Remove unused declarations
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observer.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include <sys/stat.h>
63 #include <ctype.h>
64 #include <chrono>
65
66 #include "psymtab.h"
67
68 int (*deprecated_ui_load_progress_hook) (const char *section,
69 unsigned long num);
70 void (*deprecated_show_load_progress) (const char *section,
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
74 unsigned long total_size);
75 void (*deprecated_pre_add_symbol_hook) (const char *);
76 void (*deprecated_post_add_symbol_hook) (void);
77
78 static void clear_symtab_users_cleanup (void *ignore);
79
80 /* Global variables owned by this file. */
81 int readnow_symbol_files; /* Read full symbols immediately. */
82
83 /* Functions this file defines. */
84
85 static void load_command (char *, int);
86
87 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
88 objfile_flags flags);
89
90 static const struct sym_fns *find_sym_fns (bfd *);
91
92 static void overlay_invalidate_all (void);
93
94 static void overlay_command (char *, int);
95
96 static void simple_free_overlay_table (void);
97
98 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
99 enum bfd_endian);
100
101 static int simple_read_overlay_table (void);
102
103 static int simple_overlay_update_1 (struct obj_section *);
104
105 static void info_ext_lang_command (char *args, int from_tty);
106
107 static void symfile_find_segment_sections (struct objfile *objfile);
108
109 /* List of all available sym_fns. On gdb startup, each object file reader
110 calls add_symtab_fns() to register information on each format it is
111 prepared to read. */
112
113 typedef struct
114 {
115 /* BFD flavour that we handle. */
116 enum bfd_flavour sym_flavour;
117
118 /* The "vtable" of symbol functions. */
119 const struct sym_fns *sym_fns;
120 } registered_sym_fns;
121
122 DEF_VEC_O (registered_sym_fns);
123
124 static VEC (registered_sym_fns) *symtab_fns = NULL;
125
126 /* Values for "set print symbol-loading". */
127
128 const char print_symbol_loading_off[] = "off";
129 const char print_symbol_loading_brief[] = "brief";
130 const char print_symbol_loading_full[] = "full";
131 static const char *print_symbol_loading_enums[] =
132 {
133 print_symbol_loading_off,
134 print_symbol_loading_brief,
135 print_symbol_loading_full,
136 NULL
137 };
138 static const char *print_symbol_loading = print_symbol_loading_full;
139
140 /* If non-zero, shared library symbols will be added automatically
141 when the inferior is created, new libraries are loaded, or when
142 attaching to the inferior. This is almost always what users will
143 want to have happen; but for very large programs, the startup time
144 will be excessive, and so if this is a problem, the user can clear
145 this flag and then add the shared library symbols as needed. Note
146 that there is a potential for confusion, since if the shared
147 library symbols are not loaded, commands like "info fun" will *not*
148 report all the functions that are actually present. */
149
150 int auto_solib_add = 1;
151 \f
152
153 /* Return non-zero if symbol-loading messages should be printed.
154 FROM_TTY is the standard from_tty argument to gdb commands.
155 If EXEC is non-zero the messages are for the executable.
156 Otherwise, messages are for shared libraries.
157 If FULL is non-zero then the caller is printing a detailed message.
158 E.g., the message includes the shared library name.
159 Otherwise, the caller is printing a brief "summary" message. */
160
161 int
162 print_symbol_loading_p (int from_tty, int exec, int full)
163 {
164 if (!from_tty && !info_verbose)
165 return 0;
166
167 if (exec)
168 {
169 /* We don't check FULL for executables, there are few such
170 messages, therefore brief == full. */
171 return print_symbol_loading != print_symbol_loading_off;
172 }
173 if (full)
174 return print_symbol_loading == print_symbol_loading_full;
175 return print_symbol_loading == print_symbol_loading_brief;
176 }
177
178 /* True if we are reading a symbol table. */
179
180 int currently_reading_symtab = 0;
181
182 /* Increment currently_reading_symtab and return a cleanup that can be
183 used to decrement it. */
184
185 scoped_restore_tmpl<int>
186 increment_reading_symtab (void)
187 {
188 gdb_assert (currently_reading_symtab >= 0);
189 return make_scoped_restore (&currently_reading_symtab,
190 currently_reading_symtab + 1);
191 }
192
193 /* Remember the lowest-addressed loadable section we've seen.
194 This function is called via bfd_map_over_sections.
195
196 In case of equal vmas, the section with the largest size becomes the
197 lowest-addressed loadable section.
198
199 If the vmas and sizes are equal, the last section is considered the
200 lowest-addressed loadable section. */
201
202 void
203 find_lowest_section (bfd *abfd, asection *sect, void *obj)
204 {
205 asection **lowest = (asection **) obj;
206
207 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
208 return;
209 if (!*lowest)
210 *lowest = sect; /* First loadable section */
211 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
212 *lowest = sect; /* A lower loadable section */
213 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
214 && (bfd_section_size (abfd, (*lowest))
215 <= bfd_section_size (abfd, sect)))
216 *lowest = sect;
217 }
218
219 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
220 new object's 'num_sections' field is set to 0; it must be updated
221 by the caller. */
222
223 struct section_addr_info *
224 alloc_section_addr_info (size_t num_sections)
225 {
226 struct section_addr_info *sap;
227 size_t size;
228
229 size = (sizeof (struct section_addr_info)
230 + sizeof (struct other_sections) * (num_sections - 1));
231 sap = (struct section_addr_info *) xmalloc (size);
232 memset (sap, 0, size);
233
234 return sap;
235 }
236
237 /* Build (allocate and populate) a section_addr_info struct from
238 an existing section table. */
239
240 extern struct section_addr_info *
241 build_section_addr_info_from_section_table (const struct target_section *start,
242 const struct target_section *end)
243 {
244 struct section_addr_info *sap;
245 const struct target_section *stp;
246 int oidx;
247
248 sap = alloc_section_addr_info (end - start);
249
250 for (stp = start, oidx = 0; stp != end; stp++)
251 {
252 struct bfd_section *asect = stp->the_bfd_section;
253 bfd *abfd = asect->owner;
254
255 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
256 && oidx < end - start)
257 {
258 sap->other[oidx].addr = stp->addr;
259 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
260 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
261 oidx++;
262 }
263 }
264
265 sap->num_sections = oidx;
266
267 return sap;
268 }
269
270 /* Create a section_addr_info from section offsets in ABFD. */
271
272 static struct section_addr_info *
273 build_section_addr_info_from_bfd (bfd *abfd)
274 {
275 struct section_addr_info *sap;
276 int i;
277 struct bfd_section *sec;
278
279 sap = alloc_section_addr_info (bfd_count_sections (abfd));
280 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
281 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
282 {
283 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
284 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
285 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
286 i++;
287 }
288
289 sap->num_sections = i;
290
291 return sap;
292 }
293
294 /* Create a section_addr_info from section offsets in OBJFILE. */
295
296 struct section_addr_info *
297 build_section_addr_info_from_objfile (const struct objfile *objfile)
298 {
299 struct section_addr_info *sap;
300 int i;
301
302 /* Before reread_symbols gets rewritten it is not safe to call:
303 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
304 */
305 sap = build_section_addr_info_from_bfd (objfile->obfd);
306 for (i = 0; i < sap->num_sections; i++)
307 {
308 int sectindex = sap->other[i].sectindex;
309
310 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
311 }
312 return sap;
313 }
314
315 /* Free all memory allocated by build_section_addr_info_from_section_table. */
316
317 extern void
318 free_section_addr_info (struct section_addr_info *sap)
319 {
320 int idx;
321
322 for (idx = 0; idx < sap->num_sections; idx++)
323 xfree (sap->other[idx].name);
324 xfree (sap);
325 }
326
327 /* Initialize OBJFILE's sect_index_* members. */
328
329 static void
330 init_objfile_sect_indices (struct objfile *objfile)
331 {
332 asection *sect;
333 int i;
334
335 sect = bfd_get_section_by_name (objfile->obfd, ".text");
336 if (sect)
337 objfile->sect_index_text = sect->index;
338
339 sect = bfd_get_section_by_name (objfile->obfd, ".data");
340 if (sect)
341 objfile->sect_index_data = sect->index;
342
343 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
344 if (sect)
345 objfile->sect_index_bss = sect->index;
346
347 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
348 if (sect)
349 objfile->sect_index_rodata = sect->index;
350
351 /* This is where things get really weird... We MUST have valid
352 indices for the various sect_index_* members or gdb will abort.
353 So if for example, there is no ".text" section, we have to
354 accomodate that. First, check for a file with the standard
355 one or two segments. */
356
357 symfile_find_segment_sections (objfile);
358
359 /* Except when explicitly adding symbol files at some address,
360 section_offsets contains nothing but zeros, so it doesn't matter
361 which slot in section_offsets the individual sect_index_* members
362 index into. So if they are all zero, it is safe to just point
363 all the currently uninitialized indices to the first slot. But
364 beware: if this is the main executable, it may be relocated
365 later, e.g. by the remote qOffsets packet, and then this will
366 be wrong! That's why we try segments first. */
367
368 for (i = 0; i < objfile->num_sections; i++)
369 {
370 if (ANOFFSET (objfile->section_offsets, i) != 0)
371 {
372 break;
373 }
374 }
375 if (i == objfile->num_sections)
376 {
377 if (objfile->sect_index_text == -1)
378 objfile->sect_index_text = 0;
379 if (objfile->sect_index_data == -1)
380 objfile->sect_index_data = 0;
381 if (objfile->sect_index_bss == -1)
382 objfile->sect_index_bss = 0;
383 if (objfile->sect_index_rodata == -1)
384 objfile->sect_index_rodata = 0;
385 }
386 }
387
388 /* The arguments to place_section. */
389
390 struct place_section_arg
391 {
392 struct section_offsets *offsets;
393 CORE_ADDR lowest;
394 };
395
396 /* Find a unique offset to use for loadable section SECT if
397 the user did not provide an offset. */
398
399 static void
400 place_section (bfd *abfd, asection *sect, void *obj)
401 {
402 struct place_section_arg *arg = (struct place_section_arg *) obj;
403 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
404 int done;
405 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
406
407 /* We are only interested in allocated sections. */
408 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
409 return;
410
411 /* If the user specified an offset, honor it. */
412 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
413 return;
414
415 /* Otherwise, let's try to find a place for the section. */
416 start_addr = (arg->lowest + align - 1) & -align;
417
418 do {
419 asection *cur_sec;
420
421 done = 1;
422
423 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
424 {
425 int indx = cur_sec->index;
426
427 /* We don't need to compare against ourself. */
428 if (cur_sec == sect)
429 continue;
430
431 /* We can only conflict with allocated sections. */
432 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
433 continue;
434
435 /* If the section offset is 0, either the section has not been placed
436 yet, or it was the lowest section placed (in which case LOWEST
437 will be past its end). */
438 if (offsets[indx] == 0)
439 continue;
440
441 /* If this section would overlap us, then we must move up. */
442 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
443 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
444 {
445 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
446 start_addr = (start_addr + align - 1) & -align;
447 done = 0;
448 break;
449 }
450
451 /* Otherwise, we appear to be OK. So far. */
452 }
453 }
454 while (!done);
455
456 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
457 arg->lowest = start_addr + bfd_get_section_size (sect);
458 }
459
460 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
461 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
462 entries. */
463
464 void
465 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
466 int num_sections,
467 const struct section_addr_info *addrs)
468 {
469 int i;
470
471 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
472
473 /* Now calculate offsets for section that were specified by the caller. */
474 for (i = 0; i < addrs->num_sections; i++)
475 {
476 const struct other_sections *osp;
477
478 osp = &addrs->other[i];
479 if (osp->sectindex == -1)
480 continue;
481
482 /* Record all sections in offsets. */
483 /* The section_offsets in the objfile are here filled in using
484 the BFD index. */
485 section_offsets->offsets[osp->sectindex] = osp->addr;
486 }
487 }
488
489 /* Transform section name S for a name comparison. prelink can split section
490 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
491 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
492 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
493 (`.sbss') section has invalid (increased) virtual address. */
494
495 static const char *
496 addr_section_name (const char *s)
497 {
498 if (strcmp (s, ".dynbss") == 0)
499 return ".bss";
500 if (strcmp (s, ".sdynbss") == 0)
501 return ".sbss";
502
503 return s;
504 }
505
506 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
507 their (name, sectindex) pair. sectindex makes the sort by name stable. */
508
509 static int
510 addrs_section_compar (const void *ap, const void *bp)
511 {
512 const struct other_sections *a = *((struct other_sections **) ap);
513 const struct other_sections *b = *((struct other_sections **) bp);
514 int retval;
515
516 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
517 if (retval)
518 return retval;
519
520 return a->sectindex - b->sectindex;
521 }
522
523 /* Provide sorted array of pointers to sections of ADDRS. The array is
524 terminated by NULL. Caller is responsible to call xfree for it. */
525
526 static struct other_sections **
527 addrs_section_sort (struct section_addr_info *addrs)
528 {
529 struct other_sections **array;
530 int i;
531
532 /* `+ 1' for the NULL terminator. */
533 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
534 for (i = 0; i < addrs->num_sections; i++)
535 array[i] = &addrs->other[i];
536 array[i] = NULL;
537
538 qsort (array, i, sizeof (*array), addrs_section_compar);
539
540 return array;
541 }
542
543 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
544 also SECTINDEXes specific to ABFD there. This function can be used to
545 rebase ADDRS to start referencing different BFD than before. */
546
547 void
548 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
549 {
550 asection *lower_sect;
551 CORE_ADDR lower_offset;
552 int i;
553 struct cleanup *my_cleanup;
554 struct section_addr_info *abfd_addrs;
555 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
556 struct other_sections **addrs_to_abfd_addrs;
557
558 /* Find lowest loadable section to be used as starting point for
559 continguous sections. */
560 lower_sect = NULL;
561 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
562 if (lower_sect == NULL)
563 {
564 warning (_("no loadable sections found in added symbol-file %s"),
565 bfd_get_filename (abfd));
566 lower_offset = 0;
567 }
568 else
569 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
570
571 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
572 in ABFD. Section names are not unique - there can be multiple sections of
573 the same name. Also the sections of the same name do not have to be
574 adjacent to each other. Some sections may be present only in one of the
575 files. Even sections present in both files do not have to be in the same
576 order.
577
578 Use stable sort by name for the sections in both files. Then linearly
579 scan both lists matching as most of the entries as possible. */
580
581 addrs_sorted = addrs_section_sort (addrs);
582 my_cleanup = make_cleanup (xfree, addrs_sorted);
583
584 abfd_addrs = build_section_addr_info_from_bfd (abfd);
585 make_cleanup_free_section_addr_info (abfd_addrs);
586 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
587 make_cleanup (xfree, abfd_addrs_sorted);
588
589 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
590 ABFD_ADDRS_SORTED. */
591
592 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
593 make_cleanup (xfree, addrs_to_abfd_addrs);
594
595 while (*addrs_sorted)
596 {
597 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
598
599 while (*abfd_addrs_sorted
600 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
601 sect_name) < 0)
602 abfd_addrs_sorted++;
603
604 if (*abfd_addrs_sorted
605 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
606 sect_name) == 0)
607 {
608 int index_in_addrs;
609
610 /* Make the found item directly addressable from ADDRS. */
611 index_in_addrs = *addrs_sorted - addrs->other;
612 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
613 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
614
615 /* Never use the same ABFD entry twice. */
616 abfd_addrs_sorted++;
617 }
618
619 addrs_sorted++;
620 }
621
622 /* Calculate offsets for the loadable sections.
