gdb/
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 #include "defs.h"
27 #include "bfdlink.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcore.h"
31 #include "frame.h"
32 #include "target.h"
33 #include "value.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "source.h"
37 #include "gdbcmd.h"
38 #include "breakpoint.h"
39 #include "language.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "inferior.h" /* for write_pc */
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54
55 #include <sys/types.h>
56 #include <fcntl.h>
57 #include "gdb_string.h"
58 #include "gdb_stat.h"
59 #include <ctype.h>
60 #include <time.h>
61 #include <sys/time.h>
62
63
64 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
65 void (*deprecated_show_load_progress) (const char *section,
66 unsigned long section_sent,
67 unsigned long section_size,
68 unsigned long total_sent,
69 unsigned long total_size);
70 void (*deprecated_pre_add_symbol_hook) (const char *);
71 void (*deprecated_post_add_symbol_hook) (void);
72 void (*deprecated_target_new_objfile_hook) (struct objfile *);
73
74 static void clear_symtab_users_cleanup (void *ignore);
75
76 /* Global variables owned by this file */
77 int readnow_symbol_files; /* Read full symbols immediately */
78
79 /* External variables and functions referenced. */
80
81 extern void report_transfer_performance (unsigned long, time_t, time_t);
82
83 /* Functions this file defines */
84
85 #if 0
86 static int simple_read_overlay_region_table (void);
87 static void simple_free_overlay_region_table (void);
88 #endif
89
90 static void set_initial_language (void);
91
92 static void load_command (char *, int);
93
94 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
95
96 static void add_symbol_file_command (char *, int);
97
98 static void add_shared_symbol_files_command (char *, int);
99
100 static void reread_separate_symbols (struct objfile *objfile);
101
102 static void cashier_psymtab (struct partial_symtab *);
103
104 bfd *symfile_bfd_open (char *);
105
106 int get_section_index (struct objfile *, char *);
107
108 static void find_sym_fns (struct objfile *);
109
110 static void decrement_reading_symtab (void *);
111
112 static void overlay_invalidate_all (void);
113
114 static int overlay_is_mapped (struct obj_section *);
115
116 void list_overlays_command (char *, int);
117
118 void map_overlay_command (char *, int);
119
120 void unmap_overlay_command (char *, int);
121
122 static void overlay_auto_command (char *, int);
123
124 static void overlay_manual_command (char *, int);
125
126 static void overlay_off_command (char *, int);
127
128 static void overlay_load_command (char *, int);
129
130 static void overlay_command (char *, int);
131
132 static void simple_free_overlay_table (void);
133
134 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
135
136 static int simple_read_overlay_table (void);
137
138 static int simple_overlay_update_1 (struct obj_section *);
139
140 static void add_filename_language (char *ext, enum language lang);
141
142 static void info_ext_lang_command (char *args, int from_tty);
143
144 static char *find_separate_debug_file (struct objfile *objfile);
145
146 static void init_filename_language_table (void);
147
148 void _initialize_symfile (void);
149
150 /* List of all available sym_fns. On gdb startup, each object file reader
151 calls add_symtab_fns() to register information on each format it is
152 prepared to read. */
153
154 static struct sym_fns *symtab_fns = NULL;
155
156 /* Flag for whether user will be reloading symbols multiple times.
157 Defaults to ON for VxWorks, otherwise OFF. */
158
159 #ifdef SYMBOL_RELOADING_DEFAULT
160 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
161 #else
162 int symbol_reloading = 0;
163 #endif
164 static void
165 show_symbol_reloading (struct ui_file *file, int from_tty,
166 struct cmd_list_element *c, const char *value)
167 {
168 fprintf_filtered (file, _("\
169 Dynamic symbol table reloading multiple times in one run is %s.\n"),
170 value);
171 }
172
173
174 /* If non-zero, shared library symbols will be added automatically
175 when the inferior is created, new libraries are loaded, or when
176 attaching to the inferior. This is almost always what users will
177 want to have happen; but for very large programs, the startup time
178 will be excessive, and so if this is a problem, the user can clear
179 this flag and then add the shared library symbols as needed. Note
180 that there is a potential for confusion, since if the shared
181 library symbols are not loaded, commands like "info fun" will *not*
182 report all the functions that are actually present. */
183
184 int auto_solib_add = 1;
185
186 /* For systems that support it, a threshold size in megabytes. If
187 automatically adding a new library's symbol table to those already
188 known to the debugger would cause the total shared library symbol
189 size to exceed this threshhold, then the shlib's symbols are not
190 added. The threshold is ignored if the user explicitly asks for a
191 shlib to be added, such as when using the "sharedlibrary"
192 command. */
193
194 int auto_solib_limit;
195 \f
196
197 /* This compares two partial symbols by names, using strcmp_iw_ordered
198 for the comparison. */
199
200 static int
201 compare_psymbols (const void *s1p, const void *s2p)
202 {
203 struct partial_symbol *const *s1 = s1p;
204 struct partial_symbol *const *s2 = s2p;
205
206 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
207 SYMBOL_SEARCH_NAME (*s2));
208 }
209
210 void
211 sort_pst_symbols (struct partial_symtab *pst)
212 {
213 /* Sort the global list; don't sort the static list */
214
215 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
216 pst->n_global_syms, sizeof (struct partial_symbol *),
217 compare_psymbols);
218 }
219
220 /* Make a null terminated copy of the string at PTR with SIZE characters in
221 the obstack pointed to by OBSTACKP . Returns the address of the copy.
222 Note that the string at PTR does not have to be null terminated, I.E. it
223 may be part of a larger string and we are only saving a substring. */
224
225 char *
226 obsavestring (const char *ptr, int size, struct obstack *obstackp)
227 {
228 char *p = (char *) obstack_alloc (obstackp, size + 1);
229 /* Open-coded memcpy--saves function call time. These strings are usually
230 short. FIXME: Is this really still true with a compiler that can
231 inline memcpy? */
232 {
233 const char *p1 = ptr;
234 char *p2 = p;
235 const char *end = ptr + size;
236 while (p1 != end)
237 *p2++ = *p1++;
238 }
239 p[size] = 0;
240 return p;
241 }
242
243 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
244 in the obstack pointed to by OBSTACKP. */
245
246 char *
247 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
248 const char *s3)
249 {
250 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
251 char *val = (char *) obstack_alloc (obstackp, len);
252 strcpy (val, s1);
253 strcat (val, s2);
254 strcat (val, s3);
255 return val;
256 }
257
258 /* True if we are nested inside psymtab_to_symtab. */
259
260 int currently_reading_symtab = 0;
261
262 static void
263 decrement_reading_symtab (void *dummy)
264 {
265 currently_reading_symtab--;
266 }
267
268 /* Get the symbol table that corresponds to a partial_symtab.
269 This is fast after the first time you do it. In fact, there
270 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
271 case inline. */
272
273 struct symtab *
274 psymtab_to_symtab (struct partial_symtab *pst)
275 {
276 /* If it's been looked up before, return it. */
277 if (pst->symtab)
278 return pst->symtab;
279
280 /* If it has not yet been read in, read it. */
281 if (!pst->readin)
282 {
283 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
284 currently_reading_symtab++;
285 (*pst->read_symtab) (pst);
286 do_cleanups (back_to);
287 }
288
289 return pst->symtab;
290 }
291
292 /* Remember the lowest-addressed loadable section we've seen.
293 This function is called via bfd_map_over_sections.
294
295 In case of equal vmas, the section with the largest size becomes the
296 lowest-addressed loadable section.
297
298 If the vmas and sizes are equal, the last section is considered the
299 lowest-addressed loadable section. */
300
301 void
302 find_lowest_section (bfd *abfd, asection *sect, void *obj)
303 {
304 asection **lowest = (asection **) obj;
305
306 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
307 return;
308 if (!*lowest)
309 *lowest = sect; /* First loadable section */
310 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
311 *lowest = sect; /* A lower loadable section */
312 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
313 && (bfd_section_size (abfd, (*lowest))
314 <= bfd_section_size (abfd, sect)))
315 *lowest = sect;
316 }
317
318 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
319
320 struct section_addr_info *
321 alloc_section_addr_info (size_t num_sections)
322 {
323 struct section_addr_info *sap;
324 size_t size;
325
326 size = (sizeof (struct section_addr_info)
327 + sizeof (struct other_sections) * (num_sections - 1));
328 sap = (struct section_addr_info *) xmalloc (size);
329 memset (sap, 0, size);
330 sap->num_sections = num_sections;
331
332 return sap;
333 }
334
335
336 /* Return a freshly allocated copy of ADDRS. The section names, if
337 any, are also freshly allocated copies of those in ADDRS. */
338 struct section_addr_info *
339 copy_section_addr_info (struct section_addr_info *addrs)
340 {
341 struct section_addr_info *copy
342 = alloc_section_addr_info (addrs->num_sections);
343 int i;
344
345 copy->num_sections = addrs->num_sections;
346 for (i = 0; i < addrs->num_sections; i++)
347 {
348 copy->other[i].addr = addrs->other[i].addr;
349 if (addrs->other[i].name)
350 copy->other[i].name = xstrdup (addrs->other[i].name);
351 else
352 copy->other[i].name = NULL;
353 copy->other[i].sectindex = addrs->other[i].sectindex;
354 }
355
356 return copy;
357 }
358
359
360
361 /* Build (allocate and populate) a section_addr_info struct from
362 an existing section table. */
363
364 extern struct section_addr_info *
365 build_section_addr_info_from_section_table (const struct section_table *start,
366 const struct section_table *end)
367 {
368 struct section_addr_info *sap;
369 const struct section_table *stp;
370 int oidx;
371
372 sap = alloc_section_addr_info (end - start);
373
374 for (stp = start, oidx = 0; stp != end; stp++)
375 {
376 if (bfd_get_section_flags (stp->bfd,
377 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
378 && oidx < end - start)
379 {
380 sap->other[oidx].addr = stp->addr;
381 sap->other[oidx].name
382 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
383 sap->other[oidx].sectindex = stp->the_bfd_section->index;
384 oidx++;
385 }
386 }
387
388 return sap;
389 }
390
391
392 /* Free all memory allocated by build_section_addr_info_from_section_table. */
393
394 extern void
395 free_section_addr_info (struct section_addr_info *sap)
396 {
397 int idx;
398
399 for (idx = 0; idx < sap->num_sections; idx++)
400 if (sap->other[idx].name)
401 xfree (sap->other[idx].name);
402 xfree (sap);
403 }
404
405
406 /* Initialize OBJFILE's sect_index_* members. */
407 static void
408 init_objfile_sect_indices (struct objfile *objfile)
409 {
410 asection *sect;
411 int i;
412
413 sect = bfd_get_section_by_name (objfile->obfd, ".text");
414 if (sect)
415 objfile->sect_index_text = sect->index;
416
417 sect = bfd_get_section_by_name (objfile->obfd, ".data");
418 if (sect)
419 objfile->sect_index_data = sect->index;
420
421 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
422 if (sect)
423 objfile->sect_index_bss = sect->index;
424
425 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
426 if (sect)
427 objfile->sect_index_rodata = sect->index;
428
429 /* This is where things get really weird... We MUST have valid
430 indices for the various sect_index_* members or gdb will abort.
431 So if for example, there is no ".text" section, we have to
432 accomodate that. Except when explicitly adding symbol files at
433 some address, section_offsets contains nothing but zeros, so it
434 doesn't matter which slot in section_offsets the individual
435 sect_index_* members index into. So if they are all zero, it is
436 safe to just point all the currently uninitialized indices to the
437 first slot. */
438
439 for (i = 0; i < objfile->num_sections; i++)
440 {
441 if (ANOFFSET (objfile->section_offsets, i) != 0)
442 {
443 break;
444 }
445 }
446 if (i == objfile->num_sections)
447 {
448 if (objfile->sect_index_text == -1)
449 objfile->sect_index_text = 0;
450 if (objfile->sect_index_data == -1)
451 objfile->sect_index_data = 0;
452 if (objfile->sect_index_bss == -1)
453 objfile->sect_index_bss = 0;
454 if (objfile->sect_index_rodata == -1)
455 objfile->sect_index_rodata = 0;
456 }
457 }
458
459 /* The arguments to place_section. */
460
461 struct place_section_arg
462 {
463 struct section_offsets *offsets;
464 CORE_ADDR lowest;
465 };
466
467 /* Find a unique offset to use for loadable section SECT if
468 the user did not provide an offset. */
469
470 void
471 place_section (bfd *abfd, asection *sect, void *obj)
472 {
473 struct place_section_arg *arg = obj;
474 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
475 int done;
476 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
477
478 /* We are only interested in loadable sections. */
479 if ((bfd_get_section_flags (abfd, sect) & SEC_LOAD) == 0)
480 return;
481
482 /* If the user specified an offset, honor it. */
483 if (offsets[sect->index] != 0)
484 return;
485
486 /* Otherwise, let's try to find a place for the section. */
487 start_addr = (arg->lowest + align - 1) & -align;
488
489 do {
490 asection *cur_sec;
491
492 done = 1;
493
494 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
495 {
496 int indx = cur_sec->index;
497 CORE_ADDR cur_offset;
498
499 /* We don't need to compare against ourself. */
500 if (cur_sec == sect)
501 continue;
502
503 /* We can only conflict with loadable sections. */
504 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_LOAD) == 0)
505 continue;
506
507 /* We do not expect this to happen; just ignore sections in a
508 relocatable file with an assigned VMA. */
509 if (bfd_section_vma (abfd, cur_sec) != 0)
510 continue;
511
512 /* If the section offset is 0, either the section has not been placed
513 yet, or it was the lowest section placed (in which case LOWEST
514 will be past its end). */
515 if (offsets[indx] == 0)
516 continue;
517
518 /* If this section would overlap us, then we must move up. */
519 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
520 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
521 {
522 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
523 start_addr = (start_addr + align - 1) & -align;
524 done = 0;
525 break;
526 }
527
528 /* Otherwise, we appear to be OK. So far. */
529 }
530 }
531 while (!done);
532
533 offsets[sect->index] = start_addr;
534 arg->lowest = start_addr + bfd_get_section_size (sect);
535
536 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
537 }
538
539 /* Parse the user's idea of an offset for dynamic linking, into our idea
540 of how to represent it for fast symbol reading. This is the default
541 version of the sym_fns.sym_offsets function for symbol readers that
542 don't need to do anything special. It allocates a section_offsets table
543 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
544
545 void
546 default_symfile_offsets (struct objfile *objfile,
547 struct section_addr_info *addrs)
548 {
549 int i;
550
551 objfile->num_sections = bfd_count_sections (objfile->obfd);
552 objfile->section_offsets = (struct section_offsets *)
553 obstack_alloc (&objfile->objfile_obstack,
554 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
555 memset (objfile->section_offsets, 0,
556 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
557
558 /* Now calculate offsets for section that were specified by the
559 caller. */
560 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
561 {
562 struct other_sections *osp ;
563
564 osp = &addrs->other[i] ;
565 if (osp->addr == 0)
566 continue;
567
568 /* Record all sections in offsets */
569 /* The section_offsets in the objfile are here filled in using
570 the BFD index. */
571 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
572 }
573
574 /* For relocatable files, all loadable sections will start at zero.
