* NEWS: Add note on "info sharedlibrary".
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h"
42 #include "regcache.h"
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54 #include "parser-defs.h"
55 #include "varobj.h"
56 #include "elf-bfd.h"
57 #include "solib.h"
58 #include "remote.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68
69 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
70 void (*deprecated_show_load_progress) (const char *section,
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
74 unsigned long total_size);
75 void (*deprecated_pre_add_symbol_hook) (const char *);
76 void (*deprecated_post_add_symbol_hook) (void);
77
78 static void clear_symtab_users_cleanup (void *ignore);
79
80 /* Global variables owned by this file */
81 int readnow_symbol_files; /* Read full symbols immediately */
82
83 /* External variables and functions referenced. */
84
85 extern void report_transfer_performance (unsigned long, time_t, time_t);
86
87 /* Functions this file defines */
88
89 #if 0
90 static int simple_read_overlay_region_table (void);
91 static void simple_free_overlay_region_table (void);
92 #endif
93
94 static void load_command (char *, int);
95
96 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
97
98 static void add_symbol_file_command (char *, int);
99
100 static void reread_separate_symbols (struct objfile *objfile);
101
102 static void cashier_psymtab (struct partial_symtab *);
103
104 bfd *symfile_bfd_open (char *);
105
106 int get_section_index (struct objfile *, char *);
107
108 static struct sym_fns *find_sym_fns (bfd *);
109
110 static void decrement_reading_symtab (void *);
111
112 static void overlay_invalidate_all (void);
113
114 void list_overlays_command (char *, int);
115
116 void map_overlay_command (char *, int);
117
118 void unmap_overlay_command (char *, int);
119
120 static void overlay_auto_command (char *, int);
121
122 static void overlay_manual_command (char *, int);
123
124 static void overlay_off_command (char *, int);
125
126 static void overlay_load_command (char *, int);
127
128 static void overlay_command (char *, int);
129
130 static void simple_free_overlay_table (void);
131
132 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
133 enum bfd_endian);
134
135 static int simple_read_overlay_table (void);
136
137 static int simple_overlay_update_1 (struct obj_section *);
138
139 static void add_filename_language (char *ext, enum language lang);
140
141 static void info_ext_lang_command (char *args, int from_tty);
142
143 static char *find_separate_debug_file (struct objfile *objfile);
144
145 static void init_filename_language_table (void);
146
147 static void symfile_find_segment_sections (struct objfile *objfile);
148
149 void _initialize_symfile (void);
150
151 /* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155 static struct sym_fns *symtab_fns = NULL;
156
157 /* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160 #ifdef SYMBOL_RELOADING_DEFAULT
161 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162 #else
163 int symbol_reloading = 0;
164 #endif
165 static void
166 show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 fprintf_filtered (file, _("\
170 Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172 }
173
174 /* If non-zero, shared library symbols will be added automatically
175 when the inferior is created, new libraries are loaded, or when
176 attaching to the inferior. This is almost always what users will
177 want to have happen; but for very large programs, the startup time
178 will be excessive, and so if this is a problem, the user can clear
179 this flag and then add the shared library symbols as needed. Note
180 that there is a potential for confusion, since if the shared
181 library symbols are not loaded, commands like "info fun" will *not*
182 report all the functions that are actually present. */
183
184 int auto_solib_add = 1;
185
186 /* For systems that support it, a threshold size in megabytes. If
187 automatically adding a new library's symbol table to those already
188 known to the debugger would cause the total shared library symbol
189 size to exceed this threshhold, then the shlib's symbols are not
190 added. The threshold is ignored if the user explicitly asks for a
191 shlib to be added, such as when using the "sharedlibrary"
192 command. */
193
194 int auto_solib_limit;
195 \f
196
197 /* This compares two partial symbols by names, using strcmp_iw_ordered
198 for the comparison. */
199
200 static int
201 compare_psymbols (const void *s1p, const void *s2p)
202 {
203 struct partial_symbol *const *s1 = s1p;
204 struct partial_symbol *const *s2 = s2p;
205
206 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
207 SYMBOL_SEARCH_NAME (*s2));
208 }
209
210 void
211 sort_pst_symbols (struct partial_symtab *pst)
212 {
213 /* Sort the global list; don't sort the static list */
214
215 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
216 pst->n_global_syms, sizeof (struct partial_symbol *),
217 compare_psymbols);
218 }
219
220 /* Make a null terminated copy of the string at PTR with SIZE characters in
221 the obstack pointed to by OBSTACKP . Returns the address of the copy.
222 Note that the string at PTR does not have to be null terminated, I.E. it
223 may be part of a larger string and we are only saving a substring. */
224
225 char *
226 obsavestring (const char *ptr, int size, struct obstack *obstackp)
227 {
228 char *p = (char *) obstack_alloc (obstackp, size + 1);
229 /* Open-coded memcpy--saves function call time. These strings are usually
230 short. FIXME: Is this really still true with a compiler that can
231 inline memcpy? */
232 {
233 const char *p1 = ptr;
234 char *p2 = p;
235 const char *end = ptr + size;
236 while (p1 != end)
237 *p2++ = *p1++;
238 }
239 p[size] = 0;
240 return p;
241 }
242
243 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
244 in the obstack pointed to by OBSTACKP. */
245
246 char *
247 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
248 const char *s3)
249 {
250 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
251 char *val = (char *) obstack_alloc (obstackp, len);
252 strcpy (val, s1);
253 strcat (val, s2);
254 strcat (val, s3);
255 return val;
256 }
257
258 /* True if we are nested inside psymtab_to_symtab. */
259
260 int currently_reading_symtab = 0;
261
262 static void
263 decrement_reading_symtab (void *dummy)
264 {
265 currently_reading_symtab--;
266 }
267
268 /* Get the symbol table that corresponds to a partial_symtab.
269 This is fast after the first time you do it. In fact, there
270 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
271 case inline. */
272
273 struct symtab *
274 psymtab_to_symtab (struct partial_symtab *pst)
275 {
276 /* If it's been looked up before, return it. */
277 if (pst->symtab)
278 return pst->symtab;
279
280 /* If it has not yet been read in, read it. */
281 if (!pst->readin)
282 {
283 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
284 currently_reading_symtab++;
285 (*pst->read_symtab) (pst);
286 do_cleanups (back_to);
287 }
288
289 return pst->symtab;
290 }
291
292 /* Remember the lowest-addressed loadable section we've seen.
293 This function is called via bfd_map_over_sections.
294
295 In case of equal vmas, the section with the largest size becomes the
296 lowest-addressed loadable section.
297
298 If the vmas and sizes are equal, the last section is considered the
299 lowest-addressed loadable section. */
300
301 void
302 find_lowest_section (bfd *abfd, asection *sect, void *obj)
303 {
304 asection **lowest = (asection **) obj;
305
306 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
307 return;
308 if (!*lowest)
309 *lowest = sect; /* First loadable section */
310 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
311 *lowest = sect; /* A lower loadable section */
312 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
313 && (bfd_section_size (abfd, (*lowest))
314 <= bfd_section_size (abfd, sect)))
315 *lowest = sect;
316 }
317
318 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
319
320 struct section_addr_info *
321 alloc_section_addr_info (size_t num_sections)
322 {
323 struct section_addr_info *sap;
324 size_t size;
325
326 size = (sizeof (struct section_addr_info)
327 + sizeof (struct other_sections) * (num_sections - 1));
328 sap = (struct section_addr_info *) xmalloc (size);
329 memset (sap, 0, size);
330 sap->num_sections = num_sections;
331
332 return sap;
333 }
334
335
336 /* Return a freshly allocated copy of ADDRS. The section names, if
337 any, are also freshly allocated copies of those in ADDRS. */
338 struct section_addr_info *
339 copy_section_addr_info (struct section_addr_info *addrs)
340 {
341 struct section_addr_info *copy
342 = alloc_section_addr_info (addrs->num_sections);
343 int i;
344
345 copy->num_sections = addrs->num_sections;
346 for (i = 0; i < addrs->num_sections; i++)
347 {
348 copy->other[i].addr = addrs->other[i].addr;
349 if (addrs->other[i].name)
350 copy->other[i].name = xstrdup (addrs->other[i].name);
351 else
352 copy->other[i].name = NULL;
353 copy->other[i].sectindex = addrs->other[i].sectindex;
354 }
355
356 return copy;
357 }
358
359
360
361 /* Build (allocate and populate) a section_addr_info struct from
362 an existing section table. */
363
364 extern struct section_addr_info *
365 build_section_addr_info_from_section_table (const struct target_section *start,
366 const struct target_section *end)
367 {
368 struct section_addr_info *sap;
369 const struct target_section *stp;
370 int oidx;
371
372 sap = alloc_section_addr_info (end - start);
373
374 for (stp = start, oidx = 0; stp != end; stp++)
375 {
376 if (bfd_get_section_flags (stp->bfd,
377 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
378 && oidx < end - start)
379 {
380 sap->other[oidx].addr = stp->addr;
381 sap->other[oidx].name
382 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
383 sap->other[oidx].sectindex = stp->the_bfd_section->index;
384 oidx++;
385 }
386 }
387
388 return sap;
389 }
390
391
392 /* Free all memory allocated by build_section_addr_info_from_section_table. */
393
394 extern void
395 free_section_addr_info (struct section_addr_info *sap)
396 {
397 int idx;
398
399 for (idx = 0; idx < sap->num_sections; idx++)
400 if (sap->other[idx].name)
401 xfree (sap->other[idx].name);
402 xfree (sap);
403 }
404
405
406 /* Initialize OBJFILE's sect_index_* members. */
407 static void
408 init_objfile_sect_indices (struct objfile *objfile)
409 {
410 asection *sect;
411 int i;
412
413 sect = bfd_get_section_by_name (objfile->obfd, ".text");
414 if (sect)
415 objfile->sect_index_text = sect->index;
416
417 sect = bfd_get_section_by_name (objfile->obfd, ".data");
418 if (sect)
419 objfile->sect_index_data = sect->index;
420
421 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
422 if (sect)
423 objfile->sect_index_bss = sect->index;
424
425 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
426 if (sect)
427 objfile->sect_index_rodata = sect->index;
428
429 /* This is where things get really weird... We MUST have valid
430 indices for the various sect_index_* members or gdb will abort.
431 So if for example, there is no ".text" section, we have to
432 accomodate that. First, check for a file with the standard
433 one or two segments. */
434
435 symfile_find_segment_sections (objfile);
436
437 /* Except when explicitly adding symbol files at some address,
438 section_offsets contains nothing but zeros, so it doesn't matter
439 which slot in section_offsets the individual sect_index_* members
440 index into. So if they are all zero, it is safe to just point
441 all the currently uninitialized indices to the first slot. But
442 beware: if this is the main executable, it may be relocated
443 later, e.g. by the remote qOffsets packet, and then this will
444 be wrong! That's why we try segments first. */
445
446 for (i = 0; i < objfile->num_sections; i++)
447 {
448 if (ANOFFSET (objfile->section_offsets, i) != 0)
449 {
450 break;
451 }
452 }
453 if (i == objfile->num_sections)
454 {
455 if (objfile->sect_index_text == -1)
456 objfile->sect_index_text = 0;
457 if (objfile->sect_index_data == -1)
458 objfile->sect_index_data = 0;
459 if (objfile->sect_index_bss == -1)
460 objfile->sect_index_bss = 0;
461 if (objfile->sect_index_rodata == -1)
462 objfile->sect_index_rodata = 0;
463 }
464 }
465
466 /* The arguments to place_section. */
467
468 struct place_section_arg
469 {
470 struct section_offsets *offsets;
471 CORE_ADDR lowest;
472 };
473
474 /* Find a unique offset to use for loadable section SECT if
475 the user did not provide an offset. */
476
477 static void
478 place_section (bfd *abfd, asection *sect, void *obj)
479 {
480 struct place_section_arg *arg = obj;
481 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
482 int done;
483 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
484
485 /* We are only interested in allocated sections. */
486 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
487 return;
488
489 /* If the user specified an offset, honor it. */
490 if (offsets[sect->index] != 0)
491 return;
492
493 /* Otherwise, let's try to find a place for the section. */
494 start_addr = (arg->lowest + align - 1) & -align;
495
496 do {
497 asection *cur_sec;
498
499 done = 1;
500
501 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
502 {
503 int indx = cur_sec->index;
504 CORE_ADDR cur_offset;
505
506 /* We don't need to compare against ourself. */
507 if (cur_sec == sect)
508 continue;
509
510 /* We can only conflict with allocated sections. */
511 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
512 continue;
513
514 /* If the section offset is 0, either the section has not been placed
515 yet, or it was the lowest section placed (in which case LOWEST
516 will be past its end). */
517 if (offsets[indx] == 0)
518 continue;
519
520 /* If this section would overlap us, then we must move up. */
521 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
522 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
523 {
524 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
525 start_addr = (start_addr + align - 1) & -align;
526 done = 0;
527 break;
528 }
529
530 /* Otherwise, we appear to be OK. So far. */
531 }
532 }
533 while (!done);
534
535 offsets[sect->index] = start_addr;
536 arg->lowest = start_addr + bfd_get_section_size (sect);
537 }
538
539 /* Parse the user's idea of an offset for dynamic linking, into our idea
540 of how to represent it for fast symbol reading. This is the default
541 version of the sym_fns.sym_offsets function for symbol readers that
542 don't need to do anything special. It allocates a section_offsets table
543 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
544
545 void
546 default_symfile_offsets (struct objfile *objfile,
547 struct section_addr_info *addrs)
548 {
549 int i;
550
551 objfile->num_sections = bfd_count_sections (objfile->obfd);
552 objfile->section_offsets = (struct section_offsets *)
553 obstack_alloc (&objfile->objfile_obstack,
554 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
555 memset (objfile->section_offsets, 0,
556 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
557
558 /* Now calculate offsets for section that were specified by the
559 caller. */
560 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
561 {
562 struct other_sections *osp ;
563
564 osp = &addrs->other[i] ;
565 if (osp->addr == 0)
566 continue;
567
568 /* Record all sections in offsets */
569 /* The section_offsets in the objfile are here filled in using
570 the BFD index. */
571 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
572 }
573
574 /* For relocatable files, all loadable sections will start at zero.
575 The zero is meaningless, so try to pick arbitrary addresses such
576 that no loadable sections overlap. This algorithm is quadratic,
577 but the number of sections in a single object file is generally
578 small. */
579 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
580 {
581 struct place_section_arg arg;
582 bfd *abfd = objfile->obfd;
583 asection *cur_sec;
584 CORE_ADDR lowest = 0;
585
586 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
587 /* We do not expect this to happen; just skip this step if the
588 relocatable file has a section with an assigned VMA. */
589 if (bfd_section_vma (abfd, cur_sec) != 0)
590 break;
591
592 if (cur_sec == NULL)
593 {
594 CORE_ADDR *offsets = objfile->section_offsets->offsets;
595
596 /* Pick non-overlapping offsets for sections the user did not
597 place explicitly. */
598 arg.offsets = objfile->section_offsets;
599 arg.lowest = 0;
600 bfd_map_over_sections (objfile->obfd, place_section, &arg);
601
602 /* Correctly filling in the section offsets is not quite
603 enough. Relocatable files have two properties that
604 (most) shared objects do not:
605
606 - Their debug information will contain relocations. Some
607 shared libraries do also, but many do not, so this can not
608 be assumed.
609
610 - If there are multiple code sections they will be loaded
611 at different relative addresses in memory than they are
612 in the objfile, since all sections in the file will start
613 at address zero.
614
615 Because GDB has very limited ability to map from an
616 address in debug info to the correct code section,
617 it relies on adding SECT_OFF_TEXT to things which might be
618 code. If we clear all the section offsets, and set the
619 section VMAs instead, then symfile_relocate_debug_section
620 will return meaningful debug information pointing at the
621 correct sections.
622
623 GDB has too many different data structures for section
624 addresses - a bfd, objfile, and so_list all have section
625 tables, as does exec_ops. Some of these could probably
626 be eliminated. */
627
628 for (cur_sec = abfd->sections; cur_sec != NULL;
629 cur_sec = cur_sec->next)
630 {
631 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
632 continue;
633
634 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
635 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
636 offsets[cur_sec->index]);
637 offsets[cur_sec->index] = 0;
638 }
639 }
640 }
641
642 /* Remember the bfd indexes for the .text, .data, .bss and
643 .rodata sections. */
644 init_objfile_sect_indices (objfile);
645 }
646
647
648 /* Divide the file into segments, which are individual relocatable units.
