Convert quick_symbol_functions to use methods
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2021 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/tilde.h"
48 #include "block.h"
49 #include "observable.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "gdbsupport/byte-vector.h"
60 #include "gdbsupport/pathstuff.h"
61 #include "gdbsupport/selftest.h"
62 #include "cli/cli-style.h"
63 #include "gdbsupport/forward-scope-exit.h"
64
65 #include <sys/types.h>
66 #include <fcntl.h>
67 #include <sys/stat.h>
68 #include <ctype.h>
69 #include <chrono>
70 #include <algorithm>
71
72 #include "psymtab.h"
73
74 int (*deprecated_ui_load_progress_hook) (const char *section,
75 unsigned long num);
76 void (*deprecated_show_load_progress) (const char *section,
77 unsigned long section_sent,
78 unsigned long section_size,
79 unsigned long total_sent,
80 unsigned long total_size);
81 void (*deprecated_pre_add_symbol_hook) (const char *);
82 void (*deprecated_post_add_symbol_hook) (void);
83
84 using clear_symtab_users_cleanup
85 = FORWARD_SCOPE_EXIT (clear_symtab_users);
86
87 /* Global variables owned by this file. */
88
89 /* See symfile.h. */
90
91 int readnow_symbol_files;
92
93 /* See symfile.h. */
94
95 int readnever_symbol_files;
96
97 /* Functions this file defines. */
98
99 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
100 objfile_flags flags, CORE_ADDR reloff);
101
102 static const struct sym_fns *find_sym_fns (bfd *);
103
104 static void overlay_invalidate_all (void);
105
106 static void simple_free_overlay_table (void);
107
108 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
109 enum bfd_endian);
110
111 static int simple_read_overlay_table (void);
112
113 static int simple_overlay_update_1 (struct obj_section *);
114
115 static void symfile_find_segment_sections (struct objfile *objfile);
116
117 /* List of all available sym_fns. On gdb startup, each object file reader
118 calls add_symtab_fns() to register information on each format it is
119 prepared to read. */
120
121 struct registered_sym_fns
122 {
123 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
124 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
125 {}
126
127 /* BFD flavour that we handle. */
128 enum bfd_flavour sym_flavour;
129
130 /* The "vtable" of symbol functions. */
131 const struct sym_fns *sym_fns;
132 };
133
134 static std::vector<registered_sym_fns> symtab_fns;
135
136 /* Values for "set print symbol-loading". */
137
138 const char print_symbol_loading_off[] = "off";
139 const char print_symbol_loading_brief[] = "brief";
140 const char print_symbol_loading_full[] = "full";
141 static const char *print_symbol_loading_enums[] =
142 {
143 print_symbol_loading_off,
144 print_symbol_loading_brief,
145 print_symbol_loading_full,
146 NULL
147 };
148 static const char *print_symbol_loading = print_symbol_loading_full;
149
150 /* See symfile.h. */
151
152 bool auto_solib_add = true;
153 \f
154
155 /* Return non-zero if symbol-loading messages should be printed.
156 FROM_TTY is the standard from_tty argument to gdb commands.
157 If EXEC is non-zero the messages are for the executable.
158 Otherwise, messages are for shared libraries.
159 If FULL is non-zero then the caller is printing a detailed message.
160 E.g., the message includes the shared library name.
161 Otherwise, the caller is printing a brief "summary" message. */
162
163 int
164 print_symbol_loading_p (int from_tty, int exec, int full)
165 {
166 if (!from_tty && !info_verbose)
167 return 0;
168
169 if (exec)
170 {
171 /* We don't check FULL for executables, there are few such
172 messages, therefore brief == full. */
173 return print_symbol_loading != print_symbol_loading_off;
174 }
175 if (full)
176 return print_symbol_loading == print_symbol_loading_full;
177 return print_symbol_loading == print_symbol_loading_brief;
178 }
179
180 /* True if we are reading a symbol table. */
181
182 int currently_reading_symtab = 0;
183
184 /* Increment currently_reading_symtab and return a cleanup that can be
185 used to decrement it. */
186
187 scoped_restore_tmpl<int>
188 increment_reading_symtab (void)
189 {
190 gdb_assert (currently_reading_symtab >= 0);
191 return make_scoped_restore (&currently_reading_symtab,
192 currently_reading_symtab + 1);
193 }
194
195 /* Remember the lowest-addressed loadable section we've seen.
196
197 In case of equal vmas, the section with the largest size becomes the
198 lowest-addressed loadable section.
199
200 If the vmas and sizes are equal, the last section is considered the
201 lowest-addressed loadable section. */
202
203 static void
204 find_lowest_section (asection *sect, asection **lowest)
205 {
206 if (0 == (bfd_section_flags (sect) & (SEC_ALLOC | SEC_LOAD)))
207 return;
208 if (!*lowest)
209 *lowest = sect; /* First loadable section */
210 else if (bfd_section_vma (*lowest) > bfd_section_vma (sect))
211 *lowest = sect; /* A lower loadable section */
212 else if (bfd_section_vma (*lowest) == bfd_section_vma (sect)
213 && (bfd_section_size (*lowest) <= bfd_section_size (sect)))
214 *lowest = sect;
215 }
216
217 /* Build (allocate and populate) a section_addr_info struct from
218 an existing section table. */
219
220 section_addr_info
221 build_section_addr_info_from_section_table (const target_section_table &table)
222 {
223 section_addr_info sap;
224
225 for (const target_section &stp : table)
226 {
227 struct bfd_section *asect = stp.the_bfd_section;
228 bfd *abfd = asect->owner;
229
230 if (bfd_section_flags (asect) & (SEC_ALLOC | SEC_LOAD)
231 && sap.size () < table.size ())
232 sap.emplace_back (stp.addr,
233 bfd_section_name (asect),
234 gdb_bfd_section_index (abfd, asect));
235 }
236
237 return sap;
238 }
239
240 /* Create a section_addr_info from section offsets in ABFD. */
241
242 static section_addr_info
243 build_section_addr_info_from_bfd (bfd *abfd)
244 {
245 struct bfd_section *sec;
246
247 section_addr_info sap;
248 for (sec = abfd->sections; sec != NULL; sec = sec->next)
249 if (bfd_section_flags (sec) & (SEC_ALLOC | SEC_LOAD))
250 sap.emplace_back (bfd_section_vma (sec),
251 bfd_section_name (sec),
252 gdb_bfd_section_index (abfd, sec));
253
254 return sap;
255 }
256
257 /* Create a section_addr_info from section offsets in OBJFILE. */
258
259 section_addr_info
260 build_section_addr_info_from_objfile (const struct objfile *objfile)
261 {
262 int i;
263
264 /* Before reread_symbols gets rewritten it is not safe to call:
265 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
266 */
267 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
268 for (i = 0; i < sap.size (); i++)
269 {
270 int sectindex = sap[i].sectindex;
271
272 sap[i].addr += objfile->section_offsets[sectindex];
273 }
274 return sap;
275 }
276
277 /* Initialize OBJFILE's sect_index_* members. */
278
279 static void
280 init_objfile_sect_indices (struct objfile *objfile)
281 {
282 asection *sect;
283 int i;
284
285 sect = bfd_get_section_by_name (objfile->obfd, ".text");
286 if (sect)
287 objfile->sect_index_text = sect->index;
288
289 sect = bfd_get_section_by_name (objfile->obfd, ".data");
290 if (sect)
291 objfile->sect_index_data = sect->index;
292
293 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
294 if (sect)
295 objfile->sect_index_bss = sect->index;
296
297 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
298 if (sect)
299 objfile->sect_index_rodata = sect->index;
300
301 /* This is where things get really weird... We MUST have valid
302 indices for the various sect_index_* members or gdb will abort.
303 So if for example, there is no ".text" section, we have to
304 accomodate that. First, check for a file with the standard
305 one or two segments. */
306
307 symfile_find_segment_sections (objfile);
308
309 /* Except when explicitly adding symbol files at some address,
310 section_offsets contains nothing but zeros, so it doesn't matter
311 which slot in section_offsets the individual sect_index_* members
312 index into. So if they are all zero, it is safe to just point
313 all the currently uninitialized indices to the first slot. But
314 beware: if this is the main executable, it may be relocated
315 later, e.g. by the remote qOffsets packet, and then this will
316 be wrong! That's why we try segments first. */
317
318 for (i = 0; i < objfile->section_offsets.size (); i++)
319 {
320 if (objfile->section_offsets[i] != 0)
321 {
322 break;
323 }
324 }
325 if (i == objfile->section_offsets.size ())
326 {
327 if (objfile->sect_index_text == -1)
328 objfile->sect_index_text = 0;
329 if (objfile->sect_index_data == -1)
330 objfile->sect_index_data = 0;
331 if (objfile->sect_index_bss == -1)
332 objfile->sect_index_bss = 0;
333 if (objfile->sect_index_rodata == -1)
334 objfile->sect_index_rodata = 0;
335 }
336 }
337
338 /* Find a unique offset to use for loadable section SECT if
339 the user did not provide an offset. */
340
341 static void
342 place_section (bfd *abfd, asection *sect, section_offsets &offsets,
343 CORE_ADDR &lowest)
344 {
345 CORE_ADDR start_addr;
346 int done;
347 ULONGEST align = ((ULONGEST) 1) << bfd_section_alignment (sect);
348
349 /* We are only interested in allocated sections. */
350 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
351 return;
352
353 /* If the user specified an offset, honor it. */
354 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
355 return;
356
357 /* Otherwise, let's try to find a place for the section. */
358 start_addr = (lowest + align - 1) & -align;
359
360 do {
361 asection *cur_sec;
362
363 done = 1;
364
365 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
366 {
367 int indx = cur_sec->index;
368
369 /* We don't need to compare against ourself. */
370 if (cur_sec == sect)
371 continue;
372
373 /* We can only conflict with allocated sections. */
374 if ((bfd_section_flags (cur_sec) & SEC_ALLOC) == 0)
375 continue;
376
377 /* If the section offset is 0, either the section has not been placed
378 yet, or it was the lowest section placed (in which case LOWEST
379 will be past its end). */
380 if (offsets[indx] == 0)
381 continue;
382
383 /* If this section would overlap us, then we must move up. */
384 if (start_addr + bfd_section_size (sect) > offsets[indx]
385 && start_addr < offsets[indx] + bfd_section_size (cur_sec))
386 {
387 start_addr = offsets[indx] + bfd_section_size (cur_sec);
388 start_addr = (start_addr + align - 1) & -align;
389 done = 0;
390 break;
391 }
392
393 /* Otherwise, we appear to be OK. So far. */
394 }
395 }
396 while (!done);
397
398 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
399 lowest = start_addr + bfd_section_size (sect);
400 }
401
402 /* Store section_addr_info as prepared (made relative and with SECTINDEX
403 filled-in) by addr_info_make_relative into SECTION_OFFSETS. */
404
405 void
406 relative_addr_info_to_section_offsets (section_offsets &section_offsets,
407 const section_addr_info &addrs)
408 {
409 int i;
410
411 section_offsets.assign (section_offsets.size (), 0);
412
413 /* Now calculate offsets for section that were specified by the caller. */
414 for (i = 0; i < addrs.size (); i++)
415 {
416 const struct other_sections *osp;
417
418 osp = &addrs[i];
419 if (osp->sectindex == -1)
420 continue;
421
422 /* Record all sections in offsets. */
423 /* The section_offsets in the objfile are here filled in using
424 the BFD index. */
425 section_offsets[osp->sectindex] = osp->addr;
426 }
427 }
428
429 /* Transform section name S for a name comparison. prelink can split section
430 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
431 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
432 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
433 (`.sbss') section has invalid (increased) virtual address. */
434
435 static const char *
436 addr_section_name (const char *s)
437 {
438 if (strcmp (s, ".dynbss") == 0)
439 return ".bss";
440 if (strcmp (s, ".sdynbss") == 0)
441 return ".sbss";
442
443 return s;
444 }
445
446 /* std::sort comparator for addrs_section_sort. Sort entries in
447 ascending order by their (name, sectindex) pair. sectindex makes
448 the sort by name stable. */
449
450 static bool
451 addrs_section_compar (const struct other_sections *a,
452 const struct other_sections *b)
453 {
454 int retval;
455
456 retval = strcmp (addr_section_name (a->name.c_str ()),
457 addr_section_name (b->name.c_str ()));
458 if (retval != 0)
459 return retval < 0;
460
461 return a->sectindex < b->sectindex;
462 }
463
464 /* Provide sorted array of pointers to sections of ADDRS. */
465
466 static std::vector<const struct other_sections *>
467 addrs_section_sort (const section_addr_info &addrs)
468 {
469 int i;
470
471 std::vector<const struct other_sections *> array (addrs.size ());
472 for (i = 0; i < addrs.size (); i++)
473 array[i] = &addrs[i];
474
475 std::sort (array.begin (), array.end (), addrs_section_compar);
476
477 return array;
478 }
479
480 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
481 also SECTINDEXes specific to ABFD there. This function can be used to
482 rebase ADDRS to start referencing different BFD than before. */
483
484 void
485 addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
486 {
487 asection *lower_sect;
488 CORE_ADDR lower_offset;
489 int i;
490
491 /* Find lowest loadable section to be used as starting point for
492 contiguous sections. */
493 lower_sect = NULL;
494 for (asection *iter : gdb_bfd_sections (abfd))
495 find_lowest_section (iter, &lower_sect);
496 if (lower_sect == NULL)
497 {
498 warning (_("no loadable sections found in added symbol-file %s"),
499 bfd_get_filename (abfd));
500 lower_offset = 0;
501 }
502 else
503 lower_offset = bfd_section_vma (lower_sect);
504
505 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
506 in ABFD. Section names are not unique - there can be multiple sections of
507 the same name. Also the sections of the same name do not have to be
508 adjacent to each other. Some sections may be present only in one of the
509 files. Even sections present in both files do not have to be in the same
510 order.
511
512 Use stable sort by name for the sections in both files. Then linearly
513 scan both lists matching as most of the entries as possible. */
514
515 std::vector<const struct other_sections *> addrs_sorted
516 = addrs_section_sort (*addrs);
517
518 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
519 std::vector<const struct other_sections *> abfd_addrs_sorted
520 = addrs_section_sort (abfd_addrs);
521
522 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
523 ABFD_ADDRS_SORTED. */
524
525 std::vector<const struct other_sections *>
526 addrs_to_abfd_addrs (addrs->size (), nullptr);
527
528 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
529 = abfd_addrs_sorted.begin ();
530 for (const other_sections *sect : addrs_sorted)
531 {
532 const char *sect_name = addr_section_name (sect->name.c_str ());
533
534 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
535 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
536 sect_name) < 0)
537 abfd_sorted_iter++;
538
539 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
540 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
541 sect_name) == 0)
542 {
543 int index_in_addrs;
544
545 /* Make the found item directly addressable from ADDRS. */
546 index_in_addrs = sect - addrs->data ();
547 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
548 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
549
550 /* Never use the same ABFD entry twice. */
551 abfd_sorted_iter++;
552 }
553 }
554
555 /* Calculate offsets for the loadable sections.
556 FIXME! Sections must be in order of increasing loadable section
557 so that contiguous sections can use the lower-offset!!!
558
559 Adjust offsets if the segments are not contiguous.
560 If the section is contiguous, its offset should be set to
561 the offset of the highest loadable section lower than it
562 (the loadable section directly below it in memory).
563 this_offset = lower_offset = lower_addr - lower_orig_addr */
564
565 for (i = 0; i < addrs->size (); i++)
566 {
567 const struct other_sections *sect = addrs_to_abfd_addrs[i];
568
569 if (sect)
570 {
571 /* This is the index used by BFD. */
572 (*addrs)[i].sectindex = sect->sectindex;
573
574 if ((*addrs)[i].addr != 0)
575 {
576 (*addrs)[i].addr -= sect->addr;
577 lower_offset = (*addrs)[i].addr;
578 }
579 else
580 (*addrs)[i].addr = lower_offset;
581 }
582 else
583 {
584 /* addr_section_name transformation is not used for SECT_NAME. */
585 const std::string &sect_name = (*addrs)[i].name;
586
587 /* This section does not exist in ABFD, which is normally
588 unexpected and we want to issue a warning.
