* symfile.c (place_section): Correct retry logic.
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 #include "defs.h"
27 #include "bfdlink.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcore.h"
31 #include "frame.h"
32 #include "target.h"
33 #include "value.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "source.h"
37 #include "gdbcmd.h"
38 #include "breakpoint.h"
39 #include "language.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "inferior.h" /* for write_pc */
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54
55 #include <sys/types.h>
56 #include <fcntl.h>
57 #include "gdb_string.h"
58 #include "gdb_stat.h"
59 #include <ctype.h>
60 #include <time.h>
61 #include <sys/time.h>
62
63 #ifndef O_BINARY
64 #define O_BINARY 0
65 #endif
66
67 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
68 void (*deprecated_show_load_progress) (const char *section,
69 unsigned long section_sent,
70 unsigned long section_size,
71 unsigned long total_sent,
72 unsigned long total_size);
73 void (*deprecated_pre_add_symbol_hook) (const char *);
74 void (*deprecated_post_add_symbol_hook) (void);
75 void (*deprecated_target_new_objfile_hook) (struct objfile *);
76
77 static void clear_symtab_users_cleanup (void *ignore);
78
79 /* Global variables owned by this file */
80 int readnow_symbol_files; /* Read full symbols immediately */
81
82 /* External variables and functions referenced. */
83
84 extern void report_transfer_performance (unsigned long, time_t, time_t);
85
86 /* Functions this file defines */
87
88 #if 0
89 static int simple_read_overlay_region_table (void);
90 static void simple_free_overlay_region_table (void);
91 #endif
92
93 static void set_initial_language (void);
94
95 static void load_command (char *, int);
96
97 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
98
99 static void add_symbol_file_command (char *, int);
100
101 static void add_shared_symbol_files_command (char *, int);
102
103 static void reread_separate_symbols (struct objfile *objfile);
104
105 static void cashier_psymtab (struct partial_symtab *);
106
107 bfd *symfile_bfd_open (char *);
108
109 int get_section_index (struct objfile *, char *);
110
111 static void find_sym_fns (struct objfile *);
112
113 static void decrement_reading_symtab (void *);
114
115 static void overlay_invalidate_all (void);
116
117 static int overlay_is_mapped (struct obj_section *);
118
119 void list_overlays_command (char *, int);
120
121 void map_overlay_command (char *, int);
122
123 void unmap_overlay_command (char *, int);
124
125 static void overlay_auto_command (char *, int);
126
127 static void overlay_manual_command (char *, int);
128
129 static void overlay_off_command (char *, int);
130
131 static void overlay_load_command (char *, int);
132
133 static void overlay_command (char *, int);
134
135 static void simple_free_overlay_table (void);
136
137 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
138
139 static int simple_read_overlay_table (void);
140
141 static int simple_overlay_update_1 (struct obj_section *);
142
143 static void add_filename_language (char *ext, enum language lang);
144
145 static void info_ext_lang_command (char *args, int from_tty);
146
147 static char *find_separate_debug_file (struct objfile *objfile);
148
149 static void init_filename_language_table (void);
150
151 void _initialize_symfile (void);
152
153 /* List of all available sym_fns. On gdb startup, each object file reader
154 calls add_symtab_fns() to register information on each format it is
155 prepared to read. */
156
157 static struct sym_fns *symtab_fns = NULL;
158
159 /* Flag for whether user will be reloading symbols multiple times.
160 Defaults to ON for VxWorks, otherwise OFF. */
161
162 #ifdef SYMBOL_RELOADING_DEFAULT
163 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
164 #else
165 int symbol_reloading = 0;
166 #endif
167 static void
168 show_symbol_reloading (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170 {
171 fprintf_filtered (file, _("\
172 Dynamic symbol table reloading multiple times in one run is %s.\n"),
173 value);
174 }
175
176
177 /* If non-zero, shared library symbols will be added automatically
178 when the inferior is created, new libraries are loaded, or when
179 attaching to the inferior. This is almost always what users will
180 want to have happen; but for very large programs, the startup time
181 will be excessive, and so if this is a problem, the user can clear
182 this flag and then add the shared library symbols as needed. Note
183 that there is a potential for confusion, since if the shared
184 library symbols are not loaded, commands like "info fun" will *not*
185 report all the functions that are actually present. */
186
187 int auto_solib_add = 1;
188
189 /* For systems that support it, a threshold size in megabytes. If
190 automatically adding a new library's symbol table to those already
191 known to the debugger would cause the total shared library symbol
192 size to exceed this threshhold, then the shlib's symbols are not
193 added. The threshold is ignored if the user explicitly asks for a
194 shlib to be added, such as when using the "sharedlibrary"
195 command. */
196
197 int auto_solib_limit;
198 \f
199
200 /* This compares two partial symbols by names, using strcmp_iw_ordered
201 for the comparison. */
202
203 static int
204 compare_psymbols (const void *s1p, const void *s2p)
205 {
206 struct partial_symbol *const *s1 = s1p;
207 struct partial_symbol *const *s2 = s2p;
208
209 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
210 SYMBOL_SEARCH_NAME (*s2));
211 }
212
213 void
214 sort_pst_symbols (struct partial_symtab *pst)
215 {
216 /* Sort the global list; don't sort the static list */
217
218 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
219 pst->n_global_syms, sizeof (struct partial_symbol *),
220 compare_psymbols);
221 }
222
223 /* Make a null terminated copy of the string at PTR with SIZE characters in
224 the obstack pointed to by OBSTACKP . Returns the address of the copy.
225 Note that the string at PTR does not have to be null terminated, I.E. it
226 may be part of a larger string and we are only saving a substring. */
227
228 char *
229 obsavestring (const char *ptr, int size, struct obstack *obstackp)
230 {
231 char *p = (char *) obstack_alloc (obstackp, size + 1);
232 /* Open-coded memcpy--saves function call time. These strings are usually
233 short. FIXME: Is this really still true with a compiler that can
234 inline memcpy? */
235 {
236 const char *p1 = ptr;
237 char *p2 = p;
238 const char *end = ptr + size;
239 while (p1 != end)
240 *p2++ = *p1++;
241 }
242 p[size] = 0;
243 return p;
244 }
245
246 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
247 in the obstack pointed to by OBSTACKP. */
248
249 char *
250 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
251 const char *s3)
252 {
253 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
254 char *val = (char *) obstack_alloc (obstackp, len);
255 strcpy (val, s1);
256 strcat (val, s2);
257 strcat (val, s3);
258 return val;
259 }
260
261 /* True if we are nested inside psymtab_to_symtab. */
262
263 int currently_reading_symtab = 0;
264
265 static void
266 decrement_reading_symtab (void *dummy)
267 {
268 currently_reading_symtab--;
269 }
270
271 /* Get the symbol table that corresponds to a partial_symtab.
272 This is fast after the first time you do it. In fact, there
273 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
274 case inline. */
275
276 struct symtab *
277 psymtab_to_symtab (struct partial_symtab *pst)
278 {
279 /* If it's been looked up before, return it. */
280 if (pst->symtab)
281 return pst->symtab;
282
283 /* If it has not yet been read in, read it. */
284 if (!pst->readin)
285 {
286 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
287 currently_reading_symtab++;
288 (*pst->read_symtab) (pst);
289 do_cleanups (back_to);
290 }
291
292 return pst->symtab;
293 }
294
295 /* Remember the lowest-addressed loadable section we've seen.
296 This function is called via bfd_map_over_sections.
297
298 In case of equal vmas, the section with the largest size becomes the
299 lowest-addressed loadable section.
300
301 If the vmas and sizes are equal, the last section is considered the
302 lowest-addressed loadable section. */
303
304 void
305 find_lowest_section (bfd *abfd, asection *sect, void *obj)
306 {
307 asection **lowest = (asection **) obj;
308
309 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
310 return;
311 if (!*lowest)
312 *lowest = sect; /* First loadable section */
313 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
314 *lowest = sect; /* A lower loadable section */
315 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
316 && (bfd_section_size (abfd, (*lowest))
317 <= bfd_section_size (abfd, sect)))
318 *lowest = sect;
319 }
320
321 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
322
323 struct section_addr_info *
324 alloc_section_addr_info (size_t num_sections)
325 {
326 struct section_addr_info *sap;
327 size_t size;
328
329 size = (sizeof (struct section_addr_info)
330 + sizeof (struct other_sections) * (num_sections - 1));
331 sap = (struct section_addr_info *) xmalloc (size);
332 memset (sap, 0, size);
333 sap->num_sections = num_sections;
334
335 return sap;
336 }
337
338
339 /* Return a freshly allocated copy of ADDRS. The section names, if
340 any, are also freshly allocated copies of those in ADDRS. */
341 struct section_addr_info *
342 copy_section_addr_info (struct section_addr_info *addrs)
343 {
344 struct section_addr_info *copy
345 = alloc_section_addr_info (addrs->num_sections);
346 int i;
347
348 copy->num_sections = addrs->num_sections;
349 for (i = 0; i < addrs->num_sections; i++)
350 {
351 copy->other[i].addr = addrs->other[i].addr;
352 if (addrs->other[i].name)
353 copy->other[i].name = xstrdup (addrs->other[i].name);
354 else
355 copy->other[i].name = NULL;
356 copy->other[i].sectindex = addrs->other[i].sectindex;
357 }
358
359 return copy;
360 }
361
362
363
364 /* Build (allocate and populate) a section_addr_info struct from
365 an existing section table. */
366
367 extern struct section_addr_info *
368 build_section_addr_info_from_section_table (const struct section_table *start,
369 const struct section_table *end)
370 {
371 struct section_addr_info *sap;
372 const struct section_table *stp;
373 int oidx;
374
375 sap = alloc_section_addr_info (end - start);
376
377 for (stp = start, oidx = 0; stp != end; stp++)
378 {
379 if (bfd_get_section_flags (stp->bfd,
380 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
381 && oidx < end - start)
382 {
383 sap->other[oidx].addr = stp->addr;
384 sap->other[oidx].name
385 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
386 sap->other[oidx].sectindex = stp->the_bfd_section->index;
387 oidx++;
388 }
389 }
390
391 return sap;
392 }
393
394
395 /* Free all memory allocated by build_section_addr_info_from_section_table. */
396
397 extern void
398 free_section_addr_info (struct section_addr_info *sap)
399 {
400 int idx;
401
402 for (idx = 0; idx < sap->num_sections; idx++)
403 if (sap->other[idx].name)
404 xfree (sap->other[idx].name);
405 xfree (sap);
406 }
407
408
409 /* Initialize OBJFILE's sect_index_* members. */
410 static void
411 init_objfile_sect_indices (struct objfile *objfile)
412 {
413 asection *sect;
414 int i;
415
416 sect = bfd_get_section_by_name (objfile->obfd, ".text");
417 if (sect)
418 objfile->sect_index_text = sect->index;
419
420 sect = bfd_get_section_by_name (objfile->obfd, ".data");
421 if (sect)
422 objfile->sect_index_data = sect->index;
423
424 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
425 if (sect)
426 objfile->sect_index_bss = sect->index;
427
428 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
429 if (sect)
430 objfile->sect_index_rodata = sect->index;
431
432 /* This is where things get really weird... We MUST have valid
433 indices for the various sect_index_* members or gdb will abort.
434 So if for example, there is no ".text" section, we have to
435 accomodate that. Except when explicitly adding symbol files at
436 some address, section_offsets contains nothing but zeros, so it
437 doesn't matter which slot in section_offsets the individual
438 sect_index_* members index into. So if they are all zero, it is
439 safe to just point all the currently uninitialized indices to the
440 first slot. */
441
442 for (i = 0; i < objfile->num_sections; i++)
443 {
444 if (ANOFFSET (objfile->section_offsets, i) != 0)
445 {
446 break;
447 }
448 }
449 if (i == objfile->num_sections)
450 {
451 if (objfile->sect_index_text == -1)
452 objfile->sect_index_text = 0;
453 if (objfile->sect_index_data == -1)
454 objfile->sect_index_data = 0;
455 if (objfile->sect_index_bss == -1)
456 objfile->sect_index_bss = 0;
457 if (objfile->sect_index_rodata == -1)
458 objfile->sect_index_rodata = 0;
459 }
460 }
461
462 /* The arguments to place_section. */
463
464 struct place_section_arg
465 {
466 struct section_offsets *offsets;
467 CORE_ADDR lowest;
468 };
469
470 /* Find a unique offset to use for loadable section SECT if
471 the user did not provide an offset. */
472
473 void
474 place_section (bfd *abfd, asection *sect, void *obj)
475 {
476 struct place_section_arg *arg = obj;
477 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
478 int done;
479 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
480
481 /* We are only interested in loadable sections. */
482 if ((bfd_get_section_flags (abfd, sect) & SEC_LOAD) == 0)
483 return;
484
485 /* If the user specified an offset, honor it. */
486 if (offsets[sect->index] != 0)
487 return;
488
489 /* Otherwise, let's try to find a place for the section. */
490 start_addr = (arg->lowest + align - 1) & -align;
491
492 do {
493 asection *cur_sec;
494
495 done = 1;
496
497 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
498 {
499 int indx = cur_sec->index;
500 CORE_ADDR cur_offset;
501
502 /* We don't need to compare against ourself. */
503 if (cur_sec == sect)
504 continue;
505
506 /* We can only conflict with loadable sections. */
507 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_LOAD) == 0)
508 continue;
509
510 /* We do not expect this to happen; just ignore sections in a
511 relocatable file with an assigned VMA. */
512 if (bfd_section_vma (abfd, cur_sec) != 0)
513 continue;
514
515 /* If the section offset is 0, either the section has not been placed
516 yet, or it was the lowest section placed (in which case LOWEST
517 will be past its end). */
518 if (offsets[indx] == 0)
519 continue;
520
521 /* If this section would overlap us, then we must move up. */
522 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
523 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
524 {
525 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
526 start_addr = (start_addr + align - 1) & -align;
527 done = 0;
528 break;
529 }
530
531 /* Otherwise, we appear to be OK. So far. */
532 }
533 }
534 while (!done);
535
536 offsets[sect->index] = start_addr;
537 arg->lowest = start_addr + bfd_get_section_size (sect);
538
539 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
540 }
541
542 /* Parse the user's idea of an offset for dynamic linking, into our idea
543 of how to represent it for fast symbol reading. This is the default
544 version of the sym_fns.sym_offsets function for symbol readers that
545 don't need to do anything special. It allocates a section_offsets table
546 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
547
548 void
549 default_symfile_offsets (struct objfile *objfile,
550 struct section_addr_info *addrs)
551 {
552 int i;
553
554 objfile->num_sections = bfd_count_sections (objfile->obfd);
555 objfile->section_offsets = (struct section_offsets *)
556 obstack_alloc (&objfile->objfile_obstack,
557 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
558 memset (objfile->section_offsets, 0,
559 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
560
561 /* Now calculate offsets for section that were specified by the
562 caller. */
563 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
564 {
565 struct other_sections *osp ;
566
567 osp = &addrs->other[i] ;
568 if (osp->addr == 0)
569 continue;
570
571 /* Record all sections in offsets */
572 /* The section_offsets in the objfile are here filled in using
573 the BFD index. */
574 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
575 }
576
577 /* For relocatable files, all loadable sections will start at zero.
