447 }
448 }
449 if (i == objfile->num_sections)
450 {
451 if (objfile->sect_index_text == -1)
452 objfile->sect_index_text = 0;
453 if (objfile->sect_index_data == -1)
454 objfile->sect_index_data = 0;
455 if (objfile->sect_index_bss == -1)
456 objfile->sect_index_bss = 0;
457 if (objfile->sect_index_rodata == -1)
458 objfile->sect_index_rodata = 0;
459 }
460 }
461
462 /* The arguments to place_section. */
463
464 struct place_section_arg
465 {
466 struct section_offsets *offsets;
467 CORE_ADDR lowest;
468 };
469
470 /* Find a unique offset to use for loadable section SECT if
471 the user did not provide an offset. */
472
473 void
474 place_section (bfd *abfd, asection *sect, void *obj)
475 {
476 struct place_section_arg *arg = obj;
477 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
478 int done;
479 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
480
481 /* We are only interested in loadable sections. */
482 if ((bfd_get_section_flags (abfd, sect) & SEC_LOAD) == 0)
483 return;
484
485 /* If the user specified an offset, honor it. */
486 if (offsets[sect->index] != 0)
487 return;
488
489 /* Otherwise, let's try to find a place for the section. */
490 start_addr = (arg->lowest + align - 1) & -align;
491
492 do {
493 asection *cur_sec;
494
495 done = 1;
496
497 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
498 {
499 int indx = cur_sec->index;
500 CORE_ADDR cur_offset;
501
502 /* We don't need to compare against ourself. */
503 if (cur_sec == sect)
504 continue;
505
506 /* We can only conflict with loadable sections. */
507 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_LOAD) == 0)
508 continue;
509
510 /* We do not expect this to happen; just ignore sections in a
511 relocatable file with an assigned VMA. */
512 if (bfd_section_vma (abfd, cur_sec) != 0)
513 continue;
514
515 /* If the section offset is 0, either the section has not been placed
516 yet, or it was the lowest section placed (in which case LOWEST
517 will be past its end). */
518 if (offsets[indx] == 0)
519 continue;
520
521 /* If this section would overlap us, then we must move up. */
522 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
523 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
524 {
525 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
526 start_addr = (start_addr + align - 1) & -align;
527 done = 0;
528 break;
529 }
530
531 /* Otherwise, we appear to be OK. So far. */
532 }
533 }
534 while (!done);
535
536 offsets[sect->index] = start_addr;
537 arg->lowest = start_addr + bfd_get_section_size (sect);
538
539 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
540 }
541
542 /* Parse the user's idea of an offset for dynamic linking, into our idea
543 of how to represent it for fast symbol reading. This is the default
544 version of the sym_fns.sym_offsets function for symbol readers that
545 don't need to do anything special. It allocates a section_offsets table
546 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
547
548 void
549 default_symfile_offsets (struct objfile *objfile,
550 struct section_addr_info *addrs)
551 {
552 int i;
553
554 objfile->num_sections = bfd_count_sections (objfile->obfd);
555 objfile->section_offsets = (struct section_offsets *)
556 obstack_alloc (&objfile->objfile_obstack,
557 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
558 memset (objfile->section_offsets, 0,
559 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
560
561 /* Now calculate offsets for section that were specified by the
562 caller. */
563 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
564 {
565 struct other_sections *osp ;
566
567 osp = &addrs->other[i] ;
568 if (osp->addr == 0)
569 continue;
570
571 /* Record all sections in offsets */
572 /* The section_offsets in the objfile are here filled in using
573 the BFD index. */
574 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
575 }
576
577 /* For relocatable files, all loadable sections will start at zero.
578 The zero is meaningless, so try to pick arbitrary addresses such
579 that no loadable sections overlap. This algorithm is quadratic,
580 but the number of sections in a single object file is generally
581 small. */
582 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
583 {
584 struct place_section_arg arg;
585 arg.offsets = objfile->section_offsets;
586 arg.lowest = 0;
587 bfd_map_over_sections (objfile->obfd, place_section, &arg);
588 }
589
590 /* Remember the bfd indexes for the .text, .data, .bss and
591 .rodata sections. */
592 init_objfile_sect_indices (objfile);
593 }
594
595
596 /* Process a symbol file, as either the main file or as a dynamically
597 loaded file.
598
599 OBJFILE is where the symbols are to be read from.
600
601 ADDRS is the list of section load addresses. If the user has given
602 an 'add-symbol-file' command, then this is the list of offsets and
603 addresses he or she provided as arguments to the command; or, if
604 we're handling a shared library, these are the actual addresses the
605 sections are loaded at, according to the inferior's dynamic linker
606 (as gleaned by GDB's shared library code). We convert each address
607 into an offset from the section VMA's as it appears in the object
608 file, and then call the file's sym_offsets function to convert this
609 into a format-specific offset table --- a `struct section_offsets'.
610 If ADDRS is non-zero, OFFSETS must be zero.
611
612 OFFSETS is a table of section offsets already in the right
613 format-specific representation. NUM_OFFSETS is the number of
614 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
615 assume this is the proper table the call to sym_offsets described
616 above would produce. Instead of calling sym_offsets, we just dump
617 it right into objfile->section_offsets. (When we're re-reading
618 symbols from an objfile, we don't have the original load address
619 list any more; all we have is the section offset table.) If
620 OFFSETS is non-zero, ADDRS must be zero.
621
622 MAINLINE is nonzero if this is the main symbol file, or zero if
623 it's an extra symbol file such as dynamically loaded code.
624
625 VERBO is nonzero if the caller has printed a verbose message about
626 the symbol reading (and complaints can be more terse about it). */
627
628 void
629 syms_from_objfile (struct objfile *objfile,
630 struct section_addr_info *addrs,
631 struct section_offsets *offsets,
632 int num_offsets,
633 int mainline,
634 int verbo)
635 {
636 struct section_addr_info *local_addr = NULL;
637 struct cleanup *old_chain;
638
639 gdb_assert (! (addrs && offsets));
640
641 init_entry_point_info (objfile);
642 find_sym_fns (objfile);
643
644 if (objfile->sf == NULL)
645 return; /* No symbols. */
646
647 /* Make sure that partially constructed symbol tables will be cleaned up
648 if an error occurs during symbol reading. */
649 old_chain = make_cleanup_free_objfile (objfile);
650
651 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
652 list. We now establish the convention that an addr of zero means
653 no load address was specified. */
654 if (! addrs && ! offsets)
655 {
656 local_addr
657 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
658 make_cleanup (xfree, local_addr);
659 addrs = local_addr;
660 }
661
662 /* Now either addrs or offsets is non-zero. */
663
664 if (mainline)
665 {
666 /* We will modify the main symbol table, make sure that all its users
667 will be cleaned up if an error occurs during symbol reading. */
668 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
669
670 /* Since no error yet, throw away the old symbol table. */
671
672 if (symfile_objfile != NULL)
673 {
674 free_objfile (symfile_objfile);
675 symfile_objfile = NULL;
676 }
677
678 /* Currently we keep symbols from the add-symbol-file command.
679 If the user wants to get rid of them, they should do "symbol-file"
680 without arguments first. Not sure this is the best behavior
681 (PR 2207). */
682
683 (*objfile->sf->sym_new_init) (objfile);
684 }
685
686 /* Convert addr into an offset rather than an absolute address.
687 We find the lowest address of a loaded segment in the objfile,
688 and assume that <addr> is where that got loaded.
689
690 We no longer warn if the lowest section is not a text segment (as
691 happens for the PA64 port. */
692 if (!mainline && addrs && addrs->other[0].name)
693 {
694 asection *lower_sect;
695 asection *sect;
696 CORE_ADDR lower_offset;
697 int i;
698
699 /* Find lowest loadable section to be used as starting point for
700 continguous sections. FIXME!! won't work without call to find
701 .text first, but this assumes text is lowest section. */
702 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
703 if (lower_sect == NULL)
704 bfd_map_over_sections (objfile->obfd, find_lowest_section,
705 &lower_sect);
706 if (lower_sect == NULL)
707 warning (_("no loadable sections found in added symbol-file %s"),
708 objfile->name);
709 else
710 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
711 warning (_("Lowest section in %s is %s at %s"),
712 objfile->name,
713 bfd_section_name (objfile->obfd, lower_sect),
714 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
715 if (lower_sect != NULL)
716 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
717 else
718 lower_offset = 0;
719
720 /* Calculate offsets for the loadable sections.
721 FIXME! Sections must be in order of increasing loadable section
722 so that contiguous sections can use the lower-offset!!!
723
724 Adjust offsets if the segments are not contiguous.
725 If the section is contiguous, its offset should be set to
726 the offset of the highest loadable section lower than it
727 (the loadable section directly below it in memory).
728 this_offset = lower_offset = lower_addr - lower_orig_addr */
729
730 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
731 {
732 if (addrs->other[i].addr != 0)
733 {
734 sect = bfd_get_section_by_name (objfile->obfd,
735 addrs->other[i].name);
736 if (sect)
737 {
738 addrs->other[i].addr
739 -= bfd_section_vma (objfile->obfd, sect);
740 lower_offset = addrs->other[i].addr;
741 /* This is the index used by BFD. */
742 addrs->other[i].sectindex = sect->index ;
743 }
744 else
745 {
746 warning (_("section %s not found in %s"),
747 addrs->other[i].name,
748 objfile->name);
749 addrs->other[i].addr = 0;
750 }
751 }
752 else
753 addrs->other[i].addr = lower_offset;
754 }
755 }
756
757 /* Initialize symbol reading routines for this objfile, allow complaints to
758 appear for this new file, and record how verbose to be, then do the
759 initial symbol reading for this file. */
760
761 (*objfile->sf->sym_init) (objfile);
762 clear_complaints (&symfile_complaints, 1, verbo);
763
764 if (addrs)
765 (*objfile->sf->sym_offsets) (objfile, addrs);
766 else
767 {
768 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
769
770 /* Just copy in the offset table directly as given to us. */
771 objfile->num_sections = num_offsets;
772 objfile->section_offsets
773 = ((struct section_offsets *)
774 obstack_alloc (&objfile->objfile_obstack, size));
775 memcpy (objfile->section_offsets, offsets, size);
776
777 init_objfile_sect_indices (objfile);
778 }
779
780 #ifndef DEPRECATED_IBM6000_TARGET
781 /* This is a SVR4/SunOS specific hack, I think. In any event, it
782 screws RS/6000. sym_offsets should be doing this sort of thing,
783 because it knows the mapping between bfd sections and
784 section_offsets. */
785 /* This is a hack. As far as I can tell, section offsets are not
786 target dependent. They are all set to addr with a couple of
787 exceptions. The exceptions are sysvr4 shared libraries, whose
788 offsets are kept in solib structures anyway and rs6000 xcoff
789 which handles shared libraries in a completely unique way.
790
791 Section offsets are built similarly, except that they are built
792 by adding addr in all cases because there is no clear mapping
793 from section_offsets into actual sections. Note that solib.c
794 has a different algorithm for finding section offsets.
795
796 These should probably all be collapsed into some target
797 independent form of shared library support. FIXME. */
798
799 if (addrs)
800 {
801 struct obj_section *s;
802
803 /* Map section offsets in "addr" back to the object's
804 sections by comparing the section names with bfd's
805 section names. Then adjust the section address by
806 the offset. */ /* for gdb/13815 */
807
808 ALL_OBJFILE_OSECTIONS (objfile, s)
809 {
810 CORE_ADDR s_addr = 0;
811 int i;
812
813 for (i = 0;
814 !s_addr && i < addrs->num_sections && addrs->other[i].name;
815 i++)
816 if (strcmp (bfd_section_name (s->objfile->obfd,
817 s->the_bfd_section),
818 addrs->other[i].name) == 0)
819 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
820
821 s->addr -= s->offset;
822 s->addr += s_addr;
823 s->endaddr -= s->offset;
824 s->endaddr += s_addr;
825 s->offset += s_addr;
826 }
827 }
828 #endif /* not DEPRECATED_IBM6000_TARGET */
829
830 (*objfile->sf->sym_read) (objfile, mainline);
831
832 /* Don't allow char * to have a typename (else would get caddr_t).
833 Ditto void *. FIXME: Check whether this is now done by all the
834 symbol readers themselves (many of them now do), and if so remove
835 it from here. */
836
837 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
838 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
839
840 /* Mark the objfile has having had initial symbol read attempted. Note
841 that this does not mean we found any symbols... */
842
843 objfile->flags |= OBJF_SYMS;
844
845 /* Discard cleanups as symbol reading was successful. */
846
847 discard_cleanups (old_chain);
848 }
849
850 /* Perform required actions after either reading in the initial
851 symbols for a new objfile, or mapping in the symbols from a reusable
852 objfile. */
853
854 void
855 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
856 {
857
858 /* If this is the main symbol file we have to clean up all users of the
859 old main symbol file. Otherwise it is sufficient to fixup all the
860 breakpoints that may have been redefined by this symbol file. */
861 if (mainline)
862 {
863 /* OK, make it the "real" symbol file. */
864 symfile_objfile = objfile;
865
866 clear_symtab_users ();
867 }
868 else
869 {
870 breakpoint_re_set ();
871 }
872
873 /* We're done reading the symbol file; finish off complaints. */
874 clear_complaints (&symfile_complaints, 0, verbo);
875 }
876
877 /* Process a symbol file, as either the main file or as a dynamically
878 loaded file.
879
880 ABFD is a BFD already open on the file, as from symfile_bfd_open.
881 This BFD will be closed on error, and is always consumed by this function.
882
883 FROM_TTY says how verbose to be.
884
885 MAINLINE specifies whether this is the main symbol file, or whether
886 it's an extra symbol file such as dynamically loaded code.