649 This is the default version of the sym_fns.sym_segments function for
650 symbol readers that do not have an explicit representation of segments.
651 It assumes that object files do not have segments, and fully linked
652 files have a single segment. */
653
654 struct symfile_segment_data *
655 default_symfile_segments (bfd *abfd)
656 {
657 int num_sections, i;
658 asection *sect;
659 struct symfile_segment_data *data;
660 CORE_ADDR low, high;
661
662 /* Relocatable files contain enough information to position each
663 loadable section independently; they should not be relocated
664 in segments. */
665 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
666 return NULL;
667
668 /* Make sure there is at least one loadable section in the file. */
669 for (sect = abfd->sections; sect != NULL; sect = sect->next)
670 {
671 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
672 continue;
673
674 break;
675 }
676 if (sect == NULL)
677 return NULL;
678
679 low = bfd_get_section_vma (abfd, sect);
680 high = low + bfd_get_section_size (sect);
681
682 data = XZALLOC (struct symfile_segment_data);
683 data->num_segments = 1;
684 data->segment_bases = XCALLOC (1, CORE_ADDR);
685 data->segment_sizes = XCALLOC (1, CORE_ADDR);
686
687 num_sections = bfd_count_sections (abfd);
688 data->segment_info = XCALLOC (num_sections, int);
689
690 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
691 {
692 CORE_ADDR vma;
693
694 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
695 continue;
696
697 vma = bfd_get_section_vma (abfd, sect);
698 if (vma < low)
699 low = vma;
700 if (vma + bfd_get_section_size (sect) > high)
701 high = vma + bfd_get_section_size (sect);
702
703 data->segment_info[i] = 1;
704 }
705
706 data->segment_bases[0] = low;
707 data->segment_sizes[0] = high - low;
708
709 return data;
710 }
711
712 /* Process a symbol file, as either the main file or as a dynamically
713 loaded file.
714
715 OBJFILE is where the symbols are to be read from.
716
717 ADDRS is the list of section load addresses. If the user has given
718 an 'add-symbol-file' command, then this is the list of offsets and
719 addresses he or she provided as arguments to the command; or, if
720 we're handling a shared library, these are the actual addresses the
721 sections are loaded at, according to the inferior's dynamic linker
722 (as gleaned by GDB's shared library code). We convert each address
723 into an offset from the section VMA's as it appears in the object
724 file, and then call the file's sym_offsets function to convert this
725 into a format-specific offset table --- a `struct section_offsets'.
726 If ADDRS is non-zero, OFFSETS must be zero.
727
728 OFFSETS is a table of section offsets already in the right
729 format-specific representation. NUM_OFFSETS is the number of
730 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
731 assume this is the proper table the call to sym_offsets described
732 above would produce. Instead of calling sym_offsets, we just dump
733 it right into objfile->section_offsets. (When we're re-reading
734 symbols from an objfile, we don't have the original load address
735 list any more; all we have is the section offset table.) If
736 OFFSETS is non-zero, ADDRS must be zero.
737
738 ADD_FLAGS encodes verbosity level, whether this is main symbol or
739 an extra symbol file such as dynamically loaded code, and wether
740 breakpoint reset should be deferred. */
741
742 void
743 syms_from_objfile (struct objfile *objfile,
744 struct section_addr_info *addrs,
745 struct section_offsets *offsets,
746 int num_offsets,
747 int add_flags)
748 {
749 struct section_addr_info *local_addr = NULL;
750 struct cleanup *old_chain;
751 const int mainline = add_flags & SYMFILE_MAINLINE;
752
753 gdb_assert (! (addrs && offsets));
754
755 init_entry_point_info (objfile);
756 objfile->sf = find_sym_fns (objfile->obfd);
757
758 if (objfile->sf == NULL)
759 return; /* No symbols. */
760
761 /* Make sure that partially constructed symbol tables will be cleaned up
762 if an error occurs during symbol reading. */
763 old_chain = make_cleanup_free_objfile (objfile);
764
765 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
766 list. We now establish the convention that an addr of zero means
767 no load address was specified. */
768 if (! addrs && ! offsets)
769 {
770 local_addr
771 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
772 make_cleanup (xfree, local_addr);
773 addrs = local_addr;
774 }
775
776 /* Now either addrs or offsets is non-zero. */
777
778 if (mainline)
779 {
780 /* We will modify the main symbol table, make sure that all its users
781 will be cleaned up if an error occurs during symbol reading. */
782 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
783
784 /* Since no error yet, throw away the old symbol table. */
785
786 if (symfile_objfile != NULL)
787 {
788 free_objfile (symfile_objfile);
789 symfile_objfile = NULL;
790 }
791
792 /* Currently we keep symbols from the add-symbol-file command.
793 If the user wants to get rid of them, they should do "symbol-file"
794 without arguments first. Not sure this is the best behavior
795 (PR 2207). */
796
797 (*objfile->sf->sym_new_init) (objfile);
798 }
799
800 /* Convert addr into an offset rather than an absolute address.
801 We find the lowest address of a loaded segment in the objfile,
802 and assume that <addr> is where that got loaded.
803
804 We no longer warn if the lowest section is not a text segment (as
805 happens for the PA64 port. */
806 if (!mainline && addrs && addrs->other[0].name)
807 {
808 asection *lower_sect;
809 asection *sect;
810 CORE_ADDR lower_offset;
811 int i;
812
813 /* Find lowest loadable section to be used as starting point for
814 continguous sections. FIXME!! won't work without call to find
815 .text first, but this assumes text is lowest section. */
816 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
817 if (lower_sect == NULL)
818 bfd_map_over_sections (objfile->obfd, find_lowest_section,
819 &lower_sect);
820 if (lower_sect == NULL)
821 {
822 warning (_("no loadable sections found in added symbol-file %s"),
823 objfile->name);
824 lower_offset = 0;
825 }
826 else
827 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
828
829 /* Calculate offsets for the loadable sections.
830 FIXME! Sections must be in order of increasing loadable section
831 so that contiguous sections can use the lower-offset!!!
832
833 Adjust offsets if the segments are not contiguous.
834 If the section is contiguous, its offset should be set to
835 the offset of the highest loadable section lower than it
836 (the loadable section directly below it in memory).
837 this_offset = lower_offset = lower_addr - lower_orig_addr */
838
839 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
840 {
841 if (addrs->other[i].addr != 0)
842 {
843 sect = bfd_get_section_by_name (objfile->obfd,
844 addrs->other[i].name);
845 if (sect)
846 {
847 addrs->other[i].addr
848 -= bfd_section_vma (objfile->obfd, sect);
849 lower_offset = addrs->other[i].addr;
850 /* This is the index used by BFD. */
851 addrs->other[i].sectindex = sect->index ;
852 }
853 else
854 {
855 warning (_("section %s not found in %s"),
856 addrs->other[i].name,
857 objfile->name);
858 addrs->other[i].addr = 0;
859 }
860 }
861 else
862 addrs->other[i].addr = lower_offset;
863 }
864 }
865
866 /* Initialize symbol reading routines for this objfile, allow complaints to
867 appear for this new file, and record how verbose to be, then do the
868 initial symbol reading for this file. */
869
870 (*objfile->sf->sym_init) (objfile);
871 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
872
873 if (addrs)
874 (*objfile->sf->sym_offsets) (objfile, addrs);
875 else
876 {
877 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
878
879 /* Just copy in the offset table directly as given to us. */
880 objfile->num_sections = num_offsets;
881 objfile->section_offsets
882 = ((struct section_offsets *)
883 obstack_alloc (&objfile->objfile_obstack, size));
884 memcpy (objfile->section_offsets, offsets, size);
885
886 init_objfile_sect_indices (objfile);
887 }
888
889 (*objfile->sf->sym_read) (objfile, mainline);
890
891 /* Discard cleanups as symbol reading was successful. */
892
893 discard_cleanups (old_chain);
894 xfree (local_addr);
895 }
896
897 /* Perform required actions after either reading in the initial
898 symbols for a new objfile, or mapping in the symbols from a reusable
899 objfile. */
900
901 void
902 new_symfile_objfile (struct objfile *objfile, int add_flags)
903 {
904
905 /* If this is the main symbol file we have to clean up all users of the
906 old main symbol file. Otherwise it is sufficient to fixup all the
907 breakpoints that may have been redefined by this symbol file. */
908 if (add_flags & SYMFILE_MAINLINE)
909 {
910 /* OK, make it the "real" symbol file. */
911 symfile_objfile = objfile;
912
913 clear_symtab_users ();
914 }
915 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
916 {
917 breakpoint_re_set ();
918 }
919
920 /* We're done reading the symbol file; finish off complaints. */
921 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
922 }
923
924 /* Process a symbol file, as either the main file or as a dynamically
925 loaded file.
926
927 ABFD is a BFD already open on the file, as from symfile_bfd_open.
928 This BFD will be closed on error, and is always consumed by this function.
929
930 ADD_FLAGS encodes verbosity, whether this is main symbol file or
931 extra, such as dynamically loaded code, and what to do with breakpoins.
932
933 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
934 syms_from_objfile, above.
935 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
936
937 Upon success, returns a pointer to the objfile that was added.
938 Upon failure, jumps back to command level (never returns). */
939
940 static struct objfile *
941 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
942 int add_flags,
943 struct section_addr_info *addrs,
944 struct section_offsets *offsets,
945 int num_offsets,
946 int flags)
947 {
948 struct objfile *objfile;
949 struct partial_symtab *psymtab;
950 char *debugfile = NULL;
951 struct section_addr_info *orig_addrs = NULL;
952 struct cleanup *my_cleanups;
953 const char *name = bfd_get_filename (abfd);
954 const int from_tty = add_flags & SYMFILE_VERBOSE;
955
956 my_cleanups = make_cleanup_bfd_close (abfd);
957
958 /* Give user a chance to burp if we'd be
959 interactively wiping out any existing symbols. */
960
961 if ((have_full_symbols () || have_partial_symbols ())
962 && (add_flags & SYMFILE_MAINLINE)
963 && from_tty
964 && !query (_("Load new symbol table from \"%s\"? "), name))
965 error (_("Not confirmed."));
966
967 objfile = allocate_objfile (abfd, flags);
968 discard_cleanups (my_cleanups);
969
970 if (addrs)
971 {
972 orig_addrs = copy_section_addr_info (addrs);
973 make_cleanup_free_section_addr_info (orig_addrs);
974 }
975
976 /* We either created a new mapped symbol table, mapped an existing
977 symbol table file which has not had initial symbol reading
978 performed, or need to read an unmapped symbol table. */
979 if (from_tty || info_verbose)
980 {
981 if (deprecated_pre_add_symbol_hook)
982 deprecated_pre_add_symbol_hook (name);
983 else
984 {
985 printf_unfiltered (_("Reading symbols from %s..."), name);
986 wrap_here ("");
987 gdb_flush (gdb_stdout);
988 }
989 }
990 syms_from_objfile (objfile, addrs, offsets, num_offsets,
991 add_flags);
992
993 /* We now have at least a partial symbol table. Check to see if the
994 user requested that all symbols be read on initial access via either
995 the gdb startup command line or on a per symbol file basis. Expand
996 all partial symbol tables for this objfile if so. */
997
998 if ((flags & OBJF_READNOW) || readnow_symbol_files)
999 {
1000 if (from_tty || info_verbose)
1001 {
1002 printf_unfiltered (_("expanding to full symbols..."));
1003 wrap_here ("");
1004 gdb_flush (gdb_stdout);
1005 }
1006
1007 for (psymtab = objfile->psymtabs;
1008 psymtab != NULL;
1009 psymtab = psymtab->next)
1010 {
1011 psymtab_to_symtab (psymtab);
1012 }
1013 }
1014
1015 /* If the file has its own symbol tables it has no separate debug info.
1016 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1017 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1018 if (objfile->psymtabs == NULL)
1019 debugfile = find_separate_debug_file (objfile);
1020 if (debugfile)
1021 {
1022 if (addrs != NULL)
1023 {
1024 objfile->separate_debug_objfile
1025 = symbol_file_add (debugfile, add_flags, orig_addrs, flags);
1026 }
1027 else
1028 {
1029 objfile->separate_debug_objfile
1030 = symbol_file_add (debugfile, add_flags, NULL, flags);
1031 }
1032 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1033 = objfile;
1034
1035 /* Put the separate debug object before the normal one, this is so that
1036 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1037 put_objfile_before (objfile->separate_debug_objfile, objfile);
1038
1039 xfree (debugfile);
1040 }
1041
1042 if ((from_tty || info_verbose)
1043 && !objfile_has_partial_symbols (objfile)
1044 && !objfile_has_full_symbols (objfile))
1045 {
1046 wrap_here ("");
1047 printf_unfiltered (_("(no debugging symbols found)..."));
1048 wrap_here ("");
1049 }
1050
1051 if (from_tty || info_verbose)
1052 {
1053 if (deprecated_post_add_symbol_hook)
1054 deprecated_post_add_symbol_hook ();
1055 else
1056 printf_unfiltered (_("done.\n"));
1057 }
1058
1059 /* We print some messages regardless of whether 'from_tty ||
1060 info_verbose' is true, so make sure they go out at the right
1061 time. */
1062 gdb_flush (gdb_stdout);
1063
1064 do_cleanups (my_cleanups);
1065
1066 if (objfile->sf == NULL)
1067 {
1068 observer_notify_new_objfile (objfile);
1069 return objfile; /* No symbols. */
1070 }
1071
1072 new_symfile_objfile (objfile, add_flags);
1073
1074 observer_notify_new_objfile (objfile);
1075
1076 bfd_cache_close_all ();
1077 return (objfile);
1078 }
1079
1080
1081 /* Process the symbol file ABFD, as either the main file or as a
1082 dynamically loaded file.
1083
1084 See symbol_file_add_with_addrs_or_offsets's comments for
1085 details. */
1086 struct objfile *
1087 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1088 struct section_addr_info *addrs,
1089 int flags)
1090 {
1091 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1092 flags);
1093 }
1094
1095
1096 /* Process a symbol file, as either the main file or as a dynamically
1097 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1098 for details. */
1099 struct objfile *
1100 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1101 int flags)
1102 {
1103 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1104 flags);
1105 }
1106
1107
1108 /* Call symbol_file_add() with default values and update whatever is
1109 affected by the loading of a new main().
1110 Used when the file is supplied in the gdb command line
1111 and by some targets with special loading requirements.
