* dsrec.c (load_srec, make_srec): Use bfd_get_section_size instead of
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h" /* for write_pc */
42 #include "filenames.h" /* for DOSish file names */
43 #include "gdb-stabs.h"
44 #include "gdb_obstack.h"
45 #include "completer.h"
46 #include "bcache.h"
47 #include "hashtab.h"
48 #include "readline/readline.h"
49 #include "gdb_assert.h"
50 #include "block.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include <time.h>
58
59 #ifndef O_BINARY
60 #define O_BINARY 0
61 #endif
62
63 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
64 void (*deprecated_show_load_progress) (const char *section,
65 unsigned long section_sent,
66 unsigned long section_size,
67 unsigned long total_sent,
68 unsigned long total_size);
69 void (*pre_add_symbol_hook) (const char *);
70 void (*post_add_symbol_hook) (void);
71 void (*deprecated_target_new_objfile_hook) (struct objfile *);
72
73 static void clear_symtab_users_cleanup (void *ignore);
74
75 /* Global variables owned by this file */
76 int readnow_symbol_files; /* Read full symbols immediately */
77
78 /* External variables and functions referenced. */
79
80 extern void report_transfer_performance (unsigned long, time_t, time_t);
81
82 /* Functions this file defines */
83
84 #if 0
85 static int simple_read_overlay_region_table (void);
86 static void simple_free_overlay_region_table (void);
87 #endif
88
89 static void set_initial_language (void);
90
91 static void load_command (char *, int);
92
93 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94
95 static void add_symbol_file_command (char *, int);
96
97 static void add_shared_symbol_files_command (char *, int);
98
99 static void reread_separate_symbols (struct objfile *objfile);
100
101 static void cashier_psymtab (struct partial_symtab *);
102
103 bfd *symfile_bfd_open (char *);
104
105 int get_section_index (struct objfile *, char *);
106
107 static void find_sym_fns (struct objfile *);
108
109 static void decrement_reading_symtab (void *);
110
111 static void overlay_invalidate_all (void);
112
113 static int overlay_is_mapped (struct obj_section *);
114
115 void list_overlays_command (char *, int);
116
117 void map_overlay_command (char *, int);
118
119 void unmap_overlay_command (char *, int);
120
121 static void overlay_auto_command (char *, int);
122
123 static void overlay_manual_command (char *, int);
124
125 static void overlay_off_command (char *, int);
126
127 static void overlay_load_command (char *, int);
128
129 static void overlay_command (char *, int);
130
131 static void simple_free_overlay_table (void);
132
133 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
134
135 static int simple_read_overlay_table (void);
136
137 static int simple_overlay_update_1 (struct obj_section *);
138
139 static void add_filename_language (char *ext, enum language lang);
140
141 static void set_ext_lang_command (char *args, int from_tty);
142
143 static void info_ext_lang_command (char *args, int from_tty);
144
145 static char *find_separate_debug_file (struct objfile *objfile);
146
147 static void init_filename_language_table (void);
148
149 void _initialize_symfile (void);
150
151 /* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155 static struct sym_fns *symtab_fns = NULL;
156
157 /* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160 #ifdef SYMBOL_RELOADING_DEFAULT
161 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162 #else
163 int symbol_reloading = 0;
164 #endif
165
166 /* If non-zero, shared library symbols will be added automatically
167 when the inferior is created, new libraries are loaded, or when
168 attaching to the inferior. This is almost always what users will
169 want to have happen; but for very large programs, the startup time
170 will be excessive, and so if this is a problem, the user can clear
171 this flag and then add the shared library symbols as needed. Note
172 that there is a potential for confusion, since if the shared
173 library symbols are not loaded, commands like "info fun" will *not*
174 report all the functions that are actually present. */
175
176 int auto_solib_add = 1;
177
178 /* For systems that support it, a threshold size in megabytes. If
179 automatically adding a new library's symbol table to those already
180 known to the debugger would cause the total shared library symbol
181 size to exceed this threshhold, then the shlib's symbols are not
182 added. The threshold is ignored if the user explicitly asks for a
183 shlib to be added, such as when using the "sharedlibrary"
184 command. */
185
186 int auto_solib_limit;
187 \f
188
189 /* This compares two partial symbols by names, using strcmp_iw_ordered
190 for the comparison. */
191
192 static int
193 compare_psymbols (const void *s1p, const void *s2p)
194 {
195 struct partial_symbol *const *s1 = s1p;
196 struct partial_symbol *const *s2 = s2p;
197
198 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
199 SYMBOL_SEARCH_NAME (*s2));
200 }
201
202 void
203 sort_pst_symbols (struct partial_symtab *pst)
204 {
205 /* Sort the global list; don't sort the static list */
206
207 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
208 pst->n_global_syms, sizeof (struct partial_symbol *),
209 compare_psymbols);
210 }
211
212 /* Make a null terminated copy of the string at PTR with SIZE characters in
213 the obstack pointed to by OBSTACKP . Returns the address of the copy.
214 Note that the string at PTR does not have to be null terminated, I.E. it
215 may be part of a larger string and we are only saving a substring. */
216
217 char *
218 obsavestring (const char *ptr, int size, struct obstack *obstackp)
219 {
220 char *p = (char *) obstack_alloc (obstackp, size + 1);
221 /* Open-coded memcpy--saves function call time. These strings are usually
222 short. FIXME: Is this really still true with a compiler that can
223 inline memcpy? */
224 {
225 const char *p1 = ptr;
226 char *p2 = p;
227 const char *end = ptr + size;
228 while (p1 != end)
229 *p2++ = *p1++;
230 }
231 p[size] = 0;
232 return p;
233 }
234
235 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
236 in the obstack pointed to by OBSTACKP. */
237
238 char *
239 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
240 const char *s3)
241 {
242 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
243 char *val = (char *) obstack_alloc (obstackp, len);
244 strcpy (val, s1);
245 strcat (val, s2);
246 strcat (val, s3);
247 return val;
248 }
249
250 /* True if we are nested inside psymtab_to_symtab. */
251
252 int currently_reading_symtab = 0;
253
254 static void
255 decrement_reading_symtab (void *dummy)
256 {
257 currently_reading_symtab--;
258 }
259
260 /* Get the symbol table that corresponds to a partial_symtab.
261 This is fast after the first time you do it. In fact, there
262 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
263 case inline. */
264
265 struct symtab *
266 psymtab_to_symtab (struct partial_symtab *pst)
267 {
268 /* If it's been looked up before, return it. */
269 if (pst->symtab)
270 return pst->symtab;
271
272 /* If it has not yet been read in, read it. */
273 if (!pst->readin)
274 {
275 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
276 currently_reading_symtab++;
277 (*pst->read_symtab) (pst);
278 do_cleanups (back_to);
279 }
280
281 return pst->symtab;
282 }
283
284 /* Remember the lowest-addressed loadable section we've seen.
285 This function is called via bfd_map_over_sections.
286
287 In case of equal vmas, the section with the largest size becomes the
288 lowest-addressed loadable section.
289
290 If the vmas and sizes are equal, the last section is considered the
291 lowest-addressed loadable section. */
292
293 void
294 find_lowest_section (bfd *abfd, asection *sect, void *obj)
295 {
296 asection **lowest = (asection **) obj;
297
298 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
299 return;
300 if (!*lowest)
301 *lowest = sect; /* First loadable section */
302 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
303 *lowest = sect; /* A lower loadable section */
304 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
305 && (bfd_section_size (abfd, (*lowest))
306 <= bfd_section_size (abfd, sect)))
307 *lowest = sect;
308 }
309
310 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
311
312 struct section_addr_info *
313 alloc_section_addr_info (size_t num_sections)
314 {
315 struct section_addr_info *sap;
316 size_t size;
317
318 size = (sizeof (struct section_addr_info)
319 + sizeof (struct other_sections) * (num_sections - 1));
320 sap = (struct section_addr_info *) xmalloc (size);
321 memset (sap, 0, size);
322 sap->num_sections = num_sections;
323
324 return sap;
325 }
326
327 /* Build (allocate and populate) a section_addr_info struct from
328 an existing section table. */
329
330 extern struct section_addr_info *
331 build_section_addr_info_from_section_table (const struct section_table *start,
332 const struct section_table *end)
333 {
334 struct section_addr_info *sap;
335 const struct section_table *stp;
336 int oidx;
337
338 sap = alloc_section_addr_info (end - start);
339
340 for (stp = start, oidx = 0; stp != end; stp++)
341 {
342 if (bfd_get_section_flags (stp->bfd,
343 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
344 && oidx < end - start)
345 {
346 sap->other[oidx].addr = stp->addr;
347 sap->other[oidx].name
348 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
349 sap->other[oidx].sectindex = stp->the_bfd_section->index;
350 oidx++;
351 }
352 }
353
354 return sap;
355 }
356
357
358 /* Free all memory allocated by build_section_addr_info_from_section_table. */
359
360 extern void
361 free_section_addr_info (struct section_addr_info *sap)
362 {
363 int idx;
364
365 for (idx = 0; idx < sap->num_sections; idx++)
366 if (sap->other[idx].name)
367 xfree (sap->other[idx].name);
368 xfree (sap);
369 }
370
371
372 /* Initialize OBJFILE's sect_index_* members. */
373 static void
374 init_objfile_sect_indices (struct objfile *objfile)
375 {
376 asection *sect;
377 int i;
378
379 sect = bfd_get_section_by_name (objfile->obfd, ".text");
380 if (sect)
381 objfile->sect_index_text = sect->index;
382
383 sect = bfd_get_section_by_name (objfile->obfd, ".data");
384 if (sect)
385 objfile->sect_index_data = sect->index;
386
387 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
388 if (sect)
389 objfile->sect_index_bss = sect->index;
390
391 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
392 if (sect)
393 objfile->sect_index_rodata = sect->index;
394
395 /* This is where things get really weird... We MUST have valid
396 indices for the various sect_index_* members or gdb will abort.
397 So if for example, there is no ".text" section, we have to
398 accomodate that. Except when explicitly adding symbol files at
399 some address, section_offsets contains nothing but zeros, so it
400 doesn't matter which slot in section_offsets the individual
401 sect_index_* members index into. So if they are all zero, it is
402 safe to just point all the currently uninitialized indices to the
403 first slot. */
404
405 for (i = 0; i < objfile->num_sections; i++)
406 {
407 if (ANOFFSET (objfile->section_offsets, i) != 0)
408 {
409 break;
410 }
411 }
412 if (i == objfile->num_sections)
413 {
414 if (objfile->sect_index_text == -1)
415 objfile->sect_index_text = 0;
416 if (objfile->sect_index_data == -1)
417 objfile->sect_index_data = 0;
418 if (objfile->sect_index_bss == -1)
419 objfile->sect_index_bss = 0;
420 if (objfile->sect_index_rodata == -1)
421 objfile->sect_index_rodata = 0;
422 }
423 }
424
425
426 /* Parse the user's idea of an offset for dynamic linking, into our idea
427 of how to represent it for fast symbol reading. This is the default
428 version of the sym_fns.sym_offsets function for symbol readers that
429 don't need to do anything special. It allocates a section_offsets table
430 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
431
432 void
433 default_symfile_offsets (struct objfile *objfile,
434 struct section_addr_info *addrs)
435 {
436 int i;
437
438 objfile->num_sections = bfd_count_sections (objfile->obfd);
439 objfile->section_offsets = (struct section_offsets *)
440 obstack_alloc (&objfile->objfile_obstack,
441 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
442 memset (objfile->section_offsets, 0,
443 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
444
445 /* Now calculate offsets for section that were specified by the
446 caller. */
447 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
448 {
449 struct other_sections *osp ;
450
451 osp = &addrs->other[i] ;
452 if (osp->addr == 0)
453 continue;
454
455 /* Record all sections in offsets */
456 /* The section_offsets in the objfile are here filled in using
457 the BFD index. */
458 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
459 }
460
461 /* Remember the bfd indexes for the .text, .data, .bss and
462 .rodata sections. */
463 init_objfile_sect_indices (objfile);
464 }
465
466
467 /* Process a symbol file, as either the main file or as a dynamically
468 loaded file.
469
470 OBJFILE is where the symbols are to be read from.
471
472 ADDRS is the list of section load addresses. If the user has given
473 an 'add-symbol-file' command, then this is the list of offsets and
474 addresses he or she provided as arguments to the command; or, if
475 we're handling a shared library, these are the actual addresses the
476 sections are loaded at, according to the inferior's dynamic linker
477 (as gleaned by GDB's shared library code). We convert each address
478 into an offset from the section VMA's as it appears in the object
479 file, and then call the file's sym_offsets function to convert this
480 into a format-specific offset table --- a `struct section_offsets'.
481 If ADDRS is non-zero, OFFSETS must be zero.
482
483 OFFSETS is a table of section offsets already in the right
484 format-specific representation. NUM_OFFSETS is the number of
485 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
486 assume this is the proper table the call to sym_offsets described
487 above would produce. Instead of calling sym_offsets, we just dump
488 it right into objfile->section_offsets. (When we're re-reading
489 symbols from an objfile, we don't have the original load address
490 list any more; all we have is the section offset table.) If
491 OFFSETS is non-zero, ADDRS must be zero.
492
493 MAINLINE is nonzero if this is the main symbol file, or zero if
494 it's an extra symbol file such as dynamically loaded code.
495
496 VERBO is nonzero if the caller has printed a verbose message about
497 the symbol reading (and complaints can be more terse about it). */
498
499 void
500 syms_from_objfile (struct objfile *objfile,
501 struct section_addr_info *addrs,
502 struct section_offsets *offsets,
503 int num_offsets,
504 int mainline,
505 int verbo)
506 {
507 struct section_addr_info *local_addr = NULL;
508 struct cleanup *old_chain;
509
510 gdb_assert (! (addrs && offsets));
511
512 init_entry_point_info (objfile);
513 find_sym_fns (objfile);
514
515 if (objfile->sf == NULL)
516 return; /* No symbols. */
517
518 /* Make sure that partially constructed symbol tables will be cleaned up
519 if an error occurs during symbol reading. */
520 old_chain = make_cleanup_free_objfile (objfile);
521
522 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
523 list. We now establish the convention that an addr of zero means
524 no load address was specified. */
525 if (! addrs && ! offsets)
526 {
527 local_addr
528 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
529 make_cleanup (xfree, local_addr);
530 addrs = local_addr;
531 }
532
533 /* Now either addrs or offsets is non-zero. */
534
535 if (mainline)
536 {
537 /* We will modify the main symbol table, make sure that all its users
538 will be cleaned up if an error occurs during symbol reading. */
539 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
540
541 /* Since no error yet, throw away the old symbol table. */
542
543 if (symfile_objfile != NULL)
544 {
545 free_objfile (symfile_objfile);
546 symfile_objfile = NULL;
547 }
548
549 /* Currently we keep symbols from the add-symbol-file command.
