2006-02-21 Andrew Stubbs <andrew.stubbs@st.com>
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 #include "defs.h"
27 #include "bfdlink.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcore.h"
31 #include "frame.h"
32 #include "target.h"
33 #include "value.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "source.h"
37 #include "gdbcmd.h"
38 #include "breakpoint.h"
39 #include "language.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "inferior.h" /* for write_pc */
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54
55 #include <sys/types.h>
56 #include <fcntl.h>
57 #include "gdb_string.h"
58 #include "gdb_stat.h"
59 #include <ctype.h>
60 #include <time.h>
61 #include <sys/time.h>
62
63 #ifndef O_BINARY
64 #define O_BINARY 0
65 #endif
66
67 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
68 void (*deprecated_show_load_progress) (const char *section,
69 unsigned long section_sent,
70 unsigned long section_size,
71 unsigned long total_sent,
72 unsigned long total_size);
73 void (*deprecated_pre_add_symbol_hook) (const char *);
74 void (*deprecated_post_add_symbol_hook) (void);
75 void (*deprecated_target_new_objfile_hook) (struct objfile *);
76
77 static void clear_symtab_users_cleanup (void *ignore);
78
79 /* Global variables owned by this file */
80 int readnow_symbol_files; /* Read full symbols immediately */
81
82 /* External variables and functions referenced. */
83
84 extern void report_transfer_performance (unsigned long, time_t, time_t);
85
86 /* Functions this file defines */
87
88 #if 0
89 static int simple_read_overlay_region_table (void);
90 static void simple_free_overlay_region_table (void);
91 #endif
92
93 static void set_initial_language (void);
94
95 static void load_command (char *, int);
96
97 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
98
99 static void add_symbol_file_command (char *, int);
100
101 static void add_shared_symbol_files_command (char *, int);
102
103 static void reread_separate_symbols (struct objfile *objfile);
104
105 static void cashier_psymtab (struct partial_symtab *);
106
107 bfd *symfile_bfd_open (char *);
108
109 int get_section_index (struct objfile *, char *);
110
111 static void find_sym_fns (struct objfile *);
112
113 static void decrement_reading_symtab (void *);
114
115 static void overlay_invalidate_all (void);
116
117 static int overlay_is_mapped (struct obj_section *);
118
119 void list_overlays_command (char *, int);
120
121 void map_overlay_command (char *, int);
122
123 void unmap_overlay_command (char *, int);
124
125 static void overlay_auto_command (char *, int);
126
127 static void overlay_manual_command (char *, int);
128
129 static void overlay_off_command (char *, int);
130
131 static void overlay_load_command (char *, int);
132
133 static void overlay_command (char *, int);
134
135 static void simple_free_overlay_table (void);
136
137 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
138
139 static int simple_read_overlay_table (void);
140
141 static int simple_overlay_update_1 (struct obj_section *);
142
143 static void add_filename_language (char *ext, enum language lang);
144
145 static void info_ext_lang_command (char *args, int from_tty);
146
147 static char *find_separate_debug_file (struct objfile *objfile);
148
149 static void init_filename_language_table (void);
150
151 void _initialize_symfile (void);
152
153 /* List of all available sym_fns. On gdb startup, each object file reader
154 calls add_symtab_fns() to register information on each format it is
155 prepared to read. */
156
157 static struct sym_fns *symtab_fns = NULL;
158
159 /* Flag for whether user will be reloading symbols multiple times.
160 Defaults to ON for VxWorks, otherwise OFF. */
161
162 #ifdef SYMBOL_RELOADING_DEFAULT
163 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
164 #else
165 int symbol_reloading = 0;
166 #endif
167 static void
168 show_symbol_reloading (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170 {
171 fprintf_filtered (file, _("\
172 Dynamic symbol table reloading multiple times in one run is %s.\n"),
173 value);
174 }
175
176
177 /* If non-zero, shared library symbols will be added automatically
178 when the inferior is created, new libraries are loaded, or when
179 attaching to the inferior. This is almost always what users will
180 want to have happen; but for very large programs, the startup time
181 will be excessive, and so if this is a problem, the user can clear
182 this flag and then add the shared library symbols as needed. Note
183 that there is a potential for confusion, since if the shared
184 library symbols are not loaded, commands like "info fun" will *not*
185 report all the functions that are actually present. */
186
187 int auto_solib_add = 1;
188
189 /* For systems that support it, a threshold size in megabytes. If
190 automatically adding a new library's symbol table to those already
191 known to the debugger would cause the total shared library symbol
192 size to exceed this threshhold, then the shlib's symbols are not
193 added. The threshold is ignored if the user explicitly asks for a
194 shlib to be added, such as when using the "sharedlibrary"
195 command. */
196
197 int auto_solib_limit;
198 \f
199
200 /* This compares two partial symbols by names, using strcmp_iw_ordered
201 for the comparison. */
202
203 static int
204 compare_psymbols (const void *s1p, const void *s2p)
205 {
206 struct partial_symbol *const *s1 = s1p;
207 struct partial_symbol *const *s2 = s2p;
208
209 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
210 SYMBOL_SEARCH_NAME (*s2));
211 }
212
213 void
214 sort_pst_symbols (struct partial_symtab *pst)
215 {
216 /* Sort the global list; don't sort the static list */
217
218 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
219 pst->n_global_syms, sizeof (struct partial_symbol *),
220 compare_psymbols);
221 }
222
223 /* Make a null terminated copy of the string at PTR with SIZE characters in
224 the obstack pointed to by OBSTACKP . Returns the address of the copy.
225 Note that the string at PTR does not have to be null terminated, I.E. it
226 may be part of a larger string and we are only saving a substring. */
227
228 char *
229 obsavestring (const char *ptr, int size, struct obstack *obstackp)
230 {
231 char *p = (char *) obstack_alloc (obstackp, size + 1);
232 /* Open-coded memcpy--saves function call time. These strings are usually
233 short. FIXME: Is this really still true with a compiler that can
234 inline memcpy? */
235 {
236 const char *p1 = ptr;
237 char *p2 = p;
238 const char *end = ptr + size;
239 while (p1 != end)
240 *p2++ = *p1++;
241 }
242 p[size] = 0;
243 return p;
244 }
245
246 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
247 in the obstack pointed to by OBSTACKP. */
248
249 char *
250 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
251 const char *s3)
252 {
253 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
254 char *val = (char *) obstack_alloc (obstackp, len);
255 strcpy (val, s1);
256 strcat (val, s2);
257 strcat (val, s3);
258 return val;
259 }
260
261 /* True if we are nested inside psymtab_to_symtab. */
262
263 int currently_reading_symtab = 0;
264
265 static void
266 decrement_reading_symtab (void *dummy)
267 {
268 currently_reading_symtab--;
269 }
270
271 /* Get the symbol table that corresponds to a partial_symtab.
272 This is fast after the first time you do it. In fact, there
273 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
274 case inline. */
275
276 struct symtab *
277 psymtab_to_symtab (struct partial_symtab *pst)
278 {
279 /* If it's been looked up before, return it. */
280 if (pst->symtab)
281 return pst->symtab;
282
283 /* If it has not yet been read in, read it. */
284 if (!pst->readin)
285 {
286 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
287 currently_reading_symtab++;
288 (*pst->read_symtab) (pst);
289 do_cleanups (back_to);
290 }
291
292 return pst->symtab;
293 }
294
295 /* Remember the lowest-addressed loadable section we've seen.
296 This function is called via bfd_map_over_sections.
297
298 In case of equal vmas, the section with the largest size becomes the
299 lowest-addressed loadable section.
300
301 If the vmas and sizes are equal, the last section is considered the
302 lowest-addressed loadable section. */
303
304 void
305 find_lowest_section (bfd *abfd, asection *sect, void *obj)
306 {
307 asection **lowest = (asection **) obj;
308
309 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
310 return;
311 if (!*lowest)
312 *lowest = sect; /* First loadable section */
313 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
314 *lowest = sect; /* A lower loadable section */
315 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
316 && (bfd_section_size (abfd, (*lowest))
317 <= bfd_section_size (abfd, sect)))
318 *lowest = sect;
319 }
320
321 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
322
323 struct section_addr_info *
324 alloc_section_addr_info (size_t num_sections)
325 {
326 struct section_addr_info *sap;
327 size_t size;
328
329 size = (sizeof (struct section_addr_info)
330 + sizeof (struct other_sections) * (num_sections - 1));
331 sap = (struct section_addr_info *) xmalloc (size);
332 memset (sap, 0, size);
333 sap->num_sections = num_sections;
334
335 return sap;
336 }
337
338
339 /* Return a freshly allocated copy of ADDRS. The section names, if
340 any, are also freshly allocated copies of those in ADDRS. */
341 struct section_addr_info *
342 copy_section_addr_info (struct section_addr_info *addrs)
343 {
344 struct section_addr_info *copy
345 = alloc_section_addr_info (addrs->num_sections);
346 int i;
347
348 copy->num_sections = addrs->num_sections;
349 for (i = 0; i < addrs->num_sections; i++)
350 {
351 copy->other[i].addr = addrs->other[i].addr;
352 if (addrs->other[i].name)
353 copy->other[i].name = xstrdup (addrs->other[i].name);
354 else
355 copy->other[i].name = NULL;
356 copy->other[i].sectindex = addrs->other[i].sectindex;
357 }
358
359 return copy;
360 }
361
362
363
364 /* Build (allocate and populate) a section_addr_info struct from
365 an existing section table. */
366
367 extern struct section_addr_info *
368 build_section_addr_info_from_section_table (const struct section_table *start,
369 const struct section_table *end)
370 {
371 struct section_addr_info *sap;
372 const struct section_table *stp;
373 int oidx;
374
375 sap = alloc_section_addr_info (end - start);
376
377 for (stp = start, oidx = 0; stp != end; stp++)
378 {
379 if (bfd_get_section_flags (stp->bfd,
380 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
381 && oidx < end - start)
382 {
383 sap->other[oidx].addr = stp->addr;
384 sap->other[oidx].name
385 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
386 sap->other[oidx].sectindex = stp->the_bfd_section->index;
387 oidx++;
388 }
389 }
390
391 return sap;
392 }
393
394
395 /* Free all memory allocated by build_section_addr_info_from_section_table. */
396
397 extern void
398 free_section_addr_info (struct section_addr_info *sap)
399 {
400 int idx;
401
402 for (idx = 0; idx < sap->num_sections; idx++)
403 if (sap->other[idx].name)
404 xfree (sap->other[idx].name);
405 xfree (sap);
406 }
407
408
409 /* Initialize OBJFILE's sect_index_* members. */
410 static void
411 init_objfile_sect_indices (struct objfile *objfile)
412 {
413 asection *sect;
414 int i;
415
416 sect = bfd_get_section_by_name (objfile->obfd, ".text");
417 if (sect)
418 objfile->sect_index_text = sect->index;
419
420 sect = bfd_get_section_by_name (objfile->obfd, ".data");
421 if (sect)
422 objfile->sect_index_data = sect->index;
423
424 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
425 if (sect)
426 objfile->sect_index_bss = sect->index;
427
428 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
429 if (sect)
430 objfile->sect_index_rodata = sect->index;
431
432 /* This is where things get really weird... We MUST have valid
433 indices for the various sect_index_* members or gdb will abort.