623 FIXME! Sections must be in order of increasing loadable section
624 so that contiguous sections can use the lower-offset!!!
625
626 Adjust offsets if the segments are not contiguous.
627 If the section is contiguous, its offset should be set to
628 the offset of the highest loadable section lower than it
629 (the loadable section directly below it in memory).
630 this_offset = lower_offset = lower_addr - lower_orig_addr */
631
632 for (i = 0; i < addrs->num_sections; i++)
633 {
634 struct other_sections *sect = addrs_to_abfd_addrs[i];
635
636 if (sect)
637 {
638 /* This is the index used by BFD. */
639 addrs->other[i].sectindex = sect->sectindex;
640
641 if (addrs->other[i].addr != 0)
642 {
643 addrs->other[i].addr -= sect->addr;
644 lower_offset = addrs->other[i].addr;
645 }
646 else
647 addrs->other[i].addr = lower_offset;
648 }
649 else
650 {
651 /* addr_section_name transformation is not used for SECT_NAME. */
652 const char *sect_name = addrs->other[i].name;
653
654 /* This section does not exist in ABFD, which is normally
655 unexpected and we want to issue a warning.
656
657 However, the ELF prelinker does create a few sections which are
658 marked in the main executable as loadable (they are loaded in
659 memory from the DYNAMIC segment) and yet are not present in
660 separate debug info files. This is fine, and should not cause
661 a warning. Shared libraries contain just the section
662 ".gnu.liblist" but it is not marked as loadable there. There is
663 no other way to identify them than by their name as the sections
664 created by prelink have no special flags.
665
666 For the sections `.bss' and `.sbss' see addr_section_name. */
667
668 if (!(strcmp (sect_name, ".gnu.liblist") == 0
669 || strcmp (sect_name, ".gnu.conflict") == 0
670 || (strcmp (sect_name, ".bss") == 0
671 && i > 0
672 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
673 && addrs_to_abfd_addrs[i - 1] != NULL)
674 || (strcmp (sect_name, ".sbss") == 0
675 && i > 0
676 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
677 && addrs_to_abfd_addrs[i - 1] != NULL)))
678 warning (_("section %s not found in %s"), sect_name,
679 bfd_get_filename (abfd));
680
681 addrs->other[i].addr = 0;
682 addrs->other[i].sectindex = -1;
683 }
684 }
685
686 do_cleanups (my_cleanup);
687 }
688
689 /* Parse the user's idea of an offset for dynamic linking, into our idea
690 of how to represent it for fast symbol reading. This is the default
691 version of the sym_fns.sym_offsets function for symbol readers that
692 don't need to do anything special. It allocates a section_offsets table
693 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
694
695 void
696 default_symfile_offsets (struct objfile *objfile,
697 const struct section_addr_info *addrs)
698 {
699 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
700 objfile->section_offsets = (struct section_offsets *)
701 obstack_alloc (&objfile->objfile_obstack,
702 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
703 relative_addr_info_to_section_offsets (objfile->section_offsets,
704 objfile->num_sections, addrs);
705
706 /* For relocatable files, all loadable sections will start at zero.
707 The zero is meaningless, so try to pick arbitrary addresses such
708 that no loadable sections overlap. This algorithm is quadratic,
709 but the number of sections in a single object file is generally
710 small. */
711 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
712 {
713 struct place_section_arg arg;
714 bfd *abfd = objfile->obfd;
715 asection *cur_sec;
716
717 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
718 /* We do not expect this to happen; just skip this step if the
719 relocatable file has a section with an assigned VMA. */
720 if (bfd_section_vma (abfd, cur_sec) != 0)
721 break;
722
723 if (cur_sec == NULL)
724 {
725 CORE_ADDR *offsets = objfile->section_offsets->offsets;
726
727 /* Pick non-overlapping offsets for sections the user did not
728 place explicitly. */
729 arg.offsets = objfile->section_offsets;
730 arg.lowest = 0;
731 bfd_map_over_sections (objfile->obfd, place_section, &arg);
732
733 /* Correctly filling in the section offsets is not quite
734 enough. Relocatable files have two properties that
735 (most) shared objects do not:
736
737 - Their debug information will contain relocations. Some
738 shared libraries do also, but many do not, so this can not
739 be assumed.
740
741 - If there are multiple code sections they will be loaded
742 at different relative addresses in memory than they are
743 in the objfile, since all sections in the file will start
744 at address zero.
745
746 Because GDB has very limited ability to map from an
747 address in debug info to the correct code section,
748 it relies on adding SECT_OFF_TEXT to things which might be
749 code. If we clear all the section offsets, and set the
750 section VMAs instead, then symfile_relocate_debug_section
751 will return meaningful debug information pointing at the
752 correct sections.
753
754 GDB has too many different data structures for section
755 addresses - a bfd, objfile, and so_list all have section
756 tables, as does exec_ops. Some of these could probably
757 be eliminated. */
758
759 for (cur_sec = abfd->sections; cur_sec != NULL;
760 cur_sec = cur_sec->next)
761 {
762 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
763 continue;
764
765 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
766 exec_set_section_address (bfd_get_filename (abfd),
767 cur_sec->index,
768 offsets[cur_sec->index]);
769 offsets[cur_sec->index] = 0;
770 }
771 }
772 }
773
774 /* Remember the bfd indexes for the .text, .data, .bss and
775 .rodata sections. */
776 init_objfile_sect_indices (objfile);
777 }
778
779 /* Divide the file into segments, which are individual relocatable units.
780 This is the default version of the sym_fns.sym_segments function for
781 symbol readers that do not have an explicit representation of segments.
782 It assumes that object files do not have segments, and fully linked
783 files have a single segment. */
784
785 struct symfile_segment_data *
786 default_symfile_segments (bfd *abfd)
787 {
788 int num_sections, i;
789 asection *sect;
790 struct symfile_segment_data *data;
791 CORE_ADDR low, high;
792
793 /* Relocatable files contain enough information to position each
794 loadable section independently; they should not be relocated
795 in segments. */
796 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
797 return NULL;
798
799 /* Make sure there is at least one loadable section in the file. */
800 for (sect = abfd->sections; sect != NULL; sect = sect->next)
801 {
802 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
803 continue;
804
805 break;
806 }
807 if (sect == NULL)
808 return NULL;
809
810 low = bfd_get_section_vma (abfd, sect);
811 high = low + bfd_get_section_size (sect);
812
813 data = XCNEW (struct symfile_segment_data);
814 data->num_segments = 1;
815 data->segment_bases = XCNEW (CORE_ADDR);
816 data->segment_sizes = XCNEW (CORE_ADDR);
817
818 num_sections = bfd_count_sections (abfd);
819 data->segment_info = XCNEWVEC (int, num_sections);
820
821 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
822 {
823 CORE_ADDR vma;
824
825 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
826 continue;
827
828 vma = bfd_get_section_vma (abfd, sect);
829 if (vma < low)
830 low = vma;
831 if (vma + bfd_get_section_size (sect) > high)
832 high = vma + bfd_get_section_size (sect);
833
834 data->segment_info[i] = 1;
835 }
836
837 data->segment_bases[0] = low;
838 data->segment_sizes[0] = high - low;
839
840 return data;
841 }
842
843 /* This is a convenience function to call sym_read for OBJFILE and
844 possibly force the partial symbols to be read. */
845
846 static void
847 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
848 {
849 (*objfile->sf->sym_read) (objfile, add_flags);
850 objfile->per_bfd->minsyms_read = true;
851
852 /* find_separate_debug_file_in_section should be called only if there is
853 single binary with no existing separate debug info file. */
854 if (!objfile_has_partial_symbols (objfile)
855 && objfile->separate_debug_objfile == NULL
856 && objfile->separate_debug_objfile_backlink == NULL)
857 {
858 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
859
860 if (abfd != NULL)
861 {
862 /* find_separate_debug_file_in_section uses the same filename for the
863 virtual section-as-bfd like the bfd filename containing the
864 section. Therefore use also non-canonical name form for the same
865 file containing the section. */
866 symbol_file_add_separate (abfd.get (), objfile->original_name,
867 add_flags, objfile);
868 }
869 }
870 if ((add_flags & SYMFILE_NO_READ) == 0)
871 require_partial_symbols (objfile, 0);
872 }
873
874 /* Initialize entry point information for this objfile. */
875
876 static void
877 init_entry_point_info (struct objfile *objfile)
878 {
879 struct entry_info *ei = &objfile->per_bfd->ei;
880
881 if (ei->initialized)
882 return;
883 ei->initialized = 1;
884
885 /* Save startup file's range of PC addresses to help blockframe.c
886 decide where the bottom of the stack is. */
887
888 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
889 {
890 /* Executable file -- record its entry point so we'll recognize
891 the startup file because it contains the entry point. */
892 ei->entry_point = bfd_get_start_address (objfile->obfd);
893 ei->entry_point_p = 1;
894 }
895 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
896 && bfd_get_start_address (objfile->obfd) != 0)
897 {
898 /* Some shared libraries may have entry points set and be
899 runnable. There's no clear way to indicate this, so just check
900 for values other than zero. */
901 ei->entry_point = bfd_get_start_address (objfile->obfd);
902 ei->entry_point_p = 1;
903 }
904 else
905 {
906 /* Examination of non-executable.o files. Short-circuit this stuff. */
907 ei->entry_point_p = 0;
908 }
909
910 if (ei->entry_point_p)
911 {
912 struct obj_section *osect;
913 CORE_ADDR entry_point = ei->entry_point;
914 int found;
915
916 /* Make certain that the address points at real code, and not a
917 function descriptor. */
918 entry_point
919 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
920 entry_point,
921 &current_target);
922
923 /* Remove any ISA markers, so that this matches entries in the
924 symbol table. */
925 ei->entry_point
926 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
927
928 found = 0;
929 ALL_OBJFILE_OSECTIONS (objfile, osect)
930 {
931 struct bfd_section *sect = osect->the_bfd_section;
932
933 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
934 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
935 + bfd_get_section_size (sect)))
936 {
937 ei->the_bfd_section_index
938 = gdb_bfd_section_index (objfile->obfd, sect);
939 found = 1;
940 break;
941 }
942 }
943
944 if (!found)
945 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
946 }
947 }
948
949 /* Process a symbol file, as either the main file or as a dynamically
950 loaded file.
951
952 This function does not set the OBJFILE's entry-point info.
953
954 OBJFILE is where the symbols are to be read from.
955
956 ADDRS is the list of section load addresses. If the user has given
957 an 'add-symbol-file' command, then this is the list of offsets and
958 addresses he or she provided as arguments to the command; or, if
959 we're handling a shared library, these are the actual addresses the
960 sections are loaded at, according to the inferior's dynamic linker
961 (as gleaned by GDB's shared library code). We convert each address
962 into an offset from the section VMA's as it appears in the object
963 file, and then call the file's sym_offsets function to convert this
964 into a format-specific offset table --- a `struct section_offsets'.
965
966 ADD_FLAGS encodes verbosity level, whether this is main symbol or
967 an extra symbol file such as dynamically loaded code, and wether
968 breakpoint reset should be deferred. */
969
970 static void
971 syms_from_objfile_1 (struct objfile *objfile,
972 struct section_addr_info *addrs,
973 symfile_add_flags add_flags)
974 {
975 struct section_addr_info *local_addr = NULL;
976 struct cleanup *old_chain;
977 const int mainline = add_flags & SYMFILE_MAINLINE;
978
979 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
980
981 if (objfile->sf == NULL)
982 {
983 /* No symbols to load, but we still need to make sure
984 that the section_offsets table is allocated. */
985 int num_sections = gdb_bfd_count_sections (objfile->obfd);
986 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
987
988 objfile->num_sections = num_sections;
989 objfile->section_offsets
990 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
991 size);
992 memset (objfile->section_offsets, 0, size);
993 return;
994 }
995
996 /* Make sure that partially constructed symbol tables will be cleaned up
997 if an error occurs during symbol reading. */
998 old_chain = make_cleanup_free_objfile (objfile);
999
1000 /* If ADDRS is NULL, put together a dummy address list.
1001 We now establish the convention that an addr of zero means
1002 no load address was specified. */
1003 if (! addrs)
1004 {
1005 local_addr = alloc_section_addr_info (1);
1006 make_cleanup (xfree, local_addr);
1007 addrs = local_addr;
1008 }
1009
1010 if (mainline)
1011 {
1012 /* We will modify the main symbol table, make sure that all its users
1013 will be cleaned up if an error occurs during symbol reading. */
1014 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1015
1016 /* Since no error yet, throw away the old symbol table. */
1017
1018 if (symfile_objfile != NULL)
1019 {
1020 free_objfile (symfile_objfile);
1021 gdb_assert (symfile_objfile == NULL);
1022 }
1023
1024 /* Currently we keep symbols from the add-symbol-file command.
1025 If the user wants to get rid of them, they should do "symbol-file"
1026 without arguments first. Not sure this is the best behavior
1027 (PR 2207). */
1028
1029 (*objfile->sf->sym_new_init) (objfile);
1030 }
1031
1032 /* Convert addr into an offset rather than an absolute address.
1033 We find the lowest address of a loaded segment in the objfile,
1034 and assume that <addr> is where that got loaded.
1035
1036 We no longer warn if the lowest section is not a text segment (as
1037 happens for the PA64 port. */
1038 if (addrs->num_sections > 0)
1039 addr_info_make_relative (addrs, objfile->obfd);
1040
1041 /* Initialize symbol reading routines for this objfile, allow complaints to
1042 appear for this new file, and record how verbose to be, then do the
1043 initial symbol reading for this file. */
1044
1045 (*objfile->sf->sym_init) (objfile);
1046 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1047
1048 (*objfile->sf->sym_offsets) (objfile, addrs);
1049
1050 read_symbols (objfile, add_flags);
1051
1052 /* Discard cleanups as symbol reading was successful. */
1053
1054 discard_cleanups (old_chain);
1055 xfree (local_addr);
1056 }
1057
1058 /* Same as syms_from_objfile_1, but also initializes the objfile
1059 entry-point info. */
1060
1061 static void
1062 syms_from_objfile (struct objfile *objfile,
1063 struct section_addr_info *addrs,
1064 symfile_add_flags add_flags)
1065 {
1066 syms_from_objfile_1 (objfile, addrs, add_flags);
1067 init_entry_point_info (objfile);
1068 }
1069
1070 /* Perform required actions after either reading in the initial
1071 symbols for a new objfile, or mapping in the symbols from a reusable
1072 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1073
1074 static void
1075 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1076 {
1077 /* If this is the main symbol file we have to clean up all users of the
1078 old main symbol file. Otherwise it is sufficient to fixup all the
1079 breakpoints that may have been redefined by this symbol file. */
1080 if (add_flags & SYMFILE_MAINLINE)
1081 {
1082 /* OK, make it the "real" symbol file. */
1083 symfile_objfile = objfile;
1084
1085 clear_symtab_users (add_flags);
1086 }
1087 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1088 {
1089 breakpoint_re_set ();
1090 }
1091
1092 /* We're done reading the symbol file; finish off complaints. */
1093 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1094 }
1095
1096 /* Process a symbol file, as either the main file or as a dynamically
1097 loaded file.