550 If the user wants to get rid of them, they should do "symbol-file"
551 without arguments first. Not sure this is the best behavior
552 (PR 2207). */
553
554 (*objfile->sf->sym_new_init) (objfile);
555 }
556
557 /* Convert addr into an offset rather than an absolute address.
558 We find the lowest address of a loaded segment in the objfile,
559 and assume that <addr> is where that got loaded.
560
561 We no longer warn if the lowest section is not a text segment (as
562 happens for the PA64 port. */
563 if (!mainline && addrs && addrs->other[0].name)
564 {
565 asection *lower_sect;
566 asection *sect;
567 CORE_ADDR lower_offset;
568 int i;
569
570 /* Find lowest loadable section to be used as starting point for
571 continguous sections. FIXME!! won't work without call to find
572 .text first, but this assumes text is lowest section. */
573 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
574 if (lower_sect == NULL)
575 bfd_map_over_sections (objfile->obfd, find_lowest_section,
576 &lower_sect);
577 if (lower_sect == NULL)
578 warning ("no loadable sections found in added symbol-file %s",
579 objfile->name);
580 else
581 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
582 warning ("Lowest section in %s is %s at %s",
583 objfile->name,
584 bfd_section_name (objfile->obfd, lower_sect),
585 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
586 if (lower_sect != NULL)
587 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
588 else
589 lower_offset = 0;
590
591 /* Calculate offsets for the loadable sections.
592 FIXME! Sections must be in order of increasing loadable section
593 so that contiguous sections can use the lower-offset!!!
594
595 Adjust offsets if the segments are not contiguous.
596 If the section is contiguous, its offset should be set to
597 the offset of the highest loadable section lower than it
598 (the loadable section directly below it in memory).
599 this_offset = lower_offset = lower_addr - lower_orig_addr */
600
601 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
602 {
603 if (addrs->other[i].addr != 0)
604 {
605 sect = bfd_get_section_by_name (objfile->obfd,
606 addrs->other[i].name);
607 if (sect)
608 {
609 addrs->other[i].addr
610 -= bfd_section_vma (objfile->obfd, sect);
611 lower_offset = addrs->other[i].addr;
612 /* This is the index used by BFD. */
613 addrs->other[i].sectindex = sect->index ;
614 }
615 else
616 {
617 warning ("section %s not found in %s",
618 addrs->other[i].name,
619 objfile->name);
620 addrs->other[i].addr = 0;
621 }
622 }
623 else
624 addrs->other[i].addr = lower_offset;
625 }
626 }
627
628 /* Initialize symbol reading routines for this objfile, allow complaints to
629 appear for this new file, and record how verbose to be, then do the
630 initial symbol reading for this file. */
631
632 (*objfile->sf->sym_init) (objfile);
633 clear_complaints (&symfile_complaints, 1, verbo);
634
635 if (addrs)
636 (*objfile->sf->sym_offsets) (objfile, addrs);
637 else
638 {
639 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
640
641 /* Just copy in the offset table directly as given to us. */
642 objfile->num_sections = num_offsets;
643 objfile->section_offsets
644 = ((struct section_offsets *)
645 obstack_alloc (&objfile->objfile_obstack, size));
646 memcpy (objfile->section_offsets, offsets, size);
647
648 init_objfile_sect_indices (objfile);
649 }
650
651 #ifndef DEPRECATED_IBM6000_TARGET
652 /* This is a SVR4/SunOS specific hack, I think. In any event, it
653 screws RS/6000. sym_offsets should be doing this sort of thing,
654 because it knows the mapping between bfd sections and
655 section_offsets. */
656 /* This is a hack. As far as I can tell, section offsets are not
657 target dependent. They are all set to addr with a couple of
658 exceptions. The exceptions are sysvr4 shared libraries, whose
659 offsets are kept in solib structures anyway and rs6000 xcoff
660 which handles shared libraries in a completely unique way.
661
662 Section offsets are built similarly, except that they are built
663 by adding addr in all cases because there is no clear mapping
664 from section_offsets into actual sections. Note that solib.c
665 has a different algorithm for finding section offsets.
666
667 These should probably all be collapsed into some target
668 independent form of shared library support. FIXME. */
669
670 if (addrs)
671 {
672 struct obj_section *s;
673
674 /* Map section offsets in "addr" back to the object's
675 sections by comparing the section names with bfd's
676 section names. Then adjust the section address by
677 the offset. */ /* for gdb/13815 */
678
679 ALL_OBJFILE_OSECTIONS (objfile, s)
680 {
681 CORE_ADDR s_addr = 0;
682 int i;
683
684 for (i = 0;
685 !s_addr && i < addrs->num_sections && addrs->other[i].name;
686 i++)
687 if (strcmp (bfd_section_name (s->objfile->obfd,
688 s->the_bfd_section),
689 addrs->other[i].name) == 0)
690 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
691
692 s->addr -= s->offset;
693 s->addr += s_addr;
694 s->endaddr -= s->offset;
695 s->endaddr += s_addr;
696 s->offset += s_addr;
697 }
698 }
699 #endif /* not DEPRECATED_IBM6000_TARGET */
700
701 (*objfile->sf->sym_read) (objfile, mainline);
702
703 /* Don't allow char * to have a typename (else would get caddr_t).
704 Ditto void *. FIXME: Check whether this is now done by all the
705 symbol readers themselves (many of them now do), and if so remove
706 it from here. */
707
708 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
709 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
710
711 /* Mark the objfile has having had initial symbol read attempted. Note
712 that this does not mean we found any symbols... */
713
714 objfile->flags |= OBJF_SYMS;
715
716 /* Discard cleanups as symbol reading was successful. */
717
718 discard_cleanups (old_chain);
719 }
720
721 /* Perform required actions after either reading in the initial
722 symbols for a new objfile, or mapping in the symbols from a reusable
723 objfile. */
724
725 void
726 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
727 {
728
729 /* If this is the main symbol file we have to clean up all users of the
730 old main symbol file. Otherwise it is sufficient to fixup all the
731 breakpoints that may have been redefined by this symbol file. */
732 if (mainline)
733 {
734 /* OK, make it the "real" symbol file. */
735 symfile_objfile = objfile;
736
737 clear_symtab_users ();
738 }
739 else
740 {
741 breakpoint_re_set ();
742 }
743
744 /* We're done reading the symbol file; finish off complaints. */
745 clear_complaints (&symfile_complaints, 0, verbo);
746 }
747
748 /* Process a symbol file, as either the main file or as a dynamically
749 loaded file.
750
751 ABFD is a BFD already open on the file, as from symfile_bfd_open.
752 This BFD will be closed on error, and is always consumed by this function.
753
754 FROM_TTY says how verbose to be.
755
756 MAINLINE specifies whether this is the main symbol file, or whether
757 it's an extra symbol file such as dynamically loaded code.
758
759 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
760 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
761 non-zero.
762
763 Upon success, returns a pointer to the objfile that was added.
764 Upon failure, jumps back to command level (never returns). */
765 static struct objfile *
766 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
767 struct section_addr_info *addrs,
768 struct section_offsets *offsets,
769 int num_offsets,
770 int mainline, int flags)
771 {
772 struct objfile *objfile;
773 struct partial_symtab *psymtab;
774 char *debugfile;
775 struct section_addr_info *orig_addrs;
776 struct cleanup *my_cleanups;
777 const char *name = bfd_get_filename (abfd);
778
779 my_cleanups = make_cleanup_bfd_close (abfd);
780
781 /* Give user a chance to burp if we'd be
782 interactively wiping out any existing symbols. */
783
784 if ((have_full_symbols () || have_partial_symbols ())
785 && mainline
786 && from_tty
787 && !query ("Load new symbol table from \"%s\"? ", name))
788 error ("Not confirmed.");
789
790 objfile = allocate_objfile (abfd, flags);
791 discard_cleanups (my_cleanups);
792
793 orig_addrs = alloc_section_addr_info (bfd_count_sections (abfd));
794 my_cleanups = make_cleanup (xfree, orig_addrs);
795 if (addrs)
796 {
797 int i;
798 orig_addrs->num_sections = addrs->num_sections;
799 for (i = 0; i < addrs->num_sections; i++)
800 orig_addrs->other[i] = addrs->other[i];
801 }
802
803 /* We either created a new mapped symbol table, mapped an existing
804 symbol table file which has not had initial symbol reading
805 performed, or need to read an unmapped symbol table. */
806 if (from_tty || info_verbose)
807 {
808 if (pre_add_symbol_hook)
809 pre_add_symbol_hook (name);
810 else
811 {
812 printf_unfiltered ("Reading symbols from %s...", name);
813 wrap_here ("");
814 gdb_flush (gdb_stdout);
815 }
816 }
817 syms_from_objfile (objfile, addrs, offsets, num_offsets,
818 mainline, from_tty);
819
820 /* We now have at least a partial symbol table. Check to see if the
821 user requested that all symbols be read on initial access via either
822 the gdb startup command line or on a per symbol file basis. Expand
823 all partial symbol tables for this objfile if so. */
824
825 if ((flags & OBJF_READNOW) || readnow_symbol_files)
826 {
827 if (from_tty || info_verbose)
828 {
829 printf_unfiltered ("expanding to full symbols...");
830 wrap_here ("");
831 gdb_flush (gdb_stdout);
832 }
833
834 for (psymtab = objfile->psymtabs;
835 psymtab != NULL;
836 psymtab = psymtab->next)
837 {
838 psymtab_to_symtab (psymtab);
839 }
840 }
841
842 debugfile = find_separate_debug_file (objfile);
843 if (debugfile)
844 {
845 if (addrs != NULL)
846 {
847 objfile->separate_debug_objfile
848 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
849 }
850 else
851 {
852 objfile->separate_debug_objfile
853 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
854 }
855 objfile->separate_debug_objfile->separate_debug_objfile_backlink
856 = objfile;
857
858 /* Put the separate debug object before the normal one, this is so that
859 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
860 put_objfile_before (objfile->separate_debug_objfile, objfile);
861
862 xfree (debugfile);
863 }
864
865 if (!have_partial_symbols () && !have_full_symbols ())
866 {
867 wrap_here ("");
868 printf_unfiltered ("(no debugging symbols found)...");
869 wrap_here ("");
870 }
871
872 if (from_tty || info_verbose)
873 {
874 if (post_add_symbol_hook)
875 post_add_symbol_hook ();
876 else
877 {
878 printf_unfiltered ("done.\n");
879 }
880 }
881
882 /* We print some messages regardless of whether 'from_tty ||
883 info_verbose' is true, so make sure they go out at the right
884 time. */
885 gdb_flush (gdb_stdout);
886
887 do_cleanups (my_cleanups);
888
889 if (objfile->sf == NULL)
890 return objfile; /* No symbols. */
891
892 new_symfile_objfile (objfile, mainline, from_tty);
893
894 if (deprecated_target_new_objfile_hook)
895 deprecated_target_new_objfile_hook (objfile);
896
897 return (objfile);
898 }
899
900
901 /* Process the symbol file ABFD, as either the main file or as a
902 dynamically loaded file.
903
904 See symbol_file_add_with_addrs_or_offsets's comments for
905 details. */
906 struct objfile *
907 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
908 struct section_addr_info *addrs,
909 int mainline, int flags)
910 {
911 return symbol_file_add_with_addrs_or_offsets (abfd,
912 from_tty, addrs, 0, 0,
913 mainline, flags);
914 }
915
916
917 /* Process a symbol file, as either the main file or as a dynamically
918 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
919 for details. */
920 struct objfile *
921 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
922 int mainline, int flags)
923 {
924 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
925 addrs, mainline, flags);
926 }
927
928
929 /* Call symbol_file_add() with default values and update whatever is
930 affected by the loading of a new main().
931 Used when the file is supplied in the gdb command line
932 and by some targets with special loading requirements.
933 The auxiliary function, symbol_file_add_main_1(), has the flags
934 argument for the switches that can only be specified in the symbol_file
935 command itself. */
936
937 void
938 symbol_file_add_main (char *args, int from_tty)
939 {
940 symbol_file_add_main_1 (args, from_tty, 0);
941 }
942
943 static void
944 symbol_file_add_main_1 (char *args, int from_tty, int flags)
945 {
946 symbol_file_add (args, from_tty, NULL, 1, flags);
947
948 /* Getting new symbols may change our opinion about
949 what is frameless. */
950 reinit_frame_cache ();
951
952 set_initial_language ();
953 }
954
955 void
956 symbol_file_clear (int from_tty)
957 {
958 if ((have_full_symbols () || have_partial_symbols ())
959 && from_tty
960 && !query ("Discard symbol table from `%s'? ",
961 symfile_objfile->name))
962 error ("Not confirmed.");
963 free_all_objfiles ();
964
965 /* solib descriptors may have handles to objfiles. Since their
966 storage has just been released, we'd better wipe the solib
967 descriptors as well.