578 The zero is meaningless, so try to pick arbitrary addresses such
579 that no loadable sections overlap. This algorithm is quadratic,
580 but the number of sections in a single object file is generally
581 small. */
582 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
583 {
584 struct place_section_arg arg;
585 arg.offsets = objfile->section_offsets;
586 arg.lowest = 0;
587 bfd_map_over_sections (objfile->obfd, place_section, &arg);
588 }
589
590 /* Remember the bfd indexes for the .text, .data, .bss and
591 .rodata sections. */
592 init_objfile_sect_indices (objfile);
593 }
594
595
596 /* Process a symbol file, as either the main file or as a dynamically
597 loaded file.
598
599 OBJFILE is where the symbols are to be read from.
600
601 ADDRS is the list of section load addresses. If the user has given
602 an 'add-symbol-file' command, then this is the list of offsets and
603 addresses he or she provided as arguments to the command; or, if
604 we're handling a shared library, these are the actual addresses the
605 sections are loaded at, according to the inferior's dynamic linker
606 (as gleaned by GDB's shared library code). We convert each address
607 into an offset from the section VMA's as it appears in the object
608 file, and then call the file's sym_offsets function to convert this
609 into a format-specific offset table --- a `struct section_offsets'.
610 If ADDRS is non-zero, OFFSETS must be zero.
611
612 OFFSETS is a table of section offsets already in the right
613 format-specific representation. NUM_OFFSETS is the number of
614 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
615 assume this is the proper table the call to sym_offsets described
616 above would produce. Instead of calling sym_offsets, we just dump
617 it right into objfile->section_offsets. (When we're re-reading
618 symbols from an objfile, we don't have the original load address
619 list any more; all we have is the section offset table.) If
620 OFFSETS is non-zero, ADDRS must be zero.
621
622 MAINLINE is nonzero if this is the main symbol file, or zero if
623 it's an extra symbol file such as dynamically loaded code.
624
625 VERBO is nonzero if the caller has printed a verbose message about
626 the symbol reading (and complaints can be more terse about it). */
627
628 void
629 syms_from_objfile (struct objfile *objfile,
630 struct section_addr_info *addrs,
631 struct section_offsets *offsets,
632 int num_offsets,
633 int mainline,
634 int verbo)
635 {
636 struct section_addr_info *local_addr = NULL;
637 struct cleanup *old_chain;
638
639 gdb_assert (! (addrs && offsets));
640
641 init_entry_point_info (objfile);
642 find_sym_fns (objfile);
643
644 if (objfile->sf == NULL)
645 return; /* No symbols. */
646
647 /* Make sure that partially constructed symbol tables will be cleaned up
648 if an error occurs during symbol reading. */
649 old_chain = make_cleanup_free_objfile (objfile);
650
651 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
652 list. We now establish the convention that an addr of zero means
653 no load address was specified. */
654 if (! addrs && ! offsets)
655 {
656 local_addr
657 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
658 make_cleanup (xfree, local_addr);
659 addrs = local_addr;
660 }
661
662 /* Now either addrs or offsets is non-zero. */
663
664 if (mainline)
665 {
666 /* We will modify the main symbol table, make sure that all its users
667 will be cleaned up if an error occurs during symbol reading. */
668 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
669
670 /* Since no error yet, throw away the old symbol table. */
671
672 if (symfile_objfile != NULL)
673 {
674 free_objfile (symfile_objfile);
675 symfile_objfile = NULL;
676 }
677
678 /* Currently we keep symbols from the add-symbol-file command.
679 If the user wants to get rid of them, they should do "symbol-file"
680 without arguments first. Not sure this is the best behavior
681 (PR 2207). */
682
683 (*objfile->sf->sym_new_init) (objfile);
684 }
685
686 /* Convert addr into an offset rather than an absolute address.
687 We find the lowest address of a loaded segment in the objfile,
688 and assume that <addr> is where that got loaded.
689
690 We no longer warn if the lowest section is not a text segment (as
691 happens for the PA64 port. */
692 if (!mainline && addrs && addrs->other[0].name)
693 {
694 asection *lower_sect;
695 asection *sect;
696 CORE_ADDR lower_offset;
697 int i;
698
699 /* Find lowest loadable section to be used as starting point for
700 continguous sections. FIXME!! won't work without call to find
701 .text first, but this assumes text is lowest section. */
702 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
703 if (lower_sect == NULL)
704 bfd_map_over_sections (objfile->obfd, find_lowest_section,
705 &lower_sect);
706 if (lower_sect == NULL)
707 warning (_("no loadable sections found in added symbol-file %s"),
708 objfile->name);
709 else
710 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
711 warning (_("Lowest section in %s is %s at %s"),
712 objfile->name,
713 bfd_section_name (objfile->obfd, lower_sect),
714 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
715 if (lower_sect != NULL)
716 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
717 else
718 lower_offset = 0;
719
720 /* Calculate offsets for the loadable sections.
721 FIXME! Sections must be in order of increasing loadable section
722 so that contiguous sections can use the lower-offset!!!
723
724 Adjust offsets if the segments are not contiguous.
725 If the section is contiguous, its offset should be set to
726 the offset of the highest loadable section lower than it
727 (the loadable section directly below it in memory).
728 this_offset = lower_offset = lower_addr - lower_orig_addr */
729
730 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
731 {
732 if (addrs->other[i].addr != 0)
733 {
734 sect = bfd_get_section_by_name (objfile->obfd,
735 addrs->other[i].name);
736 if (sect)
737 {
738 addrs->other[i].addr
739 -= bfd_section_vma (objfile->obfd, sect);
740 lower_offset = addrs->other[i].addr;
741 /* This is the index used by BFD. */
742 addrs->other[i].sectindex = sect->index ;
743 }
744 else
745 {
746 warning (_("section %s not found in %s"),
747 addrs->other[i].name,
748 objfile->name);
749 addrs->other[i].addr = 0;
750 }
751 }
752 else
753 addrs->other[i].addr = lower_offset;
754 }
755 }
756
757 /* Initialize symbol reading routines for this objfile, allow complaints to
758 appear for this new file, and record how verbose to be, then do the
759 initial symbol reading for this file. */
760
761 (*objfile->sf->sym_init) (objfile);
762 clear_complaints (&symfile_complaints, 1, verbo);
763
764 if (addrs)
765 (*objfile->sf->sym_offsets) (objfile, addrs);
766 else
767 {
768 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
769
770 /* Just copy in the offset table directly as given to us. */
771 objfile->num_sections = num_offsets;
772 objfile->section_offsets
773 = ((struct section_offsets *)
774 obstack_alloc (&objfile->objfile_obstack, size));
775 memcpy (objfile->section_offsets, offsets, size);
776
777 init_objfile_sect_indices (objfile);
778 }
779
780 #ifndef DEPRECATED_IBM6000_TARGET
781 /* This is a SVR4/SunOS specific hack, I think. In any event, it
782 screws RS/6000. sym_offsets should be doing this sort of thing,
783 because it knows the mapping between bfd sections and
784 section_offsets. */
785 /* This is a hack. As far as I can tell, section offsets are not
786 target dependent. They are all set to addr with a couple of
787 exceptions. The exceptions are sysvr4 shared libraries, whose
788 offsets are kept in solib structures anyway and rs6000 xcoff
789 which handles shared libraries in a completely unique way.
790
791 Section offsets are built similarly, except that they are built
792 by adding addr in all cases because there is no clear mapping
793 from section_offsets into actual sections. Note that solib.c
794 has a different algorithm for finding section offsets.
795
796 These should probably all be collapsed into some target
797 independent form of shared library support. FIXME. */
798
799 if (addrs)
800 {
801 struct obj_section *s;
802
803 /* Map section offsets in "addr" back to the object's
804 sections by comparing the section names with bfd's
805 section names. Then adjust the section address by
806 the offset. */ /* for gdb/13815 */
807
808 ALL_OBJFILE_OSECTIONS (objfile, s)
809 {
810 CORE_ADDR s_addr = 0;
811 int i;
812
813 for (i = 0;
814 !s_addr && i < addrs->num_sections && addrs->other[i].name;
815 i++)
816 if (strcmp (bfd_section_name (s->objfile->obfd,
817 s->the_bfd_section),
818 addrs->other[i].name) == 0)
819 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
820
821 s->addr -= s->offset;
822 s->addr += s_addr;
823 s->endaddr -= s->offset;
824 s->endaddr += s_addr;
825 s->offset += s_addr;
826 }
827 }
828 #endif /* not DEPRECATED_IBM6000_TARGET */
829
830 (*objfile->sf->sym_read) (objfile, mainline);
831
832 /* Don't allow char * to have a typename (else would get caddr_t).
833 Ditto void *. FIXME: Check whether this is now done by all the
834 symbol readers themselves (many of them now do), and if so remove
835 it from here. */
836
837 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
838 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
839
840 /* Mark the objfile has having had initial symbol read attempted. Note
841 that this does not mean we found any symbols... */
842
843 objfile->flags |= OBJF_SYMS;
844
845 /* Discard cleanups as symbol reading was successful. */
846
847 discard_cleanups (old_chain);
848 }
849
850 /* Perform required actions after either reading in the initial
851 symbols for a new objfile, or mapping in the symbols from a reusable
852 objfile. */
853
854 void
855 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
856 {
857
858 /* If this is the main symbol file we have to clean up all users of the
859 old main symbol file. Otherwise it is sufficient to fixup all the
860 breakpoints that may have been redefined by this symbol file. */
861 if (mainline)
862 {
863 /* OK, make it the "real" symbol file. */
864 symfile_objfile = objfile;
865
866 clear_symtab_users ();
867 }
868 else
869 {
870 breakpoint_re_set ();
871 }
872
873 /* We're done reading the symbol file; finish off complaints. */
874 clear_complaints (&symfile_complaints, 0, verbo);
875 }
876
877 /* Process a symbol file, as either the main file or as a dynamically
878 loaded file.
879
880 ABFD is a BFD already open on the file, as from symfile_bfd_open.
881 This BFD will be closed on error, and is always consumed by this function.
882
883 FROM_TTY says how verbose to be.
884
885 MAINLINE specifies whether this is the main symbol file, or whether
886 it's an extra symbol file such as dynamically loaded code.
887
888 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
889 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
890 non-zero.
891
892 Upon success, returns a pointer to the objfile that was added.
893 Upon failure, jumps back to command level (never returns). */
894 static struct objfile *
895 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
896 struct section_addr_info *addrs,
897 struct section_offsets *offsets,
898 int num_offsets,
899 int mainline, int flags)
900 {
901 struct objfile *objfile;
902 struct partial_symtab *psymtab;
903 char *debugfile;
904 struct section_addr_info *orig_addrs = NULL;
905 struct cleanup *my_cleanups;
906 const char *name = bfd_get_filename (abfd);
907
908 my_cleanups = make_cleanup_bfd_close (abfd);
909
910 /* Give user a chance to burp if we'd be
911 interactively wiping out any existing symbols. */
912
913 if ((have_full_symbols () || have_partial_symbols ())
914 && mainline
915 && from_tty
916 && !query ("Load new symbol table from \"%s\"? ", name))
917 error (_("Not confirmed."));
918
919 objfile = allocate_objfile (abfd, flags);
920 discard_cleanups (my_cleanups);
921
922 if (addrs)
923 {
924 orig_addrs = copy_section_addr_info (addrs);
925 make_cleanup_free_section_addr_info (orig_addrs);
926 }
927
928 /* We either created a new mapped symbol table, mapped an existing
929 symbol table file which has not had initial symbol reading
930 performed, or need to read an unmapped symbol table. */
931 if (from_tty || info_verbose)
932 {
933 if (deprecated_pre_add_symbol_hook)
934 deprecated_pre_add_symbol_hook (name);
935 else
936 {
937 printf_unfiltered (_("Reading symbols from %s..."), name);
938 wrap_here ("");
939 gdb_flush (gdb_stdout);
940 }
941 }
942 syms_from_objfile (objfile, addrs, offsets, num_offsets,
943 mainline, from_tty);
944
945 /* We now have at least a partial symbol table. Check to see if the
946 user requested that all symbols be read on initial access via either
947 the gdb startup command line or on a per symbol file basis. Expand
948 all partial symbol tables for this objfile if so. */
949
950 if ((flags & OBJF_READNOW) || readnow_symbol_files)
951 {
952 if (from_tty || info_verbose)
953 {
954 printf_unfiltered (_("expanding to full symbols..."));
955 wrap_here ("");
956 gdb_flush (gdb_stdout);
957 }
958
959 for (psymtab = objfile->psymtabs;
960 psymtab != NULL;
961 psymtab = psymtab->next)
962 {
963 psymtab_to_symtab (psymtab);
964 }
965 }
966
967 debugfile = find_separate_debug_file (objfile);
968 if (debugfile)
969 {
970 if (addrs != NULL)
971 {
972 objfile->separate_debug_objfile
973 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
974 }
975 else
976 {
977 objfile->separate_debug_objfile
978 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
979 }
980 objfile->separate_debug_objfile->separate_debug_objfile_backlink
981 = objfile;
982
983 /* Put the separate debug object before the normal one, this is so that
984 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
985 put_objfile_before (objfile->separate_debug_objfile, objfile);
986
987 xfree (debugfile);
988 }
989
990 if (!have_partial_symbols () && !have_full_symbols ())
991 {
992 wrap_here ("");
993 printf_filtered (_("(no debugging symbols found)"));
994 if (from_tty || info_verbose)
995 printf_filtered ("...");
996 else
997 printf_filtered ("\n");
998 wrap_here ("");
999 }
1000
1001 if (from_tty || info_verbose)
1002 {
1003 if (deprecated_post_add_symbol_hook)
1004 deprecated_post_add_symbol_hook ();
1005 else
1006 {
1007 printf_unfiltered (_("done.\n"));
1008 }
1009 }
1010
1011 /* We print some messages regardless of whether 'from_tty ||
1012 info_verbose' is true, so make sure they go out at the right
1013 time. */
1014 gdb_flush (gdb_stdout);
1015
1016 do_cleanups (my_cleanups);
1017
1018 if (objfile->sf == NULL)
1019 return objfile; /* No symbols. */
1020
1021 new_symfile_objfile (objfile, mainline, from_tty);
1022
1023 if (deprecated_target_new_objfile_hook)
1024 deprecated_target_new_objfile_hook (objfile);
1025
1026 bfd_cache_close_all ();
1027 return (objfile);
1028 }
1029
1030
1031 /* Process the symbol file ABFD, as either the main file or as a
1032 dynamically loaded file.
