Move init_entry_point_info to symfile.c and make it static.
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2012 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57 #include "stack.h"
58 #include "gdb_bfd.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
72 void (*deprecated_show_load_progress) (const char *section,
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
76 unsigned long total_size);
77 void (*deprecated_pre_add_symbol_hook) (const char *);
78 void (*deprecated_post_add_symbol_hook) (void);
79
80 static void clear_symtab_users_cleanup (void *ignore);
81
82 /* Global variables owned by this file. */
83 int readnow_symbol_files; /* Read full symbols immediately. */
84
85 /* Functions this file defines. */
86
87 static void load_command (char *, int);
88
89 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
90
91 static void add_symbol_file_command (char *, int);
92
93 bfd *symfile_bfd_open (char *);
94
95 int get_section_index (struct objfile *, char *);
96
97 static const struct sym_fns *find_sym_fns (bfd *);
98
99 static void decrement_reading_symtab (void *);
100
101 static void overlay_invalidate_all (void);
102
103 void list_overlays_command (char *, int);
104
105 void map_overlay_command (char *, int);
106
107 void unmap_overlay_command (char *, int);
108
109 static void overlay_auto_command (char *, int);
110
111 static void overlay_manual_command (char *, int);
112
113 static void overlay_off_command (char *, int);
114
115 static void overlay_load_command (char *, int);
116
117 static void overlay_command (char *, int);
118
119 static void simple_free_overlay_table (void);
120
121 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
122 enum bfd_endian);
123
124 static int simple_read_overlay_table (void);
125
126 static int simple_overlay_update_1 (struct obj_section *);
127
128 static void add_filename_language (char *ext, enum language lang);
129
130 static void info_ext_lang_command (char *args, int from_tty);
131
132 static void init_filename_language_table (void);
133
134 static void symfile_find_segment_sections (struct objfile *objfile);
135
136 void _initialize_symfile (void);
137
138 /* List of all available sym_fns. On gdb startup, each object file reader
139 calls add_symtab_fns() to register information on each format it is
140 prepared to read. */
141
142 typedef const struct sym_fns *sym_fns_ptr;
143 DEF_VEC_P (sym_fns_ptr);
144
145 static VEC (sym_fns_ptr) *symtab_fns = NULL;
146
147 /* If non-zero, shared library symbols will be added automatically
148 when the inferior is created, new libraries are loaded, or when
149 attaching to the inferior. This is almost always what users will
150 want to have happen; but for very large programs, the startup time
151 will be excessive, and so if this is a problem, the user can clear
152 this flag and then add the shared library symbols as needed. Note
153 that there is a potential for confusion, since if the shared
154 library symbols are not loaded, commands like "info fun" will *not*
155 report all the functions that are actually present. */
156
157 int auto_solib_add = 1;
158 \f
159
160 /* Make a null terminated copy of the string at PTR with SIZE characters in
161 the obstack pointed to by OBSTACKP . Returns the address of the copy.
162 Note that the string at PTR does not have to be null terminated, I.e. it
163 may be part of a larger string and we are only saving a substring. */
164
165 char *
166 obsavestring (const char *ptr, int size, struct obstack *obstackp)
167 {
168 char *p = (char *) obstack_alloc (obstackp, size + 1);
169 /* Open-coded memcpy--saves function call time. These strings are usually
170 short. FIXME: Is this really still true with a compiler that can
171 inline memcpy? */
172 {
173 const char *p1 = ptr;
174 char *p2 = p;
175 const char *end = ptr + size;
176
177 while (p1 != end)
178 *p2++ = *p1++;
179 }
180 p[size] = 0;
181 return p;
182 }
183
184 /* Concatenate NULL terminated variable argument list of `const char *'
185 strings; return the new string. Space is found in the OBSTACKP.
186 Argument list must be terminated by a sentinel expression `(char *)
187 NULL'. */
188
189 char *
190 obconcat (struct obstack *obstackp, ...)
191 {
192 va_list ap;
193
194 va_start (ap, obstackp);
195 for (;;)
196 {
197 const char *s = va_arg (ap, const char *);
198
199 if (s == NULL)
200 break;
201
202 obstack_grow_str (obstackp, s);
203 }
204 va_end (ap);
205 obstack_1grow (obstackp, 0);
206
207 return obstack_finish (obstackp);
208 }
209
210 /* True if we are reading a symbol table. */
211
212 int currently_reading_symtab = 0;
213
214 static void
215 decrement_reading_symtab (void *dummy)
216 {
217 currently_reading_symtab--;
218 }
219
220 /* Increment currently_reading_symtab and return a cleanup that can be
221 used to decrement it. */
222 struct cleanup *
223 increment_reading_symtab (void)
224 {
225 ++currently_reading_symtab;
226 return make_cleanup (decrement_reading_symtab, NULL);
227 }
228
229 /* Remember the lowest-addressed loadable section we've seen.
230 This function is called via bfd_map_over_sections.
231
232 In case of equal vmas, the section with the largest size becomes the
233 lowest-addressed loadable section.
234
235 If the vmas and sizes are equal, the last section is considered the
236 lowest-addressed loadable section. */
237
238 void
239 find_lowest_section (bfd *abfd, asection *sect, void *obj)
240 {
241 asection **lowest = (asection **) obj;
242
243 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
244 return;
245 if (!*lowest)
246 *lowest = sect; /* First loadable section */
247 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
248 *lowest = sect; /* A lower loadable section */
249 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
250 && (bfd_section_size (abfd, (*lowest))
251 <= bfd_section_size (abfd, sect)))
252 *lowest = sect;
253 }
254
255 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
256
257 struct section_addr_info *
258 alloc_section_addr_info (size_t num_sections)
259 {
260 struct section_addr_info *sap;
261 size_t size;
262
263 size = (sizeof (struct section_addr_info)
264 + sizeof (struct other_sections) * (num_sections - 1));
265 sap = (struct section_addr_info *) xmalloc (size);
266 memset (sap, 0, size);
267 sap->num_sections = num_sections;
268
269 return sap;
270 }
271
272 /* Build (allocate and populate) a section_addr_info struct from
273 an existing section table. */
274
275 extern struct section_addr_info *
276 build_section_addr_info_from_section_table (const struct target_section *start,
277 const struct target_section *end)
278 {
279 struct section_addr_info *sap;
280 const struct target_section *stp;
281 int oidx;
282
283 sap = alloc_section_addr_info (end - start);
284
285 for (stp = start, oidx = 0; stp != end; stp++)
286 {
287 if (bfd_get_section_flags (stp->bfd,
288 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
289 && oidx < end - start)
290 {
291 sap->other[oidx].addr = stp->addr;
292 sap->other[oidx].name
293 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
294 sap->other[oidx].sectindex = stp->the_bfd_section->index;
295 oidx++;
296 }
297 }
298
299 return sap;
300 }
301
302 /* Create a section_addr_info from section offsets in ABFD. */
303
304 static struct section_addr_info *
305 build_section_addr_info_from_bfd (bfd *abfd)
306 {
307 struct section_addr_info *sap;
308 int i;
309 struct bfd_section *sec;
310
311 sap = alloc_section_addr_info (bfd_count_sections (abfd));
312 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
313 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
314 {
315 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
316 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
317 sap->other[i].sectindex = sec->index;
318 i++;
319 }
320 return sap;
321 }
322
323 /* Create a section_addr_info from section offsets in OBJFILE. */
324
325 struct section_addr_info *
326 build_section_addr_info_from_objfile (const struct objfile *objfile)
327 {
328 struct section_addr_info *sap;
329 int i;
330
331 /* Before reread_symbols gets rewritten it is not safe to call:
332 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
333 */
334 sap = build_section_addr_info_from_bfd (objfile->obfd);
335 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
336 {
337 int sectindex = sap->other[i].sectindex;
338
339 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
340 }
341 return sap;
342 }
343
344 /* Free all memory allocated by build_section_addr_info_from_section_table. */
345
346 extern void
347 free_section_addr_info (struct section_addr_info *sap)
348 {
349 int idx;
350
351 for (idx = 0; idx < sap->num_sections; idx++)
352 if (sap->other[idx].name)
353 xfree (sap->other[idx].name);
354 xfree (sap);
355 }
356
357
358 /* Initialize OBJFILE's sect_index_* members. */
359 static void
360 init_objfile_sect_indices (struct objfile *objfile)
361 {
362 asection *sect;
363 int i;
364
365 sect = bfd_get_section_by_name (objfile->obfd, ".text");
366 if (sect)
367 objfile->sect_index_text = sect->index;
368
369 sect = bfd_get_section_by_name (objfile->obfd, ".data");
370 if (sect)
371 objfile->sect_index_data = sect->index;
372
373 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
374 if (sect)
375 objfile->sect_index_bss = sect->index;
376
377 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
378 if (sect)
379 objfile->sect_index_rodata = sect->index;
380
381 /* This is where things get really weird... We MUST have valid
382 indices for the various sect_index_* members or gdb will abort.
383 So if for example, there is no ".text" section, we have to
384 accomodate that. First, check for a file with the standard
385 one or two segments. */
386
387 symfile_find_segment_sections (objfile);
388
389 /* Except when explicitly adding symbol files at some address,
390 section_offsets contains nothing but zeros, so it doesn't matter
391 which slot in section_offsets the individual sect_index_* members
392 index into. So if they are all zero, it is safe to just point
393 all the currently uninitialized indices to the first slot. But
394 beware: if this is the main executable, it may be relocated
395 later, e.g. by the remote qOffsets packet, and then this will
396 be wrong! That's why we try segments first. */
397
398 for (i = 0; i < objfile->num_sections; i++)
399 {
400 if (ANOFFSET (objfile->section_offsets, i) != 0)
401 {
402 break;
403 }
404 }
405 if (i == objfile->num_sections)
406 {
407 if (objfile->sect_index_text == -1)
408 objfile->sect_index_text = 0;
409 if (objfile->sect_index_data == -1)
410 objfile->sect_index_data = 0;
411 if (objfile->sect_index_bss == -1)
412 objfile->sect_index_bss = 0;
413 if (objfile->sect_index_rodata == -1)
414 objfile->sect_index_rodata = 0;
415 }
416 }
417
418 /* The arguments to place_section. */
419
420 struct place_section_arg
421 {
422 struct section_offsets *offsets;
423 CORE_ADDR lowest;
424 };
425
426 /* Find a unique offset to use for loadable section SECT if
427 the user did not provide an offset. */
428
429 static void
430 place_section (bfd *abfd, asection *sect, void *obj)
431 {
432 struct place_section_arg *arg = obj;
433 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
434 int done;
435 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
436
437 /* We are only interested in allocated sections. */
438 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
439 return;
440
441 /* If the user specified an offset, honor it. */
442 if (offsets[sect->index] != 0)
443 return;
444
445 /* Otherwise, let's try to find a place for the section. */
446 start_addr = (arg->lowest + align - 1) & -align;
447
448 do {
449 asection *cur_sec;
450
451 done = 1;
452
453 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
454 {
455 int indx = cur_sec->index;
456
457 /* We don't need to compare against ourself. */
458 if (cur_sec == sect)
459 continue;
460
461 /* We can only conflict with allocated sections. */
462 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
463 continue;
464
465 /* If the section offset is 0, either the section has not been placed
466 yet, or it was the lowest section placed (in which case LOWEST
467 will be past its end). */
468 if (offsets[indx] == 0)
469 continue;
470
471 /* If this section would overlap us, then we must move up. */
472 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
473 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
474 {
475 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
476 start_addr = (start_addr + align - 1) & -align;
477 done = 0;
478 break;
479 }
480
481 /* Otherwise, we appear to be OK. So far. */
482 }
483 }
484 while (!done);
485
486 offsets[sect->index] = start_addr;
487 arg->lowest = start_addr + bfd_get_section_size (sect);
488 }
489
490 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
491 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
492 entries. */
493
494 void
495 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
496 int num_sections,
497 struct section_addr_info *addrs)
498 {
499 int i;
500
501 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
502
503 /* Now calculate offsets for section that were specified by the caller. */
504 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
505 {
506 struct other_sections *osp;
507
508 osp = &addrs->other[i];
509 if (osp->sectindex == -1)
510 continue;
511
512 /* Record all sections in offsets. */
513 /* The section_offsets in the objfile are here filled in using
514 the BFD index. */
515 section_offsets->offsets[osp->sectindex] = osp->addr;
516 }
517 }
518
519 /* Transform section name S for a name comparison. prelink can split section
520 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
521 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
522 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
523 (`.sbss') section has invalid (increased) virtual address. */
524
525 static const char *
526 addr_section_name (const char *s)
527 {
528 if (strcmp (s, ".dynbss") == 0)
529 return ".bss";
530 if (strcmp (s, ".sdynbss") == 0)
531 return ".sbss";
532
533 return s;
534 }
535
536 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
537 their (name, sectindex) pair. sectindex makes the sort by name stable. */
538
539 static int
540 addrs_section_compar (const void *ap, const void *bp)
541 {
542 const struct other_sections *a = *((struct other_sections **) ap);
543 const struct other_sections *b = *((struct other_sections **) bp);
544 int retval;
545
546 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
547 if (retval)
548 return retval;
549
550 return a->sectindex - b->sectindex;
551 }
552
553 /* Provide sorted array of pointers to sections of ADDRS. The array is
554 terminated by NULL. Caller is responsible to call xfree for it. */
555
556 static struct other_sections **
557 addrs_section_sort (struct section_addr_info *addrs)
558 {
559 struct other_sections **array;
560 int i;
561
562 /* `+ 1' for the NULL terminator. */
563 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
564 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
565 array[i] = &addrs->other[i];
566 array[i] = NULL;
567
568 qsort (array, i, sizeof (*array), addrs_section_compar);
569
570 return array;
571 }
572
573 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
574 also SECTINDEXes specific to ABFD there. This function can be used to
575 rebase ADDRS to start referencing different BFD than before. */
576
577 void
578 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
579 {
580 asection *lower_sect;
581 CORE_ADDR lower_offset;
582 int i;
583 struct cleanup *my_cleanup;
584 struct section_addr_info *abfd_addrs;
585 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
586 struct other_sections **addrs_to_abfd_addrs;
587
588 /* Find lowest loadable section to be used as starting point for
589 continguous sections. */
590 lower_sect = NULL;
591 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
592 if (lower_sect == NULL)
593 {
594 warning (_("no loadable sections found in added symbol-file %s"),
595 bfd_get_filename (abfd));
596 lower_offset = 0;
597 }
598 else
599 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
600
601 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
602 in ABFD. Section names are not unique - there can be multiple sections of
603 the same name. Also the sections of the same name do not have to be
604 adjacent to each other. Some sections may be present only in one of the
605 files. Even sections present in both files do not have to be in the same
606 order.