1098
1099 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1100 A new reference is acquired by this function.
1101
1102 For NAME description see allocate_objfile's definition.
1103
1104 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1105 extra, such as dynamically loaded code, and what to do with breakpoins.
1106
1107 ADDRS is as described for syms_from_objfile_1, above.
1108 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1109
1110 PARENT is the original objfile if ABFD is a separate debug info file.
1111 Otherwise PARENT is NULL.
1112
1113 Upon success, returns a pointer to the objfile that was added.
1114 Upon failure, jumps back to command level (never returns). */
1115
1116 static struct objfile *
1117 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1118 symfile_add_flags add_flags,
1119 struct section_addr_info *addrs,
1120 objfile_flags flags, struct objfile *parent)
1121 {
1122 struct objfile *objfile;
1123 const int from_tty = add_flags & SYMFILE_VERBOSE;
1124 const int mainline = add_flags & SYMFILE_MAINLINE;
1125 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1126 && (readnow_symbol_files
1127 || (add_flags & SYMFILE_NO_READ) == 0));
1128
1129 if (readnow_symbol_files)
1130 {
1131 flags |= OBJF_READNOW;
1132 add_flags &= ~SYMFILE_NO_READ;
1133 }
1134
1135 /* Give user a chance to burp if we'd be
1136 interactively wiping out any existing symbols. */
1137
1138 if ((have_full_symbols () || have_partial_symbols ())
1139 && mainline
1140 && from_tty
1141 && !query (_("Load new symbol table from \"%s\"? "), name))
1142 error (_("Not confirmed."));
1143
1144 if (mainline)
1145 flags |= OBJF_MAINLINE;
1146 objfile = allocate_objfile (abfd, name, flags);
1147
1148 if (parent)
1149 add_separate_debug_objfile (objfile, parent);
1150
1151 /* We either created a new mapped symbol table, mapped an existing
1152 symbol table file which has not had initial symbol reading
1153 performed, or need to read an unmapped symbol table. */
1154 if (should_print)
1155 {
1156 if (deprecated_pre_add_symbol_hook)
1157 deprecated_pre_add_symbol_hook (name);
1158 else
1159 {
1160 printf_unfiltered (_("Reading symbols from %s..."), name);
1161 wrap_here ("");
1162 gdb_flush (gdb_stdout);
1163 }
1164 }
1165 syms_from_objfile (objfile, addrs, add_flags);
1166
1167 /* We now have at least a partial symbol table. Check to see if the
1168 user requested that all symbols be read on initial access via either
1169 the gdb startup command line or on a per symbol file basis. Expand
1170 all partial symbol tables for this objfile if so. */
1171
1172 if ((flags & OBJF_READNOW))
1173 {
1174 if (should_print)
1175 {
1176 printf_unfiltered (_("expanding to full symbols..."));
1177 wrap_here ("");
1178 gdb_flush (gdb_stdout);
1179 }
1180
1181 if (objfile->sf)
1182 objfile->sf->qf->expand_all_symtabs (objfile);
1183 }
1184
1185 if (should_print && !objfile_has_symbols (objfile))
1186 {
1187 wrap_here ("");
1188 printf_unfiltered (_("(no debugging symbols found)..."));
1189 wrap_here ("");
1190 }
1191
1192 if (should_print)
1193 {
1194 if (deprecated_post_add_symbol_hook)
1195 deprecated_post_add_symbol_hook ();
1196 else
1197 printf_unfiltered (_("done.\n"));
1198 }
1199
1200 /* We print some messages regardless of whether 'from_tty ||
1201 info_verbose' is true, so make sure they go out at the right
1202 time. */
1203 gdb_flush (gdb_stdout);
1204
1205 if (objfile->sf == NULL)
1206 {
1207 observer_notify_new_objfile (objfile);
1208 return objfile; /* No symbols. */
1209 }
1210
1211 finish_new_objfile (objfile, add_flags);
1212
1213 observer_notify_new_objfile (objfile);
1214
1215 bfd_cache_close_all ();
1216 return (objfile);
1217 }
1218
1219 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1220 see allocate_objfile's definition. */
1221
1222 void
1223 symbol_file_add_separate (bfd *bfd, const char *name,
1224 symfile_add_flags symfile_flags,
1225 struct objfile *objfile)
1226 {
1227 struct section_addr_info *sap;
1228 struct cleanup *my_cleanup;
1229
1230 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1231 because sections of BFD may not match sections of OBJFILE and because
1232 vma may have been modified by tools such as prelink. */
1233 sap = build_section_addr_info_from_objfile (objfile);
1234 my_cleanup = make_cleanup_free_section_addr_info (sap);
1235
1236 symbol_file_add_with_addrs
1237 (bfd, name, symfile_flags, sap,
1238 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1239 | OBJF_USERLOADED),
1240 objfile);
1241
1242 do_cleanups (my_cleanup);
1243 }
1244
1245 /* Process the symbol file ABFD, as either the main file or as a
1246 dynamically loaded file.
1247 See symbol_file_add_with_addrs's comments for details. */
1248
1249 struct objfile *
1250 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1251 symfile_add_flags add_flags,
1252 struct section_addr_info *addrs,
1253 objfile_flags flags, struct objfile *parent)
1254 {
1255 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1256 parent);
1257 }
1258
1259 /* Process a symbol file, as either the main file or as a dynamically
1260 loaded file. See symbol_file_add_with_addrs's comments for details. */
1261
1262 struct objfile *
1263 symbol_file_add (const char *name, symfile_add_flags add_flags,
1264 struct section_addr_info *addrs, objfile_flags flags)
1265 {
1266 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1267
1268 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1269 flags, NULL);
1270 }
1271
1272 /* Call symbol_file_add() with default values and update whatever is
1273 affected by the loading of a new main().
1274 Used when the file is supplied in the gdb command line
1275 and by some targets with special loading requirements.
1276 The auxiliary function, symbol_file_add_main_1(), has the flags
1277 argument for the switches that can only be specified in the symbol_file
1278 command itself. */
1279
1280 void
1281 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1282 {
1283 symbol_file_add_main_1 (args, add_flags, 0);
1284 }
1285
1286 static void
1287 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1288 objfile_flags flags)
1289 {
1290 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1291
1292 symbol_file_add (args, add_flags, NULL, flags);
1293
1294 /* Getting new symbols may change our opinion about
1295 what is frameless. */
1296 reinit_frame_cache ();
1297
1298 if ((add_flags & SYMFILE_NO_READ) == 0)
1299 set_initial_language ();
1300 }
1301
1302 void
1303 symbol_file_clear (int from_tty)
1304 {
1305 if ((have_full_symbols () || have_partial_symbols ())
1306 && from_tty
1307 && (symfile_objfile
1308 ? !query (_("Discard symbol table from `%s'? "),
1309 objfile_name (symfile_objfile))
1310 : !query (_("Discard symbol table? "))))
1311 error (_("Not confirmed."));
1312
1313 /* solib descriptors may have handles to objfiles. Wipe them before their
1314 objfiles get stale by free_all_objfiles. */
1315 no_shared_libraries (NULL, from_tty);
1316
1317 free_all_objfiles ();
1318
1319 gdb_assert (symfile_objfile == NULL);
1320 if (from_tty)
1321 printf_unfiltered (_("No symbol file now.\n"));
1322 }
1323
1324 /* See symfile.h. */
1325
1326 int separate_debug_file_debug = 0;
1327
1328 static int
1329 separate_debug_file_exists (const char *name, unsigned long crc,
1330 struct objfile *parent_objfile)
1331 {
1332 unsigned long file_crc;
1333 int file_crc_p;
1334 struct stat parent_stat, abfd_stat;
1335 int verified_as_different;
1336
1337 /* Find a separate debug info file as if symbols would be present in
1338 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1339 section can contain just the basename of PARENT_OBJFILE without any
1340 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1341 the separate debug infos with the same basename can exist. */
1342
1343 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1344 return 0;
1345
1346 if (separate_debug_file_debug)
1347 printf_unfiltered (_(" Trying %s\n"), name);
1348
1349 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name, gnutarget, -1));
1350
1351 if (abfd == NULL)
1352 return 0;
1353
1354 /* Verify symlinks were not the cause of filename_cmp name difference above.
1355
1356 Some operating systems, e.g. Windows, do not provide a meaningful
1357 st_ino; they always set it to zero. (Windows does provide a
1358 meaningful st_dev.) Files accessed from gdbservers that do not
1359 support the vFile:fstat packet will also have st_ino set to zero.
1360 Do not indicate a duplicate library in either case. While there
1361 is no guarantee that a system that provides meaningful inode
1362 numbers will never set st_ino to zero, this is merely an
1363 optimization, so we do not need to worry about false negatives. */
1364
1365 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1366 && abfd_stat.st_ino != 0
1367 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1368 {
1369 if (abfd_stat.st_dev == parent_stat.st_dev
1370 && abfd_stat.st_ino == parent_stat.st_ino)
1371 return 0;
1372 verified_as_different = 1;
1373 }
1374 else
1375 verified_as_different = 0;
1376
1377 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1378
1379 if (!file_crc_p)
1380 return 0;
1381
1382 if (crc != file_crc)
1383 {
1384 unsigned long parent_crc;
1385
1386 /* If the files could not be verified as different with
1387 bfd_stat then we need to calculate the parent's CRC
1388 to verify whether the files are different or not. */
1389
1390 if (!verified_as_different)
1391 {
1392 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1393 return 0;
1394 }
1395
1396 if (verified_as_different || parent_crc != file_crc)
1397 warning (_("the debug information found in \"%s\""
1398 " does not match \"%s\" (CRC mismatch).\n"),
1399 name, objfile_name (parent_objfile));
1400
1401 return 0;
1402 }
1403
1404 return 1;
1405 }
1406
1407 char *debug_file_directory = NULL;
1408 static void
1409 show_debug_file_directory (struct ui_file *file, int from_tty,
1410 struct cmd_list_element *c, const char *value)
1411 {
1412 fprintf_filtered (file,
1413 _("The directory where separate debug "
1414 "symbols are searched for is \"%s\".\n"),
1415 value);
1416 }
1417
1418 #if ! defined (DEBUG_SUBDIRECTORY)
1419 #define DEBUG_SUBDIRECTORY ".debug"
1420 #endif
1421
1422 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1423 where the original file resides (may not be the same as
1424 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1425 looking for. CANON_DIR is the "realpath" form of DIR.
1426 DIR must contain a trailing '/'.
1427 Returns the path of the file with separate debug info, of NULL. */
1428
1429 static char *
1430 find_separate_debug_file (const char *dir,
1431 const char *canon_dir,
1432 const char *debuglink,
1433 unsigned long crc32, struct objfile *objfile)
1434 {
1435 char *debugdir;
1436 char *debugfile;
1437 int i;
1438 VEC (char_ptr) *debugdir_vec;
1439 struct cleanup *back_to;
1440 int ix;
1441
1442 if (separate_debug_file_debug)
1443 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1444 "%s\n"), objfile_name (objfile));
1445
1446 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1447 i = strlen (dir);
1448 if (canon_dir != NULL && strlen (canon_dir) > i)
1449 i = strlen (canon_dir);
1450
1451 debugfile
1452 = (char *) xmalloc (strlen (debug_file_directory) + 1
1453 + i
1454 + strlen (DEBUG_SUBDIRECTORY)
1455 + strlen ("/")
1456 + strlen (debuglink)
1457 + 1);
1458
1459 /* First try in the same directory as the original file. */
1460 strcpy (debugfile, dir);
1461 strcat (debugfile, debuglink);
1462
1463 if (separate_debug_file_exists (debugfile, crc32, objfile))
1464 return debugfile;
1465
1466 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1467 strcpy (debugfile, dir);
1468 strcat (debugfile, DEBUG_SUBDIRECTORY);
1469 strcat (debugfile, "/");
1470 strcat (debugfile, debuglink);
1471
1472 if (separate_debug_file_exists (debugfile, crc32, objfile))
1473 return debugfile;
1474
1475 /* Then try in the global debugfile directories.
1476
1477 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1478 cause "/..." lookups. */
1479
1480 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1481 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1482
1483 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1484 {
1485 strcpy (debugfile, debugdir);
1486 strcat (debugfile, "/");
1487 strcat (debugfile, dir);
1488 strcat (debugfile, debuglink);
1489
1490 if (separate_debug_file_exists (debugfile, crc32, objfile))
1491 {
1492 do_cleanups (back_to);
1493 return debugfile;
1494 }
1495
1496 /* If the file is in the sysroot, try using its base path in the
1497 global debugfile directory. */
1498 if (canon_dir != NULL
1499 && filename_ncmp (canon_dir, gdb_sysroot,
1500 strlen (gdb_sysroot)) == 0
1501 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1502 {
1503 strcpy (debugfile, debugdir);
1504 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1505 strcat (debugfile, "/");
1506 strcat (debugfile, debuglink);
1507
1508 if (separate_debug_file_exists (debugfile, crc32, objfile))
1509 {
1510 do_cleanups (back_to);
1511 return debugfile;
1512 }
1513 }
1514 }
1515
1516 do_cleanups (back_to);
1517 xfree (debugfile);
1518 return NULL;
1519 }
1520
1521 /* Modify PATH to contain only "[/]directory/" part of PATH.
1522 If there were no directory separators in PATH, PATH will be empty
1523 string on return. */
1524
1525 static void
1526 terminate_after_last_dir_separator (char *path)
1527 {
1528 int i;
1529
1530 /* Strip off the final filename part, leaving the directory name,
1531 followed by a slash. The directory can be relative or absolute. */
1532 for (i = strlen(path) - 1; i >= 0; i--)
1533 if (IS_DIR_SEPARATOR (path[i]))
1534 break;
1535
1536 /* If I is -1 then no directory is present there and DIR will be "". */
1537 path[i + 1] = '\0';
1538 }
1539
1540 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1541 Returns pathname, or NULL. */
1542
1543 char *
1544 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1545 {
1546 char *debuglink;
1547 char *dir, *canon_dir;
1548 char *debugfile;
1549 unsigned long crc32;
1550 struct cleanup *cleanups;
1551
1552 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1553
1554 if (debuglink == NULL)
1555 {
1556 /* There's no separate debug info, hence there's no way we could
1557 load it => no warning. */
1558 return NULL;
1559 }
1560
1561 cleanups = make_cleanup (xfree, debuglink);
1562 dir = xstrdup (objfile_name (objfile));
1563 make_cleanup (xfree, dir);
1564 terminate_after_last_dir_separator (dir);
1565 canon_dir = lrealpath (dir);
1566
1567 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1568 crc32, objfile);
1569 xfree (canon_dir);
1570
1571 if (debugfile == NULL)
1572 {
1573 /* For PR gdb/9538, try again with realpath (if different from the
1574 original). */
1575
1576 struct stat st_buf;
1577
1578 if (lstat (objfile_name (objfile), &st_buf) == 0
1579 && S_ISLNK (st_buf.st_mode))
1580 {
1581 char *symlink_dir;
1582
1583 symlink_dir = lrealpath (objfile_name (objfile));
1584 if (symlink_dir != NULL)
1585 {
1586 make_cleanup (xfree, symlink_dir);
1587 terminate_after_last_dir_separator (symlink_dir);
1588 if (strcmp (dir, symlink_dir) != 0)
1589 {
1590 /* Different directory, so try using it. */
1591 debugfile = find_separate_debug_file (symlink_dir,
1592 symlink_dir,
1593 debuglink,
1594 crc32,
1595 objfile);
1596 }
1597 }
1598 }
1599 }
1600
1601 do_cleanups (cleanups);
1602 return debugfile;
1603 }
1604
1605 /* This is the symbol-file command. Read the file, analyze its
1606 symbols, and add a struct symtab to a symtab list. The syntax of
1607 the command is rather bizarre:
1608
1609 1. The function buildargv implements various quoting conventions
1610 which are undocumented and have little or nothing in common with
1611 the way things are quoted (or not quoted) elsewhere in GDB.