1033
1034 See symbol_file_add_with_addrs_or_offsets's comments for
1035 details. */
1036 struct objfile *
1037 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1038 struct section_addr_info *addrs,
1039 int mainline, int flags)
1040 {
1041 return symbol_file_add_with_addrs_or_offsets (abfd,
1042 from_tty, addrs, 0, 0,
1043 mainline, flags);
1044 }
1045
1046
1047 /* Process a symbol file, as either the main file or as a dynamically
1048 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1049 for details. */
1050 struct objfile *
1051 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1052 int mainline, int flags)
1053 {
1054 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1055 addrs, mainline, flags);
1056 }
1057
1058
1059 /* Call symbol_file_add() with default values and update whatever is
1060 affected by the loading of a new main().
1061 Used when the file is supplied in the gdb command line
1062 and by some targets with special loading requirements.
1063 The auxiliary function, symbol_file_add_main_1(), has the flags
1064 argument for the switches that can only be specified in the symbol_file
1065 command itself. */
1066
1067 void
1068 symbol_file_add_main (char *args, int from_tty)
1069 {
1070 symbol_file_add_main_1 (args, from_tty, 0);
1071 }
1072
1073 static void
1074 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1075 {
1076 symbol_file_add (args, from_tty, NULL, 1, flags);
1077
1078 /* Getting new symbols may change our opinion about
1079 what is frameless. */
1080 reinit_frame_cache ();
1081
1082 set_initial_language ();
1083 }
1084
1085 void
1086 symbol_file_clear (int from_tty)
1087 {
1088 if ((have_full_symbols () || have_partial_symbols ())
1089 && from_tty
1090 && (symfile_objfile
1091 ? !query (_("Discard symbol table from `%s'? "),
1092 symfile_objfile->name)
1093 : !query (_("Discard symbol table? "))))
1094 error (_("Not confirmed."));
1095 free_all_objfiles ();
1096
1097 /* solib descriptors may have handles to objfiles. Since their
1098 storage has just been released, we'd better wipe the solib
1099 descriptors as well.
1100 */
1101 #if defined(SOLIB_RESTART)
1102 SOLIB_RESTART ();
1103 #endif
1104
1105 symfile_objfile = NULL;
1106 if (from_tty)
1107 printf_unfiltered (_("No symbol file now.\n"));
1108 }
1109
1110 static char *
1111 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1112 {
1113 asection *sect;
1114 bfd_size_type debuglink_size;
1115 unsigned long crc32;
1116 char *contents;
1117 int crc_offset;
1118 unsigned char *p;
1119
1120 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1121
1122 if (sect == NULL)
1123 return NULL;
1124
1125 debuglink_size = bfd_section_size (objfile->obfd, sect);
1126
1127 contents = xmalloc (debuglink_size);
1128 bfd_get_section_contents (objfile->obfd, sect, contents,
1129 (file_ptr)0, (bfd_size_type)debuglink_size);
1130
1131 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1132 crc_offset = strlen (contents) + 1;
1133 crc_offset = (crc_offset + 3) & ~3;
1134
1135 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1136
1137 *crc32_out = crc32;
1138 return contents;
1139 }
1140
1141 static int
1142 separate_debug_file_exists (const char *name, unsigned long crc)
1143 {
1144 unsigned long file_crc = 0;
1145 int fd;
1146 gdb_byte buffer[8*1024];
1147 int count;
1148
1149 fd = open (name, O_RDONLY | O_BINARY);
1150 if (fd < 0)
1151 return 0;
1152
1153 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1154 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1155
1156 close (fd);
1157
1158 return crc == file_crc;
1159 }
1160
1161 static char *debug_file_directory = NULL;
1162 static void
1163 show_debug_file_directory (struct ui_file *file, int from_tty,
1164 struct cmd_list_element *c, const char *value)
1165 {
1166 fprintf_filtered (file, _("\
1167 The directory where separate debug symbols are searched for is \"%s\".\n"),
1168 value);
1169 }
1170
1171 #if ! defined (DEBUG_SUBDIRECTORY)
1172 #define DEBUG_SUBDIRECTORY ".debug"
1173 #endif
1174
1175 static char *
1176 find_separate_debug_file (struct objfile *objfile)
1177 {
1178 asection *sect;
1179 char *basename;
1180 char *dir;
1181 char *debugfile;
1182 char *name_copy;
1183 bfd_size_type debuglink_size;
1184 unsigned long crc32;
1185 int i;
1186
1187 basename = get_debug_link_info (objfile, &crc32);
1188
1189 if (basename == NULL)
1190 return NULL;
1191
1192 dir = xstrdup (objfile->name);
1193
1194 /* Strip off the final filename part, leaving the directory name,
1195 followed by a slash. Objfile names should always be absolute and
1196 tilde-expanded, so there should always be a slash in there
1197 somewhere. */
1198 for (i = strlen(dir) - 1; i >= 0; i--)
1199 {
1200 if (IS_DIR_SEPARATOR (dir[i]))
1201 break;
1202 }
1203 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1204 dir[i+1] = '\0';
1205
1206 debugfile = alloca (strlen (debug_file_directory) + 1
1207 + strlen (dir)
1208 + strlen (DEBUG_SUBDIRECTORY)
1209 + strlen ("/")
1210 + strlen (basename)
1211 + 1);
1212
1213 /* First try in the same directory as the original file. */
1214 strcpy (debugfile, dir);
1215 strcat (debugfile, basename);
1216
1217 if (separate_debug_file_exists (debugfile, crc32))
1218 {
1219 xfree (basename);
1220 xfree (dir);
1221 return xstrdup (debugfile);
1222 }
1223
1224 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1225 strcpy (debugfile, dir);
1226 strcat (debugfile, DEBUG_SUBDIRECTORY);
1227 strcat (debugfile, "/");
1228 strcat (debugfile, basename);
1229
1230 if (separate_debug_file_exists (debugfile, crc32))
1231 {
1232 xfree (basename);
1233 xfree (dir);
1234 return xstrdup (debugfile);
1235 }
1236
1237 /* Then try in the global debugfile directory. */
1238 strcpy (debugfile, debug_file_directory);
1239 strcat (debugfile, "/");
1240 strcat (debugfile, dir);
1241 strcat (debugfile, basename);
1242
1243 if (separate_debug_file_exists (debugfile, crc32))
1244 {
1245 xfree (basename);
1246 xfree (dir);
1247 return xstrdup (debugfile);
1248 }
1249
1250 xfree (basename);
1251 xfree (dir);
1252 return NULL;
1253 }
1254
1255
1256 /* This is the symbol-file command. Read the file, analyze its
1257 symbols, and add a struct symtab to a symtab list. The syntax of
1258 the command is rather bizarre:
1259
1260 1. The function buildargv implements various quoting conventions
1261 which are undocumented and have little or nothing in common with
1262 the way things are quoted (or not quoted) elsewhere in GDB.
1263
1264 2. Options are used, which are not generally used in GDB (perhaps
1265 "set mapped on", "set readnow on" would be better)
1266
1267 3. The order of options matters, which is contrary to GNU
1268 conventions (because it is confusing and inconvenient). */
1269
1270 void
1271 symbol_file_command (char *args, int from_tty)
1272 {
1273 dont_repeat ();
1274
1275 if (args == NULL)
1276 {
1277 symbol_file_clear (from_tty);
1278 }
1279 else
1280 {
1281 char **argv = buildargv (args);
1282 int flags = OBJF_USERLOADED;
1283 struct cleanup *cleanups;
1284 char *name = NULL;
1285
1286 if (argv == NULL)
1287 nomem (0);
1288
1289 cleanups = make_cleanup_freeargv (argv);
1290 while (*argv != NULL)
1291 {
1292 if (strcmp (*argv, "-readnow") == 0)
1293 flags |= OBJF_READNOW;
1294 else if (**argv == '-')
1295 error (_("unknown option `%s'"), *argv);
1296 else
1297 {
1298 symbol_file_add_main_1 (*argv, from_tty, flags);
1299 name = *argv;
1300 }
1301
1302 argv++;
1303 }
1304
1305 if (name == NULL)
1306 error (_("no symbol file name was specified"));
1307
1308 do_cleanups (cleanups);
1309 }
1310 }
1311
1312 /* Set the initial language.
1313
1314 FIXME: A better solution would be to record the language in the
1315 psymtab when reading partial symbols, and then use it (if known) to
1316 set the language. This would be a win for formats that encode the
1317 language in an easily discoverable place, such as DWARF. For
1318 stabs, we can jump through hoops looking for specially named
1319 symbols or try to intuit the language from the specific type of
1320 stabs we find, but we can't do that until later when we read in
1321 full symbols. */
1322
1323 static void
1324 set_initial_language (void)
1325 {
1326 struct partial_symtab *pst;
1327 enum language lang = language_unknown;
1328
1329 pst = find_main_psymtab ();
1330 if (pst != NULL)
1331 {
1332 if (pst->filename != NULL)
1333 lang = deduce_language_from_filename (pst->filename);
1334
1335 if (lang == language_unknown)
1336 {
1337 /* Make C the default language */
1338 lang = language_c;
1339 }
1340
1341 set_language (lang);
1342 expected_language = current_language; /* Don't warn the user. */
1343 }
1344 }
1345
1346 /* Open the file specified by NAME and hand it off to BFD for
1347 preliminary analysis. Return a newly initialized bfd *, which
1348 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1349 absolute). In case of trouble, error() is called. */
1350
1351 bfd *
1352 symfile_bfd_open (char *name)
1353 {
1354 bfd *sym_bfd;
1355 int desc;
1356 char *absolute_name;
1357
1358 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1359
1360 /* Look down path for it, allocate 2nd new malloc'd copy. */
1361 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1362 O_RDONLY | O_BINARY, 0, &absolute_name);
1363 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1364 if (desc < 0)
1365 {
1366 char *exename = alloca (strlen (name) + 5);
1367 strcat (strcpy (exename, name), ".exe");
1368 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1369 O_RDONLY | O_BINARY, 0, &absolute_name);
1370 }
1371 #endif
1372 if (desc < 0)
1373 {
1374 make_cleanup (xfree, name);
1375 perror_with_name (name);
1376 }
1377
1378 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1379 bfd. It'll be freed in free_objfile(). */
1380 xfree (name);
1381 name = absolute_name;
1382
1383 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1384 if (!sym_bfd)
1385 {
1386 close (desc);
1387 make_cleanup (xfree, name);
1388 error (_("\"%s\": can't open to read symbols: %s."), name,
1389 bfd_errmsg (bfd_get_error ()));
1390 }
1391 bfd_set_cacheable (sym_bfd, 1);
1392
1393 if (!bfd_check_format (sym_bfd, bfd_object))
1394 {
1395 /* FIXME: should be checking for errors from bfd_close (for one
1396 thing, on error it does not free all the storage associated
1397 with the bfd). */
1398 bfd_close (sym_bfd); /* This also closes desc. */
1399 make_cleanup (xfree, name);
1400 error (_("\"%s\": can't read symbols: %s."), name,
1401 bfd_errmsg (bfd_get_error ()));
1402 }
1403
1404 return sym_bfd;
1405 }
1406
1407 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1408 the section was not found. */
1409
1410 int
1411 get_section_index (struct objfile *objfile, char *section_name)
1412 {
1413 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1414
1415 if (sect)
1416 return sect->index;
1417 else
1418 return -1;
1419 }
1420
1421 /* Link SF into the global symtab_fns list. Called on startup by the
1422 _initialize routine in each object file format reader, to register
1423 information about each format the the reader is prepared to
1424 handle. */
1425
1426 void
1427 add_symtab_fns (struct sym_fns *sf)
1428 {
1429 sf->next = symtab_fns;
1430 symtab_fns = sf;
1431 }
1432
1433 /* Initialize OBJFILE to read symbols from its associated BFD. It
1434 either returns or calls error(). The result is an initialized
1435 struct sym_fns in the objfile structure, that contains cached
1436 information about the symbol file. */
1437
1438 static void
1439 find_sym_fns (struct objfile *objfile)
1440 {
1441 struct sym_fns *sf;
1442 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1443 char *our_target = bfd_get_target (objfile->obfd);
1444
1445 if (our_flavour == bfd_target_srec_flavour
1446 || our_flavour == bfd_target_ihex_flavour
1447 || our_flavour == bfd_target_tekhex_flavour)
1448 return; /* No symbols. */
1449
1450 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1451 {
1452 if (our_flavour == sf->sym_flavour)
1453 {
1454 objfile->sf = sf;
1455 return;
1456 }
1457 }
1458
1459 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1460 bfd_get_target (objfile->obfd));
1461 }
1462 \f
1463
1464 /* This function runs the load command of our current target. */
1465
1466 static void
1467 load_command (char *arg, int from_tty)
1468 {
1469 if (arg == NULL)
1470 arg = get_exec_file (1);
1471 target_load (arg, from_tty);
1472
1473 /* After re-loading the executable, we don't really know which
1474 overlays are mapped any more. */
1475 overlay_cache_invalid = 1;
1476 }
1477
1478 /* This version of "load" should be usable for any target. Currently
1479 it is just used for remote targets, not inftarg.c or core files,
1480 on the theory that only in that case is it useful.
