gdb/
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h"
42 #include "regcache.h"
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54 #include "parser-defs.h"
55 #include "varobj.h"
56 #include "elf-bfd.h"
57 #include "solib.h"
58 #include "remote.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68
69 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
70 void (*deprecated_show_load_progress) (const char *section,
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
74 unsigned long total_size);
75 void (*deprecated_pre_add_symbol_hook) (const char *);
76 void (*deprecated_post_add_symbol_hook) (void);
77
78 static void clear_symtab_users_cleanup (void *ignore);
79
80 /* Global variables owned by this file */
81 int readnow_symbol_files; /* Read full symbols immediately */
82
83 /* External variables and functions referenced. */
84
85 extern void report_transfer_performance (unsigned long, time_t, time_t);
86
87 /* Functions this file defines */
88
89 #if 0
90 static int simple_read_overlay_region_table (void);
91 static void simple_free_overlay_region_table (void);
92 #endif
93
94 static void load_command (char *, int);
95
96 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
97
98 static void add_symbol_file_command (char *, int);
99
100 static void reread_separate_symbols (struct objfile *objfile);
101
102 static void cashier_psymtab (struct partial_symtab *);
103
104 bfd *symfile_bfd_open (char *);
105
106 int get_section_index (struct objfile *, char *);
107
108 static struct sym_fns *find_sym_fns (bfd *);
109
110 static void decrement_reading_symtab (void *);
111
112 static void overlay_invalidate_all (void);
113
114 void list_overlays_command (char *, int);
115
116 void map_overlay_command (char *, int);
117
118 void unmap_overlay_command (char *, int);
119
120 static void overlay_auto_command (char *, int);
121
122 static void overlay_manual_command (char *, int);
123
124 static void overlay_off_command (char *, int);
125
126 static void overlay_load_command (char *, int);
127
128 static void overlay_command (char *, int);
129
130 static void simple_free_overlay_table (void);
131
132 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
133 enum bfd_endian);
134
135 static int simple_read_overlay_table (void);
136
137 static int simple_overlay_update_1 (struct obj_section *);
138
139 static void add_filename_language (char *ext, enum language lang);
140
141 static void info_ext_lang_command (char *args, int from_tty);
142
143 static char *find_separate_debug_file (struct objfile *objfile);
144
145 static void init_filename_language_table (void);
146
147 static void symfile_find_segment_sections (struct objfile *objfile);
148
149 void _initialize_symfile (void);
150
151 /* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155 static struct sym_fns *symtab_fns = NULL;
156
157 /* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160 #ifdef SYMBOL_RELOADING_DEFAULT
161 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162 #else
163 int symbol_reloading = 0;
164 #endif
165 static void
166 show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 fprintf_filtered (file, _("\
170 Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172 }
173
174 /* If non-zero, gdb will notify the user when it is loading symbols
175 from a file. This is almost always what users will want to have happen;
176 but for programs with lots of dynamically linked libraries, the output
177 can be more noise than signal. */
178
179 int print_symbol_loading = 1;
180
181 /* If non-zero, shared library symbols will be added automatically
182 when the inferior is created, new libraries are loaded, or when
183 attaching to the inferior. This is almost always what users will
184 want to have happen; but for very large programs, the startup time
185 will be excessive, and so if this is a problem, the user can clear
186 this flag and then add the shared library symbols as needed. Note
187 that there is a potential for confusion, since if the shared
188 library symbols are not loaded, commands like "info fun" will *not*
189 report all the functions that are actually present. */
190
191 int auto_solib_add = 1;
192
193 /* For systems that support it, a threshold size in megabytes. If
194 automatically adding a new library's symbol table to those already
195 known to the debugger would cause the total shared library symbol
196 size to exceed this threshhold, then the shlib's symbols are not
197 added. The threshold is ignored if the user explicitly asks for a
198 shlib to be added, such as when using the "sharedlibrary"
199 command. */
200
201 int auto_solib_limit;
202 \f
203
204 /* This compares two partial symbols by names, using strcmp_iw_ordered
205 for the comparison. */
206
207 static int
208 compare_psymbols (const void *s1p, const void *s2p)
209 {
210 struct partial_symbol *const *s1 = s1p;
211 struct partial_symbol *const *s2 = s2p;
212
213 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
214 SYMBOL_SEARCH_NAME (*s2));
215 }
216
217 void
218 sort_pst_symbols (struct partial_symtab *pst)
219 {
220 /* Sort the global list; don't sort the static list */
221
222 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
223 pst->n_global_syms, sizeof (struct partial_symbol *),
224 compare_psymbols);
225 }
226
227 /* Make a null terminated copy of the string at PTR with SIZE characters in
228 the obstack pointed to by OBSTACKP . Returns the address of the copy.
229 Note that the string at PTR does not have to be null terminated, I.E. it
230 may be part of a larger string and we are only saving a substring. */
231
232 char *
233 obsavestring (const char *ptr, int size, struct obstack *obstackp)
234 {
235 char *p = (char *) obstack_alloc (obstackp, size + 1);
236 /* Open-coded memcpy--saves function call time. These strings are usually
237 short. FIXME: Is this really still true with a compiler that can
238 inline memcpy? */
239 {
240 const char *p1 = ptr;
241 char *p2 = p;
242 const char *end = ptr + size;
243 while (p1 != end)
244 *p2++ = *p1++;
245 }
246 p[size] = 0;
247 return p;
248 }
249
250 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
251 in the obstack pointed to by OBSTACKP. */
252
253 char *
254 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
255 const char *s3)
256 {
257 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
258 char *val = (char *) obstack_alloc (obstackp, len);
259 strcpy (val, s1);
260 strcat (val, s2);
261 strcat (val, s3);
262 return val;
263 }
264
265 /* True if we are nested inside psymtab_to_symtab. */
266
267 int currently_reading_symtab = 0;
268
269 static void
270 decrement_reading_symtab (void *dummy)
271 {
272 currently_reading_symtab--;
273 }
274
275 /* Get the symbol table that corresponds to a partial_symtab.
276 This is fast after the first time you do it. In fact, there
277 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
278 case inline. */
279
280 struct symtab *
281 psymtab_to_symtab (struct partial_symtab *pst)
282 {
283 /* If it's been looked up before, return it. */
284 if (pst->symtab)
285 return pst->symtab;
286
287 /* If it has not yet been read in, read it. */
288 if (!pst->readin)
289 {
290 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
291 currently_reading_symtab++;
292 (*pst->read_symtab) (pst);
293 do_cleanups (back_to);
294 }
295
296 return pst->symtab;
297 }
298
299 /* Remember the lowest-addressed loadable section we've seen.
300 This function is called via bfd_map_over_sections.
301
302 In case of equal vmas, the section with the largest size becomes the
303 lowest-addressed loadable section.
304
305 If the vmas and sizes are equal, the last section is considered the
306 lowest-addressed loadable section. */
307
308 void
309 find_lowest_section (bfd *abfd, asection *sect, void *obj)
310 {
311 asection **lowest = (asection **) obj;
312
313 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
314 return;
315 if (!*lowest)
316 *lowest = sect; /* First loadable section */
317 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
318 *lowest = sect; /* A lower loadable section */
319 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
320 && (bfd_section_size (abfd, (*lowest))
321 <= bfd_section_size (abfd, sect)))
322 *lowest = sect;
323 }
324
325 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
326
327 struct section_addr_info *
328 alloc_section_addr_info (size_t num_sections)
329 {
330 struct section_addr_info *sap;
331 size_t size;
332
333 size = (sizeof (struct section_addr_info)
334 + sizeof (struct other_sections) * (num_sections - 1));
335 sap = (struct section_addr_info *) xmalloc (size);
336 memset (sap, 0, size);
337 sap->num_sections = num_sections;
338
339 return sap;
340 }
341
342
343 /* Return a freshly allocated copy of ADDRS. The section names, if
344 any, are also freshly allocated copies of those in ADDRS. */
345 struct section_addr_info *
346 copy_section_addr_info (struct section_addr_info *addrs)
347 {
348 struct section_addr_info *copy
349 = alloc_section_addr_info (addrs->num_sections);
350 int i;
351
352 copy->num_sections = addrs->num_sections;
353 for (i = 0; i < addrs->num_sections; i++)
354 {
355 copy->other[i].addr = addrs->other[i].addr;
356 if (addrs->other[i].name)
357 copy->other[i].name = xstrdup (addrs->other[i].name);
358 else
359 copy->other[i].name = NULL;
360 copy->other[i].sectindex = addrs->other[i].sectindex;
361 }
362
363 return copy;
364 }
365
366
367
368 /* Build (allocate and populate) a section_addr_info struct from
369 an existing section table. */
370
371 extern struct section_addr_info *
372 build_section_addr_info_from_section_table (const struct target_section *start,
373 const struct target_section *end)
374 {
375 struct section_addr_info *sap;
376 const struct target_section *stp;
377 int oidx;
378
379 sap = alloc_section_addr_info (end - start);
380
381 for (stp = start, oidx = 0; stp != end; stp++)
382 {
383 if (bfd_get_section_flags (stp->bfd,
384 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
385 && oidx < end - start)
386 {
387 sap->other[oidx].addr = stp->addr;
388 sap->other[oidx].name
389 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
390 sap->other[oidx].sectindex = stp->the_bfd_section->index;
391 oidx++;
392 }
393 }
394
395 return sap;
396 }
397
398
399 /* Free all memory allocated by build_section_addr_info_from_section_table. */
400
401 extern void
402 free_section_addr_info (struct section_addr_info *sap)
403 {
404 int idx;
405
406 for (idx = 0; idx < sap->num_sections; idx++)
407 if (sap->other[idx].name)
408 xfree (sap->other[idx].name);
409 xfree (sap);
410 }
411
412
413 /* Initialize OBJFILE's sect_index_* members. */
414 static void
415 init_objfile_sect_indices (struct objfile *objfile)
416 {
417 asection *sect;
418 int i;
419
420 sect = bfd_get_section_by_name (objfile->obfd, ".text");
421 if (sect)
422 objfile->sect_index_text = sect->index;
423
424 sect = bfd_get_section_by_name (objfile->obfd, ".data");
425 if (sect)
426 objfile->sect_index_data = sect->index;
427
428 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
429 if (sect)
430 objfile->sect_index_bss = sect->index;
431
432 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
433 if (sect)
434 objfile->sect_index_rodata = sect->index;
435
436 /* This is where things get really weird... We MUST have valid
437 indices for the various sect_index_* members or gdb will abort.
438 So if for example, there is no ".text" section, we have to
439 accomodate that. First, check for a file with the standard
440 one or two segments. */
441
442 symfile_find_segment_sections (objfile);
443
444 /* Except when explicitly adding symbol files at some address,
445 section_offsets contains nothing but zeros, so it doesn't matter
446 which slot in section_offsets the individual sect_index_* members
447 index into. So if they are all zero, it is safe to just point
448 all the currently uninitialized indices to the first slot. But
449 beware: if this is the main executable, it may be relocated
450 later, e.g. by the remote qOffsets packet, and then this will
451 be wrong! That's why we try segments first. */
452
453 for (i = 0; i < objfile->num_sections; i++)
454 {
455 if (ANOFFSET (objfile->section_offsets, i) != 0)
456 {
457 break;
458 }
459 }
460 if (i == objfile->num_sections)
461 {
462 if (objfile->sect_index_text == -1)
463 objfile->sect_index_text = 0;
464 if (objfile->sect_index_data == -1)
465 objfile->sect_index_data = 0;
466 if (objfile->sect_index_bss == -1)
467 objfile->sect_index_bss = 0;
468 if (objfile->sect_index_rodata == -1)
469 objfile->sect_index_rodata = 0;
470 }
471 }
472
473 /* The arguments to place_section. */
474
475 struct place_section_arg
476 {
477 struct section_offsets *offsets;
478 CORE_ADDR lowest;
479 };
480
481 /* Find a unique offset to use for loadable section SECT if
482 the user did not provide an offset. */
483
484 static void
485 place_section (bfd *abfd, asection *sect, void *obj)
486 {
487 struct place_section_arg *arg = obj;
488 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
489 int done;
490 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
491
492 /* We are only interested in allocated sections. */
493 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
494 return;
495
496 /* If the user specified an offset, honor it. */
497 if (offsets[sect->index] != 0)
498 return;
499
500 /* Otherwise, let's try to find a place for the section. */
501 start_addr = (arg->lowest + align - 1) & -align;
502
503 do {
504 asection *cur_sec;
505
506 done = 1;
507
508 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
509 {
510 int indx = cur_sec->index;
511 CORE_ADDR cur_offset;
512
513 /* We don't need to compare against ourself. */
514 if (cur_sec == sect)
515 continue;
516
517 /* We can only conflict with allocated sections. */
518 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
519 continue;
520
521 /* If the section offset is 0, either the section has not been placed
522 yet, or it was the lowest section placed (in which case LOWEST
523 will be past its end). */
524 if (offsets[indx] == 0)
525 continue;
526
527 /* If this section would overlap us, then we must move up. */
528 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
529 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
530 {
531 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
532 start_addr = (start_addr + align - 1) & -align;
533 done = 0;
534 break;
535 }
536
537 /* Otherwise, we appear to be OK. So far. */
538 }
539 }
540 while (!done);
541
542 offsets[sect->index] = start_addr;
543 arg->lowest = start_addr + bfd_get_section_size (sect);
544 }
545
546 /* Parse the user's idea of an offset for dynamic linking, into our idea
547 of how to represent it for fast symbol reading. This is the default
548 version of the sym_fns.sym_offsets function for symbol readers that
549 don't need to do anything special. It allocates a section_offsets table
550 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
551
552 void
553 default_symfile_offsets (struct objfile *objfile,
554 struct section_addr_info *addrs)
555 {
556 int i;
557
558 objfile->num_sections = bfd_count_sections (objfile->obfd);
559 objfile->section_offsets = (struct section_offsets *)
560 obstack_alloc (&objfile->objfile_obstack,
561 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
562 memset (objfile->section_offsets, 0,
563 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
564
565 /* Now calculate offsets for section that were specified by the
566 caller. */
567 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
568 {
569 struct other_sections *osp ;
570
571 osp = &addrs->other[i] ;
572 if (osp->addr == 0)
573 continue;
574
575 /* Record all sections in offsets */
576 /* The section_offsets in the objfile are here filled in using
577 the BFD index. */
578 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
579 }
580
581 /* For relocatable files, all loadable sections will start at zero.
582 The zero is meaningless, so try to pick arbitrary addresses such
583 that no loadable sections overlap. This algorithm is quadratic,
584 but the number of sections in a single object file is generally
585 small. */
586 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
587 {
588 struct place_section_arg arg;
589 bfd *abfd = objfile->obfd;
590 asection *cur_sec;
591 CORE_ADDR lowest = 0;
592
593 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
594 /* We do not expect this to happen; just skip this step if the
595 relocatable file has a section with an assigned VMA. */
596 if (bfd_section_vma (abfd, cur_sec) != 0)
597 break;
598
599 if (cur_sec == NULL)
600 {
601 CORE_ADDR *offsets = objfile->section_offsets->offsets;
602
603 /* Pick non-overlapping offsets for sections the user did not
604 place explicitly. */
605 arg.offsets = objfile->section_offsets;
606 arg.lowest = 0;
607 bfd_map_over_sections (objfile->obfd, place_section, &arg);
608
609 /* Correctly filling in the section offsets is not quite
610 enough. Relocatable files have two properties that
611 (most) shared objects do not:
612
613 - Their debug information will contain relocations. Some
614 shared libraries do also, but many do not, so this can not
615 be assumed.
616
617 - If there are multiple code sections they will be loaded
618 at different relative addresses in memory than they are
619 in the objfile, since all sections in the file will start
620 at address zero.
621
622 Because GDB has very limited ability to map from an
623 address in debug info to the correct code section,
624 it relies on adding SECT_OFF_TEXT to things which might be
625 code. If we clear all the section offsets, and set the
626 section VMAs instead, then symfile_relocate_debug_section
627 will return meaningful debug information pointing at the
628 correct sections.