887
888 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
889 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
890 non-zero.
891
892 Upon success, returns a pointer to the objfile that was added.
893 Upon failure, jumps back to command level (never returns). */
894 static struct objfile *
895 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
896 struct section_addr_info *addrs,
897 struct section_offsets *offsets,
898 int num_offsets,
899 int mainline, int flags)
900 {
901 struct objfile *objfile;
902 struct partial_symtab *psymtab;
903 char *debugfile;
904 struct section_addr_info *orig_addrs = NULL;
905 struct cleanup *my_cleanups;
906 const char *name = bfd_get_filename (abfd);
907
908 my_cleanups = make_cleanup_bfd_close (abfd);
909
910 /* Give user a chance to burp if we'd be
911 interactively wiping out any existing symbols. */
912
913 if ((have_full_symbols () || have_partial_symbols ())
914 && mainline
915 && from_tty
916 && !query ("Load new symbol table from \"%s\"? ", name))
917 error (_("Not confirmed."));
918
919 objfile = allocate_objfile (abfd, flags);
920 discard_cleanups (my_cleanups);
921
922 if (addrs)
923 {
924 orig_addrs = copy_section_addr_info (addrs);
925 make_cleanup_free_section_addr_info (orig_addrs);
926 }
927
928 /* We either created a new mapped symbol table, mapped an existing
929 symbol table file which has not had initial symbol reading
930 performed, or need to read an unmapped symbol table. */
931 if (from_tty || info_verbose)
932 {
933 if (deprecated_pre_add_symbol_hook)
934 deprecated_pre_add_symbol_hook (name);
935 else
936 {
937 printf_unfiltered (_("Reading symbols from %s..."), name);
938 wrap_here ("");
939 gdb_flush (gdb_stdout);
940 }
941 }
942 syms_from_objfile (objfile, addrs, offsets, num_offsets,
943 mainline, from_tty);
944
945 /* We now have at least a partial symbol table. Check to see if the
946 user requested that all symbols be read on initial access via either
947 the gdb startup command line or on a per symbol file basis. Expand
948 all partial symbol tables for this objfile if so. */
949
950 if ((flags & OBJF_READNOW) || readnow_symbol_files)
951 {
952 if (from_tty || info_verbose)
953 {
954 printf_unfiltered (_("expanding to full symbols..."));
955 wrap_here ("");
956 gdb_flush (gdb_stdout);
957 }
958
959 for (psymtab = objfile->psymtabs;
960 psymtab != NULL;
961 psymtab = psymtab->next)
962 {
963 psymtab_to_symtab (psymtab);
964 }
965 }
966
967 debugfile = find_separate_debug_file (objfile);
968 if (debugfile)
969 {
970 if (addrs != NULL)
971 {
972 objfile->separate_debug_objfile
973 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
974 }
975 else
976 {
977 objfile->separate_debug_objfile
978 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
979 }
980 objfile->separate_debug_objfile->separate_debug_objfile_backlink
981 = objfile;
982
983 /* Put the separate debug object before the normal one, this is so that
984 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
985 put_objfile_before (objfile->separate_debug_objfile, objfile);
986
987 xfree (debugfile);
988 }
989
990 if (!have_partial_symbols () && !have_full_symbols ())
991 {
992 wrap_here ("");
993 printf_filtered (_("(no debugging symbols found)"));
994 if (from_tty || info_verbose)
995 printf_filtered ("...");
996 else
997 printf_filtered ("\n");
998 wrap_here ("");
999 }
1000
1001 if (from_tty || info_verbose)
1002 {
1003 if (deprecated_post_add_symbol_hook)
1004 deprecated_post_add_symbol_hook ();
1005 else
1006 {
1007 printf_unfiltered (_("done.\n"));
1008 }
1009 }
1010
1011 /* We print some messages regardless of whether 'from_tty ||
1012 info_verbose' is true, so make sure they go out at the right
1013 time. */
1014 gdb_flush (gdb_stdout);
1015
1016 do_cleanups (my_cleanups);
1017
1018 if (objfile->sf == NULL)
1019 return objfile; /* No symbols. */
1020
1021 new_symfile_objfile (objfile, mainline, from_tty);
1022
1023 if (deprecated_target_new_objfile_hook)
1024 deprecated_target_new_objfile_hook (objfile);
1025
1026 bfd_cache_close_all ();
1027 return (objfile);
1028 }
1029
1030
1031 /* Process the symbol file ABFD, as either the main file or as a
1032 dynamically loaded file.
1033
1034 See symbol_file_add_with_addrs_or_offsets's comments for
1035 details. */
1036 struct objfile *
1037 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1038 struct section_addr_info *addrs,
1039 int mainline, int flags)
1040 {
1041 return symbol_file_add_with_addrs_or_offsets (abfd,
1042 from_tty, addrs, 0, 0,
1043 mainline, flags);
1044 }
1045
1046
1047 /* Process a symbol file, as either the main file or as a dynamically
1048 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1049 for details. */
1050 struct objfile *
1051 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1052 int mainline, int flags)
1053 {
1054 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1055 addrs, mainline, flags);
1056 }
1057
1058
1059 /* Call symbol_file_add() with default values and update whatever is
1060 affected by the loading of a new main().
1061 Used when the file is supplied in the gdb command line
1062 and by some targets with special loading requirements.
1063 The auxiliary function, symbol_file_add_main_1(), has the flags
1064 argument for the switches that can only be specified in the symbol_file
1065 command itself. */
1066
1067 void
1068 symbol_file_add_main (char *args, int from_tty)
1069 {
1070 symbol_file_add_main_1 (args, from_tty, 0);
1071 }
1072
1073 static void
1074 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1075 {
1076 symbol_file_add (args, from_tty, NULL, 1, flags);
1077
1078 /* Getting new symbols may change our opinion about
1079 what is frameless. */
1080 reinit_frame_cache ();
1081
1082 set_initial_language ();
1083 }
1084
1085 void
1086 symbol_file_clear (int from_tty)
1087 {
1088 if ((have_full_symbols () || have_partial_symbols ())
1089 && from_tty
1090 && (symfile_objfile
1091 ? !query (_("Discard symbol table from `%s'? "),
1092 symfile_objfile->name)
1093 : !query (_("Discard symbol table? "))))
1094 error (_("Not confirmed."));
1095 free_all_objfiles ();
1096
1097 /* solib descriptors may have handles to objfiles. Since their
1098 storage has just been released, we'd better wipe the solib
1099 descriptors as well.
1100 */
1101 #if defined(SOLIB_RESTART)
1102 SOLIB_RESTART ();
1103 #endif
1104
1105 symfile_objfile = NULL;
1106 if (from_tty)
1107 printf_unfiltered (_("No symbol file now.\n"));
1108 }
1109
1110 static char *
1111 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1112 {
1113 asection *sect;
1114 bfd_size_type debuglink_size;
1115 unsigned long crc32;
1116 char *contents;
1117 int crc_offset;
1118 unsigned char *p;
1119
1120 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1121
1122 if (sect == NULL)
1123 return NULL;
1124
1125 debuglink_size = bfd_section_size (objfile->obfd, sect);
1126
1127 contents = xmalloc (debuglink_size);
1128 bfd_get_section_contents (objfile->obfd, sect, contents,
1129 (file_ptr)0, (bfd_size_type)debuglink_size);
1130
1131 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1132 crc_offset = strlen (contents) + 1;
1133 crc_offset = (crc_offset + 3) & ~3;
1134
1135 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1136
1137 *crc32_out = crc32;
1138 return contents;
1139 }
1140
1141 static int
1142 separate_debug_file_exists (const char *name, unsigned long crc)
1143 {
1144 unsigned long file_crc = 0;
1145 int fd;
1146 gdb_byte buffer[8*1024];
1147 int count;
1148
1149 fd = open (name, O_RDONLY | O_BINARY);
1150 if (fd < 0)
1151 return 0;
1152
1153 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1154 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1155
1156 close (fd);
1157
1158 return crc == file_crc;
1159 }
1160
1161 static char *debug_file_directory = NULL;
1162 static void
1163 show_debug_file_directory (struct ui_file *file, int from_tty,
1164 struct cmd_list_element *c, const char *value)
1165 {
1166 fprintf_filtered (file, _("\
1167 The directory where separate debug symbols are searched for is \"%s\".\n"),
1168 value);
1169 }
1170
1171 #if ! defined (DEBUG_SUBDIRECTORY)
1172 #define DEBUG_SUBDIRECTORY ".debug"
1173 #endif
1174
1175 static char *
1176 find_separate_debug_file (struct objfile *objfile)
1177 {
1178 asection *sect;
1179 char *basename;
1180 char *dir;
1181 char *debugfile;
1182 char *name_copy;
1183 bfd_size_type debuglink_size;
1184 unsigned long crc32;
1185 int i;
1186
1187 basename = get_debug_link_info (objfile, &crc32);
1188
1189 if (basename == NULL)
1190 return NULL;
1191
1192 dir = xstrdup (objfile->name);
1193
1194 /* Strip off the final filename part, leaving the directory name,
1195 followed by a slash. Objfile names should always be absolute and
1196 tilde-expanded, so there should always be a slash in there
1197 somewhere. */
1198 for (i = strlen(dir) - 1; i >= 0; i--)
1199 {
1200 if (IS_DIR_SEPARATOR (dir[i]))
1201 break;
1202 }
1203 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1204 dir[i+1] = '\0';
1205
1206 debugfile = alloca (strlen (debug_file_directory) + 1
1207 + strlen (dir)
1208 + strlen (DEBUG_SUBDIRECTORY)
1209 + strlen ("/")
1210 + strlen (basename)
1211 + 1);
1212
1213 /* First try in the same directory as the original file. */
1214 strcpy (debugfile, dir);
1215 strcat (debugfile, basename);
1216
1217 if (separate_debug_file_exists (debugfile, crc32))
1218 {
1219 xfree (basename);
1220 xfree (dir);
1221 return xstrdup (debugfile);
1222 }
1223
1224 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1225 strcpy (debugfile, dir);
1226 strcat (debugfile, DEBUG_SUBDIRECTORY);
1227 strcat (debugfile, "/");
1228 strcat (debugfile, basename);
1229
1230 if (separate_debug_file_exists (debugfile, crc32))
1231 {
1232 xfree (basename);
1233 xfree (dir);
1234 return xstrdup (debugfile);
1235 }
1236
1237 /* Then try in the global debugfile directory. */
1238 strcpy (debugfile, debug_file_directory);
1239 strcat (debugfile, "/");
1240 strcat (debugfile, dir);
1241 strcat (debugfile, basename);
1242
1243 if (separate_debug_file_exists (debugfile, crc32))
1244 {
1245 xfree (basename);
1246 xfree (dir);
1247 return xstrdup (debugfile);
1248 }
1249
1250 xfree (basename);
1251 xfree (dir);
1252 return NULL;
1253 }
1254
1255
1256 /* This is the symbol-file command. Read the file, analyze its
1257 symbols, and add a struct symtab to a symtab list. The syntax of
1258 the command is rather bizarre:
1259
1260 1. The function buildargv implements various quoting conventions
1261 which are undocumented and have little or nothing in common with
1262 the way things are quoted (or not quoted) elsewhere in GDB.
1263
1264 2. Options are used, which are not generally used in GDB (perhaps
1265 "set mapped on", "set readnow on" would be better)
1266
1267 3. The order of options matters, which is contrary to GNU
1268 conventions (because it is confusing and inconvenient). */
1269
1270 void
1271 symbol_file_command (char *args, int from_tty)
1272 {
1273 dont_repeat ();
1274
1275 if (args == NULL)
1276 {
1277 symbol_file_clear (from_tty);
1278 }
1279 else
1280 {
1281 char **argv = buildargv (args);
1282 int flags = OBJF_USERLOADED;
1283 struct cleanup *cleanups;
1284 char *name = NULL;
1285
1286 if (argv == NULL)
1287 nomem (0);
1288
1289 cleanups = make_cleanup_freeargv (argv);
1290 while (*argv != NULL)
1291 {
1292 if (strcmp (*argv, "-readnow") == 0)
1293 flags |= OBJF_READNOW;
1294 else if (**argv == '-')
1295 error (_("unknown option `%s'"), *argv);
1296 else
1297 {
1298 symbol_file_add_main_1 (*argv, from_tty, flags);
1299 name = *argv;
1300 }
1301
1302 argv++;
1303 }
1304
1305 if (name == NULL)
1306 error (_("no symbol file name was specified"));
1307
1308 do_cleanups (cleanups);
1309 }
1310 }
1311
1312 /* Set the initial language.