1481
1482 Avoiding xmodem and the like seems like a win (a) because we don't have
1483 to worry about finding it, and (b) On VMS, fork() is very slow and so
1484 we don't want to run a subprocess. On the other hand, I'm not sure how
1485 performance compares. */
1486
1487 static int download_write_size = 512;
1488 static void
1489 show_download_write_size (struct ui_file *file, int from_tty,
1490 struct cmd_list_element *c, const char *value)
1491 {
1492 fprintf_filtered (file, _("\
1493 The write size used when downloading a program is %s.\n"),
1494 value);
1495 }
1496 static int validate_download = 0;
1497
1498 /* Callback service function for generic_load (bfd_map_over_sections). */
1499
1500 static void
1501 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1502 {
1503 bfd_size_type *sum = data;
1504
1505 *sum += bfd_get_section_size (asec);
1506 }
1507
1508 /* Opaque data for load_section_callback. */
1509 struct load_section_data {
1510 unsigned long load_offset;
1511 unsigned long write_count;
1512 unsigned long data_count;
1513 bfd_size_type total_size;
1514 };
1515
1516 /* Callback service function for generic_load (bfd_map_over_sections). */
1517
1518 static void
1519 load_section_callback (bfd *abfd, asection *asec, void *data)
1520 {
1521 struct load_section_data *args = data;
1522
1523 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1524 {
1525 bfd_size_type size = bfd_get_section_size (asec);
1526 if (size > 0)
1527 {
1528 gdb_byte *buffer;
1529 struct cleanup *old_chain;
1530 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1531 bfd_size_type block_size;
1532 int err;
1533 const char *sect_name = bfd_get_section_name (abfd, asec);
1534 bfd_size_type sent;
1535
1536 if (download_write_size > 0 && size > download_write_size)
1537 block_size = download_write_size;
1538 else
1539 block_size = size;
1540
1541 buffer = xmalloc (size);
1542 old_chain = make_cleanup (xfree, buffer);
1543
1544 /* Is this really necessary? I guess it gives the user something
1545 to look at during a long download. */
1546 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1547 sect_name, paddr_nz (size), paddr_nz (lma));
1548
1549 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1550
1551 sent = 0;
1552 do
1553 {
1554 int len;
1555 bfd_size_type this_transfer = size - sent;
1556
1557 if (this_transfer >= block_size)
1558 this_transfer = block_size;
1559 len = target_write_memory_partial (lma, buffer,
1560 this_transfer, &err);
1561 if (err)
1562 break;
1563 if (validate_download)
1564 {
1565 /* Broken memories and broken monitors manifest
1566 themselves here when bring new computers to
1567 life. This doubles already slow downloads. */
1568 /* NOTE: cagney/1999-10-18: A more efficient
1569 implementation might add a verify_memory()
1570 method to the target vector and then use
1571 that. remote.c could implement that method
1572 using the ``qCRC'' packet. */
1573 gdb_byte *check = xmalloc (len);
1574 struct cleanup *verify_cleanups =
1575 make_cleanup (xfree, check);
1576
1577 if (target_read_memory (lma, check, len) != 0)
1578 error (_("Download verify read failed at 0x%s"),
1579 paddr (lma));
1580 if (memcmp (buffer, check, len) != 0)
1581 error (_("Download verify compare failed at 0x%s"),
1582 paddr (lma));
1583 do_cleanups (verify_cleanups);
1584 }
1585 args->data_count += len;
1586 lma += len;
1587 buffer += len;
1588 args->write_count += 1;
1589 sent += len;
1590 if (quit_flag
1591 || (deprecated_ui_load_progress_hook != NULL
1592 && deprecated_ui_load_progress_hook (sect_name, sent)))
1593 error (_("Canceled the download"));
1594
1595 if (deprecated_show_load_progress != NULL)
1596 deprecated_show_load_progress (sect_name, sent, size,
1597 args->data_count,
1598 args->total_size);
1599 }
1600 while (sent < size);
1601
1602 if (err != 0)
1603 error (_("Memory access error while loading section %s."), sect_name);
1604
1605 do_cleanups (old_chain);
1606 }
1607 }
1608 }
1609
1610 void
1611 generic_load (char *args, int from_tty)
1612 {
1613 asection *s;
1614 bfd *loadfile_bfd;
1615 struct timeval start_time, end_time;
1616 char *filename;
1617 struct cleanup *old_cleanups;
1618 char *offptr;
1619 struct load_section_data cbdata;
1620 CORE_ADDR entry;
1621
1622 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1623 cbdata.write_count = 0; /* Number of writes needed. */
1624 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1625 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1626
1627 /* Parse the input argument - the user can specify a load offset as
1628 a second argument. */
1629 filename = xmalloc (strlen (args) + 1);
1630 old_cleanups = make_cleanup (xfree, filename);
1631 strcpy (filename, args);
1632 offptr = strchr (filename, ' ');
1633 if (offptr != NULL)
1634 {
1635 char *endptr;
1636
1637 cbdata.load_offset = strtoul (offptr, &endptr, 0);
1638 if (offptr == endptr)
1639 error (_("Invalid download offset:%s."), offptr);
1640 *offptr = '\0';
1641 }
1642 else
1643 cbdata.load_offset = 0;
1644
1645 /* Open the file for loading. */
1646 loadfile_bfd = bfd_openr (filename, gnutarget);
1647 if (loadfile_bfd == NULL)
1648 {
1649 perror_with_name (filename);
1650 return;
1651 }
1652
1653 /* FIXME: should be checking for errors from bfd_close (for one thing,
1654 on error it does not free all the storage associated with the
1655 bfd). */
1656 make_cleanup_bfd_close (loadfile_bfd);
1657
1658 if (!bfd_check_format (loadfile_bfd, bfd_object))
1659 {
1660 error (_("\"%s\" is not an object file: %s"), filename,
1661 bfd_errmsg (bfd_get_error ()));
1662 }
1663
1664 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1665 (void *) &cbdata.total_size);
1666
1667 gettimeofday (&start_time, NULL);
1668
1669 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1670
1671 gettimeofday (&end_time, NULL);
1672
1673 entry = bfd_get_start_address (loadfile_bfd);
1674 ui_out_text (uiout, "Start address ");
1675 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1676 ui_out_text (uiout, ", load size ");
1677 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1678 ui_out_text (uiout, "\n");
1679 /* We were doing this in remote-mips.c, I suspect it is right
1680 for other targets too. */
1681 write_pc (entry);
1682
1683 /* FIXME: are we supposed to call symbol_file_add or not? According
1684 to a comment from remote-mips.c (where a call to symbol_file_add
1685 was commented out), making the call confuses GDB if more than one
1686 file is loaded in. Some targets do (e.g., remote-vx.c) but
1687 others don't (or didn't - perhaps they have all been deleted). */
1688
1689 print_transfer_performance (gdb_stdout, cbdata.data_count,
1690 cbdata.write_count, &start_time, &end_time);
1691
1692 do_cleanups (old_cleanups);
1693 }
1694
1695 /* Report how fast the transfer went. */
1696
1697 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1698 replaced by print_transfer_performance (with a very different
1699 function signature). */
1700
1701 void
1702 report_transfer_performance (unsigned long data_count, time_t start_time,
1703 time_t end_time)
1704 {
1705 struct timeval start, end;
1706
1707 start.tv_sec = start_time;
1708 start.tv_usec = 0;
1709 end.tv_sec = end_time;
1710 end.tv_usec = 0;
1711
1712 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
1713 }
1714
1715 void
1716 print_transfer_performance (struct ui_file *stream,
1717 unsigned long data_count,
1718 unsigned long write_count,
1719 const struct timeval *start_time,
1720 const struct timeval *end_time)
1721 {
1722 unsigned long time_count;
1723
1724 /* Compute the elapsed time in milliseconds, as a tradeoff between
1725 accuracy and overflow. */
1726 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
1727 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
1728
1729 ui_out_text (uiout, "Transfer rate: ");
1730 if (time_count > 0)
1731 {
1732 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1733 1000 * (data_count * 8) / time_count);
1734 ui_out_text (uiout, " bits/sec");
1735 }
1736 else
1737 {
1738 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1739 ui_out_text (uiout, " bits in <1 sec");
1740 }
1741 if (write_count > 0)
1742 {
1743 ui_out_text (uiout, ", ");
1744 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1745 ui_out_text (uiout, " bytes/write");
1746 }
1747 ui_out_text (uiout, ".\n");
1748 }
1749
1750 /* This function allows the addition of incrementally linked object files.
1751 It does not modify any state in the target, only in the debugger. */
1752 /* Note: ezannoni 2000-04-13 This function/command used to have a
1753 special case syntax for the rombug target (Rombug is the boot
1754 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1755 rombug case, the user doesn't need to supply a text address,
1756 instead a call to target_link() (in target.c) would supply the
1757 value to use. We are now discontinuing this type of ad hoc syntax. */
1758
1759 static void
1760 add_symbol_file_command (char *args, int from_tty)
1761 {
1762 char *filename = NULL;
1763 int flags = OBJF_USERLOADED;
1764 char *arg;
1765 int expecting_option = 0;
1766 int section_index = 0;
1767 int argcnt = 0;
1768 int sec_num = 0;
1769 int i;
1770 int expecting_sec_name = 0;
1771 int expecting_sec_addr = 0;
1772
1773 struct sect_opt
1774 {
1775 char *name;
1776 char *value;
1777 };
1778
1779 struct section_addr_info *section_addrs;
1780 struct sect_opt *sect_opts = NULL;
1781 size_t num_sect_opts = 0;
1782 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1783
1784 num_sect_opts = 16;
1785 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1786 * sizeof (struct sect_opt));
1787
1788 dont_repeat ();
1789
1790 if (args == NULL)
1791 error (_("add-symbol-file takes a file name and an address"));
1792
1793 /* Make a copy of the string that we can safely write into. */
1794 args = xstrdup (args);
1795
1796 while (*args != '\000')
1797 {
1798 /* Any leading spaces? */
1799 while (isspace (*args))
1800 args++;
1801
1802 /* Point arg to the beginning of the argument. */
1803 arg = args;
1804
1805 /* Move args pointer over the argument. */
1806 while ((*args != '\000') && !isspace (*args))
1807 args++;
1808
1809 /* If there are more arguments, terminate arg and
1810 proceed past it. */
1811 if (*args != '\000')
1812 *args++ = '\000';
1813
1814 /* Now process the argument. */
1815 if (argcnt == 0)
1816 {
1817 /* The first argument is the file name. */
1818 filename = tilde_expand (arg);
1819 make_cleanup (xfree, filename);
1820 }
1821 else
1822 if (argcnt == 1)
1823 {
1824 /* The second argument is always the text address at which
1825 to load the program. */
1826 sect_opts[section_index].name = ".text";
1827 sect_opts[section_index].value = arg;
1828 if (++section_index > num_sect_opts)
1829 {
1830 num_sect_opts *= 2;
1831 sect_opts = ((struct sect_opt *)
1832 xrealloc (sect_opts,
1833 num_sect_opts
1834 * sizeof (struct sect_opt)));
1835 }
1836 }
1837 else
1838 {
1839 /* It's an option (starting with '-') or it's an argument
1840 to an option */
1841
1842 if (*arg == '-')
1843 {
1844 if (strcmp (arg, "-readnow") == 0)
1845 flags |= OBJF_READNOW;
1846 else if (strcmp (arg, "-s") == 0)
1847 {
1848 expecting_sec_name = 1;
1849 expecting_sec_addr = 1;
1850 }
1851 }
1852 else
1853 {
1854 if (expecting_sec_name)
1855 {
1856 sect_opts[section_index].name = arg;
1857 expecting_sec_name = 0;
1858 }
1859 else
1860 if (expecting_sec_addr)
1861 {
1862 sect_opts[section_index].value = arg;
1863 expecting_sec_addr = 0;
1864 if (++section_index > num_sect_opts)
1865 {
1866 num_sect_opts *= 2;
1867 sect_opts = ((struct sect_opt *)
1868 xrealloc (sect_opts,
1869 num_sect_opts
1870 * sizeof (struct sect_opt)));
1871 }
1872 }
1873 else
1874 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
1875 }
1876 }
1877 argcnt++;
1878 }
1879
1880 /* This command takes at least two arguments. The first one is a
1881 filename, and the second is the address where this file has been
1882 loaded. Abort now if this address hasn't been provided by the
1883 user. */
1884 if (section_index < 1)
1885 error (_("The address where %s has been loaded is missing"), filename);
1886
1887 /* Print the prompt for the query below. And save the arguments into
1888 a sect_addr_info structure to be passed around to other
1889 functions. We have to split this up into separate print
1890 statements because hex_string returns a local static
1891 string. */
1892
1893 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
1894 section_addrs = alloc_section_addr_info (section_index);
1895 make_cleanup (xfree, section_addrs);
1896 for (i = 0; i < section_index; i++)
1897 {
1898 CORE_ADDR addr;
1899 char *val = sect_opts[i].value;
1900 char *sec = sect_opts[i].name;
1901
1902 addr = parse_and_eval_address (val);
1903
1904 /* Here we store the section offsets in the order they were
1905 entered on the command line. */
1906 section_addrs->other[sec_num].name = sec;
1907 section_addrs->other[sec_num].addr = addr;
1908 printf_unfiltered ("\t%s_addr = %s\n",
1909 sec, hex_string ((unsigned long)addr));
1910 sec_num++;
1911
1912 /* The object's sections are initialized when a
1913 call is made to build_objfile_section_table (objfile).
1914 This happens in reread_symbols.
1915 At this point, we don't know what file type this is,
1916 so we can't determine what section names are valid. */
1917 }
1918
1919 if (from_tty && (!query ("%s", "")))
1920 error (_("Not confirmed."));
1921
1922 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
1923
1924 /* Getting new symbols may change our opinion about what is
1925 frameless. */
1926 reinit_frame_cache ();
1927 do_cleanups (my_cleanups);
1928 }
1929 \f
1930 static void
1931 add_shared_symbol_files_command (char *args, int from_tty)
1932 {
1933 #ifdef ADD_SHARED_SYMBOL_FILES
1934 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1935 #else
1936 error (_("This command is not available in this configuration of GDB."));
1937 #endif
1938 }
1939 \f
1940 /* Re-read symbols if a symbol-file has changed. */
1941 void
1942 reread_symbols (void)
1943 {
1944 struct objfile *objfile;
1945 long new_modtime;
1946 int reread_one = 0;
1947 struct stat new_statbuf;
1948 int res;
1949
1950 /* With the addition of shared libraries, this should be modified,
1951 the load time should be saved in the partial symbol tables, since
1952 different tables may come from different source files. FIXME.