629
630 GDB has too many different data structures for section
631 addresses - a bfd, objfile, and so_list all have section
632 tables, as does exec_ops. Some of these could probably
633 be eliminated. */
634
635 for (cur_sec = abfd->sections; cur_sec != NULL;
636 cur_sec = cur_sec->next)
637 {
638 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
639 continue;
640
641 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
642 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
643 offsets[cur_sec->index]);
644 offsets[cur_sec->index] = 0;
645 }
646 }
647 }
648
649 /* Remember the bfd indexes for the .text, .data, .bss and
650 .rodata sections. */
651 init_objfile_sect_indices (objfile);
652 }
653
654
655 /* Divide the file into segments, which are individual relocatable units.
656 This is the default version of the sym_fns.sym_segments function for
657 symbol readers that do not have an explicit representation of segments.
658 It assumes that object files do not have segments, and fully linked
659 files have a single segment. */
660
661 struct symfile_segment_data *
662 default_symfile_segments (bfd *abfd)
663 {
664 int num_sections, i;
665 asection *sect;
666 struct symfile_segment_data *data;
667 CORE_ADDR low, high;
668
669 /* Relocatable files contain enough information to position each
670 loadable section independently; they should not be relocated
671 in segments. */
672 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
673 return NULL;
674
675 /* Make sure there is at least one loadable section in the file. */
676 for (sect = abfd->sections; sect != NULL; sect = sect->next)
677 {
678 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
679 continue;
680
681 break;
682 }
683 if (sect == NULL)
684 return NULL;
685
686 low = bfd_get_section_vma (abfd, sect);
687 high = low + bfd_get_section_size (sect);
688
689 data = XZALLOC (struct symfile_segment_data);
690 data->num_segments = 1;
691 data->segment_bases = XCALLOC (1, CORE_ADDR);
692 data->segment_sizes = XCALLOC (1, CORE_ADDR);
693
694 num_sections = bfd_count_sections (abfd);
695 data->segment_info = XCALLOC (num_sections, int);
696
697 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
698 {
699 CORE_ADDR vma;
700
701 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
702 continue;
703
704 vma = bfd_get_section_vma (abfd, sect);
705 if (vma < low)
706 low = vma;
707 if (vma + bfd_get_section_size (sect) > high)
708 high = vma + bfd_get_section_size (sect);
709
710 data->segment_info[i] = 1;
711 }
712
713 data->segment_bases[0] = low;
714 data->segment_sizes[0] = high - low;
715
716 return data;
717 }
718
719 /* Process a symbol file, as either the main file or as a dynamically
720 loaded file.
721
722 OBJFILE is where the symbols are to be read from.
723
724 ADDRS is the list of section load addresses. If the user has given
725 an 'add-symbol-file' command, then this is the list of offsets and
726 addresses he or she provided as arguments to the command; or, if
727 we're handling a shared library, these are the actual addresses the
728 sections are loaded at, according to the inferior's dynamic linker
729 (as gleaned by GDB's shared library code). We convert each address
730 into an offset from the section VMA's as it appears in the object
731 file, and then call the file's sym_offsets function to convert this
732 into a format-specific offset table --- a `struct section_offsets'.
733 If ADDRS is non-zero, OFFSETS must be zero.
734
735 OFFSETS is a table of section offsets already in the right
736 format-specific representation. NUM_OFFSETS is the number of
737 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
738 assume this is the proper table the call to sym_offsets described
739 above would produce. Instead of calling sym_offsets, we just dump
740 it right into objfile->section_offsets. (When we're re-reading
741 symbols from an objfile, we don't have the original load address
742 list any more; all we have is the section offset table.) If
743 OFFSETS is non-zero, ADDRS must be zero.
744
745 ADD_FLAGS encodes verbosity level, whether this is main symbol or
746 an extra symbol file such as dynamically loaded code, and wether
747 breakpoint reset should be deferred. */
748
749 void
750 syms_from_objfile (struct objfile *objfile,
751 struct section_addr_info *addrs,
752 struct section_offsets *offsets,
753 int num_offsets,
754 int add_flags)
755 {
756 struct section_addr_info *local_addr = NULL;
757 struct cleanup *old_chain;
758 const int mainline = add_flags & SYMFILE_MAINLINE;
759
760 gdb_assert (! (addrs && offsets));
761
762 init_entry_point_info (objfile);
763 objfile->sf = find_sym_fns (objfile->obfd);
764
765 if (objfile->sf == NULL)
766 return; /* No symbols. */
767
768 /* Make sure that partially constructed symbol tables will be cleaned up
769 if an error occurs during symbol reading. */
770 old_chain = make_cleanup_free_objfile (objfile);
771
772 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
773 list. We now establish the convention that an addr of zero means
774 no load address was specified. */
775 if (! addrs && ! offsets)
776 {
777 local_addr
778 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
779 make_cleanup (xfree, local_addr);
780 addrs = local_addr;
781 }
782
783 /* Now either addrs or offsets is non-zero. */
784
785 if (mainline)
786 {
787 /* We will modify the main symbol table, make sure that all its users
788 will be cleaned up if an error occurs during symbol reading. */
789 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
790
791 /* Since no error yet, throw away the old symbol table. */
792
793 if (symfile_objfile != NULL)
794 {
795 free_objfile (symfile_objfile);
796 symfile_objfile = NULL;
797 }
798
799 /* Currently we keep symbols from the add-symbol-file command.
800 If the user wants to get rid of them, they should do "symbol-file"
801 without arguments first. Not sure this is the best behavior
802 (PR 2207). */
803
804 (*objfile->sf->sym_new_init) (objfile);
805 }
806
807 /* Convert addr into an offset rather than an absolute address.
808 We find the lowest address of a loaded segment in the objfile,
809 and assume that <addr> is where that got loaded.
810
811 We no longer warn if the lowest section is not a text segment (as
812 happens for the PA64 port. */
813 if (!mainline && addrs && addrs->other[0].name)
814 {
815 asection *lower_sect;
816 asection *sect;
817 CORE_ADDR lower_offset;
818 int i;
819
820 /* Find lowest loadable section to be used as starting point for
821 continguous sections. FIXME!! won't work without call to find
822 .text first, but this assumes text is lowest section. */
823 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
824 if (lower_sect == NULL)
825 bfd_map_over_sections (objfile->obfd, find_lowest_section,
826 &lower_sect);
827 if (lower_sect == NULL)
828 {
829 warning (_("no loadable sections found in added symbol-file %s"),
830 objfile->name);
831 lower_offset = 0;
832 }
833 else
834 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
835
836 /* Calculate offsets for the loadable sections.
837 FIXME! Sections must be in order of increasing loadable section
838 so that contiguous sections can use the lower-offset!!!
839
840 Adjust offsets if the segments are not contiguous.
841 If the section is contiguous, its offset should be set to
842 the offset of the highest loadable section lower than it
843 (the loadable section directly below it in memory).
844 this_offset = lower_offset = lower_addr - lower_orig_addr */
845
846 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
847 {
848 if (addrs->other[i].addr != 0)
849 {
850 sect = bfd_get_section_by_name (objfile->obfd,
851 addrs->other[i].name);
852 if (sect)
853 {
854 addrs->other[i].addr
855 -= bfd_section_vma (objfile->obfd, sect);
856 lower_offset = addrs->other[i].addr;
857 /* This is the index used by BFD. */
858 addrs->other[i].sectindex = sect->index ;
859 }
860 else
861 {
862 warning (_("section %s not found in %s"),
863 addrs->other[i].name,
864 objfile->name);
865 addrs->other[i].addr = 0;
866 }
867 }
868 else
869 addrs->other[i].addr = lower_offset;
870 }
871 }
872
873 /* Initialize symbol reading routines for this objfile, allow complaints to
874 appear for this new file, and record how verbose to be, then do the
875 initial symbol reading for this file. */
876
877 (*objfile->sf->sym_init) (objfile);
878 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
879
880 if (addrs)
881 (*objfile->sf->sym_offsets) (objfile, addrs);
882 else
883 {
884 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
885
886 /* Just copy in the offset table directly as given to us. */
887 objfile->num_sections = num_offsets;
888 objfile->section_offsets
889 = ((struct section_offsets *)
890 obstack_alloc (&objfile->objfile_obstack, size));
891 memcpy (objfile->section_offsets, offsets, size);
892
893 init_objfile_sect_indices (objfile);
894 }
895
896 (*objfile->sf->sym_read) (objfile, mainline);
897
898 /* Discard cleanups as symbol reading was successful. */
899
900 discard_cleanups (old_chain);
901 xfree (local_addr);
902 }
903
904 /* Perform required actions after either reading in the initial
905 symbols for a new objfile, or mapping in the symbols from a reusable
906 objfile. */
907
908 void
909 new_symfile_objfile (struct objfile *objfile, int add_flags)
910 {
911
912 /* If this is the main symbol file we have to clean up all users of the
913 old main symbol file. Otherwise it is sufficient to fixup all the
914 breakpoints that may have been redefined by this symbol file. */
915 if (add_flags & SYMFILE_MAINLINE)
916 {
917 /* OK, make it the "real" symbol file. */
918 symfile_objfile = objfile;
919
920 clear_symtab_users ();
921 }
922 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
923 {
924 breakpoint_re_set ();
925 }
926
927 /* We're done reading the symbol file; finish off complaints. */
928 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
929 }
930
931 /* Process a symbol file, as either the main file or as a dynamically
932 loaded file.
933
934 ABFD is a BFD already open on the file, as from symfile_bfd_open.
935 This BFD will be closed on error, and is always consumed by this function.
936
937 ADD_FLAGS encodes verbosity, whether this is main symbol file or
938 extra, such as dynamically loaded code, and what to do with breakpoins.
939
940 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
941 syms_from_objfile, above.
942 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
943
944 Upon success, returns a pointer to the objfile that was added.
945 Upon failure, jumps back to command level (never returns). */
946
947 static struct objfile *
948 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
949 int add_flags,
950 struct section_addr_info *addrs,
951 struct section_offsets *offsets,
952 int num_offsets,
953 int flags)
954 {
955 struct objfile *objfile;
956 struct partial_symtab *psymtab;
957 char *debugfile = NULL;
958 struct section_addr_info *orig_addrs = NULL;
959 struct cleanup *my_cleanups;
960 const char *name = bfd_get_filename (abfd);
961 const int from_tty = add_flags & SYMFILE_VERBOSE;
962
963 my_cleanups = make_cleanup_bfd_close (abfd);
964
965 /* Give user a chance to burp if we'd be
966 interactively wiping out any existing symbols. */
967
968 if ((have_full_symbols () || have_partial_symbols ())
969 && (add_flags & SYMFILE_MAINLINE)
970 && from_tty
971 && !query (_("Load new symbol table from \"%s\"? "), name))
972 error (_("Not confirmed."));
973
974 objfile = allocate_objfile (abfd, flags);
975 discard_cleanups (my_cleanups);
976
977 if (addrs)
978 {
979 orig_addrs = copy_section_addr_info (addrs);
980 make_cleanup_free_section_addr_info (orig_addrs);
981 }
982
983 /* We either created a new mapped symbol table, mapped an existing
984 symbol table file which has not had initial symbol reading
985 performed, or need to read an unmapped symbol table. */
986 if (from_tty || info_verbose)
987 {
988 if (deprecated_pre_add_symbol_hook)
989 deprecated_pre_add_symbol_hook (name);
990 else
991 {
992 if (print_symbol_loading)
993 {
994 printf_unfiltered (_("Reading symbols from %s..."), name);
995 wrap_here ("");
996 gdb_flush (gdb_stdout);
997 }
998 }
999 }
1000 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1001 add_flags);
1002
1003 /* We now have at least a partial symbol table. Check to see if the
1004 user requested that all symbols be read on initial access via either
1005 the gdb startup command line or on a per symbol file basis. Expand
1006 all partial symbol tables for this objfile if so. */
1007
1008 if ((flags & OBJF_READNOW) || readnow_symbol_files)
1009 {
1010 if ((from_tty || info_verbose) && print_symbol_loading)
1011 {
1012 printf_unfiltered (_("expanding to full symbols..."));
1013 wrap_here ("");
1014 gdb_flush (gdb_stdout);
1015 }
1016
1017 for (psymtab = objfile->psymtabs;
1018 psymtab != NULL;
1019 psymtab = psymtab->next)
1020 {
1021 psymtab_to_symtab (psymtab);
1022 }
1023 }
1024
1025 /* If the file has its own symbol tables it has no separate debug info.
1026 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1027 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1028 if (objfile->psymtabs == NULL)
1029 debugfile = find_separate_debug_file (objfile);
1030 if (debugfile)
1031 {
1032 if (addrs != NULL)
1033 {
1034 objfile->separate_debug_objfile
1035 = symbol_file_add (debugfile, add_flags, orig_addrs, flags);
1036 }
1037 else
1038 {
1039 objfile->separate_debug_objfile
1040 = symbol_file_add (debugfile, add_flags, NULL, flags);
1041 }
1042 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1043 = objfile;
1044
1045 /* Put the separate debug object before the normal one, this is so that
1046 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1047 put_objfile_before (objfile->separate_debug_objfile, objfile);
1048
1049 xfree (debugfile);
1050 }
1051
1052 if (!have_partial_symbols () && !have_full_symbols ()
1053 && print_symbol_loading)
1054 {
1055 wrap_here ("");
1056 printf_unfiltered (_("(no debugging symbols found)"));
1057 if (from_tty || info_verbose)
1058 printf_unfiltered ("...");
1059 else
1060 printf_unfiltered ("\n");
1061 wrap_here ("");
1062 }
1063
1064 if (from_tty || info_verbose)
1065 {
1066 if (deprecated_post_add_symbol_hook)
1067 deprecated_post_add_symbol_hook ();
1068 else
1069 {
1070 if (print_symbol_loading)
1071 printf_unfiltered (_("done.\n"));
1072 }
1073 }
1074
1075 /* We print some messages regardless of whether 'from_tty ||
1076 info_verbose' is true, so make sure they go out at the right
1077 time. */
1078 gdb_flush (gdb_stdout);
1079
1080 do_cleanups (my_cleanups);
1081
1082 if (objfile->sf == NULL)
1083 {
1084 observer_notify_new_objfile (objfile);
1085 return objfile; /* No symbols. */
1086 }
1087
1088 new_symfile_objfile (objfile, add_flags);
1089
1090 observer_notify_new_objfile (objfile);
1091
1092 bfd_cache_close_all ();
1093 return (objfile);
1094 }
1095
1096
1097 /* Process the symbol file ABFD, as either the main file or as a
1098 dynamically loaded file.
1099
1100 See symbol_file_add_with_addrs_or_offsets's comments for
1101 details. */
1102 struct objfile *
1103 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1104 struct section_addr_info *addrs,
1105 int flags)
1106 {
1107 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1108 flags);
1109 }
1110
1111
1112 /* Process a symbol file, as either the main file or as a dynamically
1113 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1114 for details. */
1115 struct objfile *
1116 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1117 int flags)
1118 {
1119 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1120 flags);
1121 }
1122
1123
1124 /* Call symbol_file_add() with default values and update whatever is
1125 affected by the loading of a new main().
1126 Used when the file is supplied in the gdb command line
1127 and by some targets with special loading requirements.