1612
1613 2. Options are used, which are not generally used in GDB (perhaps
1614 "set mapped on", "set readnow on" would be better)
1615
1616 3. The order of options matters, which is contrary to GNU
1617 conventions (because it is confusing and inconvenient). */
1618
1619 void
1620 symbol_file_command (const char *args, int from_tty)
1621 {
1622 dont_repeat ();
1623
1624 if (args == NULL)
1625 {
1626 symbol_file_clear (from_tty);
1627 }
1628 else
1629 {
1630 objfile_flags flags = OBJF_USERLOADED;
1631 symfile_add_flags add_flags = 0;
1632 char *name = NULL;
1633
1634 if (from_tty)
1635 add_flags |= SYMFILE_VERBOSE;
1636
1637 gdb_argv built_argv (args);
1638 for (char *arg : built_argv)
1639 {
1640 if (strcmp (arg, "-readnow") == 0)
1641 flags |= OBJF_READNOW;
1642 else if (*arg == '-')
1643 error (_("unknown option `%s'"), arg);
1644 else
1645 {
1646 symbol_file_add_main_1 (arg, add_flags, flags);
1647 name = arg;
1648 }
1649 }
1650
1651 if (name == NULL)
1652 error (_("no symbol file name was specified"));
1653 }
1654 }
1655
1656 /* Set the initial language.
1657
1658 FIXME: A better solution would be to record the language in the
1659 psymtab when reading partial symbols, and then use it (if known) to
1660 set the language. This would be a win for formats that encode the
1661 language in an easily discoverable place, such as DWARF. For
1662 stabs, we can jump through hoops looking for specially named
1663 symbols or try to intuit the language from the specific type of
1664 stabs we find, but we can't do that until later when we read in
1665 full symbols. */
1666
1667 void
1668 set_initial_language (void)
1669 {
1670 enum language lang = main_language ();
1671
1672 if (lang == language_unknown)
1673 {
1674 char *name = main_name ();
1675 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1676
1677 if (sym != NULL)
1678 lang = SYMBOL_LANGUAGE (sym);
1679 }
1680
1681 if (lang == language_unknown)
1682 {
1683 /* Make C the default language */
1684 lang = language_c;
1685 }
1686
1687 set_language (lang);
1688 expected_language = current_language; /* Don't warn the user. */
1689 }
1690
1691 /* Open the file specified by NAME and hand it off to BFD for
1692 preliminary analysis. Return a newly initialized bfd *, which
1693 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1694 absolute). In case of trouble, error() is called. */
1695
1696 gdb_bfd_ref_ptr
1697 symfile_bfd_open (const char *name)
1698 {
1699 int desc = -1;
1700 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1701
1702 if (!is_target_filename (name))
1703 {
1704 char *absolute_name;
1705
1706 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1707
1708 /* Look down path for it, allocate 2nd new malloc'd copy. */
1709 desc = openp (getenv ("PATH"),
1710 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1711 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1712 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1713 if (desc < 0)
1714 {
1715 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1716
1717 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1718 desc = openp (getenv ("PATH"),
1719 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1720 exename, O_RDONLY | O_BINARY, &absolute_name);
1721 }
1722 #endif
1723 if (desc < 0)
1724 perror_with_name (expanded_name.get ());
1725
1726 make_cleanup (xfree, absolute_name);
1727 name = absolute_name;
1728 }
1729
1730 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1731 if (sym_bfd == NULL)
1732 error (_("`%s': can't open to read symbols: %s."), name,
1733 bfd_errmsg (bfd_get_error ()));
1734
1735 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1736 bfd_set_cacheable (sym_bfd.get (), 1);
1737
1738 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1739 error (_("`%s': can't read symbols: %s."), name,
1740 bfd_errmsg (bfd_get_error ()));
1741
1742 do_cleanups (back_to);
1743
1744 return sym_bfd;
1745 }
1746
1747 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1748 the section was not found. */
1749
1750 int
1751 get_section_index (struct objfile *objfile, const char *section_name)
1752 {
1753 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1754
1755 if (sect)
1756 return sect->index;
1757 else
1758 return -1;
1759 }
1760
1761 /* Link SF into the global symtab_fns list.
1762 FLAVOUR is the file format that SF handles.
1763 Called on startup by the _initialize routine in each object file format
1764 reader, to register information about each format the reader is prepared
1765 to handle. */
1766
1767 void
1768 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1769 {
1770 registered_sym_fns fns = { flavour, sf };
1771
1772 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
1773 }
1774
1775 /* Initialize OBJFILE to read symbols from its associated BFD. It
1776 either returns or calls error(). The result is an initialized
1777 struct sym_fns in the objfile structure, that contains cached
1778 information about the symbol file. */
1779
1780 static const struct sym_fns *
1781 find_sym_fns (bfd *abfd)
1782 {
1783 registered_sym_fns *rsf;
1784 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1785 int i;
1786
1787 if (our_flavour == bfd_target_srec_flavour
1788 || our_flavour == bfd_target_ihex_flavour
1789 || our_flavour == bfd_target_tekhex_flavour)
1790 return NULL; /* No symbols. */
1791
1792 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1793 if (our_flavour == rsf->sym_flavour)
1794 return rsf->sym_fns;
1795
1796 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1797 bfd_get_target (abfd));
1798 }
1799 \f
1800
1801 /* This function runs the load command of our current target. */
1802
1803 static void
1804 load_command (char *arg, int from_tty)
1805 {
1806 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1807
1808 dont_repeat ();
1809
1810 /* The user might be reloading because the binary has changed. Take
1811 this opportunity to check. */
1812 reopen_exec_file ();
1813 reread_symbols ();
1814
1815 if (arg == NULL)
1816 {
1817 char *parg;
1818 int count = 0;
1819
1820 parg = arg = get_exec_file (1);
1821
1822 /* Count how many \ " ' tab space there are in the name. */
1823 while ((parg = strpbrk (parg, "\\\"'\t ")))
1824 {
1825 parg++;
1826 count++;
1827 }
1828
1829 if (count)
1830 {
1831 /* We need to quote this string so buildargv can pull it apart. */
1832 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1833 char *ptemp = temp;
1834 char *prev;
1835
1836 make_cleanup (xfree, temp);
1837
1838 prev = parg = arg;
1839 while ((parg = strpbrk (parg, "\\\"'\t ")))
1840 {
1841 strncpy (ptemp, prev, parg - prev);
1842 ptemp += parg - prev;
1843 prev = parg++;
1844 *ptemp++ = '\\';
1845 }
1846 strcpy (ptemp, prev);
1847
1848 arg = temp;
1849 }
1850 }
1851
1852 target_load (arg, from_tty);
1853
1854 /* After re-loading the executable, we don't really know which
1855 overlays are mapped any more. */
1856 overlay_cache_invalid = 1;
1857
1858 do_cleanups (cleanup);
1859 }
1860
1861 /* This version of "load" should be usable for any target. Currently
1862 it is just used for remote targets, not inftarg.c or core files,
1863 on the theory that only in that case is it useful.
1864
1865 Avoiding xmodem and the like seems like a win (a) because we don't have
1866 to worry about finding it, and (b) On VMS, fork() is very slow and so
1867 we don't want to run a subprocess. On the other hand, I'm not sure how
1868 performance compares. */
1869
1870 static int validate_download = 0;
1871
1872 /* Callback service function for generic_load (bfd_map_over_sections). */
1873
1874 static void
1875 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1876 {
1877 bfd_size_type *sum = (bfd_size_type *) data;
1878
1879 *sum += bfd_get_section_size (asec);
1880 }
1881
1882 /* Opaque data for load_section_callback. */
1883 struct load_section_data {
1884 CORE_ADDR load_offset;
1885 struct load_progress_data *progress_data;
1886 VEC(memory_write_request_s) *requests;
1887 };
1888
1889 /* Opaque data for load_progress. */
1890 struct load_progress_data {
1891 /* Cumulative data. */
1892 unsigned long write_count;
1893 unsigned long data_count;
1894 bfd_size_type total_size;
1895 };
1896
1897 /* Opaque data for load_progress for a single section. */
1898 struct load_progress_section_data {
1899 struct load_progress_data *cumulative;
1900
1901 /* Per-section data. */
1902 const char *section_name;
1903 ULONGEST section_sent;
1904 ULONGEST section_size;
1905 CORE_ADDR lma;
1906 gdb_byte *buffer;
1907 };
1908
1909 /* Target write callback routine for progress reporting. */
1910
1911 static void
1912 load_progress (ULONGEST bytes, void *untyped_arg)
1913 {
1914 struct load_progress_section_data *args
1915 = (struct load_progress_section_data *) untyped_arg;
1916 struct load_progress_data *totals;
1917
1918 if (args == NULL)
1919 /* Writing padding data. No easy way to get at the cumulative
1920 stats, so just ignore this. */
1921 return;
1922
1923 totals = args->cumulative;
1924
1925 if (bytes == 0 && args->section_sent == 0)
1926 {
1927 /* The write is just starting. Let the user know we've started
1928 this section. */
1929 current_uiout->message ("Loading section %s, size %s lma %s\n",
1930 args->section_name,
1931 hex_string (args->section_size),
1932 paddress (target_gdbarch (), args->lma));
1933 return;
1934 }
1935
1936 if (validate_download)
1937 {
1938 /* Broken memories and broken monitors manifest themselves here
1939 when bring new computers to life. This doubles already slow
1940 downloads. */
1941 /* NOTE: cagney/1999-10-18: A more efficient implementation
1942 might add a verify_memory() method to the target vector and
1943 then use that. remote.c could implement that method using
1944 the ``qCRC'' packet. */
1945 gdb_byte *check = (gdb_byte *) xmalloc (bytes);
1946 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1947
1948 if (target_read_memory (args->lma, check, bytes) != 0)
1949 error (_("Download verify read failed at %s"),
1950 paddress (target_gdbarch (), args->lma));
1951 if (memcmp (args->buffer, check, bytes) != 0)
1952 error (_("Download verify compare failed at %s"),
1953 paddress (target_gdbarch (), args->lma));
1954 do_cleanups (verify_cleanups);
1955 }
1956 totals->data_count += bytes;
1957 args->lma += bytes;
1958 args->buffer += bytes;
1959 totals->write_count += 1;
1960 args->section_sent += bytes;
1961 if (check_quit_flag ()
1962 || (deprecated_ui_load_progress_hook != NULL
1963 && deprecated_ui_load_progress_hook (args->section_name,
1964 args->section_sent)))
1965 error (_("Canceled the download"));
1966
1967 if (deprecated_show_load_progress != NULL)
1968 deprecated_show_load_progress (args->section_name,
1969 args->section_sent,
1970 args->section_size,
1971 totals->data_count,
1972 totals->total_size);
1973 }
1974
1975 /* Callback service function for generic_load (bfd_map_over_sections). */
1976
1977 static void
1978 load_section_callback (bfd *abfd, asection *asec, void *data)
1979 {
1980 struct memory_write_request *new_request;
1981 struct load_section_data *args = (struct load_section_data *) data;
1982 struct load_progress_section_data *section_data;
1983 bfd_size_type size = bfd_get_section_size (asec);
1984 gdb_byte *buffer;
1985 const char *sect_name = bfd_get_section_name (abfd, asec);
1986
1987 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1988 return;
1989
1990 if (size == 0)
1991 return;
1992
1993 new_request = VEC_safe_push (memory_write_request_s,
1994 args->requests, NULL);
1995 memset (new_request, 0, sizeof (struct memory_write_request));
1996 section_data = XCNEW (struct load_progress_section_data);
1997 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1998 new_request->end = new_request->begin + size; /* FIXME Should size
1999 be in instead? */
2000 new_request->data = (gdb_byte *) xmalloc (size);
2001 new_request->baton = section_data;
2002
2003 buffer = new_request->data;
2004
2005 section_data->cumulative = args->progress_data;
2006 section_data->section_name = sect_name;
2007 section_data->section_size = size;
2008 section_data->lma = new_request->begin;
2009 section_data->buffer = buffer;
2010
2011 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2012 }
2013
2014 /* Clean up an entire memory request vector, including load
2015 data and progress records. */
2016
2017 static void
2018 clear_memory_write_data (void *arg)
2019 {
2020 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
2021 VEC(memory_write_request_s) *vec = *vec_p;
2022 int i;
2023 struct memory_write_request *mr;
2024
2025 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2026 {
2027 xfree (mr->data);
2028 xfree (mr->baton);
2029 }
2030 VEC_free (memory_write_request_s, vec);
2031 }
2032
2033 static void print_transfer_performance (struct ui_file *stream,
2034 unsigned long data_count,
2035 unsigned long write_count,
2036 std::chrono::steady_clock::duration d);
2037
2038 void
2039 generic_load (const char *args, int from_tty)
2040 {
2041 struct cleanup *old_cleanups;
2042 struct load_section_data cbdata;
2043 struct load_progress_data total_progress;
2044 struct ui_out *uiout = current_uiout;
2045
2046 CORE_ADDR entry;
2047
2048 memset (&cbdata, 0, sizeof (cbdata));
2049 memset (&total_progress, 0, sizeof (total_progress));
2050 cbdata.progress_data = &total_progress;
2051
2052 old_cleanups = make_cleanup (clear_memory_write_data, &cbdata.requests);
2053
2054 if (args == NULL)
2055 error_no_arg (_("file to load"));
2056
2057 gdb_argv argv (args);
2058
2059 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2060
2061 if (argv[1] != NULL)
2062 {
2063 const char *endptr;
2064
2065 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2066
2067 /* If the last word was not a valid number then
2068 treat it as a file name with spaces in. */
2069 if (argv[1] == endptr)
2070 error (_("Invalid download offset:%s."), argv[1]);
2071
2072 if (argv[2] != NULL)
2073 error (_("Too many parameters."));
2074 }
2075
2076 /* Open the file for loading. */
2077 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
2078 if (loadfile_bfd == NULL)
2079 perror_with_name (filename.get ());
2080
2081 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2082 {
2083 error (_("\"%s\" is not an object file: %s"), filename.get (),
2084 bfd_errmsg (bfd_get_error ()));
2085 }
2086
2087 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2088 (void *) &total_progress.total_size);
2089
2090 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2091
2092 using namespace std::chrono;
2093
2094 steady_clock::time_point start_time = steady_clock::now ();
2095
2096 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2097 load_progress) != 0)
2098 error (_("Load failed"));
2099
2100 steady_clock::time_point end_time = steady_clock::now ();
2101
2102 entry = bfd_get_start_address (loadfile_bfd.get ());
2103 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2104 uiout->text ("Start address ");
2105 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2106 uiout->text (", load size ");
2107 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2108 uiout->text ("\n");
2109 regcache_write_pc (get_current_regcache (), entry);
2110
2111 /* Reset breakpoints, now that we have changed the load image. For
2112 instance, breakpoints may have been set (or reset, by
2113 post_create_inferior) while connected to the target but before we
2114 loaded the program. In that case, the prologue analyzer could
2115 have read instructions from the target to find the right
2116 breakpoint locations. Loading has changed the contents of that
2117 memory. */
2118
2119 breakpoint_re_set ();
2120
2121 print_transfer_performance (gdb_stdout, total_progress.data_count,
2122 total_progress.write_count,
2123 end_time - start_time);
2124
2125 do_cleanups (old_cleanups);
2126 }
2127
2128 /* Report on STREAM the performance of a memory transfer operation,
2129 such as 'load'. DATA_COUNT is the number of bytes transferred.