968 */
969 #if defined(SOLIB_RESTART)
970 SOLIB_RESTART ();
971 #endif
972
973 symfile_objfile = NULL;
974 if (from_tty)
975 printf_unfiltered ("No symbol file now.\n");
976 }
977
978 static char *
979 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
980 {
981 asection *sect;
982 bfd_size_type debuglink_size;
983 unsigned long crc32;
984 char *contents;
985 int crc_offset;
986 unsigned char *p;
987
988 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
989
990 if (sect == NULL)
991 return NULL;
992
993 debuglink_size = bfd_section_size (objfile->obfd, sect);
994
995 contents = xmalloc (debuglink_size);
996 bfd_get_section_contents (objfile->obfd, sect, contents,
997 (file_ptr)0, (bfd_size_type)debuglink_size);
998
999 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1000 crc_offset = strlen (contents) + 1;
1001 crc_offset = (crc_offset + 3) & ~3;
1002
1003 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1004
1005 *crc32_out = crc32;
1006 return contents;
1007 }
1008
1009 static int
1010 separate_debug_file_exists (const char *name, unsigned long crc)
1011 {
1012 unsigned long file_crc = 0;
1013 int fd;
1014 char buffer[8*1024];
1015 int count;
1016
1017 fd = open (name, O_RDONLY | O_BINARY);
1018 if (fd < 0)
1019 return 0;
1020
1021 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1022 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1023
1024 close (fd);
1025
1026 return crc == file_crc;
1027 }
1028
1029 static char *debug_file_directory = NULL;
1030
1031 #if ! defined (DEBUG_SUBDIRECTORY)
1032 #define DEBUG_SUBDIRECTORY ".debug"
1033 #endif
1034
1035 static char *
1036 find_separate_debug_file (struct objfile *objfile)
1037 {
1038 asection *sect;
1039 char *basename;
1040 char *dir;
1041 char *debugfile;
1042 char *name_copy;
1043 bfd_size_type debuglink_size;
1044 unsigned long crc32;
1045 int i;
1046
1047 basename = get_debug_link_info (objfile, &crc32);
1048
1049 if (basename == NULL)
1050 return NULL;
1051
1052 dir = xstrdup (objfile->name);
1053
1054 /* Strip off the final filename part, leaving the directory name,
1055 followed by a slash. Objfile names should always be absolute and
1056 tilde-expanded, so there should always be a slash in there
1057 somewhere. */
1058 for (i = strlen(dir) - 1; i >= 0; i--)
1059 {
1060 if (IS_DIR_SEPARATOR (dir[i]))
1061 break;
1062 }
1063 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1064 dir[i+1] = '\0';
1065
1066 debugfile = alloca (strlen (debug_file_directory) + 1
1067 + strlen (dir)
1068 + strlen (DEBUG_SUBDIRECTORY)
1069 + strlen ("/")
1070 + strlen (basename)
1071 + 1);
1072
1073 /* First try in the same directory as the original file. */
1074 strcpy (debugfile, dir);
1075 strcat (debugfile, basename);
1076
1077 if (separate_debug_file_exists (debugfile, crc32))
1078 {
1079 xfree (basename);
1080 xfree (dir);
1081 return xstrdup (debugfile);
1082 }
1083
1084 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1085 strcpy (debugfile, dir);
1086 strcat (debugfile, DEBUG_SUBDIRECTORY);
1087 strcat (debugfile, "/");
1088 strcat (debugfile, basename);
1089
1090 if (separate_debug_file_exists (debugfile, crc32))
1091 {
1092 xfree (basename);
1093 xfree (dir);
1094 return xstrdup (debugfile);
1095 }
1096
1097 /* Then try in the global debugfile directory. */
1098 strcpy (debugfile, debug_file_directory);
1099 strcat (debugfile, "/");
1100 strcat (debugfile, dir);
1101 strcat (debugfile, basename);
1102
1103 if (separate_debug_file_exists (debugfile, crc32))
1104 {
1105 xfree (basename);
1106 xfree (dir);
1107 return xstrdup (debugfile);
1108 }
1109
1110 xfree (basename);
1111 xfree (dir);
1112 return NULL;
1113 }
1114
1115
1116 /* This is the symbol-file command. Read the file, analyze its
1117 symbols, and add a struct symtab to a symtab list. The syntax of
1118 the command is rather bizarre--(1) buildargv implements various
1119 quoting conventions which are undocumented and have little or
1120 nothing in common with the way things are quoted (or not quoted)
1121 elsewhere in GDB, (2) options are used, which are not generally
1122 used in GDB (perhaps "set mapped on", "set readnow on" would be
1123 better), (3) the order of options matters, which is contrary to GNU
1124 conventions (because it is confusing and inconvenient). */
1125 /* Note: ezannoni 2000-04-17. This function used to have support for
1126 rombug (see remote-os9k.c). It consisted of a call to target_link()
1127 (target.c) to get the address of the text segment from the target,
1128 and pass that to symbol_file_add(). This is no longer supported. */
1129
1130 void
1131 symbol_file_command (char *args, int from_tty)
1132 {
1133 char **argv;
1134 char *name = NULL;
1135 struct cleanup *cleanups;
1136 int flags = OBJF_USERLOADED;
1137
1138 dont_repeat ();
1139
1140 if (args == NULL)
1141 {
1142 symbol_file_clear (from_tty);
1143 }
1144 else
1145 {
1146 if ((argv = buildargv (args)) == NULL)
1147 {
1148 nomem (0);
1149 }
1150 cleanups = make_cleanup_freeargv (argv);
1151 while (*argv != NULL)
1152 {
1153 if (strcmp (*argv, "-readnow") == 0)
1154 flags |= OBJF_READNOW;
1155 else if (**argv == '-')
1156 error ("unknown option `%s'", *argv);
1157 else
1158 {
1159 name = *argv;
1160
1161 symbol_file_add_main_1 (name, from_tty, flags);
1162 }
1163 argv++;
1164 }
1165
1166 if (name == NULL)
1167 {
1168 error ("no symbol file name was specified");
1169 }
1170 do_cleanups (cleanups);
1171 }
1172 }
1173
1174 /* Set the initial language.
1175
1176 A better solution would be to record the language in the psymtab when reading
1177 partial symbols, and then use it (if known) to set the language. This would
1178 be a win for formats that encode the language in an easily discoverable place,
1179 such as DWARF. For stabs, we can jump through hoops looking for specially
1180 named symbols or try to intuit the language from the specific type of stabs
1181 we find, but we can't do that until later when we read in full symbols.
1182 FIXME. */
1183
1184 static void
1185 set_initial_language (void)
1186 {
1187 struct partial_symtab *pst;
1188 enum language lang = language_unknown;
1189
1190 pst = find_main_psymtab ();
1191 if (pst != NULL)
1192 {
1193 if (pst->filename != NULL)
1194 {
1195 lang = deduce_language_from_filename (pst->filename);
1196 }
1197 if (lang == language_unknown)
1198 {
1199 /* Make C the default language */
1200 lang = language_c;
1201 }
1202 set_language (lang);
1203 expected_language = current_language; /* Don't warn the user */
1204 }
1205 }
1206
1207 /* Open file specified by NAME and hand it off to BFD for preliminary
1208 analysis. Result is a newly initialized bfd *, which includes a newly
1209 malloc'd` copy of NAME (tilde-expanded and made absolute).
1210 In case of trouble, error() is called. */
1211
1212 bfd *
1213 symfile_bfd_open (char *name)
1214 {
1215 bfd *sym_bfd;
1216 int desc;
1217 char *absolute_name;
1218
1219
1220
1221 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1222
1223 /* Look down path for it, allocate 2nd new malloc'd copy. */
1224 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1225 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1226 if (desc < 0)
1227 {
1228 char *exename = alloca (strlen (name) + 5);
1229 strcat (strcpy (exename, name), ".exe");
1230 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1231 0, &absolute_name);
1232 }
1233 #endif
1234 if (desc < 0)
1235 {
1236 make_cleanup (xfree, name);
1237 perror_with_name (name);
1238 }
1239 xfree (name); /* Free 1st new malloc'd copy */
1240 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1241 /* It'll be freed in free_objfile(). */
1242
1243 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1244 if (!sym_bfd)
1245 {
1246 close (desc);
1247 make_cleanup (xfree, name);
1248 error ("\"%s\": can't open to read symbols: %s.", name,
1249 bfd_errmsg (bfd_get_error ()));
1250 }
1251 bfd_set_cacheable (sym_bfd, 1);
1252
1253 if (!bfd_check_format (sym_bfd, bfd_object))
1254 {
1255 /* FIXME: should be checking for errors from bfd_close (for one thing,
1256 on error it does not free all the storage associated with the
1257 bfd). */
1258 bfd_close (sym_bfd); /* This also closes desc */
1259 make_cleanup (xfree, name);
1260 error ("\"%s\": can't read symbols: %s.", name,
1261 bfd_errmsg (bfd_get_error ()));
1262 }
1263 return (sym_bfd);
1264 }
1265
1266 /* Return the section index for the given section name. Return -1 if
1267 the section was not found. */
1268 int
1269 get_section_index (struct objfile *objfile, char *section_name)
1270 {
1271 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1272 if (sect)
1273 return sect->index;
1274 else
1275 return -1;
1276 }
1277
1278 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1279 startup by the _initialize routine in each object file format reader,
1280 to register information about each format the the reader is prepared
1281 to handle. */
1282
1283 void
1284 add_symtab_fns (struct sym_fns *sf)
1285 {
1286 sf->next = symtab_fns;
1287 symtab_fns = sf;
1288 }
1289
1290
1291 /* Initialize to read symbols from the symbol file sym_bfd. It either
1292 returns or calls error(). The result is an initialized struct sym_fns
1293 in the objfile structure, that contains cached information about the
1294 symbol file. */
1295
1296 static void
1297 find_sym_fns (struct objfile *objfile)
1298 {
1299 struct sym_fns *sf;
1300 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1301 char *our_target = bfd_get_target (objfile->obfd);
1302
1303 if (our_flavour == bfd_target_srec_flavour
1304 || our_flavour == bfd_target_ihex_flavour
1305 || our_flavour == bfd_target_tekhex_flavour)
1306 return; /* No symbols. */
1307
1308 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1309 {
1310 if (our_flavour == sf->sym_flavour)
1311 {
1312 objfile->sf = sf;
1313 return;
1314 }
1315 }
1316 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1317 bfd_get_target (objfile->obfd));
1318 }
1319 \f
1320 /* This function runs the load command of our current target. */
1321
1322 static void
1323 load_command (char *arg, int from_tty)
1324 {
1325 if (arg == NULL)
1326 arg = get_exec_file (1);
1327 target_load (arg, from_tty);
1328
1329 /* After re-loading the executable, we don't really know which
1330 overlays are mapped any more. */
1331 overlay_cache_invalid = 1;
1332 }
1333
1334 /* This version of "load" should be usable for any target. Currently
1335 it is just used for remote targets, not inftarg.c or core files,
1336 on the theory that only in that case is it useful.
1337
1338 Avoiding xmodem and the like seems like a win (a) because we don't have
1339 to worry about finding it, and (b) On VMS, fork() is very slow and so
1340 we don't want to run a subprocess. On the other hand, I'm not sure how
1341 performance compares. */
1342
1343 static int download_write_size = 512;
1344 static int validate_download = 0;
1345
1346 /* Callback service function for generic_load (bfd_map_over_sections). */
1347
1348 static void
1349 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1350 {
1351 bfd_size_type *sum = data;
1352
1353 *sum += bfd_get_section_size (asec);
1354 }
1355
1356 /* Opaque data for load_section_callback. */
1357 struct load_section_data {
1358 unsigned long load_offset;
1359 unsigned long write_count;
1360 unsigned long data_count;
1361 bfd_size_type total_size;
1362 };
1363
1364 /* Callback service function for generic_load (bfd_map_over_sections). */
1365
1366 static void
1367 load_section_callback (bfd *abfd, asection *asec, void *data)
1368 {
1369 struct load_section_data *args = data;
1370
1371 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1372 {
1373 bfd_size_type size = bfd_get_section_size (asec);
1374 if (size > 0)
1375 {
1376 char *buffer;
1377 struct cleanup *old_chain;
1378 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1379 bfd_size_type block_size;
1380 int err;
1381 const char *sect_name = bfd_get_section_name (abfd, asec);
1382 bfd_size_type sent;
1383
1384 if (download_write_size > 0 && size > download_write_size)
1385 block_size = download_write_size;
1386 else
1387 block_size = size;
1388
1389 buffer = xmalloc (size);
1390 old_chain = make_cleanup (xfree, buffer);
1391
1392 /* Is this really necessary? I guess it gives the user something
1393 to look at during a long download. */
1394 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1395 sect_name, paddr_nz (size), paddr_nz (lma));
1396
1397 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1398
1399 sent = 0;
1400 do
1401 {
1402 int len;
1403 bfd_size_type this_transfer = size - sent;
1404
1405 if (this_transfer >= block_size)
1406 this_transfer = block_size;
1407 len = target_write_memory_partial (lma, buffer,
1408 this_transfer, &err);
1409 if (err)
1410 break;
1411 if (validate_download)
1412 {
1413 /* Broken memories and broken monitors manifest
1414 themselves here when bring new computers to
1415 life. This doubles already slow downloads. */
1416 /* NOTE: cagney/1999-10-18: A more efficient
1417 implementation might add a verify_memory()
1418 method to the target vector and then use
1419 that. remote.c could implement that method
1420 using the ``qCRC'' packet. */
1421 char *check = xmalloc (len);
1422 struct cleanup *verify_cleanups =
1423 make_cleanup (xfree, check);
1424
1425 if (target_read_memory (lma, check, len) != 0)
1426 error ("Download verify read failed at 0x%s",
1427 paddr (lma));
1428 if (memcmp (buffer, check, len) != 0)
1429 error ("Download verify compare failed at 0x%s",
1430 paddr (lma));
1431 do_cleanups (verify_cleanups);
1432 }
1433 args->data_count += len;
1434 lma += len;
1435 buffer += len;
1436 args->write_count += 1;
1437 sent += len;
1438 if (quit_flag
1439 || (deprecated_ui_load_progress_hook != NULL
1440 && deprecated_ui_load_progress_hook (sect_name, sent)))
1441 error ("Canceled the download");
1442
1443 if (deprecated_show_load_progress != NULL)
1444 deprecated_show_load_progress (sect_name, sent, size,
1445 args->data_count,
1446 args->total_size);
1447 }
1448 while (sent < size);
1449
1450 if (err != 0)
1451 error ("Memory access error while loading section %s.", sect_name);
1452
1453 do_cleanups (old_chain);
1454 }
1455 }
1456 }
1457
1458 void
1459 generic_load (char *args, int from_tty)
1460 {
1461 asection *s;
1462 bfd *loadfile_bfd;
1463 time_t start_time, end_time; /* Start and end times of download */
1464 char *filename;
1465 struct cleanup *old_cleanups;
1466 char *offptr;
1467 struct load_section_data cbdata;
1468 CORE_ADDR entry;
1469
1470 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1471 cbdata.write_count = 0; /* Number of writes needed. */
1472 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1473 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1474
1475 /* Parse the input argument - the user can specify a load offset as
1476 a second argument. */
1477 filename = xmalloc (strlen (args) + 1);
1478 old_cleanups = make_cleanup (xfree, filename);
1479 strcpy (filename, args);
1480 offptr = strchr (filename, ' ');
1481 if (offptr != NULL)
1482 {
1483 char *endptr;
1484
1485 cbdata.load_offset = strtoul (offptr, &endptr, 0);
1486 if (offptr == endptr)
1487 error ("Invalid download offset:%s\n", offptr);
1488 *offptr = '\0';
1489 }
1490 else
1491 cbdata.load_offset = 0;
1492
1493 /* Open the file for loading. */
1494 loadfile_bfd = bfd_openr (filename, gnutarget);
1495 if (loadfile_bfd == NULL)
1496 {
1497 perror_with_name (filename);
1498 return;
1499 }
1500
1501 /* FIXME: should be checking for errors from bfd_close (for one thing,
1502 on error it does not free all the storage associated with the
1503 bfd). */
1504 make_cleanup_bfd_close (loadfile_bfd);
1505
1506 if (!bfd_check_format (loadfile_bfd, bfd_object))
1507 {
1508 error ("\"%s\" is not an object file: %s", filename,
1509 bfd_errmsg (bfd_get_error ()));
1510 }
1511
1512 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1513 (void *) &cbdata.total_size);
1514
1515 start_time = time (NULL);
1516
1517 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1518
1519 end_time = time (NULL);
1520
1521 entry = bfd_get_start_address (loadfile_bfd);
1522 ui_out_text (uiout, "Start address ");
1523 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1524 ui_out_text (uiout, ", load size ");
1525 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1526 ui_out_text (uiout, "\n");
1527 /* We were doing this in remote-mips.c, I suspect it is right
1528 for other targets too. */
1529 write_pc (entry);
1530
1531 /* FIXME: are we supposed to call symbol_file_add or not? According
1532 to a comment from remote-mips.c (where a call to symbol_file_add
1533 was commented out), making the call confuses GDB if more than one
1534 file is loaded in. Some targets do (e.g., remote-vx.c) but
1535 others don't (or didn't - perhaphs they have all been deleted). */
1536
1537 print_transfer_performance (gdb_stdout, cbdata.data_count,
1538 cbdata.write_count, end_time - start_time);
1539
1540 do_cleanups (old_cleanups);
1541 }
1542
1543 /* Report how fast the transfer went. */
1544
1545 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1546 replaced by print_transfer_performance (with a very different
1547 function signature). */
1548
1549 void
1550 report_transfer_performance (unsigned long data_count, time_t start_time,
1551 time_t end_time)
1552 {
1553 print_transfer_performance (gdb_stdout, data_count,
1554 end_time - start_time, 0);
1555 }
1556
1557 void
1558 print_transfer_performance (struct ui_file *stream,
1559 unsigned long data_count,
1560 unsigned long write_count,
1561 unsigned long time_count)
1562 {
1563 ui_out_text (uiout, "Transfer rate: ");
1564 if (time_count > 0)
1565 {
1566 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1567 (data_count * 8) / time_count);
1568 ui_out_text (uiout, " bits/sec");
1569 }
1570 else
1571 {
1572 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1573 ui_out_text (uiout, " bits in <1 sec");
1574 }
1575 if (write_count > 0)
1576 {
1577 ui_out_text (uiout, ", ");
1578 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1579 ui_out_text (uiout, " bytes/write");
1580 }
1581 ui_out_text (uiout, ".\n");
1582 }
1583
1584 /* This function allows the addition of incrementally linked object files.