589
590 However, the ELF prelinker does create a few sections which are
591 marked in the main executable as loadable (they are loaded in
592 memory from the DYNAMIC segment) and yet are not present in
593 separate debug info files. This is fine, and should not cause
594 a warning. Shared libraries contain just the section
595 ".gnu.liblist" but it is not marked as loadable there. There is
596 no other way to identify them than by their name as the sections
597 created by prelink have no special flags.
598
599 For the sections `.bss' and `.sbss' see addr_section_name. */
600
601 if (!(sect_name == ".gnu.liblist"
602 || sect_name == ".gnu.conflict"
603 || (sect_name == ".bss"
604 && i > 0
605 && (*addrs)[i - 1].name == ".dynbss"
606 && addrs_to_abfd_addrs[i - 1] != NULL)
607 || (sect_name == ".sbss"
608 && i > 0
609 && (*addrs)[i - 1].name == ".sdynbss"
610 && addrs_to_abfd_addrs[i - 1] != NULL)))
611 warning (_("section %s not found in %s"), sect_name.c_str (),
612 bfd_get_filename (abfd));
613
614 (*addrs)[i].addr = 0;
615 (*addrs)[i].sectindex = -1;
616 }
617 }
618 }
619
620 /* Parse the user's idea of an offset for dynamic linking, into our idea
621 of how to represent it for fast symbol reading. This is the default
622 version of the sym_fns.sym_offsets function for symbol readers that
623 don't need to do anything special. It allocates a section_offsets table
624 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
625
626 void
627 default_symfile_offsets (struct objfile *objfile,
628 const section_addr_info &addrs)
629 {
630 objfile->section_offsets.resize (gdb_bfd_count_sections (objfile->obfd));
631 relative_addr_info_to_section_offsets (objfile->section_offsets, addrs);
632
633 /* For relocatable files, all loadable sections will start at zero.
634 The zero is meaningless, so try to pick arbitrary addresses such
635 that no loadable sections overlap. This algorithm is quadratic,
636 but the number of sections in a single object file is generally
637 small. */
638 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
639 {
640 bfd *abfd = objfile->obfd;
641 asection *cur_sec;
642
643 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
644 /* We do not expect this to happen; just skip this step if the
645 relocatable file has a section with an assigned VMA. */
646 if (bfd_section_vma (cur_sec) != 0)
647 break;
648
649 if (cur_sec == NULL)
650 {
651 section_offsets &offsets = objfile->section_offsets;
652
653 /* Pick non-overlapping offsets for sections the user did not
654 place explicitly. */
655 CORE_ADDR lowest = 0;
656 for (asection *sect : gdb_bfd_sections (objfile->obfd))
657 place_section (objfile->obfd, sect, objfile->section_offsets,
658 lowest);
659
660 /* Correctly filling in the section offsets is not quite
661 enough. Relocatable files have two properties that
662 (most) shared objects do not:
663
664 - Their debug information will contain relocations. Some
665 shared libraries do also, but many do not, so this can not
666 be assumed.
667
668 - If there are multiple code sections they will be loaded
669 at different relative addresses in memory than they are
670 in the objfile, since all sections in the file will start
671 at address zero.
672
673 Because GDB has very limited ability to map from an
674 address in debug info to the correct code section,
675 it relies on adding SECT_OFF_TEXT to things which might be
676 code. If we clear all the section offsets, and set the
677 section VMAs instead, then symfile_relocate_debug_section
678 will return meaningful debug information pointing at the
679 correct sections.
680
681 GDB has too many different data structures for section
682 addresses - a bfd, objfile, and so_list all have section
683 tables, as does exec_ops. Some of these could probably
684 be eliminated. */
685
686 for (cur_sec = abfd->sections; cur_sec != NULL;
687 cur_sec = cur_sec->next)
688 {
689 if ((bfd_section_flags (cur_sec) & SEC_ALLOC) == 0)
690 continue;
691
692 bfd_set_section_vma (cur_sec, offsets[cur_sec->index]);
693 exec_set_section_address (bfd_get_filename (abfd),
694 cur_sec->index,
695 offsets[cur_sec->index]);
696 offsets[cur_sec->index] = 0;
697 }
698 }
699 }
700
701 /* Remember the bfd indexes for the .text, .data, .bss and
702 .rodata sections. */
703 init_objfile_sect_indices (objfile);
704 }
705
706 /* Divide the file into segments, which are individual relocatable units.
707 This is the default version of the sym_fns.sym_segments function for
708 symbol readers that do not have an explicit representation of segments.
709 It assumes that object files do not have segments, and fully linked
710 files have a single segment. */
711
712 symfile_segment_data_up
713 default_symfile_segments (bfd *abfd)
714 {
715 int num_sections, i;
716 asection *sect;
717 CORE_ADDR low, high;
718
719 /* Relocatable files contain enough information to position each
720 loadable section independently; they should not be relocated
721 in segments. */
722 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
723 return NULL;
724
725 /* Make sure there is at least one loadable section in the file. */
726 for (sect = abfd->sections; sect != NULL; sect = sect->next)
727 {
728 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
729 continue;
730
731 break;
732 }
733 if (sect == NULL)
734 return NULL;
735
736 low = bfd_section_vma (sect);
737 high = low + bfd_section_size (sect);
738
739 symfile_segment_data_up data (new symfile_segment_data);
740
741 num_sections = bfd_count_sections (abfd);
742
743 /* All elements are initialized to 0 (map to no segment). */
744 data->segment_info.resize (num_sections);
745
746 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
747 {
748 CORE_ADDR vma;
749
750 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
751 continue;
752
753 vma = bfd_section_vma (sect);
754 if (vma < low)
755 low = vma;
756 if (vma + bfd_section_size (sect) > high)
757 high = vma + bfd_section_size (sect);
758
759 data->segment_info[i] = 1;
760 }
761
762 data->segments.emplace_back (low, high - low);
763
764 return data;
765 }
766
767 /* This is a convenience function to call sym_read for OBJFILE and
768 possibly force the partial symbols to be read. */
769
770 static void
771 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
772 {
773 (*objfile->sf->sym_read) (objfile, add_flags);
774 objfile->per_bfd->minsyms_read = true;
775
776 /* find_separate_debug_file_in_section should be called only if there is
777 single binary with no existing separate debug info file. */
778 if (!objfile->has_partial_symbols ()
779 && objfile->separate_debug_objfile == NULL
780 && objfile->separate_debug_objfile_backlink == NULL)
781 {
782 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
783
784 if (abfd != NULL)
785 {
786 /* find_separate_debug_file_in_section uses the same filename for the
787 virtual section-as-bfd like the bfd filename containing the
788 section. Therefore use also non-canonical name form for the same
789 file containing the section. */
790 symbol_file_add_separate (abfd.get (),
791 bfd_get_filename (abfd.get ()),
792 add_flags | SYMFILE_NOT_FILENAME, objfile);
793 }
794 }
795 if ((add_flags & SYMFILE_NO_READ) == 0)
796 require_partial_symbols (objfile, false);
797 }
798
799 /* Initialize entry point information for this objfile. */
800
801 static void
802 init_entry_point_info (struct objfile *objfile)
803 {
804 struct entry_info *ei = &objfile->per_bfd->ei;
805
806 if (ei->initialized)
807 return;
808 ei->initialized = 1;
809
810 /* Save startup file's range of PC addresses to help blockframe.c
811 decide where the bottom of the stack is. */
812
813 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
814 {
815 /* Executable file -- record its entry point so we'll recognize
816 the startup file because it contains the entry point. */
817 ei->entry_point = bfd_get_start_address (objfile->obfd);
818 ei->entry_point_p = 1;
819 }
820 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
821 && bfd_get_start_address (objfile->obfd) != 0)
822 {
823 /* Some shared libraries may have entry points set and be
824 runnable. There's no clear way to indicate this, so just check
825 for values other than zero. */
826 ei->entry_point = bfd_get_start_address (objfile->obfd);
827 ei->entry_point_p = 1;
828 }
829 else
830 {
831 /* Examination of non-executable.o files. Short-circuit this stuff. */
832 ei->entry_point_p = 0;
833 }
834
835 if (ei->entry_point_p)
836 {
837 struct obj_section *osect;
838 CORE_ADDR entry_point = ei->entry_point;
839 int found;
840
841 /* Make certain that the address points at real code, and not a
842 function descriptor. */
843 entry_point
844 = gdbarch_convert_from_func_ptr_addr (objfile->arch (),
845 entry_point,
846 current_top_target ());
847
848 /* Remove any ISA markers, so that this matches entries in the
849 symbol table. */
850 ei->entry_point
851 = gdbarch_addr_bits_remove (objfile->arch (), entry_point);
852
853 found = 0;
854 ALL_OBJFILE_OSECTIONS (objfile, osect)
855 {
856 struct bfd_section *sect = osect->the_bfd_section;
857
858 if (entry_point >= bfd_section_vma (sect)
859 && entry_point < (bfd_section_vma (sect)
860 + bfd_section_size (sect)))
861 {
862 ei->the_bfd_section_index
863 = gdb_bfd_section_index (objfile->obfd, sect);
864 found = 1;
865 break;
866 }
867 }
868
869 if (!found)
870 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
871 }
872 }
873
874 /* Process a symbol file, as either the main file or as a dynamically
875 loaded file.
876
877 This function does not set the OBJFILE's entry-point info.
878
879 OBJFILE is where the symbols are to be read from.
880
881 ADDRS is the list of section load addresses. If the user has given
882 an 'add-symbol-file' command, then this is the list of offsets and
883 addresses he or she provided as arguments to the command; or, if
884 we're handling a shared library, these are the actual addresses the
885 sections are loaded at, according to the inferior's dynamic linker
886 (as gleaned by GDB's shared library code). We convert each address
887 into an offset from the section VMA's as it appears in the object
888 file, and then call the file's sym_offsets function to convert this
889 into a format-specific offset table --- a `section_offsets'.
890 The sectindex field is used to control the ordering of sections
891 with the same name. Upon return, it is updated to contain the
892 corresponding BFD section index, or -1 if the section was not found.
893
894 ADD_FLAGS encodes verbosity level, whether this is main symbol or
895 an extra symbol file such as dynamically loaded code, and whether
896 breakpoint reset should be deferred. */
897
898 static void
899 syms_from_objfile_1 (struct objfile *objfile,
900 section_addr_info *addrs,
901 symfile_add_flags add_flags)
902 {
903 section_addr_info local_addr;
904 const int mainline = add_flags & SYMFILE_MAINLINE;
905
906 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
907 objfile->qf = make_psymbol_functions ();
908
909 if (objfile->sf == NULL)
910 {
911 /* No symbols to load, but we still need to make sure
912 that the section_offsets table is allocated. */
913 int num_sections = gdb_bfd_count_sections (objfile->obfd);
914
915 objfile->section_offsets.assign (num_sections, 0);
916 return;
917 }
918
919 /* Make sure that partially constructed symbol tables will be cleaned up
920 if an error occurs during symbol reading. */
921 gdb::optional<clear_symtab_users_cleanup> defer_clear_users;
922
923 objfile_up objfile_holder (objfile);
924
925 /* If ADDRS is NULL, put together a dummy address list.
926 We now establish the convention that an addr of zero means
927 no load address was specified. */
928 if (! addrs)
929 addrs = &local_addr;
930
931 if (mainline)
932 {
933 /* We will modify the main symbol table, make sure that all its users
934 will be cleaned up if an error occurs during symbol reading. */
935 defer_clear_users.emplace ((symfile_add_flag) 0);
936
937 /* Since no error yet, throw away the old symbol table. */
938
939 if (current_program_space->symfile_object_file != NULL)
940 {
941 current_program_space->symfile_object_file->unlink ();
942 gdb_assert (current_program_space->symfile_object_file == NULL);
943 }
944
945 /* Currently we keep symbols from the add-symbol-file command.
946 If the user wants to get rid of them, they should do "symbol-file"
947 without arguments first. Not sure this is the best behavior
948 (PR 2207). */
949
950 (*objfile->sf->sym_new_init) (objfile);
951 }
952
953 /* Convert addr into an offset rather than an absolute address.
954 We find the lowest address of a loaded segment in the objfile,
955 and assume that <addr> is where that got loaded.
956
957 We no longer warn if the lowest section is not a text segment (as
958 happens for the PA64 port. */
959 if (addrs->size () > 0)
960 addr_info_make_relative (addrs, objfile->obfd);
961
962 /* Initialize symbol reading routines for this objfile, allow complaints to
963 appear for this new file, and record how verbose to be, then do the
964 initial symbol reading for this file. */
965
966 (*objfile->sf->sym_init) (objfile);
967 clear_complaints ();
968
969 (*objfile->sf->sym_offsets) (objfile, *addrs);
970
971 read_symbols (objfile, add_flags);
972
973 /* Discard cleanups as symbol reading was successful. */
974
975 objfile_holder.release ();
976 if (defer_clear_users)
977 defer_clear_users->release ();
978 }
979
980 /* Same as syms_from_objfile_1, but also initializes the objfile
981 entry-point info. */
982
983 static void
984 syms_from_objfile (struct objfile *objfile,
985 section_addr_info *addrs,
986 symfile_add_flags add_flags)
987 {
988 syms_from_objfile_1 (objfile, addrs, add_flags);
989 init_entry_point_info (objfile);
990 }
991
992 /* Perform required actions after either reading in the initial
993 symbols for a new objfile, or mapping in the symbols from a reusable
994 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
995
996 static void
997 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
998 {
999 /* If this is the main symbol file we have to clean up all users of the
1000 old main symbol file. Otherwise it is sufficient to fixup all the
1001 breakpoints that may have been redefined by this symbol file. */
1002 if (add_flags & SYMFILE_MAINLINE)
1003 {
1004 /* OK, make it the "real" symbol file. */
1005 current_program_space->symfile_object_file = objfile;
1006
1007 clear_symtab_users (add_flags);
1008 }
1009 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1010 {
1011 breakpoint_re_set ();
1012 }
1013
1014 /* We're done reading the symbol file; finish off complaints. */
1015 clear_complaints ();
1016 }
1017
1018 /* Process a symbol file, as either the main file or as a dynamically
1019 loaded file.
1020
1021 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1022 A new reference is acquired by this function.
1023
1024 For NAME description see the objfile constructor.
1025
1026 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1027 extra, such as dynamically loaded code, and what to do with breakpoints.