1953 This routine should then walk down each partial symbol table
1954 and see if the symbol table that it originates from has been changed */
1955
1956 for (objfile = object_files; objfile; objfile = objfile->next)
1957 {
1958 if (objfile->obfd)
1959 {
1960 #ifdef DEPRECATED_IBM6000_TARGET
1961 /* If this object is from a shared library, then you should
1962 stat on the library name, not member name. */
1963
1964 if (objfile->obfd->my_archive)
1965 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1966 else
1967 #endif
1968 res = stat (objfile->name, &new_statbuf);
1969 if (res != 0)
1970 {
1971 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1972 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
1973 objfile->name);
1974 continue;
1975 }
1976 new_modtime = new_statbuf.st_mtime;
1977 if (new_modtime != objfile->mtime)
1978 {
1979 struct cleanup *old_cleanups;
1980 struct section_offsets *offsets;
1981 int num_offsets;
1982 char *obfd_filename;
1983
1984 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
1985 objfile->name);
1986
1987 /* There are various functions like symbol_file_add,
1988 symfile_bfd_open, syms_from_objfile, etc., which might
1989 appear to do what we want. But they have various other
1990 effects which we *don't* want. So we just do stuff
1991 ourselves. We don't worry about mapped files (for one thing,
1992 any mapped file will be out of date). */
1993
1994 /* If we get an error, blow away this objfile (not sure if
1995 that is the correct response for things like shared
1996 libraries). */
1997 old_cleanups = make_cleanup_free_objfile (objfile);
1998 /* We need to do this whenever any symbols go away. */
1999 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2000
2001 /* Clean up any state BFD has sitting around. We don't need
2002 to close the descriptor but BFD lacks a way of closing the
2003 BFD without closing the descriptor. */
2004 obfd_filename = bfd_get_filename (objfile->obfd);
2005 if (!bfd_close (objfile->obfd))
2006 error (_("Can't close BFD for %s: %s"), objfile->name,
2007 bfd_errmsg (bfd_get_error ()));
2008 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2009 if (objfile->obfd == NULL)
2010 error (_("Can't open %s to read symbols."), objfile->name);
2011 /* bfd_openr sets cacheable to true, which is what we want. */
2012 if (!bfd_check_format (objfile->obfd, bfd_object))
2013 error (_("Can't read symbols from %s: %s."), objfile->name,
2014 bfd_errmsg (bfd_get_error ()));
2015
2016 /* Save the offsets, we will nuke them with the rest of the
2017 objfile_obstack. */
2018 num_offsets = objfile->num_sections;
2019 offsets = ((struct section_offsets *)
2020 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2021 memcpy (offsets, objfile->section_offsets,
2022 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2023
2024 /* Remove any references to this objfile in the global
2025 value lists. */
2026 preserve_values (objfile);
2027
2028 /* Nuke all the state that we will re-read. Much of the following
2029 code which sets things to NULL really is necessary to tell
2030 other parts of GDB that there is nothing currently there. */
2031
2032 /* FIXME: Do we have to free a whole linked list, or is this
2033 enough? */
2034 if (objfile->global_psymbols.list)
2035 xfree (objfile->global_psymbols.list);
2036 memset (&objfile->global_psymbols, 0,
2037 sizeof (objfile->global_psymbols));
2038 if (objfile->static_psymbols.list)
2039 xfree (objfile->static_psymbols.list);
2040 memset (&objfile->static_psymbols, 0,
2041 sizeof (objfile->static_psymbols));
2042
2043 /* Free the obstacks for non-reusable objfiles */
2044 bcache_xfree (objfile->psymbol_cache);
2045 objfile->psymbol_cache = bcache_xmalloc ();
2046 bcache_xfree (objfile->macro_cache);
2047 objfile->macro_cache = bcache_xmalloc ();
2048 if (objfile->demangled_names_hash != NULL)
2049 {
2050 htab_delete (objfile->demangled_names_hash);
2051 objfile->demangled_names_hash = NULL;
2052 }
2053 obstack_free (&objfile->objfile_obstack, 0);
2054 objfile->sections = NULL;
2055 objfile->symtabs = NULL;
2056 objfile->psymtabs = NULL;
2057 objfile->free_psymtabs = NULL;
2058 objfile->cp_namespace_symtab = NULL;
2059 objfile->msymbols = NULL;
2060 objfile->deprecated_sym_private = NULL;
2061 objfile->minimal_symbol_count = 0;
2062 memset (&objfile->msymbol_hash, 0,
2063 sizeof (objfile->msymbol_hash));
2064 memset (&objfile->msymbol_demangled_hash, 0,
2065 sizeof (objfile->msymbol_demangled_hash));
2066 objfile->fundamental_types = NULL;
2067 clear_objfile_data (objfile);
2068 if (objfile->sf != NULL)
2069 {
2070 (*objfile->sf->sym_finish) (objfile);
2071 }
2072
2073 /* We never make this a mapped file. */
2074 objfile->md = NULL;
2075 objfile->psymbol_cache = bcache_xmalloc ();
2076 objfile->macro_cache = bcache_xmalloc ();
2077 /* obstack_init also initializes the obstack so it is
2078 empty. We could use obstack_specify_allocation but
2079 gdb_obstack.h specifies the alloc/dealloc
2080 functions. */
2081 obstack_init (&objfile->objfile_obstack);
2082 if (build_objfile_section_table (objfile))
2083 {
2084 error (_("Can't find the file sections in `%s': %s"),
2085 objfile->name, bfd_errmsg (bfd_get_error ()));
2086 }
2087 terminate_minimal_symbol_table (objfile);
2088
2089 /* We use the same section offsets as from last time. I'm not
2090 sure whether that is always correct for shared libraries. */
2091 objfile->section_offsets = (struct section_offsets *)
2092 obstack_alloc (&objfile->objfile_obstack,
2093 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2094 memcpy (objfile->section_offsets, offsets,
2095 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2096 objfile->num_sections = num_offsets;
2097
2098 /* What the hell is sym_new_init for, anyway? The concept of
2099 distinguishing between the main file and additional files
2100 in this way seems rather dubious. */
2101 if (objfile == symfile_objfile)
2102 {
2103 (*objfile->sf->sym_new_init) (objfile);
2104 }
2105
2106 (*objfile->sf->sym_init) (objfile);
2107 clear_complaints (&symfile_complaints, 1, 1);
2108 /* The "mainline" parameter is a hideous hack; I think leaving it
2109 zero is OK since dbxread.c also does what it needs to do if
2110 objfile->global_psymbols.size is 0. */
2111 (*objfile->sf->sym_read) (objfile, 0);
2112 if (!have_partial_symbols () && !have_full_symbols ())
2113 {
2114 wrap_here ("");
2115 printf_unfiltered (_("(no debugging symbols found)\n"));
2116 wrap_here ("");
2117 }
2118 objfile->flags |= OBJF_SYMS;
2119
2120 /* We're done reading the symbol file; finish off complaints. */
2121 clear_complaints (&symfile_complaints, 0, 1);
2122
2123 /* Getting new symbols may change our opinion about what is
2124 frameless. */
2125
2126 reinit_frame_cache ();
2127
2128 /* Discard cleanups as symbol reading was successful. */
2129 discard_cleanups (old_cleanups);
2130
2131 /* If the mtime has changed between the time we set new_modtime
2132 and now, we *want* this to be out of date, so don't call stat
2133 again now. */
2134 objfile->mtime = new_modtime;
2135 reread_one = 1;
2136 reread_separate_symbols (objfile);
2137 }
2138 }
2139 }
2140
2141 if (reread_one)
2142 {
2143 clear_symtab_users ();
2144 /* At least one objfile has changed, so we can consider that
2145 the executable we're debugging has changed too. */
2146 observer_notify_executable_changed (NULL);
2147 }
2148
2149 }
2150
2151
2152 /* Handle separate debug info for OBJFILE, which has just been
2153 re-read:
2154 - If we had separate debug info before, but now we don't, get rid
2155 of the separated objfile.
2156 - If we didn't have separated debug info before, but now we do,
2157 read in the new separated debug info file.
2158 - If the debug link points to a different file, toss the old one
2159 and read the new one.
2160 This function does *not* handle the case where objfile is still
2161 using the same separate debug info file, but that file's timestamp
2162 has changed. That case should be handled by the loop in
2163 reread_symbols already. */
2164 static void
2165 reread_separate_symbols (struct objfile *objfile)
2166 {
2167 char *debug_file;
2168 unsigned long crc32;
2169
2170 /* Does the updated objfile's debug info live in a
2171 separate file? */
2172 debug_file = find_separate_debug_file (objfile);
2173
2174 if (objfile->separate_debug_objfile)
2175 {
2176 /* There are two cases where we need to get rid of
2177 the old separated debug info objfile:
2178 - if the new primary objfile doesn't have
2179 separated debug info, or
2180 - if the new primary objfile has separate debug
2181 info, but it's under a different filename.
2182
2183 If the old and new objfiles both have separate
2184 debug info, under the same filename, then we're
2185 okay --- if the separated file's contents have
2186 changed, we will have caught that when we
2187 visited it in this function's outermost
2188 loop. */
2189 if (! debug_file
2190 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2191 free_objfile (objfile->separate_debug_objfile);
2192 }
2193
2194 /* If the new objfile has separate debug info, and we
2195 haven't loaded it already, do so now. */
2196 if (debug_file
2197 && ! objfile->separate_debug_objfile)
2198 {
2199 /* Use the same section offset table as objfile itself.
2200 Preserve the flags from objfile that make sense. */
2201 objfile->separate_debug_objfile
2202 = (symbol_file_add_with_addrs_or_offsets
2203 (symfile_bfd_open (debug_file),
2204 info_verbose, /* from_tty: Don't override the default. */
2205 0, /* No addr table. */
2206 objfile->section_offsets, objfile->num_sections,
2207 0, /* Not mainline. See comments about this above. */
2208 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2209 | OBJF_USERLOADED)));
2210 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2211 = objfile;
2212 }
2213 }
2214
2215
2216 \f
2217
2218
2219 typedef struct
2220 {
2221 char *ext;
2222 enum language lang;
2223 }
2224 filename_language;
2225
2226 static filename_language *filename_language_table;
2227 static int fl_table_size, fl_table_next;
2228
2229 static void
2230 add_filename_language (char *ext, enum language lang)
2231 {
2232 if (fl_table_next >= fl_table_size)
2233 {
2234 fl_table_size += 10;
2235 filename_language_table =
2236 xrealloc (filename_language_table,
2237 fl_table_size * sizeof (*filename_language_table));
2238 }
2239
2240 filename_language_table[fl_table_next].ext = xstrdup (ext);
2241 filename_language_table[fl_table_next].lang = lang;
2242 fl_table_next++;
2243 }
2244
2245 static char *ext_args;
2246 static void
2247 show_ext_args (struct ui_file *file, int from_tty,
2248 struct cmd_list_element *c, const char *value)
2249 {
2250 fprintf_filtered (file, _("\
2251 Mapping between filename extension and source language is \"%s\".\n"),
2252 value);
2253 }
2254
2255 static void
2256 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2257 {
2258 int i;
2259 char *cp = ext_args;
2260 enum language lang;
2261
2262 /* First arg is filename extension, starting with '.' */
2263 if (*cp != '.')
2264 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2265
2266 /* Find end of first arg. */
2267 while (*cp && !isspace (*cp))
2268 cp++;
2269
2270 if (*cp == '\0')
2271 error (_("'%s': two arguments required -- filename extension and language"),
2272 ext_args);
2273
2274 /* Null-terminate first arg */
2275 *cp++ = '\0';
2276
2277 /* Find beginning of second arg, which should be a source language. */
2278 while (*cp && isspace (*cp))
2279 cp++;
2280
2281 if (*cp == '\0')
2282 error (_("'%s': two arguments required -- filename extension and language"),
2283 ext_args);
2284
2285 /* Lookup the language from among those we know. */
2286 lang = language_enum (cp);
2287
2288 /* Now lookup the filename extension: do we already know it? */
2289 for (i = 0; i < fl_table_next; i++)
2290 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2291 break;
2292
2293 if (i >= fl_table_next)
2294 {
2295 /* new file extension */
2296 add_filename_language (ext_args, lang);
2297 }
2298 else
2299 {
2300 /* redefining a previously known filename extension */
2301
2302 /* if (from_tty) */
2303 /* query ("Really make files of type %s '%s'?", */
2304 /* ext_args, language_str (lang)); */
2305
2306 xfree (filename_language_table[i].ext);
2307 filename_language_table[i].ext = xstrdup (ext_args);
2308 filename_language_table[i].lang = lang;
2309 }
2310 }
2311
2312 static void
2313 info_ext_lang_command (char *args, int from_tty)
2314 {
2315 int i;
2316
2317 printf_filtered (_("Filename extensions and the languages they represent:"));
2318 printf_filtered ("\n\n");
2319 for (i = 0; i < fl_table_next; i++)
2320 printf_filtered ("\t%s\t- %s\n",
2321 filename_language_table[i].ext,
2322 language_str (filename_language_table[i].lang));
2323 }
2324
2325 static void
2326 init_filename_language_table (void)
2327 {
2328 if (fl_table_size == 0) /* protect against repetition */
2329 {
2330 fl_table_size = 20;
2331 fl_table_next = 0;
2332 filename_language_table =
2333 xmalloc (fl_table_size * sizeof (*filename_language_table));
2334 add_filename_language (".c", language_c);
2335 add_filename_language (".C", language_cplus);
2336 add_filename_language (".cc", language_cplus);
2337 add_filename_language (".cp", language_cplus);
2338 add_filename_language (".cpp", language_cplus);
2339 add_filename_language (".cxx", language_cplus);
2340 add_filename_language (".c++", language_cplus);
2341 add_filename_language (".java", language_java);
2342 add_filename_language (".class", language_java);
2343 add_filename_language (".m", language_objc);
2344 add_filename_language (".f", language_fortran);
2345 add_filename_language (".F", language_fortran);
2346 add_filename_language (".s", language_asm);
2347 add_filename_language (".S", language_asm);
2348 add_filename_language (".pas", language_pascal);
2349 add_filename_language (".p", language_pascal);
2350 add_filename_language (".pp", language_pascal);
2351 add_filename_language (".adb", language_ada);
2352 add_filename_language (".ads", language_ada);
2353 add_filename_language (".a", language_ada);
2354 add_filename_language (".ada", language_ada);
2355 }
2356 }
2357
2358 enum language
2359 deduce_language_from_filename (char *filename)
2360 {
2361 int i;
2362 char *cp;
2363
2364 if (filename != NULL)
2365 if ((cp = strrchr (filename, '.')) != NULL)
2366 for (i = 0; i < fl_table_next; i++)
2367 if (strcmp (cp, filename_language_table[i].ext) == 0)
2368 return filename_language_table[i].lang;
2369
2370 return language_unknown;
2371 }
2372 \f
2373 /* allocate_symtab:
2374
2375 Allocate and partly initialize a new symbol table. Return a pointer
2376 to it. error() if no space.
2377
2378 Caller must set these fields:
2379 LINETABLE(symtab)
2380 symtab->blockvector
2381 symtab->dirname
2382 symtab->free_code
2383 symtab->free_ptr
2384 possibly free_named_symtabs (symtab->filename);
2385 */
2386
2387 struct symtab *
2388 allocate_symtab (char *filename, struct objfile *objfile)
2389 {
2390 struct symtab *symtab;
2391
2392 symtab = (struct symtab *)
2393 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2394 memset (symtab, 0, sizeof (*symtab));
2395 symtab->filename = obsavestring (filename, strlen (filename),
2396 &objfile->objfile_obstack);
2397 symtab->fullname = NULL;
2398 symtab->language = deduce_language_from_filename (filename);
2399 symtab->debugformat = obsavestring ("unknown", 7,
2400 &objfile->objfile_obstack);
2401
2402 /* Hook it to the objfile it comes from */
2403
2404 symtab->objfile = objfile;
2405 symtab->next = objfile->symtabs;
2406 objfile->symtabs = symtab;
2407
2408 /* FIXME: This should go away. It is only defined for the Z8000,
2409 and the Z8000 definition of this macro doesn't have anything to
2410 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2411 here for convenience. */
2412 #ifdef INIT_EXTRA_SYMTAB_INFO
2413 INIT_EXTRA_SYMTAB_INFO (symtab);
2414 #endif
2415
2416 return (symtab);
2417 }
2418
2419 struct partial_symtab *
2420 allocate_psymtab (char *filename, struct objfile *objfile)
2421 {
2422 struct partial_symtab *psymtab;
2423
2424 if (objfile->free_psymtabs)
2425 {
2426 psymtab = objfile->free_psymtabs;
2427 objfile->free_psymtabs = psymtab->next;
2428 }
2429 else
2430 psymtab = (struct partial_symtab *)
2431 obstack_alloc (&objfile->objfile_obstack,
2432 sizeof (struct partial_symtab));
2433
2434 memset (psymtab, 0, sizeof (struct partial_symtab));
2435 psymtab->filename = obsavestring (filename, strlen (filename),
2436 &objfile->objfile_obstack);
2437 psymtab->symtab = NULL;
2438
2439 /* Prepend it to the psymtab list for the objfile it belongs to.