607
608 Use stable sort by name for the sections in both files. Then linearly
609 scan both lists matching as most of the entries as possible. */
610
611 addrs_sorted = addrs_section_sort (addrs);
612 my_cleanup = make_cleanup (xfree, addrs_sorted);
613
614 abfd_addrs = build_section_addr_info_from_bfd (abfd);
615 make_cleanup_free_section_addr_info (abfd_addrs);
616 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
617 make_cleanup (xfree, abfd_addrs_sorted);
618
619 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
620 ABFD_ADDRS_SORTED. */
621
622 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
623 * addrs->num_sections);
624 make_cleanup (xfree, addrs_to_abfd_addrs);
625
626 while (*addrs_sorted)
627 {
628 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
629
630 while (*abfd_addrs_sorted
631 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
632 sect_name) < 0)
633 abfd_addrs_sorted++;
634
635 if (*abfd_addrs_sorted
636 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
637 sect_name) == 0)
638 {
639 int index_in_addrs;
640
641 /* Make the found item directly addressable from ADDRS. */
642 index_in_addrs = *addrs_sorted - addrs->other;
643 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
644 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
645
646 /* Never use the same ABFD entry twice. */
647 abfd_addrs_sorted++;
648 }
649
650 addrs_sorted++;
651 }
652
653 /* Calculate offsets for the loadable sections.
654 FIXME! Sections must be in order of increasing loadable section
655 so that contiguous sections can use the lower-offset!!!
656
657 Adjust offsets if the segments are not contiguous.
658 If the section is contiguous, its offset should be set to
659 the offset of the highest loadable section lower than it
660 (the loadable section directly below it in memory).
661 this_offset = lower_offset = lower_addr - lower_orig_addr */
662
663 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
664 {
665 struct other_sections *sect = addrs_to_abfd_addrs[i];
666
667 if (sect)
668 {
669 /* This is the index used by BFD. */
670 addrs->other[i].sectindex = sect->sectindex;
671
672 if (addrs->other[i].addr != 0)
673 {
674 addrs->other[i].addr -= sect->addr;
675 lower_offset = addrs->other[i].addr;
676 }
677 else
678 addrs->other[i].addr = lower_offset;
679 }
680 else
681 {
682 /* addr_section_name transformation is not used for SECT_NAME. */
683 const char *sect_name = addrs->other[i].name;
684
685 /* This section does not exist in ABFD, which is normally
686 unexpected and we want to issue a warning.
687
688 However, the ELF prelinker does create a few sections which are
689 marked in the main executable as loadable (they are loaded in
690 memory from the DYNAMIC segment) and yet are not present in
691 separate debug info files. This is fine, and should not cause
692 a warning. Shared libraries contain just the section
693 ".gnu.liblist" but it is not marked as loadable there. There is
694 no other way to identify them than by their name as the sections
695 created by prelink have no special flags.
696
697 For the sections `.bss' and `.sbss' see addr_section_name. */
698
699 if (!(strcmp (sect_name, ".gnu.liblist") == 0
700 || strcmp (sect_name, ".gnu.conflict") == 0
701 || (strcmp (sect_name, ".bss") == 0
702 && i > 0
703 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
704 && addrs_to_abfd_addrs[i - 1] != NULL)
705 || (strcmp (sect_name, ".sbss") == 0
706 && i > 0
707 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
708 && addrs_to_abfd_addrs[i - 1] != NULL)))
709 warning (_("section %s not found in %s"), sect_name,
710 bfd_get_filename (abfd));
711
712 addrs->other[i].addr = 0;
713 addrs->other[i].sectindex = -1;
714 }
715 }
716
717 do_cleanups (my_cleanup);
718 }
719
720 /* Parse the user's idea of an offset for dynamic linking, into our idea
721 of how to represent it for fast symbol reading. This is the default
722 version of the sym_fns.sym_offsets function for symbol readers that
723 don't need to do anything special. It allocates a section_offsets table
724 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
725
726 void
727 default_symfile_offsets (struct objfile *objfile,
728 struct section_addr_info *addrs)
729 {
730 objfile->num_sections = bfd_count_sections (objfile->obfd);
731 objfile->section_offsets = (struct section_offsets *)
732 obstack_alloc (&objfile->objfile_obstack,
733 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
734 relative_addr_info_to_section_offsets (objfile->section_offsets,
735 objfile->num_sections, addrs);
736
737 /* For relocatable files, all loadable sections will start at zero.
738 The zero is meaningless, so try to pick arbitrary addresses such
739 that no loadable sections overlap. This algorithm is quadratic,
740 but the number of sections in a single object file is generally
741 small. */
742 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
743 {
744 struct place_section_arg arg;
745 bfd *abfd = objfile->obfd;
746 asection *cur_sec;
747
748 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
749 /* We do not expect this to happen; just skip this step if the
750 relocatable file has a section with an assigned VMA. */
751 if (bfd_section_vma (abfd, cur_sec) != 0)
752 break;
753
754 if (cur_sec == NULL)
755 {
756 CORE_ADDR *offsets = objfile->section_offsets->offsets;
757
758 /* Pick non-overlapping offsets for sections the user did not
759 place explicitly. */
760 arg.offsets = objfile->section_offsets;
761 arg.lowest = 0;
762 bfd_map_over_sections (objfile->obfd, place_section, &arg);
763
764 /* Correctly filling in the section offsets is not quite
765 enough. Relocatable files have two properties that
766 (most) shared objects do not:
767
768 - Their debug information will contain relocations. Some
769 shared libraries do also, but many do not, so this can not
770 be assumed.
771
772 - If there are multiple code sections they will be loaded
773 at different relative addresses in memory than they are
774 in the objfile, since all sections in the file will start
775 at address zero.
776
777 Because GDB has very limited ability to map from an
778 address in debug info to the correct code section,
779 it relies on adding SECT_OFF_TEXT to things which might be
780 code. If we clear all the section offsets, and set the
781 section VMAs instead, then symfile_relocate_debug_section
782 will return meaningful debug information pointing at the
783 correct sections.
784
785 GDB has too many different data structures for section
786 addresses - a bfd, objfile, and so_list all have section
787 tables, as does exec_ops. Some of these could probably
788 be eliminated. */
789
790 for (cur_sec = abfd->sections; cur_sec != NULL;
791 cur_sec = cur_sec->next)
792 {
793 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
794 continue;
795
796 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
797 exec_set_section_address (bfd_get_filename (abfd),
798 cur_sec->index,
799 offsets[cur_sec->index]);
800 offsets[cur_sec->index] = 0;
801 }
802 }
803 }
804
805 /* Remember the bfd indexes for the .text, .data, .bss and
806 .rodata sections. */
807 init_objfile_sect_indices (objfile);
808 }
809
810
811 /* Divide the file into segments, which are individual relocatable units.
812 This is the default version of the sym_fns.sym_segments function for
813 symbol readers that do not have an explicit representation of segments.
814 It assumes that object files do not have segments, and fully linked
815 files have a single segment. */
816
817 struct symfile_segment_data *
818 default_symfile_segments (bfd *abfd)
819 {
820 int num_sections, i;
821 asection *sect;
822 struct symfile_segment_data *data;
823 CORE_ADDR low, high;
824
825 /* Relocatable files contain enough information to position each
826 loadable section independently; they should not be relocated
827 in segments. */
828 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
829 return NULL;
830
831 /* Make sure there is at least one loadable section in the file. */
832 for (sect = abfd->sections; sect != NULL; sect = sect->next)
833 {
834 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
835 continue;
836
837 break;
838 }
839 if (sect == NULL)
840 return NULL;
841
842 low = bfd_get_section_vma (abfd, sect);
843 high = low + bfd_get_section_size (sect);
844
845 data = XZALLOC (struct symfile_segment_data);
846 data->num_segments = 1;
847 data->segment_bases = XCALLOC (1, CORE_ADDR);
848 data->segment_sizes = XCALLOC (1, CORE_ADDR);
849
850 num_sections = bfd_count_sections (abfd);
851 data->segment_info = XCALLOC (num_sections, int);
852
853 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
854 {
855 CORE_ADDR vma;
856
857 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
858 continue;
859
860 vma = bfd_get_section_vma (abfd, sect);
861 if (vma < low)
862 low = vma;
863 if (vma + bfd_get_section_size (sect) > high)
864 high = vma + bfd_get_section_size (sect);
865
866 data->segment_info[i] = 1;
867 }
868
869 data->segment_bases[0] = low;
870 data->segment_sizes[0] = high - low;
871
872 return data;
873 }
874
875 /* This is a convenience function to call sym_read for OBJFILE and
876 possibly force the partial symbols to be read. */
877
878 static void
879 read_symbols (struct objfile *objfile, int add_flags)
880 {
881 (*objfile->sf->sym_read) (objfile, add_flags);
882 if (!objfile_has_partial_symbols (objfile))
883 {
884 bfd *abfd = find_separate_debug_file_in_section (objfile);
885 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
886
887 if (abfd != NULL)
888 symbol_file_add_separate (abfd, add_flags, objfile);
889
890 do_cleanups (cleanup);
891 }
892 if ((add_flags & SYMFILE_NO_READ) == 0)
893 require_partial_symbols (objfile, 0);
894 }
895
896 /* Initialize entry point information for this objfile. */
897
898 static void
899 init_entry_point_info (struct objfile *objfile)
900 {
901 /* Save startup file's range of PC addresses to help blockframe.c
902 decide where the bottom of the stack is. */
903
904 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
905 {
906 /* Executable file -- record its entry point so we'll recognize
907 the startup file because it contains the entry point. */
908 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
909 objfile->ei.entry_point_p = 1;
910 }
911 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
912 && bfd_get_start_address (objfile->obfd) != 0)
913 {
914 /* Some shared libraries may have entry points set and be
915 runnable. There's no clear way to indicate this, so just check
916 for values other than zero. */
917 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
918 objfile->ei.entry_point_p = 1;
919 }
920 else
921 {
922 /* Examination of non-executable.o files. Short-circuit this stuff. */
923 objfile->ei.entry_point_p = 0;
924 }
925
926 if (objfile->ei.entry_point_p)
927 {
928 CORE_ADDR entry_point = objfile->ei.entry_point;
929
930 /* Make certain that the address points at real code, and not a
931 function descriptor. */
932 entry_point
933 = gdbarch_convert_from_func_ptr_addr (objfile->gdbarch,
934 entry_point,
935 &current_target);
936
937 /* Remove any ISA markers, so that this matches entries in the
938 symbol table. */
939 objfile->ei.entry_point
940 = gdbarch_addr_bits_remove (objfile->gdbarch, entry_point);
941 }
942 }
943
944 /* Process a symbol file, as either the main file or as a dynamically
945 loaded file.
946
947 This function does not set the OBJFILE's entry-point info.
948
949 OBJFILE is where the symbols are to be read from.
950
951 ADDRS is the list of section load addresses. If the user has given
952 an 'add-symbol-file' command, then this is the list of offsets and
953 addresses he or she provided as arguments to the command; or, if
954 we're handling a shared library, these are the actual addresses the
955 sections are loaded at, according to the inferior's dynamic linker
956 (as gleaned by GDB's shared library code). We convert each address
957 into an offset from the section VMA's as it appears in the object
958 file, and then call the file's sym_offsets function to convert this
959 into a format-specific offset table --- a `struct section_offsets'.
960 If ADDRS is non-zero, OFFSETS must be zero.
961
962 OFFSETS is a table of section offsets already in the right
963 format-specific representation. NUM_OFFSETS is the number of
964 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
965 assume this is the proper table the call to sym_offsets described
966 above would produce. Instead of calling sym_offsets, we just dump
967 it right into objfile->section_offsets. (When we're re-reading
968 symbols from an objfile, we don't have the original load address
969 list any more; all we have is the section offset table.) If
970 OFFSETS is non-zero, ADDRS must be zero.
971
972 ADD_FLAGS encodes verbosity level, whether this is main symbol or
973 an extra symbol file such as dynamically loaded code, and wether
974 breakpoint reset should be deferred. */
975
976 static void
977 syms_from_objfile_1 (struct objfile *objfile,
978 struct section_addr_info *addrs,
979 struct section_offsets *offsets,
980 int num_offsets,
981 int add_flags)
982 {
983 struct section_addr_info *local_addr = NULL;
984 struct cleanup *old_chain;
985 const int mainline = add_flags & SYMFILE_MAINLINE;
986
987 gdb_assert (! (addrs && offsets));
988
989 objfile->sf = find_sym_fns (objfile->obfd);
990
991 if (objfile->sf == NULL)
992 {
993 /* No symbols to load, but we still need to make sure
994 that the section_offsets table is allocated. */
995 int num_sections = bfd_count_sections (objfile->obfd);
996 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
997
998 objfile->num_sections = num_sections;
999 objfile->section_offsets
1000 = obstack_alloc (&objfile->objfile_obstack, size);
1001 memset (objfile->section_offsets, 0, size);
1002 return;
1003 }
1004
1005 /* Make sure that partially constructed symbol tables will be cleaned up
1006 if an error occurs during symbol reading. */
1007 old_chain = make_cleanup_free_objfile (objfile);
1008
1009 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
1010 list. We now establish the convention that an addr of zero means
1011 no load address was specified. */
1012 if (! addrs && ! offsets)
1013 {
1014 local_addr
1015 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
1016 make_cleanup (xfree, local_addr);
1017 addrs = local_addr;
1018 }
1019
1020 /* Now either addrs or offsets is non-zero. */
1021
1022 if (mainline)
1023 {
1024 /* We will modify the main symbol table, make sure that all its users
1025 will be cleaned up if an error occurs during symbol reading. */
1026 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1027
1028 /* Since no error yet, throw away the old symbol table. */
1029
1030 if (symfile_objfile != NULL)
1031 {
1032 free_objfile (symfile_objfile);
1033 gdb_assert (symfile_objfile == NULL);
1034 }
1035
1036 /* Currently we keep symbols from the add-symbol-file command.
1037 If the user wants to get rid of them, they should do "symbol-file"
1038 without arguments first. Not sure this is the best behavior
1039 (PR 2207). */
1040
1041 (*objfile->sf->sym_new_init) (objfile);
1042 }
1043
1044 /* Convert addr into an offset rather than an absolute address.
1045 We find the lowest address of a loaded segment in the objfile,
1046 and assume that <addr> is where that got loaded.
1047
1048 We no longer warn if the lowest section is not a text segment (as
1049 happens for the PA64 port. */
1050 if (addrs && addrs->other[0].name)
1051 addr_info_make_relative (addrs, objfile->obfd);
1052
1053 /* Initialize symbol reading routines for this objfile, allow complaints to
1054 appear for this new file, and record how verbose to be, then do the
1055 initial symbol reading for this file. */
1056
1057 (*objfile->sf->sym_init) (objfile);
1058 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1059
1060 if (addrs)
1061 (*objfile->sf->sym_offsets) (objfile, addrs);
1062 else
1063 {
1064 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1065
1066 /* Just copy in the offset table directly as given to us. */
1067 objfile->num_sections = num_offsets;
1068 objfile->section_offsets
1069 = ((struct section_offsets *)
1070 obstack_alloc (&objfile->objfile_obstack, size));
1071 memcpy (objfile->section_offsets, offsets, size);
1072
1073 init_objfile_sect_indices (objfile);
1074 }
1075
1076 read_symbols (objfile, add_flags);
1077
1078 /* Discard cleanups as symbol reading was successful. */
1079
1080 discard_cleanups (old_chain);
1081 xfree (local_addr);
1082 }
1083
1084 /* Same as syms_from_objfile_1, but also initializes the objfile
1085 entry-point info. */
1086
1087 void
1088 syms_from_objfile (struct objfile *objfile,
1089 struct section_addr_info *addrs,
1090 struct section_offsets *offsets,
1091 int num_offsets,
1092 int add_flags)
1093 {
1094 syms_from_objfile_1 (objfile, addrs, offsets, num_offsets, add_flags);
1095 init_entry_point_info (objfile);
1096 }
1097
1098 /* Perform required actions after either reading in the initial
1099 symbols for a new objfile, or mapping in the symbols from a reusable
1100 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1101
1102 void
1103 new_symfile_objfile (struct objfile *objfile, int add_flags)
1104 {
1105 /* If this is the main symbol file we have to clean up all users of the
1106 old main symbol file. Otherwise it is sufficient to fixup all the
1107 breakpoints that may have been redefined by this symbol file. */
1108 if (add_flags & SYMFILE_MAINLINE)
1109 {
1110 /* OK, make it the "real" symbol file. */
1111 symfile_objfile = objfile;
1112
1113 clear_symtab_users (add_flags);
1114 }
1115 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1116 {
1117 breakpoint_re_set ();
1118 }
1119
1120 /* We're done reading the symbol file; finish off complaints. */
1121 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1122 }
1123
1124 /* Process a symbol file, as either the main file or as a dynamically
1125 loaded file.