1313
1314 FIXME: A better solution would be to record the language in the
1315 psymtab when reading partial symbols, and then use it (if known) to
1316 set the language. This would be a win for formats that encode the
1317 language in an easily discoverable place, such as DWARF. For
1318 stabs, we can jump through hoops looking for specially named
1319 symbols or try to intuit the language from the specific type of
1320 stabs we find, but we can't do that until later when we read in
1321 full symbols. */
1322
1323 static void
1324 set_initial_language (void)
1325 {
1326 struct partial_symtab *pst;
1327 enum language lang = language_unknown;
1328
1329 pst = find_main_psymtab ();
1330 if (pst != NULL)
1331 {
1332 if (pst->filename != NULL)
1333 lang = deduce_language_from_filename (pst->filename);
1334
1335 if (lang == language_unknown)
1336 {
1337 /* Make C the default language */
1338 lang = language_c;
1339 }
1340
1341 set_language (lang);
1342 expected_language = current_language; /* Don't warn the user. */
1343 }
1344 }
1345
1346 /* Open the file specified by NAME and hand it off to BFD for
1347 preliminary analysis. Return a newly initialized bfd *, which
1348 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1349 absolute). In case of trouble, error() is called. */
1350
1351 bfd *
1352 symfile_bfd_open (char *name)
1353 {
1354 bfd *sym_bfd;
1355 int desc;
1356 char *absolute_name;
1357
1358 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1359
1360 /* Look down path for it, allocate 2nd new malloc'd copy. */
1361 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1362 O_RDONLY | O_BINARY, 0, &absolute_name);
1363 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1364 if (desc < 0)
1365 {
1366 char *exename = alloca (strlen (name) + 5);
1367 strcat (strcpy (exename, name), ".exe");
1368 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1369 O_RDONLY | O_BINARY, 0, &absolute_name);
1370 }
1371 #endif
1372 if (desc < 0)
1373 {
1374 make_cleanup (xfree, name);
1375 perror_with_name (name);
1376 }
1377
1378 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1379 bfd. It'll be freed in free_objfile(). */
1380 xfree (name);
1381 name = absolute_name;
1382
1383 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1384 if (!sym_bfd)
1385 {
1386 close (desc);
1387 make_cleanup (xfree, name);
1388 error (_("\"%s\": can't open to read symbols: %s."), name,
1389 bfd_errmsg (bfd_get_error ()));
1390 }
1391 bfd_set_cacheable (sym_bfd, 1);
1392
1393 if (!bfd_check_format (sym_bfd, bfd_object))
1394 {
1395 /* FIXME: should be checking for errors from bfd_close (for one
1396 thing, on error it does not free all the storage associated
1397 with the bfd). */
1398 bfd_close (sym_bfd); /* This also closes desc. */
1399 make_cleanup (xfree, name);
1400 error (_("\"%s\": can't read symbols: %s."), name,
1401 bfd_errmsg (bfd_get_error ()));
1402 }
1403
1404 return sym_bfd;
1405 }
1406
1407 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1408 the section was not found. */
1409
1410 int
1411 get_section_index (struct objfile *objfile, char *section_name)
1412 {
1413 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1414
1415 if (sect)
1416 return sect->index;
1417 else
1418 return -1;
1419 }
1420
1421 /* Link SF into the global symtab_fns list. Called on startup by the
1422 _initialize routine in each object file format reader, to register
1423 information about each format the the reader is prepared to
1424 handle. */
1425
1426 void
1427 add_symtab_fns (struct sym_fns *sf)
1428 {
1429 sf->next = symtab_fns;
1430 symtab_fns = sf;
1431 }
1432
1433 /* Initialize OBJFILE to read symbols from its associated BFD. It
1434 either returns or calls error(). The result is an initialized
1435 struct sym_fns in the objfile structure, that contains cached
1436 information about the symbol file. */
1437
1438 static void
1439 find_sym_fns (struct objfile *objfile)
1440 {
1441 struct sym_fns *sf;
1442 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1443 char *our_target = bfd_get_target (objfile->obfd);
1444
1445 if (our_flavour == bfd_target_srec_flavour
1446 || our_flavour == bfd_target_ihex_flavour
1447 || our_flavour == bfd_target_tekhex_flavour)
1448 return; /* No symbols. */
1449
1450 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1451 {
1452 if (our_flavour == sf->sym_flavour)
1453 {
1454 objfile->sf = sf;
1455 return;
1456 }
1457 }
1458
1459 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1460 bfd_get_target (objfile->obfd));
1461 }
1462 \f
1463
1464 /* This function runs the load command of our current target. */
1465
1466 static void
1467 load_command (char *arg, int from_tty)
1468 {
1469 if (arg == NULL)
1470 {
1471 char *parg;
1472 int count = 0;
1473
1474 parg = arg = get_exec_file (1);
1475
1476 /* Count how many \ " ' tab space there are in the name. */
1477 while ((parg = strpbrk (parg, "\\\"'\t ")))
1478 {
1479 parg++;
1480 count++;
1481 }
1482
1483 if (count)
1484 {
1485 /* We need to quote this string so buildargv can pull it apart. */
1486 char *temp = xmalloc (strlen (arg) + count + 1 );
1487 char *ptemp = temp;
1488 char *prev;
1489
1490 make_cleanup (xfree, temp);
1491
1492 prev = parg = arg;
1493 while ((parg = strpbrk (parg, "\\\"'\t ")))
1494 {
1495 strncpy (ptemp, prev, parg - prev);
1496 ptemp += parg - prev;
1497 prev = parg++;
1498 *ptemp++ = '\\';
1499 }
1500 strcpy (ptemp, prev);
1501
1502 arg = temp;
1503 }
1504 }
1505
1506 target_load (arg, from_tty);
1507
1508 /* After re-loading the executable, we don't really know which
1509 overlays are mapped any more. */
1510 overlay_cache_invalid = 1;
1511 }
1512
1513 /* This version of "load" should be usable for any target. Currently
1514 it is just used for remote targets, not inftarg.c or core files,
1515 on the theory that only in that case is it useful.
1516
1517 Avoiding xmodem and the like seems like a win (a) because we don't have
1518 to worry about finding it, and (b) On VMS, fork() is very slow and so
1519 we don't want to run a subprocess. On the other hand, I'm not sure how
1520 performance compares. */
1521
1522 static int download_write_size = 512;
1523 static void
1524 show_download_write_size (struct ui_file *file, int from_tty,
1525 struct cmd_list_element *c, const char *value)
1526 {
1527 fprintf_filtered (file, _("\
1528 The write size used when downloading a program is %s.\n"),
1529 value);
1530 }
1531 static int validate_download = 0;
1532
1533 /* Callback service function for generic_load (bfd_map_over_sections). */
1534
1535 static void
1536 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1537 {
1538 bfd_size_type *sum = data;
1539
1540 *sum += bfd_get_section_size (asec);
1541 }
1542
1543 /* Opaque data for load_section_callback. */
1544 struct load_section_data {
1545 unsigned long load_offset;
1546 unsigned long write_count;
1547 unsigned long data_count;
1548 bfd_size_type total_size;
1549 };
1550
1551 /* Callback service function for generic_load (bfd_map_over_sections). */
1552
1553 static void
1554 load_section_callback (bfd *abfd, asection *asec, void *data)
1555 {
1556 struct load_section_data *args = data;
1557
1558 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1559 {
1560 bfd_size_type size = bfd_get_section_size (asec);
1561 if (size > 0)
1562 {
1563 gdb_byte *buffer;
1564 struct cleanup *old_chain;
1565 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1566 bfd_size_type block_size;
1567 int err;
1568 const char *sect_name = bfd_get_section_name (abfd, asec);
1569 bfd_size_type sent;
1570
1571 if (download_write_size > 0 && size > download_write_size)
1572 block_size = download_write_size;
1573 else
1574 block_size = size;
1575
1576 buffer = xmalloc (size);
1577 old_chain = make_cleanup (xfree, buffer);
1578
1579 /* Is this really necessary? I guess it gives the user something
1580 to look at during a long download. */
1581 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1582 sect_name, paddr_nz (size), paddr_nz (lma));
1583
1584 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1585
1586 sent = 0;
1587 do
1588 {
1589 int len;
1590 bfd_size_type this_transfer = size - sent;
1591
1592 if (this_transfer >= block_size)
1593 this_transfer = block_size;
1594 len = target_write_memory_partial (lma, buffer,
1595 this_transfer, &err);
1596 if (err)
1597 break;
1598 if (validate_download)
1599 {
1600 /* Broken memories and broken monitors manifest
1601 themselves here when bring new computers to
1602 life. This doubles already slow downloads. */
1603 /* NOTE: cagney/1999-10-18: A more efficient
1604 implementation might add a verify_memory()
1605 method to the target vector and then use
1606 that. remote.c could implement that method
1607 using the ``qCRC'' packet. */
1608 gdb_byte *check = xmalloc (len);
1609 struct cleanup *verify_cleanups =
1610 make_cleanup (xfree, check);
1611
1612 if (target_read_memory (lma, check, len) != 0)
1613 error (_("Download verify read failed at 0x%s"),
1614 paddr (lma));
1615 if (memcmp (buffer, check, len) != 0)
1616 error (_("Download verify compare failed at 0x%s"),
1617 paddr (lma));
1618 do_cleanups (verify_cleanups);
1619 }
1620 args->data_count += len;
1621 lma += len;
1622 buffer += len;
1623 args->write_count += 1;
1624 sent += len;
1625 if (quit_flag
1626 || (deprecated_ui_load_progress_hook != NULL
1627 && deprecated_ui_load_progress_hook (sect_name, sent)))
1628 error (_("Canceled the download"));
1629
1630 if (deprecated_show_load_progress != NULL)
1631 deprecated_show_load_progress (sect_name, sent, size,
1632 args->data_count,
1633 args->total_size);
1634 }
1635 while (sent < size);
1636
1637 if (err != 0)
1638 error (_("Memory access error while loading section %s."), sect_name);
1639
1640 do_cleanups (old_chain);
1641 }
1642 }
1643 }
1644
1645 void
1646 generic_load (char *args, int from_tty)
1647 {
1648 asection *s;
1649 bfd *loadfile_bfd;
1650 struct timeval start_time, end_time;
1651 char *filename;
1652 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1653 struct load_section_data cbdata;
1654 CORE_ADDR entry;
1655 char **argv;
1656
1657 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1658 cbdata.write_count = 0; /* Number of writes needed. */
1659 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1660 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1661
1662 argv = buildargv (args);
1663
1664 if (argv == NULL)
1665 nomem(0);
1666
1667 make_cleanup_freeargv (argv);
1668
1669 filename = tilde_expand (argv[0]);
1670 make_cleanup (xfree, filename);
1671
1672 if (argv[1] != NULL)
1673 {
1674 char *endptr;
1675
1676 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1677
1678 /* If the last word was not a valid number then
1679 treat it as a file name with spaces in. */
1680 if (argv[1] == endptr)
1681 error (_("Invalid download offset:%s."), argv[1]);
1682
1683 if (argv[2] != NULL)
1684 error (_("Too many parameters."));
1685 }
1686
1687 /* Open the file for loading. */
1688 loadfile_bfd = bfd_openr (filename, gnutarget);
1689 if (loadfile_bfd == NULL)
1690 {
1691 perror_with_name (filename);
1692 return;
1693 }
1694
1695 /* FIXME: should be checking for errors from bfd_close (for one thing,
1696 on error it does not free all the storage associated with the
1697 bfd). */
1698 make_cleanup_bfd_close (loadfile_bfd);
1699
1700 if (!bfd_check_format (loadfile_bfd, bfd_object))
1701 {
1702 error (_("\"%s\" is not an object file: %s"), filename,
1703 bfd_errmsg (bfd_get_error ()));
1704 }
1705
1706 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1707 (void *) &cbdata.total_size);
1708
1709 gettimeofday (&start_time, NULL);
1710
1711 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1712
1713 gettimeofday (&end_time, NULL);
1714
1715 entry = bfd_get_start_address (loadfile_bfd);
1716 ui_out_text (uiout, "Start address ");
1717 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1718 ui_out_text (uiout, ", load size ");
1719 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1720 ui_out_text (uiout, "\n");
1721 /* We were doing this in remote-mips.c, I suspect it is right
1722 for other targets too. */
1723 write_pc (entry);
1724
1725 /* FIXME: are we supposed to call symbol_file_add or not? According
1726 to a comment from remote-mips.c (where a call to symbol_file_add
1727 was commented out), making the call confuses GDB if more than one
1728 file is loaded in. Some targets do (e.g., remote-vx.c) but
1729 others don't (or didn't - perhaps they have all been deleted). */
1730
1731 print_transfer_performance (gdb_stdout, cbdata.data_count,
1732 cbdata.write_count, &start_time, &end_time);
1733
1734 do_cleanups (old_cleanups);
1735 }
1736
1737 /* Report how fast the transfer went. */
1738
1739 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1740 replaced by print_transfer_performance (with a very different
1741 function signature). */
1742
1743 void
1744 report_transfer_performance (unsigned long data_count, time_t start_time,
1745 time_t end_time)
1746 {
1747 struct timeval start, end;
1748
1749 start.tv_sec = start_time;
1750 start.tv_usec = 0;
1751 end.tv_sec = end_time;
1752 end.tv_usec = 0;
1753
1754 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
1755 }
1756
1757 void
1758 print_transfer_performance (struct ui_file *stream,
1759 unsigned long data_count,
1760 unsigned long write_count,
1761 const struct timeval *start_time,
1762 const struct timeval *end_time)
1763 {
1764 unsigned long time_count;
1765
1766 /* Compute the elapsed time in milliseconds, as a tradeoff between
1767 accuracy and overflow. */
1768 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
1769 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
1770
1771 ui_out_text (uiout, "Transfer rate: ");
1772 if (time_count > 0)
1773 {
1774 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1775 1000 * (data_count * 8) / time_count);
1776 ui_out_text (uiout, " bits/sec");
1777 }
1778 else
1779 {
1780 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1781 ui_out_text (uiout, " bits in <1 sec");
1782 }
1783 if (write_count > 0)
1784 {
1785 ui_out_text (uiout, ", ");
1786 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1787 ui_out_text (uiout, " bytes/write");
1788 }
1789 ui_out_text (uiout, ".\n");
1790 }
1791
1792 /* This function allows the addition of incrementally linked object files.