2130 WRITE_COUNT is the number of separate write operations, or 0, if
2131 that information is not available. TIME is how long the operation
2132 lasted. */
2133
2134 static void
2135 print_transfer_performance (struct ui_file *stream,
2136 unsigned long data_count,
2137 unsigned long write_count,
2138 std::chrono::steady_clock::duration time)
2139 {
2140 using namespace std::chrono;
2141 struct ui_out *uiout = current_uiout;
2142
2143 milliseconds ms = duration_cast<milliseconds> (time);
2144
2145 uiout->text ("Transfer rate: ");
2146 if (ms.count () > 0)
2147 {
2148 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2149
2150 if (uiout->is_mi_like_p ())
2151 {
2152 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2153 uiout->text (" bits/sec");
2154 }
2155 else if (rate < 1024)
2156 {
2157 uiout->field_fmt ("transfer-rate", "%lu", rate);
2158 uiout->text (" bytes/sec");
2159 }
2160 else
2161 {
2162 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2163 uiout->text (" KB/sec");
2164 }
2165 }
2166 else
2167 {
2168 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2169 uiout->text (" bits in <1 sec");
2170 }
2171 if (write_count > 0)
2172 {
2173 uiout->text (", ");
2174 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2175 uiout->text (" bytes/write");
2176 }
2177 uiout->text (".\n");
2178 }
2179
2180 /* This function allows the addition of incrementally linked object files.
2181 It does not modify any state in the target, only in the debugger. */
2182 /* Note: ezannoni 2000-04-13 This function/command used to have a
2183 special case syntax for the rombug target (Rombug is the boot
2184 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2185 rombug case, the user doesn't need to supply a text address,
2186 instead a call to target_link() (in target.c) would supply the
2187 value to use. We are now discontinuing this type of ad hoc syntax. */
2188
2189 static void
2190 add_symbol_file_command (const char *args, int from_tty)
2191 {
2192 struct gdbarch *gdbarch = get_current_arch ();
2193 gdb::unique_xmalloc_ptr<char> filename;
2194 char *arg;
2195 int argcnt = 0;
2196 int sec_num = 0;
2197 int expecting_sec_name = 0;
2198 int expecting_sec_addr = 0;
2199 struct objfile *objf;
2200 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2201 symfile_add_flags add_flags = 0;
2202
2203 if (from_tty)
2204 add_flags |= SYMFILE_VERBOSE;
2205
2206 struct sect_opt
2207 {
2208 const char *name;
2209 const char *value;
2210 };
2211
2212 struct section_addr_info *section_addrs;
2213 std::vector<sect_opt> sect_opts;
2214 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2215
2216 dont_repeat ();
2217
2218 if (args == NULL)
2219 error (_("add-symbol-file takes a file name and an address"));
2220
2221 gdb_argv argv (args);
2222
2223 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2224 {
2225 /* Process the argument. */
2226 if (argcnt == 0)
2227 {
2228 /* The first argument is the file name. */
2229 filename.reset (tilde_expand (arg));
2230 }
2231 else if (argcnt == 1)
2232 {
2233 /* The second argument is always the text address at which
2234 to load the program. */
2235 sect_opt sect = { ".text", arg };
2236 sect_opts.push_back (sect);
2237 }
2238 else
2239 {
2240 /* It's an option (starting with '-') or it's an argument
2241 to an option. */
2242 if (expecting_sec_name)
2243 {
2244 sect_opt sect = { arg, NULL };
2245 sect_opts.push_back (sect);
2246 expecting_sec_name = 0;
2247 }
2248 else if (expecting_sec_addr)
2249 {
2250 sect_opts.back ().value = arg;
2251 expecting_sec_addr = 0;
2252 }
2253 else if (strcmp (arg, "-readnow") == 0)
2254 flags |= OBJF_READNOW;
2255 else if (strcmp (arg, "-s") == 0)
2256 {
2257 expecting_sec_name = 1;
2258 expecting_sec_addr = 1;
2259 }
2260 else
2261 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2262 " [-readnow] [-s <secname> <addr>]*"));
2263 }
2264 }
2265
2266 /* This command takes at least two arguments. The first one is a
2267 filename, and the second is the address where this file has been
2268 loaded. Abort now if this address hasn't been provided by the
2269 user. */
2270 if (sect_opts.empty ())
2271 error (_("The address where %s has been loaded is missing"),
2272 filename.get ());
2273
2274 /* Print the prompt for the query below. And save the arguments into
2275 a sect_addr_info structure to be passed around to other
2276 functions. We have to split this up into separate print
2277 statements because hex_string returns a local static
2278 string. */
2279
2280 printf_unfiltered (_("add symbol table from file \"%s\" at\n"),
2281 filename.get ());
2282 section_addrs = alloc_section_addr_info (sect_opts.size ());
2283 make_cleanup (xfree, section_addrs);
2284 for (sect_opt &sect : sect_opts)
2285 {
2286 CORE_ADDR addr;
2287 const char *val = sect.value;
2288 const char *sec = sect.name;
2289
2290 addr = parse_and_eval_address (val);
2291
2292 /* Here we store the section offsets in the order they were
2293 entered on the command line. */
2294 section_addrs->other[sec_num].name = (char *) sec;
2295 section_addrs->other[sec_num].addr = addr;
2296 printf_unfiltered ("\t%s_addr = %s\n", sec,
2297 paddress (gdbarch, addr));
2298 sec_num++;
2299
2300 /* The object's sections are initialized when a
2301 call is made to build_objfile_section_table (objfile).
2302 This happens in reread_symbols.
2303 At this point, we don't know what file type this is,
2304 so we can't determine what section names are valid. */
2305 }
2306 section_addrs->num_sections = sec_num;
2307
2308 if (from_tty && (!query ("%s", "")))
2309 error (_("Not confirmed."));
2310
2311 objf = symbol_file_add (filename.get (), add_flags, section_addrs, flags);
2312
2313 add_target_sections_of_objfile (objf);
2314
2315 /* Getting new symbols may change our opinion about what is
2316 frameless. */
2317 reinit_frame_cache ();
2318 do_cleanups (my_cleanups);
2319 }
2320 \f
2321
2322 /* This function removes a symbol file that was added via add-symbol-file. */
2323
2324 static void
2325 remove_symbol_file_command (const char *args, int from_tty)
2326 {
2327 struct objfile *objf = NULL;
2328 struct program_space *pspace = current_program_space;
2329
2330 dont_repeat ();
2331
2332 if (args == NULL)
2333 error (_("remove-symbol-file: no symbol file provided"));
2334
2335 gdb_argv argv (args);
2336
2337 if (strcmp (argv[0], "-a") == 0)
2338 {
2339 /* Interpret the next argument as an address. */
2340 CORE_ADDR addr;
2341
2342 if (argv[1] == NULL)
2343 error (_("Missing address argument"));
2344
2345 if (argv[2] != NULL)
2346 error (_("Junk after %s"), argv[1]);
2347
2348 addr = parse_and_eval_address (argv[1]);
2349
2350 ALL_OBJFILES (objf)
2351 {
2352 if ((objf->flags & OBJF_USERLOADED) != 0
2353 && (objf->flags & OBJF_SHARED) != 0
2354 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2355 break;
2356 }
2357 }
2358 else if (argv[0] != NULL)
2359 {
2360 /* Interpret the current argument as a file name. */
2361
2362 if (argv[1] != NULL)
2363 error (_("Junk after %s"), argv[0]);
2364
2365 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2366
2367 ALL_OBJFILES (objf)
2368 {
2369 if ((objf->flags & OBJF_USERLOADED) != 0
2370 && (objf->flags & OBJF_SHARED) != 0
2371 && objf->pspace == pspace
2372 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
2373 break;
2374 }
2375 }
2376
2377 if (objf == NULL)
2378 error (_("No symbol file found"));
2379
2380 if (from_tty
2381 && !query (_("Remove symbol table from file \"%s\"? "),
2382 objfile_name (objf)))
2383 error (_("Not confirmed."));
2384
2385 free_objfile (objf);
2386 clear_symtab_users (0);
2387 }
2388
2389 /* Re-read symbols if a symbol-file has changed. */
2390
2391 void
2392 reread_symbols (void)
2393 {
2394 struct objfile *objfile;
2395 long new_modtime;
2396 struct stat new_statbuf;
2397 int res;
2398 std::vector<struct objfile *> new_objfiles;
2399
2400 /* With the addition of shared libraries, this should be modified,
2401 the load time should be saved in the partial symbol tables, since
2402 different tables may come from different source files. FIXME.
2403 This routine should then walk down each partial symbol table
2404 and see if the symbol table that it originates from has been changed. */
2405
2406 for (objfile = object_files; objfile; objfile = objfile->next)
2407 {
2408 if (objfile->obfd == NULL)
2409 continue;
2410
2411 /* Separate debug objfiles are handled in the main objfile. */
2412 if (objfile->separate_debug_objfile_backlink)
2413 continue;
2414
2415 /* If this object is from an archive (what you usually create with
2416 `ar', often called a `static library' on most systems, though
2417 a `shared library' on AIX is also an archive), then you should
2418 stat on the archive name, not member name. */
2419 if (objfile->obfd->my_archive)
2420 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2421 else
2422 res = stat (objfile_name (objfile), &new_statbuf);
2423 if (res != 0)
2424 {
2425 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2426 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2427 objfile_name (objfile));
2428 continue;
2429 }
2430 new_modtime = new_statbuf.st_mtime;
2431 if (new_modtime != objfile->mtime)
2432 {
2433 struct cleanup *old_cleanups;
2434 struct section_offsets *offsets;
2435 int num_offsets;
2436 char *original_name;
2437
2438 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2439 objfile_name (objfile));
2440
2441 /* There are various functions like symbol_file_add,
2442 symfile_bfd_open, syms_from_objfile, etc., which might
2443 appear to do what we want. But they have various other
2444 effects which we *don't* want. So we just do stuff
2445 ourselves. We don't worry about mapped files (for one thing,
2446 any mapped file will be out of date). */
2447
2448 /* If we get an error, blow away this objfile (not sure if
2449 that is the correct response for things like shared
2450 libraries). */
2451 old_cleanups = make_cleanup_free_objfile (objfile);
2452 /* We need to do this whenever any symbols go away. */
2453 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2454
2455 if (exec_bfd != NULL
2456 && filename_cmp (bfd_get_filename (objfile->obfd),
2457 bfd_get_filename (exec_bfd)) == 0)
2458 {
2459 /* Reload EXEC_BFD without asking anything. */
2460
2461 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2462 }
2463
2464 /* Keep the calls order approx. the same as in free_objfile. */
2465
2466 /* Free the separate debug objfiles. It will be
2467 automatically recreated by sym_read. */
2468 free_objfile_separate_debug (objfile);
2469
2470 /* Remove any references to this objfile in the global
2471 value lists. */
2472 preserve_values (objfile);
2473
2474 /* Nuke all the state that we will re-read. Much of the following
2475 code which sets things to NULL really is necessary to tell
2476 other parts of GDB that there is nothing currently there.
2477
2478 Try to keep the freeing order compatible with free_objfile. */
2479
2480 if (objfile->sf != NULL)
2481 {
2482 (*objfile->sf->sym_finish) (objfile);
2483 }
2484
2485 clear_objfile_data (objfile);
2486
2487 /* Clean up any state BFD has sitting around. */
2488 {
2489 gdb_bfd_ref_ptr obfd (objfile->obfd);
2490 char *obfd_filename;
2491
2492 obfd_filename = bfd_get_filename (objfile->obfd);
2493 /* Open the new BFD before freeing the old one, so that
2494 the filename remains live. */
2495 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2496 objfile->obfd = temp.release ();
2497 if (objfile->obfd == NULL)
2498 error (_("Can't open %s to read symbols."), obfd_filename);
2499 }
2500
2501 original_name = xstrdup (objfile->original_name);
2502 make_cleanup (xfree, original_name);
2503
2504 /* bfd_openr sets cacheable to true, which is what we want. */
2505 if (!bfd_check_format (objfile->obfd, bfd_object))
2506 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2507 bfd_errmsg (bfd_get_error ()));
2508
2509 /* Save the offsets, we will nuke them with the rest of the
2510 objfile_obstack. */
2511 num_offsets = objfile->num_sections;
2512 offsets = ((struct section_offsets *)
2513 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2514 memcpy (offsets, objfile->section_offsets,
2515 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2516
2517 /* FIXME: Do we have to free a whole linked list, or is this
2518 enough? */
2519 if (objfile->global_psymbols.list)
2520 xfree (objfile->global_psymbols.list);
2521 memset (&objfile->global_psymbols, 0,
2522 sizeof (objfile->global_psymbols));
2523 if (objfile->static_psymbols.list)
2524 xfree (objfile->static_psymbols.list);
2525 memset (&objfile->static_psymbols, 0,
2526 sizeof (objfile->static_psymbols));
2527
2528 /* Free the obstacks for non-reusable objfiles. */
2529 psymbol_bcache_free (objfile->psymbol_cache);
2530 objfile->psymbol_cache = psymbol_bcache_init ();
2531
2532 /* NB: after this call to obstack_free, objfiles_changed
2533 will need to be called (see discussion below). */
2534 obstack_free (&objfile->objfile_obstack, 0);
2535 objfile->sections = NULL;
2536 objfile->compunit_symtabs = NULL;
2537 objfile->psymtabs = NULL;
2538 objfile->psymtabs_addrmap = NULL;
2539 objfile->free_psymtabs = NULL;
2540 objfile->template_symbols = NULL;
2541
2542 /* obstack_init also initializes the obstack so it is
2543 empty. We could use obstack_specify_allocation but
2544 gdb_obstack.h specifies the alloc/dealloc functions. */
2545 obstack_init (&objfile->objfile_obstack);
2546
2547 /* set_objfile_per_bfd potentially allocates the per-bfd
2548 data on the objfile's obstack (if sharing data across
2549 multiple users is not possible), so it's important to
2550 do it *after* the obstack has been initialized. */
2551 set_objfile_per_bfd (objfile);
2552
2553 objfile->original_name
2554 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2555 strlen (original_name));
2556
2557 /* Reset the sym_fns pointer. The ELF reader can change it
2558 based on whether .gdb_index is present, and we need it to
2559 start over. PR symtab/15885 */
2560 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2561
2562 build_objfile_section_table (objfile);
2563 terminate_minimal_symbol_table (objfile);
2564
2565 /* We use the same section offsets as from last time. I'm not
2566 sure whether that is always correct for shared libraries. */
2567 objfile->section_offsets = (struct section_offsets *)
2568 obstack_alloc (&objfile->objfile_obstack,
2569 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2570 memcpy (objfile->section_offsets, offsets,
2571 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2572 objfile->num_sections = num_offsets;
2573
2574 /* What the hell is sym_new_init for, anyway? The concept of
2575 distinguishing between the main file and additional files
2576 in this way seems rather dubious. */
2577 if (objfile == symfile_objfile)
2578 {
2579 (*objfile->sf->sym_new_init) (objfile);
2580 }
2581
2582 (*objfile->sf->sym_init) (objfile);
2583 clear_complaints (&symfile_complaints, 1, 1);
2584
2585 objfile->flags &= ~OBJF_PSYMTABS_READ;
2586
2587 /* We are about to read new symbols and potentially also
2588 DWARF information. Some targets may want to pass addresses
2589 read from DWARF DIE's through an adjustment function before
2590 saving them, like MIPS, which may call into
2591 "find_pc_section". When called, that function will make
2592 use of per-objfile program space data.