575 The zero is meaningless, so try to pick arbitrary addresses such
576 that no loadable sections overlap. This algorithm is quadratic,
577 but the number of sections in a single object file is generally
578 small. */
579 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
580 {
581 struct place_section_arg arg;
582 arg.offsets = objfile->section_offsets;
583 arg.lowest = 0;
584 bfd_map_over_sections (objfile->obfd, place_section, &arg);
585 }
586
587 /* Remember the bfd indexes for the .text, .data, .bss and
588 .rodata sections. */
589 init_objfile_sect_indices (objfile);
590 }
591
592
593 /* Process a symbol file, as either the main file or as a dynamically
594 loaded file.
595
596 OBJFILE is where the symbols are to be read from.
597
598 ADDRS is the list of section load addresses. If the user has given
599 an 'add-symbol-file' command, then this is the list of offsets and
600 addresses he or she provided as arguments to the command; or, if
601 we're handling a shared library, these are the actual addresses the
602 sections are loaded at, according to the inferior's dynamic linker
603 (as gleaned by GDB's shared library code). We convert each address
604 into an offset from the section VMA's as it appears in the object
605 file, and then call the file's sym_offsets function to convert this
606 into a format-specific offset table --- a `struct section_offsets'.
607 If ADDRS is non-zero, OFFSETS must be zero.
608
609 OFFSETS is a table of section offsets already in the right
610 format-specific representation. NUM_OFFSETS is the number of
611 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
612 assume this is the proper table the call to sym_offsets described
613 above would produce. Instead of calling sym_offsets, we just dump
614 it right into objfile->section_offsets. (When we're re-reading
615 symbols from an objfile, we don't have the original load address
616 list any more; all we have is the section offset table.) If
617 OFFSETS is non-zero, ADDRS must be zero.
618
619 MAINLINE is nonzero if this is the main symbol file, or zero if
620 it's an extra symbol file such as dynamically loaded code.
621
622 VERBO is nonzero if the caller has printed a verbose message about
623 the symbol reading (and complaints can be more terse about it). */
624
625 void
626 syms_from_objfile (struct objfile *objfile,
627 struct section_addr_info *addrs,
628 struct section_offsets *offsets,
629 int num_offsets,
630 int mainline,
631 int verbo)
632 {
633 struct section_addr_info *local_addr = NULL;
634 struct cleanup *old_chain;
635
636 gdb_assert (! (addrs && offsets));
637
638 init_entry_point_info (objfile);
639 find_sym_fns (objfile);
640
641 if (objfile->sf == NULL)
642 return; /* No symbols. */
643
644 /* Make sure that partially constructed symbol tables will be cleaned up
645 if an error occurs during symbol reading. */
646 old_chain = make_cleanup_free_objfile (objfile);
647
648 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
649 list. We now establish the convention that an addr of zero means
650 no load address was specified. */
651 if (! addrs && ! offsets)
652 {
653 local_addr
654 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
655 make_cleanup (xfree, local_addr);
656 addrs = local_addr;
657 }
658
659 /* Now either addrs or offsets is non-zero. */
660
661 if (mainline)
662 {
663 /* We will modify the main symbol table, make sure that all its users
664 will be cleaned up if an error occurs during symbol reading. */
665 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
666
667 /* Since no error yet, throw away the old symbol table. */
668
669 if (symfile_objfile != NULL)
670 {
671 free_objfile (symfile_objfile);
672 symfile_objfile = NULL;
673 }
674
675 /* Currently we keep symbols from the add-symbol-file command.
676 If the user wants to get rid of them, they should do "symbol-file"
677 without arguments first. Not sure this is the best behavior
678 (PR 2207). */
679
680 (*objfile->sf->sym_new_init) (objfile);
681 }
682
683 /* Convert addr into an offset rather than an absolute address.
684 We find the lowest address of a loaded segment in the objfile,
685 and assume that <addr> is where that got loaded.
686
687 We no longer warn if the lowest section is not a text segment (as
688 happens for the PA64 port. */
689 if (!mainline && addrs && addrs->other[0].name)
690 {
691 asection *lower_sect;
692 asection *sect;
693 CORE_ADDR lower_offset;
694 int i;
695
696 /* Find lowest loadable section to be used as starting point for
697 continguous sections. FIXME!! won't work without call to find
698 .text first, but this assumes text is lowest section. */
699 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
700 if (lower_sect == NULL)
701 bfd_map_over_sections (objfile->obfd, find_lowest_section,
702 &lower_sect);
703 if (lower_sect == NULL)
704 warning (_("no loadable sections found in added symbol-file %s"),
705 objfile->name);
706 else
707 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
708 warning (_("Lowest section in %s is %s at %s"),
709 objfile->name,
710 bfd_section_name (objfile->obfd, lower_sect),
711 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
712 if (lower_sect != NULL)
713 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
714 else
715 lower_offset = 0;
716
717 /* Calculate offsets for the loadable sections.
718 FIXME! Sections must be in order of increasing loadable section
719 so that contiguous sections can use the lower-offset!!!
720
721 Adjust offsets if the segments are not contiguous.
722 If the section is contiguous, its offset should be set to
723 the offset of the highest loadable section lower than it
724 (the loadable section directly below it in memory).
725 this_offset = lower_offset = lower_addr - lower_orig_addr */
726
727 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
728 {
729 if (addrs->other[i].addr != 0)
730 {
731 sect = bfd_get_section_by_name (objfile->obfd,
732 addrs->other[i].name);
733 if (sect)
734 {
735 addrs->other[i].addr
736 -= bfd_section_vma (objfile->obfd, sect);
737 lower_offset = addrs->other[i].addr;
738 /* This is the index used by BFD. */
739 addrs->other[i].sectindex = sect->index ;
740 }
741 else
742 {
743 warning (_("section %s not found in %s"),
744 addrs->other[i].name,
745 objfile->name);
746 addrs->other[i].addr = 0;
747 }
748 }
749 else
750 addrs->other[i].addr = lower_offset;
751 }
752 }
753
754 /* Initialize symbol reading routines for this objfile, allow complaints to
755 appear for this new file, and record how verbose to be, then do the
756 initial symbol reading for this file. */
757
758 (*objfile->sf->sym_init) (objfile);
759 clear_complaints (&symfile_complaints, 1, verbo);
760
761 if (addrs)
762 (*objfile->sf->sym_offsets) (objfile, addrs);
763 else
764 {
765 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
766
767 /* Just copy in the offset table directly as given to us. */
768 objfile->num_sections = num_offsets;
769 objfile->section_offsets
770 = ((struct section_offsets *)
771 obstack_alloc (&objfile->objfile_obstack, size));
772 memcpy (objfile->section_offsets, offsets, size);
773
774 init_objfile_sect_indices (objfile);
775 }
776
777 #ifndef DEPRECATED_IBM6000_TARGET
778 /* This is a SVR4/SunOS specific hack, I think. In any event, it
779 screws RS/6000. sym_offsets should be doing this sort of thing,
780 because it knows the mapping between bfd sections and
781 section_offsets. */
782 /* This is a hack. As far as I can tell, section offsets are not
783 target dependent. They are all set to addr with a couple of
784 exceptions. The exceptions are sysvr4 shared libraries, whose
785 offsets are kept in solib structures anyway and rs6000 xcoff
786 which handles shared libraries in a completely unique way.
787
788 Section offsets are built similarly, except that they are built
789 by adding addr in all cases because there is no clear mapping
790 from section_offsets into actual sections. Note that solib.c
791 has a different algorithm for finding section offsets.
792
793 These should probably all be collapsed into some target
794 independent form of shared library support. FIXME. */
795
796 if (addrs)
797 {
798 struct obj_section *s;
799
800 /* Map section offsets in "addr" back to the object's
801 sections by comparing the section names with bfd's
802 section names. Then adjust the section address by
803 the offset. */ /* for gdb/13815 */
804
805 ALL_OBJFILE_OSECTIONS (objfile, s)
806 {
807 CORE_ADDR s_addr = 0;
808 int i;
809
810 for (i = 0;
811 !s_addr && i < addrs->num_sections && addrs->other[i].name;
812 i++)
813 if (strcmp (bfd_section_name (s->objfile->obfd,
814 s->the_bfd_section),
815 addrs->other[i].name) == 0)
816 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
817
818 s->addr -= s->offset;
819 s->addr += s_addr;
820 s->endaddr -= s->offset;
821 s->endaddr += s_addr;
822 s->offset += s_addr;
823 }
824 }
825 #endif /* not DEPRECATED_IBM6000_TARGET */
826
827 (*objfile->sf->sym_read) (objfile, mainline);
828
829 /* Don't allow char * to have a typename (else would get caddr_t).
830 Ditto void *. FIXME: Check whether this is now done by all the
831 symbol readers themselves (many of them now do), and if so remove
832 it from here. */
833
834 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
835 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
836
837 /* Mark the objfile has having had initial symbol read attempted. Note
838 that this does not mean we found any symbols... */
839
840 objfile->flags |= OBJF_SYMS;
841
842 /* Discard cleanups as symbol reading was successful. */
843
844 discard_cleanups (old_chain);
845 }
846
847 /* Perform required actions after either reading in the initial
848 symbols for a new objfile, or mapping in the symbols from a reusable
849 objfile. */
850
851 void
852 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
853 {
854
855 /* If this is the main symbol file we have to clean up all users of the
856 old main symbol file. Otherwise it is sufficient to fixup all the
857 breakpoints that may have been redefined by this symbol file. */
858 if (mainline)
859 {
860 /* OK, make it the "real" symbol file. */
861 symfile_objfile = objfile;
862
863 clear_symtab_users ();
864 }
865 else
866 {
867 breakpoint_re_set ();
868 }
869
870 /* We're done reading the symbol file; finish off complaints. */
871 clear_complaints (&symfile_complaints, 0, verbo);
872 }
873
874 /* Process a symbol file, as either the main file or as a dynamically
875 loaded file.
876
877 ABFD is a BFD already open on the file, as from symfile_bfd_open.
878 This BFD will be closed on error, and is always consumed by this function.
879
880 FROM_TTY says how verbose to be.
881
882 MAINLINE specifies whether this is the main symbol file, or whether
883 it's an extra symbol file such as dynamically loaded code.
884
885 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
886 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
887 non-zero.
888
889 Upon success, returns a pointer to the objfile that was added.
890 Upon failure, jumps back to command level (never returns). */
891 static struct objfile *
892 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
893 struct section_addr_info *addrs,
894 struct section_offsets *offsets,
895 int num_offsets,
896 int mainline, int flags)
897 {
898 struct objfile *objfile;
899 struct partial_symtab *psymtab;
900 char *debugfile;
901 struct section_addr_info *orig_addrs = NULL;
902 struct cleanup *my_cleanups;
903 const char *name = bfd_get_filename (abfd);
904
905 my_cleanups = make_cleanup_bfd_close (abfd);
906
907 /* Give user a chance to burp if we'd be
908 interactively wiping out any existing symbols. */
909
910 if ((have_full_symbols () || have_partial_symbols ())
911 && mainline
912 && from_tty
913 && !query ("Load new symbol table from \"%s\"? ", name))
914 error (_("Not confirmed."));
915
916 objfile = allocate_objfile (abfd, flags);
917 discard_cleanups (my_cleanups);
918
919 if (addrs)
920 {
921 orig_addrs = copy_section_addr_info (addrs);
922 make_cleanup_free_section_addr_info (orig_addrs);
923 }
924
925 /* We either created a new mapped symbol table, mapped an existing
926 symbol table file which has not had initial symbol reading
927 performed, or need to read an unmapped symbol table. */
928 if (from_tty || info_verbose)
929 {
930 if (deprecated_pre_add_symbol_hook)
931 deprecated_pre_add_symbol_hook (name);
932 else
933 {
934 printf_unfiltered (_("Reading symbols from %s..."), name);
935 wrap_here ("");
936 gdb_flush (gdb_stdout);
937 }
938 }
939 syms_from_objfile (objfile, addrs, offsets, num_offsets,
940 mainline, from_tty);
941
942 /* We now have at least a partial symbol table. Check to see if the
943 user requested that all symbols be read on initial access via either
944 the gdb startup command line or on a per symbol file basis. Expand
945 all partial symbol tables for this objfile if so. */
946
947 if ((flags & OBJF_READNOW) || readnow_symbol_files)
948 {
949 if (from_tty || info_verbose)
950 {
951 printf_unfiltered (_("expanding to full symbols..."));
952 wrap_here ("");
953 gdb_flush (gdb_stdout);
954 }
955
956 for (psymtab = objfile->psymtabs;
957 psymtab != NULL;
958 psymtab = psymtab->next)
959 {
960 psymtab_to_symtab (psymtab);
961 }
962 }
963
964 debugfile = find_separate_debug_file (objfile);
965 if (debugfile)
966 {
967 if (addrs != NULL)
968 {
969 objfile->separate_debug_objfile
970 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
971 }
972 else
973 {
974 objfile->separate_debug_objfile
975 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
976 }
977 objfile->separate_debug_objfile->separate_debug_objfile_backlink
978 = objfile;
979
980 /* Put the separate debug object before the normal one, this is so that
981 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
982 put_objfile_before (objfile->separate_debug_objfile, objfile);
983
984 xfree (debugfile);
985 }
986
987 if (!have_partial_symbols () && !have_full_symbols ())
988 {
989 wrap_here ("");
990 printf_filtered (_("(no debugging symbols found)"));
991 if (from_tty || info_verbose)
992 printf_filtered ("...");
993 else
994 printf_filtered ("\n");
995 wrap_here ("");
996 }
997
998 if (from_tty || info_verbose)
999 {
1000 if (deprecated_post_add_symbol_hook)
1001 deprecated_post_add_symbol_hook ();
1002 else
1003 {
1004 printf_unfiltered (_("done.\n"));
1005 }
1006 }
1007
1008 /* We print some messages regardless of whether 'from_tty ||
1009 info_verbose' is true, so make sure they go out at the right
1010 time. */
1011 gdb_flush (gdb_stdout);
1012
1013 do_cleanups (my_cleanups);
1014
1015 if (objfile->sf == NULL)
1016 return objfile; /* No symbols. */
1017
1018 new_symfile_objfile (objfile, mainline, from_tty);
1019
1020 if (deprecated_target_new_objfile_hook)
1021 deprecated_target_new_objfile_hook (objfile);
1022
1023 bfd_cache_close_all ();
1024 return (objfile);
1025 }
1026
1027
1028 /* Process the symbol file ABFD, as either the main file or as a
1029 dynamically loaded file.