1793 It does not modify any state in the target, only in the debugger. */
1794 /* Note: ezannoni 2000-04-13 This function/command used to have a
1795 special case syntax for the rombug target (Rombug is the boot
1796 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1797 rombug case, the user doesn't need to supply a text address,
1798 instead a call to target_link() (in target.c) would supply the
1799 value to use. We are now discontinuing this type of ad hoc syntax. */
1800
1801 static void
1802 add_symbol_file_command (char *args, int from_tty)
1803 {
1804 char *filename = NULL;
1805 int flags = OBJF_USERLOADED;
1806 char *arg;
1807 int expecting_option = 0;
1808 int section_index = 0;
1809 int argcnt = 0;
1810 int sec_num = 0;
1811 int i;
1812 int expecting_sec_name = 0;
1813 int expecting_sec_addr = 0;
1814
1815 struct sect_opt
1816 {
1817 char *name;
1818 char *value;
1819 };
1820
1821 struct section_addr_info *section_addrs;
1822 struct sect_opt *sect_opts = NULL;
1823 size_t num_sect_opts = 0;
1824 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1825
1826 num_sect_opts = 16;
1827 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1828 * sizeof (struct sect_opt));
1829
1830 dont_repeat ();
1831
1832 if (args == NULL)
1833 error (_("add-symbol-file takes a file name and an address"));
1834
1835 /* Make a copy of the string that we can safely write into. */
1836 args = xstrdup (args);
1837
1838 while (*args != '\000')
1839 {
1840 /* Any leading spaces? */
1841 while (isspace (*args))
1842 args++;
1843
1844 /* Point arg to the beginning of the argument. */
1845 arg = args;
1846
1847 /* Move args pointer over the argument. */
1848 while ((*args != '\000') && !isspace (*args))
1849 args++;
1850
1851 /* If there are more arguments, terminate arg and
1852 proceed past it. */
1853 if (*args != '\000')
1854 *args++ = '\000';
1855
1856 /* Now process the argument. */
1857 if (argcnt == 0)
1858 {
1859 /* The first argument is the file name. */
1860 filename = tilde_expand (arg);
1861 make_cleanup (xfree, filename);
1862 }
1863 else
1864 if (argcnt == 1)
1865 {
1866 /* The second argument is always the text address at which
1867 to load the program. */
1868 sect_opts[section_index].name = ".text";
1869 sect_opts[section_index].value = arg;
1870 if (++section_index > num_sect_opts)
1871 {
1872 num_sect_opts *= 2;
1873 sect_opts = ((struct sect_opt *)
1874 xrealloc (sect_opts,
1875 num_sect_opts
1876 * sizeof (struct sect_opt)));
1877 }
1878 }
1879 else
1880 {
1881 /* It's an option (starting with '-') or it's an argument
1882 to an option */
1883
1884 if (*arg == '-')
1885 {
1886 if (strcmp (arg, "-readnow") == 0)
1887 flags |= OBJF_READNOW;
1888 else if (strcmp (arg, "-s") == 0)
1889 {
1890 expecting_sec_name = 1;
1891 expecting_sec_addr = 1;
1892 }
1893 }
1894 else
1895 {
1896 if (expecting_sec_name)
1897 {
1898 sect_opts[section_index].name = arg;
1899 expecting_sec_name = 0;
1900 }
1901 else
1902 if (expecting_sec_addr)
1903 {
1904 sect_opts[section_index].value = arg;
1905 expecting_sec_addr = 0;
1906 if (++section_index > num_sect_opts)
1907 {
1908 num_sect_opts *= 2;
1909 sect_opts = ((struct sect_opt *)
1910 xrealloc (sect_opts,
1911 num_sect_opts
1912 * sizeof (struct sect_opt)));
1913 }
1914 }
1915 else
1916 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
1917 }
1918 }
1919 argcnt++;
1920 }
1921
1922 /* This command takes at least two arguments. The first one is a
1923 filename, and the second is the address where this file has been
1924 loaded. Abort now if this address hasn't been provided by the
1925 user. */
1926 if (section_index < 1)
1927 error (_("The address where %s has been loaded is missing"), filename);
1928
1929 /* Print the prompt for the query below. And save the arguments into
1930 a sect_addr_info structure to be passed around to other
1931 functions. We have to split this up into separate print
1932 statements because hex_string returns a local static
1933 string. */
1934
1935 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
1936 section_addrs = alloc_section_addr_info (section_index);
1937 make_cleanup (xfree, section_addrs);
1938 for (i = 0; i < section_index; i++)
1939 {
1940 CORE_ADDR addr;
1941 char *val = sect_opts[i].value;
1942 char *sec = sect_opts[i].name;
1943
1944 addr = parse_and_eval_address (val);
1945
1946 /* Here we store the section offsets in the order they were
1947 entered on the command line. */
1948 section_addrs->other[sec_num].name = sec;
1949 section_addrs->other[sec_num].addr = addr;
1950 printf_unfiltered ("\t%s_addr = %s\n",
1951 sec, hex_string ((unsigned long)addr));
1952 sec_num++;
1953
1954 /* The object's sections are initialized when a
1955 call is made to build_objfile_section_table (objfile).
1956 This happens in reread_symbols.
1957 At this point, we don't know what file type this is,
1958 so we can't determine what section names are valid. */
1959 }
1960
1961 if (from_tty && (!query ("%s", "")))
1962 error (_("Not confirmed."));
1963
1964 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
1965
1966 /* Getting new symbols may change our opinion about what is
1967 frameless. */
1968 reinit_frame_cache ();
1969 do_cleanups (my_cleanups);
1970 }
1971 \f
1972 static void
1973 add_shared_symbol_files_command (char *args, int from_tty)
1974 {
1975 #ifdef ADD_SHARED_SYMBOL_FILES
1976 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1977 #else
1978 error (_("This command is not available in this configuration of GDB."));
1979 #endif
1980 }
1981 \f
1982 /* Re-read symbols if a symbol-file has changed. */
1983 void
1984 reread_symbols (void)
1985 {
1986 struct objfile *objfile;
1987 long new_modtime;
1988 int reread_one = 0;
1989 struct stat new_statbuf;
1990 int res;
1991
1992 /* With the addition of shared libraries, this should be modified,
1993 the load time should be saved in the partial symbol tables, since
1994 different tables may come from different source files. FIXME.
1995 This routine should then walk down each partial symbol table
1996 and see if the symbol table that it originates from has been changed */
1997
1998 for (objfile = object_files; objfile; objfile = objfile->next)
1999 {
2000 if (objfile->obfd)
2001 {
2002 #ifdef DEPRECATED_IBM6000_TARGET
2003 /* If this object is from a shared library, then you should
2004 stat on the library name, not member name. */
2005
2006 if (objfile->obfd->my_archive)
2007 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2008 else
2009 #endif
2010 res = stat (objfile->name, &new_statbuf);
2011 if (res != 0)
2012 {
2013 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2014 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2015 objfile->name);
2016 continue;
2017 }
2018 new_modtime = new_statbuf.st_mtime;
2019 if (new_modtime != objfile->mtime)
2020 {
2021 struct cleanup *old_cleanups;
2022 struct section_offsets *offsets;
2023 int num_offsets;
2024 char *obfd_filename;
2025
2026 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2027 objfile->name);
2028
2029 /* There are various functions like symbol_file_add,
2030 symfile_bfd_open, syms_from_objfile, etc., which might
2031 appear to do what we want. But they have various other
2032 effects which we *don't* want. So we just do stuff
2033 ourselves. We don't worry about mapped files (for one thing,
2034 any mapped file will be out of date). */
2035
2036 /* If we get an error, blow away this objfile (not sure if
2037 that is the correct response for things like shared
2038 libraries). */
2039 old_cleanups = make_cleanup_free_objfile (objfile);
2040 /* We need to do this whenever any symbols go away. */
2041 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2042
2043 /* Clean up any state BFD has sitting around. We don't need
2044 to close the descriptor but BFD lacks a way of closing the
2045 BFD without closing the descriptor. */
2046 obfd_filename = bfd_get_filename (objfile->obfd);
2047 if (!bfd_close (objfile->obfd))
2048 error (_("Can't close BFD for %s: %s"), objfile->name,
2049 bfd_errmsg (bfd_get_error ()));
2050 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2051 if (objfile->obfd == NULL)
2052 error (_("Can't open %s to read symbols."), objfile->name);
2053 /* bfd_openr sets cacheable to true, which is what we want. */
2054 if (!bfd_check_format (objfile->obfd, bfd_object))
2055 error (_("Can't read symbols from %s: %s."), objfile->name,
2056 bfd_errmsg (bfd_get_error ()));
2057
2058 /* Save the offsets, we will nuke them with the rest of the
2059 objfile_obstack. */
2060 num_offsets = objfile->num_sections;
2061 offsets = ((struct section_offsets *)
2062 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2063 memcpy (offsets, objfile->section_offsets,
2064 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2065
2066 /* Remove any references to this objfile in the global
2067 value lists. */
2068 preserve_values (objfile);
2069
2070 /* Nuke all the state that we will re-read. Much of the following
2071 code which sets things to NULL really is necessary to tell
2072 other parts of GDB that there is nothing currently there. */
2073
2074 /* FIXME: Do we have to free a whole linked list, or is this
2075 enough? */
2076 if (objfile->global_psymbols.list)
2077 xfree (objfile->global_psymbols.list);
2078 memset (&objfile->global_psymbols, 0,
2079 sizeof (objfile->global_psymbols));
2080 if (objfile->static_psymbols.list)
2081 xfree (objfile->static_psymbols.list);
2082 memset (&objfile->static_psymbols, 0,
2083 sizeof (objfile->static_psymbols));
2084
2085 /* Free the obstacks for non-reusable objfiles */
2086 bcache_xfree (objfile->psymbol_cache);
2087 objfile->psymbol_cache = bcache_xmalloc ();
2088 bcache_xfree (objfile->macro_cache);
2089 objfile->macro_cache = bcache_xmalloc ();
2090 if (objfile->demangled_names_hash != NULL)
2091 {
2092 htab_delete (objfile->demangled_names_hash);
2093 objfile->demangled_names_hash = NULL;
2094 }
2095 obstack_free (&objfile->objfile_obstack, 0);
2096 objfile->sections = NULL;
2097 objfile->symtabs = NULL;
2098 objfile->psymtabs = NULL;
2099 objfile->free_psymtabs = NULL;
2100 objfile->cp_namespace_symtab = NULL;
2101 objfile->msymbols = NULL;
2102 objfile->deprecated_sym_private = NULL;
2103 objfile->minimal_symbol_count = 0;
2104 memset (&objfile->msymbol_hash, 0,
2105 sizeof (objfile->msymbol_hash));
2106 memset (&objfile->msymbol_demangled_hash, 0,
2107 sizeof (objfile->msymbol_demangled_hash));
2108 objfile->fundamental_types = NULL;
2109 clear_objfile_data (objfile);
2110 if (objfile->sf != NULL)
2111 {
2112 (*objfile->sf->sym_finish) (objfile);
2113 }
2114
2115 /* We never make this a mapped file. */
2116 objfile->md = NULL;
2117 objfile->psymbol_cache = bcache_xmalloc ();
2118 objfile->macro_cache = bcache_xmalloc ();
2119 /* obstack_init also initializes the obstack so it is
2120 empty. We could use obstack_specify_allocation but
2121 gdb_obstack.h specifies the alloc/dealloc
2122 functions. */
2123 obstack_init (&objfile->objfile_obstack);
2124 if (build_objfile_section_table (objfile))
2125 {
2126 error (_("Can't find the file sections in `%s': %s"),
2127 objfile->name, bfd_errmsg (bfd_get_error ()));
2128 }
2129 terminate_minimal_symbol_table (objfile);
2130
2131 /* We use the same section offsets as from last time. I'm not
2132 sure whether that is always correct for shared libraries. */
2133 objfile->section_offsets = (struct section_offsets *)
2134 obstack_alloc (&objfile->objfile_obstack,
2135 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2136 memcpy (objfile->section_offsets, offsets,
2137 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2138 objfile->num_sections = num_offsets;
2139
2140 /* What the hell is sym_new_init for, anyway? The concept of
2141 distinguishing between the main file and additional files
2142 in this way seems rather dubious. */
2143 if (objfile == symfile_objfile)
2144 {
2145 (*objfile->sf->sym_new_init) (objfile);
2146 }
2147
2148 (*objfile->sf->sym_init) (objfile);
2149 clear_complaints (&symfile_complaints, 1, 1);
2150 /* The "mainline" parameter is a hideous hack; I think leaving it
2151 zero is OK since dbxread.c also does what it needs to do if
2152 objfile->global_psymbols.size is 0. */
2153 (*objfile->sf->sym_read) (objfile, 0);
2154 if (!have_partial_symbols () && !have_full_symbols ())
2155 {
2156 wrap_here ("");
2157 printf_unfiltered (_("(no debugging symbols found)\n"));
2158 wrap_here ("");
2159 }
2160 objfile->flags |= OBJF_SYMS;
2161
2162 /* We're done reading the symbol file; finish off complaints. */
2163 clear_complaints (&symfile_complaints, 0, 1);
2164
2165 /* Getting new symbols may change our opinion about what is
2166 frameless. */
2167
2168 reinit_frame_cache ();
2169
2170 /* Discard cleanups as symbol reading was successful. */
2171 discard_cleanups (old_cleanups);
2172
2173 /* If the mtime has changed between the time we set new_modtime
2174 and now, we *want* this to be out of date, so don't call stat
2175 again now. */
2176 objfile->mtime = new_modtime;
2177 reread_one = 1;
2178 reread_separate_symbols (objfile);
2179 }
2180 }
2181 }
2182
2183 if (reread_one)
2184 {
2185 clear_symtab_users ();
2186 /* At least one objfile has changed, so we can consider that
2187 the executable we're debugging has changed too. */
2188 observer_notify_executable_changed (NULL);
2189 }
2190
2191 }
2192
2193
2194 /* Handle separate debug info for OBJFILE, which has just been
2195 re-read:
2196 - If we had separate debug info before, but now we don't, get rid
2197 of the separated objfile.