2440 Psymtabs are searched in most recent inserted -> least recent
2441 inserted order. */
2442
2443 psymtab->objfile = objfile;
2444 psymtab->next = objfile->psymtabs;
2445 objfile->psymtabs = psymtab;
2446 #if 0
2447 {
2448 struct partial_symtab **prev_pst;
2449 psymtab->objfile = objfile;
2450 psymtab->next = NULL;
2451 prev_pst = &(objfile->psymtabs);
2452 while ((*prev_pst) != NULL)
2453 prev_pst = &((*prev_pst)->next);
2454 (*prev_pst) = psymtab;
2455 }
2456 #endif
2457
2458 return (psymtab);
2459 }
2460
2461 void
2462 discard_psymtab (struct partial_symtab *pst)
2463 {
2464 struct partial_symtab **prev_pst;
2465
2466 /* From dbxread.c:
2467 Empty psymtabs happen as a result of header files which don't
2468 have any symbols in them. There can be a lot of them. But this
2469 check is wrong, in that a psymtab with N_SLINE entries but
2470 nothing else is not empty, but we don't realize that. Fixing
2471 that without slowing things down might be tricky. */
2472
2473 /* First, snip it out of the psymtab chain */
2474
2475 prev_pst = &(pst->objfile->psymtabs);
2476 while ((*prev_pst) != pst)
2477 prev_pst = &((*prev_pst)->next);
2478 (*prev_pst) = pst->next;
2479
2480 /* Next, put it on a free list for recycling */
2481
2482 pst->next = pst->objfile->free_psymtabs;
2483 pst->objfile->free_psymtabs = pst;
2484 }
2485 \f
2486
2487 /* Reset all data structures in gdb which may contain references to symbol
2488 table data. */
2489
2490 void
2491 clear_symtab_users (void)
2492 {
2493 /* Someday, we should do better than this, by only blowing away
2494 the things that really need to be blown. */
2495
2496 /* Clear the "current" symtab first, because it is no longer valid.
2497 breakpoint_re_set may try to access the current symtab. */
2498 clear_current_source_symtab_and_line ();
2499
2500 clear_displays ();
2501 breakpoint_re_set ();
2502 set_default_breakpoint (0, 0, 0, 0);
2503 clear_pc_function_cache ();
2504 if (deprecated_target_new_objfile_hook)
2505 deprecated_target_new_objfile_hook (NULL);
2506 }
2507
2508 static void
2509 clear_symtab_users_cleanup (void *ignore)
2510 {
2511 clear_symtab_users ();
2512 }
2513
2514 /* clear_symtab_users_once:
2515
2516 This function is run after symbol reading, or from a cleanup.
2517 If an old symbol table was obsoleted, the old symbol table
2518 has been blown away, but the other GDB data structures that may
2519 reference it have not yet been cleared or re-directed. (The old
2520 symtab was zapped, and the cleanup queued, in free_named_symtab()
2521 below.)
2522
2523 This function can be queued N times as a cleanup, or called
2524 directly; it will do all the work the first time, and then will be a
2525 no-op until the next time it is queued. This works by bumping a
2526 counter at queueing time. Much later when the cleanup is run, or at
2527 the end of symbol processing (in case the cleanup is discarded), if
2528 the queued count is greater than the "done-count", we do the work
2529 and set the done-count to the queued count. If the queued count is
2530 less than or equal to the done-count, we just ignore the call. This
2531 is needed because reading a single .o file will often replace many
2532 symtabs (one per .h file, for example), and we don't want to reset
2533 the breakpoints N times in the user's face.
2534
2535 The reason we both queue a cleanup, and call it directly after symbol
2536 reading, is because the cleanup protects us in case of errors, but is
2537 discarded if symbol reading is successful. */
2538
2539 #if 0
2540 /* FIXME: As free_named_symtabs is currently a big noop this function
2541 is no longer needed. */
2542 static void clear_symtab_users_once (void);
2543
2544 static int clear_symtab_users_queued;
2545 static int clear_symtab_users_done;
2546
2547 static void
2548 clear_symtab_users_once (void)
2549 {
2550 /* Enforce once-per-`do_cleanups'-semantics */
2551 if (clear_symtab_users_queued <= clear_symtab_users_done)
2552 return;
2553 clear_symtab_users_done = clear_symtab_users_queued;
2554
2555 clear_symtab_users ();
2556 }
2557 #endif
2558
2559 /* Delete the specified psymtab, and any others that reference it. */
2560
2561 static void
2562 cashier_psymtab (struct partial_symtab *pst)
2563 {
2564 struct partial_symtab *ps, *pprev = NULL;
2565 int i;
2566
2567 /* Find its previous psymtab in the chain */
2568 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2569 {
2570 if (ps == pst)
2571 break;
2572 pprev = ps;
2573 }
2574
2575 if (ps)
2576 {
2577 /* Unhook it from the chain. */
2578 if (ps == pst->objfile->psymtabs)
2579 pst->objfile->psymtabs = ps->next;
2580 else
2581 pprev->next = ps->next;
2582
2583 /* FIXME, we can't conveniently deallocate the entries in the
2584 partial_symbol lists (global_psymbols/static_psymbols) that
2585 this psymtab points to. These just take up space until all
2586 the psymtabs are reclaimed. Ditto the dependencies list and
2587 filename, which are all in the objfile_obstack. */
2588
2589 /* We need to cashier any psymtab that has this one as a dependency... */
2590 again:
2591 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2592 {
2593 for (i = 0; i < ps->number_of_dependencies; i++)
2594 {
2595 if (ps->dependencies[i] == pst)
2596 {
2597 cashier_psymtab (ps);
2598 goto again; /* Must restart, chain has been munged. */
2599 }
2600 }
2601 }
2602 }
2603 }
2604
2605 /* If a symtab or psymtab for filename NAME is found, free it along
2606 with any dependent breakpoints, displays, etc.
2607 Used when loading new versions of object modules with the "add-file"
2608 command. This is only called on the top-level symtab or psymtab's name;
2609 it is not called for subsidiary files such as .h files.
2610
2611 Return value is 1 if we blew away the environment, 0 if not.
2612 FIXME. The return value appears to never be used.
2613
2614 FIXME. I think this is not the best way to do this. We should
2615 work on being gentler to the environment while still cleaning up
2616 all stray pointers into the freed symtab. */
2617
2618 int
2619 free_named_symtabs (char *name)
2620 {
2621 #if 0
2622 /* FIXME: With the new method of each objfile having it's own
2623 psymtab list, this function needs serious rethinking. In particular,
2624 why was it ever necessary to toss psymtabs with specific compilation
2625 unit filenames, as opposed to all psymtabs from a particular symbol
2626 file? -- fnf
2627 Well, the answer is that some systems permit reloading of particular
2628 compilation units. We want to blow away any old info about these
2629 compilation units, regardless of which objfiles they arrived in. --gnu. */
2630
2631 struct symtab *s;
2632 struct symtab *prev;
2633 struct partial_symtab *ps;
2634 struct blockvector *bv;
2635 int blewit = 0;
2636
2637 /* We only wack things if the symbol-reload switch is set. */
2638 if (!symbol_reloading)
2639 return 0;
2640
2641 /* Some symbol formats have trouble providing file names... */
2642 if (name == 0 || *name == '\0')
2643 return 0;
2644
2645 /* Look for a psymtab with the specified name. */
2646
2647 again2:
2648 for (ps = partial_symtab_list; ps; ps = ps->next)
2649 {
2650 if (strcmp (name, ps->filename) == 0)
2651 {
2652 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2653 goto again2; /* Must restart, chain has been munged */
2654 }
2655 }
2656
2657 /* Look for a symtab with the specified name. */
2658
2659 for (s = symtab_list; s; s = s->next)
2660 {
2661 if (strcmp (name, s->filename) == 0)
2662 break;
2663 prev = s;
2664 }
2665
2666 if (s)
2667 {
2668 if (s == symtab_list)
2669 symtab_list = s->next;
2670 else
2671 prev->next = s->next;
2672
2673 /* For now, queue a delete for all breakpoints, displays, etc., whether
2674 or not they depend on the symtab being freed. This should be
2675 changed so that only those data structures affected are deleted. */
2676
2677 /* But don't delete anything if the symtab is empty.
2678 This test is necessary due to a bug in "dbxread.c" that
2679 causes empty symtabs to be created for N_SO symbols that
2680 contain the pathname of the object file. (This problem
2681 has been fixed in GDB 3.9x). */
2682
2683 bv = BLOCKVECTOR (s);
2684 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2685 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2686 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2687 {
2688 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
2689 name);
2690 clear_symtab_users_queued++;
2691 make_cleanup (clear_symtab_users_once, 0);
2692 blewit = 1;
2693 }
2694 else
2695 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2696 name);
2697
2698 free_symtab (s);
2699 }
2700 else
2701 {
2702 /* It is still possible that some breakpoints will be affected
2703 even though no symtab was found, since the file might have
2704 been compiled without debugging, and hence not be associated
2705 with a symtab. In order to handle this correctly, we would need
2706 to keep a list of text address ranges for undebuggable files.
2707 For now, we do nothing, since this is a fairly obscure case. */
2708 ;
2709 }
2710
2711 /* FIXME, what about the minimal symbol table? */
2712 return blewit;
2713 #else
2714 return (0);
2715 #endif
2716 }
2717 \f
2718 /* Allocate and partially fill a partial symtab. It will be
2719 completely filled at the end of the symbol list.
2720
2721 FILENAME is the name of the symbol-file we are reading from. */
2722
2723 struct partial_symtab *
2724 start_psymtab_common (struct objfile *objfile,
2725 struct section_offsets *section_offsets, char *filename,
2726 CORE_ADDR textlow, struct partial_symbol **global_syms,
2727 struct partial_symbol **static_syms)
2728 {
2729 struct partial_symtab *psymtab;
2730
2731 psymtab = allocate_psymtab (filename, objfile);
2732 psymtab->section_offsets = section_offsets;
2733 psymtab->textlow = textlow;
2734 psymtab->texthigh = psymtab->textlow; /* default */
2735 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2736 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2737 return (psymtab);
2738 }
2739 \f
2740 /* Add a symbol with a long value to a psymtab.
2741 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2742 Return the partial symbol that has been added. */
2743
2744 /* NOTE: carlton/2003-09-11: The reason why we return the partial
2745 symbol is so that callers can get access to the symbol's demangled
2746 name, which they don't have any cheap way to determine otherwise.
2747 (Currenly, dwarf2read.c is the only file who uses that information,
2748 though it's possible that other readers might in the future.)
2749 Elena wasn't thrilled about that, and I don't blame her, but we
2750 couldn't come up with a better way to get that information. If
2751 it's needed in other situations, we could consider breaking up
2752 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2753 cache. */
2754
2755 const struct partial_symbol *
2756 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2757 enum address_class class,
2758 struct psymbol_allocation_list *list, long val, /* Value as a long */
2759 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2760 enum language language, struct objfile *objfile)
2761 {
2762 struct partial_symbol *psym;
2763 char *buf = alloca (namelength + 1);
2764 /* psymbol is static so that there will be no uninitialized gaps in the
2765 structure which might contain random data, causing cache misses in
2766 bcache. */
2767 static struct partial_symbol psymbol;
2768
2769 /* Create local copy of the partial symbol */
2770 memcpy (buf, name, namelength);
2771 buf[namelength] = '\0';
2772 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2773 if (val != 0)
2774 {
2775 SYMBOL_VALUE (&psymbol) = val;
2776 }
2777 else
2778 {
2779 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2780 }
2781 SYMBOL_SECTION (&psymbol) = 0;
2782 SYMBOL_LANGUAGE (&psymbol) = language;
2783 PSYMBOL_DOMAIN (&psymbol) = domain;
2784 PSYMBOL_CLASS (&psymbol) = class;
2785
2786 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2787
2788 /* Stash the partial symbol away in the cache */
2789 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2790 objfile->psymbol_cache);
2791
2792 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2793 if (list->next >= list->list + list->size)
2794 {
2795 extend_psymbol_list (list, objfile);
2796 }
2797 *list->next++ = psym;
2798 OBJSTAT (objfile, n_psyms++);
2799
2800 return psym;
2801 }
2802
2803 /* Add a symbol with a long value to a psymtab. This differs from
2804 * add_psymbol_to_list above in taking both a mangled and a demangled
2805 * name. */
2806
2807 void
2808 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2809 int dem_namelength, domain_enum domain,
2810 enum address_class class,
2811 struct psymbol_allocation_list *list, long val, /* Value as a long */
2812 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2813 enum language language,
2814 struct objfile *objfile)
2815 {
2816 struct partial_symbol *psym;
2817 char *buf = alloca (namelength + 1);
2818 /* psymbol is static so that there will be no uninitialized gaps in the
2819 structure which might contain random data, causing cache misses in
2820 bcache. */
2821 static struct partial_symbol psymbol;
2822
2823 /* Create local copy of the partial symbol */
2824
2825 memcpy (buf, name, namelength);
2826 buf[namelength] = '\0';
2827 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2828 objfile->psymbol_cache);
2829
2830 buf = alloca (dem_namelength + 1);
2831 memcpy (buf, dem_name, dem_namelength);
2832 buf[dem_namelength] = '\0';
2833
2834 switch (language)
2835 {
2836 case language_c:
2837 case language_cplus:
2838 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2839 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2840 break;
2841 /* FIXME What should be done for the default case? Ignoring for now. */
2842 }
2843
2844 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2845 if (val != 0)
2846 {
2847 SYMBOL_VALUE (&psymbol) = val;
2848 }
2849 else
2850 {
2851 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2852 }
2853 SYMBOL_SECTION (&psymbol) = 0;
2854 SYMBOL_LANGUAGE (&psymbol) = language;
2855 PSYMBOL_DOMAIN (&psymbol) = domain;
2856 PSYMBOL_CLASS (&psymbol) = class;
2857 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2858
2859 /* Stash the partial symbol away in the cache */
2860 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2861 objfile->psymbol_cache);
2862
2863 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2864 if (list->next >= list->list + list->size)
2865 {
2866 extend_psymbol_list (list, objfile);
2867 }
2868 *list->next++ = psym;
2869 OBJSTAT (objfile, n_psyms++);
2870 }
2871
2872 /* Initialize storage for partial symbols. */
2873
2874 void
2875 init_psymbol_list (struct objfile *objfile, int total_symbols)
2876 {
2877 /* Free any previously allocated psymbol lists. */
2878
2879 if (objfile->global_psymbols.list)
2880 {
2881 xfree (objfile->global_psymbols.list);
2882 }
2883 if (objfile->static_psymbols.list)
2884 {
2885 xfree (objfile->static_psymbols.list);
2886 }
2887
2888 /* Current best guess is that approximately a twentieth
2889 of the total symbols (in a debugging file) are global or static
2890 oriented symbols */
2891
2892 objfile->global_psymbols.size = total_symbols / 10;
2893 objfile->static_psymbols.size = total_symbols / 10;
2894
2895 if (objfile->global_psymbols.size > 0)
2896 {
2897 objfile->global_psymbols.next =
2898 objfile->global_psymbols.list = (struct partial_symbol **)
2899 xmalloc ((objfile->global_psymbols.size
2900 * sizeof (struct partial_symbol *)));
2901 }
2902 if (objfile->static_psymbols.size > 0)
2903 {
2904 objfile->static_psymbols.next =
2905 objfile->static_psymbols.list = (struct partial_symbol **)
2906 xmalloc ((objfile->static_psymbols.size
2907 * sizeof (struct partial_symbol *)));
2908 }
2909 }
2910
2911 /* OVERLAYS:
2912 The following code implements an abstraction for debugging overlay sections.
2913
2914 The target model is as follows:
2915 1) The gnu linker will permit multiple sections to be mapped into the
2916 same VMA, each with its own unique LMA (or load address).