1112 The auxiliary function, symbol_file_add_main_1(), has the flags
1113 argument for the switches that can only be specified in the symbol_file
1114 command itself. */
1115
1116 void
1117 symbol_file_add_main (char *args, int from_tty)
1118 {
1119 symbol_file_add_main_1 (args, from_tty, 0);
1120 }
1121
1122 static void
1123 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1124 {
1125 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1126 symbol_file_add (args, add_flags, NULL, flags);
1127
1128 /* Getting new symbols may change our opinion about
1129 what is frameless. */
1130 reinit_frame_cache ();
1131
1132 set_initial_language ();
1133 }
1134
1135 void
1136 symbol_file_clear (int from_tty)
1137 {
1138 if ((have_full_symbols () || have_partial_symbols ())
1139 && from_tty
1140 && (symfile_objfile
1141 ? !query (_("Discard symbol table from `%s'? "),
1142 symfile_objfile->name)
1143 : !query (_("Discard symbol table? "))))
1144 error (_("Not confirmed."));
1145
1146 free_all_objfiles ();
1147
1148 /* solib descriptors may have handles to objfiles. Since their
1149 storage has just been released, we'd better wipe the solib
1150 descriptors as well. */
1151 no_shared_libraries (NULL, from_tty);
1152
1153 symfile_objfile = NULL;
1154 if (from_tty)
1155 printf_unfiltered (_("No symbol file now.\n"));
1156 }
1157
1158 struct build_id
1159 {
1160 size_t size;
1161 gdb_byte data[1];
1162 };
1163
1164 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1165
1166 static struct build_id *
1167 build_id_bfd_get (bfd *abfd)
1168 {
1169 struct build_id *retval;
1170
1171 if (!bfd_check_format (abfd, bfd_object)
1172 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1173 || elf_tdata (abfd)->build_id == NULL)
1174 return NULL;
1175
1176 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1177 retval->size = elf_tdata (abfd)->build_id_size;
1178 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1179
1180 return retval;
1181 }
1182
1183 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1184
1185 static int
1186 build_id_verify (const char *filename, struct build_id *check)
1187 {
1188 bfd *abfd;
1189 struct build_id *found = NULL;
1190 int retval = 0;
1191
1192 /* We expect to be silent on the non-existing files. */
1193 if (remote_filename_p (filename))
1194 abfd = remote_bfd_open (filename, gnutarget);
1195 else
1196 abfd = bfd_openr (filename, gnutarget);
1197 if (abfd == NULL)
1198 return 0;
1199
1200 found = build_id_bfd_get (abfd);
1201
1202 if (found == NULL)
1203 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1204 else if (found->size != check->size
1205 || memcmp (found->data, check->data, found->size) != 0)
1206 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1207 else
1208 retval = 1;
1209
1210 if (!bfd_close (abfd))
1211 warning (_("cannot close \"%s\": %s"), filename,
1212 bfd_errmsg (bfd_get_error ()));
1213
1214 xfree (found);
1215
1216 return retval;
1217 }
1218
1219 static char *
1220 build_id_to_debug_filename (struct build_id *build_id)
1221 {
1222 char *link, *s, *retval = NULL;
1223 gdb_byte *data = build_id->data;
1224 size_t size = build_id->size;
1225
1226 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1227 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1228 + 2 * size + (sizeof ".debug" - 1) + 1);
1229 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1230 if (size > 0)
1231 {
1232 size--;
1233 s += sprintf (s, "%02x", (unsigned) *data++);
1234 }
1235 if (size > 0)
1236 *s++ = '/';
1237 while (size-- > 0)
1238 s += sprintf (s, "%02x", (unsigned) *data++);
1239 strcpy (s, ".debug");
1240
1241 /* lrealpath() is expensive even for the usually non-existent files. */
1242 if (access (link, F_OK) == 0)
1243 retval = lrealpath (link);
1244 xfree (link);
1245
1246 if (retval != NULL && !build_id_verify (retval, build_id))
1247 {
1248 xfree (retval);
1249 retval = NULL;
1250 }
1251
1252 return retval;
1253 }
1254
1255 static char *
1256 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1257 {
1258 asection *sect;
1259 bfd_size_type debuglink_size;
1260 unsigned long crc32;
1261 char *contents;
1262 int crc_offset;
1263 unsigned char *p;
1264
1265 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1266
1267 if (sect == NULL)
1268 return NULL;
1269
1270 debuglink_size = bfd_section_size (objfile->obfd, sect);
1271
1272 contents = xmalloc (debuglink_size);
1273 bfd_get_section_contents (objfile->obfd, sect, contents,
1274 (file_ptr)0, (bfd_size_type)debuglink_size);
1275
1276 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1277 crc_offset = strlen (contents) + 1;
1278 crc_offset = (crc_offset + 3) & ~3;
1279
1280 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1281
1282 *crc32_out = crc32;
1283 return contents;
1284 }
1285
1286 static int
1287 separate_debug_file_exists (const char *name, unsigned long crc)
1288 {
1289 unsigned long file_crc = 0;
1290 bfd *abfd;
1291 gdb_byte buffer[8*1024];
1292 int count;
1293
1294 if (remote_filename_p (name))
1295 abfd = remote_bfd_open (name, gnutarget);
1296 else
1297 abfd = bfd_openr (name, gnutarget);
1298
1299 if (!abfd)
1300 return 0;
1301
1302 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1303 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1304
1305 bfd_close (abfd);
1306
1307 return crc == file_crc;
1308 }
1309
1310 char *debug_file_directory = NULL;
1311 static void
1312 show_debug_file_directory (struct ui_file *file, int from_tty,
1313 struct cmd_list_element *c, const char *value)
1314 {
1315 fprintf_filtered (file, _("\
1316 The directory where separate debug symbols are searched for is \"%s\".\n"),
1317 value);
1318 }
1319
1320 #if ! defined (DEBUG_SUBDIRECTORY)
1321 #define DEBUG_SUBDIRECTORY ".debug"
1322 #endif
1323
1324 static char *
1325 find_separate_debug_file (struct objfile *objfile)
1326 {
1327 asection *sect;
1328 char *basename;
1329 char *dir;
1330 char *debugfile;
1331 char *name_copy;
1332 char *canon_name;
1333 bfd_size_type debuglink_size;
1334 unsigned long crc32;
1335 int i;
1336 struct build_id *build_id;
1337
1338 build_id = build_id_bfd_get (objfile->obfd);
1339 if (build_id != NULL)
1340 {
1341 char *build_id_name;
1342
1343 build_id_name = build_id_to_debug_filename (build_id);
1344 xfree (build_id);
1345 /* Prevent looping on a stripped .debug file. */
1346 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1347 {
1348 warning (_("\"%s\": separate debug info file has no debug info"),
1349 build_id_name);
1350 xfree (build_id_name);
1351 }
1352 else if (build_id_name != NULL)
1353 return build_id_name;
1354 }
1355
1356 basename = get_debug_link_info (objfile, &crc32);
1357
1358 if (basename == NULL)
1359 return NULL;
1360
1361 dir = xstrdup (objfile->name);
1362
1363 /* Strip off the final filename part, leaving the directory name,
1364 followed by a slash. Objfile names should always be absolute and
1365 tilde-expanded, so there should always be a slash in there
1366 somewhere. */
1367 for (i = strlen(dir) - 1; i >= 0; i--)
1368 {
1369 if (IS_DIR_SEPARATOR (dir[i]))
1370 break;
1371 }
1372 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1373 dir[i+1] = '\0';
1374
1375 /* Set I to max (strlen (canon_name), strlen (dir)). */
1376 canon_name = lrealpath (dir);
1377 i = strlen (dir);
1378 if (canon_name && strlen (canon_name) > i)
1379 i = strlen (canon_name);
1380
1381 debugfile = alloca (strlen (debug_file_directory) + 1
1382 + i
1383 + strlen (DEBUG_SUBDIRECTORY)
1384 + strlen ("/")
1385 + strlen (basename)
1386 + 1);
1387
1388 /* First try in the same directory as the original file. */
1389 strcpy (debugfile, dir);
1390 strcat (debugfile, basename);
1391
1392 if (separate_debug_file_exists (debugfile, crc32))
1393 {
1394 xfree (basename);
1395 xfree (dir);
1396 xfree (canon_name);
1397 return xstrdup (debugfile);
1398 }
1399
1400 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1401 strcpy (debugfile, dir);
1402 strcat (debugfile, DEBUG_SUBDIRECTORY);
1403 strcat (debugfile, "/");
1404 strcat (debugfile, basename);
1405
1406 if (separate_debug_file_exists (debugfile, crc32))
1407 {
1408 xfree (basename);
1409 xfree (dir);
1410 xfree (canon_name);
1411 return xstrdup (debugfile);
1412 }
1413
1414 /* Then try in the global debugfile directory. */
1415 strcpy (debugfile, debug_file_directory);
1416 strcat (debugfile, "/");
1417 strcat (debugfile, dir);
1418 strcat (debugfile, basename);
1419
1420 if (separate_debug_file_exists (debugfile, crc32))
1421 {
1422 xfree (basename);
1423 xfree (dir);
1424 xfree (canon_name);
1425 return xstrdup (debugfile);
1426 }
1427
1428 /* If the file is in the sysroot, try using its base path in the
1429 global debugfile directory. */
1430 if (canon_name
1431 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1432 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1433 {
1434 strcpy (debugfile, debug_file_directory);
1435 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1436 strcat (debugfile, "/");
1437 strcat (debugfile, basename);
1438
1439 if (separate_debug_file_exists (debugfile, crc32))
1440 {
1441 xfree (canon_name);
1442 xfree (basename);
1443 xfree (dir);
1444 return xstrdup (debugfile);
1445 }
1446 }
1447
1448 if (canon_name)
1449 xfree (canon_name);
1450
1451 xfree (basename);
1452 xfree (dir);
1453 return NULL;
1454 }
1455
1456
1457 /* This is the symbol-file command. Read the file, analyze its
1458 symbols, and add a struct symtab to a symtab list. The syntax of
1459 the command is rather bizarre:
1460
1461 1. The function buildargv implements various quoting conventions
1462 which are undocumented and have little or nothing in common with
1463 the way things are quoted (or not quoted) elsewhere in GDB.
1464
1465 2. Options are used, which are not generally used in GDB (perhaps
1466 "set mapped on", "set readnow on" would be better)
1467
1468 3. The order of options matters, which is contrary to GNU
1469 conventions (because it is confusing and inconvenient). */
1470
1471 void
1472 symbol_file_command (char *args, int from_tty)
1473 {
1474 dont_repeat ();
1475
1476 if (args == NULL)
1477 {
1478 symbol_file_clear (from_tty);
1479 }
1480 else
1481 {
1482 char **argv = gdb_buildargv (args);
1483 int flags = OBJF_USERLOADED;
1484 struct cleanup *cleanups;
1485 char *name = NULL;
1486
1487 cleanups = make_cleanup_freeargv (argv);
1488 while (*argv != NULL)
1489 {
1490 if (strcmp (*argv, "-readnow") == 0)
1491 flags |= OBJF_READNOW;
1492 else if (**argv == '-')
1493 error (_("unknown option `%s'"), *argv);
1494 else
1495 {
1496 symbol_file_add_main_1 (*argv, from_tty, flags);
1497 name = *argv;
1498 }
1499
1500 argv++;
1501 }
1502
1503 if (name == NULL)
1504 error (_("no symbol file name was specified"));
1505
1506 do_cleanups (cleanups);
1507 }
1508 }
1509
1510 /* Set the initial language.
1511
1512 FIXME: A better solution would be to record the language in the
1513 psymtab when reading partial symbols, and then use it (if known) to
1514 set the language. This would be a win for formats that encode the
1515 language in an easily discoverable place, such as DWARF. For
1516 stabs, we can jump through hoops looking for specially named
1517 symbols or try to intuit the language from the specific type of
1518 stabs we find, but we can't do that until later when we read in
1519 full symbols. */
1520
1521 void
1522 set_initial_language (void)
1523 {
1524 struct partial_symtab *pst;
1525 enum language lang = language_unknown;
1526
1527 pst = find_main_psymtab ();
1528 if (pst != NULL)
1529 {
1530 if (pst->filename != NULL)
1531 lang = deduce_language_from_filename (pst->filename);
1532
1533 if (lang == language_unknown)
1534 {
1535 /* Make C the default language */
1536 lang = language_c;
1537 }
1538
1539 set_language (lang);
1540 expected_language = current_language; /* Don't warn the user. */
1541 }
1542 }
1543
1544 /* Open the file specified by NAME and hand it off to BFD for
1545 preliminary analysis. Return a newly initialized bfd *, which
1546 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1547 absolute). In case of trouble, error() is called. */
1548
1549 bfd *
1550 symfile_bfd_open (char *name)
1551 {
1552 bfd *sym_bfd;
1553 int desc;
1554 char *absolute_name;
1555
1556 if (remote_filename_p (name))
1557 {
1558 name = xstrdup (name);
1559 sym_bfd = remote_bfd_open (name, gnutarget);
1560 if (!sym_bfd)
1561 {
1562 make_cleanup (xfree, name);
1563 error (_("`%s': can't open to read symbols: %s."), name,
1564 bfd_errmsg (bfd_get_error ()));
1565 }
1566
1567 if (!bfd_check_format (sym_bfd, bfd_object))
1568 {
1569 bfd_close (sym_bfd);
1570 make_cleanup (xfree, name);
1571 error (_("`%s': can't read symbols: %s."), name,
1572 bfd_errmsg (bfd_get_error ()));
1573 }
1574
1575 return sym_bfd;
1576 }
1577
1578 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1579
1580 /* Look down path for it, allocate 2nd new malloc'd copy. */
1581 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1582 O_RDONLY | O_BINARY, &absolute_name);
1583 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1584 if (desc < 0)
1585 {
1586 char *exename = alloca (strlen (name) + 5);
1587 strcat (strcpy (exename, name), ".exe");
1588 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1589 O_RDONLY | O_BINARY, &absolute_name);
1590 }
1591 #endif
1592 if (desc < 0)
1593 {
1594 make_cleanup (xfree, name);
1595 perror_with_name (name);
1596 }
1597
1598 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1599 bfd. It'll be freed in free_objfile(). */
1600 xfree (name);
1601 name = absolute_name;
1602
1603 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1604 if (!sym_bfd)
1605 {
1606 close (desc);
1607 make_cleanup (xfree, name);
1608 error (_("`%s': can't open to read symbols: %s."), name,
1609 bfd_errmsg (bfd_get_error ()));
1610 }
1611 bfd_set_cacheable (sym_bfd, 1);
1612
1613 if (!bfd_check_format (sym_bfd, bfd_object))
1614 {
1615 /* FIXME: should be checking for errors from bfd_close (for one
1616 thing, on error it does not free all the storage associated
1617 with the bfd). */
1618 bfd_close (sym_bfd); /* This also closes desc. */
1619 make_cleanup (xfree, name);
1620 error (_("`%s': can't read symbols: %s."), name,
1621 bfd_errmsg (bfd_get_error ()));
1622 }
1623
1624 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1625 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1626
1627 return sym_bfd;
1628 }
1629
1630 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1631 the section was not found. */
1632
1633 int
1634 get_section_index (struct objfile *objfile, char *section_name)
1635 {
1636 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1637
1638 if (sect)
1639 return sect->index;
1640 else
1641 return -1;
1642 }
1643
1644 /* Link SF into the global symtab_fns list. Called on startup by the
1645 _initialize routine in each object file format reader, to register
1646 information about each format the the reader is prepared to
1647 handle. */
1648
1649 void
1650 add_symtab_fns (struct sym_fns *sf)
1651 {
1652 sf->next = symtab_fns;
1653 symtab_fns = sf;
1654 }
1655
1656 /* Initialize OBJFILE to read symbols from its associated BFD. It
1657 either returns or calls error(). The result is an initialized
1658 struct sym_fns in the objfile structure, that contains cached
1659 information about the symbol file. */
1660
1661 static struct sym_fns *
1662 find_sym_fns (bfd *abfd)
1663 {
1664 struct sym_fns *sf;
1665 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1666
1667 if (our_flavour == bfd_target_srec_flavour
1668 || our_flavour == bfd_target_ihex_flavour
1669 || our_flavour == bfd_target_tekhex_flavour)
1670 return NULL; /* No symbols. */
1671
1672 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1673 if (our_flavour == sf->sym_flavour)
1674 return sf;
1675
1676 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1677 bfd_get_target (abfd));
1678 }
1679 \f
1680
1681 /* This function runs the load command of our current target. */
1682
1683 static void
1684 load_command (char *arg, int from_tty)
1685 {
1686 /* The user might be reloading because the binary has changed. Take
1687 this opportunity to check. */
1688 reopen_exec_file ();
1689 reread_symbols ();
1690
1691 if (arg == NULL)
1692 {
1693 char *parg;
1694 int count = 0;
1695
1696 parg = arg = get_exec_file (1);
1697
1698 /* Count how many \ " ' tab space there are in the name. */
1699 while ((parg = strpbrk (parg, "\\\"'\t ")))
1700 {
1701 parg++;
1702 count++;
1703 }
1704
1705 if (count)
1706 {
1707 /* We need to quote this string so buildargv can pull it apart. */
1708 char *temp = xmalloc (strlen (arg) + count + 1 );
1709 char *ptemp = temp;
1710 char *prev;
1711
1712 make_cleanup (xfree, temp);
1713
1714 prev = parg = arg;
1715 while ((parg = strpbrk (parg, "\\\"'\t ")))
1716 {
1717 strncpy (ptemp, prev, parg - prev);
1718 ptemp += parg - prev;
1719 prev = parg++;
1720 *ptemp++ = '\\';
1721 }
1722 strcpy (ptemp, prev);
1723
1724 arg = temp;
1725 }
1726 }
1727
1728 target_load (arg, from_tty);
1729
1730 /* After re-loading the executable, we don't really know which
1731 overlays are mapped any more. */
1732 overlay_cache_invalid = 1;
1733 }
1734
1735 /* This version of "load" should be usable for any target. Currently
1736 it is just used for remote targets, not inftarg.c or core files,
1737 on the theory that only in that case is it useful.