1128 The auxiliary function, symbol_file_add_main_1(), has the flags
1129 argument for the switches that can only be specified in the symbol_file
1130 command itself. */
1131
1132 void
1133 symbol_file_add_main (char *args, int from_tty)
1134 {
1135 symbol_file_add_main_1 (args, from_tty, 0);
1136 }
1137
1138 static void
1139 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1140 {
1141 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1142 symbol_file_add (args, add_flags, NULL, flags);
1143
1144 /* Getting new symbols may change our opinion about
1145 what is frameless. */
1146 reinit_frame_cache ();
1147
1148 set_initial_language ();
1149 }
1150
1151 void
1152 symbol_file_clear (int from_tty)
1153 {
1154 if ((have_full_symbols () || have_partial_symbols ())
1155 && from_tty
1156 && (symfile_objfile
1157 ? !query (_("Discard symbol table from `%s'? "),
1158 symfile_objfile->name)
1159 : !query (_("Discard symbol table? "))))
1160 error (_("Not confirmed."));
1161
1162 free_all_objfiles ();
1163
1164 /* solib descriptors may have handles to objfiles. Since their
1165 storage has just been released, we'd better wipe the solib
1166 descriptors as well. */
1167 no_shared_libraries (NULL, from_tty);
1168
1169 symfile_objfile = NULL;
1170 if (from_tty)
1171 printf_unfiltered (_("No symbol file now.\n"));
1172 }
1173
1174 struct build_id
1175 {
1176 size_t size;
1177 gdb_byte data[1];
1178 };
1179
1180 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1181
1182 static struct build_id *
1183 build_id_bfd_get (bfd *abfd)
1184 {
1185 struct build_id *retval;
1186
1187 if (!bfd_check_format (abfd, bfd_object)
1188 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1189 || elf_tdata (abfd)->build_id == NULL)
1190 return NULL;
1191
1192 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1193 retval->size = elf_tdata (abfd)->build_id_size;
1194 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1195
1196 return retval;
1197 }
1198
1199 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1200
1201 static int
1202 build_id_verify (const char *filename, struct build_id *check)
1203 {
1204 bfd *abfd;
1205 struct build_id *found = NULL;
1206 int retval = 0;
1207
1208 /* We expect to be silent on the non-existing files. */
1209 if (remote_filename_p (filename))
1210 abfd = remote_bfd_open (filename, gnutarget);
1211 else
1212 abfd = bfd_openr (filename, gnutarget);
1213 if (abfd == NULL)
1214 return 0;
1215
1216 found = build_id_bfd_get (abfd);
1217
1218 if (found == NULL)
1219 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1220 else if (found->size != check->size
1221 || memcmp (found->data, check->data, found->size) != 0)
1222 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1223 else
1224 retval = 1;
1225
1226 if (!bfd_close (abfd))
1227 warning (_("cannot close \"%s\": %s"), filename,
1228 bfd_errmsg (bfd_get_error ()));
1229
1230 xfree (found);
1231
1232 return retval;
1233 }
1234
1235 static char *
1236 build_id_to_debug_filename (struct build_id *build_id)
1237 {
1238 char *link, *s, *retval = NULL;
1239 gdb_byte *data = build_id->data;
1240 size_t size = build_id->size;
1241
1242 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1243 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1244 + 2 * size + (sizeof ".debug" - 1) + 1);
1245 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1246 if (size > 0)
1247 {
1248 size--;
1249 s += sprintf (s, "%02x", (unsigned) *data++);
1250 }
1251 if (size > 0)
1252 *s++ = '/';
1253 while (size-- > 0)
1254 s += sprintf (s, "%02x", (unsigned) *data++);
1255 strcpy (s, ".debug");
1256
1257 /* lrealpath() is expensive even for the usually non-existent files. */
1258 if (access (link, F_OK) == 0)
1259 retval = lrealpath (link);
1260 xfree (link);
1261
1262 if (retval != NULL && !build_id_verify (retval, build_id))
1263 {
1264 xfree (retval);
1265 retval = NULL;
1266 }
1267
1268 return retval;
1269 }
1270
1271 static char *
1272 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1273 {
1274 asection *sect;
1275 bfd_size_type debuglink_size;
1276 unsigned long crc32;
1277 char *contents;
1278 int crc_offset;
1279 unsigned char *p;
1280
1281 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1282
1283 if (sect == NULL)
1284 return NULL;
1285
1286 debuglink_size = bfd_section_size (objfile->obfd, sect);
1287
1288 contents = xmalloc (debuglink_size);
1289 bfd_get_section_contents (objfile->obfd, sect, contents,
1290 (file_ptr)0, (bfd_size_type)debuglink_size);
1291
1292 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1293 crc_offset = strlen (contents) + 1;
1294 crc_offset = (crc_offset + 3) & ~3;
1295
1296 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1297
1298 *crc32_out = crc32;
1299 return contents;
1300 }
1301
1302 static int
1303 separate_debug_file_exists (const char *name, unsigned long crc)
1304 {
1305 unsigned long file_crc = 0;
1306 bfd *abfd;
1307 gdb_byte buffer[8*1024];
1308 int count;
1309
1310 if (remote_filename_p (name))
1311 abfd = remote_bfd_open (name, gnutarget);
1312 else
1313 abfd = bfd_openr (name, gnutarget);
1314
1315 if (!abfd)
1316 return 0;
1317
1318 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1319 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1320
1321 bfd_close (abfd);
1322
1323 return crc == file_crc;
1324 }
1325
1326 char *debug_file_directory = NULL;
1327 static void
1328 show_debug_file_directory (struct ui_file *file, int from_tty,
1329 struct cmd_list_element *c, const char *value)
1330 {
1331 fprintf_filtered (file, _("\
1332 The directory where separate debug symbols are searched for is \"%s\".\n"),
1333 value);
1334 }
1335
1336 #if ! defined (DEBUG_SUBDIRECTORY)
1337 #define DEBUG_SUBDIRECTORY ".debug"
1338 #endif
1339
1340 static char *
1341 find_separate_debug_file (struct objfile *objfile)
1342 {
1343 asection *sect;
1344 char *basename;
1345 char *dir;
1346 char *debugfile;
1347 char *name_copy;
1348 char *canon_name;
1349 bfd_size_type debuglink_size;
1350 unsigned long crc32;
1351 int i;
1352 struct build_id *build_id;
1353
1354 build_id = build_id_bfd_get (objfile->obfd);
1355 if (build_id != NULL)
1356 {
1357 char *build_id_name;
1358
1359 build_id_name = build_id_to_debug_filename (build_id);
1360 xfree (build_id);
1361 /* Prevent looping on a stripped .debug file. */
1362 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1363 {
1364 warning (_("\"%s\": separate debug info file has no debug info"),
1365 build_id_name);
1366 xfree (build_id_name);
1367 }
1368 else if (build_id_name != NULL)
1369 return build_id_name;
1370 }
1371
1372 basename = get_debug_link_info (objfile, &crc32);
1373
1374 if (basename == NULL)
1375 return NULL;
1376
1377 dir = xstrdup (objfile->name);
1378
1379 /* Strip off the final filename part, leaving the directory name,
1380 followed by a slash. Objfile names should always be absolute and
1381 tilde-expanded, so there should always be a slash in there
1382 somewhere. */
1383 for (i = strlen(dir) - 1; i >= 0; i--)
1384 {
1385 if (IS_DIR_SEPARATOR (dir[i]))
1386 break;
1387 }
1388 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1389 dir[i+1] = '\0';
1390
1391 /* Set I to max (strlen (canon_name), strlen (dir)). */
1392 canon_name = lrealpath (dir);
1393 i = strlen (dir);
1394 if (canon_name && strlen (canon_name) > i)
1395 i = strlen (canon_name);
1396
1397 debugfile = alloca (strlen (debug_file_directory) + 1
1398 + i
1399 + strlen (DEBUG_SUBDIRECTORY)
1400 + strlen ("/")
1401 + strlen (basename)
1402 + 1);
1403
1404 /* First try in the same directory as the original file. */
1405 strcpy (debugfile, dir);
1406 strcat (debugfile, basename);
1407
1408 if (separate_debug_file_exists (debugfile, crc32))
1409 {
1410 xfree (basename);
1411 xfree (dir);
1412 xfree (canon_name);
1413 return xstrdup (debugfile);
1414 }
1415
1416 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1417 strcpy (debugfile, dir);
1418 strcat (debugfile, DEBUG_SUBDIRECTORY);
1419 strcat (debugfile, "/");
1420 strcat (debugfile, basename);
1421
1422 if (separate_debug_file_exists (debugfile, crc32))
1423 {
1424 xfree (basename);
1425 xfree (dir);
1426 xfree (canon_name);
1427 return xstrdup (debugfile);
1428 }
1429
1430 /* Then try in the global debugfile directory. */
1431 strcpy (debugfile, debug_file_directory);
1432 strcat (debugfile, "/");
1433 strcat (debugfile, dir);
1434 strcat (debugfile, basename);
1435
1436 if (separate_debug_file_exists (debugfile, crc32))
1437 {
1438 xfree (basename);
1439 xfree (dir);
1440 xfree (canon_name);
1441 return xstrdup (debugfile);
1442 }
1443
1444 /* If the file is in the sysroot, try using its base path in the
1445 global debugfile directory. */
1446 if (canon_name
1447 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1448 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1449 {
1450 strcpy (debugfile, debug_file_directory);
1451 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1452 strcat (debugfile, "/");
1453 strcat (debugfile, basename);
1454
1455 if (separate_debug_file_exists (debugfile, crc32))
1456 {
1457 xfree (canon_name);
1458 xfree (basename);
1459 xfree (dir);
1460 xfree (canon_name);
1461 return xstrdup (debugfile);
1462 }
1463 }
1464
1465 if (canon_name)
1466 xfree (canon_name);
1467
1468 xfree (basename);
1469 xfree (dir);
1470 return NULL;
1471 }
1472
1473
1474 /* This is the symbol-file command. Read the file, analyze its
1475 symbols, and add a struct symtab to a symtab list. The syntax of
1476 the command is rather bizarre:
1477
1478 1. The function buildargv implements various quoting conventions
1479 which are undocumented and have little or nothing in common with
1480 the way things are quoted (or not quoted) elsewhere in GDB.
1481
1482 2. Options are used, which are not generally used in GDB (perhaps
1483 "set mapped on", "set readnow on" would be better)
1484
1485 3. The order of options matters, which is contrary to GNU
1486 conventions (because it is confusing and inconvenient). */
1487
1488 void
1489 symbol_file_command (char *args, int from_tty)
1490 {
1491 dont_repeat ();
1492
1493 if (args == NULL)
1494 {
1495 symbol_file_clear (from_tty);
1496 }
1497 else
1498 {
1499 char **argv = gdb_buildargv (args);
1500 int flags = OBJF_USERLOADED;
1501 struct cleanup *cleanups;
1502 char *name = NULL;
1503
1504 cleanups = make_cleanup_freeargv (argv);
1505 while (*argv != NULL)
1506 {
1507 if (strcmp (*argv, "-readnow") == 0)
1508 flags |= OBJF_READNOW;
1509 else if (**argv == '-')
1510 error (_("unknown option `%s'"), *argv);
1511 else
1512 {
1513 symbol_file_add_main_1 (*argv, from_tty, flags);
1514 name = *argv;
1515 }
1516
1517 argv++;
1518 }
1519
1520 if (name == NULL)
1521 error (_("no symbol file name was specified"));
1522
1523 do_cleanups (cleanups);
1524 }
1525 }
1526
1527 /* Set the initial language.
1528
1529 FIXME: A better solution would be to record the language in the
1530 psymtab when reading partial symbols, and then use it (if known) to
1531 set the language. This would be a win for formats that encode the
1532 language in an easily discoverable place, such as DWARF. For
1533 stabs, we can jump through hoops looking for specially named
1534 symbols or try to intuit the language from the specific type of
1535 stabs we find, but we can't do that until later when we read in
1536 full symbols. */
1537
1538 void
1539 set_initial_language (void)
1540 {
1541 struct partial_symtab *pst;
1542 enum language lang = language_unknown;
1543
1544 pst = find_main_psymtab ();
1545 if (pst != NULL)
1546 {
1547 if (pst->filename != NULL)
1548 lang = deduce_language_from_filename (pst->filename);
1549
1550 if (lang == language_unknown)
1551 {
1552 /* Make C the default language */
1553 lang = language_c;
1554 }
1555
1556 set_language (lang);
1557 expected_language = current_language; /* Don't warn the user. */
1558 }
1559 }
1560
1561 /* Open the file specified by NAME and hand it off to BFD for
1562 preliminary analysis. Return a newly initialized bfd *, which
1563 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1564 absolute). In case of trouble, error() is called. */
1565
1566 bfd *
1567 symfile_bfd_open (char *name)
1568 {
1569 bfd *sym_bfd;
1570 int desc;
1571 char *absolute_name;
1572
1573 if (remote_filename_p (name))
1574 {
1575 name = xstrdup (name);
1576 sym_bfd = remote_bfd_open (name, gnutarget);
1577 if (!sym_bfd)
1578 {
1579 make_cleanup (xfree, name);
1580 error (_("`%s': can't open to read symbols: %s."), name,
1581 bfd_errmsg (bfd_get_error ()));
1582 }
1583
1584 if (!bfd_check_format (sym_bfd, bfd_object))
1585 {
1586 bfd_close (sym_bfd);
1587 make_cleanup (xfree, name);
1588 error (_("`%s': can't read symbols: %s."), name,
1589 bfd_errmsg (bfd_get_error ()));
1590 }
1591
1592 return sym_bfd;
1593 }
1594
1595 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1596
1597 /* Look down path for it, allocate 2nd new malloc'd copy. */
1598 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1599 O_RDONLY | O_BINARY, &absolute_name);
1600 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1601 if (desc < 0)
1602 {
1603 char *exename = alloca (strlen (name) + 5);
1604 strcat (strcpy (exename, name), ".exe");
1605 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1606 O_RDONLY | O_BINARY, &absolute_name);
1607 }
1608 #endif
1609 if (desc < 0)
1610 {
1611 make_cleanup (xfree, name);
1612 perror_with_name (name);
1613 }
1614
1615 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1616 bfd. It'll be freed in free_objfile(). */
1617 xfree (name);
1618 name = absolute_name;
1619
1620 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1621 if (!sym_bfd)
1622 {
1623 close (desc);
1624 make_cleanup (xfree, name);
1625 error (_("`%s': can't open to read symbols: %s."), name,
1626 bfd_errmsg (bfd_get_error ()));
1627 }
1628 bfd_set_cacheable (sym_bfd, 1);
1629
1630 if (!bfd_check_format (sym_bfd, bfd_object))
1631 {
1632 /* FIXME: should be checking for errors from bfd_close (for one
1633 thing, on error it does not free all the storage associated
1634 with the bfd). */
1635 bfd_close (sym_bfd); /* This also closes desc. */
1636 make_cleanup (xfree, name);
1637 error (_("`%s': can't read symbols: %s."), name,
1638 bfd_errmsg (bfd_get_error ()));
1639 }
1640
1641 return sym_bfd;
1642 }
1643
1644 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1645 the section was not found. */
1646
1647 int
1648 get_section_index (struct objfile *objfile, char *section_name)
1649 {
1650 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1651
1652 if (sect)
1653 return sect->index;
1654 else
1655 return -1;
1656 }
1657
1658 /* Link SF into the global symtab_fns list. Called on startup by the
1659 _initialize routine in each object file format reader, to register
1660 information about each format the the reader is prepared to
1661 handle. */
1662
1663 void
1664 add_symtab_fns (struct sym_fns *sf)
1665 {
1666 sf->next = symtab_fns;
1667 symtab_fns = sf;
1668 }
1669
1670 /* Initialize OBJFILE to read symbols from its associated BFD. It
1671 either returns or calls error(). The result is an initialized
1672 struct sym_fns in the objfile structure, that contains cached
1673 information about the symbol file. */
1674
1675 static struct sym_fns *
1676 find_sym_fns (bfd *abfd)
1677 {
1678 struct sym_fns *sf;
1679 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1680
1681 if (our_flavour == bfd_target_srec_flavour
1682 || our_flavour == bfd_target_ihex_flavour
1683 || our_flavour == bfd_target_tekhex_flavour)
1684 return NULL; /* No symbols. */
1685
1686 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1687 if (our_flavour == sf->sym_flavour)
1688 return sf;
1689
1690 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1691 bfd_get_target (abfd));
1692 }
1693 \f
1694
1695 /* This function runs the load command of our current target. */
1696
1697 static void
1698 load_command (char *arg, int from_tty)
1699 {
1700 /* The user might be reloading because the binary has changed. Take
1701 this opportunity to check. */
1702 reopen_exec_file ();
1703 reread_symbols ();
1704
1705 if (arg == NULL)
1706 {
1707 char *parg;
1708 int count = 0;
1709
1710 parg = arg = get_exec_file (1);
1711
1712 /* Count how many \ " ' tab space there are in the name. */
1713 while ((parg = strpbrk (parg, "\\\"'\t ")))
1714 {
1715 parg++;
1716 count++;
1717 }
1718
1719 if (count)
1720 {
1721 /* We need to quote this string so buildargv can pull it apart. */
1722 char *temp = xmalloc (strlen (arg) + count + 1 );
1723 char *ptemp = temp;
1724 char *prev;
1725
1726 make_cleanup (xfree, temp);
1727
1728 prev = parg = arg;
1729 while ((parg = strpbrk (parg, "\\\"'\t ")))
1730 {
1731 strncpy (ptemp, prev, parg - prev);
1732 ptemp += parg - prev;
1733 prev = parg++;
1734 *ptemp++ = '\\';
1735 }
1736 strcpy (ptemp, prev);
1737
1738 arg = temp;
1739 }
1740 }
1741
1742 target_load (arg, from_tty);
1743
1744 /* After re-loading the executable, we don't really know which
1745 overlays are mapped any more. */
1746 overlay_cache_invalid = 1;
1747 }
1748
1749 /* This version of "load" should be usable for any target. Currently
1750 it is just used for remote targets, not inftarg.c or core files,
1751 on the theory that only in that case is it useful.