434 So if for example, there is no ".text" section, we have to
435 accomodate that. Except when explicitly adding symbol files at
436 some address, section_offsets contains nothing but zeros, so it
437 doesn't matter which slot in section_offsets the individual
438 sect_index_* members index into. So if they are all zero, it is
439 safe to just point all the currently uninitialized indices to the
440 first slot. */
441
442 for (i = 0; i < objfile->num_sections; i++)
443 {
444 if (ANOFFSET (objfile->section_offsets, i) != 0)
445 {
446 break;
447 }
448 }
449 if (i == objfile->num_sections)
450 {
451 if (objfile->sect_index_text == -1)
452 objfile->sect_index_text = 0;
453 if (objfile->sect_index_data == -1)
454 objfile->sect_index_data = 0;
455 if (objfile->sect_index_bss == -1)
456 objfile->sect_index_bss = 0;
457 if (objfile->sect_index_rodata == -1)
458 objfile->sect_index_rodata = 0;
459 }
460 }
461
462 /* The arguments to place_section. */
463
464 struct place_section_arg
465 {
466 struct section_offsets *offsets;
467 CORE_ADDR lowest;
468 };
469
470 /* Find a unique offset to use for loadable section SECT if
471 the user did not provide an offset. */
472
473 void
474 place_section (bfd *abfd, asection *sect, void *obj)
475 {
476 struct place_section_arg *arg = obj;
477 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
478 int done;
479 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
480
481 /* We are only interested in loadable sections. */
482 if ((bfd_get_section_flags (abfd, sect) & SEC_LOAD) == 0)
483 return;
484
485 /* If the user specified an offset, honor it. */
486 if (offsets[sect->index] != 0)
487 return;
488
489 /* Otherwise, let's try to find a place for the section. */
490 start_addr = (arg->lowest + align - 1) & -align;
491
492 do {
493 asection *cur_sec;
494
495 done = 1;
496
497 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
498 {
499 int indx = cur_sec->index;
500 CORE_ADDR cur_offset;
501
502 /* We don't need to compare against ourself. */
503 if (cur_sec == sect)
504 continue;
505
506 /* We can only conflict with loadable sections. */
507 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_LOAD) == 0)
508 continue;
509
510 /* We do not expect this to happen; just ignore sections in a
511 relocatable file with an assigned VMA. */
512 if (bfd_section_vma (abfd, cur_sec) != 0)
513 continue;
514
515 /* If the section offset is 0, either the section has not been placed
516 yet, or it was the lowest section placed (in which case LOWEST
517 will be past its end). */
518 if (offsets[indx] == 0)
519 continue;
520
521 /* If this section would overlap us, then we must move up. */
522 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
523 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
524 {
525 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
526 start_addr = (start_addr + align - 1) & -align;
527 done = 0;
528 break;
529 }
530
531 /* Otherwise, we appear to be OK. So far. */
532 }
533 }
534 while (!done);
535
536 offsets[sect->index] = start_addr;
537 arg->lowest = start_addr + bfd_get_section_size (sect);
538
539 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
540 }
541
542 /* Parse the user's idea of an offset for dynamic linking, into our idea
543 of how to represent it for fast symbol reading. This is the default
544 version of the sym_fns.sym_offsets function for symbol readers that
545 don't need to do anything special. It allocates a section_offsets table
546 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
547
548 void
549 default_symfile_offsets (struct objfile *objfile,
550 struct section_addr_info *addrs)
551 {
552 int i;
553
554 objfile->num_sections = bfd_count_sections (objfile->obfd);
555 objfile->section_offsets = (struct section_offsets *)
556 obstack_alloc (&objfile->objfile_obstack,
557 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
558 memset (objfile->section_offsets, 0,
559 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
560
561 /* Now calculate offsets for section that were specified by the
562 caller. */
563 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
564 {
565 struct other_sections *osp ;
566
567 osp = &addrs->other[i] ;
568 if (osp->addr == 0)
569 continue;
570
571 /* Record all sections in offsets */
572 /* The section_offsets in the objfile are here filled in using
573 the BFD index. */
574 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
575 }
576
577 /* For relocatable files, all loadable sections will start at zero.
578 The zero is meaningless, so try to pick arbitrary addresses such
579 that no loadable sections overlap. This algorithm is quadratic,
580 but the number of sections in a single object file is generally
581 small. */
582 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
583 {
584 struct place_section_arg arg;
585 arg.offsets = objfile->section_offsets;
586 arg.lowest = 0;
587 bfd_map_over_sections (objfile->obfd, place_section, &arg);
588 }
589
590 /* Remember the bfd indexes for the .text, .data, .bss and
591 .rodata sections. */
592 init_objfile_sect_indices (objfile);
593 }
594
595
596 /* Process a symbol file, as either the main file or as a dynamically
597 loaded file.
598
599 OBJFILE is where the symbols are to be read from.
600
601 ADDRS is the list of section load addresses. If the user has given
602 an 'add-symbol-file' command, then this is the list of offsets and
603 addresses he or she provided as arguments to the command; or, if
604 we're handling a shared library, these are the actual addresses the
605 sections are loaded at, according to the inferior's dynamic linker
606 (as gleaned by GDB's shared library code). We convert each address
607 into an offset from the section VMA's as it appears in the object
608 file, and then call the file's sym_offsets function to convert this
609 into a format-specific offset table --- a `struct section_offsets'.
610 If ADDRS is non-zero, OFFSETS must be zero.
611
612 OFFSETS is a table of section offsets already in the right
613 format-specific representation. NUM_OFFSETS is the number of
614 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
615 assume this is the proper table the call to sym_offsets described
616 above would produce. Instead of calling sym_offsets, we just dump
617 it right into objfile->section_offsets. (When we're re-reading
618 symbols from an objfile, we don't have the original load address
619 list any more; all we have is the section offset table.) If
620 OFFSETS is non-zero, ADDRS must be zero.
621
622 MAINLINE is nonzero if this is the main symbol file, or zero if
623 it's an extra symbol file such as dynamically loaded code.
624
625 VERBO is nonzero if the caller has printed a verbose message about
626 the symbol reading (and complaints can be more terse about it). */
627
628 void
629 syms_from_objfile (struct objfile *objfile,
630 struct section_addr_info *addrs,
631 struct section_offsets *offsets,
632 int num_offsets,
633 int mainline,
634 int verbo)
635 {
636 struct section_addr_info *local_addr = NULL;
637 struct cleanup *old_chain;
638
639 gdb_assert (! (addrs && offsets));
640
641 init_entry_point_info (objfile);
642 find_sym_fns (objfile);
643
644 if (objfile->sf == NULL)
645 return; /* No symbols. */
646
647 /* Make sure that partially constructed symbol tables will be cleaned up
648 if an error occurs during symbol reading. */
649 old_chain = make_cleanup_free_objfile (objfile);
650
651 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
652 list. We now establish the convention that an addr of zero means
653 no load address was specified. */
654 if (! addrs && ! offsets)
655 {
656 local_addr
657 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
658 make_cleanup (xfree, local_addr);
659 addrs = local_addr;
660 }
661
662 /* Now either addrs or offsets is non-zero. */
663
664 if (mainline)
665 {
666 /* We will modify the main symbol table, make sure that all its users
667 will be cleaned up if an error occurs during symbol reading. */
668 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
669
670 /* Since no error yet, throw away the old symbol table. */
671
672 if (symfile_objfile != NULL)
673 {
674 free_objfile (symfile_objfile);
675 symfile_objfile = NULL;
676 }
677
678 /* Currently we keep symbols from the add-symbol-file command.
679 If the user wants to get rid of them, they should do "symbol-file"
680 without arguments first. Not sure this is the best behavior
681 (PR 2207). */
682
683 (*objfile->sf->sym_new_init) (objfile);
684 }
685
686 /* Convert addr into an offset rather than an absolute address.
687 We find the lowest address of a loaded segment in the objfile,
688 and assume that <addr> is where that got loaded.
689
690 We no longer warn if the lowest section is not a text segment (as
691 happens for the PA64 port. */
692 if (!mainline && addrs && addrs->other[0].name)
693 {
694 asection *lower_sect;
695 asection *sect;
696 CORE_ADDR lower_offset;
697 int i;
698
699 /* Find lowest loadable section to be used as starting point for
700 continguous sections. FIXME!! won't work without call to find
701 .text first, but this assumes text is lowest section. */
702 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
703 if (lower_sect == NULL)
704 bfd_map_over_sections (objfile->obfd, find_lowest_section,
705 &lower_sect);
706 if (lower_sect == NULL)
707 warning (_("no loadable sections found in added symbol-file %s"),
708 objfile->name);
709 else
710 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
711 warning (_("Lowest section in %s is %s at %s"),
712 objfile->name,
713 bfd_section_name (objfile->obfd, lower_sect),
714 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
715 if (lower_sect != NULL)
716 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
717 else
718 lower_offset = 0;
719
720 /* Calculate offsets for the loadable sections.