2198 - If we didn't have separated debug info before, but now we do,
2199 read in the new separated debug info file.
2200 - If the debug link points to a different file, toss the old one
2201 and read the new one.
2202 This function does *not* handle the case where objfile is still
2203 using the same separate debug info file, but that file's timestamp
2204 has changed. That case should be handled by the loop in
2205 reread_symbols already. */
2206 static void
2207 reread_separate_symbols (struct objfile *objfile)
2208 {
2209 char *debug_file;
2210 unsigned long crc32;
2211
2212 /* Does the updated objfile's debug info live in a
2213 separate file? */
2214 debug_file = find_separate_debug_file (objfile);
2215
2216 if (objfile->separate_debug_objfile)
2217 {
2218 /* There are two cases where we need to get rid of
2219 the old separated debug info objfile:
2220 - if the new primary objfile doesn't have
2221 separated debug info, or
2222 - if the new primary objfile has separate debug
2223 info, but it's under a different filename.
2224
2225 If the old and new objfiles both have separate
2226 debug info, under the same filename, then we're
2227 okay --- if the separated file's contents have
2228 changed, we will have caught that when we
2229 visited it in this function's outermost
2230 loop. */
2231 if (! debug_file
2232 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2233 free_objfile (objfile->separate_debug_objfile);
2234 }
2235
2236 /* If the new objfile has separate debug info, and we
2237 haven't loaded it already, do so now. */
2238 if (debug_file
2239 && ! objfile->separate_debug_objfile)
2240 {
2241 /* Use the same section offset table as objfile itself.
2242 Preserve the flags from objfile that make sense. */
2243 objfile->separate_debug_objfile
2244 = (symbol_file_add_with_addrs_or_offsets
2245 (symfile_bfd_open (debug_file),
2246 info_verbose, /* from_tty: Don't override the default. */
2247 0, /* No addr table. */
2248 objfile->section_offsets, objfile->num_sections,
2249 0, /* Not mainline. See comments about this above. */
2250 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2251 | OBJF_USERLOADED)));
2252 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2253 = objfile;
2254 }
2255 }
2256
2257
2258 \f
2259
2260
2261 typedef struct
2262 {
2263 char *ext;
2264 enum language lang;
2265 }
2266 filename_language;
2267
2268 static filename_language *filename_language_table;
2269 static int fl_table_size, fl_table_next;
2270
2271 static void
2272 add_filename_language (char *ext, enum language lang)
2273 {
2274 if (fl_table_next >= fl_table_size)
2275 {
2276 fl_table_size += 10;
2277 filename_language_table =
2278 xrealloc (filename_language_table,
2279 fl_table_size * sizeof (*filename_language_table));
2280 }
2281
2282 filename_language_table[fl_table_next].ext = xstrdup (ext);
2283 filename_language_table[fl_table_next].lang = lang;
2284 fl_table_next++;
2285 }
2286
2287 static char *ext_args;
2288 static void
2289 show_ext_args (struct ui_file *file, int from_tty,
2290 struct cmd_list_element *c, const char *value)
2291 {
2292 fprintf_filtered (file, _("\
2293 Mapping between filename extension and source language is \"%s\".\n"),
2294 value);
2295 }
2296
2297 static void
2298 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2299 {
2300 int i;
2301 char *cp = ext_args;
2302 enum language lang;
2303
2304 /* First arg is filename extension, starting with '.' */
2305 if (*cp != '.')
2306 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2307
2308 /* Find end of first arg. */
2309 while (*cp && !isspace (*cp))
2310 cp++;
2311
2312 if (*cp == '\0')
2313 error (_("'%s': two arguments required -- filename extension and language"),
2314 ext_args);
2315
2316 /* Null-terminate first arg */
2317 *cp++ = '\0';
2318
2319 /* Find beginning of second arg, which should be a source language. */
2320 while (*cp && isspace (*cp))
2321 cp++;
2322
2323 if (*cp == '\0')
2324 error (_("'%s': two arguments required -- filename extension and language"),
2325 ext_args);
2326
2327 /* Lookup the language from among those we know. */
2328 lang = language_enum (cp);
2329
2330 /* Now lookup the filename extension: do we already know it? */
2331 for (i = 0; i < fl_table_next; i++)
2332 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2333 break;
2334
2335 if (i >= fl_table_next)
2336 {
2337 /* new file extension */
2338 add_filename_language (ext_args, lang);
2339 }
2340 else
2341 {
2342 /* redefining a previously known filename extension */
2343
2344 /* if (from_tty) */
2345 /* query ("Really make files of type %s '%s'?", */
2346 /* ext_args, language_str (lang)); */
2347
2348 xfree (filename_language_table[i].ext);
2349 filename_language_table[i].ext = xstrdup (ext_args);
2350 filename_language_table[i].lang = lang;
2351 }
2352 }
2353
2354 static void
2355 info_ext_lang_command (char *args, int from_tty)
2356 {
2357 int i;
2358
2359 printf_filtered (_("Filename extensions and the languages they represent:"));
2360 printf_filtered ("\n\n");
2361 for (i = 0; i < fl_table_next; i++)
2362 printf_filtered ("\t%s\t- %s\n",
2363 filename_language_table[i].ext,
2364 language_str (filename_language_table[i].lang));
2365 }
2366
2367 static void
2368 init_filename_language_table (void)
2369 {
2370 if (fl_table_size == 0) /* protect against repetition */
2371 {
2372 fl_table_size = 20;
2373 fl_table_next = 0;
2374 filename_language_table =
2375 xmalloc (fl_table_size * sizeof (*filename_language_table));
2376 add_filename_language (".c", language_c);
2377 add_filename_language (".C", language_cplus);
2378 add_filename_language (".cc", language_cplus);
2379 add_filename_language (".cp", language_cplus);
2380 add_filename_language (".cpp", language_cplus);
2381 add_filename_language (".cxx", language_cplus);
2382 add_filename_language (".c++", language_cplus);
2383 add_filename_language (".java", language_java);
2384 add_filename_language (".class", language_java);
2385 add_filename_language (".m", language_objc);
2386 add_filename_language (".f", language_fortran);
2387 add_filename_language (".F", language_fortran);
2388 add_filename_language (".s", language_asm);
2389 add_filename_language (".S", language_asm);
2390 add_filename_language (".pas", language_pascal);
2391 add_filename_language (".p", language_pascal);
2392 add_filename_language (".pp", language_pascal);
2393 add_filename_language (".adb", language_ada);
2394 add_filename_language (".ads", language_ada);
2395 add_filename_language (".a", language_ada);
2396 add_filename_language (".ada", language_ada);
2397 }
2398 }
2399
2400 enum language
2401 deduce_language_from_filename (char *filename)
2402 {
2403 int i;
2404 char *cp;
2405
2406 if (filename != NULL)
2407 if ((cp = strrchr (filename, '.')) != NULL)
2408 for (i = 0; i < fl_table_next; i++)
2409 if (strcmp (cp, filename_language_table[i].ext) == 0)
2410 return filename_language_table[i].lang;
2411
2412 return language_unknown;
2413 }
2414 \f
2415 /* allocate_symtab:
2416
2417 Allocate and partly initialize a new symbol table. Return a pointer
2418 to it. error() if no space.
2419
2420 Caller must set these fields:
2421 LINETABLE(symtab)
2422 symtab->blockvector
2423 symtab->dirname
2424 symtab->free_code
2425 symtab->free_ptr
2426 possibly free_named_symtabs (symtab->filename);
2427 */
2428
2429 struct symtab *
2430 allocate_symtab (char *filename, struct objfile *objfile)
2431 {
2432 struct symtab *symtab;
2433
2434 symtab = (struct symtab *)
2435 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2436 memset (symtab, 0, sizeof (*symtab));
2437 symtab->filename = obsavestring (filename, strlen (filename),
2438 &objfile->objfile_obstack);
2439 symtab->fullname = NULL;
2440 symtab->language = deduce_language_from_filename (filename);
2441 symtab->debugformat = obsavestring ("unknown", 7,
2442 &objfile->objfile_obstack);
2443
2444 /* Hook it to the objfile it comes from */
2445
2446 symtab->objfile = objfile;
2447 symtab->next = objfile->symtabs;
2448 objfile->symtabs = symtab;
2449
2450 /* FIXME: This should go away. It is only defined for the Z8000,
2451 and the Z8000 definition of this macro doesn't have anything to
2452 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2453 here for convenience. */
2454 #ifdef INIT_EXTRA_SYMTAB_INFO
2455 INIT_EXTRA_SYMTAB_INFO (symtab);
2456 #endif
2457
2458 return (symtab);
2459 }
2460
2461 struct partial_symtab *
2462 allocate_psymtab (char *filename, struct objfile *objfile)
2463 {
2464 struct partial_symtab *psymtab;
2465
2466 if (objfile->free_psymtabs)
2467 {
2468 psymtab = objfile->free_psymtabs;
2469 objfile->free_psymtabs = psymtab->next;
2470 }
2471 else
2472 psymtab = (struct partial_symtab *)
2473 obstack_alloc (&objfile->objfile_obstack,
2474 sizeof (struct partial_symtab));
2475
2476 memset (psymtab, 0, sizeof (struct partial_symtab));
2477 psymtab->filename = obsavestring (filename, strlen (filename),
2478 &objfile->objfile_obstack);
2479 psymtab->symtab = NULL;
2480
2481 /* Prepend it to the psymtab list for the objfile it belongs to.
2482 Psymtabs are searched in most recent inserted -> least recent
2483 inserted order. */
2484
2485 psymtab->objfile = objfile;
2486 psymtab->next = objfile->psymtabs;
2487 objfile->psymtabs = psymtab;
2488 #if 0
2489 {
2490 struct partial_symtab **prev_pst;
2491 psymtab->objfile = objfile;
2492 psymtab->next = NULL;
2493 prev_pst = &(objfile->psymtabs);
2494 while ((*prev_pst) != NULL)
2495 prev_pst = &((*prev_pst)->next);
2496 (*prev_pst) = psymtab;
2497 }
2498 #endif
2499
2500 return (psymtab);
2501 }
2502
2503 void
2504 discard_psymtab (struct partial_symtab *pst)
2505 {
2506 struct partial_symtab **prev_pst;
2507
2508 /* From dbxread.c:
2509 Empty psymtabs happen as a result of header files which don't
2510 have any symbols in them. There can be a lot of them. But this
2511 check is wrong, in that a psymtab with N_SLINE entries but
2512 nothing else is not empty, but we don't realize that. Fixing
2513 that without slowing things down might be tricky. */
2514
2515 /* First, snip it out of the psymtab chain */
2516
2517 prev_pst = &(pst->objfile->psymtabs);
2518 while ((*prev_pst) != pst)
2519 prev_pst = &((*prev_pst)->next);
2520 (*prev_pst) = pst->next;
2521
2522 /* Next, put it on a free list for recycling */
2523
2524 pst->next = pst->objfile->free_psymtabs;
2525 pst->objfile->free_psymtabs = pst;
2526 }
2527 \f
2528
2529 /* Reset all data structures in gdb which may contain references to symbol
2530 table data. */
2531
2532 void
2533 clear_symtab_users (void)
2534 {
2535 /* Someday, we should do better than this, by only blowing away
2536 the things that really need to be blown. */
2537
2538 /* Clear the "current" symtab first, because it is no longer valid.
2539 breakpoint_re_set may try to access the current symtab. */
2540 clear_current_source_symtab_and_line ();
2541
2542 clear_displays ();
2543 breakpoint_re_set ();
2544 set_default_breakpoint (0, 0, 0, 0);
2545 clear_pc_function_cache ();
2546 if (deprecated_target_new_objfile_hook)
2547 deprecated_target_new_objfile_hook (NULL);
2548 }
2549
2550 static void
2551 clear_symtab_users_cleanup (void *ignore)
2552 {
2553 clear_symtab_users ();
2554 }
2555
2556 /* clear_symtab_users_once:
2557
2558 This function is run after symbol reading, or from a cleanup.
2559 If an old symbol table was obsoleted, the old symbol table
2560 has been blown away, but the other GDB data structures that may
2561 reference it have not yet been cleared or re-directed. (The old
2562 symtab was zapped, and the cleanup queued, in free_named_symtab()
2563 below.)
2564
2565 This function can be queued N times as a cleanup, or called
2566 directly; it will do all the work the first time, and then will be a
2567 no-op until the next time it is queued. This works by bumping a
2568 counter at queueing time. Much later when the cleanup is run, or at
2569 the end of symbol processing (in case the cleanup is discarded), if
2570 the queued count is greater than the "done-count", we do the work
2571 and set the done-count to the queued count. If the queued count is
2572 less than or equal to the done-count, we just ignore the call. This
2573 is needed because reading a single .o file will often replace many
2574 symtabs (one per .h file, for example), and we don't want to reset
2575 the breakpoints N times in the user's face.