1028
1029 ADDRS is as described for syms_from_objfile_1, above.
1030 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1031
1032 PARENT is the original objfile if ABFD is a separate debug info file.
1033 Otherwise PARENT is NULL.
1034
1035 Upon success, returns a pointer to the objfile that was added.
1036 Upon failure, jumps back to command level (never returns). */
1037
1038 static struct objfile *
1039 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1040 symfile_add_flags add_flags,
1041 section_addr_info *addrs,
1042 objfile_flags flags, struct objfile *parent)
1043 {
1044 struct objfile *objfile;
1045 const int from_tty = add_flags & SYMFILE_VERBOSE;
1046 const int mainline = add_flags & SYMFILE_MAINLINE;
1047 const int always_confirm = add_flags & SYMFILE_ALWAYS_CONFIRM;
1048 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1049 && (readnow_symbol_files
1050 || (add_flags & SYMFILE_NO_READ) == 0));
1051
1052 if (readnow_symbol_files)
1053 {
1054 flags |= OBJF_READNOW;
1055 add_flags &= ~SYMFILE_NO_READ;
1056 }
1057 else if (readnever_symbol_files
1058 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1059 {
1060 flags |= OBJF_READNEVER;
1061 add_flags |= SYMFILE_NO_READ;
1062 }
1063 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1064 flags |= OBJF_NOT_FILENAME;
1065
1066 /* Give user a chance to burp if ALWAYS_CONFIRM or we'd be
1067 interactively wiping out any existing symbols. */
1068
1069 if (from_tty
1070 && (always_confirm
1071 || ((have_full_symbols () || have_partial_symbols ())
1072 && mainline))
1073 && !query (_("Load new symbol table from \"%s\"? "), name))
1074 error (_("Not confirmed."));
1075
1076 if (mainline)
1077 flags |= OBJF_MAINLINE;
1078 objfile = objfile::make (abfd, name, flags, parent);
1079
1080 /* We either created a new mapped symbol table, mapped an existing
1081 symbol table file which has not had initial symbol reading
1082 performed, or need to read an unmapped symbol table. */
1083 if (should_print)
1084 {
1085 if (deprecated_pre_add_symbol_hook)
1086 deprecated_pre_add_symbol_hook (name);
1087 else
1088 printf_filtered (_("Reading symbols from %ps...\n"),
1089 styled_string (file_name_style.style (), name));
1090 }
1091 syms_from_objfile (objfile, addrs, add_flags);
1092
1093 /* We now have at least a partial symbol table. Check to see if the
1094 user requested that all symbols be read on initial access via either
1095 the gdb startup command line or on a per symbol file basis. Expand
1096 all partial symbol tables for this objfile if so. */
1097
1098 if ((flags & OBJF_READNOW))
1099 {
1100 if (should_print)
1101 printf_filtered (_("Expanding full symbols from %ps...\n"),
1102 styled_string (file_name_style.style (), name));
1103
1104 objfile->expand_all_symtabs ();
1105 }
1106
1107 /* Note that we only print a message if we have no symbols and have
1108 no separate debug file. If there is a separate debug file which
1109 does not have symbols, we'll have emitted this message for that
1110 file, and so printing it twice is just redundant. */
1111 if (should_print && !objfile_has_symbols (objfile)
1112 && objfile->separate_debug_objfile == nullptr)
1113 printf_filtered (_("(No debugging symbols found in %ps)\n"),
1114 styled_string (file_name_style.style (), name));
1115
1116 if (should_print)
1117 {
1118 if (deprecated_post_add_symbol_hook)
1119 deprecated_post_add_symbol_hook ();
1120 }
1121
1122 /* We print some messages regardless of whether 'from_tty ||
1123 info_verbose' is true, so make sure they go out at the right
1124 time. */
1125 gdb_flush (gdb_stdout);
1126
1127 if (objfile->sf == NULL)
1128 {
1129 gdb::observers::new_objfile.notify (objfile);
1130 return objfile; /* No symbols. */
1131 }
1132
1133 finish_new_objfile (objfile, add_flags);
1134
1135 gdb::observers::new_objfile.notify (objfile);
1136
1137 bfd_cache_close_all ();
1138 return (objfile);
1139 }
1140
1141 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1142 see the objfile constructor. */
1143
1144 void
1145 symbol_file_add_separate (bfd *bfd, const char *name,
1146 symfile_add_flags symfile_flags,
1147 struct objfile *objfile)
1148 {
1149 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1150 because sections of BFD may not match sections of OBJFILE and because
1151 vma may have been modified by tools such as prelink. */
1152 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
1153
1154 symbol_file_add_with_addrs
1155 (bfd, name, symfile_flags, &sap,
1156 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1157 | OBJF_USERLOADED | OBJF_MAINLINE),
1158 objfile);
1159 }
1160
1161 /* Process the symbol file ABFD, as either the main file or as a
1162 dynamically loaded file.
1163 See symbol_file_add_with_addrs's comments for details. */
1164
1165 struct objfile *
1166 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1167 symfile_add_flags add_flags,
1168 section_addr_info *addrs,
1169 objfile_flags flags, struct objfile *parent)
1170 {
1171 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1172 parent);
1173 }
1174
1175 /* Process a symbol file, as either the main file or as a dynamically
1176 loaded file. See symbol_file_add_with_addrs's comments for details. */
1177
1178 struct objfile *
1179 symbol_file_add (const char *name, symfile_add_flags add_flags,
1180 section_addr_info *addrs, objfile_flags flags)
1181 {
1182 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1183
1184 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1185 flags, NULL);
1186 }
1187
1188 /* Call symbol_file_add() with default values and update whatever is
1189 affected by the loading of a new main().
1190 Used when the file is supplied in the gdb command line
1191 and by some targets with special loading requirements.
1192 The auxiliary function, symbol_file_add_main_1(), has the flags
1193 argument for the switches that can only be specified in the symbol_file
1194 command itself. */
1195
1196 void
1197 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1198 {
1199 symbol_file_add_main_1 (args, add_flags, 0, 0);
1200 }
1201
1202 static void
1203 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1204 objfile_flags flags, CORE_ADDR reloff)
1205 {
1206 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1207
1208 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1209 if (reloff != 0)
1210 objfile_rebase (objfile, reloff);
1211
1212 /* Getting new symbols may change our opinion about
1213 what is frameless. */
1214 reinit_frame_cache ();
1215
1216 if ((add_flags & SYMFILE_NO_READ) == 0)
1217 set_initial_language ();
1218 }
1219
1220 void
1221 symbol_file_clear (int from_tty)
1222 {
1223 if ((have_full_symbols () || have_partial_symbols ())
1224 && from_tty
1225 && (current_program_space->symfile_object_file
1226 ? !query (_("Discard symbol table from `%s'? "),
1227 objfile_name (current_program_space->symfile_object_file))
1228 : !query (_("Discard symbol table? "))))
1229 error (_("Not confirmed."));
1230
1231 /* solib descriptors may have handles to objfiles. Wipe them before their
1232 objfiles get stale by free_all_objfiles. */
1233 no_shared_libraries (NULL, from_tty);
1234
1235 current_program_space->free_all_objfiles ();
1236
1237 clear_symtab_users (0);
1238
1239 gdb_assert (current_program_space->symfile_object_file == NULL);
1240 if (from_tty)
1241 printf_filtered (_("No symbol file now.\n"));
1242 }
1243
1244 /* See symfile.h. */
1245
1246 bool separate_debug_file_debug = false;
1247
1248 static int
1249 separate_debug_file_exists (const std::string &name, unsigned long crc,
1250 struct objfile *parent_objfile)
1251 {
1252 unsigned long file_crc;
1253 int file_crc_p;
1254 struct stat parent_stat, abfd_stat;
1255 int verified_as_different;
1256
1257 /* Find a separate debug info file as if symbols would be present in
1258 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1259 section can contain just the basename of PARENT_OBJFILE without any
1260 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1261 the separate debug infos with the same basename can exist. */
1262
1263 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1264 return 0;
1265
1266 if (separate_debug_file_debug)
1267 {
1268 printf_filtered (_(" Trying %s..."), name.c_str ());
1269 gdb_flush (gdb_stdout);
1270 }
1271
1272 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget));
1273
1274 if (abfd == NULL)
1275 {
1276 if (separate_debug_file_debug)
1277 printf_filtered (_(" no, unable to open.\n"));
1278
1279 return 0;
1280 }
1281
1282 /* Verify symlinks were not the cause of filename_cmp name difference above.
1283
1284 Some operating systems, e.g. Windows, do not provide a meaningful
1285 st_ino; they always set it to zero. (Windows does provide a
1286 meaningful st_dev.) Files accessed from gdbservers that do not
1287 support the vFile:fstat packet will also have st_ino set to zero.
1288 Do not indicate a duplicate library in either case. While there
1289 is no guarantee that a system that provides meaningful inode
1290 numbers will never set st_ino to zero, this is merely an
1291 optimization, so we do not need to worry about false negatives. */
1292
1293 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1294 && abfd_stat.st_ino != 0
1295 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1296 {
1297 if (abfd_stat.st_dev == parent_stat.st_dev
1298 && abfd_stat.st_ino == parent_stat.st_ino)
1299 {
1300 if (separate_debug_file_debug)
1301 printf_filtered (_(" no, same file as the objfile.\n"));
1302
1303 return 0;
1304 }
1305 verified_as_different = 1;
1306 }
1307 else
1308 verified_as_different = 0;
1309
1310 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1311
1312 if (!file_crc_p)
1313 {
1314 if (separate_debug_file_debug)
1315 printf_filtered (_(" no, error computing CRC.\n"));
1316
1317 return 0;
1318 }
1319
1320 if (crc != file_crc)
1321 {
1322 unsigned long parent_crc;
1323
1324 /* If the files could not be verified as different with
1325 bfd_stat then we need to calculate the parent's CRC
1326 to verify whether the files are different or not. */
1327
1328 if (!verified_as_different)
1329 {
1330 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1331 {
1332 if (separate_debug_file_debug)
1333 printf_filtered (_(" no, error computing CRC.\n"));
1334
1335 return 0;
1336 }
1337 }
1338
1339 if (verified_as_different || parent_crc != file_crc)
1340 warning (_("the debug information found in \"%s\""
1341 " does not match \"%s\" (CRC mismatch).\n"),
1342 name.c_str (), objfile_name (parent_objfile));
1343
1344 if (separate_debug_file_debug)
1345 printf_filtered (_(" no, CRC doesn't match.\n"));
1346
1347 return 0;
1348 }
1349
1350 if (separate_debug_file_debug)
1351 printf_filtered (_(" yes!\n"));
1352
1353 return 1;
1354 }
1355
1356 char *debug_file_directory = NULL;
1357 static void
1358 show_debug_file_directory (struct ui_file *file, int from_tty,
1359 struct cmd_list_element *c, const char *value)
1360 {
1361 fprintf_filtered (file,
1362 _("The directory where separate debug "
1363 "symbols are searched for is \"%s\".\n"),
1364 value);
1365 }
1366
1367 #if ! defined (DEBUG_SUBDIRECTORY)
1368 #define DEBUG_SUBDIRECTORY ".debug"
1369 #endif
1370
1371 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1372 where the original file resides (may not be the same as
1373 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1374 looking for. CANON_DIR is the "realpath" form of DIR.
1375 DIR must contain a trailing '/'.
1376 Returns the path of the file with separate debug info, or an empty
1377 string. */
1378
1379 static std::string
1380 find_separate_debug_file (const char *dir,
1381 const char *canon_dir,
1382 const char *debuglink,
1383 unsigned long crc32, struct objfile *objfile)
1384 {
1385 if (separate_debug_file_debug)
1386 printf_filtered (_("\nLooking for separate debug info (debug link) for "
1387 "%s\n"), objfile_name (objfile));
1388
1389 /* First try in the same directory as the original file. */
1390 std::string debugfile = dir;
1391 debugfile += debuglink;
1392
1393 if (separate_debug_file_exists (debugfile, crc32, objfile))
1394 return debugfile;
1395
1396 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1397 debugfile = dir;
1398 debugfile += DEBUG_SUBDIRECTORY;
1399 debugfile += "/";
1400 debugfile += debuglink;
1401
1402 if (separate_debug_file_exists (debugfile, crc32, objfile))
1403 return debugfile;
1404
1405 /* Then try in the global debugfile directories.
1406
1407 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1408 cause "/..." lookups. */
1409
1410 bool target_prefix = startswith (dir, "target:");
1411 const char *dir_notarget = target_prefix ? dir + strlen ("target:") : dir;
1412 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1413 = dirnames_to_char_ptr_vec (debug_file_directory);
1414 gdb::unique_xmalloc_ptr<char> canon_sysroot = gdb_realpath (gdb_sysroot);
1415
1416 /* MS-Windows/MS-DOS don't allow colons in file names; we must
1417 convert the drive letter into a one-letter directory, so that the
1418 file name resulting from splicing below will be valid.
1419
1420 FIXME: The below only works when GDB runs on MS-Windows/MS-DOS.
1421 There are various remote-debugging scenarios where such a
1422 transformation of the drive letter might be required when GDB runs
1423 on a Posix host, see
1424
1425 https://sourceware.org/ml/gdb-patches/2019-04/msg00605.html
1426
1427 If some of those scenarios need to be supported, we will need to
1428 use a different condition for HAS_DRIVE_SPEC and a different macro
1429 instead of STRIP_DRIVE_SPEC, which work on Posix systems as well. */
1430 std::string drive;
1431 if (HAS_DRIVE_SPEC (dir_notarget))
1432 {
1433 drive = dir_notarget[0];
1434 dir_notarget = STRIP_DRIVE_SPEC (dir_notarget);
1435 }
1436
1437 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1438 {
1439 debugfile = target_prefix ? "target:" : "";
1440 debugfile += debugdir.get ();
1441 debugfile += "/";
1442 debugfile += drive;
1443 debugfile += dir_notarget;
1444 debugfile += debuglink;
1445
1446 if (separate_debug_file_exists (debugfile, crc32, objfile))
1447 return debugfile;
1448
1449 const char *base_path = NULL;
1450 if (canon_dir != NULL)
1451 {
1452 if (canon_sysroot.get () != NULL)
1453 base_path = child_path (canon_sysroot.get (), canon_dir);
1454 else
1455 base_path = child_path (gdb_sysroot, canon_dir);
1456 }
1457 if (base_path != NULL)
1458 {
1459 /* If the file is in the sysroot, try using its base path in
1460 the global debugfile directory. */
1461 debugfile = target_prefix ? "target:" : "";
1462 debugfile += debugdir.get ();
1463 debugfile += "/";
1464 debugfile += base_path;
1465 debugfile += "/";
1466 debugfile += debuglink;
1467
1468 if (separate_debug_file_exists (debugfile, crc32, objfile))
1469 return debugfile;
1470
1471 /* If the file is in the sysroot, try using its base path in
1472 the sysroot's global debugfile directory. */
1473 debugfile = target_prefix ? "target:" : "";
1474 debugfile += gdb_sysroot;
1475 debugfile += debugdir.get ();
1476 debugfile += "/";
1477 debugfile += base_path;
1478 debugfile += "/";
1479 debugfile += debuglink;
1480
1481 if (separate_debug_file_exists (debugfile, crc32, objfile))
1482 return debugfile;
1483 }
1484
1485 }
1486
1487 return std::string ();
1488 }
1489
1490 /* Modify PATH to contain only "[/]directory/" part of PATH.
1491 If there were no directory separators in PATH, PATH will be empty
1492 string on return. */
1493
1494 static void
1495 terminate_after_last_dir_separator (char *path)
1496 {
1497 int i;
1498
1499 /* Strip off the final filename part, leaving the directory name,
1500 followed by a slash. The directory can be relative or absolute. */
1501 for (i = strlen(path) - 1; i >= 0; i--)
1502 if (IS_DIR_SEPARATOR (path[i]))
1503 break;
1504
1505 /* If I is -1 then no directory is present there and DIR will be "". */
1506 path[i + 1] = '\0';
1507 }
1508
1509 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1510 Returns pathname, or an empty string. */
1511
1512 std::string
1513 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1514 {
1515 unsigned long crc32;
1516
1517 gdb::unique_xmalloc_ptr<char> debuglink
1518 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1519
1520 if (debuglink == NULL)
1521 {
1522 /* There's no separate debug info, hence there's no way we could
1523 load it => no warning. */
1524 return std::string ();
1525 }
1526
1527 std::string dir = objfile_name (objfile);
1528 terminate_after_last_dir_separator (&dir[0]);
1529 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1530
1531 std::string debugfile
1532 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1533 debuglink.get (), crc32, objfile);
1534
1535 if (debugfile.empty ())
1536 {
1537 /* For PR gdb/9538, try again with realpath (if different from the
1538 original). */
1539
1540 struct stat st_buf;
1541
1542 if (lstat (objfile_name (objfile), &st_buf) == 0
1543 && S_ISLNK (st_buf.st_mode))
1544 {
1545 gdb::unique_xmalloc_ptr<char> symlink_dir
1546 (lrealpath (objfile_name (objfile)));
1547 if (symlink_dir != NULL)
1548 {
1549 terminate_after_last_dir_separator (symlink_dir.get ());
1550 if (dir != symlink_dir.get ())
1551 {
1552 /* Different directory, so try using it. */
1553 debugfile = find_separate_debug_file (symlink_dir.get (),
1554 symlink_dir.get (),
1555 debuglink.get (),
1556 crc32,
1557 objfile);
1558 }
1559 }
1560 }
1561 }
1562
1563 return debugfile;
1564 }
1565
1566 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1567 simultaneously. */
1568
1569 static void
1570 validate_readnow_readnever (objfile_flags flags)
1571 {
1572 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1573 error (_("-readnow and -readnever cannot be used simultaneously"));
1574 }
1575
1576 /* This is the symbol-file command. Read the file, analyze its
1577 symbols, and add a struct symtab to a symtab list. The syntax of
1578 the command is rather bizarre:
1579
1580 1. The function buildargv implements various quoting conventions
1581 which are undocumented and have little or nothing in common with
1582 the way things are quoted (or not quoted) elsewhere in GDB.