1126
1127 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1128 A new reference is acquired by this function.
1129
1130 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1131 extra, such as dynamically loaded code, and what to do with breakpoins.
1132
1133 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1134 syms_from_objfile, above.
1135 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1136
1137 PARENT is the original objfile if ABFD is a separate debug info file.
1138 Otherwise PARENT is NULL.
1139
1140 Upon success, returns a pointer to the objfile that was added.
1141 Upon failure, jumps back to command level (never returns). */
1142
1143 static struct objfile *
1144 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1145 int add_flags,
1146 struct section_addr_info *addrs,
1147 struct section_offsets *offsets,
1148 int num_offsets,
1149 int flags, struct objfile *parent)
1150 {
1151 struct objfile *objfile;
1152 const char *name = bfd_get_filename (abfd);
1153 const int from_tty = add_flags & SYMFILE_VERBOSE;
1154 const int mainline = add_flags & SYMFILE_MAINLINE;
1155 const int should_print = ((from_tty || info_verbose)
1156 && (readnow_symbol_files
1157 || (add_flags & SYMFILE_NO_READ) == 0));
1158
1159 if (readnow_symbol_files)
1160 {
1161 flags |= OBJF_READNOW;
1162 add_flags &= ~SYMFILE_NO_READ;
1163 }
1164
1165 /* Give user a chance to burp if we'd be
1166 interactively wiping out any existing symbols. */
1167
1168 if ((have_full_symbols () || have_partial_symbols ())
1169 && mainline
1170 && from_tty
1171 && !query (_("Load new symbol table from \"%s\"? "), name))
1172 error (_("Not confirmed."));
1173
1174 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
1175
1176 if (parent)
1177 add_separate_debug_objfile (objfile, parent);
1178
1179 /* We either created a new mapped symbol table, mapped an existing
1180 symbol table file which has not had initial symbol reading
1181 performed, or need to read an unmapped symbol table. */
1182 if (should_print)
1183 {
1184 if (deprecated_pre_add_symbol_hook)
1185 deprecated_pre_add_symbol_hook (name);
1186 else
1187 {
1188 printf_unfiltered (_("Reading symbols from %s..."), name);
1189 wrap_here ("");
1190 gdb_flush (gdb_stdout);
1191 }
1192 }
1193 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1194 add_flags);
1195
1196 /* We now have at least a partial symbol table. Check to see if the
1197 user requested that all symbols be read on initial access via either
1198 the gdb startup command line or on a per symbol file basis. Expand
1199 all partial symbol tables for this objfile if so. */
1200
1201 if ((flags & OBJF_READNOW))
1202 {
1203 if (should_print)
1204 {
1205 printf_unfiltered (_("expanding to full symbols..."));
1206 wrap_here ("");
1207 gdb_flush (gdb_stdout);
1208 }
1209
1210 if (objfile->sf)
1211 objfile->sf->qf->expand_all_symtabs (objfile);
1212 }
1213
1214 if (should_print && !objfile_has_symbols (objfile))
1215 {
1216 wrap_here ("");
1217 printf_unfiltered (_("(no debugging symbols found)..."));
1218 wrap_here ("");
1219 }
1220
1221 if (should_print)
1222 {
1223 if (deprecated_post_add_symbol_hook)
1224 deprecated_post_add_symbol_hook ();
1225 else
1226 printf_unfiltered (_("done.\n"));
1227 }
1228
1229 /* We print some messages regardless of whether 'from_tty ||
1230 info_verbose' is true, so make sure they go out at the right
1231 time. */
1232 gdb_flush (gdb_stdout);
1233
1234 if (objfile->sf == NULL)
1235 {
1236 observer_notify_new_objfile (objfile);
1237 return objfile; /* No symbols. */
1238 }
1239
1240 new_symfile_objfile (objfile, add_flags);
1241
1242 observer_notify_new_objfile (objfile);
1243
1244 bfd_cache_close_all ();
1245 return (objfile);
1246 }
1247
1248 /* Add BFD as a separate debug file for OBJFILE. */
1249
1250 void
1251 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1252 {
1253 struct objfile *new_objfile;
1254 struct section_addr_info *sap;
1255 struct cleanup *my_cleanup;
1256
1257 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1258 because sections of BFD may not match sections of OBJFILE and because
1259 vma may have been modified by tools such as prelink. */
1260 sap = build_section_addr_info_from_objfile (objfile);
1261 my_cleanup = make_cleanup_free_section_addr_info (sap);
1262
1263 new_objfile = symbol_file_add_with_addrs_or_offsets
1264 (bfd, symfile_flags,
1265 sap, NULL, 0,
1266 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1267 | OBJF_USERLOADED),
1268 objfile);
1269
1270 do_cleanups (my_cleanup);
1271 }
1272
1273 /* Process the symbol file ABFD, as either the main file or as a
1274 dynamically loaded file.
1275
1276 See symbol_file_add_with_addrs_or_offsets's comments for
1277 details. */
1278 struct objfile *
1279 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1280 struct section_addr_info *addrs,
1281 int flags, struct objfile *parent)
1282 {
1283 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1284 flags, parent);
1285 }
1286
1287
1288 /* Process a symbol file, as either the main file or as a dynamically
1289 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1290 for details. */
1291 struct objfile *
1292 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1293 int flags)
1294 {
1295 bfd *bfd = symfile_bfd_open (name);
1296 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1297 struct objfile *objf;
1298
1299 objf = symbol_file_add_from_bfd (bfd, add_flags, addrs, flags, NULL);
1300 do_cleanups (cleanup);
1301 return objf;
1302 }
1303
1304
1305 /* Call symbol_file_add() with default values and update whatever is
1306 affected by the loading of a new main().
1307 Used when the file is supplied in the gdb command line
1308 and by some targets with special loading requirements.
1309 The auxiliary function, symbol_file_add_main_1(), has the flags
1310 argument for the switches that can only be specified in the symbol_file
1311 command itself. */
1312
1313 void
1314 symbol_file_add_main (char *args, int from_tty)
1315 {
1316 symbol_file_add_main_1 (args, from_tty, 0);
1317 }
1318
1319 static void
1320 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1321 {
1322 const int add_flags = (current_inferior ()->symfile_flags
1323 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1324
1325 symbol_file_add (args, add_flags, NULL, flags);
1326
1327 /* Getting new symbols may change our opinion about
1328 what is frameless. */
1329 reinit_frame_cache ();
1330
1331 if ((flags & SYMFILE_NO_READ) == 0)
1332 set_initial_language ();
1333 }
1334
1335 void
1336 symbol_file_clear (int from_tty)
1337 {
1338 if ((have_full_symbols () || have_partial_symbols ())
1339 && from_tty
1340 && (symfile_objfile
1341 ? !query (_("Discard symbol table from `%s'? "),
1342 symfile_objfile->name)
1343 : !query (_("Discard symbol table? "))))
1344 error (_("Not confirmed."));
1345
1346 /* solib descriptors may have handles to objfiles. Wipe them before their
1347 objfiles get stale by free_all_objfiles. */
1348 no_shared_libraries (NULL, from_tty);
1349
1350 free_all_objfiles ();
1351
1352 gdb_assert (symfile_objfile == NULL);
1353 if (from_tty)
1354 printf_unfiltered (_("No symbol file now.\n"));
1355 }
1356
1357 static char *
1358 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1359 {
1360 asection *sect;
1361 bfd_size_type debuglink_size;
1362 unsigned long crc32;
1363 char *contents;
1364 int crc_offset;
1365
1366 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1367
1368 if (sect == NULL)
1369 return NULL;
1370
1371 debuglink_size = bfd_section_size (objfile->obfd, sect);
1372
1373 contents = xmalloc (debuglink_size);
1374 bfd_get_section_contents (objfile->obfd, sect, contents,
1375 (file_ptr)0, (bfd_size_type)debuglink_size);
1376
1377 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1378 crc_offset = strlen (contents) + 1;
1379 crc_offset = (crc_offset + 3) & ~3;
1380
1381 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1382
1383 *crc32_out = crc32;
1384 return contents;
1385 }
1386
1387 /* Return 32-bit CRC for ABFD. If successful store it to *FILE_CRC_RETURN and
1388 return 1. Otherwise print a warning and return 0. ABFD seek position is
1389 not preserved. */
1390
1391 static int
1392 get_file_crc (bfd *abfd, unsigned long *file_crc_return)
1393 {
1394 unsigned long file_crc = 0;
1395
1396 if (bfd_seek (abfd, 0, SEEK_SET) != 0)
1397 {
1398 warning (_("Problem reading \"%s\" for CRC: %s"),
1399 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1400 return 0;
1401 }
1402
1403 for (;;)
1404 {
1405 gdb_byte buffer[8 * 1024];
1406 bfd_size_type count;
1407
1408 count = bfd_bread (buffer, sizeof (buffer), abfd);
1409 if (count == (bfd_size_type) -1)
1410 {
1411 warning (_("Problem reading \"%s\" for CRC: %s"),
1412 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1413 return 0;
1414 }
1415 if (count == 0)
1416 break;
1417 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1418 }
1419
1420 *file_crc_return = file_crc;
1421 return 1;
1422 }
1423
1424 static int
1425 separate_debug_file_exists (const char *name, unsigned long crc,
1426 struct objfile *parent_objfile)
1427 {
1428 unsigned long file_crc;
1429 int file_crc_p;
1430 bfd *abfd;
1431 struct stat parent_stat, abfd_stat;
1432 int verified_as_different;
1433
1434 /* Find a separate debug info file as if symbols would be present in
1435 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1436 section can contain just the basename of PARENT_OBJFILE without any
1437 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1438 the separate debug infos with the same basename can exist. */
1439
1440 if (filename_cmp (name, parent_objfile->name) == 0)
1441 return 0;
1442
1443 abfd = gdb_bfd_open_maybe_remote (name);
1444
1445 if (!abfd)
1446 return 0;
1447
1448 /* Verify symlinks were not the cause of filename_cmp name difference above.
1449
1450 Some operating systems, e.g. Windows, do not provide a meaningful
1451 st_ino; they always set it to zero. (Windows does provide a
1452 meaningful st_dev.) Do not indicate a duplicate library in that
1453 case. While there is no guarantee that a system that provides
1454 meaningful inode numbers will never set st_ino to zero, this is
1455 merely an optimization, so we do not need to worry about false
1456 negatives. */
1457
1458 if (bfd_stat (abfd, &abfd_stat) == 0
1459 && abfd_stat.st_ino != 0
1460 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1461 {
1462 if (abfd_stat.st_dev == parent_stat.st_dev
1463 && abfd_stat.st_ino == parent_stat.st_ino)
1464 {
1465 gdb_bfd_unref (abfd);
1466 return 0;
1467 }
1468 verified_as_different = 1;
1469 }
1470 else
1471 verified_as_different = 0;
1472
1473 file_crc_p = get_file_crc (abfd, &file_crc);
1474
1475 gdb_bfd_unref (abfd);
1476
1477 if (!file_crc_p)
1478 return 0;
1479
1480 if (crc != file_crc)
1481 {
1482 /* If one (or both) the files are accessed for example the via "remote:"
1483 gdbserver way it does not support the bfd_stat operation. Verify
1484 whether those two files are not the same manually. */
1485
1486 if (!verified_as_different && !parent_objfile->crc32_p)
1487 {
1488 parent_objfile->crc32_p = get_file_crc (parent_objfile->obfd,
1489 &parent_objfile->crc32);
1490 if (!parent_objfile->crc32_p)
1491 return 0;
1492 }
1493
1494 if (verified_as_different || parent_objfile->crc32 != file_crc)
1495 warning (_("the debug information found in \"%s\""
1496 " does not match \"%s\" (CRC mismatch).\n"),
1497 name, parent_objfile->name);
1498
1499 return 0;
1500 }
1501
1502 return 1;
1503 }
1504
1505 char *debug_file_directory = NULL;
1506 static void
1507 show_debug_file_directory (struct ui_file *file, int from_tty,
1508 struct cmd_list_element *c, const char *value)
1509 {
1510 fprintf_filtered (file,
1511 _("The directory where separate debug "
1512 "symbols are searched for is \"%s\".\n"),
1513 value);
1514 }
1515
1516 #if ! defined (DEBUG_SUBDIRECTORY)
1517 #define DEBUG_SUBDIRECTORY ".debug"
1518 #endif
1519
1520 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1521 where the original file resides (may not be the same as
1522 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1523 looking for. Returns the name of the debuginfo, of NULL. */
1524
1525 static char *
1526 find_separate_debug_file (const char *dir,
1527 const char *canon_dir,
1528 const char *debuglink,
1529 unsigned long crc32, struct objfile *objfile)
1530 {
1531 char *debugdir;
1532 char *debugfile;
1533 int i;
1534 VEC (char_ptr) *debugdir_vec;
1535 struct cleanup *back_to;
1536 int ix;
1537
1538 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1539 i = strlen (dir);
1540 if (canon_dir != NULL && strlen (canon_dir) > i)
1541 i = strlen (canon_dir);
1542
1543 debugfile = xmalloc (strlen (debug_file_directory) + 1
1544 + i
1545 + strlen (DEBUG_SUBDIRECTORY)
1546 + strlen ("/")
1547 + strlen (debuglink)
1548 + 1);
1549
1550 /* First try in the same directory as the original file. */
1551 strcpy (debugfile, dir);
1552 strcat (debugfile, debuglink);
1553
1554 if (separate_debug_file_exists (debugfile, crc32, objfile))
1555 return debugfile;
1556
1557 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1558 strcpy (debugfile, dir);
1559 strcat (debugfile, DEBUG_SUBDIRECTORY);
1560 strcat (debugfile, "/");
1561 strcat (debugfile, debuglink);
1562
1563 if (separate_debug_file_exists (debugfile, crc32, objfile))
1564 return debugfile;
1565
1566 /* Then try in the global debugfile directories.