1030
1031 See symbol_file_add_with_addrs_or_offsets's comments for
1032 details. */
1033 struct objfile *
1034 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1035 struct section_addr_info *addrs,
1036 int mainline, int flags)
1037 {
1038 return symbol_file_add_with_addrs_or_offsets (abfd,
1039 from_tty, addrs, 0, 0,
1040 mainline, flags);
1041 }
1042
1043
1044 /* Process a symbol file, as either the main file or as a dynamically
1045 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1046 for details. */
1047 struct objfile *
1048 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1049 int mainline, int flags)
1050 {
1051 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1052 addrs, mainline, flags);
1053 }
1054
1055
1056 /* Call symbol_file_add() with default values and update whatever is
1057 affected by the loading of a new main().
1058 Used when the file is supplied in the gdb command line
1059 and by some targets with special loading requirements.
1060 The auxiliary function, symbol_file_add_main_1(), has the flags
1061 argument for the switches that can only be specified in the symbol_file
1062 command itself. */
1063
1064 void
1065 symbol_file_add_main (char *args, int from_tty)
1066 {
1067 symbol_file_add_main_1 (args, from_tty, 0);
1068 }
1069
1070 static void
1071 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1072 {
1073 symbol_file_add (args, from_tty, NULL, 1, flags);
1074
1075 /* Getting new symbols may change our opinion about
1076 what is frameless. */
1077 reinit_frame_cache ();
1078
1079 set_initial_language ();
1080 }
1081
1082 void
1083 symbol_file_clear (int from_tty)
1084 {
1085 if ((have_full_symbols () || have_partial_symbols ())
1086 && from_tty
1087 && (symfile_objfile
1088 ? !query (_("Discard symbol table from `%s'? "),
1089 symfile_objfile->name)
1090 : !query (_("Discard symbol table? "))))
1091 error (_("Not confirmed."));
1092 free_all_objfiles ();
1093
1094 /* solib descriptors may have handles to objfiles. Since their
1095 storage has just been released, we'd better wipe the solib
1096 descriptors as well.
1097 */
1098 #if defined(SOLIB_RESTART)
1099 SOLIB_RESTART ();
1100 #endif
1101
1102 symfile_objfile = NULL;
1103 if (from_tty)
1104 printf_unfiltered (_("No symbol file now.\n"));
1105 }
1106
1107 static char *
1108 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1109 {
1110 asection *sect;
1111 bfd_size_type debuglink_size;
1112 unsigned long crc32;
1113 char *contents;
1114 int crc_offset;
1115 unsigned char *p;
1116
1117 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1118
1119 if (sect == NULL)
1120 return NULL;
1121
1122 debuglink_size = bfd_section_size (objfile->obfd, sect);
1123
1124 contents = xmalloc (debuglink_size);
1125 bfd_get_section_contents (objfile->obfd, sect, contents,
1126 (file_ptr)0, (bfd_size_type)debuglink_size);
1127
1128 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1129 crc_offset = strlen (contents) + 1;
1130 crc_offset = (crc_offset + 3) & ~3;
1131
1132 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1133
1134 *crc32_out = crc32;
1135 return contents;
1136 }
1137
1138 static int
1139 separate_debug_file_exists (const char *name, unsigned long crc)
1140 {
1141 unsigned long file_crc = 0;
1142 int fd;
1143 gdb_byte buffer[8*1024];
1144 int count;
1145
1146 fd = open (name, O_RDONLY | O_BINARY);
1147 if (fd < 0)
1148 return 0;
1149
1150 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1151 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1152
1153 close (fd);
1154
1155 return crc == file_crc;
1156 }
1157
1158 static char *debug_file_directory = NULL;
1159 static void
1160 show_debug_file_directory (struct ui_file *file, int from_tty,
1161 struct cmd_list_element *c, const char *value)
1162 {
1163 fprintf_filtered (file, _("\
1164 The directory where separate debug symbols are searched for is \"%s\".\n"),
1165 value);
1166 }
1167
1168 #if ! defined (DEBUG_SUBDIRECTORY)
1169 #define DEBUG_SUBDIRECTORY ".debug"
1170 #endif
1171
1172 static char *
1173 find_separate_debug_file (struct objfile *objfile)
1174 {
1175 asection *sect;
1176 char *basename;
1177 char *dir;
1178 char *debugfile;
1179 char *name_copy;
1180 bfd_size_type debuglink_size;
1181 unsigned long crc32;
1182 int i;
1183
1184 basename = get_debug_link_info (objfile, &crc32);
1185
1186 if (basename == NULL)
1187 return NULL;
1188
1189 dir = xstrdup (objfile->name);
1190
1191 /* Strip off the final filename part, leaving the directory name,
1192 followed by a slash. Objfile names should always be absolute and
1193 tilde-expanded, so there should always be a slash in there
1194 somewhere. */
1195 for (i = strlen(dir) - 1; i >= 0; i--)
1196 {
1197 if (IS_DIR_SEPARATOR (dir[i]))
1198 break;
1199 }
1200 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1201 dir[i+1] = '\0';
1202
1203 debugfile = alloca (strlen (debug_file_directory) + 1
1204 + strlen (dir)
1205 + strlen (DEBUG_SUBDIRECTORY)
1206 + strlen ("/")
1207 + strlen (basename)
1208 + 1);
1209
1210 /* First try in the same directory as the original file. */
1211 strcpy (debugfile, dir);
1212 strcat (debugfile, basename);
1213
1214 if (separate_debug_file_exists (debugfile, crc32))
1215 {
1216 xfree (basename);
1217 xfree (dir);
1218 return xstrdup (debugfile);
1219 }
1220
1221 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1222 strcpy (debugfile, dir);
1223 strcat (debugfile, DEBUG_SUBDIRECTORY);
1224 strcat (debugfile, "/");
1225 strcat (debugfile, basename);
1226
1227 if (separate_debug_file_exists (debugfile, crc32))
1228 {
1229 xfree (basename);
1230 xfree (dir);
1231 return xstrdup (debugfile);
1232 }
1233
1234 /* Then try in the global debugfile directory. */
1235 strcpy (debugfile, debug_file_directory);
1236 strcat (debugfile, "/");
1237 strcat (debugfile, dir);
1238 strcat (debugfile, basename);
1239
1240 if (separate_debug_file_exists (debugfile, crc32))
1241 {
1242 xfree (basename);
1243 xfree (dir);
1244 return xstrdup (debugfile);
1245 }
1246
1247 xfree (basename);
1248 xfree (dir);
1249 return NULL;
1250 }
1251
1252
1253 /* This is the symbol-file command. Read the file, analyze its
1254 symbols, and add a struct symtab to a symtab list. The syntax of
1255 the command is rather bizarre:
1256
1257 1. The function buildargv implements various quoting conventions
1258 which are undocumented and have little or nothing in common with
1259 the way things are quoted (or not quoted) elsewhere in GDB.
1260
1261 2. Options are used, which are not generally used in GDB (perhaps
1262 "set mapped on", "set readnow on" would be better)
1263
1264 3. The order of options matters, which is contrary to GNU
1265 conventions (because it is confusing and inconvenient). */
1266
1267 void
1268 symbol_file_command (char *args, int from_tty)
1269 {
1270 dont_repeat ();
1271
1272 if (args == NULL)
1273 {
1274 symbol_file_clear (from_tty);
1275 }
1276 else
1277 {
1278 char **argv = buildargv (args);
1279 int flags = OBJF_USERLOADED;
1280 struct cleanup *cleanups;
1281 char *name = NULL;
1282
1283 if (argv == NULL)
1284 nomem (0);
1285
1286 cleanups = make_cleanup_freeargv (argv);
1287 while (*argv != NULL)
1288 {
1289 if (strcmp (*argv, "-readnow") == 0)
1290 flags |= OBJF_READNOW;
1291 else if (**argv == '-')
1292 error (_("unknown option `%s'"), *argv);
1293 else
1294 {
1295 symbol_file_add_main_1 (*argv, from_tty, flags);
1296 name = *argv;
1297 }
1298
1299 argv++;
1300 }
1301
1302 if (name == NULL)
1303 error (_("no symbol file name was specified"));
1304
1305 do_cleanups (cleanups);
1306 }
1307 }
1308
1309 /* Set the initial language.
1310
1311 FIXME: A better solution would be to record the language in the
1312 psymtab when reading partial symbols, and then use it (if known) to
1313 set the language. This would be a win for formats that encode the
1314 language in an easily discoverable place, such as DWARF. For
1315 stabs, we can jump through hoops looking for specially named
1316 symbols or try to intuit the language from the specific type of
1317 stabs we find, but we can't do that until later when we read in
1318 full symbols. */
1319
1320 static void
1321 set_initial_language (void)
1322 {
1323 struct partial_symtab *pst;
1324 enum language lang = language_unknown;
1325
1326 pst = find_main_psymtab ();
1327 if (pst != NULL)
1328 {
1329 if (pst->filename != NULL)
1330 lang = deduce_language_from_filename (pst->filename);
1331
1332 if (lang == language_unknown)
1333 {
1334 /* Make C the default language */
1335 lang = language_c;
1336 }
1337
1338 set_language (lang);
1339 expected_language = current_language; /* Don't warn the user. */
1340 }
1341 }
1342
1343 /* Open the file specified by NAME and hand it off to BFD for
1344 preliminary analysis. Return a newly initialized bfd *, which
1345 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1346 absolute). In case of trouble, error() is called. */
1347
1348 bfd *
1349 symfile_bfd_open (char *name)
1350 {
1351 bfd *sym_bfd;
1352 int desc;
1353 char *absolute_name;
1354
1355 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1356
1357 /* Look down path for it, allocate 2nd new malloc'd copy. */
1358 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1359 O_RDONLY | O_BINARY, 0, &absolute_name);
1360 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1361 if (desc < 0)
1362 {
1363 char *exename = alloca (strlen (name) + 5);
1364 strcat (strcpy (exename, name), ".exe");
1365 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1366 O_RDONLY | O_BINARY, 0, &absolute_name);
1367 }
1368 #endif
1369 if (desc < 0)
1370 {
1371 make_cleanup (xfree, name);
1372 perror_with_name (name);
1373 }
1374
1375 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1376 bfd. It'll be freed in free_objfile(). */
1377 xfree (name);
1378 name = absolute_name;
1379
1380 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1381 if (!sym_bfd)
1382 {
1383 close (desc);
1384 make_cleanup (xfree, name);
1385 error (_("\"%s\": can't open to read symbols: %s."), name,
1386 bfd_errmsg (bfd_get_error ()));
1387 }
1388 bfd_set_cacheable (sym_bfd, 1);
1389
1390 if (!bfd_check_format (sym_bfd, bfd_object))
1391 {
1392 /* FIXME: should be checking for errors from bfd_close (for one
1393 thing, on error it does not free all the storage associated
1394 with the bfd). */
1395 bfd_close (sym_bfd); /* This also closes desc. */
1396 make_cleanup (xfree, name);
1397 error (_("\"%s\": can't read symbols: %s."), name,
1398 bfd_errmsg (bfd_get_error ()));
1399 }
1400
1401 return sym_bfd;
1402 }
1403
1404 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1405 the section was not found. */
1406
1407 int
1408 get_section_index (struct objfile *objfile, char *section_name)
1409 {
1410 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1411
1412 if (sect)
1413 return sect->index;
1414 else
1415 return -1;
1416 }
1417
1418 /* Link SF into the global symtab_fns list. Called on startup by the
1419 _initialize routine in each object file format reader, to register
1420 information about each format the the reader is prepared to
1421 handle. */
1422
1423 void
1424 add_symtab_fns (struct sym_fns *sf)
1425 {
1426 sf->next = symtab_fns;
1427 symtab_fns = sf;
1428 }
1429
1430 /* Initialize OBJFILE to read symbols from its associated BFD. It
1431 either returns or calls error(). The result is an initialized
1432 struct sym_fns in the objfile structure, that contains cached
1433 information about the symbol file. */
1434
1435 static void
1436 find_sym_fns (struct objfile *objfile)
1437 {
1438 struct sym_fns *sf;
1439 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1440 char *our_target = bfd_get_target (objfile->obfd);
1441
1442 if (our_flavour == bfd_target_srec_flavour
1443 || our_flavour == bfd_target_ihex_flavour
1444 || our_flavour == bfd_target_tekhex_flavour)
1445 return; /* No symbols. */
1446
1447 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1448 {
1449 if (our_flavour == sf->sym_flavour)
1450 {
1451 objfile->sf = sf;
1452 return;
1453 }
1454 }
1455
1456 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1457 bfd_get_target (objfile->obfd));
1458 }
1459 \f
1460
1461 /* This function runs the load command of our current target. */
1462
1463 static void
1464 load_command (char *arg, int from_tty)
1465 {
1466 if (arg == NULL)
1467 {
1468 char *parg;
1469 int count = 0;
1470
1471 parg = arg = get_exec_file (1);
1472
1473 /* Count how many \ " ' tab space there are in the name. */
1474 while ((parg = strpbrk (parg, "\\\"'\t ")))
1475 {
1476 parg++;
1477 count++;
1478 }
1479
1480 if (count)
1481 {
1482 /* We need to quote this string so buildargv can pull it apart. */
1483 char *temp = xmalloc (strlen (arg) + count + 1 );
1484 char *ptemp = temp;
1485 char *prev;
1486
1487 make_cleanup (xfree, temp);
1488
1489 prev = parg = arg;
1490 while ((parg = strpbrk (parg, "\\\"'\t ")))
1491 {
1492 strncpy (ptemp, prev, parg - prev);
1493 ptemp += parg - prev;
1494 prev = parg++;
1495 *ptemp++ = '\\';
1496 }
1497 strcpy (ptemp, prev);
1498
1499 arg = temp;
1500 }
1501 }
1502
1503 /* The user might be reloading because the binary has changed. Take
1504 this opportunity to check. */
1505 reopen_exec_file ();
1506 reread_symbols ();
1507
1508 target_load (arg, from_tty);
1509
1510 /* After re-loading the executable, we don't really know which
1511 overlays are mapped any more. */
1512 overlay_cache_invalid = 1;
1513 }
1514
1515 /* This version of "load" should be usable for any target. Currently
1516 it is just used for remote targets, not inftarg.c or core files,
1517 on the theory that only in that case is it useful.