2593
2594 Since we discarded our section information above, we have
2595 dangling pointers in the per-objfile program space data
2596 structure. Force GDB to update the section mapping
2597 information by letting it know the objfile has changed,
2598 making the dangling pointers point to correct data
2599 again. */
2600
2601 objfiles_changed ();
2602
2603 read_symbols (objfile, 0);
2604
2605 if (!objfile_has_symbols (objfile))
2606 {
2607 wrap_here ("");
2608 printf_unfiltered (_("(no debugging symbols found)\n"));
2609 wrap_here ("");
2610 }
2611
2612 /* We're done reading the symbol file; finish off complaints. */
2613 clear_complaints (&symfile_complaints, 0, 1);
2614
2615 /* Getting new symbols may change our opinion about what is
2616 frameless. */
2617
2618 reinit_frame_cache ();
2619
2620 /* Discard cleanups as symbol reading was successful. */
2621 discard_cleanups (old_cleanups);
2622
2623 /* If the mtime has changed between the time we set new_modtime
2624 and now, we *want* this to be out of date, so don't call stat
2625 again now. */
2626 objfile->mtime = new_modtime;
2627 init_entry_point_info (objfile);
2628
2629 new_objfiles.push_back (objfile);
2630 }
2631 }
2632
2633 if (!new_objfiles.empty ())
2634 {
2635 clear_symtab_users (0);
2636
2637 /* clear_objfile_data for each objfile was called before freeing it and
2638 observer_notify_new_objfile (NULL) has been called by
2639 clear_symtab_users above. Notify the new files now. */
2640 for (auto iter : new_objfiles)
2641 observer_notify_new_objfile (iter);
2642
2643 /* At least one objfile has changed, so we can consider that
2644 the executable we're debugging has changed too. */
2645 observer_notify_executable_changed ();
2646 }
2647 }
2648 \f
2649
2650 typedef struct
2651 {
2652 char *ext;
2653 enum language lang;
2654 } filename_language;
2655
2656 DEF_VEC_O (filename_language);
2657
2658 static VEC (filename_language) *filename_language_table;
2659
2660 /* See symfile.h. */
2661
2662 void
2663 add_filename_language (const char *ext, enum language lang)
2664 {
2665 filename_language entry;
2666
2667 entry.ext = xstrdup (ext);
2668 entry.lang = lang;
2669
2670 VEC_safe_push (filename_language, filename_language_table, &entry);
2671 }
2672
2673 static char *ext_args;
2674 static void
2675 show_ext_args (struct ui_file *file, int from_tty,
2676 struct cmd_list_element *c, const char *value)
2677 {
2678 fprintf_filtered (file,
2679 _("Mapping between filename extension "
2680 "and source language is \"%s\".\n"),
2681 value);
2682 }
2683
2684 static void
2685 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2686 {
2687 int i;
2688 char *cp = ext_args;
2689 enum language lang;
2690 filename_language *entry;
2691
2692 /* First arg is filename extension, starting with '.' */
2693 if (*cp != '.')
2694 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2695
2696 /* Find end of first arg. */
2697 while (*cp && !isspace (*cp))
2698 cp++;
2699
2700 if (*cp == '\0')
2701 error (_("'%s': two arguments required -- "
2702 "filename extension and language"),
2703 ext_args);
2704
2705 /* Null-terminate first arg. */
2706 *cp++ = '\0';
2707
2708 /* Find beginning of second arg, which should be a source language. */
2709 cp = skip_spaces (cp);
2710
2711 if (*cp == '\0')
2712 error (_("'%s': two arguments required -- "
2713 "filename extension and language"),
2714 ext_args);
2715
2716 /* Lookup the language from among those we know. */
2717 lang = language_enum (cp);
2718
2719 /* Now lookup the filename extension: do we already know it? */
2720 for (i = 0;
2721 VEC_iterate (filename_language, filename_language_table, i, entry);
2722 ++i)
2723 {
2724 if (0 == strcmp (ext_args, entry->ext))
2725 break;
2726 }
2727
2728 if (entry == NULL)
2729 {
2730 /* New file extension. */
2731 add_filename_language (ext_args, lang);
2732 }
2733 else
2734 {
2735 /* Redefining a previously known filename extension. */
2736
2737 /* if (from_tty) */
2738 /* query ("Really make files of type %s '%s'?", */
2739 /* ext_args, language_str (lang)); */
2740
2741 xfree (entry->ext);
2742 entry->ext = xstrdup (ext_args);
2743 entry->lang = lang;
2744 }
2745 }
2746
2747 static void
2748 info_ext_lang_command (char *args, int from_tty)
2749 {
2750 int i;
2751 filename_language *entry;
2752
2753 printf_filtered (_("Filename extensions and the languages they represent:"));
2754 printf_filtered ("\n\n");
2755 for (i = 0;
2756 VEC_iterate (filename_language, filename_language_table, i, entry);
2757 ++i)
2758 printf_filtered ("\t%s\t- %s\n", entry->ext, language_str (entry->lang));
2759 }
2760
2761 enum language
2762 deduce_language_from_filename (const char *filename)
2763 {
2764 int i;
2765 const char *cp;
2766
2767 if (filename != NULL)
2768 if ((cp = strrchr (filename, '.')) != NULL)
2769 {
2770 filename_language *entry;
2771
2772 for (i = 0;
2773 VEC_iterate (filename_language, filename_language_table, i, entry);
2774 ++i)
2775 if (strcmp (cp, entry->ext) == 0)
2776 return entry->lang;
2777 }
2778
2779 return language_unknown;
2780 }
2781 \f
2782 /* Allocate and initialize a new symbol table.
2783 CUST is from the result of allocate_compunit_symtab. */
2784
2785 struct symtab *
2786 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2787 {
2788 struct objfile *objfile = cust->objfile;
2789 struct symtab *symtab
2790 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2791
2792 symtab->filename
2793 = (const char *) bcache (filename, strlen (filename) + 1,
2794 objfile->per_bfd->filename_cache);
2795 symtab->fullname = NULL;
2796 symtab->language = deduce_language_from_filename (filename);
2797
2798 /* This can be very verbose with lots of headers.
2799 Only print at higher debug levels. */
2800 if (symtab_create_debug >= 2)
2801 {
2802 /* Be a bit clever with debugging messages, and don't print objfile
2803 every time, only when it changes. */
2804 static char *last_objfile_name = NULL;
2805
2806 if (last_objfile_name == NULL
2807 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2808 {
2809 xfree (last_objfile_name);
2810 last_objfile_name = xstrdup (objfile_name (objfile));
2811 fprintf_unfiltered (gdb_stdlog,
2812 "Creating one or more symtabs for objfile %s ...\n",
2813 last_objfile_name);
2814 }
2815 fprintf_unfiltered (gdb_stdlog,
2816 "Created symtab %s for module %s.\n",
2817 host_address_to_string (symtab), filename);
2818 }
2819
2820 /* Add it to CUST's list of symtabs. */
2821 if (cust->filetabs == NULL)
2822 {
2823 cust->filetabs = symtab;
2824 cust->last_filetab = symtab;
2825 }
2826 else
2827 {
2828 cust->last_filetab->next = symtab;
2829 cust->last_filetab = symtab;
2830 }
2831
2832 /* Backlink to the containing compunit symtab. */
2833 symtab->compunit_symtab = cust;
2834
2835 return symtab;
2836 }
2837
2838 /* Allocate and initialize a new compunit.
2839 NAME is the name of the main source file, if there is one, or some
2840 descriptive text if there are no source files. */
2841
2842 struct compunit_symtab *
2843 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2844 {
2845 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2846 struct compunit_symtab);
2847 const char *saved_name;
2848
2849 cu->objfile = objfile;
2850
2851 /* The name we record here is only for display/debugging purposes.
2852 Just save the basename to avoid path issues (too long for display,
2853 relative vs absolute, etc.). */
2854 saved_name = lbasename (name);
2855 cu->name
2856 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2857 strlen (saved_name));
2858
2859 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2860
2861 if (symtab_create_debug)
2862 {
2863 fprintf_unfiltered (gdb_stdlog,
2864 "Created compunit symtab %s for %s.\n",
2865 host_address_to_string (cu),
2866 cu->name);
2867 }
2868
2869 return cu;
2870 }
2871
2872 /* Hook CU to the objfile it comes from. */
2873
2874 void
2875 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2876 {
2877 cu->next = cu->objfile->compunit_symtabs;
2878 cu->objfile->compunit_symtabs = cu;
2879 }
2880 \f
2881
2882 /* Reset all data structures in gdb which may contain references to
2883 symbol table data. */
2884
2885 void
2886 clear_symtab_users (symfile_add_flags add_flags)
2887 {
2888 /* Someday, we should do better than this, by only blowing away
2889 the things that really need to be blown. */
2890
2891 /* Clear the "current" symtab first, because it is no longer valid.
2892 breakpoint_re_set may try to access the current symtab. */
2893 clear_current_source_symtab_and_line ();
2894
2895 clear_displays ();
2896 clear_last_displayed_sal ();
2897 clear_pc_function_cache ();
2898 observer_notify_new_objfile (NULL);
2899
2900 /* Clear globals which might have pointed into a removed objfile.
2901 FIXME: It's not clear which of these are supposed to persist
2902 between expressions and which ought to be reset each time. */
2903 expression_context_block = NULL;
2904 innermost_block = NULL;
2905
2906 /* Varobj may refer to old symbols, perform a cleanup. */
2907 varobj_invalidate ();
2908
2909 /* Now that the various caches have been cleared, we can re_set
2910 our breakpoints without risking it using stale data. */
2911 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2912 breakpoint_re_set ();
2913 }
2914
2915 static void
2916 clear_symtab_users_cleanup (void *ignore)
2917 {
2918 clear_symtab_users (0);
2919 }
2920 \f
2921 /* OVERLAYS:
2922 The following code implements an abstraction for debugging overlay sections.
2923
2924 The target model is as follows:
2925 1) The gnu linker will permit multiple sections to be mapped into the
2926 same VMA, each with its own unique LMA (or load address).
2927 2) It is assumed that some runtime mechanism exists for mapping the
2928 sections, one by one, from the load address into the VMA address.
2929 3) This code provides a mechanism for gdb to keep track of which
2930 sections should be considered to be mapped from the VMA to the LMA.
2931 This information is used for symbol lookup, and memory read/write.
2932 For instance, if a section has been mapped then its contents
2933 should be read from the VMA, otherwise from the LMA.
2934
2935 Two levels of debugger support for overlays are available. One is
2936 "manual", in which the debugger relies on the user to tell it which
2937 overlays are currently mapped. This level of support is
2938 implemented entirely in the core debugger, and the information about
2939 whether a section is mapped is kept in the objfile->obj_section table.
2940
2941 The second level of support is "automatic", and is only available if
2942 the target-specific code provides functionality to read the target's
2943 overlay mapping table, and translate its contents for the debugger
2944 (by updating the mapped state information in the obj_section tables).
2945
2946 The interface is as follows:
2947 User commands:
2948 overlay map <name> -- tell gdb to consider this section mapped
2949 overlay unmap <name> -- tell gdb to consider this section unmapped
2950 overlay list -- list the sections that GDB thinks are mapped
2951 overlay read-target -- get the target's state of what's mapped
2952 overlay off/manual/auto -- set overlay debugging state
2953 Functional interface:
2954 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2955 section, return that section.