1567
1568 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1569 cause "/..." lookups. */
1570
1571 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1572 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1573
1574 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1575 {
1576 strcpy (debugfile, debugdir);
1577 strcat (debugfile, "/");
1578 strcat (debugfile, dir);
1579 strcat (debugfile, debuglink);
1580
1581 if (separate_debug_file_exists (debugfile, crc32, objfile))
1582 return debugfile;
1583
1584 /* If the file is in the sysroot, try using its base path in the
1585 global debugfile directory. */
1586 if (canon_dir != NULL
1587 && filename_ncmp (canon_dir, gdb_sysroot,
1588 strlen (gdb_sysroot)) == 0
1589 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1590 {
1591 strcpy (debugfile, debugdir);
1592 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1593 strcat (debugfile, "/");
1594 strcat (debugfile, debuglink);
1595
1596 if (separate_debug_file_exists (debugfile, crc32, objfile))
1597 return debugfile;
1598 }
1599 }
1600
1601 do_cleanups (back_to);
1602 xfree (debugfile);
1603 return NULL;
1604 }
1605
1606 /* Modify PATH to contain only "directory/" part of PATH.
1607 If there were no directory separators in PATH, PATH will be empty
1608 string on return. */
1609
1610 static void
1611 terminate_after_last_dir_separator (char *path)
1612 {
1613 int i;
1614
1615 /* Strip off the final filename part, leaving the directory name,
1616 followed by a slash. The directory can be relative or absolute. */
1617 for (i = strlen(path) - 1; i >= 0; i--)
1618 if (IS_DIR_SEPARATOR (path[i]))
1619 break;
1620
1621 /* If I is -1 then no directory is present there and DIR will be "". */
1622 path[i + 1] = '\0';
1623 }
1624
1625 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1626 Returns pathname, or NULL. */
1627
1628 char *
1629 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1630 {
1631 char *debuglink;
1632 char *dir, *canon_dir;
1633 char *debugfile;
1634 unsigned long crc32;
1635 struct cleanup *cleanups;
1636
1637 debuglink = get_debug_link_info (objfile, &crc32);
1638
1639 if (debuglink == NULL)
1640 {
1641 /* There's no separate debug info, hence there's no way we could
1642 load it => no warning. */
1643 return NULL;
1644 }
1645
1646 cleanups = make_cleanup (xfree, debuglink);
1647 dir = xstrdup (objfile->name);
1648 make_cleanup (xfree, dir);
1649 terminate_after_last_dir_separator (dir);
1650 canon_dir = lrealpath (dir);
1651
1652 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1653 crc32, objfile);
1654 xfree (canon_dir);
1655
1656 if (debugfile == NULL)
1657 {
1658 #ifdef HAVE_LSTAT
1659 /* For PR gdb/9538, try again with realpath (if different from the
1660 original). */
1661
1662 struct stat st_buf;
1663
1664 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1665 {
1666 char *symlink_dir;
1667
1668 symlink_dir = lrealpath (objfile->name);
1669 if (symlink_dir != NULL)
1670 {
1671 make_cleanup (xfree, symlink_dir);
1672 terminate_after_last_dir_separator (symlink_dir);
1673 if (strcmp (dir, symlink_dir) != 0)
1674 {
1675 /* Different directory, so try using it. */
1676 debugfile = find_separate_debug_file (symlink_dir,
1677 symlink_dir,
1678 debuglink,
1679 crc32,
1680 objfile);
1681 }
1682 }
1683 }
1684 #endif /* HAVE_LSTAT */
1685 }
1686
1687 do_cleanups (cleanups);
1688 return debugfile;
1689 }
1690
1691
1692 /* This is the symbol-file command. Read the file, analyze its
1693 symbols, and add a struct symtab to a symtab list. The syntax of
1694 the command is rather bizarre:
1695
1696 1. The function buildargv implements various quoting conventions
1697 which are undocumented and have little or nothing in common with
1698 the way things are quoted (or not quoted) elsewhere in GDB.
1699
1700 2. Options are used, which are not generally used in GDB (perhaps
1701 "set mapped on", "set readnow on" would be better)
1702
1703 3. The order of options matters, which is contrary to GNU
1704 conventions (because it is confusing and inconvenient). */
1705
1706 void
1707 symbol_file_command (char *args, int from_tty)
1708 {
1709 dont_repeat ();
1710
1711 if (args == NULL)
1712 {
1713 symbol_file_clear (from_tty);
1714 }
1715 else
1716 {
1717 char **argv = gdb_buildargv (args);
1718 int flags = OBJF_USERLOADED;
1719 struct cleanup *cleanups;
1720 char *name = NULL;
1721
1722 cleanups = make_cleanup_freeargv (argv);
1723 while (*argv != NULL)
1724 {
1725 if (strcmp (*argv, "-readnow") == 0)
1726 flags |= OBJF_READNOW;
1727 else if (**argv == '-')
1728 error (_("unknown option `%s'"), *argv);
1729 else
1730 {
1731 symbol_file_add_main_1 (*argv, from_tty, flags);
1732 name = *argv;
1733 }
1734
1735 argv++;
1736 }
1737
1738 if (name == NULL)
1739 error (_("no symbol file name was specified"));
1740
1741 do_cleanups (cleanups);
1742 }
1743 }
1744
1745 /* Set the initial language.
1746
1747 FIXME: A better solution would be to record the language in the
1748 psymtab when reading partial symbols, and then use it (if known) to
1749 set the language. This would be a win for formats that encode the
1750 language in an easily discoverable place, such as DWARF. For
1751 stabs, we can jump through hoops looking for specially named
1752 symbols or try to intuit the language from the specific type of
1753 stabs we find, but we can't do that until later when we read in
1754 full symbols. */
1755
1756 void
1757 set_initial_language (void)
1758 {
1759 enum language lang = language_unknown;
1760
1761 if (language_of_main != language_unknown)
1762 lang = language_of_main;
1763 else
1764 {
1765 const char *filename;
1766
1767 filename = find_main_filename ();
1768 if (filename != NULL)
1769 lang = deduce_language_from_filename (filename);
1770 }
1771
1772 if (lang == language_unknown)
1773 {
1774 /* Make C the default language */
1775 lang = language_c;
1776 }
1777
1778 set_language (lang);
1779 expected_language = current_language; /* Don't warn the user. */
1780 }
1781
1782 /* If NAME is a remote name open the file using remote protocol, otherwise
1783 open it normally. Returns a new reference to the BFD. On error,
1784 returns NULL with the BFD error set. */
1785
1786 bfd *
1787 gdb_bfd_open_maybe_remote (const char *name)
1788 {
1789 bfd *result;
1790
1791 if (remote_filename_p (name))
1792 result = remote_bfd_open (name, gnutarget);
1793 else
1794 result = gdb_bfd_open (name, gnutarget, -1);
1795
1796 return result;
1797 }
1798
1799
1800 /* Open the file specified by NAME and hand it off to BFD for
1801 preliminary analysis. Return a newly initialized bfd *, which
1802 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1803 absolute). In case of trouble, error() is called. */
1804
1805 bfd *
1806 symfile_bfd_open (char *name)
1807 {
1808 bfd *sym_bfd;
1809 int desc;
1810 char *absolute_name;
1811
1812 if (remote_filename_p (name))
1813 {
1814 sym_bfd = remote_bfd_open (name, gnutarget);
1815 if (!sym_bfd)
1816 error (_("`%s': can't open to read symbols: %s."), name,
1817 bfd_errmsg (bfd_get_error ()));
1818
1819 if (!bfd_check_format (sym_bfd, bfd_object))
1820 {
1821 make_cleanup_bfd_unref (sym_bfd);
1822 error (_("`%s': can't read symbols: %s."), name,
1823 bfd_errmsg (bfd_get_error ()));
1824 }
1825
1826 return sym_bfd;
1827 }
1828
1829 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1830
1831 /* Look down path for it, allocate 2nd new malloc'd copy. */
1832 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1833 O_RDONLY | O_BINARY, &absolute_name);
1834 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1835 if (desc < 0)
1836 {
1837 char *exename = alloca (strlen (name) + 5);
1838
1839 strcat (strcpy (exename, name), ".exe");
1840 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1841 O_RDONLY | O_BINARY, &absolute_name);
1842 }
1843 #endif
1844 if (desc < 0)
1845 {
1846 make_cleanup (xfree, name);
1847 perror_with_name (name);
1848 }
1849
1850 xfree (name);
1851 name = absolute_name;
1852 make_cleanup (xfree, name);
1853
1854 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1855 if (!sym_bfd)
1856 {
1857 make_cleanup (xfree, name);
1858 error (_("`%s': can't open to read symbols: %s."), name,
1859 bfd_errmsg (bfd_get_error ()));
1860 }
1861 bfd_set_cacheable (sym_bfd, 1);
1862
1863 if (!bfd_check_format (sym_bfd, bfd_object))
1864 {
1865 make_cleanup_bfd_unref (sym_bfd);
1866 error (_("`%s': can't read symbols: %s."), name,
1867 bfd_errmsg (bfd_get_error ()));
1868 }
1869
1870 return sym_bfd;
1871 }
1872
1873 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1874 the section was not found. */
1875
1876 int
1877 get_section_index (struct objfile *objfile, char *section_name)
1878 {
1879 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1880
1881 if (sect)
1882 return sect->index;
1883 else
1884 return -1;
1885 }
1886
1887 /* Link SF into the global symtab_fns list. Called on startup by the
1888 _initialize routine in each object file format reader, to register
1889 information about each format the reader is prepared to handle. */
1890
1891 void
1892 add_symtab_fns (const struct sym_fns *sf)
1893 {
1894 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1895 }
1896
1897 /* Initialize OBJFILE to read symbols from its associated BFD. It
1898 either returns or calls error(). The result is an initialized
1899 struct sym_fns in the objfile structure, that contains cached
1900 information about the symbol file. */
1901
1902 static const struct sym_fns *
1903 find_sym_fns (bfd *abfd)
1904 {
1905 const struct sym_fns *sf;
1906 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1907 int i;
1908
1909 if (our_flavour == bfd_target_srec_flavour
1910 || our_flavour == bfd_target_ihex_flavour
1911 || our_flavour == bfd_target_tekhex_flavour)
1912 return NULL; /* No symbols. */
1913
1914 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1915 if (our_flavour == sf->sym_flavour)
1916 return sf;
1917
1918 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1919 bfd_get_target (abfd));
1920 }
1921 \f
1922
1923 /* This function runs the load command of our current target. */
1924
1925 static void
1926 load_command (char *arg, int from_tty)
1927 {
1928 dont_repeat ();
1929
1930 /* The user might be reloading because the binary has changed. Take
1931 this opportunity to check. */
1932 reopen_exec_file ();
1933 reread_symbols ();
1934
1935 if (arg == NULL)
1936 {
1937 char *parg;
1938 int count = 0;
1939
1940 parg = arg = get_exec_file (1);
1941
1942 /* Count how many \ " ' tab space there are in the name. */
1943 while ((parg = strpbrk (parg, "\\\"'\t ")))
1944 {
1945 parg++;
1946 count++;
1947 }
1948
1949 if (count)
1950 {
1951 /* We need to quote this string so buildargv can pull it apart. */
1952 char *temp = xmalloc (strlen (arg) + count + 1 );
1953 char *ptemp = temp;
1954 char *prev;
1955
1956 make_cleanup (xfree, temp);
1957
1958 prev = parg = arg;
1959 while ((parg = strpbrk (parg, "\\\"'\t ")))
1960 {
1961 strncpy (ptemp, prev, parg - prev);
1962 ptemp += parg - prev;
1963 prev = parg++;
1964 *ptemp++ = '\\';
1965 }
1966 strcpy (ptemp, prev);
1967
1968 arg = temp;
1969 }
1970 }
1971
1972 target_load (arg, from_tty);
1973
1974 /* After re-loading the executable, we don't really know which
1975 overlays are mapped any more. */
1976 overlay_cache_invalid = 1;
1977 }
1978
1979 /* This version of "load" should be usable for any target. Currently
1980 it is just used for remote targets, not inftarg.c or core files,
1981 on the theory that only in that case is it useful.