721 FIXME! Sections must be in order of increasing loadable section
722 so that contiguous sections can use the lower-offset!!!
723
724 Adjust offsets if the segments are not contiguous.
725 If the section is contiguous, its offset should be set to
726 the offset of the highest loadable section lower than it
727 (the loadable section directly below it in memory).
728 this_offset = lower_offset = lower_addr - lower_orig_addr */
729
730 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
731 {
732 if (addrs->other[i].addr != 0)
733 {
734 sect = bfd_get_section_by_name (objfile->obfd,
735 addrs->other[i].name);
736 if (sect)
737 {
738 addrs->other[i].addr
739 -= bfd_section_vma (objfile->obfd, sect);
740 lower_offset = addrs->other[i].addr;
741 /* This is the index used by BFD. */
742 addrs->other[i].sectindex = sect->index ;
743 }
744 else
745 {
746 warning (_("section %s not found in %s"),
747 addrs->other[i].name,
748 objfile->name);
749 addrs->other[i].addr = 0;
750 }
751 }
752 else
753 addrs->other[i].addr = lower_offset;
754 }
755 }
756
757 /* Initialize symbol reading routines for this objfile, allow complaints to
758 appear for this new file, and record how verbose to be, then do the
759 initial symbol reading for this file. */
760
761 (*objfile->sf->sym_init) (objfile);
762 clear_complaints (&symfile_complaints, 1, verbo);
763
764 if (addrs)
765 (*objfile->sf->sym_offsets) (objfile, addrs);
766 else
767 {
768 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
769
770 /* Just copy in the offset table directly as given to us. */
771 objfile->num_sections = num_offsets;
772 objfile->section_offsets
773 = ((struct section_offsets *)
774 obstack_alloc (&objfile->objfile_obstack, size));
775 memcpy (objfile->section_offsets, offsets, size);
776
777 init_objfile_sect_indices (objfile);
778 }
779
780 #ifndef DEPRECATED_IBM6000_TARGET
781 /* This is a SVR4/SunOS specific hack, I think. In any event, it
782 screws RS/6000. sym_offsets should be doing this sort of thing,
783 because it knows the mapping between bfd sections and
784 section_offsets. */
785 /* This is a hack. As far as I can tell, section offsets are not
786 target dependent. They are all set to addr with a couple of
787 exceptions. The exceptions are sysvr4 shared libraries, whose
788 offsets are kept in solib structures anyway and rs6000 xcoff
789 which handles shared libraries in a completely unique way.
790
791 Section offsets are built similarly, except that they are built
792 by adding addr in all cases because there is no clear mapping
793 from section_offsets into actual sections. Note that solib.c
794 has a different algorithm for finding section offsets.
795
796 These should probably all be collapsed into some target
797 independent form of shared library support. FIXME. */
798
799 if (addrs)
800 {
801 struct obj_section *s;
802
803 /* Map section offsets in "addr" back to the object's
804 sections by comparing the section names with bfd's
805 section names. Then adjust the section address by
806 the offset. */ /* for gdb/13815 */
807
808 ALL_OBJFILE_OSECTIONS (objfile, s)
809 {
810 CORE_ADDR s_addr = 0;
811 int i;
812
813 for (i = 0;
814 !s_addr && i < addrs->num_sections && addrs->other[i].name;
815 i++)
816 if (strcmp (bfd_section_name (s->objfile->obfd,
817 s->the_bfd_section),
818 addrs->other[i].name) == 0)
819 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
820
821 s->addr -= s->offset;
822 s->addr += s_addr;
823 s->endaddr -= s->offset;
824 s->endaddr += s_addr;
825 s->offset += s_addr;
826 }
827 }
828 #endif /* not DEPRECATED_IBM6000_TARGET */
829
830 (*objfile->sf->sym_read) (objfile, mainline);
831
832 /* Don't allow char * to have a typename (else would get caddr_t).
833 Ditto void *. FIXME: Check whether this is now done by all the
834 symbol readers themselves (many of them now do), and if so remove
835 it from here. */
836
837 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
838 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
839
840 /* Mark the objfile has having had initial symbol read attempted. Note
841 that this does not mean we found any symbols... */
842
843 objfile->flags |= OBJF_SYMS;
844
845 /* Discard cleanups as symbol reading was successful. */
846
847 discard_cleanups (old_chain);
848 }
849
850 /* Perform required actions after either reading in the initial
851 symbols for a new objfile, or mapping in the symbols from a reusable
852 objfile. */
853
854 void
855 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
856 {
857
858 /* If this is the main symbol file we have to clean up all users of the
859 old main symbol file. Otherwise it is sufficient to fixup all the
860 breakpoints that may have been redefined by this symbol file. */
861 if (mainline)
862 {
863 /* OK, make it the "real" symbol file. */
864 symfile_objfile = objfile;
865
866 clear_symtab_users ();
867 }
868 else
869 {
870 breakpoint_re_set ();
871 }
872
873 /* We're done reading the symbol file; finish off complaints. */
874 clear_complaints (&symfile_complaints, 0, verbo);
875 }
876
877 /* Process a symbol file, as either the main file or as a dynamically
878 loaded file.
879
880 ABFD is a BFD already open on the file, as from symfile_bfd_open.
881 This BFD will be closed on error, and is always consumed by this function.
882
883 FROM_TTY says how verbose to be.
884
885 MAINLINE specifies whether this is the main symbol file, or whether
886 it's an extra symbol file such as dynamically loaded code.
887
888 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
889 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
890 non-zero.
891
892 Upon success, returns a pointer to the objfile that was added.
893 Upon failure, jumps back to command level (never returns). */
894 static struct objfile *
895 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
896 struct section_addr_info *addrs,
897 struct section_offsets *offsets,
898 int num_offsets,
899 int mainline, int flags)
900 {
901 struct objfile *objfile;
902 struct partial_symtab *psymtab;
903 char *debugfile;
904 struct section_addr_info *orig_addrs = NULL;
905 struct cleanup *my_cleanups;
906 const char *name = bfd_get_filename (abfd);
907
908 my_cleanups = make_cleanup_bfd_close (abfd);
909
910 /* Give user a chance to burp if we'd be
911 interactively wiping out any existing symbols. */
912
913 if ((have_full_symbols () || have_partial_symbols ())
914 && mainline
915 && from_tty
916 && !query ("Load new symbol table from \"%s\"? ", name))
917 error (_("Not confirmed."));
918
919 objfile = allocate_objfile (abfd, flags);
920 discard_cleanups (my_cleanups);
921
922 if (addrs)
923 {
924 orig_addrs = copy_section_addr_info (addrs);
925 make_cleanup_free_section_addr_info (orig_addrs);
926 }
927
928 /* We either created a new mapped symbol table, mapped an existing
929 symbol table file which has not had initial symbol reading
930 performed, or need to read an unmapped symbol table. */
931 if (from_tty || info_verbose)
932 {
933 if (deprecated_pre_add_symbol_hook)
934 deprecated_pre_add_symbol_hook (name);
935 else
936 {
937 printf_unfiltered (_("Reading symbols from %s..."), name);
938 wrap_here ("");
939 gdb_flush (gdb_stdout);
940 }
941 }
942 syms_from_objfile (objfile, addrs, offsets, num_offsets,
943 mainline, from_tty);
944
945 /* We now have at least a partial symbol table. Check to see if the
946 user requested that all symbols be read on initial access via either
947 the gdb startup command line or on a per symbol file basis. Expand
948 all partial symbol tables for this objfile if so. */
949
950 if ((flags & OBJF_READNOW) || readnow_symbol_files)
951 {
952 if (from_tty || info_verbose)
953 {
954 printf_unfiltered (_("expanding to full symbols..."));
955 wrap_here ("");
956 gdb_flush (gdb_stdout);
957 }
958
959 for (psymtab = objfile->psymtabs;
960 psymtab != NULL;
961 psymtab = psymtab->next)
962 {
963 psymtab_to_symtab (psymtab);
964 }
965 }
966
967 debugfile = find_separate_debug_file (objfile);
968 if (debugfile)
969 {
970 if (addrs != NULL)
971 {
972 objfile->separate_debug_objfile
973 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
974 }
975 else
976 {
977 objfile->separate_debug_objfile
978 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
979 }
980 objfile->separate_debug_objfile->separate_debug_objfile_backlink
981 = objfile;
982
983 /* Put the separate debug object before the normal one, this is so that
984 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
985 put_objfile_before (objfile->separate_debug_objfile, objfile);
986
987 xfree (debugfile);
988 }
989
990 if (!have_partial_symbols () && !have_full_symbols ())
991 {
992 wrap_here ("");
993 printf_filtered (_("(no debugging symbols found)"));
994 if (from_tty || info_verbose)
995 printf_filtered ("...");
996 else
997 printf_filtered ("\n");
998 wrap_here ("");
999 }
1000
1001 if (from_tty || info_verbose)
1002 {
1003 if (deprecated_post_add_symbol_hook)
1004 deprecated_post_add_symbol_hook ();
1005 else
1006 {
1007 printf_unfiltered (_("done.\n"));
1008 }
1009 }
1010
1011 /* We print some messages regardless of whether 'from_tty ||
1012 info_verbose' is true, so make sure they go out at the right
1013 time. */
1014 gdb_flush (gdb_stdout);
1015
1016 do_cleanups (my_cleanups);
1017
1018 if (objfile->sf == NULL)
1019 return objfile; /* No symbols. */
1020
1021 new_symfile_objfile (objfile, mainline, from_tty);
1022
1023 if (deprecated_target_new_objfile_hook)
1024 deprecated_target_new_objfile_hook (objfile);
1025
1026 bfd_cache_close_all ();
1027 return (objfile);
1028 }
1029
1030
1031 /* Process the symbol file ABFD, as either the main file or as a
1032 dynamically loaded file.