1518
1519 Avoiding xmodem and the like seems like a win (a) because we don't have
1520 to worry about finding it, and (b) On VMS, fork() is very slow and so
1521 we don't want to run a subprocess. On the other hand, I'm not sure how
1522 performance compares. */
1523
1524 static int validate_download = 0;
1525
1526 /* Callback service function for generic_load (bfd_map_over_sections). */
1527
1528 static void
1529 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1530 {
1531 bfd_size_type *sum = data;
1532
1533 *sum += bfd_get_section_size (asec);
1534 }
1535
1536 /* Opaque data for load_section_callback. */
1537 struct load_section_data {
1538 unsigned long load_offset;
1539 unsigned long write_count;
1540 unsigned long data_count;
1541 bfd_size_type total_size;
1542 };
1543
1544 /* Callback service function for generic_load (bfd_map_over_sections). */
1545
1546 static void
1547 load_section_callback (bfd *abfd, asection *asec, void *data)
1548 {
1549 struct load_section_data *args = data;
1550
1551 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1552 {
1553 bfd_size_type size = bfd_get_section_size (asec);
1554 if (size > 0)
1555 {
1556 gdb_byte *buffer;
1557 struct cleanup *old_chain;
1558 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1559 bfd_size_type block_size;
1560 int err;
1561 const char *sect_name = bfd_get_section_name (abfd, asec);
1562 bfd_size_type sent;
1563
1564 buffer = xmalloc (size);
1565 old_chain = make_cleanup (xfree, buffer);
1566
1567 /* Is this really necessary? I guess it gives the user something
1568 to look at during a long download. */
1569 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1570 sect_name, paddr_nz (size), paddr_nz (lma));
1571
1572 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1573
1574 sent = 0;
1575 do
1576 {
1577 int len;
1578 bfd_size_type this_transfer = size - sent;
1579
1580 len = target_write_memory_partial (lma, buffer,
1581 this_transfer, &err);
1582 if (err)
1583 break;
1584 if (validate_download)
1585 {
1586 /* Broken memories and broken monitors manifest
1587 themselves here when bring new computers to
1588 life. This doubles already slow downloads. */
1589 /* NOTE: cagney/1999-10-18: A more efficient
1590 implementation might add a verify_memory()
1591 method to the target vector and then use
1592 that. remote.c could implement that method
1593 using the ``qCRC'' packet. */
1594 gdb_byte *check = xmalloc (len);
1595 struct cleanup *verify_cleanups =
1596 make_cleanup (xfree, check);
1597
1598 if (target_read_memory (lma, check, len) != 0)
1599 error (_("Download verify read failed at 0x%s"),
1600 paddr (lma));
1601 if (memcmp (buffer, check, len) != 0)
1602 error (_("Download verify compare failed at 0x%s"),
1603 paddr (lma));
1604 do_cleanups (verify_cleanups);
1605 }
1606 args->data_count += len;
1607 lma += len;
1608 buffer += len;
1609 args->write_count += 1;
1610 sent += len;
1611 if (quit_flag
1612 || (deprecated_ui_load_progress_hook != NULL
1613 && deprecated_ui_load_progress_hook (sect_name, sent)))
1614 error (_("Canceled the download"));
1615
1616 if (deprecated_show_load_progress != NULL)
1617 deprecated_show_load_progress (sect_name, sent, size,
1618 args->data_count,
1619 args->total_size);
1620 }
1621 while (sent < size);
1622
1623 if (err != 0)
1624 error (_("Memory access error while loading section %s."), sect_name);
1625
1626 do_cleanups (old_chain);
1627 }
1628 }
1629 }
1630
1631 void
1632 generic_load (char *args, int from_tty)
1633 {
1634 asection *s;
1635 bfd *loadfile_bfd;
1636 struct timeval start_time, end_time;
1637 char *filename;
1638 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1639 struct load_section_data cbdata;
1640 CORE_ADDR entry;
1641 char **argv;
1642
1643 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1644 cbdata.write_count = 0; /* Number of writes needed. */
1645 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1646 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1647
1648 argv = buildargv (args);
1649
1650 if (argv == NULL)
1651 nomem(0);
1652
1653 make_cleanup_freeargv (argv);
1654
1655 filename = tilde_expand (argv[0]);
1656 make_cleanup (xfree, filename);
1657
1658 if (argv[1] != NULL)
1659 {
1660 char *endptr;
1661
1662 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1663
1664 /* If the last word was not a valid number then
1665 treat it as a file name with spaces in. */
1666 if (argv[1] == endptr)
1667 error (_("Invalid download offset:%s."), argv[1]);
1668
1669 if (argv[2] != NULL)
1670 error (_("Too many parameters."));
1671 }
1672
1673 /* Open the file for loading. */
1674 loadfile_bfd = bfd_openr (filename, gnutarget);
1675 if (loadfile_bfd == NULL)
1676 {
1677 perror_with_name (filename);
1678 return;
1679 }
1680
1681 /* FIXME: should be checking for errors from bfd_close (for one thing,
1682 on error it does not free all the storage associated with the
1683 bfd). */
1684 make_cleanup_bfd_close (loadfile_bfd);
1685
1686 if (!bfd_check_format (loadfile_bfd, bfd_object))
1687 {
1688 error (_("\"%s\" is not an object file: %s"), filename,
1689 bfd_errmsg (bfd_get_error ()));
1690 }
1691
1692 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1693 (void *) &cbdata.total_size);
1694
1695 gettimeofday (&start_time, NULL);
1696
1697 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1698
1699 gettimeofday (&end_time, NULL);
1700
1701 entry = bfd_get_start_address (loadfile_bfd);
1702 ui_out_text (uiout, "Start address ");
1703 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1704 ui_out_text (uiout, ", load size ");
1705 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1706 ui_out_text (uiout, "\n");
1707 /* We were doing this in remote-mips.c, I suspect it is right
1708 for other targets too. */
1709 write_pc (entry);
1710
1711 /* FIXME: are we supposed to call symbol_file_add or not? According
1712 to a comment from remote-mips.c (where a call to symbol_file_add
1713 was commented out), making the call confuses GDB if more than one
1714 file is loaded in. Some targets do (e.g., remote-vx.c) but
1715 others don't (or didn't - perhaps they have all been deleted). */
1716
1717 print_transfer_performance (gdb_stdout, cbdata.data_count,
1718 cbdata.write_count, &start_time, &end_time);
1719
1720 do_cleanups (old_cleanups);
1721 }
1722
1723 /* Report how fast the transfer went. */
1724
1725 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1726 replaced by print_transfer_performance (with a very different
1727 function signature). */
1728
1729 void
1730 report_transfer_performance (unsigned long data_count, time_t start_time,
1731 time_t end_time)
1732 {
1733 struct timeval start, end;
1734
1735 start.tv_sec = start_time;
1736 start.tv_usec = 0;
1737 end.tv_sec = end_time;
1738 end.tv_usec = 0;
1739
1740 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
1741 }
1742
1743 void
1744 print_transfer_performance (struct ui_file *stream,
1745 unsigned long data_count,
1746 unsigned long write_count,
1747 const struct timeval *start_time,
1748 const struct timeval *end_time)
1749 {
1750 unsigned long time_count;
1751
1752 /* Compute the elapsed time in milliseconds, as a tradeoff between
1753 accuracy and overflow. */
1754 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
1755 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
1756
1757 ui_out_text (uiout, "Transfer rate: ");
1758 if (time_count > 0)
1759 {
1760 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1761 1000 * (data_count * 8) / time_count);
1762 ui_out_text (uiout, " bits/sec");
1763 }
1764 else
1765 {
1766 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1767 ui_out_text (uiout, " bits in <1 sec");
1768 }
1769 if (write_count > 0)
1770 {
1771 ui_out_text (uiout, ", ");
1772 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1773 ui_out_text (uiout, " bytes/write");
1774 }
1775 ui_out_text (uiout, ".\n");
1776 }
1777
1778 /* This function allows the addition of incrementally linked object files.
1779 It does not modify any state in the target, only in the debugger. */
1780 /* Note: ezannoni 2000-04-13 This function/command used to have a
1781 special case syntax for the rombug target (Rombug is the boot
1782 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1783 rombug case, the user doesn't need to supply a text address,
1784 instead a call to target_link() (in target.c) would supply the
1785 value to use. We are now discontinuing this type of ad hoc syntax. */
1786
1787 static void
1788 add_symbol_file_command (char *args, int from_tty)
1789 {
1790 char *filename = NULL;
1791 int flags = OBJF_USERLOADED;
1792 char *arg;
1793 int expecting_option = 0;
1794 int section_index = 0;
1795 int argcnt = 0;
1796 int sec_num = 0;
1797 int i;
1798 int expecting_sec_name = 0;
1799 int expecting_sec_addr = 0;
1800 char **argv;
1801
1802 struct sect_opt
1803 {
1804 char *name;
1805 char *value;
1806 };
1807
1808 struct section_addr_info *section_addrs;
1809 struct sect_opt *sect_opts = NULL;
1810 size_t num_sect_opts = 0;
1811 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1812
1813 num_sect_opts = 16;
1814 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1815 * sizeof (struct sect_opt));
1816
1817 dont_repeat ();
1818
1819 if (args == NULL)
1820 error (_("add-symbol-file takes a file name and an address"));
1821
1822 argv = buildargv (args);
1823 make_cleanup_freeargv (argv);
1824
1825 if (argv == NULL)
1826 nomem (0);
1827
1828 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
1829 {
1830 /* Process the argument. */
1831 if (argcnt == 0)
1832 {
1833 /* The first argument is the file name. */
1834 filename = tilde_expand (arg);
1835 make_cleanup (xfree, filename);
1836 }
1837 else
1838 if (argcnt == 1)
1839 {
1840 /* The second argument is always the text address at which
1841 to load the program. */
1842 sect_opts[section_index].name = ".text";
1843 sect_opts[section_index].value = arg;
1844 if (++section_index > num_sect_opts)
1845 {
1846 num_sect_opts *= 2;
1847 sect_opts = ((struct sect_opt *)
1848 xrealloc (sect_opts,
1849 num_sect_opts
1850 * sizeof (struct sect_opt)));
1851 }
1852 }
1853 else
1854 {
1855 /* It's an option (starting with '-') or it's an argument
1856 to an option */
1857
1858 if (*arg == '-')
1859 {
1860 if (strcmp (arg, "-readnow") == 0)
1861 flags |= OBJF_READNOW;
1862 else if (strcmp (arg, "-s") == 0)
1863 {
1864 expecting_sec_name = 1;
1865 expecting_sec_addr = 1;
1866 }
1867 }
1868 else
1869 {
1870 if (expecting_sec_name)
1871 {
1872 sect_opts[section_index].name = arg;
1873 expecting_sec_name = 0;
1874 }
1875 else
1876 if (expecting_sec_addr)
1877 {
1878 sect_opts[section_index].value = arg;
1879 expecting_sec_addr = 0;
1880 if (++section_index > num_sect_opts)
1881 {
1882 num_sect_opts *= 2;
1883 sect_opts = ((struct sect_opt *)
1884 xrealloc (sect_opts,
1885 num_sect_opts
1886 * sizeof (struct sect_opt)));
1887 }
1888 }
1889 else
1890 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
1891 }
1892 }
1893 }
1894
1895 /* This command takes at least two arguments. The first one is a
1896 filename, and the second is the address where this file has been
1897 loaded. Abort now if this address hasn't been provided by the
1898 user. */
1899 if (section_index < 1)
1900 error (_("The address where %s has been loaded is missing"), filename);
1901
1902 /* Print the prompt for the query below. And save the arguments into
1903 a sect_addr_info structure to be passed around to other
1904 functions. We have to split this up into separate print
1905 statements because hex_string returns a local static
1906 string. */
1907
1908 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
1909 section_addrs = alloc_section_addr_info (section_index);
1910 make_cleanup (xfree, section_addrs);
1911 for (i = 0; i < section_index; i++)
1912 {
1913 CORE_ADDR addr;
1914 char *val = sect_opts[i].value;
1915 char *sec = sect_opts[i].name;
1916
1917 addr = parse_and_eval_address (val);
1918
1919 /* Here we store the section offsets in the order they were
1920 entered on the command line. */
1921 section_addrs->other[sec_num].name = sec;
1922 section_addrs->other[sec_num].addr = addr;
1923 printf_unfiltered ("\t%s_addr = %s\n",
1924 sec, hex_string ((unsigned long)addr));
1925 sec_num++;
1926
1927 /* The object's sections are initialized when a
1928 call is made to build_objfile_section_table (objfile).
1929 This happens in reread_symbols.
1930 At this point, we don't know what file type this is,
1931 so we can't determine what section names are valid. */
1932 }
1933
1934 if (from_tty && (!query ("%s", "")))
1935 error (_("Not confirmed."));
1936
1937 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
1938
1939 /* Getting new symbols may change our opinion about what is
1940 frameless. */
1941 reinit_frame_cache ();
1942 do_cleanups (my_cleanups);
1943 }
1944 \f
1945 static void
1946 add_shared_symbol_files_command (char *args, int from_tty)
1947 {
1948 #ifdef ADD_SHARED_SYMBOL_FILES
1949 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1950 #else
1951 error (_("This command is not available in this configuration of GDB."));
1952 #endif
1953 }
1954 \f
1955 /* Re-read symbols if a symbol-file has changed. */
1956 void
1957 reread_symbols (void)
1958 {
1959 struct objfile *objfile;
1960 long new_modtime;
1961 int reread_one = 0;
1962 struct stat new_statbuf;
1963 int res;
1964
1965 /* With the addition of shared libraries, this should be modified,
1966 the load time should be saved in the partial symbol tables, since
1967 different tables may come from different source files. FIXME.