1982
1983 Avoiding xmodem and the like seems like a win (a) because we don't have
1984 to worry about finding it, and (b) On VMS, fork() is very slow and so
1985 we don't want to run a subprocess. On the other hand, I'm not sure how
1986 performance compares. */
1987
1988 static int validate_download = 0;
1989
1990 /* Callback service function for generic_load (bfd_map_over_sections). */
1991
1992 static void
1993 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1994 {
1995 bfd_size_type *sum = data;
1996
1997 *sum += bfd_get_section_size (asec);
1998 }
1999
2000 /* Opaque data for load_section_callback. */
2001 struct load_section_data {
2002 unsigned long load_offset;
2003 struct load_progress_data *progress_data;
2004 VEC(memory_write_request_s) *requests;
2005 };
2006
2007 /* Opaque data for load_progress. */
2008 struct load_progress_data {
2009 /* Cumulative data. */
2010 unsigned long write_count;
2011 unsigned long data_count;
2012 bfd_size_type total_size;
2013 };
2014
2015 /* Opaque data for load_progress for a single section. */
2016 struct load_progress_section_data {
2017 struct load_progress_data *cumulative;
2018
2019 /* Per-section data. */
2020 const char *section_name;
2021 ULONGEST section_sent;
2022 ULONGEST section_size;
2023 CORE_ADDR lma;
2024 gdb_byte *buffer;
2025 };
2026
2027 /* Target write callback routine for progress reporting. */
2028
2029 static void
2030 load_progress (ULONGEST bytes, void *untyped_arg)
2031 {
2032 struct load_progress_section_data *args = untyped_arg;
2033 struct load_progress_data *totals;
2034
2035 if (args == NULL)
2036 /* Writing padding data. No easy way to get at the cumulative
2037 stats, so just ignore this. */
2038 return;
2039
2040 totals = args->cumulative;
2041
2042 if (bytes == 0 && args->section_sent == 0)
2043 {
2044 /* The write is just starting. Let the user know we've started
2045 this section. */
2046 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
2047 args->section_name, hex_string (args->section_size),
2048 paddress (target_gdbarch (), args->lma));
2049 return;
2050 }
2051
2052 if (validate_download)
2053 {
2054 /* Broken memories and broken monitors manifest themselves here
2055 when bring new computers to life. This doubles already slow
2056 downloads. */
2057 /* NOTE: cagney/1999-10-18: A more efficient implementation
2058 might add a verify_memory() method to the target vector and
2059 then use that. remote.c could implement that method using
2060 the ``qCRC'' packet. */
2061 gdb_byte *check = xmalloc (bytes);
2062 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
2063
2064 if (target_read_memory (args->lma, check, bytes) != 0)
2065 error (_("Download verify read failed at %s"),
2066 paddress (target_gdbarch (), args->lma));
2067 if (memcmp (args->buffer, check, bytes) != 0)
2068 error (_("Download verify compare failed at %s"),
2069 paddress (target_gdbarch (), args->lma));
2070 do_cleanups (verify_cleanups);
2071 }
2072 totals->data_count += bytes;
2073 args->lma += bytes;
2074 args->buffer += bytes;
2075 totals->write_count += 1;
2076 args->section_sent += bytes;
2077 if (check_quit_flag ()
2078 || (deprecated_ui_load_progress_hook != NULL
2079 && deprecated_ui_load_progress_hook (args->section_name,
2080 args->section_sent)))
2081 error (_("Canceled the download"));
2082
2083 if (deprecated_show_load_progress != NULL)
2084 deprecated_show_load_progress (args->section_name,
2085 args->section_sent,
2086 args->section_size,
2087 totals->data_count,
2088 totals->total_size);
2089 }
2090
2091 /* Callback service function for generic_load (bfd_map_over_sections). */
2092
2093 static void
2094 load_section_callback (bfd *abfd, asection *asec, void *data)
2095 {
2096 struct memory_write_request *new_request;
2097 struct load_section_data *args = data;
2098 struct load_progress_section_data *section_data;
2099 bfd_size_type size = bfd_get_section_size (asec);
2100 gdb_byte *buffer;
2101 const char *sect_name = bfd_get_section_name (abfd, asec);
2102
2103 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2104 return;
2105
2106 if (size == 0)
2107 return;
2108
2109 new_request = VEC_safe_push (memory_write_request_s,
2110 args->requests, NULL);
2111 memset (new_request, 0, sizeof (struct memory_write_request));
2112 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2113 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2114 new_request->end = new_request->begin + size; /* FIXME Should size
2115 be in instead? */
2116 new_request->data = xmalloc (size);
2117 new_request->baton = section_data;
2118
2119 buffer = new_request->data;
2120
2121 section_data->cumulative = args->progress_data;
2122 section_data->section_name = sect_name;
2123 section_data->section_size = size;
2124 section_data->lma = new_request->begin;
2125 section_data->buffer = buffer;
2126
2127 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2128 }
2129
2130 /* Clean up an entire memory request vector, including load
2131 data and progress records. */
2132
2133 static void
2134 clear_memory_write_data (void *arg)
2135 {
2136 VEC(memory_write_request_s) **vec_p = arg;
2137 VEC(memory_write_request_s) *vec = *vec_p;
2138 int i;
2139 struct memory_write_request *mr;
2140
2141 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2142 {
2143 xfree (mr->data);
2144 xfree (mr->baton);
2145 }
2146 VEC_free (memory_write_request_s, vec);
2147 }
2148
2149 void
2150 generic_load (char *args, int from_tty)
2151 {
2152 bfd *loadfile_bfd;
2153 struct timeval start_time, end_time;
2154 char *filename;
2155 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2156 struct load_section_data cbdata;
2157 struct load_progress_data total_progress;
2158 struct ui_out *uiout = current_uiout;
2159
2160 CORE_ADDR entry;
2161 char **argv;
2162
2163 memset (&cbdata, 0, sizeof (cbdata));
2164 memset (&total_progress, 0, sizeof (total_progress));
2165 cbdata.progress_data = &total_progress;
2166
2167 make_cleanup (clear_memory_write_data, &cbdata.requests);
2168
2169 if (args == NULL)
2170 error_no_arg (_("file to load"));
2171
2172 argv = gdb_buildargv (args);
2173 make_cleanup_freeargv (argv);
2174
2175 filename = tilde_expand (argv[0]);
2176 make_cleanup (xfree, filename);
2177
2178 if (argv[1] != NULL)
2179 {
2180 char *endptr;
2181
2182 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2183
2184 /* If the last word was not a valid number then
2185 treat it as a file name with spaces in. */
2186 if (argv[1] == endptr)
2187 error (_("Invalid download offset:%s."), argv[1]);
2188
2189 if (argv[2] != NULL)
2190 error (_("Too many parameters."));
2191 }
2192
2193 /* Open the file for loading. */
2194 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2195 if (loadfile_bfd == NULL)
2196 {
2197 perror_with_name (filename);
2198 return;
2199 }
2200
2201 make_cleanup_bfd_unref (loadfile_bfd);
2202
2203 if (!bfd_check_format (loadfile_bfd, bfd_object))
2204 {
2205 error (_("\"%s\" is not an object file: %s"), filename,
2206 bfd_errmsg (bfd_get_error ()));
2207 }
2208
2209 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2210 (void *) &total_progress.total_size);
2211
2212 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2213
2214 gettimeofday (&start_time, NULL);
2215
2216 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2217 load_progress) != 0)
2218 error (_("Load failed"));
2219
2220 gettimeofday (&end_time, NULL);
2221
2222 entry = bfd_get_start_address (loadfile_bfd);
2223 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2224 ui_out_text (uiout, "Start address ");
2225 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2226 ui_out_text (uiout, ", load size ");
2227 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2228 ui_out_text (uiout, "\n");
2229 /* We were doing this in remote-mips.c, I suspect it is right
2230 for other targets too. */
2231 regcache_write_pc (get_current_regcache (), entry);
2232
2233 /* Reset breakpoints, now that we have changed the load image. For
2234 instance, breakpoints may have been set (or reset, by
2235 post_create_inferior) while connected to the target but before we
2236 loaded the program. In that case, the prologue analyzer could
2237 have read instructions from the target to find the right
2238 breakpoint locations. Loading has changed the contents of that
2239 memory. */
2240
2241 breakpoint_re_set ();
2242
2243 /* FIXME: are we supposed to call symbol_file_add or not? According
2244 to a comment from remote-mips.c (where a call to symbol_file_add
2245 was commented out), making the call confuses GDB if more than one
2246 file is loaded in. Some targets do (e.g., remote-vx.c) but
2247 others don't (or didn't - perhaps they have all been deleted). */
2248
2249 print_transfer_performance (gdb_stdout, total_progress.data_count,
2250 total_progress.write_count,
2251 &start_time, &end_time);
2252
2253 do_cleanups (old_cleanups);
2254 }
2255
2256 /* Report how fast the transfer went. */
2257
2258 void
2259 print_transfer_performance (struct ui_file *stream,
2260 unsigned long data_count,
2261 unsigned long write_count,
2262 const struct timeval *start_time,
2263 const struct timeval *end_time)
2264 {
2265 ULONGEST time_count;
2266 struct ui_out *uiout = current_uiout;
2267
2268 /* Compute the elapsed time in milliseconds, as a tradeoff between
2269 accuracy and overflow. */
2270 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2271 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2272
2273 ui_out_text (uiout, "Transfer rate: ");
2274 if (time_count > 0)
2275 {
2276 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2277
2278 if (ui_out_is_mi_like_p (uiout))
2279 {
2280 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2281 ui_out_text (uiout, " bits/sec");
2282 }
2283 else if (rate < 1024)
2284 {
2285 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2286 ui_out_text (uiout, " bytes/sec");
2287 }
2288 else
2289 {
2290 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2291 ui_out_text (uiout, " KB/sec");
2292 }
2293 }
2294 else
2295 {
2296 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2297 ui_out_text (uiout, " bits in <1 sec");
2298 }
2299 if (write_count > 0)
2300 {
2301 ui_out_text (uiout, ", ");
2302 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2303 ui_out_text (uiout, " bytes/write");
2304 }
2305 ui_out_text (uiout, ".\n");
2306 }
2307
2308 /* This function allows the addition of incrementally linked object files.
2309 It does not modify any state in the target, only in the debugger. */
2310 /* Note: ezannoni 2000-04-13 This function/command used to have a
2311 special case syntax for the rombug target (Rombug is the boot
2312 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2313 rombug case, the user doesn't need to supply a text address,
2314 instead a call to target_link() (in target.c) would supply the
2315 value to use. We are now discontinuing this type of ad hoc syntax. */
2316
2317 static void
2318 add_symbol_file_command (char *args, int from_tty)
2319 {
2320 struct gdbarch *gdbarch = get_current_arch ();
2321 char *filename = NULL;
2322 int flags = OBJF_USERLOADED;
2323 char *arg;
2324 int section_index = 0;
2325 int argcnt = 0;
2326 int sec_num = 0;
2327 int i;
2328 int expecting_sec_name = 0;
2329 int expecting_sec_addr = 0;
2330 char **argv;
2331
2332 struct sect_opt
2333 {
2334 char *name;
2335 char *value;
2336 };
2337
2338 struct section_addr_info *section_addrs;
2339 struct sect_opt *sect_opts = NULL;
2340 size_t num_sect_opts = 0;
2341 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2342
2343 num_sect_opts = 16;
2344 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2345 * sizeof (struct sect_opt));
2346
2347 dont_repeat ();
2348
2349 if (args == NULL)
2350 error (_("add-symbol-file takes a file name and an address"));
2351
2352 argv = gdb_buildargv (args);
2353 make_cleanup_freeargv (argv);
2354
2355 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2356 {
2357 /* Process the argument. */
2358 if (argcnt == 0)
2359 {
2360 /* The first argument is the file name. */
2361 filename = tilde_expand (arg);
2362 make_cleanup (xfree, filename);
2363 }
2364 else
2365 if (argcnt == 1)
2366 {
2367 /* The second argument is always the text address at which
2368 to load the program. */
2369 sect_opts[section_index].name = ".text";
2370 sect_opts[section_index].value = arg;
2371 if (++section_index >= num_sect_opts)
2372 {
2373 num_sect_opts *= 2;
2374 sect_opts = ((struct sect_opt *)
2375 xrealloc (sect_opts,
2376 num_sect_opts
2377 * sizeof (struct sect_opt)));
2378 }
2379 }
2380 else
2381 {
2382 /* It's an option (starting with '-') or it's an argument
2383 to an option. */
2384
2385 if (*arg == '-')
2386 {
2387 if (strcmp (arg, "-readnow") == 0)
2388 flags |= OBJF_READNOW;
2389 else if (strcmp (arg, "-s") == 0)
2390 {
2391 expecting_sec_name = 1;
2392 expecting_sec_addr = 1;
2393 }
2394 }
2395 else
2396 {
2397 if (expecting_sec_name)
2398 {
2399 sect_opts[section_index].name = arg;
2400 expecting_sec_name = 0;
2401 }
2402 else
2403 if (expecting_sec_addr)
2404 {
2405 sect_opts[section_index].value = arg;
2406 expecting_sec_addr = 0;
2407 if (++section_index >= num_sect_opts)
2408 {
2409 num_sect_opts *= 2;
2410 sect_opts = ((struct sect_opt *)
2411 xrealloc (sect_opts,
2412 num_sect_opts
2413 * sizeof (struct sect_opt)));
2414 }
2415 }
2416 else
2417 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2418 " [-readnow] [-s <secname> <addr>]*"));
2419 }
2420 }
2421 }
2422
2423 /* This command takes at least two arguments. The first one is a
2424 filename, and the second is the address where this file has been
2425 loaded. Abort now if this address hasn't been provided by the
2426 user. */
2427 if (section_index < 1)
2428 error (_("The address where %s has been loaded is missing"), filename);
2429
2430 /* Print the prompt for the query below. And save the arguments into
2431 a sect_addr_info structure to be passed around to other
2432 functions. We have to split this up into separate print
2433 statements because hex_string returns a local static
2434 string. */
2435
2436 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2437 section_addrs = alloc_section_addr_info (section_index);
2438 make_cleanup (xfree, section_addrs);
2439 for (i = 0; i < section_index; i++)
2440 {
2441 CORE_ADDR addr;
2442 char *val = sect_opts[i].value;
2443 char *sec = sect_opts[i].name;
2444
2445 addr = parse_and_eval_address (val);
2446
2447 /* Here we store the section offsets in the order they were
2448 entered on the command line. */
2449 section_addrs->other[sec_num].name = sec;
2450 section_addrs->other[sec_num].addr = addr;
2451 printf_unfiltered ("\t%s_addr = %s\n", sec,
2452 paddress (gdbarch, addr));
2453 sec_num++;
2454
2455 /* The object's sections are initialized when a
2456 call is made to build_objfile_section_table (objfile).
2457 This happens in reread_symbols.
2458 At this point, we don't know what file type this is,
2459 so we can't determine what section names are valid. */
2460 }
2461
2462 if (from_tty && (!query ("%s", "")))
2463 error (_("Not confirmed."));
2464
2465 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2466 section_addrs, flags);
2467
2468 /* Getting new symbols may change our opinion about what is
2469 frameless. */
2470 reinit_frame_cache ();
2471 do_cleanups (my_cleanups);
2472 }
2473 \f
2474
2475 typedef struct objfile *objfilep;
2476
2477 DEF_VEC_P (objfilep);
2478
2479 /* Re-read symbols if a symbol-file has changed. */
2480 void
2481 reread_symbols (void)
2482 {
2483 struct objfile *objfile;
2484 long new_modtime;
2485 struct stat new_statbuf;
2486 int res;
2487 VEC (objfilep) *new_objfiles = NULL;
2488 struct cleanup *all_cleanups;
2489
2490 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2491
2492 /* With the addition of shared libraries, this should be modified,
2493 the load time should be saved in the partial symbol tables, since
2494 different tables may come from different source files. FIXME.
2495 This routine should then walk down each partial symbol table
2496 and see if the symbol table that it originates from has been changed. */
2497
2498 for (objfile = object_files; objfile; objfile = objfile->next)
2499 {
2500 /* solib-sunos.c creates one objfile with obfd. */
2501 if (objfile->obfd == NULL)
2502 continue;
2503
2504 /* Separate debug objfiles are handled in the main objfile. */
2505 if (objfile->separate_debug_objfile_backlink)
2506 continue;
2507
2508 /* If this object is from an archive (what you usually create with
2509 `ar', often called a `static library' on most systems, though
2510 a `shared library' on AIX is also an archive), then you should
2511 stat on the archive name, not member name. */
2512 if (objfile->obfd->my_archive)
2513 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2514 else
2515 res = stat (objfile->name, &new_statbuf);
2516 if (res != 0)
2517 {
2518 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2519 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2520 objfile->name);
2521 continue;
2522 }
2523 new_modtime = new_statbuf.st_mtime;
2524 if (new_modtime != objfile->mtime)
2525 {
2526 struct cleanup *old_cleanups;
2527 struct section_offsets *offsets;
2528 int num_offsets;
2529 char *obfd_filename;
2530
2531 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2532 objfile->name);
2533
2534 /* There are various functions like symbol_file_add,
2535 symfile_bfd_open, syms_from_objfile, etc., which might
2536 appear to do what we want. But they have various other
2537 effects which we *don't* want. So we just do stuff
2538 ourselves. We don't worry about mapped files (for one thing,
2539 any mapped file will be out of date). */
2540
2541 /* If we get an error, blow away this objfile (not sure if
2542 that is the correct response for things like shared
2543 libraries). */
2544 old_cleanups = make_cleanup_free_objfile (objfile);
2545 /* We need to do this whenever any symbols go away. */
2546 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2547
2548 if (exec_bfd != NULL
2549 && filename_cmp (bfd_get_filename (objfile->obfd),
2550 bfd_get_filename (exec_bfd)) == 0)
2551 {
2552 /* Reload EXEC_BFD without asking anything. */
2553
2554 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2555 }
2556
2557 /* Keep the calls order approx. the same as in free_objfile. */
2558
2559 /* Free the separate debug objfiles. It will be
2560 automatically recreated by sym_read. */
2561 free_objfile_separate_debug (objfile);
2562
2563 /* Remove any references to this objfile in the global
2564 value lists. */
2565 preserve_values (objfile);
2566
2567 /* Nuke all the state that we will re-read. Much of the following
2568 code which sets things to NULL really is necessary to tell
2569 other parts of GDB that there is nothing currently there.