1033
1034 See symbol_file_add_with_addrs_or_offsets's comments for
1035 details. */
1036 struct objfile *
1037 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1038 struct section_addr_info *addrs,
1039 int mainline, int flags)
1040 {
1041 return symbol_file_add_with_addrs_or_offsets (abfd,
1042 from_tty, addrs, 0, 0,
1043 mainline, flags);
1044 }
1045
1046
1047 /* Process a symbol file, as either the main file or as a dynamically
1048 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1049 for details. */
1050 struct objfile *
1051 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1052 int mainline, int flags)
1053 {
1054 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1055 addrs, mainline, flags);
1056 }
1057
1058
1059 /* Call symbol_file_add() with default values and update whatever is
1060 affected by the loading of a new main().
1061 Used when the file is supplied in the gdb command line
1062 and by some targets with special loading requirements.
1063 The auxiliary function, symbol_file_add_main_1(), has the flags
1064 argument for the switches that can only be specified in the symbol_file
1065 command itself. */
1066
1067 void
1068 symbol_file_add_main (char *args, int from_tty)
1069 {
1070 symbol_file_add_main_1 (args, from_tty, 0);
1071 }
1072
1073 static void
1074 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1075 {
1076 symbol_file_add (args, from_tty, NULL, 1, flags);
1077
1078 /* Getting new symbols may change our opinion about
1079 what is frameless. */
1080 reinit_frame_cache ();
1081
1082 set_initial_language ();
1083 }
1084
1085 void
1086 symbol_file_clear (int from_tty)
1087 {
1088 if ((have_full_symbols () || have_partial_symbols ())
1089 && from_tty
1090 && (symfile_objfile
1091 ? !query (_("Discard symbol table from `%s'? "),
1092 symfile_objfile->name)
1093 : !query (_("Discard symbol table? "))))
1094 error (_("Not confirmed."));
1095 free_all_objfiles ();
1096
1097 /* solib descriptors may have handles to objfiles. Since their
1098 storage has just been released, we'd better wipe the solib
1099 descriptors as well.
1100 */
1101 #if defined(SOLIB_RESTART)
1102 SOLIB_RESTART ();
1103 #endif
1104
1105 symfile_objfile = NULL;
1106 if (from_tty)
1107 printf_unfiltered (_("No symbol file now.\n"));
1108 }
1109
1110 static char *
1111 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1112 {
1113 asection *sect;
1114 bfd_size_type debuglink_size;
1115 unsigned long crc32;
1116 char *contents;
1117 int crc_offset;
1118 unsigned char *p;
1119
1120 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1121
1122 if (sect == NULL)
1123 return NULL;
1124
1125 debuglink_size = bfd_section_size (objfile->obfd, sect);
1126
1127 contents = xmalloc (debuglink_size);
1128 bfd_get_section_contents (objfile->obfd, sect, contents,
1129 (file_ptr)0, (bfd_size_type)debuglink_size);
1130
1131 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1132 crc_offset = strlen (contents) + 1;
1133 crc_offset = (crc_offset + 3) & ~3;
1134
1135 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1136
1137 *crc32_out = crc32;
1138 return contents;
1139 }
1140
1141 static int
1142 separate_debug_file_exists (const char *name, unsigned long crc)
1143 {
1144 unsigned long file_crc = 0;
1145 int fd;
1146 gdb_byte buffer[8*1024];
1147 int count;
1148
1149 fd = open (name, O_RDONLY | O_BINARY);
1150 if (fd < 0)
1151 return 0;
1152
1153 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1154 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1155
1156 close (fd);
1157
1158 return crc == file_crc;
1159 }
1160
1161 static char *debug_file_directory = NULL;
1162 static void
1163 show_debug_file_directory (struct ui_file *file, int from_tty,
1164 struct cmd_list_element *c, const char *value)
1165 {
1166 fprintf_filtered (file, _("\
1167 The directory where separate debug symbols are searched for is \"%s\".\n"),
1168 value);
1169 }
1170
1171 #if ! defined (DEBUG_SUBDIRECTORY)
1172 #define DEBUG_SUBDIRECTORY ".debug"
1173 #endif
1174
1175 static char *
1176 find_separate_debug_file (struct objfile *objfile)
1177 {
1178 asection *sect;
1179 char *basename;
1180 char *dir;
1181 char *debugfile;
1182 char *name_copy;
1183 bfd_size_type debuglink_size;
1184 unsigned long crc32;
1185 int i;
1186
1187 basename = get_debug_link_info (objfile, &crc32);
1188
1189 if (basename == NULL)
1190 return NULL;
1191
1192 dir = xstrdup (objfile->name);
1193
1194 /* Strip off the final filename part, leaving the directory name,
1195 followed by a slash. Objfile names should always be absolute and
1196 tilde-expanded, so there should always be a slash in there
1197 somewhere. */
1198 for (i = strlen(dir) - 1; i >= 0; i--)
1199 {
1200 if (IS_DIR_SEPARATOR (dir[i]))
1201 break;
1202 }
1203 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1204 dir[i+1] = '\0';
1205
1206 debugfile = alloca (strlen (debug_file_directory) + 1
1207 + strlen (dir)
1208 + strlen (DEBUG_SUBDIRECTORY)
1209 + strlen ("/")
1210 + strlen (basename)
1211 + 1);
1212
1213 /* First try in the same directory as the original file. */
1214 strcpy (debugfile, dir);
1215 strcat (debugfile, basename);
1216
1217 if (separate_debug_file_exists (debugfile, crc32))
1218 {
1219 xfree (basename);
1220 xfree (dir);
1221 return xstrdup (debugfile);
1222 }
1223
1224 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1225 strcpy (debugfile, dir);
1226 strcat (debugfile, DEBUG_SUBDIRECTORY);
1227 strcat (debugfile, "/");
1228 strcat (debugfile, basename);
1229
1230 if (separate_debug_file_exists (debugfile, crc32))
1231 {
1232 xfree (basename);
1233 xfree (dir);
1234 return xstrdup (debugfile);
1235 }
1236
1237 /* Then try in the global debugfile directory. */
1238 strcpy (debugfile, debug_file_directory);
1239 strcat (debugfile, "/");
1240 strcat (debugfile, dir);
1241 strcat (debugfile, basename);
1242
1243 if (separate_debug_file_exists (debugfile, crc32))
1244 {
1245 xfree (basename);
1246 xfree (dir);
1247 return xstrdup (debugfile);
1248 }
1249
1250 xfree (basename);
1251 xfree (dir);
1252 return NULL;
1253 }
1254
1255
1256 /* This is the symbol-file command. Read the file, analyze its
1257 symbols, and add a struct symtab to a symtab list. The syntax of
1258 the command is rather bizarre:
1259
1260 1. The function buildargv implements various quoting conventions
1261 which are undocumented and have little or nothing in common with
1262 the way things are quoted (or not quoted) elsewhere in GDB.
1263
1264 2. Options are used, which are not generally used in GDB (perhaps
1265 "set mapped on", "set readnow on" would be better)
1266
1267 3. The order of options matters, which is contrary to GNU
1268 conventions (because it is confusing and inconvenient). */
1269
1270 void
1271 symbol_file_command (char *args, int from_tty)
1272 {
1273 dont_repeat ();
1274
1275 if (args == NULL)
1276 {
1277 symbol_file_clear (from_tty);
1278 }
1279 else
1280 {
1281 char **argv = buildargv (args);
1282 int flags = OBJF_USERLOADED;
1283 struct cleanup *cleanups;
1284 char *name = NULL;
1285
1286 if (argv == NULL)
1287 nomem (0);
1288
1289 cleanups = make_cleanup_freeargv (argv);
1290 while (*argv != NULL)
1291 {
1292 if (strcmp (*argv, "-readnow") == 0)
1293 flags |= OBJF_READNOW;
1294 else if (**argv == '-')
1295 error (_("unknown option `%s'"), *argv);
1296 else
1297 {
1298 symbol_file_add_main_1 (*argv, from_tty, flags);
1299 name = *argv;
1300 }
1301
1302 argv++;
1303 }
1304
1305 if (name == NULL)
1306 error (_("no symbol file name was specified"));
1307
1308 do_cleanups (cleanups);
1309 }
1310 }
1311
1312 /* Set the initial language.