1583
1584 2. Options are used, which are not generally used in GDB (perhaps
1585 "set mapped on", "set readnow on" would be better)
1586
1587 3. The order of options matters, which is contrary to GNU
1588 conventions (because it is confusing and inconvenient). */
1589
1590 void
1591 symbol_file_command (const char *args, int from_tty)
1592 {
1593 dont_repeat ();
1594
1595 if (args == NULL)
1596 {
1597 symbol_file_clear (from_tty);
1598 }
1599 else
1600 {
1601 objfile_flags flags = OBJF_USERLOADED;
1602 symfile_add_flags add_flags = 0;
1603 char *name = NULL;
1604 bool stop_processing_options = false;
1605 CORE_ADDR offset = 0;
1606 int idx;
1607 char *arg;
1608
1609 if (from_tty)
1610 add_flags |= SYMFILE_VERBOSE;
1611
1612 gdb_argv built_argv (args);
1613 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1614 {
1615 if (stop_processing_options || *arg != '-')
1616 {
1617 if (name == NULL)
1618 name = arg;
1619 else
1620 error (_("Unrecognized argument \"%s\""), arg);
1621 }
1622 else if (strcmp (arg, "-readnow") == 0)
1623 flags |= OBJF_READNOW;
1624 else if (strcmp (arg, "-readnever") == 0)
1625 flags |= OBJF_READNEVER;
1626 else if (strcmp (arg, "-o") == 0)
1627 {
1628 arg = built_argv[++idx];
1629 if (arg == NULL)
1630 error (_("Missing argument to -o"));
1631
1632 offset = parse_and_eval_address (arg);
1633 }
1634 else if (strcmp (arg, "--") == 0)
1635 stop_processing_options = true;
1636 else
1637 error (_("Unrecognized argument \"%s\""), arg);
1638 }
1639
1640 if (name == NULL)
1641 error (_("no symbol file name was specified"));
1642
1643 validate_readnow_readnever (flags);
1644
1645 /* Set SYMFILE_DEFER_BP_RESET because the proper displacement for a PIE
1646 (Position Independent Executable) main symbol file will only be
1647 computed by the solib_create_inferior_hook below. Without it,
1648 breakpoint_re_set would fail to insert the breakpoints with the zero
1649 displacement. */
1650 add_flags |= SYMFILE_DEFER_BP_RESET;
1651
1652 symbol_file_add_main_1 (name, add_flags, flags, offset);
1653
1654 solib_create_inferior_hook (from_tty);
1655
1656 /* Now it's safe to re-add the breakpoints. */
1657 breakpoint_re_set ();
1658 }
1659 }
1660
1661 /* Set the initial language. */
1662
1663 void
1664 set_initial_language (void)
1665 {
1666 if (language_mode == language_mode_manual)
1667 return;
1668 enum language lang = main_language ();
1669 /* Make C the default language. */
1670 enum language default_lang = language_c;
1671
1672 if (lang == language_unknown)
1673 {
1674 const char *name = main_name ();
1675 struct symbol *sym
1676 = lookup_symbol_in_language (name, NULL, VAR_DOMAIN, default_lang,
1677 NULL).symbol;
1678
1679 if (sym != NULL)
1680 lang = sym->language ();
1681 }
1682
1683 if (lang == language_unknown)
1684 {
1685 lang = default_lang;
1686 }
1687
1688 set_language (lang);
1689 expected_language = current_language; /* Don't warn the user. */
1690 }
1691
1692 /* Open the file specified by NAME and hand it off to BFD for
1693 preliminary analysis. Return a newly initialized bfd *, which
1694 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1695 absolute). In case of trouble, error() is called. */
1696
1697 gdb_bfd_ref_ptr
1698 symfile_bfd_open (const char *name)
1699 {
1700 int desc = -1;
1701
1702 gdb::unique_xmalloc_ptr<char> absolute_name;
1703 if (!is_target_filename (name))
1704 {
1705 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1706
1707 /* Look down path for it, allocate 2nd new malloc'd copy. */
1708 desc = openp (getenv ("PATH"),
1709 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1710 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1711 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1712 if (desc < 0)
1713 {
1714 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1715
1716 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1717 desc = openp (getenv ("PATH"),
1718 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1719 exename, O_RDONLY | O_BINARY, &absolute_name);
1720 }
1721 #endif
1722 if (desc < 0)
1723 perror_with_name (expanded_name.get ());
1724
1725 name = absolute_name.get ();
1726 }
1727
1728 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1729 if (sym_bfd == NULL)
1730 error (_("`%s': can't open to read symbols: %s."), name,
1731 bfd_errmsg (bfd_get_error ()));
1732
1733 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1734 bfd_set_cacheable (sym_bfd.get (), 1);
1735
1736 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1737 error (_("`%s': can't read symbols: %s."), name,
1738 bfd_errmsg (bfd_get_error ()));
1739
1740 return sym_bfd;
1741 }
1742
1743 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1744 the section was not found. */
1745
1746 int
1747 get_section_index (struct objfile *objfile, const char *section_name)
1748 {
1749 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1750
1751 if (sect)
1752 return sect->index;
1753 else
1754 return -1;
1755 }
1756
1757 /* Link SF into the global symtab_fns list.
1758 FLAVOUR is the file format that SF handles.
1759 Called on startup by the _initialize routine in each object file format
1760 reader, to register information about each format the reader is prepared
1761 to handle. */
1762
1763 void
1764 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1765 {
1766 symtab_fns.emplace_back (flavour, sf);
1767 }
1768
1769 /* Initialize OBJFILE to read symbols from its associated BFD. It
1770 either returns or calls error(). The result is an initialized
1771 struct sym_fns in the objfile structure, that contains cached
1772 information about the symbol file. */
1773
1774 static const struct sym_fns *
1775 find_sym_fns (bfd *abfd)
1776 {
1777 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1778
1779 if (our_flavour == bfd_target_srec_flavour
1780 || our_flavour == bfd_target_ihex_flavour
1781 || our_flavour == bfd_target_tekhex_flavour)
1782 return NULL; /* No symbols. */
1783
1784 for (const registered_sym_fns &rsf : symtab_fns)
1785 if (our_flavour == rsf.sym_flavour)
1786 return rsf.sym_fns;
1787
1788 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1789 bfd_get_target (abfd));
1790 }
1791 \f
1792
1793 /* This function runs the load command of our current target. */
1794
1795 static void
1796 load_command (const char *arg, int from_tty)
1797 {
1798 dont_repeat ();
1799
1800 /* The user might be reloading because the binary has changed. Take
1801 this opportunity to check. */
1802 reopen_exec_file ();
1803 reread_symbols ();
1804
1805 std::string temp;
1806 if (arg == NULL)
1807 {
1808 const char *parg, *prev;
1809
1810 arg = get_exec_file (1);
1811
1812 /* We may need to quote this string so buildargv can pull it
1813 apart. */
1814 prev = parg = arg;
1815 while ((parg = strpbrk (parg, "\\\"'\t ")))
1816 {
1817 temp.append (prev, parg - prev);
1818 prev = parg++;
1819 temp.push_back ('\\');
1820 }
1821 /* If we have not copied anything yet, then we didn't see a
1822 character to quote, and we can just leave ARG unchanged. */
1823 if (!temp.empty ())
1824 {
1825 temp.append (prev);
1826 arg = temp.c_str ();
1827 }
1828 }
1829
1830 target_load (arg, from_tty);
1831
1832 /* After re-loading the executable, we don't really know which
1833 overlays are mapped any more. */
1834 overlay_cache_invalid = 1;
1835 }
1836
1837 /* This version of "load" should be usable for any target. Currently
1838 it is just used for remote targets, not inftarg.c or core files,
1839 on the theory that only in that case is it useful.
1840
1841 Avoiding xmodem and the like seems like a win (a) because we don't have
1842 to worry about finding it, and (b) On VMS, fork() is very slow and so
1843 we don't want to run a subprocess. On the other hand, I'm not sure how
1844 performance compares. */
1845
1846 static int validate_download = 0;
1847
1848 /* Opaque data for load_progress. */
1849 struct load_progress_data
1850 {
1851 /* Cumulative data. */
1852 unsigned long write_count = 0;
1853 unsigned long data_count = 0;
1854 bfd_size_type total_size = 0;
1855 };
1856
1857 /* Opaque data for load_progress for a single section. */
1858 struct load_progress_section_data
1859 {
1860 load_progress_section_data (load_progress_data *cumulative_,
1861 const char *section_name_, ULONGEST section_size_,
1862 CORE_ADDR lma_, gdb_byte *buffer_)
1863 : cumulative (cumulative_), section_name (section_name_),
1864 section_size (section_size_), lma (lma_), buffer (buffer_)
1865 {}
1866
1867 struct load_progress_data *cumulative;
1868
1869 /* Per-section data. */
1870 const char *section_name;
1871 ULONGEST section_sent = 0;
1872 ULONGEST section_size;
1873 CORE_ADDR lma;
1874 gdb_byte *buffer;
1875 };
1876
1877 /* Opaque data for load_section_callback. */
1878 struct load_section_data
1879 {
1880 load_section_data (load_progress_data *progress_data_)
1881 : progress_data (progress_data_)
1882 {}
1883
1884 ~load_section_data ()
1885 {
1886 for (auto &&request : requests)
1887 {
1888 xfree (request.data);
1889 delete ((load_progress_section_data *) request.baton);
1890 }
1891 }
1892
1893 CORE_ADDR load_offset = 0;
1894 struct load_progress_data *progress_data;
1895 std::vector<struct memory_write_request> requests;
1896 };
1897
1898 /* Target write callback routine for progress reporting. */
1899
1900 static void
1901 load_progress (ULONGEST bytes, void *untyped_arg)
1902 {
1903 struct load_progress_section_data *args
1904 = (struct load_progress_section_data *) untyped_arg;
1905 struct load_progress_data *totals;
1906
1907 if (args == NULL)
1908 /* Writing padding data. No easy way to get at the cumulative
1909 stats, so just ignore this. */
1910 return;
1911
1912 totals = args->cumulative;
1913
1914 if (bytes == 0 && args->section_sent == 0)
1915 {
1916 /* The write is just starting. Let the user know we've started
1917 this section. */
1918 current_uiout->message ("Loading section %s, size %s lma %s\n",
1919 args->section_name,
1920 hex_string (args->section_size),
1921 paddress (target_gdbarch (), args->lma));
1922 return;
1923 }
1924
1925 if (validate_download)
1926 {
1927 /* Broken memories and broken monitors manifest themselves here
1928 when bring new computers to life. This doubles already slow
1929 downloads. */
1930 /* NOTE: cagney/1999-10-18: A more efficient implementation
1931 might add a verify_memory() method to the target vector and
1932 then use that. remote.c could implement that method using
1933 the ``qCRC'' packet. */
1934 gdb::byte_vector check (bytes);
1935
1936 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1937 error (_("Download verify read failed at %s"),
1938 paddress (target_gdbarch (), args->lma));
1939 if (memcmp (args->buffer, check.data (), bytes) != 0)
1940 error (_("Download verify compare failed at %s"),
1941 paddress (target_gdbarch (), args->lma));
1942 }
1943 totals->data_count += bytes;
1944 args->lma += bytes;
1945 args->buffer += bytes;
1946 totals->write_count += 1;
1947 args->section_sent += bytes;
1948 if (check_quit_flag ()
1949 || (deprecated_ui_load_progress_hook != NULL
1950 && deprecated_ui_load_progress_hook (args->section_name,
1951 args->section_sent)))
1952 error (_("Canceled the download"));
1953
1954 if (deprecated_show_load_progress != NULL)
1955 deprecated_show_load_progress (args->section_name,
1956 args->section_sent,
1957 args->section_size,
1958 totals->data_count,
1959 totals->total_size);
1960 }
1961
1962 /* Service function for generic_load. */
1963
1964 static void
1965 load_one_section (bfd *abfd, asection *asec,
1966 struct load_section_data *args)
1967 {
1968 bfd_size_type size = bfd_section_size (asec);
1969 const char *sect_name = bfd_section_name (asec);
1970
1971 if ((bfd_section_flags (asec) & SEC_LOAD) == 0)
1972 return;
1973
1974 if (size == 0)
1975 return;
1976
1977 ULONGEST begin = bfd_section_lma (asec) + args->load_offset;
1978 ULONGEST end = begin + size;
1979 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
1980 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1981
1982 load_progress_section_data *section_data
1983 = new load_progress_section_data (args->progress_data, sect_name, size,
1984 begin, buffer);
1985
1986 args->requests.emplace_back (begin, end, buffer, section_data);
1987 }
1988
1989 static void print_transfer_performance (struct ui_file *stream,
1990 unsigned long data_count,
1991 unsigned long write_count,
1992 std::chrono::steady_clock::duration d);
1993
1994 /* See symfile.h. */
1995
1996 void
1997 generic_load (const char *args, int from_tty)
1998 {
1999 struct load_progress_data total_progress;
2000 struct load_section_data cbdata (&total_progress);
2001 struct ui_out *uiout = current_uiout;
2002
2003 if (args == NULL)
2004 error_no_arg (_("file to load"));
2005
2006 gdb_argv argv (args);
2007
2008 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2009
2010 if (argv[1] != NULL)
2011 {
2012 const char *endptr;
2013
2014 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2015
2016 /* If the last word was not a valid number then
2017 treat it as a file name with spaces in. */
2018 if (argv[1] == endptr)
2019 error (_("Invalid download offset:%s."), argv[1]);
2020
2021 if (argv[2] != NULL)
2022 error (_("Too many parameters."));
2023 }
2024
2025 /* Open the file for loading. */
2026 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget));
2027 if (loadfile_bfd == NULL)
2028 perror_with_name (filename.get ());
2029
2030 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2031 {
2032 error (_("\"%s\" is not an object file: %s"), filename.get (),
2033 bfd_errmsg (bfd_get_error ()));
2034 }
2035
2036 for (asection *asec : gdb_bfd_sections (loadfile_bfd))
2037 total_progress.total_size += bfd_section_size (asec);
2038
2039 for (asection *asec : gdb_bfd_sections (loadfile_bfd))
2040 load_one_section (loadfile_bfd.get (), asec, &cbdata);
2041
2042 using namespace std::chrono;
2043
2044 steady_clock::time_point start_time = steady_clock::now ();
2045
2046 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2047 load_progress) != 0)
2048 error (_("Load failed"));
2049
2050 steady_clock::time_point end_time = steady_clock::now ();
2051
2052 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
2053 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2054 uiout->text ("Start address ");
2055 uiout->field_core_addr ("address", target_gdbarch (), entry);
2056 uiout->text (", load size ");
2057 uiout->field_unsigned ("load-size", total_progress.data_count);
2058 uiout->text ("\n");
2059 regcache_write_pc (get_current_regcache (), entry);
2060
2061 /* Reset breakpoints, now that we have changed the load image. For
2062 instance, breakpoints may have been set (or reset, by
2063 post_create_inferior) while connected to the target but before we
2064 loaded the program. In that case, the prologue analyzer could
2065 have read instructions from the target to find the right
2066 breakpoint locations. Loading has changed the contents of that
2067 memory. */
2068
2069 breakpoint_re_set ();
2070
2071 print_transfer_performance (gdb_stdout, total_progress.data_count,
2072 total_progress.write_count,
2073 end_time - start_time);
2074 }
2075
2076 /* Report on STREAM the performance of a memory transfer operation,
2077 such as 'load'. DATA_COUNT is the number of bytes transferred.