1738
1739 Avoiding xmodem and the like seems like a win (a) because we don't have
1740 to worry about finding it, and (b) On VMS, fork() is very slow and so
1741 we don't want to run a subprocess. On the other hand, I'm not sure how
1742 performance compares. */
1743
1744 static int validate_download = 0;
1745
1746 /* Callback service function for generic_load (bfd_map_over_sections). */
1747
1748 static void
1749 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1750 {
1751 bfd_size_type *sum = data;
1752
1753 *sum += bfd_get_section_size (asec);
1754 }
1755
1756 /* Opaque data for load_section_callback. */
1757 struct load_section_data {
1758 unsigned long load_offset;
1759 struct load_progress_data *progress_data;
1760 VEC(memory_write_request_s) *requests;
1761 };
1762
1763 /* Opaque data for load_progress. */
1764 struct load_progress_data {
1765 /* Cumulative data. */
1766 unsigned long write_count;
1767 unsigned long data_count;
1768 bfd_size_type total_size;
1769 };
1770
1771 /* Opaque data for load_progress for a single section. */
1772 struct load_progress_section_data {
1773 struct load_progress_data *cumulative;
1774
1775 /* Per-section data. */
1776 const char *section_name;
1777 ULONGEST section_sent;
1778 ULONGEST section_size;
1779 CORE_ADDR lma;
1780 gdb_byte *buffer;
1781 };
1782
1783 /* Target write callback routine for progress reporting. */
1784
1785 static void
1786 load_progress (ULONGEST bytes, void *untyped_arg)
1787 {
1788 struct load_progress_section_data *args = untyped_arg;
1789 struct load_progress_data *totals;
1790
1791 if (args == NULL)
1792 /* Writing padding data. No easy way to get at the cumulative
1793 stats, so just ignore this. */
1794 return;
1795
1796 totals = args->cumulative;
1797
1798 if (bytes == 0 && args->section_sent == 0)
1799 {
1800 /* The write is just starting. Let the user know we've started
1801 this section. */
1802 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1803 args->section_name, hex_string (args->section_size),
1804 paddress (target_gdbarch, args->lma));
1805 return;
1806 }
1807
1808 if (validate_download)
1809 {
1810 /* Broken memories and broken monitors manifest themselves here
1811 when bring new computers to life. This doubles already slow
1812 downloads. */
1813 /* NOTE: cagney/1999-10-18: A more efficient implementation
1814 might add a verify_memory() method to the target vector and
1815 then use that. remote.c could implement that method using
1816 the ``qCRC'' packet. */
1817 gdb_byte *check = xmalloc (bytes);
1818 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1819
1820 if (target_read_memory (args->lma, check, bytes) != 0)
1821 error (_("Download verify read failed at %s"),
1822 paddress (target_gdbarch, args->lma));
1823 if (memcmp (args->buffer, check, bytes) != 0)
1824 error (_("Download verify compare failed at %s"),
1825 paddress (target_gdbarch, args->lma));
1826 do_cleanups (verify_cleanups);
1827 }
1828 totals->data_count += bytes;
1829 args->lma += bytes;
1830 args->buffer += bytes;
1831 totals->write_count += 1;
1832 args->section_sent += bytes;
1833 if (quit_flag
1834 || (deprecated_ui_load_progress_hook != NULL
1835 && deprecated_ui_load_progress_hook (args->section_name,
1836 args->section_sent)))
1837 error (_("Canceled the download"));
1838
1839 if (deprecated_show_load_progress != NULL)
1840 deprecated_show_load_progress (args->section_name,
1841 args->section_sent,
1842 args->section_size,
1843 totals->data_count,
1844 totals->total_size);
1845 }
1846
1847 /* Callback service function for generic_load (bfd_map_over_sections). */
1848
1849 static void
1850 load_section_callback (bfd *abfd, asection *asec, void *data)
1851 {
1852 struct memory_write_request *new_request;
1853 struct load_section_data *args = data;
1854 struct load_progress_section_data *section_data;
1855 bfd_size_type size = bfd_get_section_size (asec);
1856 gdb_byte *buffer;
1857 const char *sect_name = bfd_get_section_name (abfd, asec);
1858
1859 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1860 return;
1861
1862 if (size == 0)
1863 return;
1864
1865 new_request = VEC_safe_push (memory_write_request_s,
1866 args->requests, NULL);
1867 memset (new_request, 0, sizeof (struct memory_write_request));
1868 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1869 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1870 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1871 new_request->data = xmalloc (size);
1872 new_request->baton = section_data;
1873
1874 buffer = new_request->data;
1875
1876 section_data->cumulative = args->progress_data;
1877 section_data->section_name = sect_name;
1878 section_data->section_size = size;
1879 section_data->lma = new_request->begin;
1880 section_data->buffer = buffer;
1881
1882 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1883 }
1884
1885 /* Clean up an entire memory request vector, including load
1886 data and progress records. */
1887
1888 static void
1889 clear_memory_write_data (void *arg)
1890 {
1891 VEC(memory_write_request_s) **vec_p = arg;
1892 VEC(memory_write_request_s) *vec = *vec_p;
1893 int i;
1894 struct memory_write_request *mr;
1895
1896 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1897 {
1898 xfree (mr->data);
1899 xfree (mr->baton);
1900 }
1901 VEC_free (memory_write_request_s, vec);
1902 }
1903
1904 void
1905 generic_load (char *args, int from_tty)
1906 {
1907 bfd *loadfile_bfd;
1908 struct timeval start_time, end_time;
1909 char *filename;
1910 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1911 struct load_section_data cbdata;
1912 struct load_progress_data total_progress;
1913
1914 CORE_ADDR entry;
1915 char **argv;
1916
1917 memset (&cbdata, 0, sizeof (cbdata));
1918 memset (&total_progress, 0, sizeof (total_progress));
1919 cbdata.progress_data = &total_progress;
1920
1921 make_cleanup (clear_memory_write_data, &cbdata.requests);
1922
1923 if (args == NULL)
1924 error_no_arg (_("file to load"));
1925
1926 argv = gdb_buildargv (args);
1927 make_cleanup_freeargv (argv);
1928
1929 filename = tilde_expand (argv[0]);
1930 make_cleanup (xfree, filename);
1931
1932 if (argv[1] != NULL)
1933 {
1934 char *endptr;
1935
1936 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1937
1938 /* If the last word was not a valid number then
1939 treat it as a file name with spaces in. */
1940 if (argv[1] == endptr)
1941 error (_("Invalid download offset:%s."), argv[1]);
1942
1943 if (argv[2] != NULL)
1944 error (_("Too many parameters."));
1945 }
1946
1947 /* Open the file for loading. */
1948 loadfile_bfd = bfd_openr (filename, gnutarget);
1949 if (loadfile_bfd == NULL)
1950 {
1951 perror_with_name (filename);
1952 return;
1953 }
1954
1955 /* FIXME: should be checking for errors from bfd_close (for one thing,
1956 on error it does not free all the storage associated with the
1957 bfd). */
1958 make_cleanup_bfd_close (loadfile_bfd);
1959
1960 if (!bfd_check_format (loadfile_bfd, bfd_object))
1961 {
1962 error (_("\"%s\" is not an object file: %s"), filename,
1963 bfd_errmsg (bfd_get_error ()));
1964 }
1965
1966 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1967 (void *) &total_progress.total_size);
1968
1969 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1970
1971 gettimeofday (&start_time, NULL);
1972
1973 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1974 load_progress) != 0)
1975 error (_("Load failed"));
1976
1977 gettimeofday (&end_time, NULL);
1978
1979 entry = bfd_get_start_address (loadfile_bfd);
1980 ui_out_text (uiout, "Start address ");
1981 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
1982 ui_out_text (uiout, ", load size ");
1983 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
1984 ui_out_text (uiout, "\n");
1985 /* We were doing this in remote-mips.c, I suspect it is right
1986 for other targets too. */
1987 regcache_write_pc (get_current_regcache (), entry);
1988
1989 /* FIXME: are we supposed to call symbol_file_add or not? According
1990 to a comment from remote-mips.c (where a call to symbol_file_add
1991 was commented out), making the call confuses GDB if more than one
1992 file is loaded in. Some targets do (e.g., remote-vx.c) but
1993 others don't (or didn't - perhaps they have all been deleted). */
1994
1995 print_transfer_performance (gdb_stdout, total_progress.data_count,
1996 total_progress.write_count,
1997 &start_time, &end_time);
1998
1999 do_cleanups (old_cleanups);
2000 }
2001
2002 /* Report how fast the transfer went. */
2003
2004 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2005 replaced by print_transfer_performance (with a very different
2006 function signature). */
2007
2008 void
2009 report_transfer_performance (unsigned long data_count, time_t start_time,
2010 time_t end_time)
2011 {
2012 struct timeval start, end;
2013
2014 start.tv_sec = start_time;
2015 start.tv_usec = 0;
2016 end.tv_sec = end_time;
2017 end.tv_usec = 0;
2018
2019 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2020 }
2021
2022 void
2023 print_transfer_performance (struct ui_file *stream,
2024 unsigned long data_count,
2025 unsigned long write_count,
2026 const struct timeval *start_time,
2027 const struct timeval *end_time)
2028 {
2029 ULONGEST time_count;
2030
2031 /* Compute the elapsed time in milliseconds, as a tradeoff between
2032 accuracy and overflow. */
2033 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2034 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2035
2036 ui_out_text (uiout, "Transfer rate: ");
2037 if (time_count > 0)
2038 {
2039 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2040
2041 if (ui_out_is_mi_like_p (uiout))
2042 {
2043 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2044 ui_out_text (uiout, " bits/sec");
2045 }
2046 else if (rate < 1024)
2047 {
2048 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2049 ui_out_text (uiout, " bytes/sec");
2050 }
2051 else
2052 {
2053 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2054 ui_out_text (uiout, " KB/sec");
2055 }
2056 }
2057 else
2058 {
2059 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2060 ui_out_text (uiout, " bits in <1 sec");
2061 }
2062 if (write_count > 0)
2063 {
2064 ui_out_text (uiout, ", ");
2065 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2066 ui_out_text (uiout, " bytes/write");
2067 }
2068 ui_out_text (uiout, ".\n");
2069 }
2070
2071 /* This function allows the addition of incrementally linked object files.
2072 It does not modify any state in the target, only in the debugger. */
2073 /* Note: ezannoni 2000-04-13 This function/command used to have a
2074 special case syntax for the rombug target (Rombug is the boot
2075 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2076 rombug case, the user doesn't need to supply a text address,
2077 instead a call to target_link() (in target.c) would supply the
2078 value to use. We are now discontinuing this type of ad hoc syntax. */
2079
2080 static void
2081 add_symbol_file_command (char *args, int from_tty)
2082 {
2083 struct gdbarch *gdbarch = get_current_arch ();
2084 char *filename = NULL;
2085 int flags = OBJF_USERLOADED;
2086 char *arg;
2087 int expecting_option = 0;
2088 int section_index = 0;
2089 int argcnt = 0;
2090 int sec_num = 0;
2091 int i;
2092 int expecting_sec_name = 0;
2093 int expecting_sec_addr = 0;
2094 char **argv;
2095
2096 struct sect_opt
2097 {
2098 char *name;
2099 char *value;
2100 };
2101
2102 struct section_addr_info *section_addrs;
2103 struct sect_opt *sect_opts = NULL;
2104 size_t num_sect_opts = 0;
2105 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2106
2107 num_sect_opts = 16;
2108 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2109 * sizeof (struct sect_opt));
2110
2111 dont_repeat ();
2112
2113 if (args == NULL)
2114 error (_("add-symbol-file takes a file name and an address"));
2115
2116 argv = gdb_buildargv (args);
2117 make_cleanup_freeargv (argv);
2118
2119 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2120 {
2121 /* Process the argument. */
2122 if (argcnt == 0)
2123 {
2124 /* The first argument is the file name. */
2125 filename = tilde_expand (arg);
2126 make_cleanup (xfree, filename);
2127 }
2128 else
2129 if (argcnt == 1)
2130 {
2131 /* The second argument is always the text address at which
2132 to load the program. */
2133 sect_opts[section_index].name = ".text";
2134 sect_opts[section_index].value = arg;
2135 if (++section_index >= num_sect_opts)
2136 {
2137 num_sect_opts *= 2;
2138 sect_opts = ((struct sect_opt *)
2139 xrealloc (sect_opts,
2140 num_sect_opts
2141 * sizeof (struct sect_opt)));
2142 }
2143 }
2144 else
2145 {
2146 /* It's an option (starting with '-') or it's an argument
2147 to an option */
2148
2149 if (*arg == '-')
2150 {
2151 if (strcmp (arg, "-readnow") == 0)
2152 flags |= OBJF_READNOW;
2153 else if (strcmp (arg, "-s") == 0)
2154 {
2155 expecting_sec_name = 1;
2156 expecting_sec_addr = 1;
2157 }
2158 }
2159 else
2160 {
2161 if (expecting_sec_name)
2162 {
2163 sect_opts[section_index].name = arg;
2164 expecting_sec_name = 0;
2165 }
2166 else
2167 if (expecting_sec_addr)
2168 {
2169 sect_opts[section_index].value = arg;
2170 expecting_sec_addr = 0;
2171 if (++section_index >= num_sect_opts)
2172 {
2173 num_sect_opts *= 2;
2174 sect_opts = ((struct sect_opt *)
2175 xrealloc (sect_opts,
2176 num_sect_opts
2177 * sizeof (struct sect_opt)));
2178 }
2179 }
2180 else
2181 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2182 }
2183 }
2184 }
2185
2186 /* This command takes at least two arguments. The first one is a
2187 filename, and the second is the address where this file has been
2188 loaded. Abort now if this address hasn't been provided by the
2189 user. */
2190 if (section_index < 1)
2191 error (_("The address where %s has been loaded is missing"), filename);
2192
2193 /* Print the prompt for the query below. And save the arguments into
2194 a sect_addr_info structure to be passed around to other
2195 functions. We have to split this up into separate print
2196 statements because hex_string returns a local static
2197 string. */
2198
2199 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2200 section_addrs = alloc_section_addr_info (section_index);
2201 make_cleanup (xfree, section_addrs);
2202 for (i = 0; i < section_index; i++)
2203 {
2204 CORE_ADDR addr;
2205 char *val = sect_opts[i].value;
2206 char *sec = sect_opts[i].name;
2207
2208 addr = parse_and_eval_address (val);
2209
2210 /* Here we store the section offsets in the order they were
2211 entered on the command line. */
2212 section_addrs->other[sec_num].name = sec;
2213 section_addrs->other[sec_num].addr = addr;
2214 printf_unfiltered ("\t%s_addr = %s\n", sec,
2215 paddress (gdbarch, addr));
2216 sec_num++;
2217
2218 /* The object's sections are initialized when a
2219 call is made to build_objfile_section_table (objfile).
2220 This happens in reread_symbols.
2221 At this point, we don't know what file type this is,
2222 so we can't determine what section names are valid. */
2223 }
2224
2225 if (from_tty && (!query ("%s", "")))
2226 error (_("Not confirmed."));
2227
2228 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2229 section_addrs, flags);
2230
2231 /* Getting new symbols may change our opinion about what is
2232 frameless. */
2233 reinit_frame_cache ();
2234 do_cleanups (my_cleanups);
2235 }
2236 \f
2237
2238 /* Re-read symbols if a symbol-file has changed. */
2239 void
2240 reread_symbols (void)
2241 {
2242 struct objfile *objfile;
2243 long new_modtime;
2244 int reread_one = 0;
2245 struct stat new_statbuf;
2246 int res;
2247
2248 /* With the addition of shared libraries, this should be modified,
2249 the load time should be saved in the partial symbol tables, since
2250 different tables may come from different source files. FIXME.