1968 This routine should then walk down each partial symbol table
1969 and see if the symbol table that it originates from has been changed */
1970
1971 for (objfile = object_files; objfile; objfile = objfile->next)
1972 {
1973 if (objfile->obfd)
1974 {
1975 #ifdef DEPRECATED_IBM6000_TARGET
1976 /* If this object is from a shared library, then you should
1977 stat on the library name, not member name. */
1978
1979 if (objfile->obfd->my_archive)
1980 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1981 else
1982 #endif
1983 res = stat (objfile->name, &new_statbuf);
1984 if (res != 0)
1985 {
1986 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1987 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
1988 objfile->name);
1989 continue;
1990 }
1991 new_modtime = new_statbuf.st_mtime;
1992 if (new_modtime != objfile->mtime)
1993 {
1994 struct cleanup *old_cleanups;
1995 struct section_offsets *offsets;
1996 int num_offsets;
1997 char *obfd_filename;
1998
1999 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2000 objfile->name);
2001
2002 /* There are various functions like symbol_file_add,
2003 symfile_bfd_open, syms_from_objfile, etc., which might
2004 appear to do what we want. But they have various other
2005 effects which we *don't* want. So we just do stuff
2006 ourselves. We don't worry about mapped files (for one thing,
2007 any mapped file will be out of date). */
2008
2009 /* If we get an error, blow away this objfile (not sure if
2010 that is the correct response for things like shared
2011 libraries). */
2012 old_cleanups = make_cleanup_free_objfile (objfile);
2013 /* We need to do this whenever any symbols go away. */
2014 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2015
2016 /* Clean up any state BFD has sitting around. We don't need
2017 to close the descriptor but BFD lacks a way of closing the
2018 BFD without closing the descriptor. */
2019 obfd_filename = bfd_get_filename (objfile->obfd);
2020 if (!bfd_close (objfile->obfd))
2021 error (_("Can't close BFD for %s: %s"), objfile->name,
2022 bfd_errmsg (bfd_get_error ()));
2023 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2024 if (objfile->obfd == NULL)
2025 error (_("Can't open %s to read symbols."), objfile->name);
2026 /* bfd_openr sets cacheable to true, which is what we want. */
2027 if (!bfd_check_format (objfile->obfd, bfd_object))
2028 error (_("Can't read symbols from %s: %s."), objfile->name,
2029 bfd_errmsg (bfd_get_error ()));
2030
2031 /* Save the offsets, we will nuke them with the rest of the
2032 objfile_obstack. */
2033 num_offsets = objfile->num_sections;
2034 offsets = ((struct section_offsets *)
2035 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2036 memcpy (offsets, objfile->section_offsets,
2037 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2038
2039 /* Remove any references to this objfile in the global
2040 value lists. */
2041 preserve_values (objfile);
2042
2043 /* Nuke all the state that we will re-read. Much of the following
2044 code which sets things to NULL really is necessary to tell
2045 other parts of GDB that there is nothing currently there. */
2046
2047 /* FIXME: Do we have to free a whole linked list, or is this
2048 enough? */
2049 if (objfile->global_psymbols.list)
2050 xfree (objfile->global_psymbols.list);
2051 memset (&objfile->global_psymbols, 0,
2052 sizeof (objfile->global_psymbols));
2053 if (objfile->static_psymbols.list)
2054 xfree (objfile->static_psymbols.list);
2055 memset (&objfile->static_psymbols, 0,
2056 sizeof (objfile->static_psymbols));
2057
2058 /* Free the obstacks for non-reusable objfiles */
2059 bcache_xfree (objfile->psymbol_cache);
2060 objfile->psymbol_cache = bcache_xmalloc ();
2061 bcache_xfree (objfile->macro_cache);
2062 objfile->macro_cache = bcache_xmalloc ();
2063 if (objfile->demangled_names_hash != NULL)
2064 {
2065 htab_delete (objfile->demangled_names_hash);
2066 objfile->demangled_names_hash = NULL;
2067 }
2068 obstack_free (&objfile->objfile_obstack, 0);
2069 objfile->sections = NULL;
2070 objfile->symtabs = NULL;
2071 objfile->psymtabs = NULL;
2072 objfile->free_psymtabs = NULL;
2073 objfile->cp_namespace_symtab = NULL;
2074 objfile->msymbols = NULL;
2075 objfile->deprecated_sym_private = NULL;
2076 objfile->minimal_symbol_count = 0;
2077 memset (&objfile->msymbol_hash, 0,
2078 sizeof (objfile->msymbol_hash));
2079 memset (&objfile->msymbol_demangled_hash, 0,
2080 sizeof (objfile->msymbol_demangled_hash));
2081 objfile->fundamental_types = NULL;
2082 clear_objfile_data (objfile);
2083 if (objfile->sf != NULL)
2084 {
2085 (*objfile->sf->sym_finish) (objfile);
2086 }
2087
2088 /* We never make this a mapped file. */
2089 objfile->md = NULL;
2090 objfile->psymbol_cache = bcache_xmalloc ();
2091 objfile->macro_cache = bcache_xmalloc ();
2092 /* obstack_init also initializes the obstack so it is
2093 empty. We could use obstack_specify_allocation but
2094 gdb_obstack.h specifies the alloc/dealloc
2095 functions. */
2096 obstack_init (&objfile->objfile_obstack);
2097 if (build_objfile_section_table (objfile))
2098 {
2099 error (_("Can't find the file sections in `%s': %s"),
2100 objfile->name, bfd_errmsg (bfd_get_error ()));
2101 }
2102 terminate_minimal_symbol_table (objfile);
2103
2104 /* We use the same section offsets as from last time. I'm not
2105 sure whether that is always correct for shared libraries. */
2106 objfile->section_offsets = (struct section_offsets *)
2107 obstack_alloc (&objfile->objfile_obstack,
2108 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2109 memcpy (objfile->section_offsets, offsets,
2110 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2111 objfile->num_sections = num_offsets;
2112
2113 /* What the hell is sym_new_init for, anyway? The concept of
2114 distinguishing between the main file and additional files
2115 in this way seems rather dubious. */
2116 if (objfile == symfile_objfile)
2117 {
2118 (*objfile->sf->sym_new_init) (objfile);
2119 }
2120
2121 (*objfile->sf->sym_init) (objfile);
2122 clear_complaints (&symfile_complaints, 1, 1);
2123 /* The "mainline" parameter is a hideous hack; I think leaving it
2124 zero is OK since dbxread.c also does what it needs to do if
2125 objfile->global_psymbols.size is 0. */
2126 (*objfile->sf->sym_read) (objfile, 0);
2127 if (!have_partial_symbols () && !have_full_symbols ())
2128 {
2129 wrap_here ("");
2130 printf_unfiltered (_("(no debugging symbols found)\n"));
2131 wrap_here ("");
2132 }
2133 objfile->flags |= OBJF_SYMS;
2134
2135 /* We're done reading the symbol file; finish off complaints. */
2136 clear_complaints (&symfile_complaints, 0, 1);
2137
2138 /* Getting new symbols may change our opinion about what is
2139 frameless. */
2140
2141 reinit_frame_cache ();
2142
2143 /* Discard cleanups as symbol reading was successful. */
2144 discard_cleanups (old_cleanups);
2145
2146 /* If the mtime has changed between the time we set new_modtime
2147 and now, we *want* this to be out of date, so don't call stat
2148 again now. */
2149 objfile->mtime = new_modtime;
2150 reread_one = 1;
2151 reread_separate_symbols (objfile);
2152 }
2153 }
2154 }
2155
2156 if (reread_one)
2157 {
2158 clear_symtab_users ();
2159 /* At least one objfile has changed, so we can consider that
2160 the executable we're debugging has changed too. */
2161 observer_notify_executable_changed (NULL);
2162 }
2163
2164 }
2165
2166
2167 /* Handle separate debug info for OBJFILE, which has just been
2168 re-read:
2169 - If we had separate debug info before, but now we don't, get rid
2170 of the separated objfile.
2171 - If we didn't have separated debug info before, but now we do,
2172 read in the new separated debug info file.
2173 - If the debug link points to a different file, toss the old one
2174 and read the new one.
2175 This function does *not* handle the case where objfile is still
2176 using the same separate debug info file, but that file's timestamp
2177 has changed. That case should be handled by the loop in
2178 reread_symbols already. */
2179 static void
2180 reread_separate_symbols (struct objfile *objfile)
2181 {
2182 char *debug_file;
2183 unsigned long crc32;
2184
2185 /* Does the updated objfile's debug info live in a
2186 separate file? */
2187 debug_file = find_separate_debug_file (objfile);
2188
2189 if (objfile->separate_debug_objfile)
2190 {
2191 /* There are two cases where we need to get rid of
2192 the old separated debug info objfile:
2193 - if the new primary objfile doesn't have
2194 separated debug info, or
2195 - if the new primary objfile has separate debug
2196 info, but it's under a different filename.
2197
2198 If the old and new objfiles both have separate
2199 debug info, under the same filename, then we're
2200 okay --- if the separated file's contents have
2201 changed, we will have caught that when we
2202 visited it in this function's outermost
2203 loop. */
2204 if (! debug_file
2205 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2206 free_objfile (objfile->separate_debug_objfile);
2207 }
2208
2209 /* If the new objfile has separate debug info, and we
2210 haven't loaded it already, do so now. */
2211 if (debug_file
2212 && ! objfile->separate_debug_objfile)
2213 {
2214 /* Use the same section offset table as objfile itself.
2215 Preserve the flags from objfile that make sense. */
2216 objfile->separate_debug_objfile
2217 = (symbol_file_add_with_addrs_or_offsets
2218 (symfile_bfd_open (debug_file),
2219 info_verbose, /* from_tty: Don't override the default. */
2220 0, /* No addr table. */
2221 objfile->section_offsets, objfile->num_sections,
2222 0, /* Not mainline. See comments about this above. */
2223 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2224 | OBJF_USERLOADED)));
2225 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2226 = objfile;
2227 }
2228 }
2229
2230
2231 \f
2232
2233
2234 typedef struct
2235 {
2236 char *ext;
2237 enum language lang;
2238 }
2239 filename_language;
2240
2241 static filename_language *filename_language_table;
2242 static int fl_table_size, fl_table_next;
2243
2244 static void
2245 add_filename_language (char *ext, enum language lang)
2246 {
2247 if (fl_table_next >= fl_table_size)
2248 {
2249 fl_table_size += 10;
2250 filename_language_table =
2251 xrealloc (filename_language_table,
2252 fl_table_size * sizeof (*filename_language_table));
2253 }
2254
2255 filename_language_table[fl_table_next].ext = xstrdup (ext);
2256 filename_language_table[fl_table_next].lang = lang;
2257 fl_table_next++;
2258 }
2259
2260 static char *ext_args;
2261 static void
2262 show_ext_args (struct ui_file *file, int from_tty,
2263 struct cmd_list_element *c, const char *value)
2264 {
2265 fprintf_filtered (file, _("\
2266 Mapping between filename extension and source language is \"%s\".\n"),
2267 value);
2268 }
2269
2270 static void
2271 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2272 {
2273 int i;
2274 char *cp = ext_args;
2275 enum language lang;
2276
2277 /* First arg is filename extension, starting with '.' */
2278 if (*cp != '.')
2279 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2280
2281 /* Find end of first arg. */
2282 while (*cp && !isspace (*cp))
2283 cp++;
2284
2285 if (*cp == '\0')
2286 error (_("'%s': two arguments required -- filename extension and language"),
2287 ext_args);
2288
2289 /* Null-terminate first arg */
2290 *cp++ = '\0';
2291
2292 /* Find beginning of second arg, which should be a source language. */
2293 while (*cp && isspace (*cp))
2294 cp++;
2295
2296 if (*cp == '\0')
2297 error (_("'%s': two arguments required -- filename extension and language"),
2298 ext_args);
2299
2300 /* Lookup the language from among those we know. */
2301 lang = language_enum (cp);
2302
2303 /* Now lookup the filename extension: do we already know it? */
2304 for (i = 0; i < fl_table_next; i++)
2305 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2306 break;
2307
2308 if (i >= fl_table_next)
2309 {
2310 /* new file extension */
2311 add_filename_language (ext_args, lang);
2312 }
2313 else
2314 {
2315 /* redefining a previously known filename extension */
2316
2317 /* if (from_tty) */
2318 /* query ("Really make files of type %s '%s'?", */
2319 /* ext_args, language_str (lang)); */
2320
2321 xfree (filename_language_table[i].ext);
2322 filename_language_table[i].ext = xstrdup (ext_args);
2323 filename_language_table[i].lang = lang;
2324 }
2325 }
2326
2327 static void
2328 info_ext_lang_command (char *args, int from_tty)
2329 {
2330 int i;
2331
2332 printf_filtered (_("Filename extensions and the languages they represent:"));
2333 printf_filtered ("\n\n");
2334 for (i = 0; i < fl_table_next; i++)
2335 printf_filtered ("\t%s\t- %s\n",
2336 filename_language_table[i].ext,
2337 language_str (filename_language_table[i].lang));
2338 }
2339
2340 static void
2341 init_filename_language_table (void)
2342 {
2343 if (fl_table_size == 0) /* protect against repetition */
2344 {
2345 fl_table_size = 20;
2346 fl_table_next = 0;
2347 filename_language_table =
2348 xmalloc (fl_table_size * sizeof (*filename_language_table));
2349 add_filename_language (".c", language_c);
2350 add_filename_language (".C", language_cplus);
2351 add_filename_language (".cc", language_cplus);
2352 add_filename_language (".cp", language_cplus);
2353 add_filename_language (".cpp", language_cplus);
2354 add_filename_language (".cxx", language_cplus);
2355 add_filename_language (".c++", language_cplus);
2356 add_filename_language (".java", language_java);
2357 add_filename_language (".class", language_java);
2358 add_filename_language (".m", language_objc);
2359 add_filename_language (".f", language_fortran);
2360 add_filename_language (".F", language_fortran);
2361 add_filename_language (".s", language_asm);
2362 add_filename_language (".S", language_asm);
2363 add_filename_language (".pas", language_pascal);
2364 add_filename_language (".p", language_pascal);
2365 add_filename_language (".pp", language_pascal);
2366 add_filename_language (".adb", language_ada);
2367 add_filename_language (".ads", language_ada);
2368 add_filename_language (".a", language_ada);
2369 add_filename_language (".ada", language_ada);
2370 }
2371 }
2372
2373 enum language
2374 deduce_language_from_filename (char *filename)
2375 {
2376 int i;
2377 char *cp;
2378
2379 if (filename != NULL)
2380 if ((cp = strrchr (filename, '.')) != NULL)
2381 for (i = 0; i < fl_table_next; i++)
2382 if (strcmp (cp, filename_language_table[i].ext) == 0)
2383 return filename_language_table[i].lang;
2384
2385 return language_unknown;
2386 }
2387 \f
2388 /* allocate_symtab:
2389
2390 Allocate and partly initialize a new symbol table. Return a pointer
2391 to it. error() if no space.
2392
2393 Caller must set these fields:
2394 LINETABLE(symtab)
2395 symtab->blockvector
2396 symtab->dirname
2397 symtab->free_code
2398 symtab->free_ptr
2399 possibly free_named_symtabs (symtab->filename);
2400 */
2401
2402 struct symtab *
2403 allocate_symtab (char *filename, struct objfile *objfile)
2404 {
2405 struct symtab *symtab;
2406
2407 symtab = (struct symtab *)
2408 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2409 memset (symtab, 0, sizeof (*symtab));
2410 symtab->filename = obsavestring (filename, strlen (filename),
2411 &objfile->objfile_obstack);
2412 symtab->fullname = NULL;
2413 symtab->language = deduce_language_from_filename (filename);
2414 symtab->debugformat = obsavestring ("unknown", 7,
2415 &objfile->objfile_obstack);
2416
2417 /* Hook it to the objfile it comes from */
2418
2419 symtab->objfile = objfile;
2420 symtab->next = objfile->symtabs;
2421 objfile->symtabs = symtab;
2422
2423 /* FIXME: This should go away. It is only defined for the Z8000,
2424 and the Z8000 definition of this macro doesn't have anything to
2425 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2426 here for convenience. */
2427 #ifdef INIT_EXTRA_SYMTAB_INFO
2428 INIT_EXTRA_SYMTAB_INFO (symtab);
2429 #endif
2430
2431 return (symtab);
2432 }
2433
2434 struct partial_symtab *
2435 allocate_psymtab (char *filename, struct objfile *objfile)
2436 {
2437 struct partial_symtab *psymtab;
2438
2439 if (objfile->free_psymtabs)
2440 {
2441 psymtab = objfile->free_psymtabs;
2442 objfile->free_psymtabs = psymtab->next;
2443 }
2444 else
2445 psymtab = (struct partial_symtab *)
2446 obstack_alloc (&objfile->objfile_obstack,
2447 sizeof (struct partial_symtab));
2448
2449 memset (psymtab, 0, sizeof (struct partial_symtab));
2450 psymtab->filename = obsavestring (filename, strlen (filename),
2451 &objfile->objfile_obstack);
2452 psymtab->symtab = NULL;
2453
2454 /* Prepend it to the psymtab list for the objfile it belongs to.