2956 find_pc_overlay(pc): find any overlay section that contains
2957 the pc, either in its VMA or its LMA
2958 section_is_mapped(sect): true if overlay is marked as mapped
2959 section_is_overlay(sect): true if section's VMA != LMA
2960 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2961 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2962 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2963 overlay_mapped_address(...): map an address from section's LMA to VMA
2964 overlay_unmapped_address(...): map an address from section's VMA to LMA
2965 symbol_overlayed_address(...): Return a "current" address for symbol:
2966 either in VMA or LMA depending on whether
2967 the symbol's section is currently mapped. */
2968
2969 /* Overlay debugging state: */
2970
2971 enum overlay_debugging_state overlay_debugging = ovly_off;
2972 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2973
2974 /* Function: section_is_overlay (SECTION)
2975 Returns true if SECTION has VMA not equal to LMA, ie.
2976 SECTION is loaded at an address different from where it will "run". */
2977
2978 int
2979 section_is_overlay (struct obj_section *section)
2980 {
2981 if (overlay_debugging && section)
2982 {
2983 bfd *abfd = section->objfile->obfd;
2984 asection *bfd_section = section->the_bfd_section;
2985
2986 if (bfd_section_lma (abfd, bfd_section) != 0
2987 && bfd_section_lma (abfd, bfd_section)
2988 != bfd_section_vma (abfd, bfd_section))
2989 return 1;
2990 }
2991
2992 return 0;
2993 }
2994
2995 /* Function: overlay_invalidate_all (void)
2996 Invalidate the mapped state of all overlay sections (mark it as stale). */
2997
2998 static void
2999 overlay_invalidate_all (void)
3000 {
3001 struct objfile *objfile;
3002 struct obj_section *sect;
3003
3004 ALL_OBJSECTIONS (objfile, sect)
3005 if (section_is_overlay (sect))
3006 sect->ovly_mapped = -1;
3007 }
3008
3009 /* Function: section_is_mapped (SECTION)
3010 Returns true if section is an overlay, and is currently mapped.
3011
3012 Access to the ovly_mapped flag is restricted to this function, so
3013 that we can do automatic update. If the global flag
3014 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3015 overlay_invalidate_all. If the mapped state of the particular
3016 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3017
3018 int
3019 section_is_mapped (struct obj_section *osect)
3020 {
3021 struct gdbarch *gdbarch;
3022
3023 if (osect == 0 || !section_is_overlay (osect))
3024 return 0;
3025
3026 switch (overlay_debugging)
3027 {
3028 default:
3029 case ovly_off:
3030 return 0; /* overlay debugging off */
3031 case ovly_auto: /* overlay debugging automatic */
3032 /* Unles there is a gdbarch_overlay_update function,
3033 there's really nothing useful to do here (can't really go auto). */
3034 gdbarch = get_objfile_arch (osect->objfile);
3035 if (gdbarch_overlay_update_p (gdbarch))
3036 {
3037 if (overlay_cache_invalid)
3038 {
3039 overlay_invalidate_all ();
3040 overlay_cache_invalid = 0;
3041 }
3042 if (osect->ovly_mapped == -1)
3043 gdbarch_overlay_update (gdbarch, osect);
3044 }
3045 /* fall thru to manual case */
3046 case ovly_on: /* overlay debugging manual */
3047 return osect->ovly_mapped == 1;
3048 }
3049 }
3050
3051 /* Function: pc_in_unmapped_range
3052 If PC falls into the lma range of SECTION, return true, else false. */
3053
3054 CORE_ADDR
3055 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3056 {
3057 if (section_is_overlay (section))
3058 {
3059 bfd *abfd = section->objfile->obfd;
3060 asection *bfd_section = section->the_bfd_section;
3061
3062 /* We assume the LMA is relocated by the same offset as the VMA. */
3063 bfd_vma size = bfd_get_section_size (bfd_section);
3064 CORE_ADDR offset = obj_section_offset (section);
3065
3066 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3067 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3068 return 1;
3069 }
3070
3071 return 0;
3072 }
3073
3074 /* Function: pc_in_mapped_range
3075 If PC falls into the vma range of SECTION, return true, else false. */
3076
3077 CORE_ADDR
3078 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3079 {
3080 if (section_is_overlay (section))
3081 {
3082 if (obj_section_addr (section) <= pc
3083 && pc < obj_section_endaddr (section))
3084 return 1;
3085 }
3086
3087 return 0;
3088 }
3089
3090 /* Return true if the mapped ranges of sections A and B overlap, false
3091 otherwise. */
3092
3093 static int
3094 sections_overlap (struct obj_section *a, struct obj_section *b)
3095 {
3096 CORE_ADDR a_start = obj_section_addr (a);
3097 CORE_ADDR a_end = obj_section_endaddr (a);
3098 CORE_ADDR b_start = obj_section_addr (b);
3099 CORE_ADDR b_end = obj_section_endaddr (b);
3100
3101 return (a_start < b_end && b_start < a_end);
3102 }
3103
3104 /* Function: overlay_unmapped_address (PC, SECTION)
3105 Returns the address corresponding to PC in the unmapped (load) range.
3106 May be the same as PC. */
3107
3108 CORE_ADDR
3109 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3110 {
3111 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3112 {
3113 bfd *abfd = section->objfile->obfd;
3114 asection *bfd_section = section->the_bfd_section;
3115
3116 return pc + bfd_section_lma (abfd, bfd_section)
3117 - bfd_section_vma (abfd, bfd_section);
3118 }
3119
3120 return pc;
3121 }
3122
3123 /* Function: overlay_mapped_address (PC, SECTION)
3124 Returns the address corresponding to PC in the mapped (runtime) range.
3125 May be the same as PC. */
3126
3127 CORE_ADDR
3128 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3129 {
3130 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3131 {
3132 bfd *abfd = section->objfile->obfd;
3133 asection *bfd_section = section->the_bfd_section;
3134
3135 return pc + bfd_section_vma (abfd, bfd_section)
3136 - bfd_section_lma (abfd, bfd_section);
3137 }
3138
3139 return pc;
3140 }
3141
3142 /* Function: symbol_overlayed_address
3143 Return one of two addresses (relative to the VMA or to the LMA),
3144 depending on whether the section is mapped or not. */
3145
3146 CORE_ADDR
3147 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3148 {
3149 if (overlay_debugging)
3150 {
3151 /* If the symbol has no section, just return its regular address. */
3152 if (section == 0)
3153 return address;
3154 /* If the symbol's section is not an overlay, just return its
3155 address. */
3156 if (!section_is_overlay (section))
3157 return address;
3158 /* If the symbol's section is mapped, just return its address. */
3159 if (section_is_mapped (section))
3160 return address;
3161 /*
3162 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3163 * then return its LOADED address rather than its vma address!!
3164 */
3165 return overlay_unmapped_address (address, section);
3166 }
3167 return address;
3168 }
3169
3170 /* Function: find_pc_overlay (PC)
3171 Return the best-match overlay section for PC:
3172 If PC matches a mapped overlay section's VMA, return that section.
3173 Else if PC matches an unmapped section's VMA, return that section.
3174 Else if PC matches an unmapped section's LMA, return that section. */
3175
3176 struct obj_section *
3177 find_pc_overlay (CORE_ADDR pc)
3178 {
3179 struct objfile *objfile;
3180 struct obj_section *osect, *best_match = NULL;
3181
3182 if (overlay_debugging)
3183 {
3184 ALL_OBJSECTIONS (objfile, osect)
3185 if (section_is_overlay (osect))
3186 {
3187 if (pc_in_mapped_range (pc, osect))
3188 {
3189 if (section_is_mapped (osect))
3190 return osect;
3191 else
3192 best_match = osect;
3193 }
3194 else if (pc_in_unmapped_range (pc, osect))
3195 best_match = osect;
3196 }
3197 }
3198 return best_match;
3199 }
3200
3201 /* Function: find_pc_mapped_section (PC)
3202 If PC falls into the VMA address range of an overlay section that is
3203 currently marked as MAPPED, return that section. Else return NULL. */
3204
3205 struct obj_section *
3206 find_pc_mapped_section (CORE_ADDR pc)
3207 {
3208 struct objfile *objfile;
3209 struct obj_section *osect;
3210
3211 if (overlay_debugging)
3212 {
3213 ALL_OBJSECTIONS (objfile, osect)
3214 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3215 return osect;
3216 }
3217
3218 return NULL;
3219 }
3220
3221 /* Function: list_overlays_command
3222 Print a list of mapped sections and their PC ranges. */
3223
3224 static void
3225 list_overlays_command (const char *args, int from_tty)
3226 {
3227 int nmapped = 0;
3228 struct objfile *objfile;
3229 struct obj_section *osect;
3230
3231 if (overlay_debugging)
3232 {
3233 ALL_OBJSECTIONS (objfile, osect)
3234 if (section_is_mapped (osect))
3235 {
3236 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3237 const char *name;
3238 bfd_vma lma, vma;
3239 int size;
3240
3241 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3242 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3243 size = bfd_get_section_size (osect->the_bfd_section);
3244 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3245
3246 printf_filtered ("Section %s, loaded at ", name);
3247 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3248 puts_filtered (" - ");
3249 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3250 printf_filtered (", mapped at ");
3251 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3252 puts_filtered (" - ");
3253 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3254 puts_filtered ("\n");
3255
3256 nmapped++;
3257 }
3258 }
3259 if (nmapped == 0)
3260 printf_filtered (_("No sections are mapped.\n"));
3261 }
3262
3263 /* Function: map_overlay_command
3264 Mark the named section as mapped (ie. residing at its VMA address). */
3265
3266 static void
3267 map_overlay_command (const char *args, int from_tty)
3268 {
3269 struct objfile *objfile, *objfile2;
3270 struct obj_section *sec, *sec2;
3271
3272 if (!overlay_debugging)
3273 error (_("Overlay debugging not enabled. Use "
3274 "either the 'overlay auto' or\n"
3275 "the 'overlay manual' command."));
3276
3277 if (args == 0 || *args == 0)
3278 error (_("Argument required: name of an overlay section"));
3279
3280 /* First, find a section matching the user supplied argument. */
3281 ALL_OBJSECTIONS (objfile, sec)
3282 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3283 {
3284 /* Now, check to see if the section is an overlay. */
3285 if (!section_is_overlay (sec))
3286 continue; /* not an overlay section */
3287
3288 /* Mark the overlay as "mapped". */
3289 sec->ovly_mapped = 1;
3290
3291 /* Next, make a pass and unmap any sections that are
3292 overlapped by this new section: */
3293 ALL_OBJSECTIONS (objfile2, sec2)
3294 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3295 {
3296 if (info_verbose)
3297 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3298 bfd_section_name (objfile->obfd,
3299 sec2->the_bfd_section));
3300 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3301 }
3302 return;
3303 }
3304 error (_("No overlay section called %s"), args);
3305 }
3306
3307 /* Function: unmap_overlay_command
3308 Mark the overlay section as unmapped
3309 (ie. resident in its LMA address range, rather than the VMA range). */
3310
3311 static void
3312 unmap_overlay_command (const char *args, int from_tty)
3313 {
3314 struct objfile *objfile;
3315 struct obj_section *sec = NULL;
3316
3317 if (!overlay_debugging)
3318 error (_("Overlay debugging not enabled. "
3319 "Use either the 'overlay auto' or\n"
3320 "the 'overlay manual' command."));
3321
3322 if (args == 0 || *args == 0)
3323 error (_("Argument required: name of an overlay section"));
3324
3325 /* First, find a section matching the user supplied argument. */
3326 ALL_OBJSECTIONS (objfile, sec)
3327 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3328 {
3329 if (!sec->ovly_mapped)
3330 error (_("Section %s is not mapped"), args);
3331 sec->ovly_mapped = 0;
3332 return;
3333 }
3334 error (_("No overlay section called %s"), args);
3335 }
3336
3337 /* Function: overlay_auto_command
3338 A utility command to turn on overlay debugging.
3339 Possibly this should be done via a set/show command. */
3340
3341 static void
3342 overlay_auto_command (const char *args, int from_tty)
3343 {
3344 overlay_debugging = ovly_auto;
3345 enable_overlay_breakpoints ();
3346 if (info_verbose)
3347 printf_unfiltered (_("Automatic overlay debugging enabled."));
3348 }
3349
3350 /* Function: overlay_manual_command
3351 A utility command to turn on overlay debugging.
3352 Possibly this should be done via a set/show command. */
3353
3354 static void
3355 overlay_manual_command (const char *args, int from_tty)
3356 {
3357 overlay_debugging = ovly_on;
3358 disable_overlay_breakpoints ();
3359 if (info_verbose)
3360 printf_unfiltered (_("Overlay debugging enabled."));
3361 }
3362
3363 /* Function: overlay_off_command
3364 A utility command to turn on overlay debugging.
3365 Possibly this should be done via a set/show command. */
3366
3367 static void
3368 overlay_off_command (const char *args, int from_tty)
3369 {
3370 overlay_debugging = ovly_off;
3371 disable_overlay_breakpoints ();
3372 if (info_verbose)
3373 printf_unfiltered (_("Overlay debugging disabled."));
3374 }
3375
3376 static void
3377 overlay_load_command (const char *args, int from_tty)
3378 {
3379 struct gdbarch *gdbarch = get_current_arch ();
3380
3381 if (gdbarch_overlay_update_p (gdbarch))
3382 gdbarch_overlay_update (gdbarch, NULL);
3383 else
3384 error (_("This target does not know how to read its overlay state."));
3385 }
3386
3387 /* Function: overlay_command
3388 A place-holder for a mis-typed command. */
3389
3390 /* Command list chain containing all defined "overlay" subcommands. */
3391 static struct cmd_list_element *overlaylist;
3392
3393 static void
3394 overlay_command (char *args, int from_tty)
3395 {
3396 printf_unfiltered
3397 ("\"overlay\" must be followed by the name of an overlay command.\n");
3398 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3399 }
3400
3401 /* Target Overlays for the "Simplest" overlay manager:
3402
3403 This is GDB's default target overlay layer. It works with the
3404 minimal overlay manager supplied as an example by Cygnus. The
3405 entry point is via a function pointer "gdbarch_overlay_update",
3406 so targets that use a different runtime overlay manager can
3407 substitute their own overlay_update function and take over the
3408 function pointer.
3409
3410 The overlay_update function pokes around in the target's data structures
3411 to see what overlays are mapped, and updates GDB's overlay mapping with
3412 this information.
3413
3414 In this simple implementation, the target data structures are as follows:
3415 unsigned _novlys; /# number of overlay sections #/
3416 unsigned _ovly_table[_novlys][4] = {
3417 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3418 {..., ..., ..., ...},
3419 }
3420 unsigned _novly_regions; /# number of overlay regions #/
3421 unsigned _ovly_region_table[_novly_regions][3] = {
3422 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3423 {..., ..., ...},
3424 }
3425 These functions will attempt to update GDB's mappedness state in the
3426 symbol section table, based on the target's mappedness state.
3427
3428 To do this, we keep a cached copy of the target's _ovly_table, and
3429 attempt to detect when the cached copy is invalidated. The main
3430 entry point is "simple_overlay_update(SECT), which looks up SECT in
3431 the cached table and re-reads only the entry for that section from
3432 the target (whenever possible). */
3433
3434 /* Cached, dynamically allocated copies of the target data structures: */
3435 static unsigned (*cache_ovly_table)[4] = 0;
3436 static unsigned cache_novlys = 0;
3437 static CORE_ADDR cache_ovly_table_base = 0;
3438 enum ovly_index
3439 {
3440 VMA, OSIZE, LMA, MAPPED
3441 };
3442
3443 /* Throw away the cached copy of _ovly_table. */
3444
3445 static void
3446 simple_free_overlay_table (void)
3447 {
3448 if (cache_ovly_table)
3449 xfree (cache_ovly_table);
3450 cache_novlys = 0;
3451 cache_ovly_table = NULL;
3452 cache_ovly_table_base = 0;
3453 }
3454
3455 /* Read an array of ints of size SIZE from the target into a local buffer.