1313
1314 FIXME: A better solution would be to record the language in the
1315 psymtab when reading partial symbols, and then use it (if known) to
1316 set the language. This would be a win for formats that encode the
1317 language in an easily discoverable place, such as DWARF. For
1318 stabs, we can jump through hoops looking for specially named
1319 symbols or try to intuit the language from the specific type of
1320 stabs we find, but we can't do that until later when we read in
1321 full symbols. */
1322
1323 static void
1324 set_initial_language (void)
1325 {
1326 struct partial_symtab *pst;
1327 enum language lang = language_unknown;
1328
1329 pst = find_main_psymtab ();
1330 if (pst != NULL)
1331 {
1332 if (pst->filename != NULL)
1333 lang = deduce_language_from_filename (pst->filename);
1334
1335 if (lang == language_unknown)
1336 {
1337 /* Make C the default language */
1338 lang = language_c;
1339 }
1340
1341 set_language (lang);
1342 expected_language = current_language; /* Don't warn the user. */
1343 }
1344 }
1345
1346 /* Open the file specified by NAME and hand it off to BFD for
1347 preliminary analysis. Return a newly initialized bfd *, which
1348 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1349 absolute). In case of trouble, error() is called. */
1350
1351 bfd *
1352 symfile_bfd_open (char *name)
1353 {
1354 bfd *sym_bfd;
1355 int desc;
1356 char *absolute_name;
1357
1358 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1359
1360 /* Look down path for it, allocate 2nd new malloc'd copy. */
1361 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1362 O_RDONLY | O_BINARY, 0, &absolute_name);
1363 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1364 if (desc < 0)
1365 {
1366 char *exename = alloca (strlen (name) + 5);
1367 strcat (strcpy (exename, name), ".exe");
1368 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1369 O_RDONLY | O_BINARY, 0, &absolute_name);
1370 }
1371 #endif
1372 if (desc < 0)
1373 {
1374 make_cleanup (xfree, name);
1375 perror_with_name (name);
1376 }
1377
1378 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1379 bfd. It'll be freed in free_objfile(). */
1380 xfree (name);
1381 name = absolute_name;
1382
1383 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1384 if (!sym_bfd)
1385 {
1386 close (desc);
1387 make_cleanup (xfree, name);
1388 error (_("\"%s\": can't open to read symbols: %s."), name,
1389 bfd_errmsg (bfd_get_error ()));
1390 }
1391 bfd_set_cacheable (sym_bfd, 1);
1392
1393 if (!bfd_check_format (sym_bfd, bfd_object))
1394 {
1395 /* FIXME: should be checking for errors from bfd_close (for one
1396 thing, on error it does not free all the storage associated
1397 with the bfd). */
1398 bfd_close (sym_bfd); /* This also closes desc. */
1399 make_cleanup (xfree, name);
1400 error (_("\"%s\": can't read symbols: %s."), name,
1401 bfd_errmsg (bfd_get_error ()));
1402 }
1403
1404 return sym_bfd;
1405 }
1406
1407 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1408 the section was not found. */
1409
1410 int
1411 get_section_index (struct objfile *objfile, char *section_name)
1412 {
1413 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1414
1415 if (sect)
1416 return sect->index;
1417 else
1418 return -1;
1419 }
1420
1421 /* Link SF into the global symtab_fns list. Called on startup by the
1422 _initialize routine in each object file format reader, to register
1423 information about each format the the reader is prepared to
1424 handle. */
1425
1426 void
1427 add_symtab_fns (struct sym_fns *sf)
1428 {
1429 sf->next = symtab_fns;
1430 symtab_fns = sf;
1431 }
1432
1433 /* Initialize OBJFILE to read symbols from its associated BFD. It
1434 either returns or calls error(). The result is an initialized
1435 struct sym_fns in the objfile structure, that contains cached
1436 information about the symbol file. */
1437
1438 static void
1439 find_sym_fns (struct objfile *objfile)
1440 {
1441 struct sym_fns *sf;
1442 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1443 char *our_target = bfd_get_target (objfile->obfd);
1444
1445 if (our_flavour == bfd_target_srec_flavour
1446 || our_flavour == bfd_target_ihex_flavour
1447 || our_flavour == bfd_target_tekhex_flavour)
1448 return; /* No symbols. */
1449
1450 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1451 {
1452 if (our_flavour == sf->sym_flavour)
1453 {
1454 objfile->sf = sf;
1455 return;
1456 }
1457 }
1458
1459 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1460 bfd_get_target (objfile->obfd));
1461 }
1462 \f
1463
1464 /* This function runs the load command of our current target. */
1465
1466 static void
1467 load_command (char *arg, int from_tty)
1468 {
1469 if (arg == NULL)
1470 {
1471 char *parg;
1472 int count = 0;
1473
1474 parg = arg = get_exec_file (1);
1475
1476 /* Count how many \ " ' tab space there are in the name. */
1477 while ((parg = strpbrk (parg, "\\\"'\t ")))
1478 {
1479 parg++;
1480 count++;
1481 }
1482
1483 if (count)
1484 {
1485 /* We need to quote this string so buildargv can pull it apart. */
1486 char *temp = xmalloc (strlen (arg) + count + 1 );
1487 char *ptemp = temp;
1488 char *prev;
1489
1490 make_cleanup (xfree, temp);
1491
1492 prev = parg = arg;
1493 while ((parg = strpbrk (parg, "\\\"'\t ")))
1494 {
1495 strncpy (ptemp, prev, parg - prev);
1496 ptemp += parg - prev;
1497 prev = parg++;
1498 *ptemp++ = '\\';
1499 }
1500 strcpy (ptemp, prev);
1501
1502 arg = temp;
1503 }
1504 }
1505
1506 target_load (arg, from_tty);
1507
1508 /* After re-loading the executable, we don't really know which
1509 overlays are mapped any more. */
1510 overlay_cache_invalid = 1;
1511 }
1512
1513 /* This version of "load" should be usable for any target. Currently
1514 it is just used for remote targets, not inftarg.c or core files,
1515 on the theory that only in that case is it useful.
1516
1517 Avoiding xmodem and the like seems like a win (a) because we don't have
1518 to worry about finding it, and (b) On VMS, fork() is very slow and so
1519 we don't want to run a subprocess. On the other hand, I'm not sure how
1520 performance compares. */
1521
1522 static int download_write_size = 512;
1523 static void
1524 show_download_write_size (struct ui_file *file, int from_tty,
1525 struct cmd_list_element *c, const char *value)
1526 {
1527 fprintf_filtered (file, _("\
1528 The write size used when downloading a program is %s.\n"),
1529 value);
1530 }
1531 static int validate_download = 0;
1532
1533 /* Callback service function for generic_load (bfd_map_over_sections). */
1534
1535 static void
1536 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1537 {
1538 bfd_size_type *sum = data;
1539
1540 *sum += bfd_get_section_size (asec);
1541 }
1542
1543 /* Opaque data for load_section_callback. */
1544 struct load_section_data {
1545 unsigned long load_offset;
1546 unsigned long write_count;
1547 unsigned long data_count;
1548 bfd_size_type total_size;
1549 };
1550
1551 /* Callback service function for generic_load (bfd_map_over_sections). */
1552
1553 static void
1554 load_section_callback (bfd *abfd, asection *asec, void *data)
1555 {
1556 struct load_section_data *args = data;
1557
1558 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1559 {
1560 bfd_size_type size = bfd_get_section_size (asec);
1561 if (size > 0)
1562 {
1563 gdb_byte *buffer;
1564 struct cleanup *old_chain;
1565 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1566 bfd_size_type block_size;
1567 int err;
1568 const char *sect_name = bfd_get_section_name (abfd, asec);
1569 bfd_size_type sent;
1570
1571 if (download_write_size > 0 && size > download_write_size)
1572 block_size = download_write_size;
1573 else
1574 block_size = size;
1575
1576 buffer = xmalloc (size);
1577 old_chain = make_cleanup (xfree, buffer);
1578
1579 /* Is this really necessary? I guess it gives the user something
1580 to look at during a long download. */
1581 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1582 sect_name, paddr_nz (size), paddr_nz (lma));
1583
1584 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1585
1586 sent = 0;
1587 do
1588 {
1589 int len;
1590 bfd_size_type this_transfer = size - sent;
1591
1592 if (this_transfer >= block_size)
1593 this_transfer = block_size;
1594 len = target_write_memory_partial (lma, buffer,
1595 this_transfer, &err);
1596 if (err)
1597 break;
1598 if (validate_download)
1599 {
1600 /* Broken memories and broken monitors manifest
1601 themselves here when bring new computers to
1602 life. This doubles already slow downloads. */
1603 /* NOTE: cagney/1999-10-18: A more efficient
1604 implementation might add a verify_memory()
1605 method to the target vector and then use
1606 that. remote.c could implement that method
1607 using the ``qCRC'' packet. */
1608 gdb_byte *check = xmalloc (len);
1609 struct cleanup *verify_cleanups =
1610 make_cleanup (xfree, check);
1611
1612 if (target_read_memory (lma, check, len) != 0)
1613 error (_("Download verify read failed at 0x%s"),
1614 paddr (lma));
1615 if (memcmp (buffer, check, len) != 0)
1616 error (_("Download verify compare failed at 0x%s"),
1617 paddr (lma));
1618 do_cleanups (verify_cleanups);
1619 }
1620 args->data_count += len;
1621 lma += len;
1622 buffer += len;
1623 args->write_count += 1;
1624 sent += len;
1625 if (quit_flag
1626 || (deprecated_ui_load_progress_hook != NULL
1627 && deprecated_ui_load_progress_hook (sect_name, sent)))
1628 error (_("Canceled the download"));
1629
1630 if (deprecated_show_load_progress != NULL)
1631 deprecated_show_load_progress (sect_name, sent, size,
1632 args->data_count,
1633 args->total_size);
1634 }
1635 while (sent < size);
1636
1637 if (err != 0)
1638 error (_("Memory access error while loading section %s."), sect_name);
1639
1640 do_cleanups (old_chain);
1641 }
1642 }
1643 }
1644
1645 void
1646 generic_load (char *args, int from_tty)
1647 {
1648 asection *s;
1649 bfd *loadfile_bfd;
1650 struct timeval start_time, end_time;
1651 char *filename;