2455 Psymtabs are searched in most recent inserted -> least recent
2456 inserted order. */
2457
2458 psymtab->objfile = objfile;
2459 psymtab->next = objfile->psymtabs;
2460 objfile->psymtabs = psymtab;
2461 #if 0
2462 {
2463 struct partial_symtab **prev_pst;
2464 psymtab->objfile = objfile;
2465 psymtab->next = NULL;
2466 prev_pst = &(objfile->psymtabs);
2467 while ((*prev_pst) != NULL)
2468 prev_pst = &((*prev_pst)->next);
2469 (*prev_pst) = psymtab;
2470 }
2471 #endif
2472
2473 return (psymtab);
2474 }
2475
2476 void
2477 discard_psymtab (struct partial_symtab *pst)
2478 {
2479 struct partial_symtab **prev_pst;
2480
2481 /* From dbxread.c:
2482 Empty psymtabs happen as a result of header files which don't
2483 have any symbols in them. There can be a lot of them. But this
2484 check is wrong, in that a psymtab with N_SLINE entries but
2485 nothing else is not empty, but we don't realize that. Fixing
2486 that without slowing things down might be tricky. */
2487
2488 /* First, snip it out of the psymtab chain */
2489
2490 prev_pst = &(pst->objfile->psymtabs);
2491 while ((*prev_pst) != pst)
2492 prev_pst = &((*prev_pst)->next);
2493 (*prev_pst) = pst->next;
2494
2495 /* Next, put it on a free list for recycling */
2496
2497 pst->next = pst->objfile->free_psymtabs;
2498 pst->objfile->free_psymtabs = pst;
2499 }
2500 \f
2501
2502 /* Reset all data structures in gdb which may contain references to symbol
2503 table data. */
2504
2505 void
2506 clear_symtab_users (void)
2507 {
2508 /* Someday, we should do better than this, by only blowing away
2509 the things that really need to be blown. */
2510
2511 /* Clear the "current" symtab first, because it is no longer valid.
2512 breakpoint_re_set may try to access the current symtab. */
2513 clear_current_source_symtab_and_line ();
2514
2515 clear_displays ();
2516 breakpoint_re_set ();
2517 set_default_breakpoint (0, 0, 0, 0);
2518 clear_pc_function_cache ();
2519 if (deprecated_target_new_objfile_hook)
2520 deprecated_target_new_objfile_hook (NULL);
2521 }
2522
2523 static void
2524 clear_symtab_users_cleanup (void *ignore)
2525 {
2526 clear_symtab_users ();
2527 }
2528
2529 /* clear_symtab_users_once:
2530
2531 This function is run after symbol reading, or from a cleanup.
2532 If an old symbol table was obsoleted, the old symbol table
2533 has been blown away, but the other GDB data structures that may
2534 reference it have not yet been cleared or re-directed. (The old
2535 symtab was zapped, and the cleanup queued, in free_named_symtab()
2536 below.)
2537
2538 This function can be queued N times as a cleanup, or called
2539 directly; it will do all the work the first time, and then will be a
2540 no-op until the next time it is queued. This works by bumping a
2541 counter at queueing time. Much later when the cleanup is run, or at
2542 the end of symbol processing (in case the cleanup is discarded), if
2543 the queued count is greater than the "done-count", we do the work
2544 and set the done-count to the queued count. If the queued count is
2545 less than or equal to the done-count, we just ignore the call. This
2546 is needed because reading a single .o file will often replace many
2547 symtabs (one per .h file, for example), and we don't want to reset
2548 the breakpoints N times in the user's face.
2549
2550 The reason we both queue a cleanup, and call it directly after symbol
2551 reading, is because the cleanup protects us in case of errors, but is
2552 discarded if symbol reading is successful. */
2553
2554 #if 0
2555 /* FIXME: As free_named_symtabs is currently a big noop this function
2556 is no longer needed. */
2557 static void clear_symtab_users_once (void);
2558
2559 static int clear_symtab_users_queued;
2560 static int clear_symtab_users_done;
2561
2562 static void
2563 clear_symtab_users_once (void)
2564 {
2565 /* Enforce once-per-`do_cleanups'-semantics */
2566 if (clear_symtab_users_queued <= clear_symtab_users_done)
2567 return;
2568 clear_symtab_users_done = clear_symtab_users_queued;
2569
2570 clear_symtab_users ();
2571 }
2572 #endif
2573
2574 /* Delete the specified psymtab, and any others that reference it. */
2575
2576 static void
2577 cashier_psymtab (struct partial_symtab *pst)
2578 {
2579 struct partial_symtab *ps, *pprev = NULL;
2580 int i;
2581
2582 /* Find its previous psymtab in the chain */
2583 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2584 {
2585 if (ps == pst)
2586 break;
2587 pprev = ps;
2588 }
2589
2590 if (ps)
2591 {
2592 /* Unhook it from the chain. */
2593 if (ps == pst->objfile->psymtabs)
2594 pst->objfile->psymtabs = ps->next;
2595 else
2596 pprev->next = ps->next;
2597
2598 /* FIXME, we can't conveniently deallocate the entries in the
2599 partial_symbol lists (global_psymbols/static_psymbols) that
2600 this psymtab points to. These just take up space until all
2601 the psymtabs are reclaimed. Ditto the dependencies list and
2602 filename, which are all in the objfile_obstack. */
2603
2604 /* We need to cashier any psymtab that has this one as a dependency... */
2605 again:
2606 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2607 {
2608 for (i = 0; i < ps->number_of_dependencies; i++)
2609 {
2610 if (ps->dependencies[i] == pst)
2611 {
2612 cashier_psymtab (ps);
2613 goto again; /* Must restart, chain has been munged. */
2614 }
2615 }
2616 }
2617 }
2618 }
2619
2620 /* If a symtab or psymtab for filename NAME is found, free it along
2621 with any dependent breakpoints, displays, etc.
2622 Used when loading new versions of object modules with the "add-file"
2623 command. This is only called on the top-level symtab or psymtab's name;
2624 it is not called for subsidiary files such as .h files.
2625
2626 Return value is 1 if we blew away the environment, 0 if not.
2627 FIXME. The return value appears to never be used.
2628
2629 FIXME. I think this is not the best way to do this. We should
2630 work on being gentler to the environment while still cleaning up
2631 all stray pointers into the freed symtab. */
2632
2633 int
2634 free_named_symtabs (char *name)
2635 {
2636 #if 0
2637 /* FIXME: With the new method of each objfile having it's own
2638 psymtab list, this function needs serious rethinking. In particular,
2639 why was it ever necessary to toss psymtabs with specific compilation
2640 unit filenames, as opposed to all psymtabs from a particular symbol
2641 file? -- fnf
2642 Well, the answer is that some systems permit reloading of particular
2643 compilation units. We want to blow away any old info about these
2644 compilation units, regardless of which objfiles they arrived in. --gnu. */
2645
2646 struct symtab *s;
2647 struct symtab *prev;
2648 struct partial_symtab *ps;
2649 struct blockvector *bv;
2650 int blewit = 0;
2651
2652 /* We only wack things if the symbol-reload switch is set. */
2653 if (!symbol_reloading)
2654 return 0;
2655
2656 /* Some symbol formats have trouble providing file names... */
2657 if (name == 0 || *name == '\0')
2658 return 0;
2659
2660 /* Look for a psymtab with the specified name. */
2661
2662 again2:
2663 for (ps = partial_symtab_list; ps; ps = ps->next)
2664 {
2665 if (strcmp (name, ps->filename) == 0)
2666 {
2667 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2668 goto again2; /* Must restart, chain has been munged */
2669 }
2670 }
2671
2672 /* Look for a symtab with the specified name. */
2673
2674 for (s = symtab_list; s; s = s->next)
2675 {
2676 if (strcmp (name, s->filename) == 0)
2677 break;
2678 prev = s;
2679 }
2680
2681 if (s)
2682 {
2683 if (s == symtab_list)
2684 symtab_list = s->next;
2685 else
2686 prev->next = s->next;
2687
2688 /* For now, queue a delete for all breakpoints, displays, etc., whether
2689 or not they depend on the symtab being freed. This should be
2690 changed so that only those data structures affected are deleted. */
2691
2692 /* But don't delete anything if the symtab is empty.
2693 This test is necessary due to a bug in "dbxread.c" that
2694 causes empty symtabs to be created for N_SO symbols that
2695 contain the pathname of the object file. (This problem
2696 has been fixed in GDB 3.9x). */
2697
2698 bv = BLOCKVECTOR (s);
2699 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2700 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2701 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2702 {
2703 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
2704 name);
2705 clear_symtab_users_queued++;
2706 make_cleanup (clear_symtab_users_once, 0);
2707 blewit = 1;
2708 }
2709 else
2710 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2711 name);
2712
2713 free_symtab (s);
2714 }
2715 else
2716 {
2717 /* It is still possible that some breakpoints will be affected
2718 even though no symtab was found, since the file might have
2719 been compiled without debugging, and hence not be associated
2720 with a symtab. In order to handle this correctly, we would need
2721 to keep a list of text address ranges for undebuggable files.
2722 For now, we do nothing, since this is a fairly obscure case. */
2723 ;
2724 }
2725
2726 /* FIXME, what about the minimal symbol table? */
2727 return blewit;
2728 #else
2729 return (0);
2730 #endif
2731 }
2732 \f
2733 /* Allocate and partially fill a partial symtab. It will be
2734 completely filled at the end of the symbol list.
2735
2736 FILENAME is the name of the symbol-file we are reading from. */
2737
2738 struct partial_symtab *
2739 start_psymtab_common (struct objfile *objfile,
2740 struct section_offsets *section_offsets, char *filename,
2741 CORE_ADDR textlow, struct partial_symbol **global_syms,
2742 struct partial_symbol **static_syms)
2743 {
2744 struct partial_symtab *psymtab;
2745
2746 psymtab = allocate_psymtab (filename, objfile);
2747 psymtab->section_offsets = section_offsets;
2748 psymtab->textlow = textlow;
2749 psymtab->texthigh = psymtab->textlow; /* default */
2750 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2751 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2752 return (psymtab);
2753 }
2754 \f
2755 /* Add a symbol with a long value to a psymtab.
2756 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2757 Return the partial symbol that has been added. */
2758
2759 /* NOTE: carlton/2003-09-11: The reason why we return the partial
2760 symbol is so that callers can get access to the symbol's demangled
2761 name, which they don't have any cheap way to determine otherwise.
2762 (Currenly, dwarf2read.c is the only file who uses that information,
2763 though it's possible that other readers might in the future.)
2764 Elena wasn't thrilled about that, and I don't blame her, but we
2765 couldn't come up with a better way to get that information. If
2766 it's needed in other situations, we could consider breaking up
2767 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2768 cache. */
2769
2770 const struct partial_symbol *
2771 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2772 enum address_class class,
2773 struct psymbol_allocation_list *list, long val, /* Value as a long */
2774 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2775 enum language language, struct objfile *objfile)
2776 {
2777 struct partial_symbol *psym;
2778 char *buf = alloca (namelength + 1);
2779 /* psymbol is static so that there will be no uninitialized gaps in the
2780 structure which might contain random data, causing cache misses in
2781 bcache. */
2782 static struct partial_symbol psymbol;
2783
2784 /* Create local copy of the partial symbol */
2785 memcpy (buf, name, namelength);
2786 buf[namelength] = '\0';
2787 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2788 if (val != 0)
2789 {
2790 SYMBOL_VALUE (&psymbol) = val;
2791 }
2792 else
2793 {
2794 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2795 }
2796 SYMBOL_SECTION (&psymbol) = 0;
2797 SYMBOL_LANGUAGE (&psymbol) = language;
2798 PSYMBOL_DOMAIN (&psymbol) = domain;
2799 PSYMBOL_CLASS (&psymbol) = class;
2800
2801 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2802
2803 /* Stash the partial symbol away in the cache */
2804 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2805 objfile->psymbol_cache);
2806
2807 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2808 if (list->next >= list->list + list->size)
2809 {
2810 extend_psymbol_list (list, objfile);
2811 }
2812 *list->next++ = psym;
2813 OBJSTAT (objfile, n_psyms++);
2814
2815 return psym;
2816 }
2817
2818 /* Add a symbol with a long value to a psymtab. This differs from
2819 * add_psymbol_to_list above in taking both a mangled and a demangled
2820 * name. */
2821
2822 void
2823 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2824 int dem_namelength, domain_enum domain,
2825 enum address_class class,
2826 struct psymbol_allocation_list *list, long val, /* Value as a long */
2827 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2828 enum language language,
2829 struct objfile *objfile)
2830 {
2831 struct partial_symbol *psym;
2832 char *buf = alloca (namelength + 1);
2833 /* psymbol is static so that there will be no uninitialized gaps in the
2834 structure which might contain random data, causing cache misses in
2835 bcache. */
2836 static struct partial_symbol psymbol;
2837
2838 /* Create local copy of the partial symbol */
2839
2840 memcpy (buf, name, namelength);
2841 buf[namelength] = '\0';
2842 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2843 objfile->psymbol_cache);
2844
2845 buf = alloca (dem_namelength + 1);
2846 memcpy (buf, dem_name, dem_namelength);
2847 buf[dem_namelength] = '\0';
2848
2849 switch (language)
2850 {
2851 case language_c:
2852 case language_cplus:
2853 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2854 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2855 break;
2856 /* FIXME What should be done for the default case? Ignoring for now. */
2857 }
2858
2859 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2860 if (val != 0)
2861 {
2862 SYMBOL_VALUE (&psymbol) = val;
2863 }
2864 else
2865 {
2866 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2867 }
2868 SYMBOL_SECTION (&psymbol) = 0;
2869 SYMBOL_LANGUAGE (&psymbol) = language;
2870 PSYMBOL_DOMAIN (&psymbol) = domain;
2871 PSYMBOL_CLASS (&psymbol) = class;
2872 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2873
2874 /* Stash the partial symbol away in the cache */
2875 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2876 objfile->psymbol_cache);
2877
2878 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2879 if (list->next >= list->list + list->size)
2880 {
2881 extend_psymbol_list (list, objfile);
2882 }
2883 *list->next++ = psym;
2884 OBJSTAT (objfile, n_psyms++);
2885 }
2886
2887 /* Initialize storage for partial symbols. */
2888
2889 void
2890 init_psymbol_list (struct objfile *objfile, int total_symbols)
2891 {
2892 /* Free any previously allocated psymbol lists. */
2893
2894 if (objfile->global_psymbols.list)
2895 {
2896 xfree (objfile->global_psymbols.list);
2897 }
2898 if (objfile->static_psymbols.list)
2899 {
2900 xfree (objfile->static_psymbols.list);
2901 }
2902
2903 /* Current best guess is that approximately a twentieth
2904 of the total symbols (in a debugging file) are global or static
2905 oriented symbols */
2906
2907 objfile->global_psymbols.size = total_symbols / 10;
2908 objfile->static_psymbols.size = total_symbols / 10;
2909
2910 if (objfile->global_psymbols.size > 0)
2911 {
2912 objfile->global_psymbols.next =
2913 objfile->global_psymbols.list = (struct partial_symbol **)
2914 xmalloc ((objfile->global_psymbols.size
2915 * sizeof (struct partial_symbol *)));
2916 }
2917 if (objfile->static_psymbols.size > 0)
2918 {
2919 objfile->static_psymbols.next =
2920 objfile->static_psymbols.list = (struct partial_symbol **)
2921 xmalloc ((objfile->static_psymbols.size
2922 * sizeof (struct partial_symbol *)));
2923 }
2924 }
2925
2926 /* OVERLAYS:
2927 The following code implements an abstraction for debugging overlay sections.
2928
2929 The target model is as follows:
2930 1) The gnu linker will permit multiple sections to be mapped into the
2931 same VMA, each with its own unique LMA (or load address).