2576
2577 The reason we both queue a cleanup, and call it directly after symbol
2578 reading, is because the cleanup protects us in case of errors, but is
2579 discarded if symbol reading is successful. */
2580
2581 #if 0
2582 /* FIXME: As free_named_symtabs is currently a big noop this function
2583 is no longer needed. */
2584 static void clear_symtab_users_once (void);
2585
2586 static int clear_symtab_users_queued;
2587 static int clear_symtab_users_done;
2588
2589 static void
2590 clear_symtab_users_once (void)
2591 {
2592 /* Enforce once-per-`do_cleanups'-semantics */
2593 if (clear_symtab_users_queued <= clear_symtab_users_done)
2594 return;
2595 clear_symtab_users_done = clear_symtab_users_queued;
2596
2597 clear_symtab_users ();
2598 }
2599 #endif
2600
2601 /* Delete the specified psymtab, and any others that reference it. */
2602
2603 static void
2604 cashier_psymtab (struct partial_symtab *pst)
2605 {
2606 struct partial_symtab *ps, *pprev = NULL;
2607 int i;
2608
2609 /* Find its previous psymtab in the chain */
2610 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2611 {
2612 if (ps == pst)
2613 break;
2614 pprev = ps;
2615 }
2616
2617 if (ps)
2618 {
2619 /* Unhook it from the chain. */
2620 if (ps == pst->objfile->psymtabs)
2621 pst->objfile->psymtabs = ps->next;
2622 else
2623 pprev->next = ps->next;
2624
2625 /* FIXME, we can't conveniently deallocate the entries in the
2626 partial_symbol lists (global_psymbols/static_psymbols) that
2627 this psymtab points to. These just take up space until all
2628 the psymtabs are reclaimed. Ditto the dependencies list and
2629 filename, which are all in the objfile_obstack. */
2630
2631 /* We need to cashier any psymtab that has this one as a dependency... */
2632 again:
2633 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2634 {
2635 for (i = 0; i < ps->number_of_dependencies; i++)
2636 {
2637 if (ps->dependencies[i] == pst)
2638 {
2639 cashier_psymtab (ps);
2640 goto again; /* Must restart, chain has been munged. */
2641 }
2642 }
2643 }
2644 }
2645 }
2646
2647 /* If a symtab or psymtab for filename NAME is found, free it along
2648 with any dependent breakpoints, displays, etc.
2649 Used when loading new versions of object modules with the "add-file"
2650 command. This is only called on the top-level symtab or psymtab's name;
2651 it is not called for subsidiary files such as .h files.
2652
2653 Return value is 1 if we blew away the environment, 0 if not.
2654 FIXME. The return value appears to never be used.
2655
2656 FIXME. I think this is not the best way to do this. We should
2657 work on being gentler to the environment while still cleaning up
2658 all stray pointers into the freed symtab. */
2659
2660 int
2661 free_named_symtabs (char *name)
2662 {
2663 #if 0
2664 /* FIXME: With the new method of each objfile having it's own
2665 psymtab list, this function needs serious rethinking. In particular,
2666 why was it ever necessary to toss psymtabs with specific compilation
2667 unit filenames, as opposed to all psymtabs from a particular symbol
2668 file? -- fnf
2669 Well, the answer is that some systems permit reloading of particular
2670 compilation units. We want to blow away any old info about these
2671 compilation units, regardless of which objfiles they arrived in. --gnu. */
2672
2673 struct symtab *s;
2674 struct symtab *prev;
2675 struct partial_symtab *ps;
2676 struct blockvector *bv;
2677 int blewit = 0;
2678
2679 /* We only wack things if the symbol-reload switch is set. */
2680 if (!symbol_reloading)
2681 return 0;
2682
2683 /* Some symbol formats have trouble providing file names... */
2684 if (name == 0 || *name == '\0')
2685 return 0;
2686
2687 /* Look for a psymtab with the specified name. */
2688
2689 again2:
2690 for (ps = partial_symtab_list; ps; ps = ps->next)
2691 {
2692 if (strcmp (name, ps->filename) == 0)
2693 {
2694 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2695 goto again2; /* Must restart, chain has been munged */
2696 }
2697 }
2698
2699 /* Look for a symtab with the specified name. */
2700
2701 for (s = symtab_list; s; s = s->next)
2702 {
2703 if (strcmp (name, s->filename) == 0)
2704 break;
2705 prev = s;
2706 }
2707
2708 if (s)
2709 {
2710 if (s == symtab_list)
2711 symtab_list = s->next;
2712 else
2713 prev->next = s->next;
2714
2715 /* For now, queue a delete for all breakpoints, displays, etc., whether
2716 or not they depend on the symtab being freed. This should be
2717 changed so that only those data structures affected are deleted. */
2718
2719 /* But don't delete anything if the symtab is empty.
2720 This test is necessary due to a bug in "dbxread.c" that
2721 causes empty symtabs to be created for N_SO symbols that
2722 contain the pathname of the object file. (This problem
2723 has been fixed in GDB 3.9x). */
2724
2725 bv = BLOCKVECTOR (s);
2726 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2727 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2728 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2729 {
2730 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
2731 name);
2732 clear_symtab_users_queued++;
2733 make_cleanup (clear_symtab_users_once, 0);
2734 blewit = 1;
2735 }
2736 else
2737 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2738 name);
2739
2740 free_symtab (s);
2741 }
2742 else
2743 {
2744 /* It is still possible that some breakpoints will be affected
2745 even though no symtab was found, since the file might have
2746 been compiled without debugging, and hence not be associated
2747 with a symtab. In order to handle this correctly, we would need
2748 to keep a list of text address ranges for undebuggable files.
2749 For now, we do nothing, since this is a fairly obscure case. */
2750 ;
2751 }
2752
2753 /* FIXME, what about the minimal symbol table? */
2754 return blewit;
2755 #else
2756 return (0);
2757 #endif
2758 }
2759 \f
2760 /* Allocate and partially fill a partial symtab. It will be
2761 completely filled at the end of the symbol list.
2762
2763 FILENAME is the name of the symbol-file we are reading from. */
2764
2765 struct partial_symtab *
2766 start_psymtab_common (struct objfile *objfile,
2767 struct section_offsets *section_offsets, char *filename,
2768 CORE_ADDR textlow, struct partial_symbol **global_syms,
2769 struct partial_symbol **static_syms)
2770 {
2771 struct partial_symtab *psymtab;
2772
2773 psymtab = allocate_psymtab (filename, objfile);
2774 psymtab->section_offsets = section_offsets;
2775 psymtab->textlow = textlow;
2776 psymtab->texthigh = psymtab->textlow; /* default */
2777 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2778 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2779 return (psymtab);
2780 }
2781 \f
2782 /* Add a symbol with a long value to a psymtab.
2783 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2784 Return the partial symbol that has been added. */
2785
2786 /* NOTE: carlton/2003-09-11: The reason why we return the partial
2787 symbol is so that callers can get access to the symbol's demangled
2788 name, which they don't have any cheap way to determine otherwise.
2789 (Currenly, dwarf2read.c is the only file who uses that information,
2790 though it's possible that other readers might in the future.)
2791 Elena wasn't thrilled about that, and I don't blame her, but we
2792 couldn't come up with a better way to get that information. If
2793 it's needed in other situations, we could consider breaking up
2794 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2795 cache. */
2796
2797 const struct partial_symbol *
2798 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2799 enum address_class class,
2800 struct psymbol_allocation_list *list, long val, /* Value as a long */
2801 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2802 enum language language, struct objfile *objfile)
2803 {
2804 struct partial_symbol *psym;
2805 char *buf = alloca (namelength + 1);
2806 /* psymbol is static so that there will be no uninitialized gaps in the
2807 structure which might contain random data, causing cache misses in
2808 bcache. */
2809 static struct partial_symbol psymbol;
2810
2811 /* Create local copy of the partial symbol */
2812 memcpy (buf, name, namelength);
2813 buf[namelength] = '\0';
2814 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2815 if (val != 0)
2816 {
2817 SYMBOL_VALUE (&psymbol) = val;
2818 }
2819 else
2820 {
2821 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2822 }
2823 SYMBOL_SECTION (&psymbol) = 0;
2824 SYMBOL_LANGUAGE (&psymbol) = language;
2825 PSYMBOL_DOMAIN (&psymbol) = domain;
2826 PSYMBOL_CLASS (&psymbol) = class;
2827
2828 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2829
2830 /* Stash the partial symbol away in the cache */
2831 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2832 objfile->psymbol_cache);
2833
2834 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2835 if (list->next >= list->list + list->size)
2836 {
2837 extend_psymbol_list (list, objfile);
2838 }
2839 *list->next++ = psym;
2840 OBJSTAT (objfile, n_psyms++);
2841
2842 return psym;
2843 }
2844
2845 /* Add a symbol with a long value to a psymtab. This differs from
2846 * add_psymbol_to_list above in taking both a mangled and a demangled
2847 * name. */
2848
2849 void
2850 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2851 int dem_namelength, domain_enum domain,
2852 enum address_class class,
2853 struct psymbol_allocation_list *list, long val, /* Value as a long */
2854 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2855 enum language language,
2856 struct objfile *objfile)
2857 {
2858 struct partial_symbol *psym;
2859 char *buf = alloca (namelength + 1);
2860 /* psymbol is static so that there will be no uninitialized gaps in the
2861 structure which might contain random data, causing cache misses in
2862 bcache. */
2863 static struct partial_symbol psymbol;
2864
2865 /* Create local copy of the partial symbol */
2866
2867 memcpy (buf, name, namelength);
2868 buf[namelength] = '\0';
2869 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2870 objfile->psymbol_cache);
2871
2872 buf = alloca (dem_namelength + 1);
2873 memcpy (buf, dem_name, dem_namelength);
2874 buf[dem_namelength] = '\0';
2875
2876 switch (language)
2877 {
2878 case language_c:
2879 case language_cplus:
2880 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2881 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2882 break;
2883 /* FIXME What should be done for the default case? Ignoring for now. */
2884 }
2885
2886 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2887 if (val != 0)
2888 {
2889 SYMBOL_VALUE (&psymbol) = val;
2890 }
2891 else
2892 {
2893 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2894 }
2895 SYMBOL_SECTION (&psymbol) = 0;
2896 SYMBOL_LANGUAGE (&psymbol) = language;
2897 PSYMBOL_DOMAIN (&psymbol) = domain;
2898 PSYMBOL_CLASS (&psymbol) = class;
2899 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2900
2901 /* Stash the partial symbol away in the cache */
2902 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2903 objfile->psymbol_cache);
2904
2905 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2906 if (list->next >= list->list + list->size)
2907 {
2908 extend_psymbol_list (list, objfile);
2909 }
2910 *list->next++ = psym;
2911 OBJSTAT (objfile, n_psyms++);
2912 }
2913
2914 /* Initialize storage for partial symbols. */
2915
2916 void
2917 init_psymbol_list (struct objfile *objfile, int total_symbols)
2918 {
2919 /* Free any previously allocated psymbol lists. */
2920
2921 if (objfile->global_psymbols.list)
2922 {
2923 xfree (objfile->global_psymbols.list);
2924 }
2925 if (objfile->static_psymbols.list)
2926 {
2927 xfree (objfile->static_psymbols.list);
2928 }
2929
2930 /* Current best guess is that approximately a twentieth
2931 of the total symbols (in a debugging file) are global or static
2932 oriented symbols */
2933
2934 objfile->global_psymbols.size = total_symbols / 10;
2935 objfile->static_psymbols.size = total_symbols / 10;
2936
2937 if (objfile->global_psymbols.size > 0)
2938 {
2939 objfile->global_psymbols.next =
2940 objfile->global_psymbols.list = (struct partial_symbol **)
2941 xmalloc ((objfile->global_psymbols.size
2942 * sizeof (struct partial_symbol *)));
2943 }
2944 if (objfile->static_psymbols.size > 0)
2945 {
2946 objfile->static_psymbols.next =
2947 objfile->static_psymbols.list = (struct partial_symbol **)
2948 xmalloc ((objfile->static_psymbols.size
2949 * sizeof (struct partial_symbol *)));
2950 }
2951 }
2952
2953 /* OVERLAYS:
2954 The following code implements an abstraction for debugging overlay sections.
2955
2956 The target model is as follows:
2957 1) The gnu linker will permit multiple sections to be mapped into the
2958 same VMA, each with its own unique LMA (or load address).
2959 2) It is assumed that some runtime mechanism exists for mapping the
2960 sections, one by one, from the load address into the VMA address.
2961 3) This code provides a mechanism for gdb to keep track of which
2962 sections should be considered to be mapped from the VMA to the LMA.
2963 This information is used for symbol lookup, and memory read/write.
2964 For instance, if a section has been mapped then its contents
2965 should be read from the VMA, otherwise from the LMA.
2966
2967 Two levels of debugger support for overlays are available. One is
2968 "manual", in which the debugger relies on the user to tell it which
2969 overlays are currently mapped. This level of support is
2970 implemented entirely in the core debugger, and the information about
2971 whether a section is mapped is kept in the objfile->obj_section table.
2972
2973 The second level of support is "automatic", and is only available if
2974 the target-specific code provides functionality to read the target's
2975 overlay mapping table, and translate its contents for the debugger
2976 (by updating the mapped state information in the obj_section tables).
2977
2978 The interface is as follows:
2979 User commands:
2980 overlay map <name> -- tell gdb to consider this section mapped
2981 overlay unmap <name> -- tell gdb to consider this section unmapped
2982 overlay list -- list the sections that GDB thinks are mapped
2983 overlay read-target -- get the target's state of what's mapped
2984 overlay off/manual/auto -- set overlay debugging state
2985 Functional interface:
2986 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2987 section, return that section.