1752
1753 Avoiding xmodem and the like seems like a win (a) because we don't have
1754 to worry about finding it, and (b) On VMS, fork() is very slow and so
1755 we don't want to run a subprocess. On the other hand, I'm not sure how
1756 performance compares. */
1757
1758 static int validate_download = 0;
1759
1760 /* Callback service function for generic_load (bfd_map_over_sections). */
1761
1762 static void
1763 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1764 {
1765 bfd_size_type *sum = data;
1766
1767 *sum += bfd_get_section_size (asec);
1768 }
1769
1770 /* Opaque data for load_section_callback. */
1771 struct load_section_data {
1772 unsigned long load_offset;
1773 struct load_progress_data *progress_data;
1774 VEC(memory_write_request_s) *requests;
1775 };
1776
1777 /* Opaque data for load_progress. */
1778 struct load_progress_data {
1779 /* Cumulative data. */
1780 unsigned long write_count;
1781 unsigned long data_count;
1782 bfd_size_type total_size;
1783 };
1784
1785 /* Opaque data for load_progress for a single section. */
1786 struct load_progress_section_data {
1787 struct load_progress_data *cumulative;
1788
1789 /* Per-section data. */
1790 const char *section_name;
1791 ULONGEST section_sent;
1792 ULONGEST section_size;
1793 CORE_ADDR lma;
1794 gdb_byte *buffer;
1795 };
1796
1797 /* Target write callback routine for progress reporting. */
1798
1799 static void
1800 load_progress (ULONGEST bytes, void *untyped_arg)
1801 {
1802 struct load_progress_section_data *args = untyped_arg;
1803 struct load_progress_data *totals;
1804
1805 if (args == NULL)
1806 /* Writing padding data. No easy way to get at the cumulative
1807 stats, so just ignore this. */
1808 return;
1809
1810 totals = args->cumulative;
1811
1812 if (bytes == 0 && args->section_sent == 0)
1813 {
1814 /* The write is just starting. Let the user know we've started
1815 this section. */
1816 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1817 args->section_name, hex_string (args->section_size),
1818 paddress (target_gdbarch, args->lma));
1819 return;
1820 }
1821
1822 if (validate_download)
1823 {
1824 /* Broken memories and broken monitors manifest themselves here
1825 when bring new computers to life. This doubles already slow
1826 downloads. */
1827 /* NOTE: cagney/1999-10-18: A more efficient implementation
1828 might add a verify_memory() method to the target vector and
1829 then use that. remote.c could implement that method using
1830 the ``qCRC'' packet. */
1831 gdb_byte *check = xmalloc (bytes);
1832 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1833
1834 if (target_read_memory (args->lma, check, bytes) != 0)
1835 error (_("Download verify read failed at %s"),
1836 paddress (target_gdbarch, args->lma));
1837 if (memcmp (args->buffer, check, bytes) != 0)
1838 error (_("Download verify compare failed at %s"),
1839 paddress (target_gdbarch, args->lma));
1840 do_cleanups (verify_cleanups);
1841 }
1842 totals->data_count += bytes;
1843 args->lma += bytes;
1844 args->buffer += bytes;
1845 totals->write_count += 1;
1846 args->section_sent += bytes;
1847 if (quit_flag
1848 || (deprecated_ui_load_progress_hook != NULL
1849 && deprecated_ui_load_progress_hook (args->section_name,
1850 args->section_sent)))
1851 error (_("Canceled the download"));
1852
1853 if (deprecated_show_load_progress != NULL)
1854 deprecated_show_load_progress (args->section_name,
1855 args->section_sent,
1856 args->section_size,
1857 totals->data_count,
1858 totals->total_size);
1859 }
1860
1861 /* Callback service function for generic_load (bfd_map_over_sections). */
1862
1863 static void
1864 load_section_callback (bfd *abfd, asection *asec, void *data)
1865 {
1866 struct memory_write_request *new_request;
1867 struct load_section_data *args = data;
1868 struct load_progress_section_data *section_data;
1869 bfd_size_type size = bfd_get_section_size (asec);
1870 gdb_byte *buffer;
1871 const char *sect_name = bfd_get_section_name (abfd, asec);
1872
1873 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1874 return;
1875
1876 if (size == 0)
1877 return;
1878
1879 new_request = VEC_safe_push (memory_write_request_s,
1880 args->requests, NULL);
1881 memset (new_request, 0, sizeof (struct memory_write_request));
1882 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1883 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1884 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1885 new_request->data = xmalloc (size);
1886 new_request->baton = section_data;
1887
1888 buffer = new_request->data;
1889
1890 section_data->cumulative = args->progress_data;
1891 section_data->section_name = sect_name;
1892 section_data->section_size = size;
1893 section_data->lma = new_request->begin;
1894 section_data->buffer = buffer;
1895
1896 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1897 }
1898
1899 /* Clean up an entire memory request vector, including load
1900 data and progress records. */
1901
1902 static void
1903 clear_memory_write_data (void *arg)
1904 {
1905 VEC(memory_write_request_s) **vec_p = arg;
1906 VEC(memory_write_request_s) *vec = *vec_p;
1907 int i;
1908 struct memory_write_request *mr;
1909
1910 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1911 {
1912 xfree (mr->data);
1913 xfree (mr->baton);
1914 }
1915 VEC_free (memory_write_request_s, vec);
1916 }
1917
1918 void
1919 generic_load (char *args, int from_tty)
1920 {
1921 bfd *loadfile_bfd;
1922 struct timeval start_time, end_time;
1923 char *filename;
1924 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1925 struct load_section_data cbdata;
1926 struct load_progress_data total_progress;
1927
1928 CORE_ADDR entry;
1929 char **argv;
1930
1931 memset (&cbdata, 0, sizeof (cbdata));
1932 memset (&total_progress, 0, sizeof (total_progress));
1933 cbdata.progress_data = &total_progress;
1934
1935 make_cleanup (clear_memory_write_data, &cbdata.requests);
1936
1937 if (args == NULL)
1938 error_no_arg (_("file to load"));
1939
1940 argv = gdb_buildargv (args);
1941 make_cleanup_freeargv (argv);
1942
1943 filename = tilde_expand (argv[0]);
1944 make_cleanup (xfree, filename);
1945
1946 if (argv[1] != NULL)
1947 {
1948 char *endptr;
1949
1950 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1951
1952 /* If the last word was not a valid number then
1953 treat it as a file name with spaces in. */
1954 if (argv[1] == endptr)
1955 error (_("Invalid download offset:%s."), argv[1]);
1956
1957 if (argv[2] != NULL)
1958 error (_("Too many parameters."));
1959 }
1960
1961 /* Open the file for loading. */
1962 loadfile_bfd = bfd_openr (filename, gnutarget);
1963 if (loadfile_bfd == NULL)
1964 {
1965 perror_with_name (filename);
1966 return;
1967 }
1968
1969 /* FIXME: should be checking for errors from bfd_close (for one thing,
1970 on error it does not free all the storage associated with the
1971 bfd). */
1972 make_cleanup_bfd_close (loadfile_bfd);
1973
1974 if (!bfd_check_format (loadfile_bfd, bfd_object))
1975 {
1976 error (_("\"%s\" is not an object file: %s"), filename,
1977 bfd_errmsg (bfd_get_error ()));
1978 }
1979
1980 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1981 (void *) &total_progress.total_size);
1982
1983 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1984
1985 gettimeofday (&start_time, NULL);
1986
1987 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1988 load_progress) != 0)
1989 error (_("Load failed"));
1990
1991 gettimeofday (&end_time, NULL);
1992
1993 entry = bfd_get_start_address (loadfile_bfd);
1994 ui_out_text (uiout, "Start address ");
1995 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
1996 ui_out_text (uiout, ", load size ");
1997 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
1998 ui_out_text (uiout, "\n");
1999 /* We were doing this in remote-mips.c, I suspect it is right
2000 for other targets too. */
2001 regcache_write_pc (get_current_regcache (), entry);
2002
2003 /* FIXME: are we supposed to call symbol_file_add or not? According
2004 to a comment from remote-mips.c (where a call to symbol_file_add
2005 was commented out), making the call confuses GDB if more than one
2006 file is loaded in. Some targets do (e.g., remote-vx.c) but
2007 others don't (or didn't - perhaps they have all been deleted). */
2008
2009 print_transfer_performance (gdb_stdout, total_progress.data_count,
2010 total_progress.write_count,
2011 &start_time, &end_time);
2012
2013 do_cleanups (old_cleanups);
2014 }
2015
2016 /* Report how fast the transfer went. */
2017
2018 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2019 replaced by print_transfer_performance (with a very different
2020 function signature). */
2021
2022 void
2023 report_transfer_performance (unsigned long data_count, time_t start_time,
2024 time_t end_time)
2025 {
2026 struct timeval start, end;
2027
2028 start.tv_sec = start_time;
2029 start.tv_usec = 0;
2030 end.tv_sec = end_time;
2031 end.tv_usec = 0;
2032
2033 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2034 }
2035
2036 void
2037 print_transfer_performance (struct ui_file *stream,
2038 unsigned long data_count,
2039 unsigned long write_count,
2040 const struct timeval *start_time,
2041 const struct timeval *end_time)
2042 {
2043 ULONGEST time_count;
2044
2045 /* Compute the elapsed time in milliseconds, as a tradeoff between
2046 accuracy and overflow. */
2047 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2048 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2049
2050 ui_out_text (uiout, "Transfer rate: ");
2051 if (time_count > 0)
2052 {
2053 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2054
2055 if (ui_out_is_mi_like_p (uiout))
2056 {
2057 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2058 ui_out_text (uiout, " bits/sec");
2059 }
2060 else if (rate < 1024)
2061 {
2062 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2063 ui_out_text (uiout, " bytes/sec");
2064 }
2065 else
2066 {
2067 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2068 ui_out_text (uiout, " KB/sec");
2069 }
2070 }
2071 else
2072 {
2073 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2074 ui_out_text (uiout, " bits in <1 sec");
2075 }
2076 if (write_count > 0)
2077 {
2078 ui_out_text (uiout, ", ");
2079 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2080 ui_out_text (uiout, " bytes/write");
2081 }
2082 ui_out_text (uiout, ".\n");
2083 }
2084
2085 /* This function allows the addition of incrementally linked object files.
2086 It does not modify any state in the target, only in the debugger. */
2087 /* Note: ezannoni 2000-04-13 This function/command used to have a
2088 special case syntax for the rombug target (Rombug is the boot
2089 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2090 rombug case, the user doesn't need to supply a text address,
2091 instead a call to target_link() (in target.c) would supply the
2092 value to use. We are now discontinuing this type of ad hoc syntax. */
2093
2094 static void
2095 add_symbol_file_command (char *args, int from_tty)
2096 {
2097 struct gdbarch *gdbarch = get_current_arch ();
2098 char *filename = NULL;
2099 int flags = OBJF_USERLOADED;
2100 char *arg;
2101 int expecting_option = 0;
2102 int section_index = 0;
2103 int argcnt = 0;
2104 int sec_num = 0;
2105 int i;
2106 int expecting_sec_name = 0;
2107 int expecting_sec_addr = 0;
2108 char **argv;
2109
2110 struct sect_opt
2111 {
2112 char *name;
2113 char *value;
2114 };
2115
2116 struct section_addr_info *section_addrs;
2117 struct sect_opt *sect_opts = NULL;
2118 size_t num_sect_opts = 0;
2119 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2120
2121 num_sect_opts = 16;
2122 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2123 * sizeof (struct sect_opt));
2124
2125 dont_repeat ();
2126
2127 if (args == NULL)
2128 error (_("add-symbol-file takes a file name and an address"));
2129
2130 argv = gdb_buildargv (args);
2131 make_cleanup_freeargv (argv);
2132
2133 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2134 {
2135 /* Process the argument. */
2136 if (argcnt == 0)
2137 {
2138 /* The first argument is the file name. */
2139 filename = tilde_expand (arg);
2140 make_cleanup (xfree, filename);
2141 }
2142 else
2143 if (argcnt == 1)
2144 {
2145 /* The second argument is always the text address at which
2146 to load the program. */
2147 sect_opts[section_index].name = ".text";
2148 sect_opts[section_index].value = arg;
2149 if (++section_index >= num_sect_opts)
2150 {
2151 num_sect_opts *= 2;
2152 sect_opts = ((struct sect_opt *)
2153 xrealloc (sect_opts,
2154 num_sect_opts
2155 * sizeof (struct sect_opt)));
2156 }
2157 }
2158 else
2159 {
2160 /* It's an option (starting with '-') or it's an argument
2161 to an option */
2162
2163 if (*arg == '-')
2164 {
2165 if (strcmp (arg, "-readnow") == 0)
2166 flags |= OBJF_READNOW;
2167 else if (strcmp (arg, "-s") == 0)
2168 {
2169 expecting_sec_name = 1;
2170 expecting_sec_addr = 1;
2171 }
2172 }
2173 else
2174 {
2175 if (expecting_sec_name)
2176 {
2177 sect_opts[section_index].name = arg;
2178 expecting_sec_name = 0;
2179 }
2180 else
2181 if (expecting_sec_addr)
2182 {
2183 sect_opts[section_index].value = arg;
2184 expecting_sec_addr = 0;
2185 if (++section_index >= num_sect_opts)
2186 {
2187 num_sect_opts *= 2;
2188 sect_opts = ((struct sect_opt *)
2189 xrealloc (sect_opts,
2190 num_sect_opts
2191 * sizeof (struct sect_opt)));
2192 }
2193 }
2194 else
2195 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2196 }
2197 }
2198 }
2199
2200 /* This command takes at least two arguments. The first one is a
2201 filename, and the second is the address where this file has been
2202 loaded. Abort now if this address hasn't been provided by the
2203 user. */
2204 if (section_index < 1)
2205 error (_("The address where %s has been loaded is missing"), filename);
2206
2207 /* Print the prompt for the query below. And save the arguments into
2208 a sect_addr_info structure to be passed around to other
2209 functions. We have to split this up into separate print
2210 statements because hex_string returns a local static
2211 string. */
2212
2213 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2214 section_addrs = alloc_section_addr_info (section_index);
2215 make_cleanup (xfree, section_addrs);
2216 for (i = 0; i < section_index; i++)
2217 {
2218 CORE_ADDR addr;
2219 char *val = sect_opts[i].value;
2220 char *sec = sect_opts[i].name;
2221
2222 addr = parse_and_eval_address (val);
2223
2224 /* Here we store the section offsets in the order they were
2225 entered on the command line. */
2226 section_addrs->other[sec_num].name = sec;
2227 section_addrs->other[sec_num].addr = addr;
2228 printf_unfiltered ("\t%s_addr = %s\n", sec,
2229 paddress (gdbarch, addr));
2230 sec_num++;
2231
2232 /* The object's sections are initialized when a
2233 call is made to build_objfile_section_table (objfile).
2234 This happens in reread_symbols.
2235 At this point, we don't know what file type this is,
2236 so we can't determine what section names are valid. */
2237 }
2238
2239 if (from_tty && (!query ("%s", "")))
2240 error (_("Not confirmed."));
2241
2242 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2243 section_addrs, flags);
2244
2245 /* Getting new symbols may change our opinion about what is
2246 frameless. */
2247 reinit_frame_cache ();
2248 do_cleanups (my_cleanups);
2249 }
2250 \f
2251
2252 /* Re-read symbols if a symbol-file has changed. */
2253 void
2254 reread_symbols (void)
2255 {
2256 struct objfile *objfile;
2257 long new_modtime;
2258 int reread_one = 0;
2259 struct stat new_statbuf;
2260 int res;
2261
2262 /* With the addition of shared libraries, this should be modified,
2263 the load time should be saved in the partial symbol tables, since
2264 different tables may come from different source files. FIXME.