3456 Convert to host order. int LEN is number of ints. */
3457
3458 static void
3459 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3460 int len, int size, enum bfd_endian byte_order)
3461 {
3462 /* FIXME (alloca): Not safe if array is very large. */
3463 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3464 int i;
3465
3466 read_memory (memaddr, buf, len * size);
3467 for (i = 0; i < len; i++)
3468 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3469 }
3470
3471 /* Find and grab a copy of the target _ovly_table
3472 (and _novlys, which is needed for the table's size). */
3473
3474 static int
3475 simple_read_overlay_table (void)
3476 {
3477 struct bound_minimal_symbol novlys_msym;
3478 struct bound_minimal_symbol ovly_table_msym;
3479 struct gdbarch *gdbarch;
3480 int word_size;
3481 enum bfd_endian byte_order;
3482
3483 simple_free_overlay_table ();
3484 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3485 if (! novlys_msym.minsym)
3486 {
3487 error (_("Error reading inferior's overlay table: "
3488 "couldn't find `_novlys' variable\n"
3489 "in inferior. Use `overlay manual' mode."));
3490 return 0;
3491 }
3492
3493 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3494 if (! ovly_table_msym.minsym)
3495 {
3496 error (_("Error reading inferior's overlay table: couldn't find "
3497 "`_ovly_table' array\n"
3498 "in inferior. Use `overlay manual' mode."));
3499 return 0;
3500 }
3501
3502 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3503 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3504 byte_order = gdbarch_byte_order (gdbarch);
3505
3506 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3507 4, byte_order);
3508 cache_ovly_table
3509 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3510 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3511 read_target_long_array (cache_ovly_table_base,
3512 (unsigned int *) cache_ovly_table,
3513 cache_novlys * 4, word_size, byte_order);
3514
3515 return 1; /* SUCCESS */
3516 }
3517
3518 /* Function: simple_overlay_update_1
3519 A helper function for simple_overlay_update. Assuming a cached copy
3520 of _ovly_table exists, look through it to find an entry whose vma,
3521 lma and size match those of OSECT. Re-read the entry and make sure
3522 it still matches OSECT (else the table may no longer be valid).
3523 Set OSECT's mapped state to match the entry. Return: 1 for
3524 success, 0 for failure. */
3525
3526 static int
3527 simple_overlay_update_1 (struct obj_section *osect)
3528 {
3529 int i;
3530 bfd *obfd = osect->objfile->obfd;
3531 asection *bsect = osect->the_bfd_section;
3532 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3533 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3534 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3535
3536 for (i = 0; i < cache_novlys; i++)
3537 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3538 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3539 {
3540 read_target_long_array (cache_ovly_table_base + i * word_size,
3541 (unsigned int *) cache_ovly_table[i],
3542 4, word_size, byte_order);
3543 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3544 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3545 {
3546 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3547 return 1;
3548 }
3549 else /* Warning! Warning! Target's ovly table has changed! */
3550 return 0;
3551 }
3552 return 0;
3553 }
3554
3555 /* Function: simple_overlay_update
3556 If OSECT is NULL, then update all sections' mapped state
3557 (after re-reading the entire target _ovly_table).
3558 If OSECT is non-NULL, then try to find a matching entry in the
3559 cached ovly_table and update only OSECT's mapped state.
3560 If a cached entry can't be found or the cache isn't valid, then
3561 re-read the entire cache, and go ahead and update all sections. */
3562
3563 void
3564 simple_overlay_update (struct obj_section *osect)
3565 {
3566 struct objfile *objfile;
3567
3568 /* Were we given an osect to look up? NULL means do all of them. */
3569 if (osect)
3570 /* Have we got a cached copy of the target's overlay table? */
3571 if (cache_ovly_table != NULL)
3572 {
3573 /* Does its cached location match what's currently in the
3574 symtab? */
3575 struct bound_minimal_symbol minsym
3576 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3577
3578 if (minsym.minsym == NULL)
3579 error (_("Error reading inferior's overlay table: couldn't "
3580 "find `_ovly_table' array\n"
3581 "in inferior. Use `overlay manual' mode."));
3582
3583 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3584 /* Then go ahead and try to look up this single section in
3585 the cache. */
3586 if (simple_overlay_update_1 (osect))
3587 /* Found it! We're done. */
3588 return;
3589 }
3590
3591 /* Cached table no good: need to read the entire table anew.
3592 Or else we want all the sections, in which case it's actually
3593 more efficient to read the whole table in one block anyway. */
3594
3595 if (! simple_read_overlay_table ())
3596 return;
3597
3598 /* Now may as well update all sections, even if only one was requested. */
3599 ALL_OBJSECTIONS (objfile, osect)
3600 if (section_is_overlay (osect))
3601 {
3602 int i;
3603 bfd *obfd = osect->objfile->obfd;
3604 asection *bsect = osect->the_bfd_section;
3605
3606 for (i = 0; i < cache_novlys; i++)
3607 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3608 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3609 { /* obj_section matches i'th entry in ovly_table. */
3610 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3611 break; /* finished with inner for loop: break out. */
3612 }
3613 }
3614 }
3615
3616 /* Set the output sections and output offsets for section SECTP in
3617 ABFD. The relocation code in BFD will read these offsets, so we
3618 need to be sure they're initialized. We map each section to itself,
3619 with no offset; this means that SECTP->vma will be honored. */
3620
3621 static void
3622 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3623 {
3624 sectp->output_section = sectp;
3625 sectp->output_offset = 0;
3626 }
3627
3628 /* Default implementation for sym_relocate. */
3629
3630 bfd_byte *
3631 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3632 bfd_byte *buf)
3633 {
3634 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3635 DWO file. */
3636 bfd *abfd = sectp->owner;
3637
3638 /* We're only interested in sections with relocation
3639 information. */
3640 if ((sectp->flags & SEC_RELOC) == 0)
3641 return NULL;
3642
3643 /* We will handle section offsets properly elsewhere, so relocate as if
3644 all sections begin at 0. */
3645 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3646
3647 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3648 }
3649
3650 /* Relocate the contents of a debug section SECTP in ABFD. The
3651 contents are stored in BUF if it is non-NULL, or returned in a
3652 malloc'd buffer otherwise.
3653
3654 For some platforms and debug info formats, shared libraries contain
3655 relocations against the debug sections (particularly for DWARF-2;
3656 one affected platform is PowerPC GNU/Linux, although it depends on
3657 the version of the linker in use). Also, ELF object files naturally
3658 have unresolved relocations for their debug sections. We need to apply
3659 the relocations in order to get the locations of symbols correct.
3660 Another example that may require relocation processing, is the
3661 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3662 debug section. */
3663
3664 bfd_byte *
3665 symfile_relocate_debug_section (struct objfile *objfile,
3666 asection *sectp, bfd_byte *buf)
3667 {
3668 gdb_assert (objfile->sf->sym_relocate);
3669
3670 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3671 }
3672
3673 struct symfile_segment_data *
3674 get_symfile_segment_data (bfd *abfd)
3675 {
3676 const struct sym_fns *sf = find_sym_fns (abfd);
3677
3678 if (sf == NULL)
3679 return NULL;
3680
3681 return sf->sym_segments (abfd);
3682 }
3683
3684 void
3685 free_symfile_segment_data (struct symfile_segment_data *data)
3686 {
3687 xfree (data->segment_bases);
3688 xfree (data->segment_sizes);
3689 xfree (data->segment_info);
3690 xfree (data);
3691 }
3692
3693 /* Given:
3694 - DATA, containing segment addresses from the object file ABFD, and
3695 the mapping from ABFD's sections onto the segments that own them,
3696 and
3697 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3698 segment addresses reported by the target,
3699 store the appropriate offsets for each section in OFFSETS.
3700
3701 If there are fewer entries in SEGMENT_BASES than there are segments
3702 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3703
3704 If there are more entries, then ignore the extra. The target may
3705 not be able to distinguish between an empty data segment and a
3706 missing data segment; a missing text segment is less plausible. */
3707
3708 int
3709 symfile_map_offsets_to_segments (bfd *abfd,
3710 const struct symfile_segment_data *data,
3711 struct section_offsets *offsets,
3712 int num_segment_bases,
3713 const CORE_ADDR *segment_bases)
3714 {
3715 int i;
3716 asection *sect;
3717
3718 /* It doesn't make sense to call this function unless you have some
3719 segment base addresses. */
3720 gdb_assert (num_segment_bases > 0);
3721
3722 /* If we do not have segment mappings for the object file, we
3723 can not relocate it by segments. */
3724 gdb_assert (data != NULL);
3725 gdb_assert (data->num_segments > 0);
3726
3727 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3728 {
3729 int which = data->segment_info[i];
3730
3731 gdb_assert (0 <= which && which <= data->num_segments);
3732
3733 /* Don't bother computing offsets for sections that aren't
3734 loaded as part of any segment. */
3735 if (! which)
3736 continue;
3737
3738 /* Use the last SEGMENT_BASES entry as the address of any extra
3739 segments mentioned in DATA->segment_info. */
3740 if (which > num_segment_bases)
3741 which = num_segment_bases;
3742
3743 offsets->offsets[i] = (segment_bases[which - 1]
3744 - data->segment_bases[which - 1]);
3745 }
3746
3747 return 1;
3748 }
3749
3750 static void
3751 symfile_find_segment_sections (struct objfile *objfile)
3752 {
3753 bfd *abfd = objfile->obfd;
3754 int i;
3755 asection *sect;
3756 struct symfile_segment_data *data;
3757
3758 data = get_symfile_segment_data (objfile->obfd);
3759 if (data == NULL)
3760 return;
3761
3762 if (data->num_segments != 1 && data->num_segments != 2)
3763 {
3764 free_symfile_segment_data (data);
3765 return;
3766 }
3767
3768 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3769 {
3770 int which = data->segment_info[i];
3771
3772 if (which == 1)
3773 {
3774 if (objfile->sect_index_text == -1)
3775 objfile->sect_index_text = sect->index;
3776
3777 if (objfile->sect_index_rodata == -1)
3778 objfile->sect_index_rodata = sect->index;
3779 }
3780 else if (which == 2)
3781 {
3782 if (objfile->sect_index_data == -1)
3783 objfile->sect_index_data = sect->index;
3784
3785 if (objfile->sect_index_bss == -1)
3786 objfile->sect_index_bss = sect->index;
3787 }
3788 }
3789
3790 free_symfile_segment_data (data);
3791 }
3792
3793 /* Listen for free_objfile events. */
3794
3795 static void
3796 symfile_free_objfile (struct objfile *objfile)
3797 {
3798 /* Remove the target sections owned by this objfile. */
3799 if (objfile != NULL)
3800 remove_target_sections ((void *) objfile);
3801 }
3802
3803 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3804 Expand all symtabs that match the specified criteria.
3805 See quick_symbol_functions.expand_symtabs_matching for details. */
3806
3807 void
3808 expand_symtabs_matching
3809 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3810 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3811 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3812 enum search_domain kind)
3813 {
3814 struct objfile *objfile;
3815
3816 ALL_OBJFILES (objfile)
3817 {
3818 if (objfile->sf)
3819 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3820 symbol_matcher,
3821 expansion_notify, kind);
3822 }
3823 }
3824
3825 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3826 Map function FUN over every file.
3827 See quick_symbol_functions.map_symbol_filenames for details. */
3828
3829 void
3830 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3831 int need_fullname)
3832 {
3833 struct objfile *objfile;
3834
3835 ALL_OBJFILES (objfile)
3836 {
3837 if (objfile->sf)
3838 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3839 need_fullname);
3840 }
3841 }
3842
3843 void
3844 _initialize_symfile (void)
3845 {
3846 struct cmd_list_element *c;
3847
3848 observer_attach_free_objfile (symfile_free_objfile);
3849
3850 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3851 Load symbol table from executable file FILE.\n\
3852 The `file' command can also load symbol tables, as well as setting the file\n\
3853 to execute."), &cmdlist);
3854 set_cmd_completer (c, filename_completer);
3855
3856 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3857 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3858 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3859 ...]\nADDR is the starting address of the file's text.\n\
3860 The optional arguments are section-name section-address pairs and\n\
3861 should be specified if the data and bss segments are not contiguous\n\
3862 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3863 &cmdlist);
3864 set_cmd_completer (c, filename_completer);
3865
3866 c = add_cmd ("remove-symbol-file", class_files,
3867 remove_symbol_file_command, _("\
3868 Remove a symbol file added via the add-symbol-file command.\n\
3869 Usage: remove-symbol-file FILENAME\n\
3870 remove-symbol-file -a ADDRESS\n\
3871 The file to remove can be identified by its filename or by an address\n\
3872 that lies within the boundaries of this symbol file in memory."),
3873 &cmdlist);
3874
3875 c = add_cmd ("load", class_files, load_command, _("\
3876 Dynamically load FILE into the running program, and record its symbols\n\
3877 for access from GDB.\n\
3878 An optional load OFFSET may also be given as a literal address.\n\
3879 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3880 on its own.\n\
3881 Usage: load [FILE] [OFFSET]"), &cmdlist);
3882 set_cmd_completer (c, filename_completer);
3883
3884 add_prefix_cmd ("overlay", class_support, overlay_command,
3885 _("Commands for debugging overlays."), &overlaylist,
3886 "overlay ", 0, &cmdlist);
3887
3888 add_com_alias ("ovly", "overlay", class_alias, 1);
3889 add_com_alias ("ov", "overlay", class_alias, 1);
3890
3891 add_cmd ("map-overlay", class_support, map_overlay_command,
3892 _("Assert that an overlay section is mapped."), &overlaylist);
3893
3894 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3895 _("Assert that an overlay section is unmapped."), &overlaylist);
3896
3897 add_cmd ("list-overlays", class_support, list_overlays_command,
3898 _("List mappings of overlay sections."), &overlaylist);
3899
3900 add_cmd ("manual", class_support, overlay_manual_command,
3901 _("Enable overlay debugging."), &overlaylist);
3902 add_cmd ("off", class_support, overlay_off_command,
3903 _("Disable overlay debugging."), &overlaylist);
3904 add_cmd ("auto", class_support, overlay_auto_command,
3905 _("Enable automatic overlay debugging."), &overlaylist);
3906 add_cmd ("load-target", class_support, overlay_load_command,
3907 _("Read the overlay mapping state from the target."), &overlaylist);
3908
3909 /* Filename extension to source language lookup table: */
3910 add_setshow_string_noescape_cmd ("extension-language", class_files,
3911 &ext_args, _("\
3912 Set mapping between filename extension and source language."), _("\
3913 Show mapping between filename extension and source language."), _("\
3914 Usage: set extension-language .foo bar"),
3915 set_ext_lang_command,
3916 show_ext_args,
3917 &setlist, &showlist);
3918
3919 add_info ("extensions", info_ext_lang_command,
3920 _("All filename extensions associated with a source language."));
3921
3922 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3923 &debug_file_directory, _("\
3924 Set the directories where separate debug symbols are searched for."), _("\
3925 Show the directories where separate debug symbols are searched for."), _("\
3926 Separate debug symbols are first searched for in the same\n\
3927 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3928 and lastly at the path of the directory of the binary with\n\
3929 each global debug-file-directory component prepended."),
3930 NULL,
3931 show_debug_file_directory,
3932 &setlist, &showlist);
3933
3934 add_setshow_enum_cmd ("symbol-loading", no_class,
3935 print_symbol_loading_enums, &print_symbol_loading,
3936 _("\
3937 Set printing of symbol loading messages."), _("\
3938 Show printing of symbol loading messages."), _("\
3939 off == turn all messages off\n\
3940 brief == print messages for the executable,\n\
3941 and brief messages for shared libraries\n\
3942 full == print messages for the executable,\n\
3943 and messages for each shared library."),
3944 NULL,
3945 NULL,
3946 &setprintlist, &showprintlist);
3947
3948 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3949 &separate_debug_file_debug, _("\
3950 Set printing of separate debug info file search debug."), _("\
3951 Show printing of separate debug info file search debug."), _("\
3952 When on, GDB prints the searched locations while looking for separate debug \
3953 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3954 }
This page took 0.109285 seconds and 5 git commands to generate.