1652 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1653 struct load_section_data cbdata;
1654 CORE_ADDR entry;
1655 char **argv;
1656
1657 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1658 cbdata.write_count = 0; /* Number of writes needed. */
1659 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1660 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1661
1662 argv = buildargv (args);
1663
1664 if (argv == NULL)
1665 nomem(0);
1666
1667 make_cleanup_freeargv (argv);
1668
1669 filename = tilde_expand (argv[0]);
1670 make_cleanup (xfree, filename);
1671
1672 if (argv[1] != NULL)
1673 {
1674 char *endptr;
1675
1676 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1677
1678 /* If the last word was not a valid number then
1679 treat it as a file name with spaces in. */
1680 if (argv[1] == endptr)
1681 error (_("Invalid download offset:%s."), argv[1]);
1682
1683 if (argv[2] != NULL)
1684 error (_("Too many parameters."));
1685 }
1686
1687 /* Open the file for loading. */
1688 loadfile_bfd = bfd_openr (filename, gnutarget);
1689 if (loadfile_bfd == NULL)
1690 {
1691 perror_with_name (filename);
1692 return;
1693 }
1694
1695 /* FIXME: should be checking for errors from bfd_close (for one thing,
1696 on error it does not free all the storage associated with the
1697 bfd). */
1698 make_cleanup_bfd_close (loadfile_bfd);
1699
1700 if (!bfd_check_format (loadfile_bfd, bfd_object))
1701 {
1702 error (_("\"%s\" is not an object file: %s"), filename,
1703 bfd_errmsg (bfd_get_error ()));
1704 }
1705
1706 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1707 (void *) &cbdata.total_size);
1708
1709 gettimeofday (&start_time, NULL);
1710
1711 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1712
1713 gettimeofday (&end_time, NULL);
1714
1715 entry = bfd_get_start_address (loadfile_bfd);
1716 ui_out_text (uiout, "Start address ");
1717 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1718 ui_out_text (uiout, ", load size ");
1719 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1720 ui_out_text (uiout, "\n");
1721 /* We were doing this in remote-mips.c, I suspect it is right
1722 for other targets too. */
1723 write_pc (entry);
1724
1725 /* FIXME: are we supposed to call symbol_file_add or not? According
1726 to a comment from remote-mips.c (where a call to symbol_file_add
1727 was commented out), making the call confuses GDB if more than one
1728 file is loaded in. Some targets do (e.g., remote-vx.c) but
1729 others don't (or didn't - perhaps they have all been deleted). */
1730
1731 print_transfer_performance (gdb_stdout, cbdata.data_count,
1732 cbdata.write_count, &start_time, &end_time);
1733
1734 do_cleanups (old_cleanups);
1735 }
1736
1737 /* Report how fast the transfer went. */
1738
1739 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1740 replaced by print_transfer_performance (with a very different
1741 function signature). */
1742
1743 void
1744 report_transfer_performance (unsigned long data_count, time_t start_time,
1745 time_t end_time)
1746 {
1747 struct timeval start, end;
1748
1749 start.tv_sec = start_time;
1750 start.tv_usec = 0;
1751 end.tv_sec = end_time;
1752 end.tv_usec = 0;
1753
1754 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
1755 }
1756
1757 void
1758 print_transfer_performance (struct ui_file *stream,
1759 unsigned long data_count,
1760 unsigned long write_count,
1761 const struct timeval *start_time,
1762 const struct timeval *end_time)
1763 {
1764 unsigned long time_count;
1765
1766 /* Compute the elapsed time in milliseconds, as a tradeoff between
1767 accuracy and overflow. */
1768 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
1769 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
1770
1771 ui_out_text (uiout, "Transfer rate: ");
1772 if (time_count > 0)
1773 {
1774 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1775 1000 * (data_count * 8) / time_count);
1776 ui_out_text (uiout, " bits/sec");
1777 }
1778 else
1779 {
1780 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1781 ui_out_text (uiout, " bits in <1 sec");
1782 }
1783 if (write_count > 0)
1784 {
1785 ui_out_text (uiout, ", ");
1786 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1787 ui_out_text (uiout, " bytes/write");
1788 }
1789 ui_out_text (uiout, ".\n");
1790 }
1791
1792 /* This function allows the addition of incrementally linked object files.
1793 It does not modify any state in the target, only in the debugger. */
1794 /* Note: ezannoni 2000-04-13 This function/command used to have a
1795 special case syntax for the rombug target (Rombug is the boot
1796 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1797 rombug case, the user doesn't need to supply a text address,
1798 instead a call to target_link() (in target.c) would supply the
1799 value to use. We are now discontinuing this type of ad hoc syntax. */
1800
1801 static void
1802 add_symbol_file_command (char *args, int from_tty)
1803 {
1804 char *filename = NULL;
1805 int flags = OBJF_USERLOADED;
1806 char *arg;
1807 int expecting_option = 0;
1808 int section_index = 0;
1809 int argcnt = 0;
1810 int sec_num = 0;
1811 int i;
1812 int expecting_sec_name = 0;
1813 int expecting_sec_addr = 0;
1814 char **argv;
1815
1816 struct sect_opt
1817 {
1818 char *name;
1819 char *value;
1820 };
1821
1822 struct section_addr_info *section_addrs;
1823 struct sect_opt *sect_opts = NULL;
1824 size_t num_sect_opts = 0;
1825 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1826
1827 num_sect_opts = 16;
1828 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1829 * sizeof (struct sect_opt));
1830
1831 dont_repeat ();
1832
1833 if (args == NULL)
1834 error (_("add-symbol-file takes a file name and an address"));
1835
1836 argv = buildargv (args);
1837 make_cleanup_freeargv (argv);
1838
1839 if (argv == NULL)
1840 nomem (0);
1841
1842 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
1843 {
1844 /* Process the argument. */
1845 if (argcnt == 0)
1846 {
1847 /* The first argument is the file name. */
1848 filename = tilde_expand (arg);
1849 make_cleanup (xfree, filename);
1850 }
1851 else
1852 if (argcnt == 1)
1853 {
1854 /* The second argument is always the text address at which
1855 to load the program. */
1856 sect_opts[section_index].name = ".text";
1857 sect_opts[section_index].value = arg;
1858 if (++section_index > num_sect_opts)
1859 {
1860 num_sect_opts *= 2;
1861 sect_opts = ((struct sect_opt *)
1862 xrealloc (sect_opts,
1863 num_sect_opts
1864 * sizeof (struct sect_opt)));
1865 }
1866 }
1867 else
1868 {
1869 /* It's an option (starting with '-') or it's an argument
1870 to an option */
1871
1872 if (*arg == '-')
1873 {
1874 if (strcmp (arg, "-readnow") == 0)
1875 flags |= OBJF_READNOW;
1876 else if (strcmp (arg, "-s") == 0)
1877 {
1878 expecting_sec_name = 1;
1879 expecting_sec_addr = 1;
1880 }
1881 }
1882 else
1883 {
1884 if (expecting_sec_name)
1885 {
1886 sect_opts[section_index].name = arg;
1887 expecting_sec_name = 0;
1888 }
1889 else
1890 if (expecting_sec_addr)
1891 {
1892 sect_opts[section_index].value = arg;
1893 expecting_sec_addr = 0;
1894 if (++section_index > num_sect_opts)
1895 {
1896 num_sect_opts *= 2;
1897 sect_opts = ((struct sect_opt *)
1898 xrealloc (sect_opts,
1899 num_sect_opts
1900 * sizeof (struct sect_opt)));
1901 }
1902 }
1903 else
1904 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
1905 }
1906 }
1907 }
1908
1909 /* This command takes at least two arguments. The first one is a
1910 filename, and the second is the address where this file has been
1911 loaded. Abort now if this address hasn't been provided by the
1912 user. */
1913 if (section_index < 1)
1914 error (_("The address where %s has been loaded is missing"), filename);
1915
1916 /* Print the prompt for the query below. And save the arguments into
1917 a sect_addr_info structure to be passed around to other
1918 functions. We have to split this up into separate print
1919 statements because hex_string returns a local static
1920 string. */
1921
1922 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
1923 section_addrs = alloc_section_addr_info (section_index);
1924 make_cleanup (xfree, section_addrs);
1925 for (i = 0; i < section_index; i++)
1926 {
1927 CORE_ADDR addr;
1928 char *val = sect_opts[i].value;
1929 char *sec = sect_opts[i].name;
1930
1931 addr = parse_and_eval_address (val);
1932
1933 /* Here we store the section offsets in the order they were
1934 entered on the command line. */
1935 section_addrs->other[sec_num].name = sec;
1936 section_addrs->other[sec_num].addr = addr;
1937 printf_unfiltered ("\t%s_addr = %s\n",
1938 sec, hex_string ((unsigned long)addr));
1939 sec_num++;
1940
1941 /* The object's sections are initialized when a
1942 call is made to build_objfile_section_table (objfile).
1943 This happens in reread_symbols.
1944 At this point, we don't know what file type this is,
1945 so we can't determine what section names are valid. */
1946 }
1947
1948 if (from_tty && (!query ("%s", "")))
1949 error (_("Not confirmed."));
1950
1951 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
1952
1953 /* Getting new symbols may change our opinion about what is
1954 frameless. */
1955 reinit_frame_cache ();
1956 do_cleanups (my_cleanups);
1957 }
1958 \f
1959 static void
1960 add_shared_symbol_files_command (char *args, int from_tty)
1961 {
1962 #ifdef ADD_SHARED_SYMBOL_FILES
1963 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1964 #else
1965 error (_("This command is not available in this configuration of GDB."));
1966 #endif
1967 }
1968 \f
1969 /* Re-read symbols if a symbol-file has changed. */
1970 void
1971 reread_symbols (void)
1972 {
1973 struct objfile *objfile;
1974 long new_modtime;
1975 int reread_one = 0;
1976 struct stat new_statbuf;
1977 int res;
1978
1979 /* With the addition of shared libraries, this should be modified,
1980 the load time should be saved in the partial symbol tables, since
1981 different tables may come from different source files. FIXME.