2078 WRITE_COUNT is the number of separate write operations, or 0, if
2079 that information is not available. TIME is how long the operation
2080 lasted. */
2081
2082 static void
2083 print_transfer_performance (struct ui_file *stream,
2084 unsigned long data_count,
2085 unsigned long write_count,
2086 std::chrono::steady_clock::duration time)
2087 {
2088 using namespace std::chrono;
2089 struct ui_out *uiout = current_uiout;
2090
2091 milliseconds ms = duration_cast<milliseconds> (time);
2092
2093 uiout->text ("Transfer rate: ");
2094 if (ms.count () > 0)
2095 {
2096 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2097
2098 if (uiout->is_mi_like_p ())
2099 {
2100 uiout->field_unsigned ("transfer-rate", rate * 8);
2101 uiout->text (" bits/sec");
2102 }
2103 else if (rate < 1024)
2104 {
2105 uiout->field_unsigned ("transfer-rate", rate);
2106 uiout->text (" bytes/sec");
2107 }
2108 else
2109 {
2110 uiout->field_unsigned ("transfer-rate", rate / 1024);
2111 uiout->text (" KB/sec");
2112 }
2113 }
2114 else
2115 {
2116 uiout->field_unsigned ("transferred-bits", (data_count * 8));
2117 uiout->text (" bits in <1 sec");
2118 }
2119 if (write_count > 0)
2120 {
2121 uiout->text (", ");
2122 uiout->field_unsigned ("write-rate", data_count / write_count);
2123 uiout->text (" bytes/write");
2124 }
2125 uiout->text (".\n");
2126 }
2127
2128 /* Add an OFFSET to the start address of each section in OBJF, except
2129 sections that were specified in ADDRS. */
2130
2131 static void
2132 set_objfile_default_section_offset (struct objfile *objf,
2133 const section_addr_info &addrs,
2134 CORE_ADDR offset)
2135 {
2136 /* Add OFFSET to all sections by default. */
2137 section_offsets offsets (objf->section_offsets.size (), offset);
2138
2139 /* Create sorted lists of all sections in ADDRS as well as all
2140 sections in OBJF. */
2141
2142 std::vector<const struct other_sections *> addrs_sorted
2143 = addrs_section_sort (addrs);
2144
2145 section_addr_info objf_addrs
2146 = build_section_addr_info_from_objfile (objf);
2147 std::vector<const struct other_sections *> objf_addrs_sorted
2148 = addrs_section_sort (objf_addrs);
2149
2150 /* Walk the BFD section list, and if a matching section is found in
2151 ADDRS_SORTED_LIST, set its offset to zero to keep its address
2152 unchanged.
2153
2154 Note that both lists may contain multiple sections with the same
2155 name, and then the sections from ADDRS are matched in BFD order
2156 (thanks to sectindex). */
2157
2158 std::vector<const struct other_sections *>::iterator addrs_sorted_iter
2159 = addrs_sorted.begin ();
2160 for (const other_sections *objf_sect : objf_addrs_sorted)
2161 {
2162 const char *objf_name = addr_section_name (objf_sect->name.c_str ());
2163 int cmp = -1;
2164
2165 while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ())
2166 {
2167 const struct other_sections *sect = *addrs_sorted_iter;
2168 const char *sect_name = addr_section_name (sect->name.c_str ());
2169 cmp = strcmp (sect_name, objf_name);
2170 if (cmp <= 0)
2171 ++addrs_sorted_iter;
2172 }
2173
2174 if (cmp == 0)
2175 offsets[objf_sect->sectindex] = 0;
2176 }
2177
2178 /* Apply the new section offsets. */
2179 objfile_relocate (objf, offsets);
2180 }
2181
2182 /* This function allows the addition of incrementally linked object files.
2183 It does not modify any state in the target, only in the debugger. */
2184
2185 static void
2186 add_symbol_file_command (const char *args, int from_tty)
2187 {
2188 struct gdbarch *gdbarch = get_current_arch ();
2189 gdb::unique_xmalloc_ptr<char> filename;
2190 char *arg;
2191 int argcnt = 0;
2192 struct objfile *objf;
2193 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2194 symfile_add_flags add_flags = 0;
2195
2196 if (from_tty)
2197 add_flags |= SYMFILE_VERBOSE;
2198
2199 struct sect_opt
2200 {
2201 const char *name;
2202 const char *value;
2203 };
2204
2205 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2206 bool stop_processing_options = false;
2207 CORE_ADDR offset = 0;
2208
2209 dont_repeat ();
2210
2211 if (args == NULL)
2212 error (_("add-symbol-file takes a file name and an address"));
2213
2214 bool seen_addr = false;
2215 bool seen_offset = false;
2216 gdb_argv argv (args);
2217
2218 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2219 {
2220 if (stop_processing_options || *arg != '-')
2221 {
2222 if (filename == NULL)
2223 {
2224 /* First non-option argument is always the filename. */
2225 filename.reset (tilde_expand (arg));
2226 }
2227 else if (!seen_addr)
2228 {
2229 /* The second non-option argument is always the text
2230 address at which to load the program. */
2231 sect_opts[0].value = arg;
2232 seen_addr = true;
2233 }
2234 else
2235 error (_("Unrecognized argument \"%s\""), arg);
2236 }
2237 else if (strcmp (arg, "-readnow") == 0)
2238 flags |= OBJF_READNOW;
2239 else if (strcmp (arg, "-readnever") == 0)
2240 flags |= OBJF_READNEVER;
2241 else if (strcmp (arg, "-s") == 0)
2242 {
2243 if (argv[argcnt + 1] == NULL)
2244 error (_("Missing section name after \"-s\""));
2245 else if (argv[argcnt + 2] == NULL)
2246 error (_("Missing section address after \"-s\""));
2247
2248 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2249
2250 sect_opts.push_back (sect);
2251 argcnt += 2;
2252 }
2253 else if (strcmp (arg, "-o") == 0)
2254 {
2255 arg = argv[++argcnt];
2256 if (arg == NULL)
2257 error (_("Missing argument to -o"));
2258
2259 offset = parse_and_eval_address (arg);
2260 seen_offset = true;
2261 }
2262 else if (strcmp (arg, "--") == 0)
2263 stop_processing_options = true;
2264 else
2265 error (_("Unrecognized argument \"%s\""), arg);
2266 }
2267
2268 if (filename == NULL)
2269 error (_("You must provide a filename to be loaded."));
2270
2271 validate_readnow_readnever (flags);
2272
2273 /* Print the prompt for the query below. And save the arguments into
2274 a sect_addr_info structure to be passed around to other
2275 functions. We have to split this up into separate print
2276 statements because hex_string returns a local static
2277 string. */
2278
2279 printf_unfiltered (_("add symbol table from file \"%s\""),
2280 filename.get ());
2281 section_addr_info section_addrs;
2282 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2283 if (!seen_addr)
2284 ++it;
2285 for (; it != sect_opts.end (); ++it)
2286 {
2287 CORE_ADDR addr;
2288 const char *val = it->value;
2289 const char *sec = it->name;
2290
2291 if (section_addrs.empty ())
2292 printf_unfiltered (_(" at\n"));
2293 addr = parse_and_eval_address (val);
2294
2295 /* Here we store the section offsets in the order they were
2296 entered on the command line. Every array element is
2297 assigned an ascending section index to preserve the above
2298 order over an unstable sorting algorithm. This dummy
2299 index is not used for any other purpose.
2300 */
2301 section_addrs.emplace_back (addr, sec, section_addrs.size ());
2302 printf_filtered ("\t%s_addr = %s\n", sec,
2303 paddress (gdbarch, addr));
2304
2305 /* The object's sections are initialized when a
2306 call is made to build_objfile_section_table (objfile).
2307 This happens in reread_symbols.
2308 At this point, we don't know what file type this is,
2309 so we can't determine what section names are valid. */
2310 }
2311 if (seen_offset)
2312 printf_unfiltered (_("%s offset by %s\n"),
2313 (section_addrs.empty ()
2314 ? _(" with all sections")
2315 : _("with other sections")),
2316 paddress (gdbarch, offset));
2317 else if (section_addrs.empty ())
2318 printf_unfiltered ("\n");
2319
2320 if (from_tty && (!query ("%s", "")))
2321 error (_("Not confirmed."));
2322
2323 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2324 flags);
2325 if (!objfile_has_symbols (objf) && objf->per_bfd->minimal_symbol_count <= 0)
2326 warning (_("newly-added symbol file \"%s\" does not provide any symbols"),
2327 filename.get ());
2328
2329 if (seen_offset)
2330 set_objfile_default_section_offset (objf, section_addrs, offset);
2331
2332 current_program_space->add_target_sections (objf);
2333
2334 /* Getting new symbols may change our opinion about what is
2335 frameless. */
2336 reinit_frame_cache ();
2337 }
2338 \f
2339
2340 /* This function removes a symbol file that was added via add-symbol-file. */
2341
2342 static void
2343 remove_symbol_file_command (const char *args, int from_tty)
2344 {
2345 struct objfile *objf = NULL;
2346 struct program_space *pspace = current_program_space;
2347
2348 dont_repeat ();
2349
2350 if (args == NULL)
2351 error (_("remove-symbol-file: no symbol file provided"));
2352
2353 gdb_argv argv (args);
2354
2355 if (strcmp (argv[0], "-a") == 0)
2356 {
2357 /* Interpret the next argument as an address. */
2358 CORE_ADDR addr;
2359
2360 if (argv[1] == NULL)
2361 error (_("Missing address argument"));
2362
2363 if (argv[2] != NULL)
2364 error (_("Junk after %s"), argv[1]);
2365
2366 addr = parse_and_eval_address (argv[1]);
2367
2368 for (objfile *objfile : current_program_space->objfiles ())
2369 {
2370 if ((objfile->flags & OBJF_USERLOADED) != 0
2371 && (objfile->flags & OBJF_SHARED) != 0
2372 && objfile->pspace == pspace
2373 && is_addr_in_objfile (addr, objfile))
2374 {
2375 objf = objfile;
2376 break;
2377 }
2378 }
2379 }
2380 else if (argv[0] != NULL)
2381 {
2382 /* Interpret the current argument as a file name. */
2383
2384 if (argv[1] != NULL)
2385 error (_("Junk after %s"), argv[0]);
2386
2387 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2388
2389 for (objfile *objfile : current_program_space->objfiles ())
2390 {
2391 if ((objfile->flags & OBJF_USERLOADED) != 0
2392 && (objfile->flags & OBJF_SHARED) != 0
2393 && objfile->pspace == pspace
2394 && filename_cmp (filename.get (), objfile_name (objfile)) == 0)
2395 {
2396 objf = objfile;
2397 break;
2398 }
2399 }
2400 }
2401
2402 if (objf == NULL)
2403 error (_("No symbol file found"));
2404
2405 if (from_tty
2406 && !query (_("Remove symbol table from file \"%s\"? "),
2407 objfile_name (objf)))
2408 error (_("Not confirmed."));
2409
2410 objf->unlink ();
2411 clear_symtab_users (0);
2412 }
2413
2414 /* Re-read symbols if a symbol-file has changed. */
2415
2416 void
2417 reread_symbols (void)
2418 {
2419 long new_modtime;
2420 struct stat new_statbuf;
2421 int res;
2422 std::vector<struct objfile *> new_objfiles;
2423
2424 for (objfile *objfile : current_program_space->objfiles ())
2425 {
2426 if (objfile->obfd == NULL)
2427 continue;
2428
2429 /* Separate debug objfiles are handled in the main objfile. */
2430 if (objfile->separate_debug_objfile_backlink)
2431 continue;
2432
2433 /* If this object is from an archive (what you usually create with
2434 `ar', often called a `static library' on most systems, though
2435 a `shared library' on AIX is also an archive), then you should
2436 stat on the archive name, not member name. */
2437 if (objfile->obfd->my_archive)
2438 res = stat (bfd_get_filename (objfile->obfd->my_archive), &new_statbuf);
2439 else
2440 res = stat (objfile_name (objfile), &new_statbuf);
2441 if (res != 0)
2442 {
2443 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2444 printf_filtered (_("`%s' has disappeared; keeping its symbols.\n"),
2445 objfile_name (objfile));
2446 continue;
2447 }
2448 new_modtime = new_statbuf.st_mtime;
2449 if (new_modtime != objfile->mtime)
2450 {
2451 printf_filtered (_("`%s' has changed; re-reading symbols.\n"),
2452 objfile_name (objfile));
2453
2454 /* There are various functions like symbol_file_add,
2455 symfile_bfd_open, syms_from_objfile, etc., which might
2456 appear to do what we want. But they have various other
2457 effects which we *don't* want. So we just do stuff
2458 ourselves. We don't worry about mapped files (for one thing,
2459 any mapped file will be out of date). */
2460
2461 /* If we get an error, blow away this objfile (not sure if
2462 that is the correct response for things like shared
2463 libraries). */
2464 objfile_up objfile_holder (objfile);
2465
2466 /* We need to do this whenever any symbols go away. */
2467 clear_symtab_users_cleanup defer_clear_users (0);
2468
2469 if (current_program_space->exec_bfd () != NULL
2470 && filename_cmp (bfd_get_filename (objfile->obfd),
2471 bfd_get_filename (current_program_space->exec_bfd ())) == 0)
2472 {
2473 /* Reload EXEC_BFD without asking anything. */
2474
2475 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2476 }
2477
2478 /* Keep the calls order approx. the same as in free_objfile. */
2479
2480 /* Free the separate debug objfiles. It will be
2481 automatically recreated by sym_read. */
2482 free_objfile_separate_debug (objfile);
2483
2484 /* Clear the stale source cache. */
2485 forget_cached_source_info ();
2486
2487 /* Remove any references to this objfile in the global
2488 value lists. */
2489 preserve_values (objfile);
2490
2491 /* Nuke all the state that we will re-read. Much of the following
2492 code which sets things to NULL really is necessary to tell
2493 other parts of GDB that there is nothing currently there.