2265 This routine should then walk down each partial symbol table
2266 and see if the symbol table that it originates from has been changed */
2267
2268 for (objfile = object_files; objfile; objfile = objfile->next)
2269 {
2270 if (objfile->obfd)
2271 {
2272 #ifdef DEPRECATED_IBM6000_TARGET
2273 /* If this object is from a shared library, then you should
2274 stat on the library name, not member name. */
2275
2276 if (objfile->obfd->my_archive)
2277 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2278 else
2279 #endif
2280 res = stat (objfile->name, &new_statbuf);
2281 if (res != 0)
2282 {
2283 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2284 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2285 objfile->name);
2286 continue;
2287 }
2288 new_modtime = new_statbuf.st_mtime;
2289 if (new_modtime != objfile->mtime)
2290 {
2291 struct cleanup *old_cleanups;
2292 struct section_offsets *offsets;
2293 int num_offsets;
2294 char *obfd_filename;
2295
2296 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2297 objfile->name);
2298
2299 /* There are various functions like symbol_file_add,
2300 symfile_bfd_open, syms_from_objfile, etc., which might
2301 appear to do what we want. But they have various other
2302 effects which we *don't* want. So we just do stuff
2303 ourselves. We don't worry about mapped files (for one thing,
2304 any mapped file will be out of date). */
2305
2306 /* If we get an error, blow away this objfile (not sure if
2307 that is the correct response for things like shared
2308 libraries). */
2309 old_cleanups = make_cleanup_free_objfile (objfile);
2310 /* We need to do this whenever any symbols go away. */
2311 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2312
2313 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2314 bfd_get_filename (exec_bfd)) == 0)
2315 {
2316 /* Reload EXEC_BFD without asking anything. */
2317
2318 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2319 }
2320
2321 /* Clean up any state BFD has sitting around. We don't need
2322 to close the descriptor but BFD lacks a way of closing the
2323 BFD without closing the descriptor. */
2324 obfd_filename = bfd_get_filename (objfile->obfd);
2325 if (!bfd_close (objfile->obfd))
2326 error (_("Can't close BFD for %s: %s"), objfile->name,
2327 bfd_errmsg (bfd_get_error ()));
2328 if (remote_filename_p (obfd_filename))
2329 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2330 else
2331 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2332 if (objfile->obfd == NULL)
2333 error (_("Can't open %s to read symbols."), objfile->name);
2334 /* bfd_openr sets cacheable to true, which is what we want. */
2335 if (!bfd_check_format (objfile->obfd, bfd_object))
2336 error (_("Can't read symbols from %s: %s."), objfile->name,
2337 bfd_errmsg (bfd_get_error ()));
2338
2339 /* Save the offsets, we will nuke them with the rest of the
2340 objfile_obstack. */
2341 num_offsets = objfile->num_sections;
2342 offsets = ((struct section_offsets *)
2343 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2344 memcpy (offsets, objfile->section_offsets,
2345 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2346
2347 /* Remove any references to this objfile in the global
2348 value lists. */
2349 preserve_values (objfile);
2350
2351 /* Nuke all the state that we will re-read. Much of the following
2352 code which sets things to NULL really is necessary to tell
2353 other parts of GDB that there is nothing currently there.
2354
2355 Try to keep the freeing order compatible with free_objfile. */
2356
2357 if (objfile->sf != NULL)
2358 {
2359 (*objfile->sf->sym_finish) (objfile);
2360 }
2361
2362 clear_objfile_data (objfile);
2363
2364 /* FIXME: Do we have to free a whole linked list, or is this
2365 enough? */
2366 if (objfile->global_psymbols.list)
2367 xfree (objfile->global_psymbols.list);
2368 memset (&objfile->global_psymbols, 0,
2369 sizeof (objfile->global_psymbols));
2370 if (objfile->static_psymbols.list)
2371 xfree (objfile->static_psymbols.list);
2372 memset (&objfile->static_psymbols, 0,
2373 sizeof (objfile->static_psymbols));
2374
2375 /* Free the obstacks for non-reusable objfiles */
2376 bcache_xfree (objfile->psymbol_cache);
2377 objfile->psymbol_cache = bcache_xmalloc ();
2378 bcache_xfree (objfile->macro_cache);
2379 objfile->macro_cache = bcache_xmalloc ();
2380 if (objfile->demangled_names_hash != NULL)
2381 {
2382 htab_delete (objfile->demangled_names_hash);
2383 objfile->demangled_names_hash = NULL;
2384 }
2385 obstack_free (&objfile->objfile_obstack, 0);
2386 objfile->sections = NULL;
2387 objfile->symtabs = NULL;
2388 objfile->psymtabs = NULL;
2389 objfile->psymtabs_addrmap = NULL;
2390 objfile->free_psymtabs = NULL;
2391 objfile->cp_namespace_symtab = NULL;
2392 objfile->msymbols = NULL;
2393 objfile->deprecated_sym_private = NULL;
2394 objfile->minimal_symbol_count = 0;
2395 memset (&objfile->msymbol_hash, 0,
2396 sizeof (objfile->msymbol_hash));
2397 memset (&objfile->msymbol_demangled_hash, 0,
2398 sizeof (objfile->msymbol_demangled_hash));
2399
2400 objfile->psymbol_cache = bcache_xmalloc ();
2401 objfile->macro_cache = bcache_xmalloc ();
2402 /* obstack_init also initializes the obstack so it is
2403 empty. We could use obstack_specify_allocation but
2404 gdb_obstack.h specifies the alloc/dealloc
2405 functions. */
2406 obstack_init (&objfile->objfile_obstack);
2407 if (build_objfile_section_table (objfile))
2408 {
2409 error (_("Can't find the file sections in `%s': %s"),
2410 objfile->name, bfd_errmsg (bfd_get_error ()));
2411 }
2412 terminate_minimal_symbol_table (objfile);
2413
2414 /* We use the same section offsets as from last time. I'm not
2415 sure whether that is always correct for shared libraries. */
2416 objfile->section_offsets = (struct section_offsets *)
2417 obstack_alloc (&objfile->objfile_obstack,
2418 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2419 memcpy (objfile->section_offsets, offsets,
2420 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2421 objfile->num_sections = num_offsets;
2422
2423 /* What the hell is sym_new_init for, anyway? The concept of
2424 distinguishing between the main file and additional files
2425 in this way seems rather dubious. */
2426 if (objfile == symfile_objfile)
2427 {
2428 (*objfile->sf->sym_new_init) (objfile);
2429 }
2430
2431 (*objfile->sf->sym_init) (objfile);
2432 clear_complaints (&symfile_complaints, 1, 1);
2433 /* The "mainline" parameter is a hideous hack; I think leaving it
2434 zero is OK since dbxread.c also does what it needs to do if
2435 objfile->global_psymbols.size is 0. */
2436 (*objfile->sf->sym_read) (objfile, 0);
2437 if (!have_partial_symbols () && !have_full_symbols ())
2438 {
2439 wrap_here ("");
2440 printf_unfiltered (_("(no debugging symbols found)\n"));
2441 wrap_here ("");
2442 }
2443
2444 /* We're done reading the symbol file; finish off complaints. */
2445 clear_complaints (&symfile_complaints, 0, 1);
2446
2447 /* Getting new symbols may change our opinion about what is
2448 frameless. */
2449
2450 reinit_frame_cache ();
2451
2452 /* Discard cleanups as symbol reading was successful. */
2453 discard_cleanups (old_cleanups);
2454
2455 /* If the mtime has changed between the time we set new_modtime
2456 and now, we *want* this to be out of date, so don't call stat
2457 again now. */
2458 objfile->mtime = new_modtime;
2459 reread_one = 1;
2460 reread_separate_symbols (objfile);
2461 init_entry_point_info (objfile);
2462 }
2463 }
2464 }
2465
2466 if (reread_one)
2467 {
2468 clear_symtab_users ();
2469 /* At least one objfile has changed, so we can consider that
2470 the executable we're debugging has changed too. */
2471 observer_notify_executable_changed ();
2472
2473 /* Notify objfiles that we've modified objfile sections. */
2474 objfiles_changed ();
2475 }
2476 }
2477
2478
2479 /* Handle separate debug info for OBJFILE, which has just been
2480 re-read:
2481 - If we had separate debug info before, but now we don't, get rid
2482 of the separated objfile.
2483 - If we didn't have separated debug info before, but now we do,
2484 read in the new separated debug info file.
2485 - If the debug link points to a different file, toss the old one
2486 and read the new one.
2487 This function does *not* handle the case where objfile is still
2488 using the same separate debug info file, but that file's timestamp
2489 has changed. That case should be handled by the loop in
2490 reread_symbols already. */
2491 static void
2492 reread_separate_symbols (struct objfile *objfile)
2493 {
2494 char *debug_file;
2495 unsigned long crc32;
2496
2497 /* Does the updated objfile's debug info live in a
2498 separate file? */
2499 debug_file = find_separate_debug_file (objfile);
2500
2501 if (objfile->separate_debug_objfile)
2502 {
2503 /* There are two cases where we need to get rid of
2504 the old separated debug info objfile:
2505 - if the new primary objfile doesn't have
2506 separated debug info, or
2507 - if the new primary objfile has separate debug
2508 info, but it's under a different filename.
2509
2510 If the old and new objfiles both have separate
2511 debug info, under the same filename, then we're
2512 okay --- if the separated file's contents have
2513 changed, we will have caught that when we
2514 visited it in this function's outermost
2515 loop. */
2516 if (! debug_file
2517 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2518 free_objfile (objfile->separate_debug_objfile);
2519 }
2520
2521 /* If the new objfile has separate debug info, and we
2522 haven't loaded it already, do so now. */
2523 if (debug_file
2524 && ! objfile->separate_debug_objfile)
2525 {
2526 /* Use the same section offset table as objfile itself.
2527 Preserve the flags from objfile that make sense. */
2528 objfile->separate_debug_objfile
2529 = (symbol_file_add_with_addrs_or_offsets
2530 (symfile_bfd_open (debug_file),
2531 info_verbose ? SYMFILE_VERBOSE : 0,
2532 0, /* No addr table. */
2533 objfile->section_offsets, objfile->num_sections,
2534 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2535 | OBJF_USERLOADED)));
2536 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2537 = objfile;
2538 }
2539 if (debug_file)
2540 xfree (debug_file);
2541 }
2542
2543
2544 \f
2545
2546
2547 typedef struct
2548 {
2549 char *ext;
2550 enum language lang;
2551 }
2552 filename_language;
2553
2554 static filename_language *filename_language_table;
2555 static int fl_table_size, fl_table_next;
2556
2557 static void
2558 add_filename_language (char *ext, enum language lang)
2559 {
2560 if (fl_table_next >= fl_table_size)
2561 {
2562 fl_table_size += 10;
2563 filename_language_table =
2564 xrealloc (filename_language_table,
2565 fl_table_size * sizeof (*filename_language_table));
2566 }
2567
2568 filename_language_table[fl_table_next].ext = xstrdup (ext);
2569 filename_language_table[fl_table_next].lang = lang;
2570 fl_table_next++;
2571 }
2572
2573 static char *ext_args;
2574 static void
2575 show_ext_args (struct ui_file *file, int from_tty,
2576 struct cmd_list_element *c, const char *value)
2577 {
2578 fprintf_filtered (file, _("\
2579 Mapping between filename extension and source language is \"%s\".\n"),
2580 value);
2581 }
2582
2583 static void
2584 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2585 {
2586 int i;
2587 char *cp = ext_args;
2588 enum language lang;
2589
2590 /* First arg is filename extension, starting with '.' */
2591 if (*cp != '.')
2592 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2593
2594 /* Find end of first arg. */
2595 while (*cp && !isspace (*cp))
2596 cp++;
2597
2598 if (*cp == '\0')
2599 error (_("'%s': two arguments required -- filename extension and language"),
2600 ext_args);
2601
2602 /* Null-terminate first arg */
2603 *cp++ = '\0';
2604
2605 /* Find beginning of second arg, which should be a source language. */
2606 while (*cp && isspace (*cp))
2607 cp++;
2608
2609 if (*cp == '\0')
2610 error (_("'%s': two arguments required -- filename extension and language"),
2611 ext_args);
2612
2613 /* Lookup the language from among those we know. */
2614 lang = language_enum (cp);
2615
2616 /* Now lookup the filename extension: do we already know it? */
2617 for (i = 0; i < fl_table_next; i++)
2618 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2619 break;
2620
2621 if (i >= fl_table_next)
2622 {
2623 /* new file extension */
2624 add_filename_language (ext_args, lang);
2625 }
2626 else
2627 {
2628 /* redefining a previously known filename extension */
2629
2630 /* if (from_tty) */
2631 /* query ("Really make files of type %s '%s'?", */
2632 /* ext_args, language_str (lang)); */
2633
2634 xfree (filename_language_table[i].ext);
2635 filename_language_table[i].ext = xstrdup (ext_args);
2636 filename_language_table[i].lang = lang;
2637 }
2638 }
2639
2640 static void
2641 info_ext_lang_command (char *args, int from_tty)
2642 {
2643 int i;
2644
2645 printf_filtered (_("Filename extensions and the languages they represent:"));
2646 printf_filtered ("\n\n");
2647 for (i = 0; i < fl_table_next; i++)
2648 printf_filtered ("\t%s\t- %s\n",
2649 filename_language_table[i].ext,
2650 language_str (filename_language_table[i].lang));
2651 }
2652
2653 static void
2654 init_filename_language_table (void)
2655 {
2656 if (fl_table_size == 0) /* protect against repetition */
2657 {
2658 fl_table_size = 20;
2659 fl_table_next = 0;
2660 filename_language_table =
2661 xmalloc (fl_table_size * sizeof (*filename_language_table));
2662 add_filename_language (".c", language_c);
2663 add_filename_language (".C", language_cplus);
2664 add_filename_language (".cc", language_cplus);
2665 add_filename_language (".cp", language_cplus);
2666 add_filename_language (".cpp", language_cplus);
2667 add_filename_language (".cxx", language_cplus);
2668 add_filename_language (".c++", language_cplus);
2669 add_filename_language (".java", language_java);
2670 add_filename_language (".class", language_java);
2671 add_filename_language (".m", language_objc);
2672 add_filename_language (".f", language_fortran);
2673 add_filename_language (".F", language_fortran);
2674 add_filename_language (".s", language_asm);
2675 add_filename_language (".sx", language_asm);
2676 add_filename_language (".S", language_asm);
2677 add_filename_language (".pas", language_pascal);
2678 add_filename_language (".p", language_pascal);
2679 add_filename_language (".pp", language_pascal);
2680 add_filename_language (".adb", language_ada);
2681 add_filename_language (".ads", language_ada);
2682 add_filename_language (".a", language_ada);
2683 add_filename_language (".ada", language_ada);
2684 }
2685 }
2686
2687 enum language
2688 deduce_language_from_filename (char *filename)
2689 {
2690 int i;
2691 char *cp;
2692
2693 if (filename != NULL)
2694 if ((cp = strrchr (filename, '.')) != NULL)
2695 for (i = 0; i < fl_table_next; i++)
2696 if (strcmp (cp, filename_language_table[i].ext) == 0)
2697 return filename_language_table[i].lang;
2698
2699 return language_unknown;
2700 }
2701 \f
2702 /* allocate_symtab:
2703
2704 Allocate and partly initialize a new symbol table. Return a pointer
2705 to it. error() if no space.
2706
2707 Caller must set these fields:
2708 LINETABLE(symtab)
2709 symtab->blockvector
2710 symtab->dirname
2711 symtab->free_code
2712 symtab->free_ptr
2713 possibly free_named_symtabs (symtab->filename);
2714 */
2715
2716 struct symtab *
2717 allocate_symtab (char *filename, struct objfile *objfile)
2718 {
2719 struct symtab *symtab;
2720
2721 symtab = (struct symtab *)
2722 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2723 memset (symtab, 0, sizeof (*symtab));
2724 symtab->filename = obsavestring (filename, strlen (filename),
2725 &objfile->objfile_obstack);
2726 symtab->fullname = NULL;
2727 symtab->language = deduce_language_from_filename (filename);
2728 symtab->debugformat = obsavestring ("unknown", 7,
2729 &objfile->objfile_obstack);
2730
2731 /* Hook it to the objfile it comes from */
2732
2733 symtab->objfile = objfile;
2734 symtab->next = objfile->symtabs;
2735 objfile->symtabs = symtab;
2736
2737 return (symtab);
2738 }
2739
2740 struct partial_symtab *
2741 allocate_psymtab (char *filename, struct objfile *objfile)
2742 {
2743 struct partial_symtab *psymtab;
2744
2745 if (objfile->free_psymtabs)
2746 {
2747 psymtab = objfile->free_psymtabs;
2748 objfile->free_psymtabs = psymtab->next;
2749 }
2750 else
2751 psymtab = (struct partial_symtab *)
2752 obstack_alloc (&objfile->objfile_obstack,
2753 sizeof (struct partial_symtab));
2754
2755 memset (psymtab, 0, sizeof (struct partial_symtab));
2756 psymtab->filename = obsavestring (filename, strlen (filename),
2757 &objfile->objfile_obstack);
2758 psymtab->symtab = NULL;
2759
2760 /* Prepend it to the psymtab list for the objfile it belongs to.