2570
2571 Try to keep the freeing order compatible with free_objfile. */
2572
2573 if (objfile->sf != NULL)
2574 {
2575 (*objfile->sf->sym_finish) (objfile);
2576 }
2577
2578 clear_objfile_data (objfile);
2579
2580 /* Clean up any state BFD has sitting around. */
2581 {
2582 struct bfd *obfd = objfile->obfd;
2583
2584 obfd_filename = bfd_get_filename (objfile->obfd);
2585 /* Open the new BFD before freeing the old one, so that
2586 the filename remains live. */
2587 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
2588 if (objfile->obfd == NULL)
2589 {
2590 /* We have to make a cleanup and error here, rather
2591 than erroring later, because once we unref OBFD,
2592 OBFD_FILENAME will be freed. */
2593 make_cleanup_bfd_unref (obfd);
2594 error (_("Can't open %s to read symbols."), obfd_filename);
2595 }
2596 gdb_bfd_unref (obfd);
2597 }
2598
2599 objfile->name = bfd_get_filename (objfile->obfd);
2600 /* bfd_openr sets cacheable to true, which is what we want. */
2601 if (!bfd_check_format (objfile->obfd, bfd_object))
2602 error (_("Can't read symbols from %s: %s."), objfile->name,
2603 bfd_errmsg (bfd_get_error ()));
2604
2605 /* Save the offsets, we will nuke them with the rest of the
2606 objfile_obstack. */
2607 num_offsets = objfile->num_sections;
2608 offsets = ((struct section_offsets *)
2609 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2610 memcpy (offsets, objfile->section_offsets,
2611 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2612
2613 /* FIXME: Do we have to free a whole linked list, or is this
2614 enough? */
2615 if (objfile->global_psymbols.list)
2616 xfree (objfile->global_psymbols.list);
2617 memset (&objfile->global_psymbols, 0,
2618 sizeof (objfile->global_psymbols));
2619 if (objfile->static_psymbols.list)
2620 xfree (objfile->static_psymbols.list);
2621 memset (&objfile->static_psymbols, 0,
2622 sizeof (objfile->static_psymbols));
2623
2624 /* Free the obstacks for non-reusable objfiles. */
2625 psymbol_bcache_free (objfile->psymbol_cache);
2626 objfile->psymbol_cache = psymbol_bcache_init ();
2627 if (objfile->demangled_names_hash != NULL)
2628 {
2629 htab_delete (objfile->demangled_names_hash);
2630 objfile->demangled_names_hash = NULL;
2631 }
2632 obstack_free (&objfile->objfile_obstack, 0);
2633 objfile->sections = NULL;
2634 objfile->symtabs = NULL;
2635 objfile->psymtabs = NULL;
2636 objfile->psymtabs_addrmap = NULL;
2637 objfile->free_psymtabs = NULL;
2638 objfile->template_symbols = NULL;
2639 objfile->msymbols = NULL;
2640 objfile->minimal_symbol_count = 0;
2641 memset (&objfile->msymbol_hash, 0,
2642 sizeof (objfile->msymbol_hash));
2643 memset (&objfile->msymbol_demangled_hash, 0,
2644 sizeof (objfile->msymbol_demangled_hash));
2645
2646 set_objfile_per_bfd (objfile);
2647
2648 /* obstack_init also initializes the obstack so it is
2649 empty. We could use obstack_specify_allocation but
2650 gdb_obstack.h specifies the alloc/dealloc functions. */
2651 obstack_init (&objfile->objfile_obstack);
2652 build_objfile_section_table (objfile);
2653 terminate_minimal_symbol_table (objfile);
2654
2655 /* We use the same section offsets as from last time. I'm not
2656 sure whether that is always correct for shared libraries. */
2657 objfile->section_offsets = (struct section_offsets *)
2658 obstack_alloc (&objfile->objfile_obstack,
2659 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2660 memcpy (objfile->section_offsets, offsets,
2661 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2662 objfile->num_sections = num_offsets;
2663
2664 /* What the hell is sym_new_init for, anyway? The concept of
2665 distinguishing between the main file and additional files
2666 in this way seems rather dubious. */
2667 if (objfile == symfile_objfile)
2668 {
2669 (*objfile->sf->sym_new_init) (objfile);
2670 }
2671
2672 (*objfile->sf->sym_init) (objfile);
2673 clear_complaints (&symfile_complaints, 1, 1);
2674
2675 objfile->flags &= ~OBJF_PSYMTABS_READ;
2676 read_symbols (objfile, 0);
2677
2678 if (!objfile_has_symbols (objfile))
2679 {
2680 wrap_here ("");
2681 printf_unfiltered (_("(no debugging symbols found)\n"));
2682 wrap_here ("");
2683 }
2684
2685 /* We're done reading the symbol file; finish off complaints. */
2686 clear_complaints (&symfile_complaints, 0, 1);
2687
2688 /* Getting new symbols may change our opinion about what is
2689 frameless. */
2690
2691 reinit_frame_cache ();
2692
2693 /* Discard cleanups as symbol reading was successful. */
2694 discard_cleanups (old_cleanups);
2695
2696 /* If the mtime has changed between the time we set new_modtime
2697 and now, we *want* this to be out of date, so don't call stat
2698 again now. */
2699 objfile->mtime = new_modtime;
2700 init_entry_point_info (objfile);
2701
2702 VEC_safe_push (objfilep, new_objfiles, objfile);
2703 }
2704 }
2705
2706 if (new_objfiles)
2707 {
2708 int ix;
2709
2710 /* Notify objfiles that we've modified objfile sections. */
2711 objfiles_changed ();
2712
2713 clear_symtab_users (0);
2714
2715 /* clear_objfile_data for each objfile was called before freeing it and
2716 observer_notify_new_objfile (NULL) has been called by
2717 clear_symtab_users above. Notify the new files now. */
2718 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2719 observer_notify_new_objfile (objfile);
2720
2721 /* At least one objfile has changed, so we can consider that
2722 the executable we're debugging has changed too. */
2723 observer_notify_executable_changed ();
2724 }
2725
2726 do_cleanups (all_cleanups);
2727 }
2728 \f
2729
2730
2731 typedef struct
2732 {
2733 char *ext;
2734 enum language lang;
2735 }
2736 filename_language;
2737
2738 static filename_language *filename_language_table;
2739 static int fl_table_size, fl_table_next;
2740
2741 static void
2742 add_filename_language (char *ext, enum language lang)
2743 {
2744 if (fl_table_next >= fl_table_size)
2745 {
2746 fl_table_size += 10;
2747 filename_language_table =
2748 xrealloc (filename_language_table,
2749 fl_table_size * sizeof (*filename_language_table));
2750 }
2751
2752 filename_language_table[fl_table_next].ext = xstrdup (ext);
2753 filename_language_table[fl_table_next].lang = lang;
2754 fl_table_next++;
2755 }
2756
2757 static char *ext_args;
2758 static void
2759 show_ext_args (struct ui_file *file, int from_tty,
2760 struct cmd_list_element *c, const char *value)
2761 {
2762 fprintf_filtered (file,
2763 _("Mapping between filename extension "
2764 "and source language is \"%s\".\n"),
2765 value);
2766 }
2767
2768 static void
2769 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2770 {
2771 int i;
2772 char *cp = ext_args;
2773 enum language lang;
2774
2775 /* First arg is filename extension, starting with '.' */
2776 if (*cp != '.')
2777 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2778
2779 /* Find end of first arg. */
2780 while (*cp && !isspace (*cp))
2781 cp++;
2782
2783 if (*cp == '\0')
2784 error (_("'%s': two arguments required -- "
2785 "filename extension and language"),
2786 ext_args);
2787
2788 /* Null-terminate first arg. */
2789 *cp++ = '\0';
2790
2791 /* Find beginning of second arg, which should be a source language. */
2792 while (*cp && isspace (*cp))
2793 cp++;
2794
2795 if (*cp == '\0')
2796 error (_("'%s': two arguments required -- "
2797 "filename extension and language"),
2798 ext_args);
2799
2800 /* Lookup the language from among those we know. */
2801 lang = language_enum (cp);
2802
2803 /* Now lookup the filename extension: do we already know it? */
2804 for (i = 0; i < fl_table_next; i++)
2805 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2806 break;
2807
2808 if (i >= fl_table_next)
2809 {
2810 /* New file extension. */
2811 add_filename_language (ext_args, lang);
2812 }
2813 else
2814 {
2815 /* Redefining a previously known filename extension. */
2816
2817 /* if (from_tty) */
2818 /* query ("Really make files of type %s '%s'?", */
2819 /* ext_args, language_str (lang)); */
2820
2821 xfree (filename_language_table[i].ext);
2822 filename_language_table[i].ext = xstrdup (ext_args);
2823 filename_language_table[i].lang = lang;
2824 }
2825 }
2826
2827 static void
2828 info_ext_lang_command (char *args, int from_tty)
2829 {
2830 int i;
2831
2832 printf_filtered (_("Filename extensions and the languages they represent:"));
2833 printf_filtered ("\n\n");
2834 for (i = 0; i < fl_table_next; i++)
2835 printf_filtered ("\t%s\t- %s\n",
2836 filename_language_table[i].ext,
2837 language_str (filename_language_table[i].lang));
2838 }
2839
2840 static void
2841 init_filename_language_table (void)
2842 {
2843 if (fl_table_size == 0) /* Protect against repetition. */
2844 {
2845 fl_table_size = 20;
2846 fl_table_next = 0;
2847 filename_language_table =
2848 xmalloc (fl_table_size * sizeof (*filename_language_table));
2849 add_filename_language (".c", language_c);
2850 add_filename_language (".d", language_d);
2851 add_filename_language (".C", language_cplus);
2852 add_filename_language (".cc", language_cplus);
2853 add_filename_language (".cp", language_cplus);
2854 add_filename_language (".cpp", language_cplus);
2855 add_filename_language (".cxx", language_cplus);
2856 add_filename_language (".c++", language_cplus);
2857 add_filename_language (".java", language_java);
2858 add_filename_language (".class", language_java);
2859 add_filename_language (".m", language_objc);
2860 add_filename_language (".f", language_fortran);
2861 add_filename_language (".F", language_fortran);
2862 add_filename_language (".for", language_fortran);
2863 add_filename_language (".FOR", language_fortran);
2864 add_filename_language (".ftn", language_fortran);
2865 add_filename_language (".FTN", language_fortran);
2866 add_filename_language (".fpp", language_fortran);
2867 add_filename_language (".FPP", language_fortran);
2868 add_filename_language (".f90", language_fortran);
2869 add_filename_language (".F90", language_fortran);
2870 add_filename_language (".f95", language_fortran);
2871 add_filename_language (".F95", language_fortran);
2872 add_filename_language (".f03", language_fortran);
2873 add_filename_language (".F03", language_fortran);
2874 add_filename_language (".f08", language_fortran);
2875 add_filename_language (".F08", language_fortran);
2876 add_filename_language (".s", language_asm);
2877 add_filename_language (".sx", language_asm);
2878 add_filename_language (".S", language_asm);
2879 add_filename_language (".pas", language_pascal);
2880 add_filename_language (".p", language_pascal);
2881 add_filename_language (".pp", language_pascal);
2882 add_filename_language (".adb", language_ada);
2883 add_filename_language (".ads", language_ada);
2884 add_filename_language (".a", language_ada);
2885 add_filename_language (".ada", language_ada);
2886 add_filename_language (".dg", language_ada);
2887 }
2888 }
2889
2890 enum language
2891 deduce_language_from_filename (const char *filename)
2892 {
2893 int i;
2894 char *cp;
2895
2896 if (filename != NULL)
2897 if ((cp = strrchr (filename, '.')) != NULL)
2898 for (i = 0; i < fl_table_next; i++)
2899 if (strcmp (cp, filename_language_table[i].ext) == 0)
2900 return filename_language_table[i].lang;
2901
2902 return language_unknown;
2903 }
2904 \f
2905 /* allocate_symtab:
2906
2907 Allocate and partly initialize a new symbol table. Return a pointer
2908 to it. error() if no space.
2909
2910 Caller must set these fields:
2911 LINETABLE(symtab)
2912 symtab->blockvector
2913 symtab->dirname
2914 symtab->free_code
2915 symtab->free_ptr
2916 */
2917
2918 struct symtab *
2919 allocate_symtab (const char *filename, struct objfile *objfile)
2920 {
2921 struct symtab *symtab;
2922
2923 symtab = (struct symtab *)
2924 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2925 memset (symtab, 0, sizeof (*symtab));
2926 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2927 objfile->per_bfd->filename_cache);
2928 symtab->fullname = NULL;
2929 symtab->language = deduce_language_from_filename (filename);
2930 symtab->debugformat = "unknown";
2931
2932 /* Hook it to the objfile it comes from. */
2933
2934 symtab->objfile = objfile;
2935 symtab->next = objfile->symtabs;
2936 objfile->symtabs = symtab;
2937
2938 if (symtab_create_debug)
2939 {
2940 /* Be a bit clever with debugging messages, and don't print objfile
2941 every time, only when it changes. */
2942 static char *last_objfile_name = NULL;
2943
2944 if (last_objfile_name == NULL
2945 || strcmp (last_objfile_name, objfile->name) != 0)
2946 {
2947 xfree (last_objfile_name);
2948 last_objfile_name = xstrdup (objfile->name);
2949 fprintf_unfiltered (gdb_stdlog,
2950 "Creating one or more symtabs for objfile %s ...\n",
2951 last_objfile_name);
2952 }
2953 fprintf_unfiltered (gdb_stdlog,
2954 "Created symtab %s for module %s.\n",
2955 host_address_to_string (symtab), filename);
2956 }
2957
2958 return (symtab);
2959 }
2960 \f
2961
2962 /* Reset all data structures in gdb which may contain references to symbol
2963 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2964
2965 void
2966 clear_symtab_users (int add_flags)
2967 {
2968 /* Someday, we should do better than this, by only blowing away
2969 the things that really need to be blown. */
2970
2971 /* Clear the "current" symtab first, because it is no longer valid.
2972 breakpoint_re_set may try to access the current symtab. */
2973 clear_current_source_symtab_and_line ();
2974
2975 clear_displays ();
2976 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2977 breakpoint_re_set ();
2978 clear_last_displayed_sal ();
2979 clear_pc_function_cache ();
2980 observer_notify_new_objfile (NULL);
2981
2982 /* Clear globals which might have pointed into a removed objfile.
2983 FIXME: It's not clear which of these are supposed to persist
2984 between expressions and which ought to be reset each time. */
2985 expression_context_block = NULL;
2986 innermost_block = NULL;
2987
2988 /* Varobj may refer to old symbols, perform a cleanup. */
2989 varobj_invalidate ();
2990
2991 }
2992
2993 static void
2994 clear_symtab_users_cleanup (void *ignore)
2995 {
2996 clear_symtab_users (0);
2997 }
2998 \f
2999 /* OVERLAYS:
3000 The following code implements an abstraction for debugging overlay sections.
3001
3002 The target model is as follows:
3003 1) The gnu linker will permit multiple sections to be mapped into the
3004 same VMA, each with its own unique LMA (or load address).
3005 2) It is assumed that some runtime mechanism exists for mapping the
3006 sections, one by one, from the load address into the VMA address.
3007 3) This code provides a mechanism for gdb to keep track of which
3008 sections should be considered to be mapped from the VMA to the LMA.
3009 This information is used for symbol lookup, and memory read/write.
3010 For instance, if a section has been mapped then its contents
3011 should be read from the VMA, otherwise from the LMA.