2988 find_pc_overlay(pc): find any overlay section that contains
2989 the pc, either in its VMA or its LMA
2990 overlay_is_mapped(sect): true if overlay is marked as mapped
2991 section_is_overlay(sect): true if section's VMA != LMA
2992 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2993 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2994 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2995 overlay_mapped_address(...): map an address from section's LMA to VMA
2996 overlay_unmapped_address(...): map an address from section's VMA to LMA
2997 symbol_overlayed_address(...): Return a "current" address for symbol:
2998 either in VMA or LMA depending on whether
2999 the symbol's section is currently mapped
3000 */
3001
3002 /* Overlay debugging state: */
3003
3004 enum overlay_debugging_state overlay_debugging = ovly_off;
3005 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3006
3007 /* Target vector for refreshing overlay mapped state */
3008 static void simple_overlay_update (struct obj_section *);
3009 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
3010
3011 /* Function: section_is_overlay (SECTION)
3012 Returns true if SECTION has VMA not equal to LMA, ie.
3013 SECTION is loaded at an address different from where it will "run". */
3014
3015 int
3016 section_is_overlay (asection *section)
3017 {
3018 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3019
3020 if (overlay_debugging)
3021 if (section && section->lma != 0 &&
3022 section->vma != section->lma)
3023 return 1;
3024
3025 return 0;
3026 }
3027
3028 /* Function: overlay_invalidate_all (void)
3029 Invalidate the mapped state of all overlay sections (mark it as stale). */
3030
3031 static void
3032 overlay_invalidate_all (void)
3033 {
3034 struct objfile *objfile;
3035 struct obj_section *sect;
3036
3037 ALL_OBJSECTIONS (objfile, sect)
3038 if (section_is_overlay (sect->the_bfd_section))
3039 sect->ovly_mapped = -1;
3040 }
3041
3042 /* Function: overlay_is_mapped (SECTION)
3043 Returns true if section is an overlay, and is currently mapped.
3044 Private: public access is thru function section_is_mapped.
3045
3046 Access to the ovly_mapped flag is restricted to this function, so
3047 that we can do automatic update. If the global flag
3048 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3049 overlay_invalidate_all. If the mapped state of the particular
3050 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3051
3052 static int
3053 overlay_is_mapped (struct obj_section *osect)
3054 {
3055 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3056 return 0;
3057
3058 switch (overlay_debugging)
3059 {
3060 default:
3061 case ovly_off:
3062 return 0; /* overlay debugging off */
3063 case ovly_auto: /* overlay debugging automatic */
3064 /* Unles there is a target_overlay_update function,
3065 there's really nothing useful to do here (can't really go auto) */
3066 if (target_overlay_update)
3067 {
3068 if (overlay_cache_invalid)
3069 {
3070 overlay_invalidate_all ();
3071 overlay_cache_invalid = 0;
3072 }
3073 if (osect->ovly_mapped == -1)
3074 (*target_overlay_update) (osect);
3075 }
3076 /* fall thru to manual case */
3077 case ovly_on: /* overlay debugging manual */
3078 return osect->ovly_mapped == 1;
3079 }
3080 }
3081
3082 /* Function: section_is_mapped
3083 Returns true if section is an overlay, and is currently mapped. */
3084
3085 int
3086 section_is_mapped (asection *section)
3087 {
3088 struct objfile *objfile;
3089 struct obj_section *osect;
3090
3091 if (overlay_debugging)
3092 if (section && section_is_overlay (section))
3093 ALL_OBJSECTIONS (objfile, osect)
3094 if (osect->the_bfd_section == section)
3095 return overlay_is_mapped (osect);
3096
3097 return 0;
3098 }
3099
3100 /* Function: pc_in_unmapped_range
3101 If PC falls into the lma range of SECTION, return true, else false. */
3102
3103 CORE_ADDR
3104 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
3105 {
3106 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3107
3108 int size;
3109
3110 if (overlay_debugging)
3111 if (section && section_is_overlay (section))
3112 {
3113 size = bfd_get_section_size (section);
3114 if (section->lma <= pc && pc < section->lma + size)
3115 return 1;
3116 }
3117 return 0;
3118 }
3119
3120 /* Function: pc_in_mapped_range
3121 If PC falls into the vma range of SECTION, return true, else false. */
3122
3123 CORE_ADDR
3124 pc_in_mapped_range (CORE_ADDR pc, asection *section)
3125 {
3126 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3127
3128 int size;
3129
3130 if (overlay_debugging)
3131 if (section && section_is_overlay (section))
3132 {
3133 size = bfd_get_section_size (section);
3134 if (section->vma <= pc && pc < section->vma + size)
3135 return 1;
3136 }
3137 return 0;
3138 }
3139
3140
3141 /* Return true if the mapped ranges of sections A and B overlap, false
3142 otherwise. */
3143 static int
3144 sections_overlap (asection *a, asection *b)
3145 {
3146 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3147
3148 CORE_ADDR a_start = a->vma;
3149 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
3150 CORE_ADDR b_start = b->vma;
3151 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
3152
3153 return (a_start < b_end && b_start < a_end);
3154 }
3155
3156 /* Function: overlay_unmapped_address (PC, SECTION)
3157 Returns the address corresponding to PC in the unmapped (load) range.
3158 May be the same as PC. */
3159
3160 CORE_ADDR
3161 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3162 {
3163 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3164
3165 if (overlay_debugging)
3166 if (section && section_is_overlay (section) &&
3167 pc_in_mapped_range (pc, section))
3168 return pc + section->lma - section->vma;
3169
3170 return pc;
3171 }
3172
3173 /* Function: overlay_mapped_address (PC, SECTION)
3174 Returns the address corresponding to PC in the mapped (runtime) range.
3175 May be the same as PC. */
3176
3177 CORE_ADDR
3178 overlay_mapped_address (CORE_ADDR pc, asection *section)
3179 {
3180 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3181
3182 if (overlay_debugging)
3183 if (section && section_is_overlay (section) &&
3184 pc_in_unmapped_range (pc, section))
3185 return pc + section->vma - section->lma;
3186
3187 return pc;
3188 }
3189
3190
3191 /* Function: symbol_overlayed_address
3192 Return one of two addresses (relative to the VMA or to the LMA),
3193 depending on whether the section is mapped or not. */
3194
3195 CORE_ADDR
3196 symbol_overlayed_address (CORE_ADDR address, asection *section)
3197 {
3198 if (overlay_debugging)
3199 {
3200 /* If the symbol has no section, just return its regular address. */
3201 if (section == 0)
3202 return address;
3203 /* If the symbol's section is not an overlay, just return its address */
3204 if (!section_is_overlay (section))
3205 return address;
3206 /* If the symbol's section is mapped, just return its address */
3207 if (section_is_mapped (section))
3208 return address;
3209 /*
3210 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3211 * then return its LOADED address rather than its vma address!!
3212 */
3213 return overlay_unmapped_address (address, section);
3214 }
3215 return address;
3216 }
3217
3218 /* Function: find_pc_overlay (PC)
3219 Return the best-match overlay section for PC:
3220 If PC matches a mapped overlay section's VMA, return that section.
3221 Else if PC matches an unmapped section's VMA, return that section.
3222 Else if PC matches an unmapped section's LMA, return that section. */
3223
3224 asection *
3225 find_pc_overlay (CORE_ADDR pc)
3226 {
3227 struct objfile *objfile;
3228 struct obj_section *osect, *best_match = NULL;
3229
3230 if (overlay_debugging)
3231 ALL_OBJSECTIONS (objfile, osect)
3232 if (section_is_overlay (osect->the_bfd_section))
3233 {
3234 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3235 {
3236 if (overlay_is_mapped (osect))
3237 return osect->the_bfd_section;
3238 else
3239 best_match = osect;
3240 }
3241 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3242 best_match = osect;
3243 }
3244 return best_match ? best_match->the_bfd_section : NULL;
3245 }
3246
3247 /* Function: find_pc_mapped_section (PC)
3248 If PC falls into the VMA address range of an overlay section that is
3249 currently marked as MAPPED, return that section. Else return NULL. */
3250
3251 asection *
3252 find_pc_mapped_section (CORE_ADDR pc)
3253 {
3254 struct objfile *objfile;
3255 struct obj_section *osect;
3256
3257 if (overlay_debugging)
3258 ALL_OBJSECTIONS (objfile, osect)
3259 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3260 overlay_is_mapped (osect))
3261 return osect->the_bfd_section;
3262
3263 return NULL;
3264 }
3265
3266 /* Function: list_overlays_command
3267 Print a list of mapped sections and their PC ranges */
3268
3269 void
3270 list_overlays_command (char *args, int from_tty)
3271 {
3272 int nmapped = 0;
3273 struct objfile *objfile;
3274 struct obj_section *osect;
3275
3276 if (overlay_debugging)
3277 ALL_OBJSECTIONS (objfile, osect)
3278 if (overlay_is_mapped (osect))
3279 {
3280 const char *name;
3281 bfd_vma lma, vma;
3282 int size;
3283
3284 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3285 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3286 size = bfd_get_section_size (osect->the_bfd_section);
3287 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3288
3289 printf_filtered ("Section %s, loaded at ", name);
3290 deprecated_print_address_numeric (lma, 1, gdb_stdout);
3291 puts_filtered (" - ");
3292 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
3293 printf_filtered (", mapped at ");
3294 deprecated_print_address_numeric (vma, 1, gdb_stdout);
3295 puts_filtered (" - ");
3296 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
3297 puts_filtered ("\n");
3298
3299 nmapped++;
3300 }
3301 if (nmapped == 0)
3302 printf_filtered (_("No sections are mapped.\n"));
3303 }
3304
3305 /* Function: map_overlay_command
3306 Mark the named section as mapped (ie. residing at its VMA address). */
3307
3308 void
3309 map_overlay_command (char *args, int from_tty)
3310 {
3311 struct objfile *objfile, *objfile2;
3312 struct obj_section *sec, *sec2;
3313 asection *bfdsec;
3314
3315 if (!overlay_debugging)
3316 error (_("\
3317 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3318 the 'overlay manual' command."));
3319
3320 if (args == 0 || *args == 0)
3321 error (_("Argument required: name of an overlay section"));
3322
3323 /* First, find a section matching the user supplied argument */
3324 ALL_OBJSECTIONS (objfile, sec)
3325 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3326 {
3327 /* Now, check to see if the section is an overlay. */
3328 bfdsec = sec->the_bfd_section;
3329 if (!section_is_overlay (bfdsec))
3330 continue; /* not an overlay section */
3331
3332 /* Mark the overlay as "mapped" */
3333 sec->ovly_mapped = 1;
3334
3335 /* Next, make a pass and unmap any sections that are
3336 overlapped by this new section: */
3337 ALL_OBJSECTIONS (objfile2, sec2)
3338 if (sec2->ovly_mapped
3339 && sec != sec2
3340 && sec->the_bfd_section != sec2->the_bfd_section
3341 && sections_overlap (sec->the_bfd_section,
3342 sec2->the_bfd_section))
3343 {
3344 if (info_verbose)
3345 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3346 bfd_section_name (objfile->obfd,
3347 sec2->the_bfd_section));
3348 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3349 }
3350 return;
3351 }
3352 error (_("No overlay section called %s"), args);
3353 }
3354
3355 /* Function: unmap_overlay_command
3356 Mark the overlay section as unmapped
3357 (ie. resident in its LMA address range, rather than the VMA range). */
3358
3359 void
3360 unmap_overlay_command (char *args, int from_tty)
3361 {
3362 struct objfile *objfile;
3363 struct obj_section *sec;
3364
3365 if (!overlay_debugging)
3366 error (_("\
3367 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3368 the 'overlay manual' command."));
3369
3370 if (args == 0 || *args == 0)
3371 error (_("Argument required: name of an overlay section"));
3372
3373 /* First, find a section matching the user supplied argument */
3374 ALL_OBJSECTIONS (objfile, sec)
3375 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3376 {
3377 if (!sec->ovly_mapped)
3378 error (_("Section %s is not mapped"), args);
3379 sec->ovly_mapped = 0;
3380 return;
3381 }
3382 error (_("No overlay section called %s"), args);
3383 }
3384
3385 /* Function: overlay_auto_command
3386 A utility command to turn on overlay debugging.
3387 Possibly this should be done via a set/show command. */
3388
3389 static void
3390 overlay_auto_command (char *args, int from_tty)
3391 {
3392 overlay_debugging = ovly_auto;
3393 enable_overlay_breakpoints ();
3394 if (info_verbose)
3395 printf_unfiltered (_("Automatic overlay debugging enabled."));
3396 }
3397
3398 /* Function: overlay_manual_command
3399 A utility command to turn on overlay debugging.
3400 Possibly this should be done via a set/show command. */
3401
3402 static void
3403 overlay_manual_command (char *args, int from_tty)
3404 {
3405 overlay_debugging = ovly_on;
3406 disable_overlay_breakpoints ();
3407 if (info_verbose)
3408 printf_unfiltered (_("Overlay debugging enabled."));
3409 }
3410
3411 /* Function: overlay_off_command
3412 A utility command to turn on overlay debugging.
3413 Possibly this should be done via a set/show command. */
3414
3415 static void
3416 overlay_off_command (char *args, int from_tty)
3417 {
3418 overlay_debugging = ovly_off;
3419 disable_overlay_breakpoints ();
3420 if (info_verbose)
3421 printf_unfiltered (_("Overlay debugging disabled."));
3422 }
3423
3424 static void
3425 overlay_load_command (char *args, int from_tty)
3426 {
3427 if (target_overlay_update)
3428 (*target_overlay_update) (NULL);
3429 else
3430 error (_("This target does not know how to read its overlay state."));
3431 }
3432
3433 /* Function: overlay_command
3434 A place-holder for a mis-typed command */
3435
3436 /* Command list chain containing all defined "overlay" subcommands. */
3437 struct cmd_list_element *overlaylist;
3438
3439 static void
3440 overlay_command (char *args, int from_tty)
3441 {
3442 printf_unfiltered
3443 ("\"overlay\" must be followed by the name of an overlay command.\n");
3444 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3445 }
3446
3447
3448 /* Target Overlays for the "Simplest" overlay manager:
3449
3450 This is GDB's default target overlay layer. It works with the
3451 minimal overlay manager supplied as an example by Cygnus. The
3452 entry point is via a function pointer "target_overlay_update",
3453 so targets that use a different runtime overlay manager can
3454 substitute their own overlay_update function and take over the
3455 function pointer.