1585 It does not modify any state in the target, only in the debugger. */
1586 /* Note: ezannoni 2000-04-13 This function/command used to have a
1587 special case syntax for the rombug target (Rombug is the boot
1588 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1589 rombug case, the user doesn't need to supply a text address,
1590 instead a call to target_link() (in target.c) would supply the
1591 value to use. We are now discontinuing this type of ad hoc syntax. */
1592
1593 static void
1594 add_symbol_file_command (char *args, int from_tty)
1595 {
1596 char *filename = NULL;
1597 int flags = OBJF_USERLOADED;
1598 char *arg;
1599 int expecting_option = 0;
1600 int section_index = 0;
1601 int argcnt = 0;
1602 int sec_num = 0;
1603 int i;
1604 int expecting_sec_name = 0;
1605 int expecting_sec_addr = 0;
1606
1607 struct sect_opt
1608 {
1609 char *name;
1610 char *value;
1611 };
1612
1613 struct section_addr_info *section_addrs;
1614 struct sect_opt *sect_opts = NULL;
1615 size_t num_sect_opts = 0;
1616 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1617
1618 num_sect_opts = 16;
1619 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1620 * sizeof (struct sect_opt));
1621
1622 dont_repeat ();
1623
1624 if (args == NULL)
1625 error ("add-symbol-file takes a file name and an address");
1626
1627 /* Make a copy of the string that we can safely write into. */
1628 args = xstrdup (args);
1629
1630 while (*args != '\000')
1631 {
1632 /* Any leading spaces? */
1633 while (isspace (*args))
1634 args++;
1635
1636 /* Point arg to the beginning of the argument. */
1637 arg = args;
1638
1639 /* Move args pointer over the argument. */
1640 while ((*args != '\000') && !isspace (*args))
1641 args++;
1642
1643 /* If there are more arguments, terminate arg and
1644 proceed past it. */
1645 if (*args != '\000')
1646 *args++ = '\000';
1647
1648 /* Now process the argument. */
1649 if (argcnt == 0)
1650 {
1651 /* The first argument is the file name. */
1652 filename = tilde_expand (arg);
1653 make_cleanup (xfree, filename);
1654 }
1655 else
1656 if (argcnt == 1)
1657 {
1658 /* The second argument is always the text address at which
1659 to load the program. */
1660 sect_opts[section_index].name = ".text";
1661 sect_opts[section_index].value = arg;
1662 if (++section_index > num_sect_opts)
1663 {
1664 num_sect_opts *= 2;
1665 sect_opts = ((struct sect_opt *)
1666 xrealloc (sect_opts,
1667 num_sect_opts
1668 * sizeof (struct sect_opt)));
1669 }
1670 }
1671 else
1672 {
1673 /* It's an option (starting with '-') or it's an argument
1674 to an option */
1675
1676 if (*arg == '-')
1677 {
1678 if (strcmp (arg, "-readnow") == 0)
1679 flags |= OBJF_READNOW;
1680 else if (strcmp (arg, "-s") == 0)
1681 {
1682 expecting_sec_name = 1;
1683 expecting_sec_addr = 1;
1684 }
1685 }
1686 else
1687 {
1688 if (expecting_sec_name)
1689 {
1690 sect_opts[section_index].name = arg;
1691 expecting_sec_name = 0;
1692 }
1693 else
1694 if (expecting_sec_addr)
1695 {
1696 sect_opts[section_index].value = arg;
1697 expecting_sec_addr = 0;
1698 if (++section_index > num_sect_opts)
1699 {
1700 num_sect_opts *= 2;
1701 sect_opts = ((struct sect_opt *)
1702 xrealloc (sect_opts,
1703 num_sect_opts
1704 * sizeof (struct sect_opt)));
1705 }
1706 }
1707 else
1708 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1709 }
1710 }
1711 argcnt++;
1712 }
1713
1714 /* Print the prompt for the query below. And save the arguments into
1715 a sect_addr_info structure to be passed around to other
1716 functions. We have to split this up into separate print
1717 statements because local_hex_string returns a local static
1718 string. */
1719
1720 printf_unfiltered ("add symbol table from file \"%s\" at\n", filename);
1721 section_addrs = alloc_section_addr_info (section_index);
1722 make_cleanup (xfree, section_addrs);
1723 for (i = 0; i < section_index; i++)
1724 {
1725 CORE_ADDR addr;
1726 char *val = sect_opts[i].value;
1727 char *sec = sect_opts[i].name;
1728
1729 addr = parse_and_eval_address (val);
1730
1731 /* Here we store the section offsets in the order they were
1732 entered on the command line. */
1733 section_addrs->other[sec_num].name = sec;
1734 section_addrs->other[sec_num].addr = addr;
1735 printf_unfiltered ("\t%s_addr = %s\n",
1736 sec,
1737 local_hex_string ((unsigned long)addr));
1738 sec_num++;
1739
1740 /* The object's sections are initialized when a
1741 call is made to build_objfile_section_table (objfile).
1742 This happens in reread_symbols.
1743 At this point, we don't know what file type this is,
1744 so we can't determine what section names are valid. */
1745 }
1746
1747 if (from_tty && (!query ("%s", "")))
1748 error ("Not confirmed.");
1749
1750 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
1751
1752 /* Getting new symbols may change our opinion about what is
1753 frameless. */
1754 reinit_frame_cache ();
1755 do_cleanups (my_cleanups);
1756 }
1757 \f
1758 static void
1759 add_shared_symbol_files_command (char *args, int from_tty)
1760 {
1761 #ifdef ADD_SHARED_SYMBOL_FILES
1762 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1763 #else
1764 error ("This command is not available in this configuration of GDB.");
1765 #endif
1766 }
1767 \f
1768 /* Re-read symbols if a symbol-file has changed. */
1769 void
1770 reread_symbols (void)
1771 {
1772 struct objfile *objfile;
1773 long new_modtime;
1774 int reread_one = 0;
1775 struct stat new_statbuf;
1776 int res;
1777
1778 /* With the addition of shared libraries, this should be modified,
1779 the load time should be saved in the partial symbol tables, since
1780 different tables may come from different source files. FIXME.
1781 This routine should then walk down each partial symbol table
1782 and see if the symbol table that it originates from has been changed */
1783
1784 for (objfile = object_files; objfile; objfile = objfile->next)
1785 {
1786 if (objfile->obfd)
1787 {
1788 #ifdef DEPRECATED_IBM6000_TARGET
1789 /* If this object is from a shared library, then you should
1790 stat on the library name, not member name. */
1791
1792 if (objfile->obfd->my_archive)
1793 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1794 else
1795 #endif
1796 res = stat (objfile->name, &new_statbuf);
1797 if (res != 0)
1798 {
1799 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1800 printf_unfiltered ("`%s' has disappeared; keeping its symbols.\n",
1801 objfile->name);
1802 continue;
1803 }
1804 new_modtime = new_statbuf.st_mtime;
1805 if (new_modtime != objfile->mtime)
1806 {
1807 struct cleanup *old_cleanups;
1808 struct section_offsets *offsets;
1809 int num_offsets;
1810 char *obfd_filename;
1811
1812 printf_unfiltered ("`%s' has changed; re-reading symbols.\n",
1813 objfile->name);
1814
1815 /* There are various functions like symbol_file_add,
1816 symfile_bfd_open, syms_from_objfile, etc., which might
1817 appear to do what we want. But they have various other
1818 effects which we *don't* want. So we just do stuff
1819 ourselves. We don't worry about mapped files (for one thing,
1820 any mapped file will be out of date). */
1821
1822 /* If we get an error, blow away this objfile (not sure if
1823 that is the correct response for things like shared
1824 libraries). */
1825 old_cleanups = make_cleanup_free_objfile (objfile);
1826 /* We need to do this whenever any symbols go away. */
1827 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1828
1829 /* Clean up any state BFD has sitting around. We don't need
1830 to close the descriptor but BFD lacks a way of closing the
1831 BFD without closing the descriptor. */
1832 obfd_filename = bfd_get_filename (objfile->obfd);
1833 if (!bfd_close (objfile->obfd))
1834 error ("Can't close BFD for %s: %s", objfile->name,
1835 bfd_errmsg (bfd_get_error ()));
1836 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1837 if (objfile->obfd == NULL)
1838 error ("Can't open %s to read symbols.", objfile->name);
1839 /* bfd_openr sets cacheable to true, which is what we want. */
1840 if (!bfd_check_format (objfile->obfd, bfd_object))
1841 error ("Can't read symbols from %s: %s.", objfile->name,
1842 bfd_errmsg (bfd_get_error ()));
1843
1844 /* Save the offsets, we will nuke them with the rest of the
1845 objfile_obstack. */
1846 num_offsets = objfile->num_sections;
1847 offsets = ((struct section_offsets *)
1848 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
1849 memcpy (offsets, objfile->section_offsets,
1850 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1851
1852 /* Nuke all the state that we will re-read. Much of the following
1853 code which sets things to NULL really is necessary to tell
1854 other parts of GDB that there is nothing currently there. */
1855
1856 /* FIXME: Do we have to free a whole linked list, or is this
1857 enough? */
1858 if (objfile->global_psymbols.list)
1859 xmfree (objfile->md, objfile->global_psymbols.list);
1860 memset (&objfile->global_psymbols, 0,
1861 sizeof (objfile->global_psymbols));
1862 if (objfile->static_psymbols.list)
1863 xmfree (objfile->md, objfile->static_psymbols.list);
1864 memset (&objfile->static_psymbols, 0,
1865 sizeof (objfile->static_psymbols));
1866
1867 /* Free the obstacks for non-reusable objfiles */
1868 bcache_xfree (objfile->psymbol_cache);
1869 objfile->psymbol_cache = bcache_xmalloc ();
1870 bcache_xfree (objfile->macro_cache);
1871 objfile->macro_cache = bcache_xmalloc ();
1872 if (objfile->demangled_names_hash != NULL)
1873 {
1874 htab_delete (objfile->demangled_names_hash);
1875 objfile->demangled_names_hash = NULL;
1876 }
1877 obstack_free (&objfile->objfile_obstack, 0);
1878 objfile->sections = NULL;
1879 objfile->symtabs = NULL;
1880 objfile->psymtabs = NULL;
1881 objfile->free_psymtabs = NULL;
1882 objfile->cp_namespace_symtab = NULL;
1883 objfile->msymbols = NULL;
1884 objfile->sym_private = NULL;
1885 objfile->minimal_symbol_count = 0;
1886 memset (&objfile->msymbol_hash, 0,
1887 sizeof (objfile->msymbol_hash));
1888 memset (&objfile->msymbol_demangled_hash, 0,
1889 sizeof (objfile->msymbol_demangled_hash));
1890 objfile->fundamental_types = NULL;
1891 clear_objfile_data (objfile);
1892 if (objfile->sf != NULL)
1893 {
1894 (*objfile->sf->sym_finish) (objfile);
1895 }
1896
1897 /* We never make this a mapped file. */
1898 objfile->md = NULL;
1899 objfile->psymbol_cache = bcache_xmalloc ();
1900 objfile->macro_cache = bcache_xmalloc ();
1901 /* obstack_init also initializes the obstack so it is
1902 empty. We could use obstack_specify_allocation but
1903 gdb_obstack.h specifies the alloc/dealloc
1904 functions. */
1905 obstack_init (&objfile->objfile_obstack);
1906 if (build_objfile_section_table (objfile))
1907 {
1908 error ("Can't find the file sections in `%s': %s",
1909 objfile->name, bfd_errmsg (bfd_get_error ()));
1910 }
1911 terminate_minimal_symbol_table (objfile);
1912
1913 /* We use the same section offsets as from last time. I'm not
1914 sure whether that is always correct for shared libraries. */
1915 objfile->section_offsets = (struct section_offsets *)
1916 obstack_alloc (&objfile->objfile_obstack,
1917 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1918 memcpy (objfile->section_offsets, offsets,
1919 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1920 objfile->num_sections = num_offsets;
1921
1922 /* What the hell is sym_new_init for, anyway? The concept of
1923 distinguishing between the main file and additional files
1924 in this way seems rather dubious. */
1925 if (objfile == symfile_objfile)
1926 {
1927 (*objfile->sf->sym_new_init) (objfile);
1928 }
1929
1930 (*objfile->sf->sym_init) (objfile);
1931 clear_complaints (&symfile_complaints, 1, 1);
1932 /* The "mainline" parameter is a hideous hack; I think leaving it
1933 zero is OK since dbxread.c also does what it needs to do if
1934 objfile->global_psymbols.size is 0. */
1935 (*objfile->sf->sym_read) (objfile, 0);
1936 if (!have_partial_symbols () && !have_full_symbols ())
1937 {
1938 wrap_here ("");
1939 printf_unfiltered ("(no debugging symbols found)\n");
1940 wrap_here ("");
1941 }
1942 objfile->flags |= OBJF_SYMS;
1943
1944 /* We're done reading the symbol file; finish off complaints. */
1945 clear_complaints (&symfile_complaints, 0, 1);
1946
1947 /* Getting new symbols may change our opinion about what is
1948 frameless. */
1949
1950 reinit_frame_cache ();
1951
1952 /* Discard cleanups as symbol reading was successful. */
1953 discard_cleanups (old_cleanups);
1954
1955 /* If the mtime has changed between the time we set new_modtime
1956 and now, we *want* this to be out of date, so don't call stat
1957 again now. */
1958 objfile->mtime = new_modtime;
1959 reread_one = 1;
1960 reread_separate_symbols (objfile);
1961 }
1962 }
1963 }
1964
1965 if (reread_one)
1966 clear_symtab_users ();
1967 }
1968
1969
1970 /* Handle separate debug info for OBJFILE, which has just been
1971 re-read:
1972 - If we had separate debug info before, but now we don't, get rid
1973 of the separated objfile.