2251 This routine should then walk down each partial symbol table
2252 and see if the symbol table that it originates from has been changed */
2253
2254 for (objfile = object_files; objfile; objfile = objfile->next)
2255 {
2256 if (objfile->obfd)
2257 {
2258 #ifdef DEPRECATED_IBM6000_TARGET
2259 /* If this object is from a shared library, then you should
2260 stat on the library name, not member name. */
2261
2262 if (objfile->obfd->my_archive)
2263 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2264 else
2265 #endif
2266 res = stat (objfile->name, &new_statbuf);
2267 if (res != 0)
2268 {
2269 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2270 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2271 objfile->name);
2272 continue;
2273 }
2274 new_modtime = new_statbuf.st_mtime;
2275 if (new_modtime != objfile->mtime)
2276 {
2277 struct cleanup *old_cleanups;
2278 struct section_offsets *offsets;
2279 int num_offsets;
2280 char *obfd_filename;
2281
2282 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2283 objfile->name);
2284
2285 /* There are various functions like symbol_file_add,
2286 symfile_bfd_open, syms_from_objfile, etc., which might
2287 appear to do what we want. But they have various other
2288 effects which we *don't* want. So we just do stuff
2289 ourselves. We don't worry about mapped files (for one thing,
2290 any mapped file will be out of date). */
2291
2292 /* If we get an error, blow away this objfile (not sure if
2293 that is the correct response for things like shared
2294 libraries). */
2295 old_cleanups = make_cleanup_free_objfile (objfile);
2296 /* We need to do this whenever any symbols go away. */
2297 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2298
2299 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2300 bfd_get_filename (exec_bfd)) == 0)
2301 {
2302 /* Reload EXEC_BFD without asking anything. */
2303
2304 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2305 }
2306
2307 /* Clean up any state BFD has sitting around. We don't need
2308 to close the descriptor but BFD lacks a way of closing the
2309 BFD without closing the descriptor. */
2310 obfd_filename = bfd_get_filename (objfile->obfd);
2311 if (!bfd_close (objfile->obfd))
2312 error (_("Can't close BFD for %s: %s"), objfile->name,
2313 bfd_errmsg (bfd_get_error ()));
2314 if (remote_filename_p (obfd_filename))
2315 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2316 else
2317 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2318 if (objfile->obfd == NULL)
2319 error (_("Can't open %s to read symbols."), objfile->name);
2320 else
2321 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2322 /* bfd_openr sets cacheable to true, which is what we want. */
2323 if (!bfd_check_format (objfile->obfd, bfd_object))
2324 error (_("Can't read symbols from %s: %s."), objfile->name,
2325 bfd_errmsg (bfd_get_error ()));
2326
2327 /* Save the offsets, we will nuke them with the rest of the
2328 objfile_obstack. */
2329 num_offsets = objfile->num_sections;
2330 offsets = ((struct section_offsets *)
2331 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2332 memcpy (offsets, objfile->section_offsets,
2333 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2334
2335 /* Remove any references to this objfile in the global
2336 value lists. */
2337 preserve_values (objfile);
2338
2339 /* Nuke all the state that we will re-read. Much of the following
2340 code which sets things to NULL really is necessary to tell
2341 other parts of GDB that there is nothing currently there.
2342
2343 Try to keep the freeing order compatible with free_objfile. */
2344
2345 if (objfile->sf != NULL)
2346 {
2347 (*objfile->sf->sym_finish) (objfile);
2348 }
2349
2350 clear_objfile_data (objfile);
2351
2352 /* FIXME: Do we have to free a whole linked list, or is this
2353 enough? */
2354 if (objfile->global_psymbols.list)
2355 xfree (objfile->global_psymbols.list);
2356 memset (&objfile->global_psymbols, 0,
2357 sizeof (objfile->global_psymbols));
2358 if (objfile->static_psymbols.list)
2359 xfree (objfile->static_psymbols.list);
2360 memset (&objfile->static_psymbols, 0,
2361 sizeof (objfile->static_psymbols));
2362
2363 /* Free the obstacks for non-reusable objfiles */
2364 bcache_xfree (objfile->psymbol_cache);
2365 objfile->psymbol_cache = bcache_xmalloc ();
2366 bcache_xfree (objfile->macro_cache);
2367 objfile->macro_cache = bcache_xmalloc ();
2368 if (objfile->demangled_names_hash != NULL)
2369 {
2370 htab_delete (objfile->demangled_names_hash);
2371 objfile->demangled_names_hash = NULL;
2372 }
2373 obstack_free (&objfile->objfile_obstack, 0);
2374 objfile->sections = NULL;
2375 objfile->symtabs = NULL;
2376 objfile->psymtabs = NULL;
2377 objfile->psymtabs_addrmap = NULL;
2378 objfile->free_psymtabs = NULL;
2379 objfile->cp_namespace_symtab = NULL;
2380 objfile->msymbols = NULL;
2381 objfile->deprecated_sym_private = NULL;
2382 objfile->minimal_symbol_count = 0;
2383 memset (&objfile->msymbol_hash, 0,
2384 sizeof (objfile->msymbol_hash));
2385 memset (&objfile->msymbol_demangled_hash, 0,
2386 sizeof (objfile->msymbol_demangled_hash));
2387
2388 objfile->psymbol_cache = bcache_xmalloc ();
2389 objfile->macro_cache = bcache_xmalloc ();
2390 /* obstack_init also initializes the obstack so it is
2391 empty. We could use obstack_specify_allocation but
2392 gdb_obstack.h specifies the alloc/dealloc
2393 functions. */
2394 obstack_init (&objfile->objfile_obstack);
2395 if (build_objfile_section_table (objfile))
2396 {
2397 error (_("Can't find the file sections in `%s': %s"),
2398 objfile->name, bfd_errmsg (bfd_get_error ()));
2399 }
2400 terminate_minimal_symbol_table (objfile);
2401
2402 /* We use the same section offsets as from last time. I'm not
2403 sure whether that is always correct for shared libraries. */
2404 objfile->section_offsets = (struct section_offsets *)
2405 obstack_alloc (&objfile->objfile_obstack,
2406 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2407 memcpy (objfile->section_offsets, offsets,
2408 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2409 objfile->num_sections = num_offsets;
2410
2411 /* What the hell is sym_new_init for, anyway? The concept of
2412 distinguishing between the main file and additional files
2413 in this way seems rather dubious. */
2414 if (objfile == symfile_objfile)
2415 {
2416 (*objfile->sf->sym_new_init) (objfile);
2417 }
2418
2419 (*objfile->sf->sym_init) (objfile);
2420 clear_complaints (&symfile_complaints, 1, 1);
2421 /* The "mainline" parameter is a hideous hack; I think leaving it
2422 zero is OK since dbxread.c also does what it needs to do if
2423 objfile->global_psymbols.size is 0. */
2424 (*objfile->sf->sym_read) (objfile, 0);
2425 if (!objfile_has_partial_symbols (objfile)
2426 && !objfile_has_full_symbols (objfile))
2427 {
2428 wrap_here ("");
2429 printf_unfiltered (_("(no debugging symbols found)\n"));
2430 wrap_here ("");
2431 }
2432
2433 /* We're done reading the symbol file; finish off complaints. */
2434 clear_complaints (&symfile_complaints, 0, 1);
2435
2436 /* Getting new symbols may change our opinion about what is
2437 frameless. */
2438
2439 reinit_frame_cache ();
2440
2441 /* Discard cleanups as symbol reading was successful. */
2442 discard_cleanups (old_cleanups);
2443
2444 /* If the mtime has changed between the time we set new_modtime
2445 and now, we *want* this to be out of date, so don't call stat
2446 again now. */
2447 objfile->mtime = new_modtime;
2448 reread_one = 1;
2449 reread_separate_symbols (objfile);
2450 init_entry_point_info (objfile);
2451 }
2452 }
2453 }
2454
2455 if (reread_one)
2456 {
2457 /* Notify objfiles that we've modified objfile sections. */
2458 objfiles_changed ();
2459
2460 clear_symtab_users ();
2461 /* At least one objfile has changed, so we can consider that
2462 the executable we're debugging has changed too. */
2463 observer_notify_executable_changed ();
2464 }
2465 }
2466
2467
2468 /* Handle separate debug info for OBJFILE, which has just been
2469 re-read:
2470 - If we had separate debug info before, but now we don't, get rid
2471 of the separated objfile.
2472 - If we didn't have separated debug info before, but now we do,
2473 read in the new separated debug info file.
2474 - If the debug link points to a different file, toss the old one
2475 and read the new one.
2476 This function does *not* handle the case where objfile is still
2477 using the same separate debug info file, but that file's timestamp
2478 has changed. That case should be handled by the loop in
2479 reread_symbols already. */
2480 static void
2481 reread_separate_symbols (struct objfile *objfile)
2482 {
2483 char *debug_file;
2484 unsigned long crc32;
2485
2486 /* Does the updated objfile's debug info live in a
2487 separate file? */
2488 debug_file = find_separate_debug_file (objfile);
2489
2490 if (objfile->separate_debug_objfile)
2491 {
2492 /* There are two cases where we need to get rid of
2493 the old separated debug info objfile:
2494 - if the new primary objfile doesn't have
2495 separated debug info, or
2496 - if the new primary objfile has separate debug
2497 info, but it's under a different filename.
2498
2499 If the old and new objfiles both have separate
2500 debug info, under the same filename, then we're
2501 okay --- if the separated file's contents have
2502 changed, we will have caught that when we
2503 visited it in this function's outermost
2504 loop. */
2505 if (! debug_file
2506 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2507 free_objfile (objfile->separate_debug_objfile);
2508 }
2509
2510 /* If the new objfile has separate debug info, and we
2511 haven't loaded it already, do so now. */
2512 if (debug_file
2513 && ! objfile->separate_debug_objfile)
2514 {
2515 /* Use the same section offset table as objfile itself.
2516 Preserve the flags from objfile that make sense. */
2517 objfile->separate_debug_objfile
2518 = (symbol_file_add_with_addrs_or_offsets
2519 (symfile_bfd_open (debug_file),
2520 info_verbose ? SYMFILE_VERBOSE : 0,
2521 0, /* No addr table. */
2522 objfile->section_offsets, objfile->num_sections,
2523 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2524 | OBJF_USERLOADED)));
2525 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2526 = objfile;
2527 }
2528 if (debug_file)
2529 xfree (debug_file);
2530 }
2531
2532
2533 \f
2534
2535
2536 typedef struct
2537 {
2538 char *ext;
2539 enum language lang;
2540 }
2541 filename_language;
2542
2543 static filename_language *filename_language_table;
2544 static int fl_table_size, fl_table_next;
2545
2546 static void
2547 add_filename_language (char *ext, enum language lang)
2548 {
2549 if (fl_table_next >= fl_table_size)
2550 {
2551 fl_table_size += 10;
2552 filename_language_table =
2553 xrealloc (filename_language_table,
2554 fl_table_size * sizeof (*filename_language_table));
2555 }
2556
2557 filename_language_table[fl_table_next].ext = xstrdup (ext);
2558 filename_language_table[fl_table_next].lang = lang;
2559 fl_table_next++;
2560 }
2561
2562 static char *ext_args;
2563 static void
2564 show_ext_args (struct ui_file *file, int from_tty,
2565 struct cmd_list_element *c, const char *value)
2566 {
2567 fprintf_filtered (file, _("\
2568 Mapping between filename extension and source language is \"%s\".\n"),
2569 value);
2570 }
2571
2572 static void
2573 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2574 {
2575 int i;
2576 char *cp = ext_args;
2577 enum language lang;
2578
2579 /* First arg is filename extension, starting with '.' */
2580 if (*cp != '.')
2581 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2582
2583 /* Find end of first arg. */
2584 while (*cp && !isspace (*cp))
2585 cp++;
2586
2587 if (*cp == '\0')
2588 error (_("'%s': two arguments required -- filename extension and language"),
2589 ext_args);
2590
2591 /* Null-terminate first arg */
2592 *cp++ = '\0';
2593
2594 /* Find beginning of second arg, which should be a source language. */
2595 while (*cp && isspace (*cp))
2596 cp++;
2597
2598 if (*cp == '\0')
2599 error (_("'%s': two arguments required -- filename extension and language"),
2600 ext_args);
2601
2602 /* Lookup the language from among those we know. */
2603 lang = language_enum (cp);
2604
2605 /* Now lookup the filename extension: do we already know it? */
2606 for (i = 0; i < fl_table_next; i++)
2607 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2608 break;
2609
2610 if (i >= fl_table_next)
2611 {
2612 /* new file extension */
2613 add_filename_language (ext_args, lang);
2614 }
2615 else
2616 {
2617 /* redefining a previously known filename extension */
2618
2619 /* if (from_tty) */
2620 /* query ("Really make files of type %s '%s'?", */
2621 /* ext_args, language_str (lang)); */
2622
2623 xfree (filename_language_table[i].ext);
2624 filename_language_table[i].ext = xstrdup (ext_args);
2625 filename_language_table[i].lang = lang;
2626 }
2627 }
2628
2629 static void
2630 info_ext_lang_command (char *args, int from_tty)
2631 {
2632 int i;
2633
2634 printf_filtered (_("Filename extensions and the languages they represent:"));
2635 printf_filtered ("\n\n");
2636 for (i = 0; i < fl_table_next; i++)
2637 printf_filtered ("\t%s\t- %s\n",
2638 filename_language_table[i].ext,
2639 language_str (filename_language_table[i].lang));
2640 }
2641
2642 static void
2643 init_filename_language_table (void)
2644 {
2645 if (fl_table_size == 0) /* protect against repetition */
2646 {
2647 fl_table_size = 20;
2648 fl_table_next = 0;
2649 filename_language_table =
2650 xmalloc (fl_table_size * sizeof (*filename_language_table));
2651 add_filename_language (".c", language_c);
2652 add_filename_language (".C", language_cplus);
2653 add_filename_language (".cc", language_cplus);
2654 add_filename_language (".cp", language_cplus);
2655 add_filename_language (".cpp", language_cplus);
2656 add_filename_language (".cxx", language_cplus);
2657 add_filename_language (".c++", language_cplus);
2658 add_filename_language (".java", language_java);
2659 add_filename_language (".class", language_java);
2660 add_filename_language (".m", language_objc);
2661 add_filename_language (".f", language_fortran);
2662 add_filename_language (".F", language_fortran);
2663 add_filename_language (".s", language_asm);
2664 add_filename_language (".sx", language_asm);
2665 add_filename_language (".S", language_asm);
2666 add_filename_language (".pas", language_pascal);
2667 add_filename_language (".p", language_pascal);
2668 add_filename_language (".pp", language_pascal);
2669 add_filename_language (".adb", language_ada);
2670 add_filename_language (".ads", language_ada);
2671 add_filename_language (".a", language_ada);
2672 add_filename_language (".ada", language_ada);
2673 }
2674 }
2675
2676 enum language
2677 deduce_language_from_filename (char *filename)
2678 {
2679 int i;
2680 char *cp;
2681
2682 if (filename != NULL)
2683 if ((cp = strrchr (filename, '.')) != NULL)
2684 for (i = 0; i < fl_table_next; i++)
2685 if (strcmp (cp, filename_language_table[i].ext) == 0)
2686 return filename_language_table[i].lang;
2687
2688 return language_unknown;
2689 }
2690 \f
2691 /* allocate_symtab:
2692
2693 Allocate and partly initialize a new symbol table. Return a pointer
2694 to it. error() if no space.