2494
2495 Try to keep the freeing order compatible with free_objfile. */
2496
2497 if (objfile->sf != NULL)
2498 {
2499 (*objfile->sf->sym_finish) (objfile);
2500 }
2501
2502 clear_objfile_data (objfile);
2503
2504 /* Clean up any state BFD has sitting around. */
2505 {
2506 gdb_bfd_ref_ptr obfd (objfile->obfd);
2507 const char *obfd_filename;
2508
2509 obfd_filename = bfd_get_filename (objfile->obfd);
2510 /* Open the new BFD before freeing the old one, so that
2511 the filename remains live. */
2512 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget));
2513 objfile->obfd = temp.release ();
2514 if (objfile->obfd == NULL)
2515 error (_("Can't open %s to read symbols."), obfd_filename);
2516 }
2517
2518 std::string original_name = objfile->original_name;
2519
2520 /* bfd_openr sets cacheable to true, which is what we want. */
2521 if (!bfd_check_format (objfile->obfd, bfd_object))
2522 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2523 bfd_errmsg (bfd_get_error ()));
2524
2525 objfile->reset_psymtabs ();
2526
2527 /* NB: after this call to obstack_free, objfiles_changed
2528 will need to be called (see discussion below). */
2529 obstack_free (&objfile->objfile_obstack, 0);
2530 objfile->sections = NULL;
2531 objfile->section_offsets.clear ();
2532 objfile->sect_index_bss = -1;
2533 objfile->sect_index_data = -1;
2534 objfile->sect_index_rodata = -1;
2535 objfile->sect_index_text = -1;
2536 objfile->compunit_symtabs = NULL;
2537 objfile->template_symbols = NULL;
2538 objfile->static_links.reset (nullptr);
2539
2540 /* obstack_init also initializes the obstack so it is
2541 empty. We could use obstack_specify_allocation but
2542 gdb_obstack.h specifies the alloc/dealloc functions. */
2543 obstack_init (&objfile->objfile_obstack);
2544
2545 /* set_objfile_per_bfd potentially allocates the per-bfd
2546 data on the objfile's obstack (if sharing data across
2547 multiple users is not possible), so it's important to
2548 do it *after* the obstack has been initialized. */
2549 set_objfile_per_bfd (objfile);
2550
2551 objfile->original_name
2552 = obstack_strdup (&objfile->objfile_obstack, original_name);
2553
2554 /* Reset the sym_fns pointer. The ELF reader can change it
2555 based on whether .gdb_index is present, and we need it to
2556 start over. PR symtab/15885 */
2557 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2558 objfile->qf = make_psymbol_functions ();
2559
2560 build_objfile_section_table (objfile);
2561
2562 /* What the hell is sym_new_init for, anyway? The concept of
2563 distinguishing between the main file and additional files
2564 in this way seems rather dubious. */
2565 if (objfile == current_program_space->symfile_object_file)
2566 {
2567 (*objfile->sf->sym_new_init) (objfile);
2568 }
2569
2570 (*objfile->sf->sym_init) (objfile);
2571 clear_complaints ();
2572
2573 objfile->flags &= ~OBJF_PSYMTABS_READ;
2574
2575 /* We are about to read new symbols and potentially also
2576 DWARF information. Some targets may want to pass addresses
2577 read from DWARF DIE's through an adjustment function before
2578 saving them, like MIPS, which may call into
2579 "find_pc_section". When called, that function will make
2580 use of per-objfile program space data.
2581
2582 Since we discarded our section information above, we have
2583 dangling pointers in the per-objfile program space data
2584 structure. Force GDB to update the section mapping
2585 information by letting it know the objfile has changed,
2586 making the dangling pointers point to correct data
2587 again. */
2588
2589 objfiles_changed ();
2590
2591 /* Recompute section offsets and section indices. */
2592 objfile->sf->sym_offsets (objfile, {});
2593
2594 read_symbols (objfile, 0);
2595
2596 if (!objfile_has_symbols (objfile))
2597 {
2598 wrap_here ("");
2599 printf_filtered (_("(no debugging symbols found)\n"));
2600 wrap_here ("");
2601 }
2602
2603 /* We're done reading the symbol file; finish off complaints. */
2604 clear_complaints ();
2605
2606 /* Getting new symbols may change our opinion about what is
2607 frameless. */
2608
2609 reinit_frame_cache ();
2610
2611 /* Discard cleanups as symbol reading was successful. */
2612 objfile_holder.release ();
2613 defer_clear_users.release ();
2614
2615 /* If the mtime has changed between the time we set new_modtime
2616 and now, we *want* this to be out of date, so don't call stat
2617 again now. */
2618 objfile->mtime = new_modtime;
2619 init_entry_point_info (objfile);
2620
2621 new_objfiles.push_back (objfile);
2622 }
2623 }
2624
2625 if (!new_objfiles.empty ())
2626 {
2627 clear_symtab_users (0);
2628
2629 /* clear_objfile_data for each objfile was called before freeing it and
2630 gdb::observers::new_objfile.notify (NULL) has been called by
2631 clear_symtab_users above. Notify the new files now. */
2632 for (auto iter : new_objfiles)
2633 gdb::observers::new_objfile.notify (iter);
2634
2635 /* At least one objfile has changed, so we can consider that
2636 the executable we're debugging has changed too. */
2637 gdb::observers::executable_changed.notify ();
2638 }
2639 }
2640 \f
2641
2642 struct filename_language
2643 {
2644 filename_language (const std::string &ext_, enum language lang_)
2645 : ext (ext_), lang (lang_)
2646 {}
2647
2648 std::string ext;
2649 enum language lang;
2650 };
2651
2652 static std::vector<filename_language> filename_language_table;
2653
2654 /* See symfile.h. */
2655
2656 void
2657 add_filename_language (const char *ext, enum language lang)
2658 {
2659 gdb_assert (ext != nullptr);
2660 filename_language_table.emplace_back (ext, lang);
2661 }
2662
2663 static char *ext_args;
2664 static void
2665 show_ext_args (struct ui_file *file, int from_tty,
2666 struct cmd_list_element *c, const char *value)
2667 {
2668 fprintf_filtered (file,
2669 _("Mapping between filename extension "
2670 "and source language is \"%s\".\n"),
2671 value);
2672 }
2673
2674 static void
2675 set_ext_lang_command (const char *args,
2676 int from_tty, struct cmd_list_element *e)
2677 {
2678 char *cp = ext_args;
2679 enum language lang;
2680
2681 /* First arg is filename extension, starting with '.' */
2682 if (*cp != '.')
2683 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2684
2685 /* Find end of first arg. */
2686 while (*cp && !isspace (*cp))
2687 cp++;
2688
2689 if (*cp == '\0')
2690 error (_("'%s': two arguments required -- "
2691 "filename extension and language"),
2692 ext_args);
2693
2694 /* Null-terminate first arg. */
2695 *cp++ = '\0';
2696
2697 /* Find beginning of second arg, which should be a source language. */
2698 cp = skip_spaces (cp);
2699
2700 if (*cp == '\0')
2701 error (_("'%s': two arguments required -- "
2702 "filename extension and language"),
2703 ext_args);
2704
2705 /* Lookup the language from among those we know. */
2706 lang = language_enum (cp);
2707
2708 auto it = filename_language_table.begin ();
2709 /* Now lookup the filename extension: do we already know it? */
2710 for (; it != filename_language_table.end (); it++)
2711 {
2712 if (it->ext == ext_args)
2713 break;
2714 }
2715
2716 if (it == filename_language_table.end ())
2717 {
2718 /* New file extension. */
2719 add_filename_language (ext_args, lang);
2720 }
2721 else
2722 {
2723 /* Redefining a previously known filename extension. */
2724
2725 /* if (from_tty) */
2726 /* query ("Really make files of type %s '%s'?", */
2727 /* ext_args, language_str (lang)); */
2728
2729 it->lang = lang;
2730 }
2731 }
2732
2733 static void
2734 info_ext_lang_command (const char *args, int from_tty)
2735 {
2736 printf_filtered (_("Filename extensions and the languages they represent:"));
2737 printf_filtered ("\n\n");
2738 for (const filename_language &entry : filename_language_table)
2739 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2740 language_str (entry.lang));
2741 }
2742
2743 enum language
2744 deduce_language_from_filename (const char *filename)
2745 {
2746 const char *cp;
2747
2748 if (filename != NULL)
2749 if ((cp = strrchr (filename, '.')) != NULL)
2750 {
2751 for (const filename_language &entry : filename_language_table)
2752 if (entry.ext == cp)
2753 return entry.lang;
2754 }
2755
2756 return language_unknown;
2757 }
2758 \f
2759 /* Allocate and initialize a new symbol table.
2760 CUST is from the result of allocate_compunit_symtab. */
2761
2762 struct symtab *
2763 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2764 {
2765 struct objfile *objfile = cust->objfile;
2766 struct symtab *symtab
2767 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2768
2769 symtab->filename = objfile->intern (filename);
2770 symtab->fullname = NULL;
2771 symtab->language = deduce_language_from_filename (filename);
2772
2773 /* This can be very verbose with lots of headers.
2774 Only print at higher debug levels. */
2775 if (symtab_create_debug >= 2)
2776 {
2777 /* Be a bit clever with debugging messages, and don't print objfile
2778 every time, only when it changes. */
2779 static char *last_objfile_name = NULL;
2780
2781 if (last_objfile_name == NULL
2782 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2783 {
2784 xfree (last_objfile_name);
2785 last_objfile_name = xstrdup (objfile_name (objfile));
2786 fprintf_filtered (gdb_stdlog,
2787 "Creating one or more symtabs for objfile %s ...\n",
2788 last_objfile_name);
2789 }
2790 fprintf_filtered (gdb_stdlog,
2791 "Created symtab %s for module %s.\n",
2792 host_address_to_string (symtab), filename);
2793 }
2794
2795 /* Add it to CUST's list of symtabs. */
2796 if (cust->filetabs == NULL)
2797 {
2798 cust->filetabs = symtab;
2799 cust->last_filetab = symtab;
2800 }
2801 else
2802 {
2803 cust->last_filetab->next = symtab;
2804 cust->last_filetab = symtab;
2805 }
2806
2807 /* Backlink to the containing compunit symtab. */
2808 symtab->compunit_symtab = cust;
2809
2810 return symtab;
2811 }
2812
2813 /* Allocate and initialize a new compunit.
2814 NAME is the name of the main source file, if there is one, or some
2815 descriptive text if there are no source files. */
2816
2817 struct compunit_symtab *
2818 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2819 {
2820 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2821 struct compunit_symtab);
2822 const char *saved_name;
2823
2824 cu->objfile = objfile;
2825
2826 /* The name we record here is only for display/debugging purposes.
2827 Just save the basename to avoid path issues (too long for display,
2828 relative vs absolute, etc.). */
2829 saved_name = lbasename (name);
2830 cu->name = obstack_strdup (&objfile->objfile_obstack, saved_name);
2831
2832 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2833
2834 if (symtab_create_debug)
2835 {
2836 fprintf_filtered (gdb_stdlog,
2837 "Created compunit symtab %s for %s.\n",
2838 host_address_to_string (cu),
2839 cu->name);
2840 }
2841
2842 return cu;
2843 }
2844
2845 /* Hook CU to the objfile it comes from. */
2846
2847 void
2848 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2849 {
2850 cu->next = cu->objfile->compunit_symtabs;
2851 cu->objfile->compunit_symtabs = cu;
2852 }
2853 \f
2854
2855 /* Reset all data structures in gdb which may contain references to
2856 symbol table data. */
2857
2858 void
2859 clear_symtab_users (symfile_add_flags add_flags)
2860 {
2861 /* Someday, we should do better than this, by only blowing away
2862 the things that really need to be blown. */
2863
2864 /* Clear the "current" symtab first, because it is no longer valid.
2865 breakpoint_re_set may try to access the current symtab. */
2866 clear_current_source_symtab_and_line ();
2867
2868 clear_displays ();
2869 clear_last_displayed_sal ();
2870 clear_pc_function_cache ();
2871 gdb::observers::new_objfile.notify (NULL);
2872
2873 /* Varobj may refer to old symbols, perform a cleanup. */
2874 varobj_invalidate ();
2875
2876 /* Now that the various caches have been cleared, we can re_set
2877 our breakpoints without risking it using stale data. */
2878 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2879 breakpoint_re_set ();
2880 }
2881 \f
2882 /* OVERLAYS:
2883 The following code implements an abstraction for debugging overlay sections.
2884
2885 The target model is as follows:
2886 1) The gnu linker will permit multiple sections to be mapped into the
2887 same VMA, each with its own unique LMA (or load address).
2888 2) It is assumed that some runtime mechanism exists for mapping the
2889 sections, one by one, from the load address into the VMA address.
2890 3) This code provides a mechanism for gdb to keep track of which
2891 sections should be considered to be mapped from the VMA to the LMA.
2892 This information is used for symbol lookup, and memory read/write.
2893 For instance, if a section has been mapped then its contents
2894 should be read from the VMA, otherwise from the LMA.
2895
2896 Two levels of debugger support for overlays are available. One is
2897 "manual", in which the debugger relies on the user to tell it which
2898 overlays are currently mapped. This level of support is
2899 implemented entirely in the core debugger, and the information about
2900 whether a section is mapped is kept in the objfile->obj_section table.
2901
2902 The second level of support is "automatic", and is only available if
2903 the target-specific code provides functionality to read the target's
2904 overlay mapping table, and translate its contents for the debugger
2905 (by updating the mapped state information in the obj_section tables).
2906
2907 The interface is as follows:
2908 User commands:
2909 overlay map <name> -- tell gdb to consider this section mapped
2910 overlay unmap <name> -- tell gdb to consider this section unmapped
2911 overlay list -- list the sections that GDB thinks are mapped
2912 overlay read-target -- get the target's state of what's mapped
2913 overlay off/manual/auto -- set overlay debugging state
2914 Functional interface:
2915 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2916 section, return that section.
2917 find_pc_overlay(pc): find any overlay section that contains
2918 the pc, either in its VMA or its LMA
2919 section_is_mapped(sect): true if overlay is marked as mapped
2920 section_is_overlay(sect): true if section's VMA != LMA
2921 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2922 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2923 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2924 overlay_mapped_address(...): map an address from section's LMA to VMA
2925 overlay_unmapped_address(...): map an address from section's VMA to LMA
2926 symbol_overlayed_address(...): Return a "current" address for symbol:
2927 either in VMA or LMA depending on whether
2928 the symbol's section is currently mapped. */
2929
2930 /* Overlay debugging state: */
2931
2932 enum overlay_debugging_state overlay_debugging = ovly_off;
2933 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2934
2935 /* Function: section_is_overlay (SECTION)
2936 Returns true if SECTION has VMA not equal to LMA, ie.
2937 SECTION is loaded at an address different from where it will "run". */
2938
2939 int
2940 section_is_overlay (struct obj_section *section)
2941 {
2942 if (overlay_debugging && section)
2943 {
2944 asection *bfd_section = section->the_bfd_section;
2945
2946 if (bfd_section_lma (bfd_section) != 0
2947 && bfd_section_lma (bfd_section) != bfd_section_vma (bfd_section))
2948 return 1;
2949 }
2950
2951 return 0;
2952 }
2953
2954 /* Function: overlay_invalidate_all (void)
2955 Invalidate the mapped state of all overlay sections (mark it as stale). */
2956
2957 static void
2958 overlay_invalidate_all (void)
2959 {
2960 struct obj_section *sect;
2961
2962 for (objfile *objfile : current_program_space->objfiles ())
2963 ALL_OBJFILE_OSECTIONS (objfile, sect)
2964 if (section_is_overlay (sect))
2965 sect->ovly_mapped = -1;
2966 }
2967
2968 /* Function: section_is_mapped (SECTION)