2932 2) It is assumed that some runtime mechanism exists for mapping the
2933 sections, one by one, from the load address into the VMA address.
2934 3) This code provides a mechanism for gdb to keep track of which
2935 sections should be considered to be mapped from the VMA to the LMA.
2936 This information is used for symbol lookup, and memory read/write.
2937 For instance, if a section has been mapped then its contents
2938 should be read from the VMA, otherwise from the LMA.
2939
2940 Two levels of debugger support for overlays are available. One is
2941 "manual", in which the debugger relies on the user to tell it which
2942 overlays are currently mapped. This level of support is
2943 implemented entirely in the core debugger, and the information about
2944 whether a section is mapped is kept in the objfile->obj_section table.
2945
2946 The second level of support is "automatic", and is only available if
2947 the target-specific code provides functionality to read the target's
2948 overlay mapping table, and translate its contents for the debugger
2949 (by updating the mapped state information in the obj_section tables).
2950
2951 The interface is as follows:
2952 User commands:
2953 overlay map <name> -- tell gdb to consider this section mapped
2954 overlay unmap <name> -- tell gdb to consider this section unmapped
2955 overlay list -- list the sections that GDB thinks are mapped
2956 overlay read-target -- get the target's state of what's mapped
2957 overlay off/manual/auto -- set overlay debugging state
2958 Functional interface:
2959 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2960 section, return that section.
2961 find_pc_overlay(pc): find any overlay section that contains
2962 the pc, either in its VMA or its LMA
2963 overlay_is_mapped(sect): true if overlay is marked as mapped
2964 section_is_overlay(sect): true if section's VMA != LMA
2965 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2966 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2967 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2968 overlay_mapped_address(...): map an address from section's LMA to VMA
2969 overlay_unmapped_address(...): map an address from section's VMA to LMA
2970 symbol_overlayed_address(...): Return a "current" address for symbol:
2971 either in VMA or LMA depending on whether
2972 the symbol's section is currently mapped
2973 */
2974
2975 /* Overlay debugging state: */
2976
2977 enum overlay_debugging_state overlay_debugging = ovly_off;
2978 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2979
2980 /* Target vector for refreshing overlay mapped state */
2981 static void simple_overlay_update (struct obj_section *);
2982 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2983
2984 /* Function: section_is_overlay (SECTION)
2985 Returns true if SECTION has VMA not equal to LMA, ie.
2986 SECTION is loaded at an address different from where it will "run". */
2987
2988 int
2989 section_is_overlay (asection *section)
2990 {
2991 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2992
2993 if (overlay_debugging)
2994 if (section && section->lma != 0 &&
2995 section->vma != section->lma)
2996 return 1;
2997
2998 return 0;
2999 }
3000
3001 /* Function: overlay_invalidate_all (void)
3002 Invalidate the mapped state of all overlay sections (mark it as stale). */
3003
3004 static void
3005 overlay_invalidate_all (void)
3006 {
3007 struct objfile *objfile;
3008 struct obj_section *sect;
3009
3010 ALL_OBJSECTIONS (objfile, sect)
3011 if (section_is_overlay (sect->the_bfd_section))
3012 sect->ovly_mapped = -1;
3013 }
3014
3015 /* Function: overlay_is_mapped (SECTION)
3016 Returns true if section is an overlay, and is currently mapped.
3017 Private: public access is thru function section_is_mapped.
3018
3019 Access to the ovly_mapped flag is restricted to this function, so
3020 that we can do automatic update. If the global flag
3021 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3022 overlay_invalidate_all. If the mapped state of the particular
3023 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3024
3025 static int
3026 overlay_is_mapped (struct obj_section *osect)
3027 {
3028 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3029 return 0;
3030
3031 switch (overlay_debugging)
3032 {
3033 default:
3034 case ovly_off:
3035 return 0; /* overlay debugging off */
3036 case ovly_auto: /* overlay debugging automatic */
3037 /* Unles there is a target_overlay_update function,
3038 there's really nothing useful to do here (can't really go auto) */
3039 if (target_overlay_update)
3040 {
3041 if (overlay_cache_invalid)
3042 {
3043 overlay_invalidate_all ();
3044 overlay_cache_invalid = 0;
3045 }
3046 if (osect->ovly_mapped == -1)
3047 (*target_overlay_update) (osect);
3048 }
3049 /* fall thru to manual case */
3050 case ovly_on: /* overlay debugging manual */
3051 return osect->ovly_mapped == 1;
3052 }
3053 }
3054
3055 /* Function: section_is_mapped
3056 Returns true if section is an overlay, and is currently mapped. */
3057
3058 int
3059 section_is_mapped (asection *section)
3060 {
3061 struct objfile *objfile;
3062 struct obj_section *osect;
3063
3064 if (overlay_debugging)
3065 if (section && section_is_overlay (section))
3066 ALL_OBJSECTIONS (objfile, osect)
3067 if (osect->the_bfd_section == section)
3068 return overlay_is_mapped (osect);
3069
3070 return 0;
3071 }
3072
3073 /* Function: pc_in_unmapped_range
3074 If PC falls into the lma range of SECTION, return true, else false. */
3075
3076 CORE_ADDR
3077 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
3078 {
3079 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3080
3081 int size;
3082
3083 if (overlay_debugging)
3084 if (section && section_is_overlay (section))
3085 {
3086 size = bfd_get_section_size (section);
3087 if (section->lma <= pc && pc < section->lma + size)
3088 return 1;
3089 }
3090 return 0;
3091 }
3092
3093 /* Function: pc_in_mapped_range
3094 If PC falls into the vma range of SECTION, return true, else false. */
3095
3096 CORE_ADDR
3097 pc_in_mapped_range (CORE_ADDR pc, asection *section)
3098 {
3099 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3100
3101 int size;
3102
3103 if (overlay_debugging)
3104 if (section && section_is_overlay (section))
3105 {
3106 size = bfd_get_section_size (section);
3107 if (section->vma <= pc && pc < section->vma + size)
3108 return 1;
3109 }
3110 return 0;
3111 }
3112
3113
3114 /* Return true if the mapped ranges of sections A and B overlap, false
3115 otherwise. */
3116 static int
3117 sections_overlap (asection *a, asection *b)
3118 {
3119 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3120
3121 CORE_ADDR a_start = a->vma;
3122 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
3123 CORE_ADDR b_start = b->vma;
3124 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
3125
3126 return (a_start < b_end && b_start < a_end);
3127 }
3128
3129 /* Function: overlay_unmapped_address (PC, SECTION)
3130 Returns the address corresponding to PC in the unmapped (load) range.
3131 May be the same as PC. */
3132
3133 CORE_ADDR
3134 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3135 {
3136 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3137
3138 if (overlay_debugging)
3139 if (section && section_is_overlay (section) &&
3140 pc_in_mapped_range (pc, section))
3141 return pc + section->lma - section->vma;
3142
3143 return pc;
3144 }
3145
3146 /* Function: overlay_mapped_address (PC, SECTION)
3147 Returns the address corresponding to PC in the mapped (runtime) range.
3148 May be the same as PC. */
3149
3150 CORE_ADDR
3151 overlay_mapped_address (CORE_ADDR pc, asection *section)
3152 {
3153 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3154
3155 if (overlay_debugging)
3156 if (section && section_is_overlay (section) &&
3157 pc_in_unmapped_range (pc, section))
3158 return pc + section->vma - section->lma;
3159
3160 return pc;
3161 }
3162
3163
3164 /* Function: symbol_overlayed_address
3165 Return one of two addresses (relative to the VMA or to the LMA),
3166 depending on whether the section is mapped or not. */
3167
3168 CORE_ADDR
3169 symbol_overlayed_address (CORE_ADDR address, asection *section)
3170 {
3171 if (overlay_debugging)
3172 {
3173 /* If the symbol has no section, just return its regular address. */
3174 if (section == 0)
3175 return address;
3176 /* If the symbol's section is not an overlay, just return its address */
3177 if (!section_is_overlay (section))
3178 return address;
3179 /* If the symbol's section is mapped, just return its address */
3180 if (section_is_mapped (section))
3181 return address;
3182 /*
3183 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3184 * then return its LOADED address rather than its vma address!!
3185 */
3186 return overlay_unmapped_address (address, section);
3187 }
3188 return address;
3189 }
3190
3191 /* Function: find_pc_overlay (PC)
3192 Return the best-match overlay section for PC:
3193 If PC matches a mapped overlay section's VMA, return that section.
3194 Else if PC matches an unmapped section's VMA, return that section.
3195 Else if PC matches an unmapped section's LMA, return that section. */
3196
3197 asection *
3198 find_pc_overlay (CORE_ADDR pc)
3199 {
3200 struct objfile *objfile;
3201 struct obj_section *osect, *best_match = NULL;
3202
3203 if (overlay_debugging)
3204 ALL_OBJSECTIONS (objfile, osect)
3205 if (section_is_overlay (osect->the_bfd_section))
3206 {
3207 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3208 {
3209 if (overlay_is_mapped (osect))
3210 return osect->the_bfd_section;
3211 else
3212 best_match = osect;
3213 }
3214 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3215 best_match = osect;
3216 }
3217 return best_match ? best_match->the_bfd_section : NULL;
3218 }
3219
3220 /* Function: find_pc_mapped_section (PC)
3221 If PC falls into the VMA address range of an overlay section that is
3222 currently marked as MAPPED, return that section. Else return NULL. */
3223
3224 asection *
3225 find_pc_mapped_section (CORE_ADDR pc)
3226 {
3227 struct objfile *objfile;
3228 struct obj_section *osect;
3229
3230 if (overlay_debugging)
3231 ALL_OBJSECTIONS (objfile, osect)
3232 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3233 overlay_is_mapped (osect))
3234 return osect->the_bfd_section;
3235
3236 return NULL;
3237 }
3238
3239 /* Function: list_overlays_command
3240 Print a list of mapped sections and their PC ranges */
3241
3242 void
3243 list_overlays_command (char *args, int from_tty)
3244 {
3245 int nmapped = 0;
3246 struct objfile *objfile;
3247 struct obj_section *osect;
3248
3249 if (overlay_debugging)
3250 ALL_OBJSECTIONS (objfile, osect)
3251 if (overlay_is_mapped (osect))
3252 {
3253 const char *name;
3254 bfd_vma lma, vma;
3255 int size;
3256
3257 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3258 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3259 size = bfd_get_section_size (osect->the_bfd_section);
3260 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3261
3262 printf_filtered ("Section %s, loaded at ", name);
3263 deprecated_print_address_numeric (lma, 1, gdb_stdout);
3264 puts_filtered (" - ");
3265 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
3266 printf_filtered (", mapped at ");
3267 deprecated_print_address_numeric (vma, 1, gdb_stdout);
3268 puts_filtered (" - ");
3269 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
3270 puts_filtered ("\n");
3271
3272 nmapped++;
3273 }
3274 if (nmapped == 0)
3275 printf_filtered (_("No sections are mapped.\n"));
3276 }
3277
3278 /* Function: map_overlay_command
3279 Mark the named section as mapped (ie. residing at its VMA address). */
3280
3281 void
3282 map_overlay_command (char *args, int from_tty)
3283 {
3284 struct objfile *objfile, *objfile2;
3285 struct obj_section *sec, *sec2;
3286 asection *bfdsec;
3287
3288 if (!overlay_debugging)
3289 error (_("\
3290 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3291 the 'overlay manual' command."));
3292
3293 if (args == 0 || *args == 0)
3294 error (_("Argument required: name of an overlay section"));
3295
3296 /* First, find a section matching the user supplied argument */
3297 ALL_OBJSECTIONS (objfile, sec)
3298 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3299 {
3300 /* Now, check to see if the section is an overlay. */
3301 bfdsec = sec->the_bfd_section;
3302 if (!section_is_overlay (bfdsec))
3303 continue; /* not an overlay section */
3304
3305 /* Mark the overlay as "mapped" */
3306 sec->ovly_mapped = 1;
3307
3308 /* Next, make a pass and unmap any sections that are
3309 overlapped by this new section: */
3310 ALL_OBJSECTIONS (objfile2, sec2)
3311 if (sec2->ovly_mapped
3312 && sec != sec2
3313 && sec->the_bfd_section != sec2->the_bfd_section
3314 && sections_overlap (sec->the_bfd_section,
3315 sec2->the_bfd_section))
3316 {
3317 if (info_verbose)
3318 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3319 bfd_section_name (objfile->obfd,
3320 sec2->the_bfd_section));
3321 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3322 }
3323 return;
3324 }
3325 error (_("No overlay section called %s"), args);
3326 }
3327
3328 /* Function: unmap_overlay_command
3329 Mark the overlay section as unmapped
3330 (ie. resident in its LMA address range, rather than the VMA range). */
3331
3332 void
3333 unmap_overlay_command (char *args, int from_tty)
3334 {
3335 struct objfile *objfile;
3336 struct obj_section *sec;
3337
3338 if (!overlay_debugging)
3339 error (_("\
3340 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3341 the 'overlay manual' command."));
3342
3343 if (args == 0 || *args == 0)
3344 error (_("Argument required: name of an overlay section"));
3345
3346 /* First, find a section matching the user supplied argument */
3347 ALL_OBJSECTIONS (objfile, sec)
3348 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3349 {
3350 if (!sec->ovly_mapped)
3351 error (_("Section %s is not mapped"), args);
3352 sec->ovly_mapped = 0;
3353 return;
3354 }
3355 error (_("No overlay section called %s"), args);
3356 }
3357
3358 /* Function: overlay_auto_command
3359 A utility command to turn on overlay debugging.
3360 Possibly this should be done via a set/show command. */
3361
3362 static void
3363 overlay_auto_command (char *args, int from_tty)
3364 {
3365 overlay_debugging = ovly_auto;
3366 enable_overlay_breakpoints ();
3367 if (info_verbose)
3368 printf_unfiltered (_("Automatic overlay debugging enabled."));
3369 }
3370
3371 /* Function: overlay_manual_command
3372 A utility command to turn on overlay debugging.
3373 Possibly this should be done via a set/show command. */
3374
3375 static void
3376 overlay_manual_command (char *args, int from_tty)
3377 {
3378 overlay_debugging = ovly_on;
3379 disable_overlay_breakpoints ();
3380 if (info_verbose)
3381 printf_unfiltered (_("Overlay debugging enabled."));
3382 }
3383
3384 /* Function: overlay_off_command
3385 A utility command to turn on overlay debugging.
3386 Possibly this should be done via a set/show command. */
3387
3388 static void
3389 overlay_off_command (char *args, int from_tty)
3390 {
3391 overlay_debugging = ovly_off;
3392 disable_overlay_breakpoints ();
3393 if (info_verbose)
3394 printf_unfiltered (_("Overlay debugging disabled."));
3395 }
3396
3397 static void
3398 overlay_load_command (char *args, int from_tty)
3399 {
3400 if (target_overlay_update)
3401 (*target_overlay_update) (NULL);
3402 else
3403 error (_("This target does not know how to read its overlay state."));
3404 }
3405
3406 /* Function: overlay_command
3407 A place-holder for a mis-typed command */
3408
3409 /* Command list chain containing all defined "overlay" subcommands. */
3410 struct cmd_list_element *overlaylist;
3411
3412 static void
3413 overlay_command (char *args, int from_tty)
3414 {
3415 printf_unfiltered
3416 ("\"overlay\" must be followed by the name of an overlay command.\n");
3417 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3418 }
3419
3420
3421 /* Target Overlays for the "Simplest" overlay manager:
3422
3423 This is GDB's default target overlay layer. It works with the
3424 minimal overlay manager supplied as an example by Cygnus. The
3425 entry point is via a function pointer "target_overlay_update",
3426 so targets that use a different runtime overlay manager can
3427 substitute their own overlay_update function and take over the
3428 function pointer.