3012
3013 Two levels of debugger support for overlays are available. One is
3014 "manual", in which the debugger relies on the user to tell it which
3015 overlays are currently mapped. This level of support is
3016 implemented entirely in the core debugger, and the information about
3017 whether a section is mapped is kept in the objfile->obj_section table.
3018
3019 The second level of support is "automatic", and is only available if
3020 the target-specific code provides functionality to read the target's
3021 overlay mapping table, and translate its contents for the debugger
3022 (by updating the mapped state information in the obj_section tables).
3023
3024 The interface is as follows:
3025 User commands:
3026 overlay map <name> -- tell gdb to consider this section mapped
3027 overlay unmap <name> -- tell gdb to consider this section unmapped
3028 overlay list -- list the sections that GDB thinks are mapped
3029 overlay read-target -- get the target's state of what's mapped
3030 overlay off/manual/auto -- set overlay debugging state
3031 Functional interface:
3032 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3033 section, return that section.
3034 find_pc_overlay(pc): find any overlay section that contains
3035 the pc, either in its VMA or its LMA
3036 section_is_mapped(sect): true if overlay is marked as mapped
3037 section_is_overlay(sect): true if section's VMA != LMA
3038 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3039 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3040 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3041 overlay_mapped_address(...): map an address from section's LMA to VMA
3042 overlay_unmapped_address(...): map an address from section's VMA to LMA
3043 symbol_overlayed_address(...): Return a "current" address for symbol:
3044 either in VMA or LMA depending on whether
3045 the symbol's section is currently mapped. */
3046
3047 /* Overlay debugging state: */
3048
3049 enum overlay_debugging_state overlay_debugging = ovly_off;
3050 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
3051
3052 /* Function: section_is_overlay (SECTION)
3053 Returns true if SECTION has VMA not equal to LMA, ie.
3054 SECTION is loaded at an address different from where it will "run". */
3055
3056 int
3057 section_is_overlay (struct obj_section *section)
3058 {
3059 if (overlay_debugging && section)
3060 {
3061 bfd *abfd = section->objfile->obfd;
3062 asection *bfd_section = section->the_bfd_section;
3063
3064 if (bfd_section_lma (abfd, bfd_section) != 0
3065 && bfd_section_lma (abfd, bfd_section)
3066 != bfd_section_vma (abfd, bfd_section))
3067 return 1;
3068 }
3069
3070 return 0;
3071 }
3072
3073 /* Function: overlay_invalidate_all (void)
3074 Invalidate the mapped state of all overlay sections (mark it as stale). */
3075
3076 static void
3077 overlay_invalidate_all (void)
3078 {
3079 struct objfile *objfile;
3080 struct obj_section *sect;
3081
3082 ALL_OBJSECTIONS (objfile, sect)
3083 if (section_is_overlay (sect))
3084 sect->ovly_mapped = -1;
3085 }
3086
3087 /* Function: section_is_mapped (SECTION)
3088 Returns true if section is an overlay, and is currently mapped.
3089
3090 Access to the ovly_mapped flag is restricted to this function, so
3091 that we can do automatic update. If the global flag
3092 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3093 overlay_invalidate_all. If the mapped state of the particular
3094 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3095
3096 int
3097 section_is_mapped (struct obj_section *osect)
3098 {
3099 struct gdbarch *gdbarch;
3100
3101 if (osect == 0 || !section_is_overlay (osect))
3102 return 0;
3103
3104 switch (overlay_debugging)
3105 {
3106 default:
3107 case ovly_off:
3108 return 0; /* overlay debugging off */
3109 case ovly_auto: /* overlay debugging automatic */
3110 /* Unles there is a gdbarch_overlay_update function,
3111 there's really nothing useful to do here (can't really go auto). */
3112 gdbarch = get_objfile_arch (osect->objfile);
3113 if (gdbarch_overlay_update_p (gdbarch))
3114 {
3115 if (overlay_cache_invalid)
3116 {
3117 overlay_invalidate_all ();
3118 overlay_cache_invalid = 0;
3119 }
3120 if (osect->ovly_mapped == -1)
3121 gdbarch_overlay_update (gdbarch, osect);
3122 }
3123 /* fall thru to manual case */
3124 case ovly_on: /* overlay debugging manual */
3125 return osect->ovly_mapped == 1;
3126 }
3127 }
3128
3129 /* Function: pc_in_unmapped_range
3130 If PC falls into the lma range of SECTION, return true, else false. */
3131
3132 CORE_ADDR
3133 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3134 {
3135 if (section_is_overlay (section))
3136 {
3137 bfd *abfd = section->objfile->obfd;
3138 asection *bfd_section = section->the_bfd_section;
3139
3140 /* We assume the LMA is relocated by the same offset as the VMA. */
3141 bfd_vma size = bfd_get_section_size (bfd_section);
3142 CORE_ADDR offset = obj_section_offset (section);
3143
3144 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3145 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3146 return 1;
3147 }
3148
3149 return 0;
3150 }
3151
3152 /* Function: pc_in_mapped_range
3153 If PC falls into the vma range of SECTION, return true, else false. */
3154
3155 CORE_ADDR
3156 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3157 {
3158 if (section_is_overlay (section))
3159 {
3160 if (obj_section_addr (section) <= pc
3161 && pc < obj_section_endaddr (section))
3162 return 1;
3163 }
3164
3165 return 0;
3166 }
3167
3168
3169 /* Return true if the mapped ranges of sections A and B overlap, false
3170 otherwise. */
3171 static int
3172 sections_overlap (struct obj_section *a, struct obj_section *b)
3173 {
3174 CORE_ADDR a_start = obj_section_addr (a);
3175 CORE_ADDR a_end = obj_section_endaddr (a);
3176 CORE_ADDR b_start = obj_section_addr (b);
3177 CORE_ADDR b_end = obj_section_endaddr (b);
3178
3179 return (a_start < b_end && b_start < a_end);
3180 }
3181
3182 /* Function: overlay_unmapped_address (PC, SECTION)
3183 Returns the address corresponding to PC in the unmapped (load) range.
3184 May be the same as PC. */
3185
3186 CORE_ADDR
3187 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3188 {
3189 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3190 {
3191 bfd *abfd = section->objfile->obfd;
3192 asection *bfd_section = section->the_bfd_section;
3193
3194 return pc + bfd_section_lma (abfd, bfd_section)
3195 - bfd_section_vma (abfd, bfd_section);
3196 }
3197
3198 return pc;
3199 }
3200
3201 /* Function: overlay_mapped_address (PC, SECTION)
3202 Returns the address corresponding to PC in the mapped (runtime) range.
3203 May be the same as PC. */
3204
3205 CORE_ADDR
3206 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3207 {
3208 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3209 {
3210 bfd *abfd = section->objfile->obfd;
3211 asection *bfd_section = section->the_bfd_section;
3212
3213 return pc + bfd_section_vma (abfd, bfd_section)
3214 - bfd_section_lma (abfd, bfd_section);
3215 }
3216
3217 return pc;
3218 }
3219
3220
3221 /* Function: symbol_overlayed_address
3222 Return one of two addresses (relative to the VMA or to the LMA),
3223 depending on whether the section is mapped or not. */
3224
3225 CORE_ADDR
3226 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3227 {
3228 if (overlay_debugging)
3229 {
3230 /* If the symbol has no section, just return its regular address. */
3231 if (section == 0)
3232 return address;
3233 /* If the symbol's section is not an overlay, just return its
3234 address. */
3235 if (!section_is_overlay (section))
3236 return address;
3237 /* If the symbol's section is mapped, just return its address. */
3238 if (section_is_mapped (section))
3239 return address;
3240 /*
3241 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3242 * then return its LOADED address rather than its vma address!!
3243 */
3244 return overlay_unmapped_address (address, section);
3245 }
3246 return address;
3247 }
3248
3249 /* Function: find_pc_overlay (PC)
3250 Return the best-match overlay section for PC:
3251 If PC matches a mapped overlay section's VMA, return that section.
3252 Else if PC matches an unmapped section's VMA, return that section.
3253 Else if PC matches an unmapped section's LMA, return that section. */
3254
3255 struct obj_section *
3256 find_pc_overlay (CORE_ADDR pc)
3257 {
3258 struct objfile *objfile;
3259 struct obj_section *osect, *best_match = NULL;
3260
3261 if (overlay_debugging)
3262 ALL_OBJSECTIONS (objfile, osect)
3263 if (section_is_overlay (osect))
3264 {
3265 if (pc_in_mapped_range (pc, osect))
3266 {
3267 if (section_is_mapped (osect))
3268 return osect;
3269 else
3270 best_match = osect;
3271 }
3272 else if (pc_in_unmapped_range (pc, osect))
3273 best_match = osect;
3274 }
3275 return best_match;
3276 }
3277
3278 /* Function: find_pc_mapped_section (PC)
3279 If PC falls into the VMA address range of an overlay section that is
3280 currently marked as MAPPED, return that section. Else return NULL. */
3281
3282 struct obj_section *
3283 find_pc_mapped_section (CORE_ADDR pc)
3284 {
3285 struct objfile *objfile;
3286 struct obj_section *osect;
3287
3288 if (overlay_debugging)
3289 ALL_OBJSECTIONS (objfile, osect)
3290 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3291 return osect;
3292
3293 return NULL;
3294 }
3295
3296 /* Function: list_overlays_command
3297 Print a list of mapped sections and their PC ranges. */
3298
3299 void
3300 list_overlays_command (char *args, int from_tty)
3301 {
3302 int nmapped = 0;
3303 struct objfile *objfile;
3304 struct obj_section *osect;
3305
3306 if (overlay_debugging)
3307 ALL_OBJSECTIONS (objfile, osect)
3308 if (section_is_mapped (osect))
3309 {
3310 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3311 const char *name;
3312 bfd_vma lma, vma;
3313 int size;
3314
3315 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3316 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3317 size = bfd_get_section_size (osect->the_bfd_section);
3318 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3319
3320 printf_filtered ("Section %s, loaded at ", name);
3321 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3322 puts_filtered (" - ");
3323 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3324 printf_filtered (", mapped at ");
3325 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3326 puts_filtered (" - ");
3327 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3328 puts_filtered ("\n");
3329
3330 nmapped++;
3331 }
3332 if (nmapped == 0)
3333 printf_filtered (_("No sections are mapped.\n"));
3334 }
3335
3336 /* Function: map_overlay_command
3337 Mark the named section as mapped (ie. residing at its VMA address). */
3338
3339 void
3340 map_overlay_command (char *args, int from_tty)
3341 {
3342 struct objfile *objfile, *objfile2;
3343 struct obj_section *sec, *sec2;
3344
3345 if (!overlay_debugging)
3346 error (_("Overlay debugging not enabled. Use "
3347 "either the 'overlay auto' or\n"
3348 "the 'overlay manual' command."));
3349
3350 if (args == 0 || *args == 0)
3351 error (_("Argument required: name of an overlay section"));
3352
3353 /* First, find a section matching the user supplied argument. */
3354 ALL_OBJSECTIONS (objfile, sec)
3355 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3356 {
3357 /* Now, check to see if the section is an overlay. */
3358 if (!section_is_overlay (sec))
3359 continue; /* not an overlay section */
3360
3361 /* Mark the overlay as "mapped". */
3362 sec->ovly_mapped = 1;
3363
3364 /* Next, make a pass and unmap any sections that are
3365 overlapped by this new section: */
3366 ALL_OBJSECTIONS (objfile2, sec2)
3367 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3368 {
3369 if (info_verbose)
3370 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3371 bfd_section_name (objfile->obfd,
3372 sec2->the_bfd_section));
3373 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3374 }
3375 return;
3376 }
3377 error (_("No overlay section called %s"), args);
3378 }
3379
3380 /* Function: unmap_overlay_command
3381 Mark the overlay section as unmapped
3382 (ie. resident in its LMA address range, rather than the VMA range). */
3383
3384 void
3385 unmap_overlay_command (char *args, int from_tty)
3386 {
3387 struct objfile *objfile;
3388 struct obj_section *sec;
3389
3390 if (!overlay_debugging)
3391 error (_("Overlay debugging not enabled. "
3392 "Use either the 'overlay auto' or\n"
3393 "the 'overlay manual' command."));
3394
3395 if (args == 0 || *args == 0)
3396 error (_("Argument required: name of an overlay section"));
3397
3398 /* First, find a section matching the user supplied argument. */
3399 ALL_OBJSECTIONS (objfile, sec)
3400 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3401 {
3402 if (!sec->ovly_mapped)
3403 error (_("Section %s is not mapped"), args);
3404 sec->ovly_mapped = 0;
3405 return;
3406 }
3407 error (_("No overlay section called %s"), args);
3408 }
3409
3410 /* Function: overlay_auto_command
3411 A utility command to turn on overlay debugging.
3412 Possibly this should be done via a set/show command. */
3413
3414 static void
3415 overlay_auto_command (char *args, int from_tty)
3416 {
3417 overlay_debugging = ovly_auto;
3418 enable_overlay_breakpoints ();
3419 if (info_verbose)
3420 printf_unfiltered (_("Automatic overlay debugging enabled."));
3421 }
3422
3423 /* Function: overlay_manual_command
3424 A utility command to turn on overlay debugging.
3425 Possibly this should be done via a set/show command. */
3426
3427 static void
3428 overlay_manual_command (char *args, int from_tty)
3429 {
3430 overlay_debugging = ovly_on;
3431 disable_overlay_breakpoints ();
3432 if (info_verbose)
3433 printf_unfiltered (_("Overlay debugging enabled."));
3434 }
3435
3436 /* Function: overlay_off_command
3437 A utility command to turn on overlay debugging.
3438 Possibly this should be done via a set/show command. */
3439
3440 static void
3441 overlay_off_command (char *args, int from_tty)
3442 {
3443 overlay_debugging = ovly_off;
3444 disable_overlay_breakpoints ();
3445 if (info_verbose)
3446 printf_unfiltered (_("Overlay debugging disabled."));
3447 }
3448
3449 static void
3450 overlay_load_command (char *args, int from_tty)
3451 {
3452 struct gdbarch *gdbarch = get_current_arch ();
3453
3454 if (gdbarch_overlay_update_p (gdbarch))
3455 gdbarch_overlay_update (gdbarch, NULL);
3456 else
3457 error (_("This target does not know how to read its overlay state."));
3458 }
3459
3460 /* Function: overlay_command
3461 A place-holder for a mis-typed command. */
3462
3463 /* Command list chain containing all defined "overlay" subcommands. */
3464 static struct cmd_list_element *overlaylist;
3465
3466 static void
3467 overlay_command (char *args, int from_tty)
3468 {
3469 printf_unfiltered
3470 ("\"overlay\" must be followed by the name of an overlay command.\n");
3471 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3472 }
3473
3474
3475 /* Target Overlays for the "Simplest" overlay manager:
3476
3477 This is GDB's default target overlay layer. It works with the
3478 minimal overlay manager supplied as an example by Cygnus. The
3479 entry point is via a function pointer "gdbarch_overlay_update",
3480 so targets that use a different runtime overlay manager can
3481 substitute their own overlay_update function and take over the
3482 function pointer.
3483
3484 The overlay_update function pokes around in the target's data structures
3485 to see what overlays are mapped, and updates GDB's overlay mapping with
3486 this information.