2695
2696 Caller must set these fields:
2697 LINETABLE(symtab)
2698 symtab->blockvector
2699 symtab->dirname
2700 symtab->free_code
2701 symtab->free_ptr
2702 possibly free_named_symtabs (symtab->filename);
2703 */
2704
2705 struct symtab *
2706 allocate_symtab (char *filename, struct objfile *objfile)
2707 {
2708 struct symtab *symtab;
2709
2710 symtab = (struct symtab *)
2711 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2712 memset (symtab, 0, sizeof (*symtab));
2713 symtab->filename = obsavestring (filename, strlen (filename),
2714 &objfile->objfile_obstack);
2715 symtab->fullname = NULL;
2716 symtab->language = deduce_language_from_filename (filename);
2717 symtab->debugformat = obsavestring ("unknown", 7,
2718 &objfile->objfile_obstack);
2719
2720 /* Hook it to the objfile it comes from */
2721
2722 symtab->objfile = objfile;
2723 symtab->next = objfile->symtabs;
2724 objfile->symtabs = symtab;
2725
2726 return (symtab);
2727 }
2728
2729 struct partial_symtab *
2730 allocate_psymtab (char *filename, struct objfile *objfile)
2731 {
2732 struct partial_symtab *psymtab;
2733
2734 if (objfile->free_psymtabs)
2735 {
2736 psymtab = objfile->free_psymtabs;
2737 objfile->free_psymtabs = psymtab->next;
2738 }
2739 else
2740 psymtab = (struct partial_symtab *)
2741 obstack_alloc (&objfile->objfile_obstack,
2742 sizeof (struct partial_symtab));
2743
2744 memset (psymtab, 0, sizeof (struct partial_symtab));
2745 psymtab->filename = obsavestring (filename, strlen (filename),
2746 &objfile->objfile_obstack);
2747 psymtab->symtab = NULL;
2748
2749 /* Prepend it to the psymtab list for the objfile it belongs to.
2750 Psymtabs are searched in most recent inserted -> least recent
2751 inserted order. */
2752
2753 psymtab->objfile = objfile;
2754 psymtab->next = objfile->psymtabs;
2755 objfile->psymtabs = psymtab;
2756 #if 0
2757 {
2758 struct partial_symtab **prev_pst;
2759 psymtab->objfile = objfile;
2760 psymtab->next = NULL;
2761 prev_pst = &(objfile->psymtabs);
2762 while ((*prev_pst) != NULL)
2763 prev_pst = &((*prev_pst)->next);
2764 (*prev_pst) = psymtab;
2765 }
2766 #endif
2767
2768 return (psymtab);
2769 }
2770
2771 void
2772 discard_psymtab (struct partial_symtab *pst)
2773 {
2774 struct partial_symtab **prev_pst;
2775
2776 /* From dbxread.c:
2777 Empty psymtabs happen as a result of header files which don't
2778 have any symbols in them. There can be a lot of them. But this
2779 check is wrong, in that a psymtab with N_SLINE entries but
2780 nothing else is not empty, but we don't realize that. Fixing
2781 that without slowing things down might be tricky. */
2782
2783 /* First, snip it out of the psymtab chain */
2784
2785 prev_pst = &(pst->objfile->psymtabs);
2786 while ((*prev_pst) != pst)
2787 prev_pst = &((*prev_pst)->next);
2788 (*prev_pst) = pst->next;
2789
2790 /* Next, put it on a free list for recycling */
2791
2792 pst->next = pst->objfile->free_psymtabs;
2793 pst->objfile->free_psymtabs = pst;
2794 }
2795 \f
2796
2797 /* Reset all data structures in gdb which may contain references to symbol
2798 table data. */
2799
2800 void
2801 clear_symtab_users (void)
2802 {
2803 /* Someday, we should do better than this, by only blowing away
2804 the things that really need to be blown. */
2805
2806 /* Clear the "current" symtab first, because it is no longer valid.
2807 breakpoint_re_set may try to access the current symtab. */
2808 clear_current_source_symtab_and_line ();
2809
2810 clear_displays ();
2811 breakpoint_re_set ();
2812 set_default_breakpoint (0, 0, 0, 0);
2813 clear_pc_function_cache ();
2814 observer_notify_new_objfile (NULL);
2815
2816 /* Clear globals which might have pointed into a removed objfile.
2817 FIXME: It's not clear which of these are supposed to persist
2818 between expressions and which ought to be reset each time. */
2819 expression_context_block = NULL;
2820 innermost_block = NULL;
2821
2822 /* Varobj may refer to old symbols, perform a cleanup. */
2823 varobj_invalidate ();
2824
2825 }
2826
2827 static void
2828 clear_symtab_users_cleanup (void *ignore)
2829 {
2830 clear_symtab_users ();
2831 }
2832
2833 /* clear_symtab_users_once:
2834
2835 This function is run after symbol reading, or from a cleanup.
2836 If an old symbol table was obsoleted, the old symbol table
2837 has been blown away, but the other GDB data structures that may
2838 reference it have not yet been cleared or re-directed. (The old
2839 symtab was zapped, and the cleanup queued, in free_named_symtab()
2840 below.)
2841
2842 This function can be queued N times as a cleanup, or called
2843 directly; it will do all the work the first time, and then will be a
2844 no-op until the next time it is queued. This works by bumping a
2845 counter at queueing time. Much later when the cleanup is run, or at
2846 the end of symbol processing (in case the cleanup is discarded), if
2847 the queued count is greater than the "done-count", we do the work
2848 and set the done-count to the queued count. If the queued count is
2849 less than or equal to the done-count, we just ignore the call. This
2850 is needed because reading a single .o file will often replace many
2851 symtabs (one per .h file, for example), and we don't want to reset
2852 the breakpoints N times in the user's face.
2853
2854 The reason we both queue a cleanup, and call it directly after symbol
2855 reading, is because the cleanup protects us in case of errors, but is
2856 discarded if symbol reading is successful. */
2857
2858 #if 0
2859 /* FIXME: As free_named_symtabs is currently a big noop this function
2860 is no longer needed. */
2861 static void clear_symtab_users_once (void);
2862
2863 static int clear_symtab_users_queued;
2864 static int clear_symtab_users_done;
2865
2866 static void
2867 clear_symtab_users_once (void)
2868 {
2869 /* Enforce once-per-`do_cleanups'-semantics */
2870 if (clear_symtab_users_queued <= clear_symtab_users_done)
2871 return;
2872 clear_symtab_users_done = clear_symtab_users_queued;
2873
2874 clear_symtab_users ();
2875 }
2876 #endif
2877
2878 /* Delete the specified psymtab, and any others that reference it. */
2879
2880 static void
2881 cashier_psymtab (struct partial_symtab *pst)
2882 {
2883 struct partial_symtab *ps, *pprev = NULL;
2884 int i;
2885
2886 /* Find its previous psymtab in the chain */
2887 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2888 {
2889 if (ps == pst)
2890 break;
2891 pprev = ps;
2892 }
2893
2894 if (ps)
2895 {
2896 /* Unhook it from the chain. */
2897 if (ps == pst->objfile->psymtabs)
2898 pst->objfile->psymtabs = ps->next;
2899 else
2900 pprev->next = ps->next;
2901
2902 /* FIXME, we can't conveniently deallocate the entries in the
2903 partial_symbol lists (global_psymbols/static_psymbols) that
2904 this psymtab points to. These just take up space until all
2905 the psymtabs are reclaimed. Ditto the dependencies list and
2906 filename, which are all in the objfile_obstack. */
2907
2908 /* We need to cashier any psymtab that has this one as a dependency... */
2909 again:
2910 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2911 {
2912 for (i = 0; i < ps->number_of_dependencies; i++)
2913 {
2914 if (ps->dependencies[i] == pst)
2915 {
2916 cashier_psymtab (ps);
2917 goto again; /* Must restart, chain has been munged. */
2918 }
2919 }
2920 }
2921 }
2922 }
2923
2924 /* If a symtab or psymtab for filename NAME is found, free it along
2925 with any dependent breakpoints, displays, etc.
2926 Used when loading new versions of object modules with the "add-file"
2927 command. This is only called on the top-level symtab or psymtab's name;
2928 it is not called for subsidiary files such as .h files.
2929
2930 Return value is 1 if we blew away the environment, 0 if not.
2931 FIXME. The return value appears to never be used.
2932
2933 FIXME. I think this is not the best way to do this. We should
2934 work on being gentler to the environment while still cleaning up
2935 all stray pointers into the freed symtab. */
2936
2937 int
2938 free_named_symtabs (char *name)
2939 {
2940 #if 0
2941 /* FIXME: With the new method of each objfile having it's own
2942 psymtab list, this function needs serious rethinking. In particular,
2943 why was it ever necessary to toss psymtabs with specific compilation
2944 unit filenames, as opposed to all psymtabs from a particular symbol
2945 file? -- fnf
2946 Well, the answer is that some systems permit reloading of particular
2947 compilation units. We want to blow away any old info about these
2948 compilation units, regardless of which objfiles they arrived in. --gnu. */
2949
2950 struct symtab *s;
2951 struct symtab *prev;
2952 struct partial_symtab *ps;
2953 struct blockvector *bv;
2954 int blewit = 0;
2955
2956 /* We only wack things if the symbol-reload switch is set. */
2957 if (!symbol_reloading)
2958 return 0;
2959
2960 /* Some symbol formats have trouble providing file names... */
2961 if (name == 0 || *name == '\0')
2962 return 0;
2963
2964 /* Look for a psymtab with the specified name. */
2965
2966 again2:
2967 for (ps = partial_symtab_list; ps; ps = ps->next)
2968 {
2969 if (strcmp (name, ps->filename) == 0)
2970 {
2971 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2972 goto again2; /* Must restart, chain has been munged */
2973 }
2974 }
2975
2976 /* Look for a symtab with the specified name. */
2977
2978 for (s = symtab_list; s; s = s->next)
2979 {
2980 if (strcmp (name, s->filename) == 0)
2981 break;
2982 prev = s;
2983 }
2984
2985 if (s)
2986 {
2987 if (s == symtab_list)
2988 symtab_list = s->next;
2989 else
2990 prev->next = s->next;
2991
2992 /* For now, queue a delete for all breakpoints, displays, etc., whether
2993 or not they depend on the symtab being freed. This should be
2994 changed so that only those data structures affected are deleted. */
2995
2996 /* But don't delete anything if the symtab is empty.
2997 This test is necessary due to a bug in "dbxread.c" that
2998 causes empty symtabs to be created for N_SO symbols that
2999 contain the pathname of the object file. (This problem
3000 has been fixed in GDB 3.9x). */
3001
3002 bv = BLOCKVECTOR (s);
3003 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3004 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3005 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3006 {
3007 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
3008 name);
3009 clear_symtab_users_queued++;
3010 make_cleanup (clear_symtab_users_once, 0);
3011 blewit = 1;
3012 }
3013 else
3014 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3015 name);
3016
3017 free_symtab (s);
3018 }
3019 else
3020 {
3021 /* It is still possible that some breakpoints will be affected
3022 even though no symtab was found, since the file might have
3023 been compiled without debugging, and hence not be associated
3024 with a symtab. In order to handle this correctly, we would need
3025 to keep a list of text address ranges for undebuggable files.
3026 For now, we do nothing, since this is a fairly obscure case. */
3027 ;
3028 }
3029
3030 /* FIXME, what about the minimal symbol table? */
3031 return blewit;
3032 #else
3033 return (0);
3034 #endif
3035 }
3036 \f
3037 /* Allocate and partially fill a partial symtab. It will be
3038 completely filled at the end of the symbol list.
3039
3040 FILENAME is the name of the symbol-file we are reading from. */
3041
3042 struct partial_symtab *
3043 start_psymtab_common (struct objfile *objfile,
3044 struct section_offsets *section_offsets, char *filename,
3045 CORE_ADDR textlow, struct partial_symbol **global_syms,
3046 struct partial_symbol **static_syms)
3047 {
3048 struct partial_symtab *psymtab;
3049
3050 psymtab = allocate_psymtab (filename, objfile);
3051 psymtab->section_offsets = section_offsets;
3052 psymtab->textlow = textlow;
3053 psymtab->texthigh = psymtab->textlow; /* default */
3054 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3055 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
3056 return (psymtab);
3057 }
3058 \f
3059 /* Helper function, initialises partial symbol structure and stashes
3060 it into objfile's bcache. Note that our caching mechanism will
3061 use all fields of struct partial_symbol to determine hash value of the
3062 structure. In other words, having two symbols with the same name but
3063 different domain (or address) is possible and correct. */
3064
3065 static const struct partial_symbol *
3066 add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3067 enum address_class class,
3068 long val, /* Value as a long */
3069 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3070 enum language language, struct objfile *objfile,
3071 int *added)
3072 {
3073 char *buf = name;
3074 /* psymbol is static so that there will be no uninitialized gaps in the
3075 structure which might contain random data, causing cache misses in
3076 bcache. */
3077 static struct partial_symbol psymbol;
3078
3079 if (name[namelength] != '\0')
3080 {
3081 buf = alloca (namelength + 1);
3082 /* Create local copy of the partial symbol */
3083 memcpy (buf, name, namelength);
3084 buf[namelength] = '\0';
3085 }
3086 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3087 if (val != 0)
3088 {
3089 SYMBOL_VALUE (&psymbol) = val;
3090 }
3091 else
3092 {
3093 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3094 }
3095 SYMBOL_SECTION (&psymbol) = 0;
3096 SYMBOL_LANGUAGE (&psymbol) = language;
3097 PSYMBOL_DOMAIN (&psymbol) = domain;
3098 PSYMBOL_CLASS (&psymbol) = class;
3099
3100 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3101
3102 /* Stash the partial symbol away in the cache */
3103 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3104 objfile->psymbol_cache, added);
3105 }
3106
3107 /* Helper function, adds partial symbol to the given partial symbol
3108 list. */
3109
3110 static void
3111 append_psymbol_to_list (struct psymbol_allocation_list *list,
3112 const struct partial_symbol *psym,
3113 struct objfile *objfile)
3114 {
3115 if (list->next >= list->list + list->size)
3116 extend_psymbol_list (list, objfile);
3117 *list->next++ = (struct partial_symbol *) psym;
3118 OBJSTAT (objfile, n_psyms++);
3119 }
3120
3121 /* Add a symbol with a long value to a psymtab.
3122 Since one arg is a struct, we pass in a ptr and deref it (sigh).
3123 Return the partial symbol that has been added. */
3124
3125 /* NOTE: carlton/2003-09-11: The reason why we return the partial
3126 symbol is so that callers can get access to the symbol's demangled
3127 name, which they don't have any cheap way to determine otherwise.
3128 (Currenly, dwarf2read.c is the only file who uses that information,
3129 though it's possible that other readers might in the future.)
3130 Elena wasn't thrilled about that, and I don't blame her, but we
3131 couldn't come up with a better way to get that information. If
3132 it's needed in other situations, we could consider breaking up
3133 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3134 cache. */
3135
3136 const struct partial_symbol *
3137 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
3138 enum address_class class,
3139 struct psymbol_allocation_list *list,
3140 long val, /* Value as a long */
3141 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3142 enum language language, struct objfile *objfile)
3143 {
3144 const struct partial_symbol *psym;
3145
3146 int added;
3147
3148 /* Stash the partial symbol away in the cache */
3149 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3150 val, coreaddr, language, objfile, &added);
3151
3152 /* Do not duplicate global partial symbols. */
3153 if (list == &objfile->global_psymbols
3154 && !added)
3155 return psym;
3156
3157 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3158 append_psymbol_to_list (list, psym, objfile);
3159 return psym;
3160 }
3161
3162 /* Initialize storage for partial symbols. */
3163
3164 void
3165 init_psymbol_list (struct objfile *objfile, int total_symbols)
3166 {
3167 /* Free any previously allocated psymbol lists. */
3168
3169 if (objfile->global_psymbols.list)
3170 {
3171 xfree (objfile->global_psymbols.list);
3172 }
3173 if (objfile->static_psymbols.list)
3174 {
3175 xfree (objfile->static_psymbols.list);
3176 }
3177
3178 /* Current best guess is that approximately a twentieth
3179 of the total symbols (in a debugging file) are global or static
3180 oriented symbols */
3181
3182 objfile->global_psymbols.size = total_symbols / 10;
3183 objfile->static_psymbols.size = total_symbols / 10;
3184
3185 if (objfile->global_psymbols.size > 0)
3186 {
3187 objfile->global_psymbols.next =
3188 objfile->global_psymbols.list = (struct partial_symbol **)
3189 xmalloc ((objfile->global_psymbols.size
3190 * sizeof (struct partial_symbol *)));
3191 }
3192 if (objfile->static_psymbols.size > 0)
3193 {
3194 objfile->static_psymbols.next =
3195 objfile->static_psymbols.list = (struct partial_symbol **)
3196 xmalloc ((objfile->static_psymbols.size
3197 * sizeof (struct partial_symbol *)));
3198 }
3199 }
3200
3201 /* OVERLAYS:
3202 The following code implements an abstraction for debugging overlay sections.
3203
3204 The target model is as follows:
3205 1) The gnu linker will permit multiple sections to be mapped into the
3206 same VMA, each with its own unique LMA (or load address).