1974 - If we didn't have separated debug info before, but now we do,
1975 read in the new separated debug info file.
1976 - If the debug link points to a different file, toss the old one
1977 and read the new one.
1978 This function does *not* handle the case where objfile is still
1979 using the same separate debug info file, but that file's timestamp
1980 has changed. That case should be handled by the loop in
1981 reread_symbols already. */
1982 static void
1983 reread_separate_symbols (struct objfile *objfile)
1984 {
1985 char *debug_file;
1986 unsigned long crc32;
1987
1988 /* Does the updated objfile's debug info live in a
1989 separate file? */
1990 debug_file = find_separate_debug_file (objfile);
1991
1992 if (objfile->separate_debug_objfile)
1993 {
1994 /* There are two cases where we need to get rid of
1995 the old separated debug info objfile:
1996 - if the new primary objfile doesn't have
1997 separated debug info, or
1998 - if the new primary objfile has separate debug
1999 info, but it's under a different filename.
2000
2001 If the old and new objfiles both have separate
2002 debug info, under the same filename, then we're
2003 okay --- if the separated file's contents have
2004 changed, we will have caught that when we
2005 visited it in this function's outermost
2006 loop. */
2007 if (! debug_file
2008 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2009 free_objfile (objfile->separate_debug_objfile);
2010 }
2011
2012 /* If the new objfile has separate debug info, and we
2013 haven't loaded it already, do so now. */
2014 if (debug_file
2015 && ! objfile->separate_debug_objfile)
2016 {
2017 /* Use the same section offset table as objfile itself.
2018 Preserve the flags from objfile that make sense. */
2019 objfile->separate_debug_objfile
2020 = (symbol_file_add_with_addrs_or_offsets
2021 (symfile_bfd_open (debug_file),
2022 info_verbose, /* from_tty: Don't override the default. */
2023 0, /* No addr table. */
2024 objfile->section_offsets, objfile->num_sections,
2025 0, /* Not mainline. See comments about this above. */
2026 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2027 | OBJF_USERLOADED)));
2028 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2029 = objfile;
2030 }
2031 }
2032
2033
2034 \f
2035
2036
2037 typedef struct
2038 {
2039 char *ext;
2040 enum language lang;
2041 }
2042 filename_language;
2043
2044 static filename_language *filename_language_table;
2045 static int fl_table_size, fl_table_next;
2046
2047 static void
2048 add_filename_language (char *ext, enum language lang)
2049 {
2050 if (fl_table_next >= fl_table_size)
2051 {
2052 fl_table_size += 10;
2053 filename_language_table =
2054 xrealloc (filename_language_table,
2055 fl_table_size * sizeof (*filename_language_table));
2056 }
2057
2058 filename_language_table[fl_table_next].ext = xstrdup (ext);
2059 filename_language_table[fl_table_next].lang = lang;
2060 fl_table_next++;
2061 }
2062
2063 static char *ext_args;
2064
2065 static void
2066 set_ext_lang_command (char *args, int from_tty)
2067 {
2068 int i;
2069 char *cp = ext_args;
2070 enum language lang;
2071
2072 /* First arg is filename extension, starting with '.' */
2073 if (*cp != '.')
2074 error ("'%s': Filename extension must begin with '.'", ext_args);
2075
2076 /* Find end of first arg. */
2077 while (*cp && !isspace (*cp))
2078 cp++;
2079
2080 if (*cp == '\0')
2081 error ("'%s': two arguments required -- filename extension and language",
2082 ext_args);
2083
2084 /* Null-terminate first arg */
2085 *cp++ = '\0';
2086
2087 /* Find beginning of second arg, which should be a source language. */
2088 while (*cp && isspace (*cp))
2089 cp++;
2090
2091 if (*cp == '\0')
2092 error ("'%s': two arguments required -- filename extension and language",
2093 ext_args);
2094
2095 /* Lookup the language from among those we know. */
2096 lang = language_enum (cp);
2097
2098 /* Now lookup the filename extension: do we already know it? */
2099 for (i = 0; i < fl_table_next; i++)
2100 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2101 break;
2102
2103 if (i >= fl_table_next)
2104 {
2105 /* new file extension */
2106 add_filename_language (ext_args, lang);
2107 }
2108 else
2109 {
2110 /* redefining a previously known filename extension */
2111
2112 /* if (from_tty) */
2113 /* query ("Really make files of type %s '%s'?", */
2114 /* ext_args, language_str (lang)); */
2115
2116 xfree (filename_language_table[i].ext);
2117 filename_language_table[i].ext = xstrdup (ext_args);
2118 filename_language_table[i].lang = lang;
2119 }
2120 }
2121
2122 static void
2123 info_ext_lang_command (char *args, int from_tty)
2124 {
2125 int i;
2126
2127 printf_filtered ("Filename extensions and the languages they represent:");
2128 printf_filtered ("\n\n");
2129 for (i = 0; i < fl_table_next; i++)
2130 printf_filtered ("\t%s\t- %s\n",
2131 filename_language_table[i].ext,
2132 language_str (filename_language_table[i].lang));
2133 }
2134
2135 static void
2136 init_filename_language_table (void)
2137 {
2138 if (fl_table_size == 0) /* protect against repetition */
2139 {
2140 fl_table_size = 20;
2141 fl_table_next = 0;
2142 filename_language_table =
2143 xmalloc (fl_table_size * sizeof (*filename_language_table));
2144 add_filename_language (".c", language_c);
2145 add_filename_language (".C", language_cplus);
2146 add_filename_language (".cc", language_cplus);
2147 add_filename_language (".cp", language_cplus);
2148 add_filename_language (".cpp", language_cplus);
2149 add_filename_language (".cxx", language_cplus);
2150 add_filename_language (".c++", language_cplus);
2151 add_filename_language (".java", language_java);
2152 add_filename_language (".class", language_java);
2153 add_filename_language (".m", language_objc);
2154 add_filename_language (".f", language_fortran);
2155 add_filename_language (".F", language_fortran);
2156 add_filename_language (".s", language_asm);
2157 add_filename_language (".S", language_asm);
2158 add_filename_language (".pas", language_pascal);
2159 add_filename_language (".p", language_pascal);
2160 add_filename_language (".pp", language_pascal);
2161 }
2162 }
2163
2164 enum language
2165 deduce_language_from_filename (char *filename)
2166 {
2167 int i;
2168 char *cp;
2169
2170 if (filename != NULL)
2171 if ((cp = strrchr (filename, '.')) != NULL)
2172 for (i = 0; i < fl_table_next; i++)
2173 if (strcmp (cp, filename_language_table[i].ext) == 0)
2174 return filename_language_table[i].lang;
2175
2176 return language_unknown;
2177 }
2178 \f
2179 /* allocate_symtab:
2180
2181 Allocate and partly initialize a new symbol table. Return a pointer
2182 to it. error() if no space.
2183
2184 Caller must set these fields:
2185 LINETABLE(symtab)
2186 symtab->blockvector
2187 symtab->dirname
2188 symtab->free_code
2189 symtab->free_ptr
2190 possibly free_named_symtabs (symtab->filename);
2191 */
2192
2193 struct symtab *
2194 allocate_symtab (char *filename, struct objfile *objfile)
2195 {
2196 struct symtab *symtab;
2197
2198 symtab = (struct symtab *)
2199 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2200 memset (symtab, 0, sizeof (*symtab));
2201 symtab->filename = obsavestring (filename, strlen (filename),
2202 &objfile->objfile_obstack);
2203 symtab->fullname = NULL;
2204 symtab->language = deduce_language_from_filename (filename);
2205 symtab->debugformat = obsavestring ("unknown", 7,
2206 &objfile->objfile_obstack);
2207
2208 /* Hook it to the objfile it comes from */
2209
2210 symtab->objfile = objfile;
2211 symtab->next = objfile->symtabs;
2212 objfile->symtabs = symtab;
2213
2214 /* FIXME: This should go away. It is only defined for the Z8000,
2215 and the Z8000 definition of this macro doesn't have anything to
2216 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2217 here for convenience. */
2218 #ifdef INIT_EXTRA_SYMTAB_INFO
2219 INIT_EXTRA_SYMTAB_INFO (symtab);
2220 #endif
2221
2222 return (symtab);
2223 }
2224
2225 struct partial_symtab *
2226 allocate_psymtab (char *filename, struct objfile *objfile)
2227 {
2228 struct partial_symtab *psymtab;
2229
2230 if (objfile->free_psymtabs)
2231 {
2232 psymtab = objfile->free_psymtabs;
2233 objfile->free_psymtabs = psymtab->next;
2234 }
2235 else
2236 psymtab = (struct partial_symtab *)
2237 obstack_alloc (&objfile->objfile_obstack,
2238 sizeof (struct partial_symtab));
2239
2240 memset (psymtab, 0, sizeof (struct partial_symtab));
2241 psymtab->filename = obsavestring (filename, strlen (filename),
2242 &objfile->objfile_obstack);
2243 psymtab->symtab = NULL;
2244
2245 /* Prepend it to the psymtab list for the objfile it belongs to.
2246 Psymtabs are searched in most recent inserted -> least recent
2247 inserted order. */
2248
2249 psymtab->objfile = objfile;
2250 psymtab->next = objfile->psymtabs;
2251 objfile->psymtabs = psymtab;
2252 #if 0
2253 {
2254 struct partial_symtab **prev_pst;
2255 psymtab->objfile = objfile;
2256 psymtab->next = NULL;
2257 prev_pst = &(objfile->psymtabs);
2258 while ((*prev_pst) != NULL)
2259 prev_pst = &((*prev_pst)->next);
2260 (*prev_pst) = psymtab;
2261 }
2262 #endif
2263
2264 return (psymtab);
2265 }
2266
2267 void
2268 discard_psymtab (struct partial_symtab *pst)
2269 {
2270 struct partial_symtab **prev_pst;
2271
2272 /* From dbxread.c:
2273 Empty psymtabs happen as a result of header files which don't
2274 have any symbols in them. There can be a lot of them. But this
2275 check is wrong, in that a psymtab with N_SLINE entries but
2276 nothing else is not empty, but we don't realize that. Fixing
2277 that without slowing things down might be tricky. */
2278
2279 /* First, snip it out of the psymtab chain */
2280
2281 prev_pst = &(pst->objfile->psymtabs);
2282 while ((*prev_pst) != pst)
2283 prev_pst = &((*prev_pst)->next);
2284 (*prev_pst) = pst->next;
2285
2286 /* Next, put it on a free list for recycling */
2287
2288 pst->next = pst->objfile->free_psymtabs;
2289 pst->objfile->free_psymtabs = pst;
2290 }
2291 \f
2292
2293 /* Reset all data structures in gdb which may contain references to symbol
2294 table data. */
2295
2296 void
2297 clear_symtab_users (void)
2298 {
2299 /* Someday, we should do better than this, by only blowing away
2300 the things that really need to be blown. */
2301 clear_value_history ();
2302 clear_displays ();
2303 clear_internalvars ();
2304 breakpoint_re_set ();
2305 set_default_breakpoint (0, 0, 0, 0);
2306 clear_current_source_symtab_and_line ();
2307 clear_pc_function_cache ();
2308 if (deprecated_target_new_objfile_hook)
2309 deprecated_target_new_objfile_hook (NULL);
2310 }
2311
2312 static void
2313 clear_symtab_users_cleanup (void *ignore)
2314 {
2315 clear_symtab_users ();
2316 }
2317
2318 /* clear_symtab_users_once:
2319
2320 This function is run after symbol reading, or from a cleanup.
2321 If an old symbol table was obsoleted, the old symbol table
2322 has been blown away, but the other GDB data structures that may
2323 reference it have not yet been cleared or re-directed. (The old
2324 symtab was zapped, and the cleanup queued, in free_named_symtab()
2325 below.)