1982 This routine should then walk down each partial symbol table
1983 and see if the symbol table that it originates from has been changed */
1984
1985 for (objfile = object_files; objfile; objfile = objfile->next)
1986 {
1987 if (objfile->obfd)
1988 {
1989 #ifdef DEPRECATED_IBM6000_TARGET
1990 /* If this object is from a shared library, then you should
1991 stat on the library name, not member name. */
1992
1993 if (objfile->obfd->my_archive)
1994 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1995 else
1996 #endif
1997 res = stat (objfile->name, &new_statbuf);
1998 if (res != 0)
1999 {
2000 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2001 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2002 objfile->name);
2003 continue;
2004 }
2005 new_modtime = new_statbuf.st_mtime;
2006 if (new_modtime != objfile->mtime)
2007 {
2008 struct cleanup *old_cleanups;
2009 struct section_offsets *offsets;
2010 int num_offsets;
2011 char *obfd_filename;
2012
2013 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2014 objfile->name);
2015
2016 /* There are various functions like symbol_file_add,
2017 symfile_bfd_open, syms_from_objfile, etc., which might
2018 appear to do what we want. But they have various other
2019 effects which we *don't* want. So we just do stuff
2020 ourselves. We don't worry about mapped files (for one thing,
2021 any mapped file will be out of date). */
2022
2023 /* If we get an error, blow away this objfile (not sure if
2024 that is the correct response for things like shared
2025 libraries). */
2026 old_cleanups = make_cleanup_free_objfile (objfile);
2027 /* We need to do this whenever any symbols go away. */
2028 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2029
2030 /* Clean up any state BFD has sitting around. We don't need
2031 to close the descriptor but BFD lacks a way of closing the
2032 BFD without closing the descriptor. */
2033 obfd_filename = bfd_get_filename (objfile->obfd);
2034 if (!bfd_close (objfile->obfd))
2035 error (_("Can't close BFD for %s: %s"), objfile->name,
2036 bfd_errmsg (bfd_get_error ()));
2037 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2038 if (objfile->obfd == NULL)
2039 error (_("Can't open %s to read symbols."), objfile->name);
2040 /* bfd_openr sets cacheable to true, which is what we want. */
2041 if (!bfd_check_format (objfile->obfd, bfd_object))
2042 error (_("Can't read symbols from %s: %s."), objfile->name,
2043 bfd_errmsg (bfd_get_error ()));
2044
2045 /* Save the offsets, we will nuke them with the rest of the
2046 objfile_obstack. */
2047 num_offsets = objfile->num_sections;
2048 offsets = ((struct section_offsets *)
2049 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2050 memcpy (offsets, objfile->section_offsets,
2051 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2052
2053 /* Remove any references to this objfile in the global
2054 value lists. */
2055 preserve_values (objfile);
2056
2057 /* Nuke all the state that we will re-read. Much of the following
2058 code which sets things to NULL really is necessary to tell
2059 other parts of GDB that there is nothing currently there. */
2060
2061 /* FIXME: Do we have to free a whole linked list, or is this
2062 enough? */
2063 if (objfile->global_psymbols.list)
2064 xfree (objfile->global_psymbols.list);
2065 memset (&objfile->global_psymbols, 0,
2066 sizeof (objfile->global_psymbols));
2067 if (objfile->static_psymbols.list)
2068 xfree (objfile->static_psymbols.list);
2069 memset (&objfile->static_psymbols, 0,
2070 sizeof (objfile->static_psymbols));
2071
2072 /* Free the obstacks for non-reusable objfiles */
2073 bcache_xfree (objfile->psymbol_cache);
2074 objfile->psymbol_cache = bcache_xmalloc ();
2075 bcache_xfree (objfile->macro_cache);
2076 objfile->macro_cache = bcache_xmalloc ();
2077 if (objfile->demangled_names_hash != NULL)
2078 {
2079 htab_delete (objfile->demangled_names_hash);
2080 objfile->demangled_names_hash = NULL;
2081 }
2082 obstack_free (&objfile->objfile_obstack, 0);
2083 objfile->sections = NULL;
2084 objfile->symtabs = NULL;
2085 objfile->psymtabs = NULL;
2086 objfile->free_psymtabs = NULL;
2087 objfile->cp_namespace_symtab = NULL;
2088 objfile->msymbols = NULL;
2089 objfile->deprecated_sym_private = NULL;
2090 objfile->minimal_symbol_count = 0;
2091 memset (&objfile->msymbol_hash, 0,
2092 sizeof (objfile->msymbol_hash));
2093 memset (&objfile->msymbol_demangled_hash, 0,
2094 sizeof (objfile->msymbol_demangled_hash));
2095 objfile->fundamental_types = NULL;
2096 clear_objfile_data (objfile);
2097 if (objfile->sf != NULL)
2098 {
2099 (*objfile->sf->sym_finish) (objfile);
2100 }
2101
2102 /* We never make this a mapped file. */
2103 objfile->md = NULL;
2104 objfile->psymbol_cache = bcache_xmalloc ();
2105 objfile->macro_cache = bcache_xmalloc ();
2106 /* obstack_init also initializes the obstack so it is
2107 empty. We could use obstack_specify_allocation but
2108 gdb_obstack.h specifies the alloc/dealloc
2109 functions. */
2110 obstack_init (&objfile->objfile_obstack);
2111 if (build_objfile_section_table (objfile))
2112 {
2113 error (_("Can't find the file sections in `%s': %s"),
2114 objfile->name, bfd_errmsg (bfd_get_error ()));
2115 }
2116 terminate_minimal_symbol_table (objfile);
2117
2118 /* We use the same section offsets as from last time. I'm not
2119 sure whether that is always correct for shared libraries. */
2120 objfile->section_offsets = (struct section_offsets *)
2121 obstack_alloc (&objfile->objfile_obstack,
2122 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2123 memcpy (objfile->section_offsets, offsets,
2124 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2125 objfile->num_sections = num_offsets;
2126
2127 /* What the hell is sym_new_init for, anyway? The concept of
2128 distinguishing between the main file and additional files
2129 in this way seems rather dubious. */
2130 if (objfile == symfile_objfile)
2131 {
2132 (*objfile->sf->sym_new_init) (objfile);
2133 }
2134
2135 (*objfile->sf->sym_init) (objfile);
2136 clear_complaints (&symfile_complaints, 1, 1);
2137 /* The "mainline" parameter is a hideous hack; I think leaving it
2138 zero is OK since dbxread.c also does what it needs to do if
2139 objfile->global_psymbols.size is 0. */
2140 (*objfile->sf->sym_read) (objfile, 0);
2141 if (!have_partial_symbols () && !have_full_symbols ())
2142 {
2143 wrap_here ("");
2144 printf_unfiltered (_("(no debugging symbols found)\n"));
2145 wrap_here ("");
2146 }
2147 objfile->flags |= OBJF_SYMS;
2148
2149 /* We're done reading the symbol file; finish off complaints. */
2150 clear_complaints (&symfile_complaints, 0, 1);
2151
2152 /* Getting new symbols may change our opinion about what is
2153 frameless. */
2154
2155 reinit_frame_cache ();
2156
2157 /* Discard cleanups as symbol reading was successful. */
2158 discard_cleanups (old_cleanups);
2159
2160 /* If the mtime has changed between the time we set new_modtime
2161 and now, we *want* this to be out of date, so don't call stat
2162 again now. */
2163 objfile->mtime = new_modtime;
2164 reread_one = 1;
2165 reread_separate_symbols (objfile);
2166 }
2167 }
2168 }
2169
2170 if (reread_one)
2171 {
2172 clear_symtab_users ();
2173 /* At least one objfile has changed, so we can consider that
2174 the executable we're debugging has changed too. */
2175 observer_notify_executable_changed (NULL);
2176 }
2177
2178 }
2179
2180
2181 /* Handle separate debug info for OBJFILE, which has just been
2182 re-read:
2183 - If we had separate debug info before, but now we don't, get rid
2184 of the separated objfile.
2185 - If we didn't have separated debug info before, but now we do,
2186 read in the new separated debug info file.
2187 - If the debug link points to a different file, toss the old one
2188 and read the new one.
2189 This function does *not* handle the case where objfile is still
2190 using the same separate debug info file, but that file's timestamp
2191 has changed. That case should be handled by the loop in
2192 reread_symbols already. */
2193 static void
2194 reread_separate_symbols (struct objfile *objfile)
2195 {
2196 char *debug_file;
2197 unsigned long crc32;
2198
2199 /* Does the updated objfile's debug info live in a
2200 separate file? */
2201 debug_file = find_separate_debug_file (objfile);
2202
2203 if (objfile->separate_debug_objfile)
2204 {
2205 /* There are two cases where we need to get rid of
2206 the old separated debug info objfile:
2207 - if the new primary objfile doesn't have
2208 separated debug info, or
2209 - if the new primary objfile has separate debug
2210 info, but it's under a different filename.
2211
2212 If the old and new objfiles both have separate
2213 debug info, under the same filename, then we're
2214 okay --- if the separated file's contents have
2215 changed, we will have caught that when we
2216 visited it in this function's outermost
2217 loop. */
2218 if (! debug_file
2219 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2220 free_objfile (objfile->separate_debug_objfile);
2221 }
2222
2223 /* If the new objfile has separate debug info, and we
2224 haven't loaded it already, do so now. */
2225 if (debug_file
2226 && ! objfile->separate_debug_objfile)
2227 {
2228 /* Use the same section offset table as objfile itself.
2229 Preserve the flags from objfile that make sense. */
2230 objfile->separate_debug_objfile
2231 = (symbol_file_add_with_addrs_or_offsets
2232 (symfile_bfd_open (debug_file),
2233 info_verbose, /* from_tty: Don't override the default. */
2234 0, /* No addr table. */
2235 objfile->section_offsets, objfile->num_sections,
2236 0, /* Not mainline. See comments about this above. */
2237 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2238 | OBJF_USERLOADED)));
2239 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2240 = objfile;
2241 }
2242 }
2243
2244
2245 \f
2246
2247
2248 typedef struct
2249 {
2250 char *ext;
2251 enum language lang;
2252 }
2253 filename_language;
2254
2255 static filename_language *filename_language_table;
2256 static int fl_table_size, fl_table_next;
2257
2258 static void
2259 add_filename_language (char *ext, enum language lang)
2260 {
2261 if (fl_table_next >= fl_table_size)
2262 {
2263 fl_table_size += 10;
2264 filename_language_table =
2265 xrealloc (filename_language_table,
2266 fl_table_size * sizeof (*filename_language_table));
2267 }
2268
2269 filename_language_table[fl_table_next].ext = xstrdup (ext);
2270 filename_language_table[fl_table_next].lang = lang;
2271 fl_table_next++;
2272 }
2273
2274 static char *ext_args;
2275 static void
2276 show_ext_args (struct ui_file *file, int from_tty,
2277 struct cmd_list_element *c, const char *value)
2278 {
2279 fprintf_filtered (file, _("\
2280 Mapping between filename extension and source language is \"%s\".\n"),
2281 value);
2282 }
2283
2284 static void
2285 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2286 {
2287 int i;
2288 char *cp = ext_args;
2289 enum language lang;
2290
2291 /* First arg is filename extension, starting with '.' */
2292 if (*cp != '.')