3207 2) It is assumed that some runtime mechanism exists for mapping the
3208 sections, one by one, from the load address into the VMA address.
3209 3) This code provides a mechanism for gdb to keep track of which
3210 sections should be considered to be mapped from the VMA to the LMA.
3211 This information is used for symbol lookup, and memory read/write.
3212 For instance, if a section has been mapped then its contents
3213 should be read from the VMA, otherwise from the LMA.
3214
3215 Two levels of debugger support for overlays are available. One is
3216 "manual", in which the debugger relies on the user to tell it which
3217 overlays are currently mapped. This level of support is
3218 implemented entirely in the core debugger, and the information about
3219 whether a section is mapped is kept in the objfile->obj_section table.
3220
3221 The second level of support is "automatic", and is only available if
3222 the target-specific code provides functionality to read the target's
3223 overlay mapping table, and translate its contents for the debugger
3224 (by updating the mapped state information in the obj_section tables).
3225
3226 The interface is as follows:
3227 User commands:
3228 overlay map <name> -- tell gdb to consider this section mapped
3229 overlay unmap <name> -- tell gdb to consider this section unmapped
3230 overlay list -- list the sections that GDB thinks are mapped
3231 overlay read-target -- get the target's state of what's mapped
3232 overlay off/manual/auto -- set overlay debugging state
3233 Functional interface:
3234 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3235 section, return that section.
3236 find_pc_overlay(pc): find any overlay section that contains
3237 the pc, either in its VMA or its LMA
3238 section_is_mapped(sect): true if overlay is marked as mapped
3239 section_is_overlay(sect): true if section's VMA != LMA
3240 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3241 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3242 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3243 overlay_mapped_address(...): map an address from section's LMA to VMA
3244 overlay_unmapped_address(...): map an address from section's VMA to LMA
3245 symbol_overlayed_address(...): Return a "current" address for symbol:
3246 either in VMA or LMA depending on whether
3247 the symbol's section is currently mapped
3248 */
3249
3250 /* Overlay debugging state: */
3251
3252 enum overlay_debugging_state overlay_debugging = ovly_off;
3253 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3254
3255 /* Function: section_is_overlay (SECTION)
3256 Returns true if SECTION has VMA not equal to LMA, ie.
3257 SECTION is loaded at an address different from where it will "run". */
3258
3259 int
3260 section_is_overlay (struct obj_section *section)
3261 {
3262 if (overlay_debugging && section)
3263 {
3264 bfd *abfd = section->objfile->obfd;
3265 asection *bfd_section = section->the_bfd_section;
3266
3267 if (bfd_section_lma (abfd, bfd_section) != 0
3268 && bfd_section_lma (abfd, bfd_section)
3269 != bfd_section_vma (abfd, bfd_section))
3270 return 1;
3271 }
3272
3273 return 0;
3274 }
3275
3276 /* Function: overlay_invalidate_all (void)
3277 Invalidate the mapped state of all overlay sections (mark it as stale). */
3278
3279 static void
3280 overlay_invalidate_all (void)
3281 {
3282 struct objfile *objfile;
3283 struct obj_section *sect;
3284
3285 ALL_OBJSECTIONS (objfile, sect)
3286 if (section_is_overlay (sect))
3287 sect->ovly_mapped = -1;
3288 }
3289
3290 /* Function: section_is_mapped (SECTION)
3291 Returns true if section is an overlay, and is currently mapped.
3292
3293 Access to the ovly_mapped flag is restricted to this function, so
3294 that we can do automatic update. If the global flag
3295 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3296 overlay_invalidate_all. If the mapped state of the particular
3297 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3298
3299 int
3300 section_is_mapped (struct obj_section *osect)
3301 {
3302 struct gdbarch *gdbarch;
3303
3304 if (osect == 0 || !section_is_overlay (osect))
3305 return 0;
3306
3307 switch (overlay_debugging)
3308 {
3309 default:
3310 case ovly_off:
3311 return 0; /* overlay debugging off */
3312 case ovly_auto: /* overlay debugging automatic */
3313 /* Unles there is a gdbarch_overlay_update function,
3314 there's really nothing useful to do here (can't really go auto) */
3315 gdbarch = get_objfile_arch (osect->objfile);
3316 if (gdbarch_overlay_update_p (gdbarch))
3317 {
3318 if (overlay_cache_invalid)
3319 {
3320 overlay_invalidate_all ();
3321 overlay_cache_invalid = 0;
3322 }
3323 if (osect->ovly_mapped == -1)
3324 gdbarch_overlay_update (gdbarch, osect);
3325 }
3326 /* fall thru to manual case */
3327 case ovly_on: /* overlay debugging manual */
3328 return osect->ovly_mapped == 1;
3329 }
3330 }
3331
3332 /* Function: pc_in_unmapped_range
3333 If PC falls into the lma range of SECTION, return true, else false. */
3334
3335 CORE_ADDR
3336 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3337 {
3338 if (section_is_overlay (section))
3339 {
3340 bfd *abfd = section->objfile->obfd;
3341 asection *bfd_section = section->the_bfd_section;
3342
3343 /* We assume the LMA is relocated by the same offset as the VMA. */
3344 bfd_vma size = bfd_get_section_size (bfd_section);
3345 CORE_ADDR offset = obj_section_offset (section);
3346
3347 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3348 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3349 return 1;
3350 }
3351
3352 return 0;
3353 }
3354
3355 /* Function: pc_in_mapped_range
3356 If PC falls into the vma range of SECTION, return true, else false. */
3357
3358 CORE_ADDR
3359 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3360 {
3361 if (section_is_overlay (section))
3362 {
3363 if (obj_section_addr (section) <= pc
3364 && pc < obj_section_endaddr (section))
3365 return 1;
3366 }
3367
3368 return 0;
3369 }
3370
3371
3372 /* Return true if the mapped ranges of sections A and B overlap, false
3373 otherwise. */
3374 static int
3375 sections_overlap (struct obj_section *a, struct obj_section *b)
3376 {
3377 CORE_ADDR a_start = obj_section_addr (a);
3378 CORE_ADDR a_end = obj_section_endaddr (a);
3379 CORE_ADDR b_start = obj_section_addr (b);
3380 CORE_ADDR b_end = obj_section_endaddr (b);
3381
3382 return (a_start < b_end && b_start < a_end);
3383 }
3384
3385 /* Function: overlay_unmapped_address (PC, SECTION)
3386 Returns the address corresponding to PC in the unmapped (load) range.
3387 May be the same as PC. */
3388
3389 CORE_ADDR
3390 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3391 {
3392 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3393 {
3394 bfd *abfd = section->objfile->obfd;
3395 asection *bfd_section = section->the_bfd_section;
3396
3397 return pc + bfd_section_lma (abfd, bfd_section)
3398 - bfd_section_vma (abfd, bfd_section);
3399 }
3400
3401 return pc;
3402 }
3403
3404 /* Function: overlay_mapped_address (PC, SECTION)
3405 Returns the address corresponding to PC in the mapped (runtime) range.
3406 May be the same as PC. */
3407
3408 CORE_ADDR
3409 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3410 {
3411 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3412 {
3413 bfd *abfd = section->objfile->obfd;
3414 asection *bfd_section = section->the_bfd_section;
3415
3416 return pc + bfd_section_vma (abfd, bfd_section)
3417 - bfd_section_lma (abfd, bfd_section);
3418 }
3419
3420 return pc;
3421 }
3422
3423
3424 /* Function: symbol_overlayed_address
3425 Return one of two addresses (relative to the VMA or to the LMA),
3426 depending on whether the section is mapped or not. */
3427
3428 CORE_ADDR
3429 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3430 {
3431 if (overlay_debugging)
3432 {
3433 /* If the symbol has no section, just return its regular address. */
3434 if (section == 0)
3435 return address;
3436 /* If the symbol's section is not an overlay, just return its address */
3437 if (!section_is_overlay (section))
3438 return address;
3439 /* If the symbol's section is mapped, just return its address */
3440 if (section_is_mapped (section))
3441 return address;
3442 /*
3443 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3444 * then return its LOADED address rather than its vma address!!
3445 */
3446 return overlay_unmapped_address (address, section);
3447 }
3448 return address;
3449 }
3450
3451 /* Function: find_pc_overlay (PC)
3452 Return the best-match overlay section for PC:
3453 If PC matches a mapped overlay section's VMA, return that section.
3454 Else if PC matches an unmapped section's VMA, return that section.
3455 Else if PC matches an unmapped section's LMA, return that section. */
3456
3457 struct obj_section *
3458 find_pc_overlay (CORE_ADDR pc)
3459 {
3460 struct objfile *objfile;
3461 struct obj_section *osect, *best_match = NULL;
3462
3463 if (overlay_debugging)
3464 ALL_OBJSECTIONS (objfile, osect)
3465 if (section_is_overlay (osect))
3466 {
3467 if (pc_in_mapped_range (pc, osect))
3468 {
3469 if (section_is_mapped (osect))
3470 return osect;
3471 else
3472 best_match = osect;
3473 }
3474 else if (pc_in_unmapped_range (pc, osect))
3475 best_match = osect;
3476 }
3477 return best_match;
3478 }
3479
3480 /* Function: find_pc_mapped_section (PC)
3481 If PC falls into the VMA address range of an overlay section that is
3482 currently marked as MAPPED, return that section. Else return NULL. */
3483
3484 struct obj_section *
3485 find_pc_mapped_section (CORE_ADDR pc)
3486 {
3487 struct objfile *objfile;
3488 struct obj_section *osect;
3489
3490 if (overlay_debugging)
3491 ALL_OBJSECTIONS (objfile, osect)
3492 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3493 return osect;
3494
3495 return NULL;
3496 }
3497
3498 /* Function: list_overlays_command
3499 Print a list of mapped sections and their PC ranges */
3500
3501 void
3502 list_overlays_command (char *args, int from_tty)
3503 {
3504 int nmapped = 0;
3505 struct objfile *objfile;
3506 struct obj_section *osect;
3507
3508 if (overlay_debugging)
3509 ALL_OBJSECTIONS (objfile, osect)
3510 if (section_is_mapped (osect))
3511 {
3512 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3513 const char *name;
3514 bfd_vma lma, vma;
3515 int size;
3516
3517 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3518 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3519 size = bfd_get_section_size (osect->the_bfd_section);
3520 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3521
3522 printf_filtered ("Section %s, loaded at ", name);
3523 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3524 puts_filtered (" - ");
3525 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3526 printf_filtered (", mapped at ");
3527 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3528 puts_filtered (" - ");
3529 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3530 puts_filtered ("\n");
3531
3532 nmapped++;
3533 }
3534 if (nmapped == 0)
3535 printf_filtered (_("No sections are mapped.\n"));
3536 }
3537
3538 /* Function: map_overlay_command
3539 Mark the named section as mapped (ie. residing at its VMA address). */
3540
3541 void
3542 map_overlay_command (char *args, int from_tty)
3543 {
3544 struct objfile *objfile, *objfile2;
3545 struct obj_section *sec, *sec2;
3546
3547 if (!overlay_debugging)
3548 error (_("\
3549 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3550 the 'overlay manual' command."));
3551
3552 if (args == 0 || *args == 0)
3553 error (_("Argument required: name of an overlay section"));
3554
3555 /* First, find a section matching the user supplied argument */
3556 ALL_OBJSECTIONS (objfile, sec)
3557 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3558 {
3559 /* Now, check to see if the section is an overlay. */
3560 if (!section_is_overlay (sec))
3561 continue; /* not an overlay section */
3562
3563 /* Mark the overlay as "mapped" */
3564 sec->ovly_mapped = 1;
3565
3566 /* Next, make a pass and unmap any sections that are
3567 overlapped by this new section: */
3568 ALL_OBJSECTIONS (objfile2, sec2)
3569 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3570 {
3571 if (info_verbose)
3572 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3573 bfd_section_name (objfile->obfd,
3574 sec2->the_bfd_section));
3575 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3576 }
3577 return;
3578 }
3579 error (_("No overlay section called %s"), args);
3580 }
3581
3582 /* Function: unmap_overlay_command
3583 Mark the overlay section as unmapped
3584 (ie. resident in its LMA address range, rather than the VMA range). */
3585
3586 void
3587 unmap_overlay_command (char *args, int from_tty)
3588 {
3589 struct objfile *objfile;
3590 struct obj_section *sec;
3591
3592 if (!overlay_debugging)
3593 error (_("\
3594 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3595 the 'overlay manual' command."));
3596
3597 if (args == 0 || *args == 0)
3598 error (_("Argument required: name of an overlay section"));
3599
3600 /* First, find a section matching the user supplied argument */
3601 ALL_OBJSECTIONS (objfile, sec)
3602 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3603 {
3604 if (!sec->ovly_mapped)
3605 error (_("Section %s is not mapped"), args);
3606 sec->ovly_mapped = 0;
3607 return;
3608 }
3609 error (_("No overlay section called %s"), args);
3610 }
3611
3612 /* Function: overlay_auto_command
3613 A utility command to turn on overlay debugging.
3614 Possibly this should be done via a set/show command. */
3615
3616 static void
3617 overlay_auto_command (char *args, int from_tty)
3618 {
3619 overlay_debugging = ovly_auto;
3620 enable_overlay_breakpoints ();
3621 if (info_verbose)
3622 printf_unfiltered (_("Automatic overlay debugging enabled."));
3623 }
3624
3625 /* Function: overlay_manual_command
3626 A utility command to turn on overlay debugging.
3627 Possibly this should be done via a set/show command. */
3628
3629 static void
3630 overlay_manual_command (char *args, int from_tty)
3631 {
3632 overlay_debugging = ovly_on;
3633 disable_overlay_breakpoints ();
3634 if (info_verbose)
3635 printf_unfiltered (_("Overlay debugging enabled."));
3636 }
3637
3638 /* Function: overlay_off_command
3639 A utility command to turn on overlay debugging.
3640 Possibly this should be done via a set/show command. */
3641
3642 static void
3643 overlay_off_command (char *args, int from_tty)
3644 {
3645 overlay_debugging = ovly_off;
3646 disable_overlay_breakpoints ();
3647 if (info_verbose)
3648 printf_unfiltered (_("Overlay debugging disabled."));
3649 }
3650
3651 static void
3652 overlay_load_command (char *args, int from_tty)
3653 {
3654 struct gdbarch *gdbarch = get_current_arch ();
3655
3656 if (gdbarch_overlay_update_p (gdbarch))
3657 gdbarch_overlay_update (gdbarch, NULL);
3658 else
3659 error (_("This target does not know how to read its overlay state."));
3660 }
3661
3662 /* Function: overlay_command
3663 A place-holder for a mis-typed command */
3664
3665 /* Command list chain containing all defined "overlay" subcommands. */
3666 struct cmd_list_element *overlaylist;
3667
3668 static void
3669 overlay_command (char *args, int from_tty)
3670 {
3671 printf_unfiltered
3672 ("\"overlay\" must be followed by the name of an overlay command.\n");
3673 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3674 }
3675
3676
3677 /* Target Overlays for the "Simplest" overlay manager:
3678
3679 This is GDB's default target overlay layer. It works with the
3680 minimal overlay manager supplied as an example by Cygnus. The
3681 entry point is via a function pointer "gdbarch_overlay_update",
3682 so targets that use a different runtime overlay manager can
3683 substitute their own overlay_update function and take over the
3684 function pointer.
3685
3686 The overlay_update function pokes around in the target's data structures
3687 to see what overlays are mapped, and updates GDB's overlay mapping with
3688 this information.
3689
3690 In this simple implementation, the target data structures are as follows:
3691 unsigned _novlys; /# number of overlay sections #/
3692 unsigned _ovly_table[_novlys][4] = {
3693 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3694 {..., ..., ..., ...},
3695 }
3696 unsigned _novly_regions; /# number of overlay regions #/
3697 unsigned _ovly_region_table[_novly_regions][3] = {
3698 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3699 {..., ..., ...},
3700 }
3701 These functions will attempt to update GDB's mappedness state in the
3702 symbol section table, based on the target's mappedness state.