2969 Returns true if section is an overlay, and is currently mapped.
2970
2971 Access to the ovly_mapped flag is restricted to this function, so
2972 that we can do automatic update. If the global flag
2973 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2974 overlay_invalidate_all. If the mapped state of the particular
2975 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2976
2977 int
2978 section_is_mapped (struct obj_section *osect)
2979 {
2980 struct gdbarch *gdbarch;
2981
2982 if (osect == 0 || !section_is_overlay (osect))
2983 return 0;
2984
2985 switch (overlay_debugging)
2986 {
2987 default:
2988 case ovly_off:
2989 return 0; /* overlay debugging off */
2990 case ovly_auto: /* overlay debugging automatic */
2991 /* Unles there is a gdbarch_overlay_update function,
2992 there's really nothing useful to do here (can't really go auto). */
2993 gdbarch = osect->objfile->arch ();
2994 if (gdbarch_overlay_update_p (gdbarch))
2995 {
2996 if (overlay_cache_invalid)
2997 {
2998 overlay_invalidate_all ();
2999 overlay_cache_invalid = 0;
3000 }
3001 if (osect->ovly_mapped == -1)
3002 gdbarch_overlay_update (gdbarch, osect);
3003 }
3004 /* fall thru */
3005 case ovly_on: /* overlay debugging manual */
3006 return osect->ovly_mapped == 1;
3007 }
3008 }
3009
3010 /* Function: pc_in_unmapped_range
3011 If PC falls into the lma range of SECTION, return true, else false. */
3012
3013 CORE_ADDR
3014 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3015 {
3016 if (section_is_overlay (section))
3017 {
3018 asection *bfd_section = section->the_bfd_section;
3019
3020 /* We assume the LMA is relocated by the same offset as the VMA. */
3021 bfd_vma size = bfd_section_size (bfd_section);
3022 CORE_ADDR offset = obj_section_offset (section);
3023
3024 if (bfd_section_lma (bfd_section) + offset <= pc
3025 && pc < bfd_section_lma (bfd_section) + offset + size)
3026 return 1;
3027 }
3028
3029 return 0;
3030 }
3031
3032 /* Function: pc_in_mapped_range
3033 If PC falls into the vma range of SECTION, return true, else false. */
3034
3035 CORE_ADDR
3036 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3037 {
3038 if (section_is_overlay (section))
3039 {
3040 if (obj_section_addr (section) <= pc
3041 && pc < obj_section_endaddr (section))
3042 return 1;
3043 }
3044
3045 return 0;
3046 }
3047
3048 /* Return true if the mapped ranges of sections A and B overlap, false
3049 otherwise. */
3050
3051 static int
3052 sections_overlap (struct obj_section *a, struct obj_section *b)
3053 {
3054 CORE_ADDR a_start = obj_section_addr (a);
3055 CORE_ADDR a_end = obj_section_endaddr (a);
3056 CORE_ADDR b_start = obj_section_addr (b);
3057 CORE_ADDR b_end = obj_section_endaddr (b);
3058
3059 return (a_start < b_end && b_start < a_end);
3060 }
3061
3062 /* Function: overlay_unmapped_address (PC, SECTION)
3063 Returns the address corresponding to PC in the unmapped (load) range.
3064 May be the same as PC. */
3065
3066 CORE_ADDR
3067 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3068 {
3069 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3070 {
3071 asection *bfd_section = section->the_bfd_section;
3072
3073 return (pc + bfd_section_lma (bfd_section)
3074 - bfd_section_vma (bfd_section));
3075 }
3076
3077 return pc;
3078 }
3079
3080 /* Function: overlay_mapped_address (PC, SECTION)
3081 Returns the address corresponding to PC in the mapped (runtime) range.
3082 May be the same as PC. */
3083
3084 CORE_ADDR
3085 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3086 {
3087 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3088 {
3089 asection *bfd_section = section->the_bfd_section;
3090
3091 return (pc + bfd_section_vma (bfd_section)
3092 - bfd_section_lma (bfd_section));
3093 }
3094
3095 return pc;
3096 }
3097
3098 /* Function: symbol_overlayed_address
3099 Return one of two addresses (relative to the VMA or to the LMA),
3100 depending on whether the section is mapped or not. */
3101
3102 CORE_ADDR
3103 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3104 {
3105 if (overlay_debugging)
3106 {
3107 /* If the symbol has no section, just return its regular address. */
3108 if (section == 0)
3109 return address;
3110 /* If the symbol's section is not an overlay, just return its
3111 address. */
3112 if (!section_is_overlay (section))
3113 return address;
3114 /* If the symbol's section is mapped, just return its address. */
3115 if (section_is_mapped (section))
3116 return address;
3117 /*
3118 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3119 * then return its LOADED address rather than its vma address!!
3120 */
3121 return overlay_unmapped_address (address, section);
3122 }
3123 return address;
3124 }
3125
3126 /* Function: find_pc_overlay (PC)
3127 Return the best-match overlay section for PC:
3128 If PC matches a mapped overlay section's VMA, return that section.
3129 Else if PC matches an unmapped section's VMA, return that section.
3130 Else if PC matches an unmapped section's LMA, return that section. */
3131
3132 struct obj_section *
3133 find_pc_overlay (CORE_ADDR pc)
3134 {
3135 struct obj_section *osect, *best_match = NULL;
3136
3137 if (overlay_debugging)
3138 {
3139 for (objfile *objfile : current_program_space->objfiles ())
3140 ALL_OBJFILE_OSECTIONS (objfile, osect)
3141 if (section_is_overlay (osect))
3142 {
3143 if (pc_in_mapped_range (pc, osect))
3144 {
3145 if (section_is_mapped (osect))
3146 return osect;
3147 else
3148 best_match = osect;
3149 }
3150 else if (pc_in_unmapped_range (pc, osect))
3151 best_match = osect;
3152 }
3153 }
3154 return best_match;
3155 }
3156
3157 /* Function: find_pc_mapped_section (PC)
3158 If PC falls into the VMA address range of an overlay section that is
3159 currently marked as MAPPED, return that section. Else return NULL. */
3160
3161 struct obj_section *
3162 find_pc_mapped_section (CORE_ADDR pc)
3163 {
3164 struct obj_section *osect;
3165
3166 if (overlay_debugging)
3167 {
3168 for (objfile *objfile : current_program_space->objfiles ())
3169 ALL_OBJFILE_OSECTIONS (objfile, osect)
3170 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3171 return osect;
3172 }
3173
3174 return NULL;
3175 }
3176
3177 /* Function: list_overlays_command
3178 Print a list of mapped sections and their PC ranges. */
3179
3180 static void
3181 list_overlays_command (const char *args, int from_tty)
3182 {
3183 int nmapped = 0;
3184 struct obj_section *osect;
3185
3186 if (overlay_debugging)
3187 {
3188 for (objfile *objfile : current_program_space->objfiles ())
3189 ALL_OBJFILE_OSECTIONS (objfile, osect)
3190 if (section_is_mapped (osect))
3191 {
3192 struct gdbarch *gdbarch = objfile->arch ();
3193 const char *name;
3194 bfd_vma lma, vma;
3195 int size;
3196
3197 vma = bfd_section_vma (osect->the_bfd_section);
3198 lma = bfd_section_lma (osect->the_bfd_section);
3199 size = bfd_section_size (osect->the_bfd_section);
3200 name = bfd_section_name (osect->the_bfd_section);
3201
3202 printf_filtered ("Section %s, loaded at ", name);
3203 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3204 puts_filtered (" - ");
3205 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3206 printf_filtered (", mapped at ");
3207 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3208 puts_filtered (" - ");
3209 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3210 puts_filtered ("\n");
3211
3212 nmapped++;
3213 }
3214 }
3215 if (nmapped == 0)
3216 printf_filtered (_("No sections are mapped.\n"));
3217 }
3218
3219 /* Function: map_overlay_command
3220 Mark the named section as mapped (ie. residing at its VMA address). */
3221
3222 static void
3223 map_overlay_command (const char *args, int from_tty)
3224 {
3225 struct obj_section *sec, *sec2;
3226
3227 if (!overlay_debugging)
3228 error (_("Overlay debugging not enabled. Use "
3229 "either the 'overlay auto' or\n"
3230 "the 'overlay manual' command."));
3231
3232 if (args == 0 || *args == 0)
3233 error (_("Argument required: name of an overlay section"));
3234
3235 /* First, find a section matching the user supplied argument. */
3236 for (objfile *obj_file : current_program_space->objfiles ())
3237 ALL_OBJFILE_OSECTIONS (obj_file, sec)
3238 if (!strcmp (bfd_section_name (sec->the_bfd_section), args))
3239 {
3240 /* Now, check to see if the section is an overlay. */
3241 if (!section_is_overlay (sec))
3242 continue; /* not an overlay section */
3243
3244 /* Mark the overlay as "mapped". */
3245 sec->ovly_mapped = 1;
3246
3247 /* Next, make a pass and unmap any sections that are
3248 overlapped by this new section: */
3249 for (objfile *objfile2 : current_program_space->objfiles ())
3250 ALL_OBJFILE_OSECTIONS (objfile2, sec2)
3251 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec,
3252 sec2))
3253 {
3254 if (info_verbose)
3255 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3256 bfd_section_name (sec2->the_bfd_section));
3257 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3258 }
3259 return;
3260 }
3261 error (_("No overlay section called %s"), args);
3262 }
3263
3264 /* Function: unmap_overlay_command
3265 Mark the overlay section as unmapped
3266 (ie. resident in its LMA address range, rather than the VMA range). */
3267
3268 static void
3269 unmap_overlay_command (const char *args, int from_tty)
3270 {
3271 struct obj_section *sec = NULL;
3272
3273 if (!overlay_debugging)
3274 error (_("Overlay debugging not enabled. "
3275 "Use either the 'overlay auto' or\n"
3276 "the 'overlay manual' command."));
3277
3278 if (args == 0 || *args == 0)
3279 error (_("Argument required: name of an overlay section"));
3280
3281 /* First, find a section matching the user supplied argument. */
3282 for (objfile *objfile : current_program_space->objfiles ())
3283 ALL_OBJFILE_OSECTIONS (objfile, sec)
3284 if (!strcmp (bfd_section_name (sec->the_bfd_section), args))
3285 {
3286 if (!sec->ovly_mapped)
3287 error (_("Section %s is not mapped"), args);
3288 sec->ovly_mapped = 0;
3289 return;
3290 }
3291 error (_("No overlay section called %s"), args);
3292 }
3293
3294 /* Function: overlay_auto_command
3295 A utility command to turn on overlay debugging.
3296 Possibly this should be done via a set/show command. */
3297
3298 static void
3299 overlay_auto_command (const char *args, int from_tty)
3300 {
3301 overlay_debugging = ovly_auto;
3302 enable_overlay_breakpoints ();
3303 if (info_verbose)
3304 printf_unfiltered (_("Automatic overlay debugging enabled."));
3305 }
3306
3307 /* Function: overlay_manual_command
3308 A utility command to turn on overlay debugging.
3309 Possibly this should be done via a set/show command. */
3310
3311 static void
3312 overlay_manual_command (const char *args, int from_tty)
3313 {
3314 overlay_debugging = ovly_on;
3315 disable_overlay_breakpoints ();
3316 if (info_verbose)
3317 printf_unfiltered (_("Overlay debugging enabled."));
3318 }
3319
3320 /* Function: overlay_off_command
3321 A utility command to turn on overlay debugging.
3322 Possibly this should be done via a set/show command. */
3323
3324 static void
3325 overlay_off_command (const char *args, int from_tty)
3326 {
3327 overlay_debugging = ovly_off;
3328 disable_overlay_breakpoints ();
3329 if (info_verbose)
3330 printf_unfiltered (_("Overlay debugging disabled."));
3331 }
3332
3333 static void
3334 overlay_load_command (const char *args, int from_tty)
3335 {
3336 struct gdbarch *gdbarch = get_current_arch ();
3337
3338 if (gdbarch_overlay_update_p (gdbarch))
3339 gdbarch_overlay_update (gdbarch, NULL);
3340 else
3341 error (_("This target does not know how to read its overlay state."));
3342 }
3343
3344 /* Command list chain containing all defined "overlay" subcommands. */
3345 static struct cmd_list_element *overlaylist;
3346
3347 /* Target Overlays for the "Simplest" overlay manager:
3348
3349 This is GDB's default target overlay layer. It works with the
3350 minimal overlay manager supplied as an example by Cygnus. The
3351 entry point is via a function pointer "gdbarch_overlay_update",
3352 so targets that use a different runtime overlay manager can
3353 substitute their own overlay_update function and take over the
3354 function pointer.
3355
3356 The overlay_update function pokes around in the target's data structures
3357 to see what overlays are mapped, and updates GDB's overlay mapping with
3358 this information.
3359
3360 In this simple implementation, the target data structures are as follows:
3361 unsigned _novlys; /# number of overlay sections #/
3362 unsigned _ovly_table[_novlys][4] = {
3363 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3364 {..., ..., ..., ...},
3365 }
3366 unsigned _novly_regions; /# number of overlay regions #/
3367 unsigned _ovly_region_table[_novly_regions][3] = {
3368 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3369 {..., ..., ...},
3370 }
3371 These functions will attempt to update GDB's mappedness state in the
3372 symbol section table, based on the target's mappedness state.
3373
3374 To do this, we keep a cached copy of the target's _ovly_table, and
3375 attempt to detect when the cached copy is invalidated. The main
3376 entry point is "simple_overlay_update(SECT), which looks up SECT in
3377 the cached table and re-reads only the entry for that section from
3378 the target (whenever possible). */
3379
3380 /* Cached, dynamically allocated copies of the target data structures: */
3381 static unsigned (*cache_ovly_table)[4] = 0;
3382 static unsigned cache_novlys = 0;
3383 static CORE_ADDR cache_ovly_table_base = 0;
3384 enum ovly_index
3385 {
3386 VMA, OSIZE, LMA, MAPPED
3387 };
3388
3389 /* Throw away the cached copy of _ovly_table. */
3390
3391 static void
3392 simple_free_overlay_table (void)
3393 {
3394 xfree (cache_ovly_table);
3395 cache_novlys = 0;
3396 cache_ovly_table = NULL;
3397 cache_ovly_table_base = 0;
3398 }
3399
3400 /* Read an array of ints of size SIZE from the target into a local buffer.
3401 Convert to host order. int LEN is number of ints. */
3402
3403 static void
3404 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3405 int len, int size, enum bfd_endian byte_order)
3406 {
3407 /* FIXME (alloca): Not safe if array is very large. */
3408 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3409 int i;
3410
3411 read_memory (memaddr, buf, len * size);
3412 for (i = 0; i < len; i++)
3413 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3414 }
3415
3416 /* Find and grab a copy of the target _ovly_table
3417 (and _novlys, which is needed for the table's size). */
3418
3419 static int
3420 simple_read_overlay_table (void)
3421 {
3422 struct bound_minimal_symbol novlys_msym;
3423 struct bound_minimal_symbol ovly_table_msym;
3424 struct gdbarch *gdbarch;
3425 int word_size;
3426 enum bfd_endian byte_order;
3427
3428 simple_free_overlay_table ();
3429 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3430 if (! novlys_msym.minsym)
3431 {
3432 error (_("Error reading inferior's overlay table: "
3433 "couldn't find `_novlys' variable\n"
3434 "in inferior. Use `overlay manual' mode."));
3435 return 0;
3436 }
3437
3438 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3439 if (! ovly_table_msym.minsym)
3440 {
3441 error (_("Error reading inferior's overlay table: couldn't find "
3442 "`_ovly_table' array\n"
3443 "in inferior. Use `overlay manual' mode."));
3444 return 0;
3445 }
3446
3447 gdbarch = ovly_table_msym.objfile->arch ();
3448 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3449 byte_order = gdbarch_byte_order (gdbarch);
3450
3451 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3452 4, byte_order);
3453 cache_ovly_table
3454 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3455 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3456 read_target_long_array (cache_ovly_table_base,
3457 (unsigned int *) cache_ovly_table,
3458 cache_novlys * 4, word_size, byte_order);
3459
3460 return 1; /* SUCCESS */
3461 }
3462
3463 /* Function: simple_overlay_update_1
3464 A helper function for simple_overlay_update. Assuming a cached copy
3465 of _ovly_table exists, look through it to find an entry whose vma,
3466 lma and size match those of OSECT. Re-read the entry and make sure
3467 it still matches OSECT (else the table may no longer be valid).
3468 Set OSECT's mapped state to match the entry. Return: 1 for
3469 success, 0 for failure. */
3470
3471 static int
3472 simple_overlay_update_1 (struct obj_section *osect)
3473 {
3474 int i;
3475 asection *bsect = osect->the_bfd_section;
3476 struct gdbarch *gdbarch = osect->objfile->arch ();
3477 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3478 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3479
3480 for (i = 0; i < cache_novlys; i++)
3481 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3482 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3483 {
3484 read_target_long_array (cache_ovly_table_base + i * word_size,
3485 (unsigned int *) cache_ovly_table[i],
3486 4, word_size, byte_order);
3487 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3488 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3489 {
3490 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3491 return 1;
3492 }
3493 else /* Warning! Warning! Target's ovly table has changed! */
3494 return 0;
3495 }
3496 return 0;
3497 }
3498
3499 /* Function: simple_overlay_update
3500 If OSECT is NULL, then update all sections' mapped state
3501 (after re-reading the entire target _ovly_table).