2761 Psymtabs are searched in most recent inserted -> least recent
2762 inserted order. */
2763
2764 psymtab->objfile = objfile;
2765 psymtab->next = objfile->psymtabs;
2766 objfile->psymtabs = psymtab;
2767 #if 0
2768 {
2769 struct partial_symtab **prev_pst;
2770 psymtab->objfile = objfile;
2771 psymtab->next = NULL;
2772 prev_pst = &(objfile->psymtabs);
2773 while ((*prev_pst) != NULL)
2774 prev_pst = &((*prev_pst)->next);
2775 (*prev_pst) = psymtab;
2776 }
2777 #endif
2778
2779 return (psymtab);
2780 }
2781
2782 void
2783 discard_psymtab (struct partial_symtab *pst)
2784 {
2785 struct partial_symtab **prev_pst;
2786
2787 /* From dbxread.c:
2788 Empty psymtabs happen as a result of header files which don't
2789 have any symbols in them. There can be a lot of them. But this
2790 check is wrong, in that a psymtab with N_SLINE entries but
2791 nothing else is not empty, but we don't realize that. Fixing
2792 that without slowing things down might be tricky. */
2793
2794 /* First, snip it out of the psymtab chain */
2795
2796 prev_pst = &(pst->objfile->psymtabs);
2797 while ((*prev_pst) != pst)
2798 prev_pst = &((*prev_pst)->next);
2799 (*prev_pst) = pst->next;
2800
2801 /* Next, put it on a free list for recycling */
2802
2803 pst->next = pst->objfile->free_psymtabs;
2804 pst->objfile->free_psymtabs = pst;
2805 }
2806 \f
2807
2808 /* Reset all data structures in gdb which may contain references to symbol
2809 table data. */
2810
2811 void
2812 clear_symtab_users (void)
2813 {
2814 /* Someday, we should do better than this, by only blowing away
2815 the things that really need to be blown. */
2816
2817 /* Clear the "current" symtab first, because it is no longer valid.
2818 breakpoint_re_set may try to access the current symtab. */
2819 clear_current_source_symtab_and_line ();
2820
2821 clear_displays ();
2822 breakpoint_re_set ();
2823 set_default_breakpoint (0, 0, 0, 0);
2824 clear_pc_function_cache ();
2825 observer_notify_new_objfile (NULL);
2826
2827 /* Clear globals which might have pointed into a removed objfile.
2828 FIXME: It's not clear which of these are supposed to persist
2829 between expressions and which ought to be reset each time. */
2830 expression_context_block = NULL;
2831 innermost_block = NULL;
2832
2833 /* Varobj may refer to old symbols, perform a cleanup. */
2834 varobj_invalidate ();
2835
2836 }
2837
2838 static void
2839 clear_symtab_users_cleanup (void *ignore)
2840 {
2841 clear_symtab_users ();
2842 }
2843
2844 /* clear_symtab_users_once:
2845
2846 This function is run after symbol reading, or from a cleanup.
2847 If an old symbol table was obsoleted, the old symbol table
2848 has been blown away, but the other GDB data structures that may
2849 reference it have not yet been cleared or re-directed. (The old
2850 symtab was zapped, and the cleanup queued, in free_named_symtab()
2851 below.)
2852
2853 This function can be queued N times as a cleanup, or called
2854 directly; it will do all the work the first time, and then will be a
2855 no-op until the next time it is queued. This works by bumping a
2856 counter at queueing time. Much later when the cleanup is run, or at
2857 the end of symbol processing (in case the cleanup is discarded), if
2858 the queued count is greater than the "done-count", we do the work
2859 and set the done-count to the queued count. If the queued count is
2860 less than or equal to the done-count, we just ignore the call. This
2861 is needed because reading a single .o file will often replace many
2862 symtabs (one per .h file, for example), and we don't want to reset
2863 the breakpoints N times in the user's face.
2864
2865 The reason we both queue a cleanup, and call it directly after symbol
2866 reading, is because the cleanup protects us in case of errors, but is
2867 discarded if symbol reading is successful. */
2868
2869 #if 0
2870 /* FIXME: As free_named_symtabs is currently a big noop this function
2871 is no longer needed. */
2872 static void clear_symtab_users_once (void);
2873
2874 static int clear_symtab_users_queued;
2875 static int clear_symtab_users_done;
2876
2877 static void
2878 clear_symtab_users_once (void)
2879 {
2880 /* Enforce once-per-`do_cleanups'-semantics */
2881 if (clear_symtab_users_queued <= clear_symtab_users_done)
2882 return;
2883 clear_symtab_users_done = clear_symtab_users_queued;
2884
2885 clear_symtab_users ();
2886 }
2887 #endif
2888
2889 /* Delete the specified psymtab, and any others that reference it. */
2890
2891 static void
2892 cashier_psymtab (struct partial_symtab *pst)
2893 {
2894 struct partial_symtab *ps, *pprev = NULL;
2895 int i;
2896
2897 /* Find its previous psymtab in the chain */
2898 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2899 {
2900 if (ps == pst)
2901 break;
2902 pprev = ps;
2903 }
2904
2905 if (ps)
2906 {
2907 /* Unhook it from the chain. */
2908 if (ps == pst->objfile->psymtabs)
2909 pst->objfile->psymtabs = ps->next;
2910 else
2911 pprev->next = ps->next;
2912
2913 /* FIXME, we can't conveniently deallocate the entries in the
2914 partial_symbol lists (global_psymbols/static_psymbols) that
2915 this psymtab points to. These just take up space until all
2916 the psymtabs are reclaimed. Ditto the dependencies list and
2917 filename, which are all in the objfile_obstack. */
2918
2919 /* We need to cashier any psymtab that has this one as a dependency... */
2920 again:
2921 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2922 {
2923 for (i = 0; i < ps->number_of_dependencies; i++)
2924 {
2925 if (ps->dependencies[i] == pst)
2926 {
2927 cashier_psymtab (ps);
2928 goto again; /* Must restart, chain has been munged. */
2929 }
2930 }
2931 }
2932 }
2933 }
2934
2935 /* If a symtab or psymtab for filename NAME is found, free it along
2936 with any dependent breakpoints, displays, etc.
2937 Used when loading new versions of object modules with the "add-file"
2938 command. This is only called on the top-level symtab or psymtab's name;
2939 it is not called for subsidiary files such as .h files.
2940
2941 Return value is 1 if we blew away the environment, 0 if not.
2942 FIXME. The return value appears to never be used.
2943
2944 FIXME. I think this is not the best way to do this. We should
2945 work on being gentler to the environment while still cleaning up
2946 all stray pointers into the freed symtab. */
2947
2948 int
2949 free_named_symtabs (char *name)
2950 {
2951 #if 0
2952 /* FIXME: With the new method of each objfile having it's own
2953 psymtab list, this function needs serious rethinking. In particular,
2954 why was it ever necessary to toss psymtabs with specific compilation
2955 unit filenames, as opposed to all psymtabs from a particular symbol
2956 file? -- fnf
2957 Well, the answer is that some systems permit reloading of particular
2958 compilation units. We want to blow away any old info about these
2959 compilation units, regardless of which objfiles they arrived in. --gnu. */
2960
2961 struct symtab *s;
2962 struct symtab *prev;
2963 struct partial_symtab *ps;
2964 struct blockvector *bv;
2965 int blewit = 0;
2966
2967 /* We only wack things if the symbol-reload switch is set. */
2968 if (!symbol_reloading)
2969 return 0;
2970
2971 /* Some symbol formats have trouble providing file names... */
2972 if (name == 0 || *name == '\0')
2973 return 0;
2974
2975 /* Look for a psymtab with the specified name. */
2976
2977 again2:
2978 for (ps = partial_symtab_list; ps; ps = ps->next)
2979 {
2980 if (strcmp (name, ps->filename) == 0)
2981 {
2982 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2983 goto again2; /* Must restart, chain has been munged */
2984 }
2985 }
2986
2987 /* Look for a symtab with the specified name. */
2988
2989 for (s = symtab_list; s; s = s->next)
2990 {
2991 if (strcmp (name, s->filename) == 0)
2992 break;
2993 prev = s;
2994 }
2995
2996 if (s)
2997 {
2998 if (s == symtab_list)
2999 symtab_list = s->next;
3000 else
3001 prev->next = s->next;
3002
3003 /* For now, queue a delete for all breakpoints, displays, etc., whether
3004 or not they depend on the symtab being freed. This should be
3005 changed so that only those data structures affected are deleted. */
3006
3007 /* But don't delete anything if the symtab is empty.
3008 This test is necessary due to a bug in "dbxread.c" that
3009 causes empty symtabs to be created for N_SO symbols that
3010 contain the pathname of the object file. (This problem
3011 has been fixed in GDB 3.9x). */
3012
3013 bv = BLOCKVECTOR (s);
3014 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3015 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3016 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3017 {
3018 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
3019 name);
3020 clear_symtab_users_queued++;
3021 make_cleanup (clear_symtab_users_once, 0);
3022 blewit = 1;
3023 }
3024 else
3025 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3026 name);
3027
3028 free_symtab (s);
3029 }
3030 else
3031 {
3032 /* It is still possible that some breakpoints will be affected
3033 even though no symtab was found, since the file might have
3034 been compiled without debugging, and hence not be associated
3035 with a symtab. In order to handle this correctly, we would need
3036 to keep a list of text address ranges for undebuggable files.
3037 For now, we do nothing, since this is a fairly obscure case. */
3038 ;
3039 }
3040
3041 /* FIXME, what about the minimal symbol table? */
3042 return blewit;
3043 #else
3044 return (0);
3045 #endif
3046 }
3047 \f
3048 /* Allocate and partially fill a partial symtab. It will be
3049 completely filled at the end of the symbol list.
3050
3051 FILENAME is the name of the symbol-file we are reading from. */
3052
3053 struct partial_symtab *
3054 start_psymtab_common (struct objfile *objfile,
3055 struct section_offsets *section_offsets, char *filename,
3056 CORE_ADDR textlow, struct partial_symbol **global_syms,
3057 struct partial_symbol **static_syms)
3058 {
3059 struct partial_symtab *psymtab;
3060
3061 psymtab = allocate_psymtab (filename, objfile);
3062 psymtab->section_offsets = section_offsets;
3063 psymtab->textlow = textlow;
3064 psymtab->texthigh = psymtab->textlow; /* default */
3065 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3066 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
3067 return (psymtab);
3068 }
3069 \f
3070 /* Helper function, initialises partial symbol structure and stashes
3071 it into objfile's bcache. Note that our caching mechanism will
3072 use all fields of struct partial_symbol to determine hash value of the
3073 structure. In other words, having two symbols with the same name but
3074 different domain (or address) is possible and correct. */
3075
3076 static const struct partial_symbol *
3077 add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3078 enum address_class class,
3079 long val, /* Value as a long */
3080 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3081 enum language language, struct objfile *objfile,
3082 int *added)
3083 {
3084 char *buf = name;
3085 /* psymbol is static so that there will be no uninitialized gaps in the
3086 structure which might contain random data, causing cache misses in
3087 bcache. */
3088 static struct partial_symbol psymbol;
3089
3090 if (name[namelength] != '\0')
3091 {
3092 buf = alloca (namelength + 1);
3093 /* Create local copy of the partial symbol */
3094 memcpy (buf, name, namelength);
3095 buf[namelength] = '\0';
3096 }
3097 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3098 if (val != 0)
3099 {
3100 SYMBOL_VALUE (&psymbol) = val;
3101 }
3102 else
3103 {
3104 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3105 }
3106 SYMBOL_SECTION (&psymbol) = 0;
3107 SYMBOL_LANGUAGE (&psymbol) = language;
3108 PSYMBOL_DOMAIN (&psymbol) = domain;
3109 PSYMBOL_CLASS (&psymbol) = class;
3110
3111 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3112
3113 /* Stash the partial symbol away in the cache */
3114 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3115 objfile->psymbol_cache, added);
3116 }
3117
3118 /* Helper function, adds partial symbol to the given partial symbol
3119 list. */
3120
3121 static void
3122 append_psymbol_to_list (struct psymbol_allocation_list *list,
3123 const struct partial_symbol *psym,
3124 struct objfile *objfile)
3125 {
3126 if (list->next >= list->list + list->size)
3127 extend_psymbol_list (list, objfile);
3128 *list->next++ = (struct partial_symbol *) psym;
3129 OBJSTAT (objfile, n_psyms++);
3130 }
3131
3132 /* Add a symbol with a long value to a psymtab.
3133 Since one arg is a struct, we pass in a ptr and deref it (sigh).
3134 Return the partial symbol that has been added. */
3135
3136 /* NOTE: carlton/2003-09-11: The reason why we return the partial
3137 symbol is so that callers can get access to the symbol's demangled
3138 name, which they don't have any cheap way to determine otherwise.
3139 (Currenly, dwarf2read.c is the only file who uses that information,
3140 though it's possible that other readers might in the future.)
3141 Elena wasn't thrilled about that, and I don't blame her, but we
3142 couldn't come up with a better way to get that information. If
3143 it's needed in other situations, we could consider breaking up
3144 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3145 cache. */
3146
3147 const struct partial_symbol *
3148 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
3149 enum address_class class,
3150 struct psymbol_allocation_list *list,
3151 long val, /* Value as a long */
3152 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3153 enum language language, struct objfile *objfile)
3154 {
3155 const struct partial_symbol *psym;
3156
3157 int added;
3158
3159 /* Stash the partial symbol away in the cache */
3160 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3161 val, coreaddr, language, objfile, &added);
3162
3163 /* Do not duplicate global partial symbols. */
3164 if (list == &objfile->global_psymbols
3165 && !added)
3166 return psym;
3167
3168 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3169 append_psymbol_to_list (list, psym, objfile);
3170 return psym;
3171 }
3172
3173 /* Initialize storage for partial symbols. */
3174
3175 void
3176 init_psymbol_list (struct objfile *objfile, int total_symbols)
3177 {
3178 /* Free any previously allocated psymbol lists. */
3179
3180 if (objfile->global_psymbols.list)
3181 {
3182 xfree (objfile->global_psymbols.list);
3183 }
3184 if (objfile->static_psymbols.list)
3185 {
3186 xfree (objfile->static_psymbols.list);
3187 }
3188
3189 /* Current best guess is that approximately a twentieth
3190 of the total symbols (in a debugging file) are global or static
3191 oriented symbols */
3192
3193 objfile->global_psymbols.size = total_symbols / 10;
3194 objfile->static_psymbols.size = total_symbols / 10;
3195
3196 if (objfile->global_psymbols.size > 0)
3197 {
3198 objfile->global_psymbols.next =
3199 objfile->global_psymbols.list = (struct partial_symbol **)
3200 xmalloc ((objfile->global_psymbols.size
3201 * sizeof (struct partial_symbol *)));
3202 }
3203 if (objfile->static_psymbols.size > 0)
3204 {
3205 objfile->static_psymbols.next =
3206 objfile->static_psymbols.list = (struct partial_symbol **)
3207 xmalloc ((objfile->static_psymbols.size
3208 * sizeof (struct partial_symbol *)));
3209 }
3210 }
3211
3212 /* OVERLAYS:
3213 The following code implements an abstraction for debugging overlay sections.
3214
3215 The target model is as follows:
3216 1) The gnu linker will permit multiple sections to be mapped into the
3217 same VMA, each with its own unique LMA (or load address).