3429
3430 The overlay_update function pokes around in the target's data structures
3431 to see what overlays are mapped, and updates GDB's overlay mapping with
3432 this information.
3433
3434 In this simple implementation, the target data structures are as follows:
3435 unsigned _novlys; /# number of overlay sections #/
3436 unsigned _ovly_table[_novlys][4] = {
3437 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3438 {..., ..., ..., ...},
3439 }
3440 unsigned _novly_regions; /# number of overlay regions #/
3441 unsigned _ovly_region_table[_novly_regions][3] = {
3442 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3443 {..., ..., ...},
3444 }
3445 These functions will attempt to update GDB's mappedness state in the
3446 symbol section table, based on the target's mappedness state.
3447
3448 To do this, we keep a cached copy of the target's _ovly_table, and
3449 attempt to detect when the cached copy is invalidated. The main
3450 entry point is "simple_overlay_update(SECT), which looks up SECT in
3451 the cached table and re-reads only the entry for that section from
3452 the target (whenever possible).
3453 */
3454
3455 /* Cached, dynamically allocated copies of the target data structures: */
3456 static unsigned (*cache_ovly_table)[4] = 0;
3457 #if 0
3458 static unsigned (*cache_ovly_region_table)[3] = 0;
3459 #endif
3460 static unsigned cache_novlys = 0;
3461 #if 0
3462 static unsigned cache_novly_regions = 0;
3463 #endif
3464 static CORE_ADDR cache_ovly_table_base = 0;
3465 #if 0
3466 static CORE_ADDR cache_ovly_region_table_base = 0;
3467 #endif
3468 enum ovly_index
3469 {
3470 VMA, SIZE, LMA, MAPPED
3471 };
3472 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3473
3474 /* Throw away the cached copy of _ovly_table */
3475 static void
3476 simple_free_overlay_table (void)
3477 {
3478 if (cache_ovly_table)
3479 xfree (cache_ovly_table);
3480 cache_novlys = 0;
3481 cache_ovly_table = NULL;
3482 cache_ovly_table_base = 0;
3483 }
3484
3485 #if 0
3486 /* Throw away the cached copy of _ovly_region_table */
3487 static void
3488 simple_free_overlay_region_table (void)
3489 {
3490 if (cache_ovly_region_table)
3491 xfree (cache_ovly_region_table);
3492 cache_novly_regions = 0;
3493 cache_ovly_region_table = NULL;
3494 cache_ovly_region_table_base = 0;
3495 }
3496 #endif
3497
3498 /* Read an array of ints from the target into a local buffer.
3499 Convert to host order. int LEN is number of ints */
3500 static void
3501 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3502 {
3503 /* FIXME (alloca): Not safe if array is very large. */
3504 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3505 int i;
3506
3507 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3508 for (i = 0; i < len; i++)
3509 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3510 TARGET_LONG_BYTES);
3511 }
3512
3513 /* Find and grab a copy of the target _ovly_table
3514 (and _novlys, which is needed for the table's size) */
3515 static int
3516 simple_read_overlay_table (void)
3517 {
3518 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3519
3520 simple_free_overlay_table ();
3521 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3522 if (! novlys_msym)
3523 {
3524 error (_("Error reading inferior's overlay table: "
3525 "couldn't find `_novlys' variable\n"
3526 "in inferior. Use `overlay manual' mode."));
3527 return 0;
3528 }
3529
3530 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3531 if (! ovly_table_msym)
3532 {
3533 error (_("Error reading inferior's overlay table: couldn't find "
3534 "`_ovly_table' array\n"
3535 "in inferior. Use `overlay manual' mode."));
3536 return 0;
3537 }
3538
3539 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3540 cache_ovly_table
3541 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3542 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3543 read_target_long_array (cache_ovly_table_base,
3544 (unsigned int *) cache_ovly_table,
3545 cache_novlys * 4);
3546
3547 return 1; /* SUCCESS */
3548 }
3549
3550 #if 0
3551 /* Find and grab a copy of the target _ovly_region_table
3552 (and _novly_regions, which is needed for the table's size) */
3553 static int
3554 simple_read_overlay_region_table (void)
3555 {
3556 struct minimal_symbol *msym;
3557
3558 simple_free_overlay_region_table ();
3559 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3560 if (msym != NULL)
3561 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3562 else
3563 return 0; /* failure */
3564 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3565 if (cache_ovly_region_table != NULL)
3566 {
3567 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3568 if (msym != NULL)
3569 {
3570 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3571 read_target_long_array (cache_ovly_region_table_base,
3572 (unsigned int *) cache_ovly_region_table,
3573 cache_novly_regions * 3);
3574 }
3575 else
3576 return 0; /* failure */
3577 }
3578 else
3579 return 0; /* failure */
3580 return 1; /* SUCCESS */
3581 }
3582 #endif
3583
3584 /* Function: simple_overlay_update_1
3585 A helper function for simple_overlay_update. Assuming a cached copy
3586 of _ovly_table exists, look through it to find an entry whose vma,
3587 lma and size match those of OSECT. Re-read the entry and make sure
3588 it still matches OSECT (else the table may no longer be valid).
3589 Set OSECT's mapped state to match the entry. Return: 1 for
3590 success, 0 for failure. */
3591
3592 static int
3593 simple_overlay_update_1 (struct obj_section *osect)
3594 {
3595 int i, size;
3596 bfd *obfd = osect->objfile->obfd;
3597 asection *bsect = osect->the_bfd_section;
3598
3599 size = bfd_get_section_size (osect->the_bfd_section);
3600 for (i = 0; i < cache_novlys; i++)
3601 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3602 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3603 /* && cache_ovly_table[i][SIZE] == size */ )
3604 {
3605 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3606 (unsigned int *) cache_ovly_table[i], 4);
3607 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3608 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3609 /* && cache_ovly_table[i][SIZE] == size */ )
3610 {
3611 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3612 return 1;
3613 }
3614 else /* Warning! Warning! Target's ovly table has changed! */
3615 return 0;
3616 }
3617 return 0;
3618 }
3619
3620 /* Function: simple_overlay_update
3621 If OSECT is NULL, then update all sections' mapped state
3622 (after re-reading the entire target _ovly_table).
3623 If OSECT is non-NULL, then try to find a matching entry in the
3624 cached ovly_table and update only OSECT's mapped state.
3625 If a cached entry can't be found or the cache isn't valid, then
3626 re-read the entire cache, and go ahead and update all sections. */
3627
3628 static void
3629 simple_overlay_update (struct obj_section *osect)
3630 {
3631 struct objfile *objfile;
3632
3633 /* Were we given an osect to look up? NULL means do all of them. */
3634 if (osect)
3635 /* Have we got a cached copy of the target's overlay table? */
3636 if (cache_ovly_table != NULL)
3637 /* Does its cached location match what's currently in the symtab? */
3638 if (cache_ovly_table_base ==
3639 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3640 /* Then go ahead and try to look up this single section in the cache */
3641 if (simple_overlay_update_1 (osect))
3642 /* Found it! We're done. */
3643 return;
3644
3645 /* Cached table no good: need to read the entire table anew.
3646 Or else we want all the sections, in which case it's actually
3647 more efficient to read the whole table in one block anyway. */
3648
3649 if (! simple_read_overlay_table ())
3650 return;
3651
3652 /* Now may as well update all sections, even if only one was requested. */
3653 ALL_OBJSECTIONS (objfile, osect)
3654 if (section_is_overlay (osect->the_bfd_section))
3655 {
3656 int i, size;
3657 bfd *obfd = osect->objfile->obfd;
3658 asection *bsect = osect->the_bfd_section;
3659
3660 size = bfd_get_section_size (bsect);
3661 for (i = 0; i < cache_novlys; i++)
3662 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3663 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3664 /* && cache_ovly_table[i][SIZE] == size */ )
3665 { /* obj_section matches i'th entry in ovly_table */
3666 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3667 break; /* finished with inner for loop: break out */
3668 }
3669 }
3670 }
3671
3672 /* Set the output sections and output offsets for section SECTP in
3673 ABFD. The relocation code in BFD will read these offsets, so we
3674 need to be sure they're initialized. We map each section to itself,
3675 with no offset; this means that SECTP->vma will be honored. */
3676
3677 static void
3678 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3679 {
3680 sectp->output_section = sectp;
3681 sectp->output_offset = 0;
3682 }
3683
3684 /* Relocate the contents of a debug section SECTP in ABFD. The
3685 contents are stored in BUF if it is non-NULL, or returned in a
3686 malloc'd buffer otherwise.
3687
3688 For some platforms and debug info formats, shared libraries contain
3689 relocations against the debug sections (particularly for DWARF-2;
3690 one affected platform is PowerPC GNU/Linux, although it depends on
3691 the version of the linker in use). Also, ELF object files naturally
3692 have unresolved relocations for their debug sections. We need to apply
3693 the relocations in order to get the locations of symbols correct. */
3694
3695 bfd_byte *
3696 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3697 {
3698 /* We're only interested in debugging sections with relocation
3699 information. */
3700 if ((sectp->flags & SEC_RELOC) == 0)
3701 return NULL;
3702 if ((sectp->flags & SEC_DEBUGGING) == 0)
3703 return NULL;
3704
3705 /* We will handle section offsets properly elsewhere, so relocate as if
3706 all sections begin at 0. */
3707 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3708
3709 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3710 }
3711
3712 void
3713 _initialize_symfile (void)
3714 {
3715 struct cmd_list_element *c;
3716
3717 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3718 Load symbol table from executable file FILE.\n\
3719 The `file' command can also load symbol tables, as well as setting the file\n\
3720 to execute."), &cmdlist);
3721 set_cmd_completer (c, filename_completer);
3722
3723 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3724 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3725 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3726 ADDR is the starting address of the file's text.\n\
3727 The optional arguments are section-name section-address pairs and\n\
3728 should be specified if the data and bss segments are not contiguous\n\
3729 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3730 &cmdlist);
3731 set_cmd_completer (c, filename_completer);
3732
3733 c = add_cmd ("add-shared-symbol-files", class_files,
3734 add_shared_symbol_files_command, _("\
3735 Load the symbols from shared objects in the dynamic linker's link map."),
3736 &cmdlist);
3737 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3738 &cmdlist);
3739
3740 c = add_cmd ("load", class_files, load_command, _("\
3741 Dynamically load FILE into the running program, and record its symbols\n\
3742 for access from GDB.\n\
3743 A load OFFSET may also be given."), &cmdlist);
3744 set_cmd_completer (c, filename_completer);
3745
3746 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3747 &symbol_reloading, _("\
3748 Set dynamic symbol table reloading multiple times in one run."), _("\
3749 Show dynamic symbol table reloading multiple times in one run."), NULL,
3750 NULL,
3751 show_symbol_reloading,
3752 &setlist, &showlist);
3753
3754 add_prefix_cmd ("overlay", class_support, overlay_command,
3755 _("Commands for debugging overlays."), &overlaylist,
3756 "overlay ", 0, &cmdlist);
3757
3758 add_com_alias ("ovly", "overlay", class_alias, 1);
3759 add_com_alias ("ov", "overlay", class_alias, 1);
3760
3761 add_cmd ("map-overlay", class_support, map_overlay_command,
3762 _("Assert that an overlay section is mapped."), &overlaylist);
3763
3764 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3765 _("Assert that an overlay section is unmapped."), &overlaylist);
3766
3767 add_cmd ("list-overlays", class_support, list_overlays_command,
3768 _("List mappings of overlay sections."), &overlaylist);
3769
3770 add_cmd ("manual", class_support, overlay_manual_command,
3771 _("Enable overlay debugging."), &overlaylist);
3772 add_cmd ("off", class_support, overlay_off_command,
3773 _("Disable overlay debugging."), &overlaylist);
3774 add_cmd ("auto", class_support, overlay_auto_command,
3775 _("Enable automatic overlay debugging."), &overlaylist);
3776 add_cmd ("load-target", class_support, overlay_load_command,
3777 _("Read the overlay mapping state from the target."), &overlaylist);
3778
3779 /* Filename extension to source language lookup table: */
3780 init_filename_language_table ();
3781 add_setshow_string_noescape_cmd ("extension-language", class_files,
3782 &ext_args, _("\
3783 Set mapping between filename extension and source language."), _("\
3784 Show mapping between filename extension and source language."), _("\
3785 Usage: set extension-language .foo bar"),
3786 set_ext_lang_command,
3787 show_ext_args,
3788 &setlist, &showlist);
3789
3790 add_info ("extensions", info_ext_lang_command,
3791 _("All filename extensions associated with a source language."));
3792
3793 debug_file_directory = xstrdup (DEBUGDIR);
3794 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3795 &debug_file_directory, _("\
3796 Set the directory where separate debug symbols are searched for."), _("\
3797 Show the directory where separate debug symbols are searched for."), _("\
3798 Separate debug symbols are first searched for in the same\n\
3799 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3800 and lastly at the path of the directory of the binary with\n\
3801 the global debug-file directory prepended."),
3802 NULL,
3803 show_debug_file_directory,
3804 &setlist, &showlist);
3805 }
This page took 0.102445 seconds and 5 git commands to generate.