2917 2) It is assumed that some runtime mechanism exists for mapping the
2918 sections, one by one, from the load address into the VMA address.
2919 3) This code provides a mechanism for gdb to keep track of which
2920 sections should be considered to be mapped from the VMA to the LMA.
2921 This information is used for symbol lookup, and memory read/write.
2922 For instance, if a section has been mapped then its contents
2923 should be read from the VMA, otherwise from the LMA.
2924
2925 Two levels of debugger support for overlays are available. One is
2926 "manual", in which the debugger relies on the user to tell it which
2927 overlays are currently mapped. This level of support is
2928 implemented entirely in the core debugger, and the information about
2929 whether a section is mapped is kept in the objfile->obj_section table.
2930
2931 The second level of support is "automatic", and is only available if
2932 the target-specific code provides functionality to read the target's
2933 overlay mapping table, and translate its contents for the debugger
2934 (by updating the mapped state information in the obj_section tables).
2935
2936 The interface is as follows:
2937 User commands:
2938 overlay map <name> -- tell gdb to consider this section mapped
2939 overlay unmap <name> -- tell gdb to consider this section unmapped
2940 overlay list -- list the sections that GDB thinks are mapped
2941 overlay read-target -- get the target's state of what's mapped
2942 overlay off/manual/auto -- set overlay debugging state
2943 Functional interface:
2944 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2945 section, return that section.
2946 find_pc_overlay(pc): find any overlay section that contains
2947 the pc, either in its VMA or its LMA
2948 overlay_is_mapped(sect): true if overlay is marked as mapped
2949 section_is_overlay(sect): true if section's VMA != LMA
2950 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2951 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2952 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2953 overlay_mapped_address(...): map an address from section's LMA to VMA
2954 overlay_unmapped_address(...): map an address from section's VMA to LMA
2955 symbol_overlayed_address(...): Return a "current" address for symbol:
2956 either in VMA or LMA depending on whether
2957 the symbol's section is currently mapped
2958 */
2959
2960 /* Overlay debugging state: */
2961
2962 enum overlay_debugging_state overlay_debugging = ovly_off;
2963 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2964
2965 /* Target vector for refreshing overlay mapped state */
2966 static void simple_overlay_update (struct obj_section *);
2967 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2968
2969 /* Function: section_is_overlay (SECTION)
2970 Returns true if SECTION has VMA not equal to LMA, ie.
2971 SECTION is loaded at an address different from where it will "run". */
2972
2973 int
2974 section_is_overlay (asection *section)
2975 {
2976 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2977
2978 if (overlay_debugging)
2979 if (section && section->lma != 0 &&
2980 section->vma != section->lma)
2981 return 1;
2982
2983 return 0;
2984 }
2985
2986 /* Function: overlay_invalidate_all (void)
2987 Invalidate the mapped state of all overlay sections (mark it as stale). */
2988
2989 static void
2990 overlay_invalidate_all (void)
2991 {
2992 struct objfile *objfile;
2993 struct obj_section *sect;
2994
2995 ALL_OBJSECTIONS (objfile, sect)
2996 if (section_is_overlay (sect->the_bfd_section))
2997 sect->ovly_mapped = -1;
2998 }
2999
3000 /* Function: overlay_is_mapped (SECTION)
3001 Returns true if section is an overlay, and is currently mapped.
3002 Private: public access is thru function section_is_mapped.
3003
3004 Access to the ovly_mapped flag is restricted to this function, so
3005 that we can do automatic update. If the global flag
3006 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3007 overlay_invalidate_all. If the mapped state of the particular
3008 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3009
3010 static int
3011 overlay_is_mapped (struct obj_section *osect)
3012 {
3013 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3014 return 0;
3015
3016 switch (overlay_debugging)
3017 {
3018 default:
3019 case ovly_off:
3020 return 0; /* overlay debugging off */
3021 case ovly_auto: /* overlay debugging automatic */
3022 /* Unles there is a target_overlay_update function,
3023 there's really nothing useful to do here (can't really go auto) */
3024 if (target_overlay_update)
3025 {
3026 if (overlay_cache_invalid)
3027 {
3028 overlay_invalidate_all ();
3029 overlay_cache_invalid = 0;
3030 }
3031 if (osect->ovly_mapped == -1)
3032 (*target_overlay_update) (osect);
3033 }
3034 /* fall thru to manual case */
3035 case ovly_on: /* overlay debugging manual */
3036 return osect->ovly_mapped == 1;
3037 }
3038 }
3039
3040 /* Function: section_is_mapped
3041 Returns true if section is an overlay, and is currently mapped. */
3042
3043 int
3044 section_is_mapped (asection *section)
3045 {
3046 struct objfile *objfile;
3047 struct obj_section *osect;
3048
3049 if (overlay_debugging)
3050 if (section && section_is_overlay (section))
3051 ALL_OBJSECTIONS (objfile, osect)
3052 if (osect->the_bfd_section == section)
3053 return overlay_is_mapped (osect);
3054
3055 return 0;
3056 }
3057
3058 /* Function: pc_in_unmapped_range
3059 If PC falls into the lma range of SECTION, return true, else false. */
3060
3061 CORE_ADDR
3062 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
3063 {
3064 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3065
3066 int size;
3067
3068 if (overlay_debugging)
3069 if (section && section_is_overlay (section))
3070 {
3071 size = bfd_get_section_size (section);
3072 if (section->lma <= pc && pc < section->lma + size)
3073 return 1;
3074 }
3075 return 0;
3076 }
3077
3078 /* Function: pc_in_mapped_range
3079 If PC falls into the vma range of SECTION, return true, else false. */
3080
3081 CORE_ADDR
3082 pc_in_mapped_range (CORE_ADDR pc, asection *section)
3083 {
3084 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3085
3086 int size;
3087
3088 if (overlay_debugging)
3089 if (section && section_is_overlay (section))
3090 {
3091 size = bfd_get_section_size (section);
3092 if (section->vma <= pc && pc < section->vma + size)
3093 return 1;
3094 }
3095 return 0;
3096 }
3097
3098
3099 /* Return true if the mapped ranges of sections A and B overlap, false
3100 otherwise. */
3101 static int
3102 sections_overlap (asection *a, asection *b)
3103 {
3104 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3105
3106 CORE_ADDR a_start = a->vma;
3107 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
3108 CORE_ADDR b_start = b->vma;
3109 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
3110
3111 return (a_start < b_end && b_start < a_end);
3112 }
3113
3114 /* Function: overlay_unmapped_address (PC, SECTION)
3115 Returns the address corresponding to PC in the unmapped (load) range.
3116 May be the same as PC. */
3117
3118 CORE_ADDR
3119 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3120 {
3121 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3122
3123 if (overlay_debugging)
3124 if (section && section_is_overlay (section) &&
3125 pc_in_mapped_range (pc, section))
3126 return pc + section->lma - section->vma;
3127
3128 return pc;
3129 }
3130
3131 /* Function: overlay_mapped_address (PC, SECTION)
3132 Returns the address corresponding to PC in the mapped (runtime) range.
3133 May be the same as PC. */
3134
3135 CORE_ADDR
3136 overlay_mapped_address (CORE_ADDR pc, asection *section)
3137 {
3138 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3139
3140 if (overlay_debugging)
3141 if (section && section_is_overlay (section) &&
3142 pc_in_unmapped_range (pc, section))
3143 return pc + section->vma - section->lma;
3144
3145 return pc;
3146 }
3147
3148
3149 /* Function: symbol_overlayed_address
3150 Return one of two addresses (relative to the VMA or to the LMA),
3151 depending on whether the section is mapped or not. */
3152
3153 CORE_ADDR
3154 symbol_overlayed_address (CORE_ADDR address, asection *section)
3155 {
3156 if (overlay_debugging)
3157 {
3158 /* If the symbol has no section, just return its regular address. */
3159 if (section == 0)
3160 return address;
3161 /* If the symbol's section is not an overlay, just return its address */
3162 if (!section_is_overlay (section))
3163 return address;
3164 /* If the symbol's section is mapped, just return its address */
3165 if (section_is_mapped (section))
3166 return address;
3167 /*
3168 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3169 * then return its LOADED address rather than its vma address!!
3170 */
3171 return overlay_unmapped_address (address, section);
3172 }
3173 return address;
3174 }
3175
3176 /* Function: find_pc_overlay (PC)
3177 Return the best-match overlay section for PC:
3178 If PC matches a mapped overlay section's VMA, return that section.
3179 Else if PC matches an unmapped section's VMA, return that section.
3180 Else if PC matches an unmapped section's LMA, return that section. */
3181
3182 asection *
3183 find_pc_overlay (CORE_ADDR pc)
3184 {
3185 struct objfile *objfile;
3186 struct obj_section *osect, *best_match = NULL;
3187
3188 if (overlay_debugging)
3189 ALL_OBJSECTIONS (objfile, osect)
3190 if (section_is_overlay (osect->the_bfd_section))
3191 {
3192 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3193 {
3194 if (overlay_is_mapped (osect))
3195 return osect->the_bfd_section;
3196 else
3197 best_match = osect;
3198 }
3199 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3200 best_match = osect;
3201 }
3202 return best_match ? best_match->the_bfd_section : NULL;
3203 }
3204
3205 /* Function: find_pc_mapped_section (PC)
3206 If PC falls into the VMA address range of an overlay section that is
3207 currently marked as MAPPED, return that section. Else return NULL. */
3208
3209 asection *
3210 find_pc_mapped_section (CORE_ADDR pc)
3211 {
3212 struct objfile *objfile;
3213 struct obj_section *osect;
3214
3215 if (overlay_debugging)
3216 ALL_OBJSECTIONS (objfile, osect)
3217 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3218 overlay_is_mapped (osect))
3219 return osect->the_bfd_section;
3220
3221 return NULL;
3222 }
3223
3224 /* Function: list_overlays_command
3225 Print a list of mapped sections and their PC ranges */
3226
3227 void
3228 list_overlays_command (char *args, int from_tty)
3229 {
3230 int nmapped = 0;
3231 struct objfile *objfile;
3232 struct obj_section *osect;
3233
3234 if (overlay_debugging)
3235 ALL_OBJSECTIONS (objfile, osect)
3236 if (overlay_is_mapped (osect))
3237 {
3238 const char *name;
3239 bfd_vma lma, vma;
3240 int size;
3241
3242 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3243 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3244 size = bfd_get_section_size (osect->the_bfd_section);
3245 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3246
3247 printf_filtered ("Section %s, loaded at ", name);
3248 deprecated_print_address_numeric (lma, 1, gdb_stdout);
3249 puts_filtered (" - ");
3250 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
3251 printf_filtered (", mapped at ");
3252 deprecated_print_address_numeric (vma, 1, gdb_stdout);
3253 puts_filtered (" - ");
3254 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
3255 puts_filtered ("\n");
3256
3257 nmapped++;
3258 }
3259 if (nmapped == 0)
3260 printf_filtered (_("No sections are mapped.\n"));
3261 }
3262
3263 /* Function: map_overlay_command
3264 Mark the named section as mapped (ie. residing at its VMA address). */
3265
3266 void
3267 map_overlay_command (char *args, int from_tty)
3268 {
3269 struct objfile *objfile, *objfile2;
3270 struct obj_section *sec, *sec2;
3271 asection *bfdsec;
3272
3273 if (!overlay_debugging)
3274 error (_("\
3275 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3276 the 'overlay manual' command."));
3277
3278 if (args == 0 || *args == 0)
3279 error (_("Argument required: name of an overlay section"));
3280
3281 /* First, find a section matching the user supplied argument */
3282 ALL_OBJSECTIONS (objfile, sec)
3283 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3284 {
3285 /* Now, check to see if the section is an overlay. */
3286 bfdsec = sec->the_bfd_section;
3287 if (!section_is_overlay (bfdsec))
3288 continue; /* not an overlay section */
3289
3290 /* Mark the overlay as "mapped" */
3291 sec->ovly_mapped = 1;
3292
3293 /* Next, make a pass and unmap any sections that are
3294 overlapped by this new section: */
3295 ALL_OBJSECTIONS (objfile2, sec2)
3296 if (sec2->ovly_mapped
3297 && sec != sec2
3298 && sec->the_bfd_section != sec2->the_bfd_section
3299 && sections_overlap (sec->the_bfd_section,
3300 sec2->the_bfd_section))
3301 {
3302 if (info_verbose)
3303 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3304 bfd_section_name (objfile->obfd,
3305 sec2->the_bfd_section));
3306 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3307 }
3308 return;
3309 }
3310 error (_("No overlay section called %s"), args);
3311 }
3312
3313 /* Function: unmap_overlay_command
3314 Mark the overlay section as unmapped
3315 (ie. resident in its LMA address range, rather than the VMA range). */
3316
3317 void
3318 unmap_overlay_command (char *args, int from_tty)
3319 {
3320 struct objfile *objfile;
3321 struct obj_section *sec;
3322
3323 if (!overlay_debugging)
3324 error (_("\
3325 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3326 the 'overlay manual' command."));
3327
3328 if (args == 0 || *args == 0)
3329 error (_("Argument required: name of an overlay section"));
3330
3331 /* First, find a section matching the user supplied argument */
3332 ALL_OBJSECTIONS (objfile, sec)
3333 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3334 {
3335 if (!sec->ovly_mapped)
3336 error (_("Section %s is not mapped"), args);
3337 sec->ovly_mapped = 0;
3338 return;
3339 }
3340 error (_("No overlay section called %s"), args);
3341 }
3342
3343 /* Function: overlay_auto_command
3344 A utility command to turn on overlay debugging.
3345 Possibly this should be done via a set/show command. */
3346
3347 static void
3348 overlay_auto_command (char *args, int from_tty)
3349 {
3350 overlay_debugging = ovly_auto;
3351 enable_overlay_breakpoints ();
3352 if (info_verbose)
3353 printf_unfiltered (_("Automatic overlay debugging enabled."));
3354 }
3355
3356 /* Function: overlay_manual_command
3357 A utility command to turn on overlay debugging.
3358 Possibly this should be done via a set/show command. */
3359
3360 static void
3361 overlay_manual_command (char *args, int from_tty)
3362 {
3363 overlay_debugging = ovly_on;
3364 disable_overlay_breakpoints ();
3365 if (info_verbose)
3366 printf_unfiltered (_("Overlay debugging enabled."));
3367 }
3368
3369 /* Function: overlay_off_command
3370 A utility command to turn on overlay debugging.
3371 Possibly this should be done via a set/show command. */
3372
3373 static void
3374 overlay_off_command (char *args, int from_tty)
3375 {
3376 overlay_debugging = ovly_off;
3377 disable_overlay_breakpoints ();
3378 if (info_verbose)
3379 printf_unfiltered (_("Overlay debugging disabled."));
3380 }
3381
3382 static void
3383 overlay_load_command (char *args, int from_tty)
3384 {
3385 if (target_overlay_update)
3386 (*target_overlay_update) (NULL);
3387 else
3388 error (_("This target does not know how to read its overlay state."));
3389 }
3390
3391 /* Function: overlay_command
3392 A place-holder for a mis-typed command */
3393
3394 /* Command list chain containing all defined "overlay" subcommands. */
3395 struct cmd_list_element *overlaylist;
3396
3397 static void
3398 overlay_command (char *args, int from_tty)
3399 {
3400 printf_unfiltered
3401 ("\"overlay\" must be followed by the name of an overlay command.\n");
3402 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3403 }
3404
3405
3406 /* Target Overlays for the "Simplest" overlay manager:
3407
3408 This is GDB's default target overlay layer. It works with the
3409 minimal overlay manager supplied as an example by Cygnus. The
3410 entry point is via a function pointer "target_overlay_update",
3411 so targets that use a different runtime overlay manager can
3412 substitute their own overlay_update function and take over the
3413 function pointer.