2326
2327 This function can be queued N times as a cleanup, or called
2328 directly; it will do all the work the first time, and then will be a
2329 no-op until the next time it is queued. This works by bumping a
2330 counter at queueing time. Much later when the cleanup is run, or at
2331 the end of symbol processing (in case the cleanup is discarded), if
2332 the queued count is greater than the "done-count", we do the work
2333 and set the done-count to the queued count. If the queued count is
2334 less than or equal to the done-count, we just ignore the call. This
2335 is needed because reading a single .o file will often replace many
2336 symtabs (one per .h file, for example), and we don't want to reset
2337 the breakpoints N times in the user's face.
2338
2339 The reason we both queue a cleanup, and call it directly after symbol
2340 reading, is because the cleanup protects us in case of errors, but is
2341 discarded if symbol reading is successful. */
2342
2343 #if 0
2344 /* FIXME: As free_named_symtabs is currently a big noop this function
2345 is no longer needed. */
2346 static void clear_symtab_users_once (void);
2347
2348 static int clear_symtab_users_queued;
2349 static int clear_symtab_users_done;
2350
2351 static void
2352 clear_symtab_users_once (void)
2353 {
2354 /* Enforce once-per-`do_cleanups'-semantics */
2355 if (clear_symtab_users_queued <= clear_symtab_users_done)
2356 return;
2357 clear_symtab_users_done = clear_symtab_users_queued;
2358
2359 clear_symtab_users ();
2360 }
2361 #endif
2362
2363 /* Delete the specified psymtab, and any others that reference it. */
2364
2365 static void
2366 cashier_psymtab (struct partial_symtab *pst)
2367 {
2368 struct partial_symtab *ps, *pprev = NULL;
2369 int i;
2370
2371 /* Find its previous psymtab in the chain */
2372 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2373 {
2374 if (ps == pst)
2375 break;
2376 pprev = ps;
2377 }
2378
2379 if (ps)
2380 {
2381 /* Unhook it from the chain. */
2382 if (ps == pst->objfile->psymtabs)
2383 pst->objfile->psymtabs = ps->next;
2384 else
2385 pprev->next = ps->next;
2386
2387 /* FIXME, we can't conveniently deallocate the entries in the
2388 partial_symbol lists (global_psymbols/static_psymbols) that
2389 this psymtab points to. These just take up space until all
2390 the psymtabs are reclaimed. Ditto the dependencies list and
2391 filename, which are all in the objfile_obstack. */
2392
2393 /* We need to cashier any psymtab that has this one as a dependency... */
2394 again:
2395 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2396 {
2397 for (i = 0; i < ps->number_of_dependencies; i++)
2398 {
2399 if (ps->dependencies[i] == pst)
2400 {
2401 cashier_psymtab (ps);
2402 goto again; /* Must restart, chain has been munged. */
2403 }
2404 }
2405 }
2406 }
2407 }
2408
2409 /* If a symtab or psymtab for filename NAME is found, free it along
2410 with any dependent breakpoints, displays, etc.
2411 Used when loading new versions of object modules with the "add-file"
2412 command. This is only called on the top-level symtab or psymtab's name;
2413 it is not called for subsidiary files such as .h files.
2414
2415 Return value is 1 if we blew away the environment, 0 if not.
2416 FIXME. The return value appears to never be used.
2417
2418 FIXME. I think this is not the best way to do this. We should
2419 work on being gentler to the environment while still cleaning up
2420 all stray pointers into the freed symtab. */
2421
2422 int
2423 free_named_symtabs (char *name)
2424 {
2425 #if 0
2426 /* FIXME: With the new method of each objfile having it's own
2427 psymtab list, this function needs serious rethinking. In particular,
2428 why was it ever necessary to toss psymtabs with specific compilation
2429 unit filenames, as opposed to all psymtabs from a particular symbol
2430 file? -- fnf
2431 Well, the answer is that some systems permit reloading of particular
2432 compilation units. We want to blow away any old info about these
2433 compilation units, regardless of which objfiles they arrived in. --gnu. */
2434
2435 struct symtab *s;
2436 struct symtab *prev;
2437 struct partial_symtab *ps;
2438 struct blockvector *bv;
2439 int blewit = 0;
2440
2441 /* We only wack things if the symbol-reload switch is set. */
2442 if (!symbol_reloading)
2443 return 0;
2444
2445 /* Some symbol formats have trouble providing file names... */
2446 if (name == 0 || *name == '\0')
2447 return 0;
2448
2449 /* Look for a psymtab with the specified name. */
2450
2451 again2:
2452 for (ps = partial_symtab_list; ps; ps = ps->next)
2453 {
2454 if (strcmp (name, ps->filename) == 0)
2455 {
2456 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2457 goto again2; /* Must restart, chain has been munged */
2458 }
2459 }
2460
2461 /* Look for a symtab with the specified name. */
2462
2463 for (s = symtab_list; s; s = s->next)
2464 {
2465 if (strcmp (name, s->filename) == 0)
2466 break;
2467 prev = s;
2468 }
2469
2470 if (s)
2471 {
2472 if (s == symtab_list)
2473 symtab_list = s->next;
2474 else
2475 prev->next = s->next;
2476
2477 /* For now, queue a delete for all breakpoints, displays, etc., whether
2478 or not they depend on the symtab being freed. This should be
2479 changed so that only those data structures affected are deleted. */
2480
2481 /* But don't delete anything if the symtab is empty.
2482 This test is necessary due to a bug in "dbxread.c" that
2483 causes empty symtabs to be created for N_SO symbols that
2484 contain the pathname of the object file. (This problem
2485 has been fixed in GDB 3.9x). */
2486
2487 bv = BLOCKVECTOR (s);
2488 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2489 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2490 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2491 {
2492 complaint (&symfile_complaints, "Replacing old symbols for `%s'",
2493 name);
2494 clear_symtab_users_queued++;
2495 make_cleanup (clear_symtab_users_once, 0);
2496 blewit = 1;
2497 }
2498 else
2499 {
2500 complaint (&symfile_complaints, "Empty symbol table found for `%s'",
2501 name);
2502 }
2503
2504 free_symtab (s);
2505 }
2506 else
2507 {
2508 /* It is still possible that some breakpoints will be affected
2509 even though no symtab was found, since the file might have
2510 been compiled without debugging, and hence not be associated
2511 with a symtab. In order to handle this correctly, we would need
2512 to keep a list of text address ranges for undebuggable files.
2513 For now, we do nothing, since this is a fairly obscure case. */
2514 ;
2515 }
2516
2517 /* FIXME, what about the minimal symbol table? */
2518 return blewit;
2519 #else
2520 return (0);
2521 #endif
2522 }
2523 \f
2524 /* Allocate and partially fill a partial symtab. It will be
2525 completely filled at the end of the symbol list.
2526
2527 FILENAME is the name of the symbol-file we are reading from. */
2528
2529 struct partial_symtab *
2530 start_psymtab_common (struct objfile *objfile,
2531 struct section_offsets *section_offsets, char *filename,
2532 CORE_ADDR textlow, struct partial_symbol **global_syms,
2533 struct partial_symbol **static_syms)
2534 {
2535 struct partial_symtab *psymtab;
2536
2537 psymtab = allocate_psymtab (filename, objfile);
2538 psymtab->section_offsets = section_offsets;
2539 psymtab->textlow = textlow;
2540 psymtab->texthigh = psymtab->textlow; /* default */
2541 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2542 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2543 return (psymtab);
2544 }
2545 \f
2546 /* Add a symbol with a long value to a psymtab.
2547 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2548 Return the partial symbol that has been added. */
2549
2550 /* NOTE: carlton/2003-09-11: The reason why we return the partial
2551 symbol is so that callers can get access to the symbol's demangled
2552 name, which they don't have any cheap way to determine otherwise.
2553 (Currenly, dwarf2read.c is the only file who uses that information,
2554 though it's possible that other readers might in the future.)
2555 Elena wasn't thrilled about that, and I don't blame her, but we
2556 couldn't come up with a better way to get that information. If
2557 it's needed in other situations, we could consider breaking up
2558 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2559 cache. */
2560
2561 const struct partial_symbol *
2562 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2563 enum address_class class,
2564 struct psymbol_allocation_list *list, long val, /* Value as a long */
2565 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2566 enum language language, struct objfile *objfile)
2567 {
2568 struct partial_symbol *psym;
2569 char *buf = alloca (namelength + 1);
2570 /* psymbol is static so that there will be no uninitialized gaps in the
2571 structure which might contain random data, causing cache misses in
2572 bcache. */
2573 static struct partial_symbol psymbol;
2574
2575 /* Create local copy of the partial symbol */
2576 memcpy (buf, name, namelength);
2577 buf[namelength] = '\0';
2578 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2579 if (val != 0)
2580 {
2581 SYMBOL_VALUE (&psymbol) = val;
2582 }
2583 else
2584 {
2585 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2586 }
2587 SYMBOL_SECTION (&psymbol) = 0;
2588 SYMBOL_LANGUAGE (&psymbol) = language;
2589 PSYMBOL_DOMAIN (&psymbol) = domain;
2590 PSYMBOL_CLASS (&psymbol) = class;
2591
2592 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2593
2594 /* Stash the partial symbol away in the cache */
2595 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2596 objfile->psymbol_cache);
2597
2598 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2599 if (list->next >= list->list + list->size)
2600 {
2601 extend_psymbol_list (list, objfile);
2602 }
2603 *list->next++ = psym;
2604 OBJSTAT (objfile, n_psyms++);
2605
2606 return psym;
2607 }
2608
2609 /* Add a symbol with a long value to a psymtab. This differs from
2610 * add_psymbol_to_list above in taking both a mangled and a demangled
2611 * name. */
2612
2613 void
2614 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2615 int dem_namelength, domain_enum domain,
2616 enum address_class class,
2617 struct psymbol_allocation_list *list, long val, /* Value as a long */
2618 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2619 enum language language,
2620 struct objfile *objfile)
2621 {
2622 struct partial_symbol *psym;
2623 char *buf = alloca (namelength + 1);
2624 /* psymbol is static so that there will be no uninitialized gaps in the
2625 structure which might contain random data, causing cache misses in
2626 bcache. */
2627 static struct partial_symbol psymbol;
2628
2629 /* Create local copy of the partial symbol */
2630
2631 memcpy (buf, name, namelength);
2632 buf[namelength] = '\0';
2633 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2634 objfile->psymbol_cache);
2635
2636 buf = alloca (dem_namelength + 1);
2637 memcpy (buf, dem_name, dem_namelength);
2638 buf[dem_namelength] = '\0';
2639
2640 switch (language)
2641 {
2642 case language_c:
2643 case language_cplus:
2644 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2645 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2646 break;
2647 /* FIXME What should be done for the default case? Ignoring for now. */
2648 }
2649
2650 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2651 if (val != 0)
2652 {
2653 SYMBOL_VALUE (&psymbol) = val;
2654 }
2655 else
2656 {
2657 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2658 }
2659 SYMBOL_SECTION (&psymbol) = 0;
2660 SYMBOL_LANGUAGE (&psymbol) = language;
2661 PSYMBOL_DOMAIN (&psymbol) = domain;
2662 PSYMBOL_CLASS (&psymbol) = class;
2663 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2664
2665 /* Stash the partial symbol away in the cache */
2666 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2667 objfile->psymbol_cache);
2668
2669 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2670 if (list->next >= list->list + list->size)
2671 {
2672 extend_psymbol_list (list, objfile);
2673 }
2674 *list->next++ = psym;
2675 OBJSTAT (objfile, n_psyms++);
2676 }
2677
2678 /* Initialize storage for partial symbols. */
2679
2680 void
2681 init_psymbol_list (struct objfile *objfile, int total_symbols)
2682 {
2683 /* Free any previously allocated psymbol lists. */
2684
2685 if (objfile->global_psymbols.list)
2686 {
2687 xmfree (objfile->md, objfile->global_psymbols.list);
2688 }
2689 if (objfile->static_psymbols.list)
2690 {
2691 xmfree (objfile->md, objfile->static_psymbols.list);
2692 }
2693
2694 /* Current best guess is that approximately a twentieth
2695 of the total symbols (in a debugging file) are global or static
2696 oriented symbols */
2697
2698 objfile->global_psymbols.size = total_symbols / 10;
2699 objfile->static_psymbols.size = total_symbols / 10;
2700
2701 if (objfile->global_psymbols.size > 0)
2702 {
2703 objfile->global_psymbols.next =
2704 objfile->global_psymbols.list = (struct partial_symbol **)
2705 xmmalloc (objfile->md, (objfile->global_psymbols.size
2706 * sizeof (struct partial_symbol *)));
2707 }
2708 if (objfile->static_psymbols.size > 0)
2709 {
2710 objfile->static_psymbols.next =
2711 objfile->static_psymbols.list = (struct partial_symbol **)
2712 xmmalloc (objfile->md, (objfile->static_psymbols.size
2713 * sizeof (struct partial_symbol *)));
2714 }
2715 }
2716
2717 /* OVERLAYS:
2718 The following code implements an abstraction for debugging overlay sections.
2719
2720 The target model is as follows:
2721 1) The gnu linker will permit multiple sections to be mapped into the
2722 same VMA, each with its own unique LMA (or load address).
2723 2) It is assumed that some runtime mechanism exists for mapping the
2724 sections, one by one, from the load address into the VMA address.
2725 3) This code provides a mechanism for gdb to keep track of which
2726 sections should be considered to be mapped from the VMA to the LMA.
2727 This information is used for symbol lookup, and memory read/write.
2728 For instance, if a section has been mapped then its contents
2729 should be read from the VMA, otherwise from the LMA.
2730
2731 Two levels of debugger support for overlays are available. One is
2732 "manual", in which the debugger relies on the user to tell it which
2733 overlays are currently mapped. This level of support is
2734 implemented entirely in the core debugger, and the information about
2735 whether a section is mapped is kept in the objfile->obj_section table.
2736
2737 The second level of support is "automatic", and is only available if
2738 the target-specific code provides functionality to read the target's
2739 overlay mapping table, and translate its contents for the debugger
2740 (by updating the mapped state information in the obj_section tables).