3456
3457 The overlay_update function pokes around in the target's data structures
3458 to see what overlays are mapped, and updates GDB's overlay mapping with
3459 this information.
3460
3461 In this simple implementation, the target data structures are as follows:
3462 unsigned _novlys; /# number of overlay sections #/
3463 unsigned _ovly_table[_novlys][4] = {
3464 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3465 {..., ..., ..., ...},
3466 }
3467 unsigned _novly_regions; /# number of overlay regions #/
3468 unsigned _ovly_region_table[_novly_regions][3] = {
3469 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3470 {..., ..., ...},
3471 }
3472 These functions will attempt to update GDB's mappedness state in the
3473 symbol section table, based on the target's mappedness state.
3474
3475 To do this, we keep a cached copy of the target's _ovly_table, and
3476 attempt to detect when the cached copy is invalidated. The main
3477 entry point is "simple_overlay_update(SECT), which looks up SECT in
3478 the cached table and re-reads only the entry for that section from
3479 the target (whenever possible).
3480 */
3481
3482 /* Cached, dynamically allocated copies of the target data structures: */
3483 static unsigned (*cache_ovly_table)[4] = 0;
3484 #if 0
3485 static unsigned (*cache_ovly_region_table)[3] = 0;
3486 #endif
3487 static unsigned cache_novlys = 0;
3488 #if 0
3489 static unsigned cache_novly_regions = 0;
3490 #endif
3491 static CORE_ADDR cache_ovly_table_base = 0;
3492 #if 0
3493 static CORE_ADDR cache_ovly_region_table_base = 0;
3494 #endif
3495 enum ovly_index
3496 {
3497 VMA, SIZE, LMA, MAPPED
3498 };
3499 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3500
3501 /* Throw away the cached copy of _ovly_table */
3502 static void
3503 simple_free_overlay_table (void)
3504 {
3505 if (cache_ovly_table)
3506 xfree (cache_ovly_table);
3507 cache_novlys = 0;
3508 cache_ovly_table = NULL;
3509 cache_ovly_table_base = 0;
3510 }
3511
3512 #if 0
3513 /* Throw away the cached copy of _ovly_region_table */
3514 static void
3515 simple_free_overlay_region_table (void)
3516 {
3517 if (cache_ovly_region_table)
3518 xfree (cache_ovly_region_table);
3519 cache_novly_regions = 0;
3520 cache_ovly_region_table = NULL;
3521 cache_ovly_region_table_base = 0;
3522 }
3523 #endif
3524
3525 /* Read an array of ints from the target into a local buffer.
3526 Convert to host order. int LEN is number of ints */
3527 static void
3528 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3529 {
3530 /* FIXME (alloca): Not safe if array is very large. */
3531 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3532 int i;
3533
3534 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3535 for (i = 0; i < len; i++)
3536 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3537 TARGET_LONG_BYTES);
3538 }
3539
3540 /* Find and grab a copy of the target _ovly_table
3541 (and _novlys, which is needed for the table's size) */
3542 static int
3543 simple_read_overlay_table (void)
3544 {
3545 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3546
3547 simple_free_overlay_table ();
3548 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3549 if (! novlys_msym)
3550 {
3551 error (_("Error reading inferior's overlay table: "
3552 "couldn't find `_novlys' variable\n"
3553 "in inferior. Use `overlay manual' mode."));
3554 return 0;
3555 }
3556
3557 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3558 if (! ovly_table_msym)
3559 {
3560 error (_("Error reading inferior's overlay table: couldn't find "
3561 "`_ovly_table' array\n"
3562 "in inferior. Use `overlay manual' mode."));
3563 return 0;
3564 }
3565
3566 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3567 cache_ovly_table
3568 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3569 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3570 read_target_long_array (cache_ovly_table_base,
3571 (unsigned int *) cache_ovly_table,
3572 cache_novlys * 4);
3573
3574 return 1; /* SUCCESS */
3575 }
3576
3577 #if 0
3578 /* Find and grab a copy of the target _ovly_region_table
3579 (and _novly_regions, which is needed for the table's size) */
3580 static int
3581 simple_read_overlay_region_table (void)
3582 {
3583 struct minimal_symbol *msym;
3584
3585 simple_free_overlay_region_table ();
3586 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3587 if (msym != NULL)
3588 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3589 else
3590 return 0; /* failure */
3591 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3592 if (cache_ovly_region_table != NULL)
3593 {
3594 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3595 if (msym != NULL)
3596 {
3597 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3598 read_target_long_array (cache_ovly_region_table_base,
3599 (unsigned int *) cache_ovly_region_table,
3600 cache_novly_regions * 3);
3601 }
3602 else
3603 return 0; /* failure */
3604 }
3605 else
3606 return 0; /* failure */
3607 return 1; /* SUCCESS */
3608 }
3609 #endif
3610
3611 /* Function: simple_overlay_update_1
3612 A helper function for simple_overlay_update. Assuming a cached copy
3613 of _ovly_table exists, look through it to find an entry whose vma,
3614 lma and size match those of OSECT. Re-read the entry and make sure
3615 it still matches OSECT (else the table may no longer be valid).
3616 Set OSECT's mapped state to match the entry. Return: 1 for
3617 success, 0 for failure. */
3618
3619 static int
3620 simple_overlay_update_1 (struct obj_section *osect)
3621 {
3622 int i, size;
3623 bfd *obfd = osect->objfile->obfd;
3624 asection *bsect = osect->the_bfd_section;
3625
3626 size = bfd_get_section_size (osect->the_bfd_section);
3627 for (i = 0; i < cache_novlys; i++)
3628 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3629 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3630 /* && cache_ovly_table[i][SIZE] == size */ )
3631 {
3632 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3633 (unsigned int *) cache_ovly_table[i], 4);
3634 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3635 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3636 /* && cache_ovly_table[i][SIZE] == size */ )
3637 {
3638 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3639 return 1;
3640 }
3641 else /* Warning! Warning! Target's ovly table has changed! */
3642 return 0;
3643 }
3644 return 0;
3645 }
3646
3647 /* Function: simple_overlay_update
3648 If OSECT is NULL, then update all sections' mapped state
3649 (after re-reading the entire target _ovly_table).
3650 If OSECT is non-NULL, then try to find a matching entry in the
3651 cached ovly_table and update only OSECT's mapped state.
3652 If a cached entry can't be found or the cache isn't valid, then
3653 re-read the entire cache, and go ahead and update all sections. */
3654
3655 static void
3656 simple_overlay_update (struct obj_section *osect)
3657 {
3658 struct objfile *objfile;
3659
3660 /* Were we given an osect to look up? NULL means do all of them. */
3661 if (osect)
3662 /* Have we got a cached copy of the target's overlay table? */
3663 if (cache_ovly_table != NULL)
3664 /* Does its cached location match what's currently in the symtab? */
3665 if (cache_ovly_table_base ==
3666 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3667 /* Then go ahead and try to look up this single section in the cache */
3668 if (simple_overlay_update_1 (osect))
3669 /* Found it! We're done. */
3670 return;
3671
3672 /* Cached table no good: need to read the entire table anew.
3673 Or else we want all the sections, in which case it's actually
3674 more efficient to read the whole table in one block anyway. */
3675
3676 if (! simple_read_overlay_table ())
3677 return;
3678
3679 /* Now may as well update all sections, even if only one was requested. */
3680 ALL_OBJSECTIONS (objfile, osect)
3681 if (section_is_overlay (osect->the_bfd_section))
3682 {
3683 int i, size;
3684 bfd *obfd = osect->objfile->obfd;
3685 asection *bsect = osect->the_bfd_section;
3686
3687 size = bfd_get_section_size (bsect);
3688 for (i = 0; i < cache_novlys; i++)
3689 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3690 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3691 /* && cache_ovly_table[i][SIZE] == size */ )
3692 { /* obj_section matches i'th entry in ovly_table */
3693 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3694 break; /* finished with inner for loop: break out */
3695 }
3696 }
3697 }
3698
3699 /* Set the output sections and output offsets for section SECTP in
3700 ABFD. The relocation code in BFD will read these offsets, so we
3701 need to be sure they're initialized. We map each section to itself,
3702 with no offset; this means that SECTP->vma will be honored. */
3703
3704 static void
3705 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3706 {
3707 sectp->output_section = sectp;
3708 sectp->output_offset = 0;
3709 }
3710
3711 /* Relocate the contents of a debug section SECTP in ABFD. The
3712 contents are stored in BUF if it is non-NULL, or returned in a
3713 malloc'd buffer otherwise.
3714
3715 For some platforms and debug info formats, shared libraries contain
3716 relocations against the debug sections (particularly for DWARF-2;
3717 one affected platform is PowerPC GNU/Linux, although it depends on
3718 the version of the linker in use). Also, ELF object files naturally
3719 have unresolved relocations for their debug sections. We need to apply
3720 the relocations in order to get the locations of symbols correct. */
3721
3722 bfd_byte *
3723 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3724 {
3725 /* We're only interested in debugging sections with relocation
3726 information. */
3727 if ((sectp->flags & SEC_RELOC) == 0)
3728 return NULL;
3729 if ((sectp->flags & SEC_DEBUGGING) == 0)
3730 return NULL;
3731
3732 /* We will handle section offsets properly elsewhere, so relocate as if
3733 all sections begin at 0. */
3734 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3735
3736 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3737 }
3738
3739 void
3740 _initialize_symfile (void)
3741 {
3742 struct cmd_list_element *c;
3743
3744 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3745 Load symbol table from executable file FILE.\n\
3746 The `file' command can also load symbol tables, as well as setting the file\n\
3747 to execute."), &cmdlist);
3748 set_cmd_completer (c, filename_completer);
3749
3750 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3751 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3752 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3753 ADDR is the starting address of the file's text.\n\
3754 The optional arguments are section-name section-address pairs and\n\
3755 should be specified if the data and bss segments are not contiguous\n\
3756 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3757 &cmdlist);
3758 set_cmd_completer (c, filename_completer);
3759
3760 c = add_cmd ("add-shared-symbol-files", class_files,
3761 add_shared_symbol_files_command, _("\
3762 Load the symbols from shared objects in the dynamic linker's link map."),
3763 &cmdlist);
3764 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3765 &cmdlist);
3766
3767 c = add_cmd ("load", class_files, load_command, _("\
3768 Dynamically load FILE into the running program, and record its symbols\n\
3769 for access from GDB.\n\
3770 A load OFFSET may also be given."), &cmdlist);
3771 set_cmd_completer (c, filename_completer);
3772
3773 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3774 &symbol_reloading, _("\
3775 Set dynamic symbol table reloading multiple times in one run."), _("\
3776 Show dynamic symbol table reloading multiple times in one run."), NULL,
3777 NULL,
3778 show_symbol_reloading,
3779 &setlist, &showlist);
3780
3781 add_prefix_cmd ("overlay", class_support, overlay_command,
3782 _("Commands for debugging overlays."), &overlaylist,
3783 "overlay ", 0, &cmdlist);
3784
3785 add_com_alias ("ovly", "overlay", class_alias, 1);
3786 add_com_alias ("ov", "overlay", class_alias, 1);
3787
3788 add_cmd ("map-overlay", class_support, map_overlay_command,
3789 _("Assert that an overlay section is mapped."), &overlaylist);
3790
3791 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3792 _("Assert that an overlay section is unmapped."), &overlaylist);
3793
3794 add_cmd ("list-overlays", class_support, list_overlays_command,
3795 _("List mappings of overlay sections."), &overlaylist);
3796
3797 add_cmd ("manual", class_support, overlay_manual_command,
3798 _("Enable overlay debugging."), &overlaylist);
3799 add_cmd ("off", class_support, overlay_off_command,
3800 _("Disable overlay debugging."), &overlaylist);
3801 add_cmd ("auto", class_support, overlay_auto_command,
3802 _("Enable automatic overlay debugging."), &overlaylist);
3803 add_cmd ("load-target", class_support, overlay_load_command,
3804 _("Read the overlay mapping state from the target."), &overlaylist);
3805
3806 /* Filename extension to source language lookup table: */
3807 init_filename_language_table ();
3808 add_setshow_string_noescape_cmd ("extension-language", class_files,
3809 &ext_args, _("\
3810 Set mapping between filename extension and source language."), _("\
3811 Show mapping between filename extension and source language."), _("\
3812 Usage: set extension-language .foo bar"),
3813 set_ext_lang_command,
3814 show_ext_args,
3815 &setlist, &showlist);
3816
3817 add_info ("extensions", info_ext_lang_command,
3818 _("All filename extensions associated with a source language."));
3819
3820 add_setshow_integer_cmd ("download-write-size", class_obscure,
3821 &download_write_size, _("\
3822 Set the write size used when downloading a program."), _("\
3823 Show the write size used when downloading a program."), _("\
3824 Only used when downloading a program onto a remote\n\
3825 target. Specify zero, or a negative value, to disable\n\
3826 blocked writes. The actual size of each transfer is also\n\
3827 limited by the size of the target packet and the memory\n\
3828 cache."),
3829 NULL,
3830 show_download_write_size,
3831 &setlist, &showlist);
3832
3833 debug_file_directory = xstrdup (DEBUGDIR);
3834 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3835 &debug_file_directory, _("\
3836 Set the directory where separate debug symbols are searched for."), _("\
3837 Show the directory where separate debug symbols are searched for."), _("\
3838 Separate debug symbols are first searched for in the same\n\
3839 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3840 and lastly at the path of the directory of the binary with\n\
3841 the global debug-file directory prepended."),
3842 NULL,
3843 show_debug_file_directory,
3844 &setlist, &showlist);
3845 }
This page took 0.10769 seconds and 5 git commands to generate.