3414
3415 The overlay_update function pokes around in the target's data structures
3416 to see what overlays are mapped, and updates GDB's overlay mapping with
3417 this information.
3418
3419 In this simple implementation, the target data structures are as follows:
3420 unsigned _novlys; /# number of overlay sections #/
3421 unsigned _ovly_table[_novlys][4] = {
3422 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3423 {..., ..., ..., ...},
3424 }
3425 unsigned _novly_regions; /# number of overlay regions #/
3426 unsigned _ovly_region_table[_novly_regions][3] = {
3427 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3428 {..., ..., ...},
3429 }
3430 These functions will attempt to update GDB's mappedness state in the
3431 symbol section table, based on the target's mappedness state.
3432
3433 To do this, we keep a cached copy of the target's _ovly_table, and
3434 attempt to detect when the cached copy is invalidated. The main
3435 entry point is "simple_overlay_update(SECT), which looks up SECT in
3436 the cached table and re-reads only the entry for that section from
3437 the target (whenever possible).
3438 */
3439
3440 /* Cached, dynamically allocated copies of the target data structures: */
3441 static unsigned (*cache_ovly_table)[4] = 0;
3442 #if 0
3443 static unsigned (*cache_ovly_region_table)[3] = 0;
3444 #endif
3445 static unsigned cache_novlys = 0;
3446 #if 0
3447 static unsigned cache_novly_regions = 0;
3448 #endif
3449 static CORE_ADDR cache_ovly_table_base = 0;
3450 #if 0
3451 static CORE_ADDR cache_ovly_region_table_base = 0;
3452 #endif
3453 enum ovly_index
3454 {
3455 VMA, SIZE, LMA, MAPPED
3456 };
3457 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3458
3459 /* Throw away the cached copy of _ovly_table */
3460 static void
3461 simple_free_overlay_table (void)
3462 {
3463 if (cache_ovly_table)
3464 xfree (cache_ovly_table);
3465 cache_novlys = 0;
3466 cache_ovly_table = NULL;
3467 cache_ovly_table_base = 0;
3468 }
3469
3470 #if 0
3471 /* Throw away the cached copy of _ovly_region_table */
3472 static void
3473 simple_free_overlay_region_table (void)
3474 {
3475 if (cache_ovly_region_table)
3476 xfree (cache_ovly_region_table);
3477 cache_novly_regions = 0;
3478 cache_ovly_region_table = NULL;
3479 cache_ovly_region_table_base = 0;
3480 }
3481 #endif
3482
3483 /* Read an array of ints from the target into a local buffer.
3484 Convert to host order. int LEN is number of ints */
3485 static void
3486 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3487 {
3488 /* FIXME (alloca): Not safe if array is very large. */
3489 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3490 int i;
3491
3492 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3493 for (i = 0; i < len; i++)
3494 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3495 TARGET_LONG_BYTES);
3496 }
3497
3498 /* Find and grab a copy of the target _ovly_table
3499 (and _novlys, which is needed for the table's size) */
3500 static int
3501 simple_read_overlay_table (void)
3502 {
3503 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3504
3505 simple_free_overlay_table ();
3506 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3507 if (! novlys_msym)
3508 {
3509 error (_("Error reading inferior's overlay table: "
3510 "couldn't find `_novlys' variable\n"
3511 "in inferior. Use `overlay manual' mode."));
3512 return 0;
3513 }
3514
3515 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3516 if (! ovly_table_msym)
3517 {
3518 error (_("Error reading inferior's overlay table: couldn't find "
3519 "`_ovly_table' array\n"
3520 "in inferior. Use `overlay manual' mode."));
3521 return 0;
3522 }
3523
3524 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3525 cache_ovly_table
3526 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3527 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3528 read_target_long_array (cache_ovly_table_base,
3529 (unsigned int *) cache_ovly_table,
3530 cache_novlys * 4);
3531
3532 return 1; /* SUCCESS */
3533 }
3534
3535 #if 0
3536 /* Find and grab a copy of the target _ovly_region_table
3537 (and _novly_regions, which is needed for the table's size) */
3538 static int
3539 simple_read_overlay_region_table (void)
3540 {
3541 struct minimal_symbol *msym;
3542
3543 simple_free_overlay_region_table ();
3544 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3545 if (msym != NULL)
3546 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3547 else
3548 return 0; /* failure */
3549 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3550 if (cache_ovly_region_table != NULL)
3551 {
3552 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3553 if (msym != NULL)
3554 {
3555 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3556 read_target_long_array (cache_ovly_region_table_base,
3557 (unsigned int *) cache_ovly_region_table,
3558 cache_novly_regions * 3);
3559 }
3560 else
3561 return 0; /* failure */
3562 }
3563 else
3564 return 0; /* failure */
3565 return 1; /* SUCCESS */
3566 }
3567 #endif
3568
3569 /* Function: simple_overlay_update_1
3570 A helper function for simple_overlay_update. Assuming a cached copy
3571 of _ovly_table exists, look through it to find an entry whose vma,
3572 lma and size match those of OSECT. Re-read the entry and make sure
3573 it still matches OSECT (else the table may no longer be valid).
3574 Set OSECT's mapped state to match the entry. Return: 1 for
3575 success, 0 for failure. */
3576
3577 static int
3578 simple_overlay_update_1 (struct obj_section *osect)
3579 {
3580 int i, size;
3581 bfd *obfd = osect->objfile->obfd;
3582 asection *bsect = osect->the_bfd_section;
3583
3584 size = bfd_get_section_size (osect->the_bfd_section);
3585 for (i = 0; i < cache_novlys; i++)
3586 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3587 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3588 /* && cache_ovly_table[i][SIZE] == size */ )
3589 {
3590 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3591 (unsigned int *) cache_ovly_table[i], 4);
3592 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3593 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3594 /* && cache_ovly_table[i][SIZE] == size */ )
3595 {
3596 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3597 return 1;
3598 }
3599 else /* Warning! Warning! Target's ovly table has changed! */
3600 return 0;
3601 }
3602 return 0;
3603 }
3604
3605 /* Function: simple_overlay_update
3606 If OSECT is NULL, then update all sections' mapped state
3607 (after re-reading the entire target _ovly_table).
3608 If OSECT is non-NULL, then try to find a matching entry in the
3609 cached ovly_table and update only OSECT's mapped state.
3610 If a cached entry can't be found or the cache isn't valid, then
3611 re-read the entire cache, and go ahead and update all sections. */
3612
3613 static void
3614 simple_overlay_update (struct obj_section *osect)
3615 {
3616 struct objfile *objfile;
3617
3618 /* Were we given an osect to look up? NULL means do all of them. */
3619 if (osect)
3620 /* Have we got a cached copy of the target's overlay table? */
3621 if (cache_ovly_table != NULL)
3622 /* Does its cached location match what's currently in the symtab? */
3623 if (cache_ovly_table_base ==
3624 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3625 /* Then go ahead and try to look up this single section in the cache */
3626 if (simple_overlay_update_1 (osect))
3627 /* Found it! We're done. */
3628 return;
3629
3630 /* Cached table no good: need to read the entire table anew.
3631 Or else we want all the sections, in which case it's actually
3632 more efficient to read the whole table in one block anyway. */
3633
3634 if (! simple_read_overlay_table ())
3635 return;
3636
3637 /* Now may as well update all sections, even if only one was requested. */
3638 ALL_OBJSECTIONS (objfile, osect)
3639 if (section_is_overlay (osect->the_bfd_section))
3640 {
3641 int i, size;
3642 bfd *obfd = osect->objfile->obfd;
3643 asection *bsect = osect->the_bfd_section;
3644
3645 size = bfd_get_section_size (bsect);
3646 for (i = 0; i < cache_novlys; i++)
3647 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3648 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3649 /* && cache_ovly_table[i][SIZE] == size */ )
3650 { /* obj_section matches i'th entry in ovly_table */
3651 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3652 break; /* finished with inner for loop: break out */
3653 }
3654 }
3655 }
3656
3657 /* Set the output sections and output offsets for section SECTP in
3658 ABFD. The relocation code in BFD will read these offsets, so we
3659 need to be sure they're initialized. We map each section to itself,
3660 with no offset; this means that SECTP->vma will be honored. */
3661
3662 static void
3663 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3664 {
3665 sectp->output_section = sectp;
3666 sectp->output_offset = 0;
3667 }
3668
3669 /* Relocate the contents of a debug section SECTP in ABFD. The
3670 contents are stored in BUF if it is non-NULL, or returned in a
3671 malloc'd buffer otherwise.
3672
3673 For some platforms and debug info formats, shared libraries contain
3674 relocations against the debug sections (particularly for DWARF-2;
3675 one affected platform is PowerPC GNU/Linux, although it depends on
3676 the version of the linker in use). Also, ELF object files naturally
3677 have unresolved relocations for their debug sections. We need to apply
3678 the relocations in order to get the locations of symbols correct. */
3679
3680 bfd_byte *
3681 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3682 {
3683 /* We're only interested in debugging sections with relocation
3684 information. */
3685 if ((sectp->flags & SEC_RELOC) == 0)
3686 return NULL;
3687 if ((sectp->flags & SEC_DEBUGGING) == 0)
3688 return NULL;
3689
3690 /* We will handle section offsets properly elsewhere, so relocate as if
3691 all sections begin at 0. */
3692 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3693
3694 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3695 }
3696
3697 void
3698 _initialize_symfile (void)
3699 {
3700 struct cmd_list_element *c;
3701
3702 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3703 Load symbol table from executable file FILE.\n\
3704 The `file' command can also load symbol tables, as well as setting the file\n\
3705 to execute."), &cmdlist);
3706 set_cmd_completer (c, filename_completer);
3707
3708 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3709 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3710 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3711 ADDR is the starting address of the file's text.\n\
3712 The optional arguments are section-name section-address pairs and\n\
3713 should be specified if the data and bss segments are not contiguous\n\
3714 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3715 &cmdlist);
3716 set_cmd_completer (c, filename_completer);
3717
3718 c = add_cmd ("add-shared-symbol-files", class_files,
3719 add_shared_symbol_files_command, _("\
3720 Load the symbols from shared objects in the dynamic linker's link map."),
3721 &cmdlist);
3722 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3723 &cmdlist);
3724
3725 c = add_cmd ("load", class_files, load_command, _("\
3726 Dynamically load FILE into the running program, and record its symbols\n\
3727 for access from GDB."), &cmdlist);
3728 set_cmd_completer (c, filename_completer);
3729
3730 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3731 &symbol_reloading, _("\
3732 Set dynamic symbol table reloading multiple times in one run."), _("\
3733 Show dynamic symbol table reloading multiple times in one run."), NULL,
3734 NULL,
3735 show_symbol_reloading,
3736 &setlist, &showlist);
3737
3738 add_prefix_cmd ("overlay", class_support, overlay_command,
3739 _("Commands for debugging overlays."), &overlaylist,
3740 "overlay ", 0, &cmdlist);
3741
3742 add_com_alias ("ovly", "overlay", class_alias, 1);
3743 add_com_alias ("ov", "overlay", class_alias, 1);
3744
3745 add_cmd ("map-overlay", class_support, map_overlay_command,
3746 _("Assert that an overlay section is mapped."), &overlaylist);
3747
3748 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3749 _("Assert that an overlay section is unmapped."), &overlaylist);
3750
3751 add_cmd ("list-overlays", class_support, list_overlays_command,
3752 _("List mappings of overlay sections."), &overlaylist);
3753
3754 add_cmd ("manual", class_support, overlay_manual_command,
3755 _("Enable overlay debugging."), &overlaylist);
3756 add_cmd ("off", class_support, overlay_off_command,
3757 _("Disable overlay debugging."), &overlaylist);
3758 add_cmd ("auto", class_support, overlay_auto_command,
3759 _("Enable automatic overlay debugging."), &overlaylist);
3760 add_cmd ("load-target", class_support, overlay_load_command,
3761 _("Read the overlay mapping state from the target."), &overlaylist);
3762
3763 /* Filename extension to source language lookup table: */
3764 init_filename_language_table ();
3765 add_setshow_string_noescape_cmd ("extension-language", class_files,
3766 &ext_args, _("\
3767 Set mapping between filename extension and source language."), _("\
3768 Show mapping between filename extension and source language."), _("\
3769 Usage: set extension-language .foo bar"),
3770 set_ext_lang_command,
3771 show_ext_args,
3772 &setlist, &showlist);
3773
3774 add_info ("extensions", info_ext_lang_command,
3775 _("All filename extensions associated with a source language."));
3776
3777 add_setshow_integer_cmd ("download-write-size", class_obscure,
3778 &download_write_size, _("\
3779 Set the write size used when downloading a program."), _("\
3780 Show the write size used when downloading a program."), _("\
3781 Only used when downloading a program onto a remote\n\
3782 target. Specify zero, or a negative value, to disable\n\
3783 blocked writes. The actual size of each transfer is also\n\
3784 limited by the size of the target packet and the memory\n\
3785 cache."),
3786 NULL,
3787 show_download_write_size,
3788 &setlist, &showlist);
3789
3790 debug_file_directory = xstrdup (DEBUGDIR);
3791 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3792 &debug_file_directory, _("\
3793 Set the directory where separate debug symbols are searched for."), _("\
3794 Show the directory where separate debug symbols are searched for."), _("\
3795 Separate debug symbols are first searched for in the same\n\
3796 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3797 and lastly at the path of the directory of the binary with\n\
3798 the global debug-file directory prepended."),
3799 NULL,
3800 show_debug_file_directory,
3801 &setlist, &showlist);
3802 }
This page took 0.156916 seconds and 5 git commands to generate.