2741
2742 The interface is as follows:
2743 User commands:
2744 overlay map <name> -- tell gdb to consider this section mapped
2745 overlay unmap <name> -- tell gdb to consider this section unmapped
2746 overlay list -- list the sections that GDB thinks are mapped
2747 overlay read-target -- get the target's state of what's mapped
2748 overlay off/manual/auto -- set overlay debugging state
2749 Functional interface:
2750 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2751 section, return that section.
2752 find_pc_overlay(pc): find any overlay section that contains
2753 the pc, either in its VMA or its LMA
2754 overlay_is_mapped(sect): true if overlay is marked as mapped
2755 section_is_overlay(sect): true if section's VMA != LMA
2756 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2757 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2758 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2759 overlay_mapped_address(...): map an address from section's LMA to VMA
2760 overlay_unmapped_address(...): map an address from section's VMA to LMA
2761 symbol_overlayed_address(...): Return a "current" address for symbol:
2762 either in VMA or LMA depending on whether
2763 the symbol's section is currently mapped
2764 */
2765
2766 /* Overlay debugging state: */
2767
2768 enum overlay_debugging_state overlay_debugging = ovly_off;
2769 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2770
2771 /* Target vector for refreshing overlay mapped state */
2772 static void simple_overlay_update (struct obj_section *);
2773 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2774
2775 /* Function: section_is_overlay (SECTION)
2776 Returns true if SECTION has VMA not equal to LMA, ie.
2777 SECTION is loaded at an address different from where it will "run". */
2778
2779 int
2780 section_is_overlay (asection *section)
2781 {
2782 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2783
2784 if (overlay_debugging)
2785 if (section && section->lma != 0 &&
2786 section->vma != section->lma)
2787 return 1;
2788
2789 return 0;
2790 }
2791
2792 /* Function: overlay_invalidate_all (void)
2793 Invalidate the mapped state of all overlay sections (mark it as stale). */
2794
2795 static void
2796 overlay_invalidate_all (void)
2797 {
2798 struct objfile *objfile;
2799 struct obj_section *sect;
2800
2801 ALL_OBJSECTIONS (objfile, sect)
2802 if (section_is_overlay (sect->the_bfd_section))
2803 sect->ovly_mapped = -1;
2804 }
2805
2806 /* Function: overlay_is_mapped (SECTION)
2807 Returns true if section is an overlay, and is currently mapped.
2808 Private: public access is thru function section_is_mapped.
2809
2810 Access to the ovly_mapped flag is restricted to this function, so
2811 that we can do automatic update. If the global flag
2812 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2813 overlay_invalidate_all. If the mapped state of the particular
2814 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2815
2816 static int
2817 overlay_is_mapped (struct obj_section *osect)
2818 {
2819 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2820 return 0;
2821
2822 switch (overlay_debugging)
2823 {
2824 default:
2825 case ovly_off:
2826 return 0; /* overlay debugging off */
2827 case ovly_auto: /* overlay debugging automatic */
2828 /* Unles there is a target_overlay_update function,
2829 there's really nothing useful to do here (can't really go auto) */
2830 if (target_overlay_update)
2831 {
2832 if (overlay_cache_invalid)
2833 {
2834 overlay_invalidate_all ();
2835 overlay_cache_invalid = 0;
2836 }
2837 if (osect->ovly_mapped == -1)
2838 (*target_overlay_update) (osect);
2839 }
2840 /* fall thru to manual case */
2841 case ovly_on: /* overlay debugging manual */
2842 return osect->ovly_mapped == 1;
2843 }
2844 }
2845
2846 /* Function: section_is_mapped
2847 Returns true if section is an overlay, and is currently mapped. */
2848
2849 int
2850 section_is_mapped (asection *section)
2851 {
2852 struct objfile *objfile;
2853 struct obj_section *osect;
2854
2855 if (overlay_debugging)
2856 if (section && section_is_overlay (section))
2857 ALL_OBJSECTIONS (objfile, osect)
2858 if (osect->the_bfd_section == section)
2859 return overlay_is_mapped (osect);
2860
2861 return 0;
2862 }
2863
2864 /* Function: pc_in_unmapped_range
2865 If PC falls into the lma range of SECTION, return true, else false. */
2866
2867 CORE_ADDR
2868 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
2869 {
2870 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2871
2872 int size;
2873
2874 if (overlay_debugging)
2875 if (section && section_is_overlay (section))
2876 {
2877 size = bfd_get_section_size (section);
2878 if (section->lma <= pc && pc < section->lma + size)
2879 return 1;
2880 }
2881 return 0;
2882 }
2883
2884 /* Function: pc_in_mapped_range
2885 If PC falls into the vma range of SECTION, return true, else false. */
2886
2887 CORE_ADDR
2888 pc_in_mapped_range (CORE_ADDR pc, asection *section)
2889 {
2890 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2891
2892 int size;
2893
2894 if (overlay_debugging)
2895 if (section && section_is_overlay (section))
2896 {
2897 size = bfd_get_section_size (section);
2898 if (section->vma <= pc && pc < section->vma + size)
2899 return 1;
2900 }
2901 return 0;
2902 }
2903
2904
2905 /* Return true if the mapped ranges of sections A and B overlap, false
2906 otherwise. */
2907 static int
2908 sections_overlap (asection *a, asection *b)
2909 {
2910 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2911
2912 CORE_ADDR a_start = a->vma;
2913 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
2914 CORE_ADDR b_start = b->vma;
2915 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
2916
2917 return (a_start < b_end && b_start < a_end);
2918 }
2919
2920 /* Function: overlay_unmapped_address (PC, SECTION)
2921 Returns the address corresponding to PC in the unmapped (load) range.
2922 May be the same as PC. */
2923
2924 CORE_ADDR
2925 overlay_unmapped_address (CORE_ADDR pc, asection *section)
2926 {
2927 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2928
2929 if (overlay_debugging)
2930 if (section && section_is_overlay (section) &&
2931 pc_in_mapped_range (pc, section))
2932 return pc + section->lma - section->vma;
2933
2934 return pc;
2935 }
2936
2937 /* Function: overlay_mapped_address (PC, SECTION)
2938 Returns the address corresponding to PC in the mapped (runtime) range.
2939 May be the same as PC. */
2940
2941 CORE_ADDR
2942 overlay_mapped_address (CORE_ADDR pc, asection *section)
2943 {
2944 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2945
2946 if (overlay_debugging)
2947 if (section && section_is_overlay (section) &&
2948 pc_in_unmapped_range (pc, section))
2949 return pc + section->vma - section->lma;
2950
2951 return pc;
2952 }
2953
2954
2955 /* Function: symbol_overlayed_address
2956 Return one of two addresses (relative to the VMA or to the LMA),
2957 depending on whether the section is mapped or not. */
2958
2959 CORE_ADDR
2960 symbol_overlayed_address (CORE_ADDR address, asection *section)
2961 {
2962 if (overlay_debugging)
2963 {
2964 /* If the symbol has no section, just return its regular address. */
2965 if (section == 0)
2966 return address;
2967 /* If the symbol's section is not an overlay, just return its address */
2968 if (!section_is_overlay (section))
2969 return address;
2970 /* If the symbol's section is mapped, just return its address */
2971 if (section_is_mapped (section))
2972 return address;
2973 /*
2974 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2975 * then return its LOADED address rather than its vma address!!
2976 */
2977 return overlay_unmapped_address (address, section);
2978 }
2979 return address;
2980 }
2981
2982 /* Function: find_pc_overlay (PC)
2983 Return the best-match overlay section for PC:
2984 If PC matches a mapped overlay section's VMA, return that section.
2985 Else if PC matches an unmapped section's VMA, return that section.
2986 Else if PC matches an unmapped section's LMA, return that section. */
2987
2988 asection *
2989 find_pc_overlay (CORE_ADDR pc)
2990 {
2991 struct objfile *objfile;
2992 struct obj_section *osect, *best_match = NULL;
2993
2994 if (overlay_debugging)
2995 ALL_OBJSECTIONS (objfile, osect)
2996 if (section_is_overlay (osect->the_bfd_section))
2997 {
2998 if (pc_in_mapped_range (pc, osect->the_bfd_section))
2999 {
3000 if (overlay_is_mapped (osect))
3001 return osect->the_bfd_section;
3002 else
3003 best_match = osect;
3004 }
3005 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3006 best_match = osect;
3007 }
3008 return best_match ? best_match->the_bfd_section : NULL;
3009 }
3010
3011 /* Function: find_pc_mapped_section (PC)
3012 If PC falls into the VMA address range of an overlay section that is
3013 currently marked as MAPPED, return that section. Else return NULL. */
3014
3015 asection *
3016 find_pc_mapped_section (CORE_ADDR pc)
3017 {
3018 struct objfile *objfile;
3019 struct obj_section *osect;
3020
3021 if (overlay_debugging)
3022 ALL_OBJSECTIONS (objfile, osect)
3023 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3024 overlay_is_mapped (osect))
3025 return osect->the_bfd_section;
3026
3027 return NULL;
3028 }
3029
3030 /* Function: list_overlays_command
3031 Print a list of mapped sections and their PC ranges */
3032
3033 void
3034 list_overlays_command (char *args, int from_tty)
3035 {
3036 int nmapped = 0;
3037 struct objfile *objfile;
3038 struct obj_section *osect;
3039
3040 if (overlay_debugging)
3041 ALL_OBJSECTIONS (objfile, osect)
3042 if (overlay_is_mapped (osect))
3043 {
3044 const char *name;
3045 bfd_vma lma, vma;
3046 int size;
3047
3048 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3049 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3050 size = bfd_get_section_size (osect->the_bfd_section);
3051 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3052
3053 printf_filtered ("Section %s, loaded at ", name);
3054 print_address_numeric (lma, 1, gdb_stdout);
3055 puts_filtered (" - ");
3056 print_address_numeric (lma + size, 1, gdb_stdout);
3057 printf_filtered (", mapped at ");
3058 print_address_numeric (vma, 1, gdb_stdout);
3059 puts_filtered (" - ");
3060 print_address_numeric (vma + size, 1, gdb_stdout);
3061 puts_filtered ("\n");
3062
3063 nmapped++;
3064 }
3065 if (nmapped == 0)
3066 printf_filtered ("No sections are mapped.\n");
3067 }
3068
3069 /* Function: map_overlay_command
3070 Mark the named section as mapped (ie. residing at its VMA address). */
3071
3072 void
3073 map_overlay_command (char *args, int from_tty)
3074 {
3075 struct objfile *objfile, *objfile2;
3076 struct obj_section *sec, *sec2;
3077 asection *bfdsec;
3078
3079 if (!overlay_debugging)
3080 error ("\
3081 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3082 the 'overlay manual' command.");
3083
3084 if (args == 0 || *args == 0)
3085 error ("Argument required: name of an overlay section");
3086
3087 /* First, find a section matching the user supplied argument */
3088 ALL_OBJSECTIONS (objfile, sec)
3089 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3090 {
3091 /* Now, check to see if the section is an overlay. */
3092 bfdsec = sec->the_bfd_section;
3093 if (!section_is_overlay (bfdsec))
3094 continue; /* not an overlay section */
3095
3096 /* Mark the overlay as "mapped" */
3097 sec->ovly_mapped = 1;
3098
3099 /* Next, make a pass and unmap any sections that are
3100 overlapped by this new section: */
3101 ALL_OBJSECTIONS (objfile2, sec2)
3102 if (sec2->ovly_mapped
3103 && sec != sec2
3104 && sec->the_bfd_section != sec2->the_bfd_section
3105 && sections_overlap (sec->the_bfd_section,
3106 sec2->the_bfd_section))
3107 {
3108 if (info_verbose)
3109 printf_unfiltered ("Note: section %s unmapped by overlap\n",
3110 bfd_section_name (objfile->obfd,
3111 sec2->the_bfd_section));
3112 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3113 }
3114 return;
3115 }
3116 error ("No overlay section called %s", args);
3117 }
3118
3119 /* Function: unmap_overlay_command
3120 Mark the overlay section as unmapped
3121 (ie. resident in its LMA address range, rather than the VMA range). */
3122
3123 void
3124 unmap_overlay_command (char *args, int from_tty)
3125 {
3126 struct objfile *objfile;
3127 struct obj_section *sec;
3128
3129 if (!overlay_debugging)
3130 error ("\
3131 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3132 the 'overlay manual' command.");
3133
3134 if (args == 0 || *args == 0)
3135 error ("Argument required: name of an overlay section");
3136
3137 /* First, find a section matching the user supplied argument */
3138 ALL_OBJSECTIONS (objfile, sec)
3139 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3140 {
3141 if (!sec->ovly_mapped)
3142 error ("Section %s is not mapped", args);
3143 sec->ovly_mapped = 0;
3144 return;
3145 }
3146 error ("No overlay section called %s", args);
3147 }
3148
3149 /* Function: overlay_auto_command
3150 A utility command to turn on overlay debugging.
3151 Possibly this should be done via a set/show command. */
3152
3153 static void
3154 overlay_auto_command (char *args, int from_tty)
3155 {
3156 overlay_debugging = ovly_auto;
3157 enable_overlay_breakpoints ();
3158 if (info_verbose)
3159 printf_unfiltered ("Automatic overlay debugging enabled.");
3160 }
3161
3162 /* Function: overlay_manual_command
3163 A utility command to turn on overlay debugging.
3164 Possibly this should be done via a set/show command. */
3165
3166 static void
3167 overlay_manual_command (char *args, int from_tty)
3168 {
3169 overlay_debugging = ovly_on;
3170 disable_overlay_breakpoints ();
3171 if (info_verbose)
3172 printf_unfiltered ("Overlay debugging enabled.");
3173 }
3174
3175 /* Function: overlay_off_command
3176 A utility command to turn on overlay debugging.
3177 Possibly this should be done via a set/show command. */
3178
3179 static void
3180 overlay_off_command (char *args, int from_tty)
3181 {
3182 overlay_debugging = ovly_off;
3183 disable_overlay_breakpoints ();
3184 if (info_verbose)
3185 printf_unfiltered ("Overlay debugging disabled.");
3186 }
3187
3188 static void
3189 overlay_load_command (char *args, int from_tty)
3190 {
3191 if (target_overlay_update)
3192 (*target_overlay_update) (NULL);
3193 else
3194 error ("This target does not know how to read its overlay state.");
3195 }
3196
3197 /* Function: overlay_command
3198 A place-holder for a mis-typed command */
3199
3200 /* Command list chain containing all defined "overlay" subcommands. */
3201 struct cmd_list_element *overlaylist;
3202
3203 static void
3204 overlay_command (char *args, int from_tty)
3205 {
3206 printf_unfiltered
3207 ("\"overlay\" must be followed by the name of an overlay command.\n");
3208 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3209 }
3210
3211
3212 /* Target Overlays for the "Simplest" overlay manager:
3213
3214 This is GDB's default target overlay layer. It works with the
3215 minimal overlay manager supplied as an example by Cygnus. The
3216 entry point is via a function pointer "target_overlay_update",
3217 so targets that use a different runtime overlay manager can
3218 substitute their own overlay_update function and take over the
3219 function pointer.