3502 If OSECT is non-NULL, then try to find a matching entry in the
3503 cached ovly_table and update only OSECT's mapped state.
3504 If a cached entry can't be found or the cache isn't valid, then
3505 re-read the entire cache, and go ahead and update all sections. */
3506
3507 void
3508 simple_overlay_update (struct obj_section *osect)
3509 {
3510 /* Were we given an osect to look up? NULL means do all of them. */
3511 if (osect)
3512 /* Have we got a cached copy of the target's overlay table? */
3513 if (cache_ovly_table != NULL)
3514 {
3515 /* Does its cached location match what's currently in the
3516 symtab? */
3517 struct bound_minimal_symbol minsym
3518 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3519
3520 if (minsym.minsym == NULL)
3521 error (_("Error reading inferior's overlay table: couldn't "
3522 "find `_ovly_table' array\n"
3523 "in inferior. Use `overlay manual' mode."));
3524
3525 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3526 /* Then go ahead and try to look up this single section in
3527 the cache. */
3528 if (simple_overlay_update_1 (osect))
3529 /* Found it! We're done. */
3530 return;
3531 }
3532
3533 /* Cached table no good: need to read the entire table anew.
3534 Or else we want all the sections, in which case it's actually
3535 more efficient to read the whole table in one block anyway. */
3536
3537 if (! simple_read_overlay_table ())
3538 return;
3539
3540 /* Now may as well update all sections, even if only one was requested. */
3541 for (objfile *objfile : current_program_space->objfiles ())
3542 ALL_OBJFILE_OSECTIONS (objfile, osect)
3543 if (section_is_overlay (osect))
3544 {
3545 int i;
3546 asection *bsect = osect->the_bfd_section;
3547
3548 for (i = 0; i < cache_novlys; i++)
3549 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3550 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3551 { /* obj_section matches i'th entry in ovly_table. */
3552 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3553 break; /* finished with inner for loop: break out. */
3554 }
3555 }
3556 }
3557
3558 /* Default implementation for sym_relocate. */
3559
3560 bfd_byte *
3561 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3562 bfd_byte *buf)
3563 {
3564 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3565 DWO file. */
3566 bfd *abfd = sectp->owner;
3567
3568 /* We're only interested in sections with relocation
3569 information. */
3570 if ((sectp->flags & SEC_RELOC) == 0)
3571 return NULL;
3572
3573 /* We will handle section offsets properly elsewhere, so relocate as if
3574 all sections begin at 0. */
3575 for (asection *sect : gdb_bfd_sections (abfd))
3576 {
3577 sect->output_section = sect;
3578 sect->output_offset = 0;
3579 }
3580
3581 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3582 }
3583
3584 /* Relocate the contents of a debug section SECTP in ABFD. The
3585 contents are stored in BUF if it is non-NULL, or returned in a
3586 malloc'd buffer otherwise.
3587
3588 For some platforms and debug info formats, shared libraries contain
3589 relocations against the debug sections (particularly for DWARF-2;
3590 one affected platform is PowerPC GNU/Linux, although it depends on
3591 the version of the linker in use). Also, ELF object files naturally
3592 have unresolved relocations for their debug sections. We need to apply
3593 the relocations in order to get the locations of symbols correct.
3594 Another example that may require relocation processing, is the
3595 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3596 debug section. */
3597
3598 bfd_byte *
3599 symfile_relocate_debug_section (struct objfile *objfile,
3600 asection *sectp, bfd_byte *buf)
3601 {
3602 gdb_assert (objfile->sf->sym_relocate);
3603
3604 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3605 }
3606
3607 symfile_segment_data_up
3608 get_symfile_segment_data (bfd *abfd)
3609 {
3610 const struct sym_fns *sf = find_sym_fns (abfd);
3611
3612 if (sf == NULL)
3613 return NULL;
3614
3615 return sf->sym_segments (abfd);
3616 }
3617
3618 /* Given:
3619 - DATA, containing segment addresses from the object file ABFD, and
3620 the mapping from ABFD's sections onto the segments that own them,
3621 and
3622 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3623 segment addresses reported by the target,
3624 store the appropriate offsets for each section in OFFSETS.
3625
3626 If there are fewer entries in SEGMENT_BASES than there are segments
3627 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3628
3629 If there are more entries, then ignore the extra. The target may
3630 not be able to distinguish between an empty data segment and a
3631 missing data segment; a missing text segment is less plausible. */
3632
3633 int
3634 symfile_map_offsets_to_segments (bfd *abfd,
3635 const struct symfile_segment_data *data,
3636 section_offsets &offsets,
3637 int num_segment_bases,
3638 const CORE_ADDR *segment_bases)
3639 {
3640 int i;
3641 asection *sect;
3642
3643 /* It doesn't make sense to call this function unless you have some
3644 segment base addresses. */
3645 gdb_assert (num_segment_bases > 0);
3646
3647 /* If we do not have segment mappings for the object file, we
3648 can not relocate it by segments. */
3649 gdb_assert (data != NULL);
3650 gdb_assert (data->segments.size () > 0);
3651
3652 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3653 {
3654 int which = data->segment_info[i];
3655
3656 gdb_assert (0 <= which && which <= data->segments.size ());
3657
3658 /* Don't bother computing offsets for sections that aren't
3659 loaded as part of any segment. */
3660 if (! which)
3661 continue;
3662
3663 /* Use the last SEGMENT_BASES entry as the address of any extra
3664 segments mentioned in DATA->segment_info. */
3665 if (which > num_segment_bases)
3666 which = num_segment_bases;
3667
3668 offsets[i] = segment_bases[which - 1] - data->segments[which - 1].base;
3669 }
3670
3671 return 1;
3672 }
3673
3674 static void
3675 symfile_find_segment_sections (struct objfile *objfile)
3676 {
3677 bfd *abfd = objfile->obfd;
3678 int i;
3679 asection *sect;
3680
3681 symfile_segment_data_up data
3682 = get_symfile_segment_data (objfile->obfd);
3683 if (data == NULL)
3684 return;
3685
3686 if (data->segments.size () != 1 && data->segments.size () != 2)
3687 return;
3688
3689 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3690 {
3691 int which = data->segment_info[i];
3692
3693 if (which == 1)
3694 {
3695 if (objfile->sect_index_text == -1)
3696 objfile->sect_index_text = sect->index;
3697
3698 if (objfile->sect_index_rodata == -1)
3699 objfile->sect_index_rodata = sect->index;
3700 }
3701 else if (which == 2)
3702 {
3703 if (objfile->sect_index_data == -1)
3704 objfile->sect_index_data = sect->index;
3705
3706 if (objfile->sect_index_bss == -1)
3707 objfile->sect_index_bss = sect->index;
3708 }
3709 }
3710 }
3711
3712 /* Listen for free_objfile events. */
3713
3714 static void
3715 symfile_free_objfile (struct objfile *objfile)
3716 {
3717 /* Remove the target sections owned by this objfile. */
3718 if (objfile != NULL)
3719 current_program_space->remove_target_sections ((void *) objfile);
3720 }
3721
3722 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3723 Expand all symtabs that match the specified criteria.
3724 See quick_symbol_functions.expand_symtabs_matching for details. */
3725
3726 void
3727 expand_symtabs_matching
3728 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3729 const lookup_name_info &lookup_name,
3730 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3731 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3732 enum search_domain kind)
3733 {
3734 for (objfile *objfile : current_program_space->objfiles ())
3735 objfile->expand_symtabs_matching (file_matcher,
3736 &lookup_name,
3737 symbol_matcher,
3738 expansion_notify, kind);
3739 }
3740
3741 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3742 Map function FUN over every file.
3743 See quick_symbol_functions.map_symbol_filenames for details. */
3744
3745 void
3746 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3747 int need_fullname)
3748 {
3749 for (objfile *objfile : current_program_space->objfiles ())
3750 objfile->map_symbol_filenames (fun, data, need_fullname);
3751 }
3752
3753 #if GDB_SELF_TEST
3754
3755 namespace selftests {
3756 namespace filename_language {
3757
3758 static void test_filename_language ()
3759 {
3760 /* This test messes up the filename_language_table global. */
3761 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3762
3763 /* Test deducing an unknown extension. */
3764 language lang = deduce_language_from_filename ("myfile.blah");
3765 SELF_CHECK (lang == language_unknown);
3766
3767 /* Test deducing a known extension. */
3768 lang = deduce_language_from_filename ("myfile.c");
3769 SELF_CHECK (lang == language_c);
3770
3771 /* Test adding a new extension using the internal API. */
3772 add_filename_language (".blah", language_pascal);
3773 lang = deduce_language_from_filename ("myfile.blah");
3774 SELF_CHECK (lang == language_pascal);
3775 }
3776
3777 static void
3778 test_set_ext_lang_command ()
3779 {
3780 /* This test messes up the filename_language_table global. */
3781 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3782
3783 /* Confirm that the .hello extension is not known. */
3784 language lang = deduce_language_from_filename ("cake.hello");
3785 SELF_CHECK (lang == language_unknown);
3786
3787 /* Test adding a new extension using the CLI command. */
3788 auto args_holder = make_unique_xstrdup (".hello rust");
3789 ext_args = args_holder.get ();
3790 set_ext_lang_command (NULL, 1, NULL);
3791
3792 lang = deduce_language_from_filename ("cake.hello");
3793 SELF_CHECK (lang == language_rust);
3794
3795 /* Test overriding an existing extension using the CLI command. */
3796 int size_before = filename_language_table.size ();
3797 args_holder.reset (xstrdup (".hello pascal"));
3798 ext_args = args_holder.get ();
3799 set_ext_lang_command (NULL, 1, NULL);
3800 int size_after = filename_language_table.size ();
3801
3802 lang = deduce_language_from_filename ("cake.hello");
3803 SELF_CHECK (lang == language_pascal);
3804 SELF_CHECK (size_before == size_after);
3805 }
3806
3807 } /* namespace filename_language */
3808 } /* namespace selftests */
3809
3810 #endif /* GDB_SELF_TEST */
3811
3812 void _initialize_symfile ();
3813 void
3814 _initialize_symfile ()
3815 {
3816 struct cmd_list_element *c;
3817
3818 gdb::observers::free_objfile.attach (symfile_free_objfile);
3819
3820 #define READNOW_READNEVER_HELP \
3821 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3822 immediately. This makes the command slower, but may make future operations\n\
3823 faster.\n\
3824 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3825 symbolic debug information."
3826
3827 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3828 Load symbol table from executable file FILE.\n\
3829 Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3830 OFF is an optional offset which is added to each section address.\n\
3831 The `file' command can also load symbol tables, as well as setting the file\n\
3832 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3833 set_cmd_completer (c, filename_completer);
3834
3835 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3836 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3837 Usage: add-symbol-file FILE [-readnow | -readnever] [-o OFF] [ADDR] \
3838 [-s SECT-NAME SECT-ADDR]...\n\
3839 ADDR is the starting address of the file's text.\n\
3840 Each '-s' argument provides a section name and address, and\n\
3841 should be specified if the data and bss segments are not contiguous\n\
3842 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n\
3843 OFF is an optional offset which is added to the default load addresses\n\
3844 of all sections for which no other address was specified.\n"
3845 READNOW_READNEVER_HELP),
3846 &cmdlist);
3847 set_cmd_completer (c, filename_completer);
3848
3849 c = add_cmd ("remove-symbol-file", class_files,
3850 remove_symbol_file_command, _("\
3851 Remove a symbol file added via the add-symbol-file command.\n\
3852 Usage: remove-symbol-file FILENAME\n\
3853 remove-symbol-file -a ADDRESS\n\
3854 The file to remove can be identified by its filename or by an address\n\
3855 that lies within the boundaries of this symbol file in memory."),
3856 &cmdlist);
3857
3858 c = add_cmd ("load", class_files, load_command, _("\
3859 Dynamically load FILE into the running program.\n\
3860 FILE symbols are recorded for access from GDB.\n\
3861 Usage: load [FILE] [OFFSET]\n\
3862 An optional load OFFSET may also be given as a literal address.\n\
3863 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3864 on its own."), &cmdlist);
3865 set_cmd_completer (c, filename_completer);
3866
3867 add_basic_prefix_cmd ("overlay", class_support,
3868 _("Commands for debugging overlays."), &overlaylist,
3869 "overlay ", 0, &cmdlist);
3870
3871 add_com_alias ("ovly", "overlay", class_support, 1);
3872 add_com_alias ("ov", "overlay", class_support, 1);
3873
3874 add_cmd ("map-overlay", class_support, map_overlay_command,
3875 _("Assert that an overlay section is mapped."), &overlaylist);
3876
3877 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3878 _("Assert that an overlay section is unmapped."), &overlaylist);
3879
3880 add_cmd ("list-overlays", class_support, list_overlays_command,
3881 _("List mappings of overlay sections."), &overlaylist);
3882
3883 add_cmd ("manual", class_support, overlay_manual_command,
3884 _("Enable overlay debugging."), &overlaylist);
3885 add_cmd ("off", class_support, overlay_off_command,
3886 _("Disable overlay debugging."), &overlaylist);
3887 add_cmd ("auto", class_support, overlay_auto_command,
3888 _("Enable automatic overlay debugging."), &overlaylist);
3889 add_cmd ("load-target", class_support, overlay_load_command,
3890 _("Read the overlay mapping state from the target."), &overlaylist);
3891
3892 /* Filename extension to source language lookup table: */
3893 add_setshow_string_noescape_cmd ("extension-language", class_files,
3894 &ext_args, _("\
3895 Set mapping between filename extension and source language."), _("\
3896 Show mapping between filename extension and source language."), _("\
3897 Usage: set extension-language .foo bar"),
3898 set_ext_lang_command,
3899 show_ext_args,
3900 &setlist, &showlist);
3901
3902 add_info ("extensions", info_ext_lang_command,
3903 _("All filename extensions associated with a source language."));
3904
3905 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3906 &debug_file_directory, _("\
3907 Set the directories where separate debug symbols are searched for."), _("\
3908 Show the directories where separate debug symbols are searched for."), _("\
3909 Separate debug symbols are first searched for in the same\n\
3910 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3911 and lastly at the path of the directory of the binary with\n\
3912 each global debug-file-directory component prepended."),
3913 NULL,
3914 show_debug_file_directory,
3915 &setlist, &showlist);
3916
3917 add_setshow_enum_cmd ("symbol-loading", no_class,
3918 print_symbol_loading_enums, &print_symbol_loading,
3919 _("\
3920 Set printing of symbol loading messages."), _("\
3921 Show printing of symbol loading messages."), _("\
3922 off == turn all messages off\n\
3923 brief == print messages for the executable,\n\
3924 and brief messages for shared libraries\n\
3925 full == print messages for the executable,\n\
3926 and messages for each shared library."),
3927 NULL,
3928 NULL,
3929 &setprintlist, &showprintlist);
3930
3931 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3932 &separate_debug_file_debug, _("\
3933 Set printing of separate debug info file search debug."), _("\
3934 Show printing of separate debug info file search debug."), _("\
3935 When on, GDB prints the searched locations while looking for separate debug \
3936 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3937
3938 #if GDB_SELF_TEST
3939 selftests::register_test
3940 ("filename_language", selftests::filename_language::test_filename_language);
3941 selftests::register_test
3942 ("set_ext_lang_command",
3943 selftests::filename_language::test_set_ext_lang_command);
3944 #endif
3945 }
This page took 0.228501 seconds and 5 git commands to generate.