3487
3488 In this simple implementation, the target data structures are as follows:
3489 unsigned _novlys; /# number of overlay sections #/
3490 unsigned _ovly_table[_novlys][4] = {
3491 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3492 {..., ..., ..., ...},
3493 }
3494 unsigned _novly_regions; /# number of overlay regions #/
3495 unsigned _ovly_region_table[_novly_regions][3] = {
3496 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3497 {..., ..., ...},
3498 }
3499 These functions will attempt to update GDB's mappedness state in the
3500 symbol section table, based on the target's mappedness state.
3501
3502 To do this, we keep a cached copy of the target's _ovly_table, and
3503 attempt to detect when the cached copy is invalidated. The main
3504 entry point is "simple_overlay_update(SECT), which looks up SECT in
3505 the cached table and re-reads only the entry for that section from
3506 the target (whenever possible). */
3507
3508 /* Cached, dynamically allocated copies of the target data structures: */
3509 static unsigned (*cache_ovly_table)[4] = 0;
3510 static unsigned cache_novlys = 0;
3511 static CORE_ADDR cache_ovly_table_base = 0;
3512 enum ovly_index
3513 {
3514 VMA, SIZE, LMA, MAPPED
3515 };
3516
3517 /* Throw away the cached copy of _ovly_table. */
3518 static void
3519 simple_free_overlay_table (void)
3520 {
3521 if (cache_ovly_table)
3522 xfree (cache_ovly_table);
3523 cache_novlys = 0;
3524 cache_ovly_table = NULL;
3525 cache_ovly_table_base = 0;
3526 }
3527
3528 /* Read an array of ints of size SIZE from the target into a local buffer.
3529 Convert to host order. int LEN is number of ints. */
3530 static void
3531 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3532 int len, int size, enum bfd_endian byte_order)
3533 {
3534 /* FIXME (alloca): Not safe if array is very large. */
3535 gdb_byte *buf = alloca (len * size);
3536 int i;
3537
3538 read_memory (memaddr, buf, len * size);
3539 for (i = 0; i < len; i++)
3540 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3541 }
3542
3543 /* Find and grab a copy of the target _ovly_table
3544 (and _novlys, which is needed for the table's size). */
3545 static int
3546 simple_read_overlay_table (void)
3547 {
3548 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3549 struct gdbarch *gdbarch;
3550 int word_size;
3551 enum bfd_endian byte_order;
3552
3553 simple_free_overlay_table ();
3554 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3555 if (! novlys_msym)
3556 {
3557 error (_("Error reading inferior's overlay table: "
3558 "couldn't find `_novlys' variable\n"
3559 "in inferior. Use `overlay manual' mode."));
3560 return 0;
3561 }
3562
3563 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3564 if (! ovly_table_msym)
3565 {
3566 error (_("Error reading inferior's overlay table: couldn't find "
3567 "`_ovly_table' array\n"
3568 "in inferior. Use `overlay manual' mode."));
3569 return 0;
3570 }
3571
3572 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3573 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3574 byte_order = gdbarch_byte_order (gdbarch);
3575
3576 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3577 4, byte_order);
3578 cache_ovly_table
3579 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3580 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3581 read_target_long_array (cache_ovly_table_base,
3582 (unsigned int *) cache_ovly_table,
3583 cache_novlys * 4, word_size, byte_order);
3584
3585 return 1; /* SUCCESS */
3586 }
3587
3588 /* Function: simple_overlay_update_1
3589 A helper function for simple_overlay_update. Assuming a cached copy
3590 of _ovly_table exists, look through it to find an entry whose vma,
3591 lma and size match those of OSECT. Re-read the entry and make sure
3592 it still matches OSECT (else the table may no longer be valid).
3593 Set OSECT's mapped state to match the entry. Return: 1 for
3594 success, 0 for failure. */
3595
3596 static int
3597 simple_overlay_update_1 (struct obj_section *osect)
3598 {
3599 int i, size;
3600 bfd *obfd = osect->objfile->obfd;
3601 asection *bsect = osect->the_bfd_section;
3602 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3603 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3604 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3605
3606 size = bfd_get_section_size (osect->the_bfd_section);
3607 for (i = 0; i < cache_novlys; i++)
3608 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3609 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3610 /* && cache_ovly_table[i][SIZE] == size */ )
3611 {
3612 read_target_long_array (cache_ovly_table_base + i * word_size,
3613 (unsigned int *) cache_ovly_table[i],
3614 4, word_size, byte_order);
3615 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3616 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3617 /* && cache_ovly_table[i][SIZE] == size */ )
3618 {
3619 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3620 return 1;
3621 }
3622 else /* Warning! Warning! Target's ovly table has changed! */
3623 return 0;
3624 }
3625 return 0;
3626 }
3627
3628 /* Function: simple_overlay_update
3629 If OSECT is NULL, then update all sections' mapped state
3630 (after re-reading the entire target _ovly_table).
3631 If OSECT is non-NULL, then try to find a matching entry in the
3632 cached ovly_table and update only OSECT's mapped state.
3633 If a cached entry can't be found or the cache isn't valid, then
3634 re-read the entire cache, and go ahead and update all sections. */
3635
3636 void
3637 simple_overlay_update (struct obj_section *osect)
3638 {
3639 struct objfile *objfile;
3640
3641 /* Were we given an osect to look up? NULL means do all of them. */
3642 if (osect)
3643 /* Have we got a cached copy of the target's overlay table? */
3644 if (cache_ovly_table != NULL)
3645 {
3646 /* Does its cached location match what's currently in the
3647 symtab? */
3648 struct minimal_symbol *minsym
3649 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3650
3651 if (minsym == NULL)
3652 error (_("Error reading inferior's overlay table: couldn't "
3653 "find `_ovly_table' array\n"
3654 "in inferior. Use `overlay manual' mode."));
3655
3656 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3657 /* Then go ahead and try to look up this single section in
3658 the cache. */
3659 if (simple_overlay_update_1 (osect))
3660 /* Found it! We're done. */
3661 return;
3662 }
3663
3664 /* Cached table no good: need to read the entire table anew.
3665 Or else we want all the sections, in which case it's actually
3666 more efficient to read the whole table in one block anyway. */
3667
3668 if (! simple_read_overlay_table ())
3669 return;
3670
3671 /* Now may as well update all sections, even if only one was requested. */
3672 ALL_OBJSECTIONS (objfile, osect)
3673 if (section_is_overlay (osect))
3674 {
3675 int i, size;
3676 bfd *obfd = osect->objfile->obfd;
3677 asection *bsect = osect->the_bfd_section;
3678
3679 size = bfd_get_section_size (bsect);
3680 for (i = 0; i < cache_novlys; i++)
3681 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3682 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3683 /* && cache_ovly_table[i][SIZE] == size */ )
3684 { /* obj_section matches i'th entry in ovly_table. */
3685 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3686 break; /* finished with inner for loop: break out. */
3687 }
3688 }
3689 }
3690
3691 /* Set the output sections and output offsets for section SECTP in
3692 ABFD. The relocation code in BFD will read these offsets, so we
3693 need to be sure they're initialized. We map each section to itself,
3694 with no offset; this means that SECTP->vma will be honored. */
3695
3696 static void
3697 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3698 {
3699 sectp->output_section = sectp;
3700 sectp->output_offset = 0;
3701 }
3702
3703 /* Default implementation for sym_relocate. */
3704
3705
3706 bfd_byte *
3707 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3708 bfd_byte *buf)
3709 {
3710 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3711 DWO file. */
3712 bfd *abfd = sectp->owner;
3713
3714 /* We're only interested in sections with relocation
3715 information. */
3716 if ((sectp->flags & SEC_RELOC) == 0)
3717 return NULL;
3718
3719 /* We will handle section offsets properly elsewhere, so relocate as if
3720 all sections begin at 0. */
3721 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3722
3723 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3724 }
3725
3726 /* Relocate the contents of a debug section SECTP in ABFD. The
3727 contents are stored in BUF if it is non-NULL, or returned in a
3728 malloc'd buffer otherwise.
3729
3730 For some platforms and debug info formats, shared libraries contain
3731 relocations against the debug sections (particularly for DWARF-2;
3732 one affected platform is PowerPC GNU/Linux, although it depends on
3733 the version of the linker in use). Also, ELF object files naturally
3734 have unresolved relocations for their debug sections. We need to apply
3735 the relocations in order to get the locations of symbols correct.
3736 Another example that may require relocation processing, is the
3737 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3738 debug section. */
3739
3740 bfd_byte *
3741 symfile_relocate_debug_section (struct objfile *objfile,
3742 asection *sectp, bfd_byte *buf)
3743 {
3744 gdb_assert (objfile->sf->sym_relocate);
3745
3746 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3747 }
3748
3749 struct symfile_segment_data *
3750 get_symfile_segment_data (bfd *abfd)
3751 {
3752 const struct sym_fns *sf = find_sym_fns (abfd);
3753
3754 if (sf == NULL)
3755 return NULL;
3756
3757 return sf->sym_segments (abfd);
3758 }
3759
3760 void
3761 free_symfile_segment_data (struct symfile_segment_data *data)
3762 {
3763 xfree (data->segment_bases);
3764 xfree (data->segment_sizes);
3765 xfree (data->segment_info);
3766 xfree (data);
3767 }
3768
3769
3770 /* Given:
3771 - DATA, containing segment addresses from the object file ABFD, and
3772 the mapping from ABFD's sections onto the segments that own them,
3773 and
3774 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3775 segment addresses reported by the target,
3776 store the appropriate offsets for each section in OFFSETS.
3777
3778 If there are fewer entries in SEGMENT_BASES than there are segments
3779 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3780
3781 If there are more entries, then ignore the extra. The target may
3782 not be able to distinguish between an empty data segment and a
3783 missing data segment; a missing text segment is less plausible. */
3784 int
3785 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3786 struct section_offsets *offsets,
3787 int num_segment_bases,
3788 const CORE_ADDR *segment_bases)
3789 {
3790 int i;
3791 asection *sect;
3792
3793 /* It doesn't make sense to call this function unless you have some
3794 segment base addresses. */
3795 gdb_assert (num_segment_bases > 0);
3796
3797 /* If we do not have segment mappings for the object file, we
3798 can not relocate it by segments. */
3799 gdb_assert (data != NULL);
3800 gdb_assert (data->num_segments > 0);
3801
3802 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3803 {
3804 int which = data->segment_info[i];
3805
3806 gdb_assert (0 <= which && which <= data->num_segments);
3807
3808 /* Don't bother computing offsets for sections that aren't
3809 loaded as part of any segment. */
3810 if (! which)
3811 continue;
3812
3813 /* Use the last SEGMENT_BASES entry as the address of any extra
3814 segments mentioned in DATA->segment_info. */
3815 if (which > num_segment_bases)
3816 which = num_segment_bases;
3817
3818 offsets->offsets[i] = (segment_bases[which - 1]
3819 - data->segment_bases[which - 1]);
3820 }
3821
3822 return 1;
3823 }
3824
3825 static void
3826 symfile_find_segment_sections (struct objfile *objfile)
3827 {
3828 bfd *abfd = objfile->obfd;
3829 int i;
3830 asection *sect;
3831 struct symfile_segment_data *data;
3832
3833 data = get_symfile_segment_data (objfile->obfd);
3834 if (data == NULL)
3835 return;
3836
3837 if (data->num_segments != 1 && data->num_segments != 2)
3838 {
3839 free_symfile_segment_data (data);
3840 return;
3841 }
3842
3843 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3844 {
3845 int which = data->segment_info[i];
3846
3847 if (which == 1)
3848 {
3849 if (objfile->sect_index_text == -1)
3850 objfile->sect_index_text = sect->index;
3851
3852 if (objfile->sect_index_rodata == -1)
3853 objfile->sect_index_rodata = sect->index;
3854 }
3855 else if (which == 2)
3856 {
3857 if (objfile->sect_index_data == -1)
3858 objfile->sect_index_data = sect->index;
3859
3860 if (objfile->sect_index_bss == -1)
3861 objfile->sect_index_bss = sect->index;
3862 }
3863 }
3864
3865 free_symfile_segment_data (data);
3866 }
3867
3868 void
3869 _initialize_symfile (void)
3870 {
3871 struct cmd_list_element *c;
3872
3873 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3874 Load symbol table from executable file FILE.\n\
3875 The `file' command can also load symbol tables, as well as setting the file\n\
3876 to execute."), &cmdlist);
3877 set_cmd_completer (c, filename_completer);
3878
3879 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3880 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3881 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3882 ...]\nADDR is the starting address of the file's text.\n\
3883 The optional arguments are section-name section-address pairs and\n\
3884 should be specified if the data and bss segments are not contiguous\n\
3885 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3886 &cmdlist);
3887 set_cmd_completer (c, filename_completer);
3888
3889 c = add_cmd ("load", class_files, load_command, _("\
3890 Dynamically load FILE into the running program, and record its symbols\n\
3891 for access from GDB.\n\
3892 A load OFFSET may also be given."), &cmdlist);
3893 set_cmd_completer (c, filename_completer);
3894
3895 add_prefix_cmd ("overlay", class_support, overlay_command,
3896 _("Commands for debugging overlays."), &overlaylist,
3897 "overlay ", 0, &cmdlist);
3898
3899 add_com_alias ("ovly", "overlay", class_alias, 1);
3900 add_com_alias ("ov", "overlay", class_alias, 1);
3901
3902 add_cmd ("map-overlay", class_support, map_overlay_command,
3903 _("Assert that an overlay section is mapped."), &overlaylist);
3904
3905 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3906 _("Assert that an overlay section is unmapped."), &overlaylist);
3907
3908 add_cmd ("list-overlays", class_support, list_overlays_command,
3909 _("List mappings of overlay sections."), &overlaylist);
3910
3911 add_cmd ("manual", class_support, overlay_manual_command,
3912 _("Enable overlay debugging."), &overlaylist);
3913 add_cmd ("off", class_support, overlay_off_command,
3914 _("Disable overlay debugging."), &overlaylist);
3915 add_cmd ("auto", class_support, overlay_auto_command,
3916 _("Enable automatic overlay debugging."), &overlaylist);
3917 add_cmd ("load-target", class_support, overlay_load_command,
3918 _("Read the overlay mapping state from the target."), &overlaylist);
3919
3920 /* Filename extension to source language lookup table: */
3921 init_filename_language_table ();
3922 add_setshow_string_noescape_cmd ("extension-language", class_files,
3923 &ext_args, _("\
3924 Set mapping between filename extension and source language."), _("\
3925 Show mapping between filename extension and source language."), _("\
3926 Usage: set extension-language .foo bar"),
3927 set_ext_lang_command,
3928 show_ext_args,
3929 &setlist, &showlist);
3930
3931 add_info ("extensions", info_ext_lang_command,
3932 _("All filename extensions associated with a source language."));
3933
3934 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3935 &debug_file_directory, _("\
3936 Set the directories where separate debug symbols are searched for."), _("\
3937 Show the directories where separate debug symbols are searched for."), _("\
3938 Separate debug symbols are first searched for in the same\n\
3939 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3940 and lastly at the path of the directory of the binary with\n\
3941 each global debug-file-directory component prepended."),
3942 NULL,
3943 show_debug_file_directory,
3944 &setlist, &showlist);
3945 }
This page took 0.173921 seconds and 5 git commands to generate.