3703
3704 To do this, we keep a cached copy of the target's _ovly_table, and
3705 attempt to detect when the cached copy is invalidated. The main
3706 entry point is "simple_overlay_update(SECT), which looks up SECT in
3707 the cached table and re-reads only the entry for that section from
3708 the target (whenever possible).
3709 */
3710
3711 /* Cached, dynamically allocated copies of the target data structures: */
3712 static unsigned (*cache_ovly_table)[4] = 0;
3713 #if 0
3714 static unsigned (*cache_ovly_region_table)[3] = 0;
3715 #endif
3716 static unsigned cache_novlys = 0;
3717 #if 0
3718 static unsigned cache_novly_regions = 0;
3719 #endif
3720 static CORE_ADDR cache_ovly_table_base = 0;
3721 #if 0
3722 static CORE_ADDR cache_ovly_region_table_base = 0;
3723 #endif
3724 enum ovly_index
3725 {
3726 VMA, SIZE, LMA, MAPPED
3727 };
3728
3729 /* Throw away the cached copy of _ovly_table */
3730 static void
3731 simple_free_overlay_table (void)
3732 {
3733 if (cache_ovly_table)
3734 xfree (cache_ovly_table);
3735 cache_novlys = 0;
3736 cache_ovly_table = NULL;
3737 cache_ovly_table_base = 0;
3738 }
3739
3740 #if 0
3741 /* Throw away the cached copy of _ovly_region_table */
3742 static void
3743 simple_free_overlay_region_table (void)
3744 {
3745 if (cache_ovly_region_table)
3746 xfree (cache_ovly_region_table);
3747 cache_novly_regions = 0;
3748 cache_ovly_region_table = NULL;
3749 cache_ovly_region_table_base = 0;
3750 }
3751 #endif
3752
3753 /* Read an array of ints of size SIZE from the target into a local buffer.
3754 Convert to host order. int LEN is number of ints */
3755 static void
3756 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3757 int len, int size, enum bfd_endian byte_order)
3758 {
3759 /* FIXME (alloca): Not safe if array is very large. */
3760 gdb_byte *buf = alloca (len * size);
3761 int i;
3762
3763 read_memory (memaddr, buf, len * size);
3764 for (i = 0; i < len; i++)
3765 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3766 }
3767
3768 /* Find and grab a copy of the target _ovly_table
3769 (and _novlys, which is needed for the table's size) */
3770 static int
3771 simple_read_overlay_table (void)
3772 {
3773 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3774 struct gdbarch *gdbarch;
3775 int word_size;
3776 enum bfd_endian byte_order;
3777
3778 simple_free_overlay_table ();
3779 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3780 if (! novlys_msym)
3781 {
3782 error (_("Error reading inferior's overlay table: "
3783 "couldn't find `_novlys' variable\n"
3784 "in inferior. Use `overlay manual' mode."));
3785 return 0;
3786 }
3787
3788 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3789 if (! ovly_table_msym)
3790 {
3791 error (_("Error reading inferior's overlay table: couldn't find "
3792 "`_ovly_table' array\n"
3793 "in inferior. Use `overlay manual' mode."));
3794 return 0;
3795 }
3796
3797 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3798 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3799 byte_order = gdbarch_byte_order (gdbarch);
3800
3801 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3802 4, byte_order);
3803 cache_ovly_table
3804 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3805 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3806 read_target_long_array (cache_ovly_table_base,
3807 (unsigned int *) cache_ovly_table,
3808 cache_novlys * 4, word_size, byte_order);
3809
3810 return 1; /* SUCCESS */
3811 }
3812
3813 #if 0
3814 /* Find and grab a copy of the target _ovly_region_table
3815 (and _novly_regions, which is needed for the table's size) */
3816 static int
3817 simple_read_overlay_region_table (void)
3818 {
3819 struct minimal_symbol *msym;
3820 struct gdbarch *gdbarch;
3821 int word_size;
3822 enum bfd_endian byte_order;
3823
3824 simple_free_overlay_region_table ();
3825 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3826 if (msym == NULL)
3827 return 0; /* failure */
3828
3829 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3830 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3831 byte_order = gdbarch_byte_order (gdbarch);
3832
3833 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3834 4, byte_order);
3835
3836 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3837 if (cache_ovly_region_table != NULL)
3838 {
3839 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3840 if (msym != NULL)
3841 {
3842 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3843 read_target_long_array (cache_ovly_region_table_base,
3844 (unsigned int *) cache_ovly_region_table,
3845 cache_novly_regions * 3,
3846 word_size, byte_order);
3847 }
3848 else
3849 return 0; /* failure */
3850 }
3851 else
3852 return 0; /* failure */
3853 return 1; /* SUCCESS */
3854 }
3855 #endif
3856
3857 /* Function: simple_overlay_update_1
3858 A helper function for simple_overlay_update. Assuming a cached copy
3859 of _ovly_table exists, look through it to find an entry whose vma,
3860 lma and size match those of OSECT. Re-read the entry and make sure
3861 it still matches OSECT (else the table may no longer be valid).
3862 Set OSECT's mapped state to match the entry. Return: 1 for
3863 success, 0 for failure. */
3864
3865 static int
3866 simple_overlay_update_1 (struct obj_section *osect)
3867 {
3868 int i, size;
3869 bfd *obfd = osect->objfile->obfd;
3870 asection *bsect = osect->the_bfd_section;
3871 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3872 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3873 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3874
3875 size = bfd_get_section_size (osect->the_bfd_section);
3876 for (i = 0; i < cache_novlys; i++)
3877 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3878 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3879 /* && cache_ovly_table[i][SIZE] == size */ )
3880 {
3881 read_target_long_array (cache_ovly_table_base + i * word_size,
3882 (unsigned int *) cache_ovly_table[i],
3883 4, word_size, byte_order);
3884 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3885 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3886 /* && cache_ovly_table[i][SIZE] == size */ )
3887 {
3888 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3889 return 1;
3890 }
3891 else /* Warning! Warning! Target's ovly table has changed! */
3892 return 0;
3893 }
3894 return 0;
3895 }
3896
3897 /* Function: simple_overlay_update
3898 If OSECT is NULL, then update all sections' mapped state
3899 (after re-reading the entire target _ovly_table).
3900 If OSECT is non-NULL, then try to find a matching entry in the
3901 cached ovly_table and update only OSECT's mapped state.
3902 If a cached entry can't be found or the cache isn't valid, then
3903 re-read the entire cache, and go ahead and update all sections. */
3904
3905 void
3906 simple_overlay_update (struct obj_section *osect)
3907 {
3908 struct objfile *objfile;
3909
3910 /* Were we given an osect to look up? NULL means do all of them. */
3911 if (osect)
3912 /* Have we got a cached copy of the target's overlay table? */
3913 if (cache_ovly_table != NULL)
3914 /* Does its cached location match what's currently in the symtab? */
3915 if (cache_ovly_table_base ==
3916 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3917 /* Then go ahead and try to look up this single section in the cache */
3918 if (simple_overlay_update_1 (osect))
3919 /* Found it! We're done. */
3920 return;
3921
3922 /* Cached table no good: need to read the entire table anew.
3923 Or else we want all the sections, in which case it's actually
3924 more efficient to read the whole table in one block anyway. */
3925
3926 if (! simple_read_overlay_table ())
3927 return;
3928
3929 /* Now may as well update all sections, even if only one was requested. */
3930 ALL_OBJSECTIONS (objfile, osect)
3931 if (section_is_overlay (osect))
3932 {
3933 int i, size;
3934 bfd *obfd = osect->objfile->obfd;
3935 asection *bsect = osect->the_bfd_section;
3936
3937 size = bfd_get_section_size (bsect);
3938 for (i = 0; i < cache_novlys; i++)
3939 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3940 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3941 /* && cache_ovly_table[i][SIZE] == size */ )
3942 { /* obj_section matches i'th entry in ovly_table */
3943 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3944 break; /* finished with inner for loop: break out */
3945 }
3946 }
3947 }
3948
3949 /* Set the output sections and output offsets for section SECTP in
3950 ABFD. The relocation code in BFD will read these offsets, so we
3951 need to be sure they're initialized. We map each section to itself,
3952 with no offset; this means that SECTP->vma will be honored. */
3953
3954 static void
3955 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3956 {
3957 sectp->output_section = sectp;
3958 sectp->output_offset = 0;
3959 }
3960
3961 /* Relocate the contents of a debug section SECTP in ABFD. The
3962 contents are stored in BUF if it is non-NULL, or returned in a
3963 malloc'd buffer otherwise.
3964
3965 For some platforms and debug info formats, shared libraries contain
3966 relocations against the debug sections (particularly for DWARF-2;
3967 one affected platform is PowerPC GNU/Linux, although it depends on
3968 the version of the linker in use). Also, ELF object files naturally
3969 have unresolved relocations for their debug sections. We need to apply
3970 the relocations in order to get the locations of symbols correct.
3971 Another example that may require relocation processing, is the
3972 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3973 debug section. */
3974
3975 bfd_byte *
3976 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3977 {
3978 /* We're only interested in sections with relocation
3979 information. */
3980 if ((sectp->flags & SEC_RELOC) == 0)
3981 return NULL;
3982
3983 /* We will handle section offsets properly elsewhere, so relocate as if
3984 all sections begin at 0. */
3985 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3986
3987 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3988 }
3989
3990 struct symfile_segment_data *
3991 get_symfile_segment_data (bfd *abfd)
3992 {
3993 struct sym_fns *sf = find_sym_fns (abfd);
3994
3995 if (sf == NULL)
3996 return NULL;
3997
3998 return sf->sym_segments (abfd);
3999 }
4000
4001 void
4002 free_symfile_segment_data (struct symfile_segment_data *data)
4003 {
4004 xfree (data->segment_bases);
4005 xfree (data->segment_sizes);
4006 xfree (data->segment_info);
4007 xfree (data);
4008 }
4009
4010
4011 /* Given:
4012 - DATA, containing segment addresses from the object file ABFD, and
4013 the mapping from ABFD's sections onto the segments that own them,
4014 and
4015 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
4016 segment addresses reported by the target,
4017 store the appropriate offsets for each section in OFFSETS.
4018
4019 If there are fewer entries in SEGMENT_BASES than there are segments
4020 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4021
4022 If there are more entries, then ignore the extra. The target may
4023 not be able to distinguish between an empty data segment and a
4024 missing data segment; a missing text segment is less plausible. */
4025 int
4026 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4027 struct section_offsets *offsets,
4028 int num_segment_bases,
4029 const CORE_ADDR *segment_bases)
4030 {
4031 int i;
4032 asection *sect;
4033
4034 /* It doesn't make sense to call this function unless you have some
4035 segment base addresses. */
4036 gdb_assert (segment_bases > 0);
4037
4038 /* If we do not have segment mappings for the object file, we
4039 can not relocate it by segments. */
4040 gdb_assert (data != NULL);
4041 gdb_assert (data->num_segments > 0);
4042
4043 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4044 {
4045 int which = data->segment_info[i];
4046
4047 gdb_assert (0 <= which && which <= data->num_segments);
4048
4049 /* Don't bother computing offsets for sections that aren't
4050 loaded as part of any segment. */
4051 if (! which)
4052 continue;
4053
4054 /* Use the last SEGMENT_BASES entry as the address of any extra
4055 segments mentioned in DATA->segment_info. */
4056 if (which > num_segment_bases)
4057 which = num_segment_bases;
4058
4059 offsets->offsets[i] = (segment_bases[which - 1]
4060 - data->segment_bases[which - 1]);
4061 }
4062
4063 return 1;
4064 }
4065
4066 static void
4067 symfile_find_segment_sections (struct objfile *objfile)
4068 {
4069 bfd *abfd = objfile->obfd;
4070 int i;
4071 asection *sect;
4072 struct symfile_segment_data *data;
4073
4074 data = get_symfile_segment_data (objfile->obfd);
4075 if (data == NULL)
4076 return;
4077
4078 if (data->num_segments != 1 && data->num_segments != 2)
4079 {
4080 free_symfile_segment_data (data);
4081 return;
4082 }
4083
4084 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4085 {
4086 CORE_ADDR vma;
4087 int which = data->segment_info[i];
4088
4089 if (which == 1)
4090 {
4091 if (objfile->sect_index_text == -1)
4092 objfile->sect_index_text = sect->index;
4093
4094 if (objfile->sect_index_rodata == -1)
4095 objfile->sect_index_rodata = sect->index;
4096 }
4097 else if (which == 2)
4098 {
4099 if (objfile->sect_index_data == -1)
4100 objfile->sect_index_data = sect->index;
4101
4102 if (objfile->sect_index_bss == -1)
4103 objfile->sect_index_bss = sect->index;
4104 }
4105 }
4106
4107 free_symfile_segment_data (data);
4108 }
4109
4110 void
4111 _initialize_symfile (void)
4112 {
4113 struct cmd_list_element *c;
4114
4115 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4116 Load symbol table from executable file FILE.\n\
4117 The `file' command can also load symbol tables, as well as setting the file\n\
4118 to execute."), &cmdlist);
4119 set_cmd_completer (c, filename_completer);
4120
4121 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
4122 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
4123 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
4124 ADDR is the starting address of the file's text.\n\
4125 The optional arguments are section-name section-address pairs and\n\
4126 should be specified if the data and bss segments are not contiguous\n\
4127 with the text. SECT is a section name to be loaded at SECT_ADDR."),
4128 &cmdlist);
4129 set_cmd_completer (c, filename_completer);
4130
4131 c = add_cmd ("load", class_files, load_command, _("\
4132 Dynamically load FILE into the running program, and record its symbols\n\
4133 for access from GDB.\n\
4134 A load OFFSET may also be given."), &cmdlist);
4135 set_cmd_completer (c, filename_completer);
4136
4137 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4138 &symbol_reloading, _("\
4139 Set dynamic symbol table reloading multiple times in one run."), _("\
4140 Show dynamic symbol table reloading multiple times in one run."), NULL,
4141 NULL,
4142 show_symbol_reloading,
4143 &setlist, &showlist);
4144
4145 add_prefix_cmd ("overlay", class_support, overlay_command,
4146 _("Commands for debugging overlays."), &overlaylist,
4147 "overlay ", 0, &cmdlist);
4148
4149 add_com_alias ("ovly", "overlay", class_alias, 1);
4150 add_com_alias ("ov", "overlay", class_alias, 1);
4151
4152 add_cmd ("map-overlay", class_support, map_overlay_command,
4153 _("Assert that an overlay section is mapped."), &overlaylist);
4154
4155 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4156 _("Assert that an overlay section is unmapped."), &overlaylist);
4157
4158 add_cmd ("list-overlays", class_support, list_overlays_command,
4159 _("List mappings of overlay sections."), &overlaylist);
4160
4161 add_cmd ("manual", class_support, overlay_manual_command,
4162 _("Enable overlay debugging."), &overlaylist);
4163 add_cmd ("off", class_support, overlay_off_command,
4164 _("Disable overlay debugging."), &overlaylist);
4165 add_cmd ("auto", class_support, overlay_auto_command,
4166 _("Enable automatic overlay debugging."), &overlaylist);
4167 add_cmd ("load-target", class_support, overlay_load_command,
4168 _("Read the overlay mapping state from the target."), &overlaylist);
4169
4170 /* Filename extension to source language lookup table: */
4171 init_filename_language_table ();
4172 add_setshow_string_noescape_cmd ("extension-language", class_files,
4173 &ext_args, _("\
4174 Set mapping between filename extension and source language."), _("\
4175 Show mapping between filename extension and source language."), _("\
4176 Usage: set extension-language .foo bar"),
4177 set_ext_lang_command,
4178 show_ext_args,
4179 &setlist, &showlist);
4180
4181 add_info ("extensions", info_ext_lang_command,
4182 _("All filename extensions associated with a source language."));
4183
4184 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4185 &debug_file_directory, _("\
4186 Set the directory where separate debug symbols are searched for."), _("\
4187 Show the directory where separate debug symbols are searched for."), _("\
4188 Separate debug symbols are first searched for in the same\n\
4189 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4190 and lastly at the path of the directory of the binary with\n\
4191 the global debug-file directory prepended."),
4192 NULL,
4193 show_debug_file_directory,
4194 &setlist, &showlist);
4195 }
This page took 0.110441 seconds and 5 git commands to generate.