3218 2) It is assumed that some runtime mechanism exists for mapping the
3219 sections, one by one, from the load address into the VMA address.
3220 3) This code provides a mechanism for gdb to keep track of which
3221 sections should be considered to be mapped from the VMA to the LMA.
3222 This information is used for symbol lookup, and memory read/write.
3223 For instance, if a section has been mapped then its contents
3224 should be read from the VMA, otherwise from the LMA.
3225
3226 Two levels of debugger support for overlays are available. One is
3227 "manual", in which the debugger relies on the user to tell it which
3228 overlays are currently mapped. This level of support is
3229 implemented entirely in the core debugger, and the information about
3230 whether a section is mapped is kept in the objfile->obj_section table.
3231
3232 The second level of support is "automatic", and is only available if
3233 the target-specific code provides functionality to read the target's
3234 overlay mapping table, and translate its contents for the debugger
3235 (by updating the mapped state information in the obj_section tables).
3236
3237 The interface is as follows:
3238 User commands:
3239 overlay map <name> -- tell gdb to consider this section mapped
3240 overlay unmap <name> -- tell gdb to consider this section unmapped
3241 overlay list -- list the sections that GDB thinks are mapped
3242 overlay read-target -- get the target's state of what's mapped
3243 overlay off/manual/auto -- set overlay debugging state
3244 Functional interface:
3245 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3246 section, return that section.
3247 find_pc_overlay(pc): find any overlay section that contains
3248 the pc, either in its VMA or its LMA
3249 section_is_mapped(sect): true if overlay is marked as mapped
3250 section_is_overlay(sect): true if section's VMA != LMA
3251 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3252 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3253 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3254 overlay_mapped_address(...): map an address from section's LMA to VMA
3255 overlay_unmapped_address(...): map an address from section's VMA to LMA
3256 symbol_overlayed_address(...): Return a "current" address for symbol:
3257 either in VMA or LMA depending on whether
3258 the symbol's section is currently mapped
3259 */
3260
3261 /* Overlay debugging state: */
3262
3263 enum overlay_debugging_state overlay_debugging = ovly_off;
3264 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3265
3266 /* Function: section_is_overlay (SECTION)
3267 Returns true if SECTION has VMA not equal to LMA, ie.
3268 SECTION is loaded at an address different from where it will "run". */
3269
3270 int
3271 section_is_overlay (struct obj_section *section)
3272 {
3273 if (overlay_debugging && section)
3274 {
3275 bfd *abfd = section->objfile->obfd;
3276 asection *bfd_section = section->the_bfd_section;
3277
3278 if (bfd_section_lma (abfd, bfd_section) != 0
3279 && bfd_section_lma (abfd, bfd_section)
3280 != bfd_section_vma (abfd, bfd_section))
3281 return 1;
3282 }
3283
3284 return 0;
3285 }
3286
3287 /* Function: overlay_invalidate_all (void)
3288 Invalidate the mapped state of all overlay sections (mark it as stale). */
3289
3290 static void
3291 overlay_invalidate_all (void)
3292 {
3293 struct objfile *objfile;
3294 struct obj_section *sect;
3295
3296 ALL_OBJSECTIONS (objfile, sect)
3297 if (section_is_overlay (sect))
3298 sect->ovly_mapped = -1;
3299 }
3300
3301 /* Function: section_is_mapped (SECTION)
3302 Returns true if section is an overlay, and is currently mapped.
3303
3304 Access to the ovly_mapped flag is restricted to this function, so
3305 that we can do automatic update. If the global flag
3306 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3307 overlay_invalidate_all. If the mapped state of the particular
3308 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3309
3310 int
3311 section_is_mapped (struct obj_section *osect)
3312 {
3313 struct gdbarch *gdbarch;
3314
3315 if (osect == 0 || !section_is_overlay (osect))
3316 return 0;
3317
3318 switch (overlay_debugging)
3319 {
3320 default:
3321 case ovly_off:
3322 return 0; /* overlay debugging off */
3323 case ovly_auto: /* overlay debugging automatic */
3324 /* Unles there is a gdbarch_overlay_update function,
3325 there's really nothing useful to do here (can't really go auto) */
3326 gdbarch = get_objfile_arch (osect->objfile);
3327 if (gdbarch_overlay_update_p (gdbarch))
3328 {
3329 if (overlay_cache_invalid)
3330 {
3331 overlay_invalidate_all ();
3332 overlay_cache_invalid = 0;
3333 }
3334 if (osect->ovly_mapped == -1)
3335 gdbarch_overlay_update (gdbarch, osect);
3336 }
3337 /* fall thru to manual case */
3338 case ovly_on: /* overlay debugging manual */
3339 return osect->ovly_mapped == 1;
3340 }
3341 }
3342
3343 /* Function: pc_in_unmapped_range
3344 If PC falls into the lma range of SECTION, return true, else false. */
3345
3346 CORE_ADDR
3347 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3348 {
3349 if (section_is_overlay (section))
3350 {
3351 bfd *abfd = section->objfile->obfd;
3352 asection *bfd_section = section->the_bfd_section;
3353
3354 /* We assume the LMA is relocated by the same offset as the VMA. */
3355 bfd_vma size = bfd_get_section_size (bfd_section);
3356 CORE_ADDR offset = obj_section_offset (section);
3357
3358 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3359 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3360 return 1;
3361 }
3362
3363 return 0;
3364 }
3365
3366 /* Function: pc_in_mapped_range
3367 If PC falls into the vma range of SECTION, return true, else false. */
3368
3369 CORE_ADDR
3370 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3371 {
3372 if (section_is_overlay (section))
3373 {
3374 if (obj_section_addr (section) <= pc
3375 && pc < obj_section_endaddr (section))
3376 return 1;
3377 }
3378
3379 return 0;
3380 }
3381
3382
3383 /* Return true if the mapped ranges of sections A and B overlap, false
3384 otherwise. */
3385 static int
3386 sections_overlap (struct obj_section *a, struct obj_section *b)
3387 {
3388 CORE_ADDR a_start = obj_section_addr (a);
3389 CORE_ADDR a_end = obj_section_endaddr (a);
3390 CORE_ADDR b_start = obj_section_addr (b);
3391 CORE_ADDR b_end = obj_section_endaddr (b);
3392
3393 return (a_start < b_end && b_start < a_end);
3394 }
3395
3396 /* Function: overlay_unmapped_address (PC, SECTION)
3397 Returns the address corresponding to PC in the unmapped (load) range.
3398 May be the same as PC. */
3399
3400 CORE_ADDR
3401 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3402 {
3403 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3404 {
3405 bfd *abfd = section->objfile->obfd;
3406 asection *bfd_section = section->the_bfd_section;
3407
3408 return pc + bfd_section_lma (abfd, bfd_section)
3409 - bfd_section_vma (abfd, bfd_section);
3410 }
3411
3412 return pc;
3413 }
3414
3415 /* Function: overlay_mapped_address (PC, SECTION)
3416 Returns the address corresponding to PC in the mapped (runtime) range.
3417 May be the same as PC. */
3418
3419 CORE_ADDR
3420 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3421 {
3422 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3423 {
3424 bfd *abfd = section->objfile->obfd;
3425 asection *bfd_section = section->the_bfd_section;
3426
3427 return pc + bfd_section_vma (abfd, bfd_section)
3428 - bfd_section_lma (abfd, bfd_section);
3429 }
3430
3431 return pc;
3432 }
3433
3434
3435 /* Function: symbol_overlayed_address
3436 Return one of two addresses (relative to the VMA or to the LMA),
3437 depending on whether the section is mapped or not. */
3438
3439 CORE_ADDR
3440 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3441 {
3442 if (overlay_debugging)
3443 {
3444 /* If the symbol has no section, just return its regular address. */
3445 if (section == 0)
3446 return address;
3447 /* If the symbol's section is not an overlay, just return its address */
3448 if (!section_is_overlay (section))
3449 return address;
3450 /* If the symbol's section is mapped, just return its address */
3451 if (section_is_mapped (section))
3452 return address;
3453 /*
3454 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3455 * then return its LOADED address rather than its vma address!!
3456 */
3457 return overlay_unmapped_address (address, section);
3458 }
3459 return address;
3460 }
3461
3462 /* Function: find_pc_overlay (PC)
3463 Return the best-match overlay section for PC:
3464 If PC matches a mapped overlay section's VMA, return that section.
3465 Else if PC matches an unmapped section's VMA, return that section.
3466 Else if PC matches an unmapped section's LMA, return that section. */
3467
3468 struct obj_section *
3469 find_pc_overlay (CORE_ADDR pc)
3470 {
3471 struct objfile *objfile;
3472 struct obj_section *osect, *best_match = NULL;
3473
3474 if (overlay_debugging)
3475 ALL_OBJSECTIONS (objfile, osect)
3476 if (section_is_overlay (osect))
3477 {
3478 if (pc_in_mapped_range (pc, osect))
3479 {
3480 if (section_is_mapped (osect))
3481 return osect;
3482 else
3483 best_match = osect;
3484 }
3485 else if (pc_in_unmapped_range (pc, osect))
3486 best_match = osect;
3487 }
3488 return best_match;
3489 }
3490
3491 /* Function: find_pc_mapped_section (PC)
3492 If PC falls into the VMA address range of an overlay section that is
3493 currently marked as MAPPED, return that section. Else return NULL. */
3494
3495 struct obj_section *
3496 find_pc_mapped_section (CORE_ADDR pc)
3497 {
3498 struct objfile *objfile;
3499 struct obj_section *osect;
3500
3501 if (overlay_debugging)
3502 ALL_OBJSECTIONS (objfile, osect)
3503 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3504 return osect;
3505
3506 return NULL;
3507 }
3508
3509 /* Function: list_overlays_command
3510 Print a list of mapped sections and their PC ranges */
3511
3512 void
3513 list_overlays_command (char *args, int from_tty)
3514 {
3515 int nmapped = 0;
3516 struct objfile *objfile;
3517 struct obj_section *osect;
3518
3519 if (overlay_debugging)
3520 ALL_OBJSECTIONS (objfile, osect)
3521 if (section_is_mapped (osect))
3522 {
3523 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3524 const char *name;
3525 bfd_vma lma, vma;
3526 int size;
3527
3528 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3529 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3530 size = bfd_get_section_size (osect->the_bfd_section);
3531 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3532
3533 printf_filtered ("Section %s, loaded at ", name);
3534 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3535 puts_filtered (" - ");
3536 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3537 printf_filtered (", mapped at ");
3538 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3539 puts_filtered (" - ");
3540 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3541 puts_filtered ("\n");
3542
3543 nmapped++;
3544 }
3545 if (nmapped == 0)
3546 printf_filtered (_("No sections are mapped.\n"));
3547 }
3548
3549 /* Function: map_overlay_command
3550 Mark the named section as mapped (ie. residing at its VMA address). */
3551
3552 void
3553 map_overlay_command (char *args, int from_tty)
3554 {
3555 struct objfile *objfile, *objfile2;
3556 struct obj_section *sec, *sec2;
3557
3558 if (!overlay_debugging)
3559 error (_("\
3560 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3561 the 'overlay manual' command."));
3562
3563 if (args == 0 || *args == 0)
3564 error (_("Argument required: name of an overlay section"));
3565
3566 /* First, find a section matching the user supplied argument */
3567 ALL_OBJSECTIONS (objfile, sec)
3568 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3569 {
3570 /* Now, check to see if the section is an overlay. */
3571 if (!section_is_overlay (sec))
3572 continue; /* not an overlay section */
3573
3574 /* Mark the overlay as "mapped" */
3575 sec->ovly_mapped = 1;
3576
3577 /* Next, make a pass and unmap any sections that are
3578 overlapped by this new section: */
3579 ALL_OBJSECTIONS (objfile2, sec2)
3580 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3581 {
3582 if (info_verbose)
3583 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3584 bfd_section_name (objfile->obfd,
3585 sec2->the_bfd_section));
3586 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3587 }
3588 return;
3589 }
3590 error (_("No overlay section called %s"), args);
3591 }
3592
3593 /* Function: unmap_overlay_command
3594 Mark the overlay section as unmapped
3595 (ie. resident in its LMA address range, rather than the VMA range). */
3596
3597 void
3598 unmap_overlay_command (char *args, int from_tty)
3599 {
3600 struct objfile *objfile;
3601 struct obj_section *sec;
3602
3603 if (!overlay_debugging)
3604 error (_("\
3605 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3606 the 'overlay manual' command."));
3607
3608 if (args == 0 || *args == 0)
3609 error (_("Argument required: name of an overlay section"));
3610
3611 /* First, find a section matching the user supplied argument */
3612 ALL_OBJSECTIONS (objfile, sec)
3613 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3614 {
3615 if (!sec->ovly_mapped)
3616 error (_("Section %s is not mapped"), args);
3617 sec->ovly_mapped = 0;
3618 return;
3619 }
3620 error (_("No overlay section called %s"), args);
3621 }
3622
3623 /* Function: overlay_auto_command
3624 A utility command to turn on overlay debugging.
3625 Possibly this should be done via a set/show command. */
3626
3627 static void
3628 overlay_auto_command (char *args, int from_tty)
3629 {
3630 overlay_debugging = ovly_auto;
3631 enable_overlay_breakpoints ();
3632 if (info_verbose)
3633 printf_unfiltered (_("Automatic overlay debugging enabled."));
3634 }
3635
3636 /* Function: overlay_manual_command
3637 A utility command to turn on overlay debugging.
3638 Possibly this should be done via a set/show command. */
3639
3640 static void
3641 overlay_manual_command (char *args, int from_tty)
3642 {
3643 overlay_debugging = ovly_on;
3644 disable_overlay_breakpoints ();
3645 if (info_verbose)
3646 printf_unfiltered (_("Overlay debugging enabled."));
3647 }
3648
3649 /* Function: overlay_off_command
3650 A utility command to turn on overlay debugging.
3651 Possibly this should be done via a set/show command. */
3652
3653 static void
3654 overlay_off_command (char *args, int from_tty)
3655 {
3656 overlay_debugging = ovly_off;
3657 disable_overlay_breakpoints ();
3658 if (info_verbose)
3659 printf_unfiltered (_("Overlay debugging disabled."));
3660 }
3661
3662 static void
3663 overlay_load_command (char *args, int from_tty)
3664 {
3665 struct gdbarch *gdbarch = get_current_arch ();
3666
3667 if (gdbarch_overlay_update_p (gdbarch))
3668 gdbarch_overlay_update (gdbarch, NULL);
3669 else
3670 error (_("This target does not know how to read its overlay state."));
3671 }
3672
3673 /* Function: overlay_command
3674 A place-holder for a mis-typed command */
3675
3676 /* Command list chain containing all defined "overlay" subcommands. */
3677 struct cmd_list_element *overlaylist;
3678
3679 static void
3680 overlay_command (char *args, int from_tty)
3681 {
3682 printf_unfiltered
3683 ("\"overlay\" must be followed by the name of an overlay command.\n");
3684 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3685 }
3686
3687
3688 /* Target Overlays for the "Simplest" overlay manager:
3689
3690 This is GDB's default target overlay layer. It works with the
3691 minimal overlay manager supplied as an example by Cygnus. The
3692 entry point is via a function pointer "gdbarch_overlay_update",
3693 so targets that use a different runtime overlay manager can
3694 substitute their own overlay_update function and take over the
3695 function pointer.
3696
3697 The overlay_update function pokes around in the target's data structures
3698 to see what overlays are mapped, and updates GDB's overlay mapping with
3699 this information.
3700
3701 In this simple implementation, the target data structures are as follows:
3702 unsigned _novlys; /# number of overlay sections #/
3703 unsigned _ovly_table[_novlys][4] = {
3704 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3705 {..., ..., ..., ...},
3706 }
3707 unsigned _novly_regions; /# number of overlay regions #/
3708 unsigned _ovly_region_table[_novly_regions][3] = {
3709 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3710 {..., ..., ...},
3711 }
3712 These functions will attempt to update GDB's mappedness state in the
3713 symbol section table, based on the target's mappedness state.
3714
3715 To do this, we keep a cached copy of the target's _ovly_table, and
3716 attempt to detect when the cached copy is invalidated. The main
3717 entry point is "simple_overlay_update(SECT), which looks up SECT in
3718 the cached table and re-reads only the entry for that section from
3719 the target (whenever possible).