3220
3221 The overlay_update function pokes around in the target's data structures
3222 to see what overlays are mapped, and updates GDB's overlay mapping with
3223 this information.
3224
3225 In this simple implementation, the target data structures are as follows:
3226 unsigned _novlys; /# number of overlay sections #/
3227 unsigned _ovly_table[_novlys][4] = {
3228 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3229 {..., ..., ..., ...},
3230 }
3231 unsigned _novly_regions; /# number of overlay regions #/
3232 unsigned _ovly_region_table[_novly_regions][3] = {
3233 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3234 {..., ..., ...},
3235 }
3236 These functions will attempt to update GDB's mappedness state in the
3237 symbol section table, based on the target's mappedness state.
3238
3239 To do this, we keep a cached copy of the target's _ovly_table, and
3240 attempt to detect when the cached copy is invalidated. The main
3241 entry point is "simple_overlay_update(SECT), which looks up SECT in
3242 the cached table and re-reads only the entry for that section from
3243 the target (whenever possible).
3244 */
3245
3246 /* Cached, dynamically allocated copies of the target data structures: */
3247 static unsigned (*cache_ovly_table)[4] = 0;
3248 #if 0
3249 static unsigned (*cache_ovly_region_table)[3] = 0;
3250 #endif
3251 static unsigned cache_novlys = 0;
3252 #if 0
3253 static unsigned cache_novly_regions = 0;
3254 #endif
3255 static CORE_ADDR cache_ovly_table_base = 0;
3256 #if 0
3257 static CORE_ADDR cache_ovly_region_table_base = 0;
3258 #endif
3259 enum ovly_index
3260 {
3261 VMA, SIZE, LMA, MAPPED
3262 };
3263 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3264
3265 /* Throw away the cached copy of _ovly_table */
3266 static void
3267 simple_free_overlay_table (void)
3268 {
3269 if (cache_ovly_table)
3270 xfree (cache_ovly_table);
3271 cache_novlys = 0;
3272 cache_ovly_table = NULL;
3273 cache_ovly_table_base = 0;
3274 }
3275
3276 #if 0
3277 /* Throw away the cached copy of _ovly_region_table */
3278 static void
3279 simple_free_overlay_region_table (void)
3280 {
3281 if (cache_ovly_region_table)
3282 xfree (cache_ovly_region_table);
3283 cache_novly_regions = 0;
3284 cache_ovly_region_table = NULL;
3285 cache_ovly_region_table_base = 0;
3286 }
3287 #endif
3288
3289 /* Read an array of ints from the target into a local buffer.
3290 Convert to host order. int LEN is number of ints */
3291 static void
3292 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3293 {
3294 /* FIXME (alloca): Not safe if array is very large. */
3295 char *buf = alloca (len * TARGET_LONG_BYTES);
3296 int i;
3297
3298 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3299 for (i = 0; i < len; i++)
3300 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3301 TARGET_LONG_BYTES);
3302 }
3303
3304 /* Find and grab a copy of the target _ovly_table
3305 (and _novlys, which is needed for the table's size) */
3306 static int
3307 simple_read_overlay_table (void)
3308 {
3309 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3310
3311 simple_free_overlay_table ();
3312 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3313 if (! novlys_msym)
3314 {
3315 error ("Error reading inferior's overlay table: "
3316 "couldn't find `_novlys' variable\n"
3317 "in inferior. Use `overlay manual' mode.");
3318 return 0;
3319 }
3320
3321 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3322 if (! ovly_table_msym)
3323 {
3324 error ("Error reading inferior's overlay table: couldn't find "
3325 "`_ovly_table' array\n"
3326 "in inferior. Use `overlay manual' mode.");
3327 return 0;
3328 }
3329
3330 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3331 cache_ovly_table
3332 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3333 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3334 read_target_long_array (cache_ovly_table_base,
3335 (int *) cache_ovly_table,
3336 cache_novlys * 4);
3337
3338 return 1; /* SUCCESS */
3339 }
3340
3341 #if 0
3342 /* Find and grab a copy of the target _ovly_region_table
3343 (and _novly_regions, which is needed for the table's size) */
3344 static int
3345 simple_read_overlay_region_table (void)
3346 {
3347 struct minimal_symbol *msym;
3348
3349 simple_free_overlay_region_table ();
3350 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3351 if (msym != NULL)
3352 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3353 else
3354 return 0; /* failure */
3355 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3356 if (cache_ovly_region_table != NULL)
3357 {
3358 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3359 if (msym != NULL)
3360 {
3361 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3362 read_target_long_array (cache_ovly_region_table_base,
3363 (int *) cache_ovly_region_table,
3364 cache_novly_regions * 3);
3365 }
3366 else
3367 return 0; /* failure */
3368 }
3369 else
3370 return 0; /* failure */
3371 return 1; /* SUCCESS */
3372 }
3373 #endif
3374
3375 /* Function: simple_overlay_update_1
3376 A helper function for simple_overlay_update. Assuming a cached copy
3377 of _ovly_table exists, look through it to find an entry whose vma,
3378 lma and size match those of OSECT. Re-read the entry and make sure
3379 it still matches OSECT (else the table may no longer be valid).
3380 Set OSECT's mapped state to match the entry. Return: 1 for
3381 success, 0 for failure. */
3382
3383 static int
3384 simple_overlay_update_1 (struct obj_section *osect)
3385 {
3386 int i, size;
3387 bfd *obfd = osect->objfile->obfd;
3388 asection *bsect = osect->the_bfd_section;
3389
3390 size = bfd_get_section_size (osect->the_bfd_section);
3391 for (i = 0; i < cache_novlys; i++)
3392 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3393 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3394 /* && cache_ovly_table[i][SIZE] == size */ )
3395 {
3396 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3397 (int *) cache_ovly_table[i], 4);
3398 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3399 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3400 /* && cache_ovly_table[i][SIZE] == size */ )
3401 {
3402 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3403 return 1;
3404 }
3405 else /* Warning! Warning! Target's ovly table has changed! */
3406 return 0;
3407 }
3408 return 0;
3409 }
3410
3411 /* Function: simple_overlay_update
3412 If OSECT is NULL, then update all sections' mapped state
3413 (after re-reading the entire target _ovly_table).
3414 If OSECT is non-NULL, then try to find a matching entry in the
3415 cached ovly_table and update only OSECT's mapped state.
3416 If a cached entry can't be found or the cache isn't valid, then
3417 re-read the entire cache, and go ahead and update all sections. */
3418
3419 static void
3420 simple_overlay_update (struct obj_section *osect)
3421 {
3422 struct objfile *objfile;
3423
3424 /* Were we given an osect to look up? NULL means do all of them. */
3425 if (osect)
3426 /* Have we got a cached copy of the target's overlay table? */
3427 if (cache_ovly_table != NULL)
3428 /* Does its cached location match what's currently in the symtab? */
3429 if (cache_ovly_table_base ==
3430 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3431 /* Then go ahead and try to look up this single section in the cache */
3432 if (simple_overlay_update_1 (osect))
3433 /* Found it! We're done. */
3434 return;
3435
3436 /* Cached table no good: need to read the entire table anew.
3437 Or else we want all the sections, in which case it's actually
3438 more efficient to read the whole table in one block anyway. */
3439
3440 if (! simple_read_overlay_table ())
3441 return;
3442
3443 /* Now may as well update all sections, even if only one was requested. */
3444 ALL_OBJSECTIONS (objfile, osect)
3445 if (section_is_overlay (osect->the_bfd_section))
3446 {
3447 int i, size;
3448 bfd *obfd = osect->objfile->obfd;
3449 asection *bsect = osect->the_bfd_section;
3450
3451 size = bfd_get_section_size (bsect);
3452 for (i = 0; i < cache_novlys; i++)
3453 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3454 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3455 /* && cache_ovly_table[i][SIZE] == size */ )
3456 { /* obj_section matches i'th entry in ovly_table */
3457 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3458 break; /* finished with inner for loop: break out */
3459 }
3460 }
3461 }
3462
3463 /* Set the output sections and output offsets for section SECTP in
3464 ABFD. The relocation code in BFD will read these offsets, so we
3465 need to be sure they're initialized. We map each section to itself,
3466 with no offset; this means that SECTP->vma will be honored. */
3467
3468 static void
3469 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3470 {
3471 sectp->output_section = sectp;
3472 sectp->output_offset = 0;
3473 }
3474
3475 /* Relocate the contents of a debug section SECTP in ABFD. The
3476 contents are stored in BUF if it is non-NULL, or returned in a
3477 malloc'd buffer otherwise.
3478
3479 For some platforms and debug info formats, shared libraries contain
3480 relocations against the debug sections (particularly for DWARF-2;
3481 one affected platform is PowerPC GNU/Linux, although it depends on
3482 the version of the linker in use). Also, ELF object files naturally
3483 have unresolved relocations for their debug sections. We need to apply
3484 the relocations in order to get the locations of symbols correct. */
3485
3486 bfd_byte *
3487 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3488 {
3489 /* We're only interested in debugging sections with relocation
3490 information. */
3491 if ((sectp->flags & SEC_RELOC) == 0)
3492 return NULL;
3493 if ((sectp->flags & SEC_DEBUGGING) == 0)
3494 return NULL;
3495
3496 /* We will handle section offsets properly elsewhere, so relocate as if
3497 all sections begin at 0. */
3498 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3499
3500 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3501 }
3502
3503 void
3504 _initialize_symfile (void)
3505 {
3506 struct cmd_list_element *c;
3507
3508 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3509 "Load symbol table from executable file FILE.\n\
3510 The `file' command can also load symbol tables, as well as setting the file\n\
3511 to execute.", &cmdlist);
3512 set_cmd_completer (c, filename_completer);
3513
3514 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3515 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3516 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3517 ADDR is the starting address of the file's text.\n\
3518 The optional arguments are section-name section-address pairs and\n\
3519 should be specified if the data and bss segments are not contiguous\n\
3520 with the text. SECT is a section name to be loaded at SECT_ADDR.",
3521 &cmdlist);
3522 set_cmd_completer (c, filename_completer);
3523
3524 c = add_cmd ("add-shared-symbol-files", class_files,
3525 add_shared_symbol_files_command,
3526 "Load the symbols from shared objects in the dynamic linker's link map.",
3527 &cmdlist);
3528 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3529 &cmdlist);
3530
3531 c = add_cmd ("load", class_files, load_command,
3532 "Dynamically load FILE into the running program, and record its symbols\n\
3533 for access from GDB.", &cmdlist);
3534 set_cmd_completer (c, filename_completer);
3535
3536 add_show_from_set
3537 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3538 (char *) &symbol_reloading,
3539 "Set dynamic symbol table reloading multiple times in one run.",
3540 &setlist),
3541 &showlist);
3542
3543 add_prefix_cmd ("overlay", class_support, overlay_command,
3544 "Commands for debugging overlays.", &overlaylist,
3545 "overlay ", 0, &cmdlist);
3546
3547 add_com_alias ("ovly", "overlay", class_alias, 1);
3548 add_com_alias ("ov", "overlay", class_alias, 1);
3549
3550 add_cmd ("map-overlay", class_support, map_overlay_command,
3551 "Assert that an overlay section is mapped.", &overlaylist);
3552
3553 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3554 "Assert that an overlay section is unmapped.", &overlaylist);
3555
3556 add_cmd ("list-overlays", class_support, list_overlays_command,
3557 "List mappings of overlay sections.", &overlaylist);
3558
3559 add_cmd ("manual", class_support, overlay_manual_command,
3560 "Enable overlay debugging.", &overlaylist);
3561 add_cmd ("off", class_support, overlay_off_command,
3562 "Disable overlay debugging.", &overlaylist);
3563 add_cmd ("auto", class_support, overlay_auto_command,
3564 "Enable automatic overlay debugging.", &overlaylist);
3565 add_cmd ("load-target", class_support, overlay_load_command,
3566 "Read the overlay mapping state from the target.", &overlaylist);
3567
3568 /* Filename extension to source language lookup table: */
3569 init_filename_language_table ();
3570 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3571 (char *) &ext_args,
3572 "Set mapping between filename extension and source language.\n\
3573 Usage: set extension-language .foo bar",
3574 &setlist);
3575 set_cmd_cfunc (c, set_ext_lang_command);
3576
3577 add_info ("extensions", info_ext_lang_command,
3578 "All filename extensions associated with a source language.");
3579
3580 add_show_from_set
3581 (add_set_cmd ("download-write-size", class_obscure,
3582 var_integer, (char *) &download_write_size,
3583 "Set the write size used when downloading a program.\n"
3584 "Only used when downloading a program onto a remote\n"
3585 "target. Specify zero, or a negative value, to disable\n"
3586 "blocked writes. The actual size of each transfer is also\n"
3587 "limited by the size of the target packet and the memory\n"
3588 "cache.\n",
3589 &setlist),
3590 &showlist);
3591
3592 debug_file_directory = xstrdup (DEBUGDIR);
3593 c = (add_set_cmd
3594 ("debug-file-directory", class_support, var_string,
3595 (char *) &debug_file_directory,
3596 "Set the directory where separate debug symbols are searched for.\n"
3597 "Separate debug symbols are first searched for in the same\n"
3598 "directory as the binary, then in the `" DEBUG_SUBDIRECTORY
3599 "' subdirectory,\n"
3600 "and lastly at the path of the directory of the binary with\n"
3601 "the global debug-file directory prepended\n",
3602 &setlist));
3603 add_show_from_set (c, &showlist);
3604 set_cmd_completer (c, filename_completer);
3605 }
This page took 0.098898 seconds and 5 git commands to generate.