3720 */
3721
3722 /* Cached, dynamically allocated copies of the target data structures: */
3723 static unsigned (*cache_ovly_table)[4] = 0;
3724 #if 0
3725 static unsigned (*cache_ovly_region_table)[3] = 0;
3726 #endif
3727 static unsigned cache_novlys = 0;
3728 #if 0
3729 static unsigned cache_novly_regions = 0;
3730 #endif
3731 static CORE_ADDR cache_ovly_table_base = 0;
3732 #if 0
3733 static CORE_ADDR cache_ovly_region_table_base = 0;
3734 #endif
3735 enum ovly_index
3736 {
3737 VMA, SIZE, LMA, MAPPED
3738 };
3739
3740 /* Throw away the cached copy of _ovly_table */
3741 static void
3742 simple_free_overlay_table (void)
3743 {
3744 if (cache_ovly_table)
3745 xfree (cache_ovly_table);
3746 cache_novlys = 0;
3747 cache_ovly_table = NULL;
3748 cache_ovly_table_base = 0;
3749 }
3750
3751 #if 0
3752 /* Throw away the cached copy of _ovly_region_table */
3753 static void
3754 simple_free_overlay_region_table (void)
3755 {
3756 if (cache_ovly_region_table)
3757 xfree (cache_ovly_region_table);
3758 cache_novly_regions = 0;
3759 cache_ovly_region_table = NULL;
3760 cache_ovly_region_table_base = 0;
3761 }
3762 #endif
3763
3764 /* Read an array of ints of size SIZE from the target into a local buffer.
3765 Convert to host order. int LEN is number of ints */
3766 static void
3767 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3768 int len, int size, enum bfd_endian byte_order)
3769 {
3770 /* FIXME (alloca): Not safe if array is very large. */
3771 gdb_byte *buf = alloca (len * size);
3772 int i;
3773
3774 read_memory (memaddr, buf, len * size);
3775 for (i = 0; i < len; i++)
3776 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3777 }
3778
3779 /* Find and grab a copy of the target _ovly_table
3780 (and _novlys, which is needed for the table's size) */
3781 static int
3782 simple_read_overlay_table (void)
3783 {
3784 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3785 struct gdbarch *gdbarch;
3786 int word_size;
3787 enum bfd_endian byte_order;
3788
3789 simple_free_overlay_table ();
3790 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3791 if (! novlys_msym)
3792 {
3793 error (_("Error reading inferior's overlay table: "
3794 "couldn't find `_novlys' variable\n"
3795 "in inferior. Use `overlay manual' mode."));
3796 return 0;
3797 }
3798
3799 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3800 if (! ovly_table_msym)
3801 {
3802 error (_("Error reading inferior's overlay table: couldn't find "
3803 "`_ovly_table' array\n"
3804 "in inferior. Use `overlay manual' mode."));
3805 return 0;
3806 }
3807
3808 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3809 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3810 byte_order = gdbarch_byte_order (gdbarch);
3811
3812 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3813 4, byte_order);
3814 cache_ovly_table
3815 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3816 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3817 read_target_long_array (cache_ovly_table_base,
3818 (unsigned int *) cache_ovly_table,
3819 cache_novlys * 4, word_size, byte_order);
3820
3821 return 1; /* SUCCESS */
3822 }
3823
3824 #if 0
3825 /* Find and grab a copy of the target _ovly_region_table
3826 (and _novly_regions, which is needed for the table's size) */
3827 static int
3828 simple_read_overlay_region_table (void)
3829 {
3830 struct minimal_symbol *msym;
3831 struct gdbarch *gdbarch;
3832 int word_size;
3833 enum bfd_endian byte_order;
3834
3835 simple_free_overlay_region_table ();
3836 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3837 if (msym == NULL)
3838 return 0; /* failure */
3839
3840 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3841 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3842 byte_order = gdbarch_byte_order (gdbarch);
3843
3844 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3845 4, byte_order);
3846
3847 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3848 if (cache_ovly_region_table != NULL)
3849 {
3850 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3851 if (msym != NULL)
3852 {
3853 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3854 read_target_long_array (cache_ovly_region_table_base,
3855 (unsigned int *) cache_ovly_region_table,
3856 cache_novly_regions * 3,
3857 word_size, byte_order);
3858 }
3859 else
3860 return 0; /* failure */
3861 }
3862 else
3863 return 0; /* failure */
3864 return 1; /* SUCCESS */
3865 }
3866 #endif
3867
3868 /* Function: simple_overlay_update_1
3869 A helper function for simple_overlay_update. Assuming a cached copy
3870 of _ovly_table exists, look through it to find an entry whose vma,
3871 lma and size match those of OSECT. Re-read the entry and make sure
3872 it still matches OSECT (else the table may no longer be valid).
3873 Set OSECT's mapped state to match the entry. Return: 1 for
3874 success, 0 for failure. */
3875
3876 static int
3877 simple_overlay_update_1 (struct obj_section *osect)
3878 {
3879 int i, size;
3880 bfd *obfd = osect->objfile->obfd;
3881 asection *bsect = osect->the_bfd_section;
3882 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3883 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3884 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3885
3886 size = bfd_get_section_size (osect->the_bfd_section);
3887 for (i = 0; i < cache_novlys; i++)
3888 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3889 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3890 /* && cache_ovly_table[i][SIZE] == size */ )
3891 {
3892 read_target_long_array (cache_ovly_table_base + i * word_size,
3893 (unsigned int *) cache_ovly_table[i],
3894 4, word_size, byte_order);
3895 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3896 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3897 /* && cache_ovly_table[i][SIZE] == size */ )
3898 {
3899 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3900 return 1;
3901 }
3902 else /* Warning! Warning! Target's ovly table has changed! */
3903 return 0;
3904 }
3905 return 0;
3906 }
3907
3908 /* Function: simple_overlay_update
3909 If OSECT is NULL, then update all sections' mapped state
3910 (after re-reading the entire target _ovly_table).
3911 If OSECT is non-NULL, then try to find a matching entry in the
3912 cached ovly_table and update only OSECT's mapped state.
3913 If a cached entry can't be found or the cache isn't valid, then
3914 re-read the entire cache, and go ahead and update all sections. */
3915
3916 void
3917 simple_overlay_update (struct obj_section *osect)
3918 {
3919 struct objfile *objfile;
3920
3921 /* Were we given an osect to look up? NULL means do all of them. */
3922 if (osect)
3923 /* Have we got a cached copy of the target's overlay table? */
3924 if (cache_ovly_table != NULL)
3925 /* Does its cached location match what's currently in the symtab? */
3926 if (cache_ovly_table_base ==
3927 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3928 /* Then go ahead and try to look up this single section in the cache */
3929 if (simple_overlay_update_1 (osect))
3930 /* Found it! We're done. */
3931 return;
3932
3933 /* Cached table no good: need to read the entire table anew.
3934 Or else we want all the sections, in which case it's actually
3935 more efficient to read the whole table in one block anyway. */
3936
3937 if (! simple_read_overlay_table ())
3938 return;
3939
3940 /* Now may as well update all sections, even if only one was requested. */
3941 ALL_OBJSECTIONS (objfile, osect)
3942 if (section_is_overlay (osect))
3943 {
3944 int i, size;
3945 bfd *obfd = osect->objfile->obfd;
3946 asection *bsect = osect->the_bfd_section;
3947
3948 size = bfd_get_section_size (bsect);
3949 for (i = 0; i < cache_novlys; i++)
3950 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3951 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3952 /* && cache_ovly_table[i][SIZE] == size */ )
3953 { /* obj_section matches i'th entry in ovly_table */
3954 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3955 break; /* finished with inner for loop: break out */
3956 }
3957 }
3958 }
3959
3960 /* Set the output sections and output offsets for section SECTP in
3961 ABFD. The relocation code in BFD will read these offsets, so we
3962 need to be sure they're initialized. We map each section to itself,
3963 with no offset; this means that SECTP->vma will be honored. */
3964
3965 static void
3966 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3967 {
3968 sectp->output_section = sectp;
3969 sectp->output_offset = 0;
3970 }
3971
3972 /* Relocate the contents of a debug section SECTP in ABFD. The
3973 contents are stored in BUF if it is non-NULL, or returned in a
3974 malloc'd buffer otherwise.
3975
3976 For some platforms and debug info formats, shared libraries contain
3977 relocations against the debug sections (particularly for DWARF-2;
3978 one affected platform is PowerPC GNU/Linux, although it depends on
3979 the version of the linker in use). Also, ELF object files naturally
3980 have unresolved relocations for their debug sections. We need to apply
3981 the relocations in order to get the locations of symbols correct.
3982 Another example that may require relocation processing, is the
3983 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3984 debug section. */
3985
3986 bfd_byte *
3987 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3988 {
3989 /* We're only interested in sections with relocation
3990 information. */
3991 if ((sectp->flags & SEC_RELOC) == 0)
3992 return NULL;
3993
3994 /* We will handle section offsets properly elsewhere, so relocate as if
3995 all sections begin at 0. */
3996 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3997
3998 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3999 }
4000
4001 struct symfile_segment_data *
4002 get_symfile_segment_data (bfd *abfd)
4003 {
4004 struct sym_fns *sf = find_sym_fns (abfd);
4005
4006 if (sf == NULL)
4007 return NULL;
4008
4009 return sf->sym_segments (abfd);
4010 }
4011
4012 void
4013 free_symfile_segment_data (struct symfile_segment_data *data)
4014 {
4015 xfree (data->segment_bases);
4016 xfree (data->segment_sizes);
4017 xfree (data->segment_info);
4018 xfree (data);
4019 }
4020
4021
4022 /* Given:
4023 - DATA, containing segment addresses from the object file ABFD, and
4024 the mapping from ABFD's sections onto the segments that own them,
4025 and
4026 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
4027 segment addresses reported by the target,
4028 store the appropriate offsets for each section in OFFSETS.
4029
4030 If there are fewer entries in SEGMENT_BASES than there are segments
4031 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4032
4033 If there are more entries, then ignore the extra. The target may
4034 not be able to distinguish between an empty data segment and a
4035 missing data segment; a missing text segment is less plausible. */
4036 int
4037 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4038 struct section_offsets *offsets,
4039 int num_segment_bases,
4040 const CORE_ADDR *segment_bases)
4041 {
4042 int i;
4043 asection *sect;
4044
4045 /* It doesn't make sense to call this function unless you have some
4046 segment base addresses. */
4047 gdb_assert (segment_bases > 0);
4048
4049 /* If we do not have segment mappings for the object file, we
4050 can not relocate it by segments. */
4051 gdb_assert (data != NULL);
4052 gdb_assert (data->num_segments > 0);
4053
4054 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4055 {
4056 int which = data->segment_info[i];
4057
4058 gdb_assert (0 <= which && which <= data->num_segments);
4059
4060 /* Don't bother computing offsets for sections that aren't
4061 loaded as part of any segment. */
4062 if (! which)
4063 continue;
4064
4065 /* Use the last SEGMENT_BASES entry as the address of any extra
4066 segments mentioned in DATA->segment_info. */
4067 if (which > num_segment_bases)
4068 which = num_segment_bases;
4069
4070 offsets->offsets[i] = (segment_bases[which - 1]
4071 - data->segment_bases[which - 1]);
4072 }
4073
4074 return 1;
4075 }
4076
4077 static void
4078 symfile_find_segment_sections (struct objfile *objfile)
4079 {
4080 bfd *abfd = objfile->obfd;
4081 int i;
4082 asection *sect;
4083 struct symfile_segment_data *data;
4084
4085 data = get_symfile_segment_data (objfile->obfd);
4086 if (data == NULL)
4087 return;
4088
4089 if (data->num_segments != 1 && data->num_segments != 2)
4090 {
4091 free_symfile_segment_data (data);
4092 return;
4093 }
4094
4095 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4096 {
4097 CORE_ADDR vma;
4098 int which = data->segment_info[i];
4099
4100 if (which == 1)
4101 {
4102 if (objfile->sect_index_text == -1)
4103 objfile->sect_index_text = sect->index;
4104
4105 if (objfile->sect_index_rodata == -1)
4106 objfile->sect_index_rodata = sect->index;
4107 }
4108 else if (which == 2)
4109 {
4110 if (objfile->sect_index_data == -1)
4111 objfile->sect_index_data = sect->index;
4112
4113 if (objfile->sect_index_bss == -1)
4114 objfile->sect_index_bss = sect->index;
4115 }
4116 }
4117
4118 free_symfile_segment_data (data);
4119 }
4120
4121 void
4122 _initialize_symfile (void)
4123 {
4124 struct cmd_list_element *c;
4125
4126 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4127 Load symbol table from executable file FILE.\n\
4128 The `file' command can also load symbol tables, as well as setting the file\n\
4129 to execute."), &cmdlist);
4130 set_cmd_completer (c, filename_completer);
4131
4132 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
4133 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
4134 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
4135 ADDR is the starting address of the file's text.\n\
4136 The optional arguments are section-name section-address pairs and\n\
4137 should be specified if the data and bss segments are not contiguous\n\
4138 with the text. SECT is a section name to be loaded at SECT_ADDR."),
4139 &cmdlist);
4140 set_cmd_completer (c, filename_completer);
4141
4142 c = add_cmd ("load", class_files, load_command, _("\
4143 Dynamically load FILE into the running program, and record its symbols\n\
4144 for access from GDB.\n\
4145 A load OFFSET may also be given."), &cmdlist);
4146 set_cmd_completer (c, filename_completer);
4147
4148 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4149 &symbol_reloading, _("\
4150 Set dynamic symbol table reloading multiple times in one run."), _("\
4151 Show dynamic symbol table reloading multiple times in one run."), NULL,
4152 NULL,
4153 show_symbol_reloading,
4154 &setlist, &showlist);
4155
4156 add_prefix_cmd ("overlay", class_support, overlay_command,
4157 _("Commands for debugging overlays."), &overlaylist,
4158 "overlay ", 0, &cmdlist);
4159
4160 add_com_alias ("ovly", "overlay", class_alias, 1);
4161 add_com_alias ("ov", "overlay", class_alias, 1);
4162
4163 add_cmd ("map-overlay", class_support, map_overlay_command,
4164 _("Assert that an overlay section is mapped."), &overlaylist);
4165
4166 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4167 _("Assert that an overlay section is unmapped."), &overlaylist);
4168
4169 add_cmd ("list-overlays", class_support, list_overlays_command,
4170 _("List mappings of overlay sections."), &overlaylist);
4171
4172 add_cmd ("manual", class_support, overlay_manual_command,
4173 _("Enable overlay debugging."), &overlaylist);
4174 add_cmd ("off", class_support, overlay_off_command,
4175 _("Disable overlay debugging."), &overlaylist);
4176 add_cmd ("auto", class_support, overlay_auto_command,
4177 _("Enable automatic overlay debugging."), &overlaylist);
4178 add_cmd ("load-target", class_support, overlay_load_command,
4179 _("Read the overlay mapping state from the target."), &overlaylist);
4180
4181 /* Filename extension to source language lookup table: */
4182 init_filename_language_table ();
4183 add_setshow_string_noescape_cmd ("extension-language", class_files,
4184 &ext_args, _("\
4185 Set mapping between filename extension and source language."), _("\
4186 Show mapping between filename extension and source language."), _("\
4187 Usage: set extension-language .foo bar"),
4188 set_ext_lang_command,
4189 show_ext_args,
4190 &setlist, &showlist);
4191
4192 add_info ("extensions", info_ext_lang_command,
4193 _("All filename extensions associated with a source language."));
4194
4195 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4196 &debug_file_directory, _("\
4197 Set the directory where separate debug symbols are searched for."), _("\
4198 Show the directory where separate debug symbols are searched for."), _("\
4199 Separate debug symbols are first searched for in the same\n\
4200 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4201 and lastly at the path of the directory of the binary with\n\
4202 the global debug-file directory prepended."),
4203 NULL,
4204 show_debug_file_directory,
4205 &setlist, &showlist);
4206
4207 add_setshow_boolean_cmd ("symbol-loading", no_class,
4208 &print_symbol_loading, _("\
4209 Set printing of symbol loading messages."), _("\
4210 Show printing of symbol loading messages."), NULL,
4211 NULL,
4212 NULL,
4213 &setprintlist, &showprintlist);
4214 }
This page took 0.111139 seconds and 5 git commands to generate.