2293 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2294
2295 /* Find end of first arg. */
2296 while (*cp && !isspace (*cp))
2297 cp++;
2298
2299 if (*cp == '\0')
2300 error (_("'%s': two arguments required -- filename extension and language"),
2301 ext_args);
2302
2303 /* Null-terminate first arg */
2304 *cp++ = '\0';
2305
2306 /* Find beginning of second arg, which should be a source language. */
2307 while (*cp && isspace (*cp))
2308 cp++;
2309
2310 if (*cp == '\0')
2311 error (_("'%s': two arguments required -- filename extension and language"),
2312 ext_args);
2313
2314 /* Lookup the language from among those we know. */
2315 lang = language_enum (cp);
2316
2317 /* Now lookup the filename extension: do we already know it? */
2318 for (i = 0; i < fl_table_next; i++)
2319 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2320 break;
2321
2322 if (i >= fl_table_next)
2323 {
2324 /* new file extension */
2325 add_filename_language (ext_args, lang);
2326 }
2327 else
2328 {
2329 /* redefining a previously known filename extension */
2330
2331 /* if (from_tty) */
2332 /* query ("Really make files of type %s '%s'?", */
2333 /* ext_args, language_str (lang)); */
2334
2335 xfree (filename_language_table[i].ext);
2336 filename_language_table[i].ext = xstrdup (ext_args);
2337 filename_language_table[i].lang = lang;
2338 }
2339 }
2340
2341 static void
2342 info_ext_lang_command (char *args, int from_tty)
2343 {
2344 int i;
2345
2346 printf_filtered (_("Filename extensions and the languages they represent:"));
2347 printf_filtered ("\n\n");
2348 for (i = 0; i < fl_table_next; i++)
2349 printf_filtered ("\t%s\t- %s\n",
2350 filename_language_table[i].ext,
2351 language_str (filename_language_table[i].lang));
2352 }
2353
2354 static void
2355 init_filename_language_table (void)
2356 {
2357 if (fl_table_size == 0) /* protect against repetition */
2358 {
2359 fl_table_size = 20;
2360 fl_table_next = 0;
2361 filename_language_table =
2362 xmalloc (fl_table_size * sizeof (*filename_language_table));
2363 add_filename_language (".c", language_c);
2364 add_filename_language (".C", language_cplus);
2365 add_filename_language (".cc", language_cplus);
2366 add_filename_language (".cp", language_cplus);
2367 add_filename_language (".cpp", language_cplus);
2368 add_filename_language (".cxx", language_cplus);
2369 add_filename_language (".c++", language_cplus);
2370 add_filename_language (".java", language_java);
2371 add_filename_language (".class", language_java);
2372 add_filename_language (".m", language_objc);
2373 add_filename_language (".f", language_fortran);
2374 add_filename_language (".F", language_fortran);
2375 add_filename_language (".s", language_asm);
2376 add_filename_language (".S", language_asm);
2377 add_filename_language (".pas", language_pascal);
2378 add_filename_language (".p", language_pascal);
2379 add_filename_language (".pp", language_pascal);
2380 add_filename_language (".adb", language_ada);
2381 add_filename_language (".ads", language_ada);
2382 add_filename_language (".a", language_ada);
2383 add_filename_language (".ada", language_ada);
2384 }
2385 }
2386
2387 enum language
2388 deduce_language_from_filename (char *filename)
2389 {
2390 int i;
2391 char *cp;
2392
2393 if (filename != NULL)
2394 if ((cp = strrchr (filename, '.')) != NULL)
2395 for (i = 0; i < fl_table_next; i++)
2396 if (strcmp (cp, filename_language_table[i].ext) == 0)
2397 return filename_language_table[i].lang;
2398
2399 return language_unknown;
2400 }
2401 \f
2402 /* allocate_symtab:
2403
2404 Allocate and partly initialize a new symbol table. Return a pointer
2405 to it. error() if no space.
2406
2407 Caller must set these fields:
2408 LINETABLE(symtab)
2409 symtab->blockvector
2410 symtab->dirname
2411 symtab->free_code
2412 symtab->free_ptr
2413 possibly free_named_symtabs (symtab->filename);
2414 */
2415
2416 struct symtab *
2417 allocate_symtab (char *filename, struct objfile *objfile)
2418 {
2419 struct symtab *symtab;
2420
2421 symtab = (struct symtab *)
2422 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2423 memset (symtab, 0, sizeof (*symtab));
2424 symtab->filename = obsavestring (filename, strlen (filename),
2425 &objfile->objfile_obstack);
2426 symtab->fullname = NULL;
2427 symtab->language = deduce_language_from_filename (filename);
2428 symtab->debugformat = obsavestring ("unknown", 7,
2429 &objfile->objfile_obstack);
2430
2431 /* Hook it to the objfile it comes from */
2432
2433 symtab->objfile = objfile;
2434 symtab->next = objfile->symtabs;
2435 objfile->symtabs = symtab;
2436
2437 /* FIXME: This should go away. It is only defined for the Z8000,
2438 and the Z8000 definition of this macro doesn't have anything to
2439 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2440 here for convenience. */
2441 #ifdef INIT_EXTRA_SYMTAB_INFO
2442 INIT_EXTRA_SYMTAB_INFO (symtab);
2443 #endif
2444
2445 return (symtab);
2446 }
2447
2448 struct partial_symtab *
2449 allocate_psymtab (char *filename, struct objfile *objfile)
2450 {
2451 struct partial_symtab *psymtab;
2452
2453 if (objfile->free_psymtabs)
2454 {
2455 psymtab = objfile->free_psymtabs;
2456 objfile->free_psymtabs = psymtab->next;
2457 }
2458 else
2459 psymtab = (struct partial_symtab *)
2460 obstack_alloc (&objfile->objfile_obstack,
2461 sizeof (struct partial_symtab));
2462
2463 memset (psymtab, 0, sizeof (struct partial_symtab));
2464 psymtab->filename = obsavestring (filename, strlen (filename),
2465 &objfile->objfile_obstack);
2466 psymtab->symtab = NULL;
2467
2468 /* Prepend it to the psymtab list for the objfile it belongs to.
2469 Psymtabs are searched in most recent inserted -> least recent
2470 inserted order. */
2471
2472 psymtab->objfile = objfile;
2473 psymtab->next = objfile->psymtabs;
2474 objfile->psymtabs = psymtab;
2475 #if 0
2476 {
2477 struct partial_symtab **prev_pst;
2478 psymtab->objfile = objfile;
2479 psymtab->next = NULL;
2480 prev_pst = &(objfile->psymtabs);
2481 while ((*prev_pst) != NULL)
2482 prev_pst = &((*prev_pst)->next);
2483 (*prev_pst) = psymtab;
2484 }
2485 #endif
2486
2487 return (psymtab);
2488 }
2489
2490 void
2491 discard_psymtab (struct partial_symtab *pst)
2492 {
2493 struct partial_symtab **prev_pst;
2494
2495 /* From dbxread.c:
2496 Empty psymtabs happen as a result of header files which don't
2497 have any symbols in them. There can be a lot of them. But this
2498 check is wrong, in that a psymtab with N_SLINE entries but
2499 nothing else is not empty, but we don't realize that. Fixing
2500 that without slowing things down might be tricky. */
2501
2502 /* First, snip it out of the psymtab chain */
2503
2504 prev_pst = &(pst->objfile->psymtabs);
2505 while ((*prev_pst) != pst)
2506 prev_pst = &((*prev_pst)->next);
2507 (*prev_pst) = pst->next;
2508
2509 /* Next, put it on a free list for recycling */
2510
2511 pst->next = pst->objfile->free_psymtabs;
2512 pst->objfile->free_psymtabs = pst;
2513 }
2514 \f
2515
2516 /* Reset all data structures in gdb which may contain references to symbol
2517 table data. */
2518
2519 void
2520 clear_symtab_users (void)
2521 {
2522 /* Someday, we should do better than this, by only blowing away
2523 the things that really need to be blown. */
2524
2525 /* Clear the "current" symtab first, because it is no longer valid.
2526 breakpoint_re_set may try to access the current symtab. */
2527 clear_current_source_symtab_and_line ();
2528
2529 clear_displays ();
2530 breakpoint_re_set ();
2531 set_default_breakpoint (0, 0, 0, 0);
2532 clear_pc_function_cache ();
2533 if (deprecated_target_new_objfile_hook)
2534 deprecated_target_new_objfile_hook (NULL);
2535 }
2536
2537 static void
2538 clear_symtab_users_cleanup (void *ignore)
2539 {
2540 clear_symtab_users ();
2541 }
2542
2543 /* clear_symtab_users_once:
2544
2545 This function is run after symbol reading, or from a cleanup.
2546 If an old symbol table was obsoleted, the old symbol table
2547 has been blown away, but the other GDB data structures that may
2548 reference it have not yet been cleared or re-directed. (The old
2549 symtab was zapped, and the cleanup queued, in free_named_symtab()
2550 below.)
2551
2552 This function can be queued N times as a cleanup, or called
2553 directly; it will do all the work the first time, and then will be a
2554 no-op until the next time it is queued. This works by bumping a
2555 counter at queueing time. Much later when the cleanup is run, or at
2556 the end of symbol processing (in case the cleanup is discarded), if
2557 the queued count is greater than the "done-count", we do the work
2558 and set the done-count to the queued count. If the queued count is
2559 less than or equal to the done-count, we just ignore the call. This
2560 is needed because reading a single .o file will often replace many
2561 symtabs (one per .h file, for example), and we don't want to reset
2562 the breakpoints N times in the user's face.
2563
2564 The reason we both queue a cleanup, and call it directly after symbol
2565 reading, is because the cleanup protects us in case of errors, but is
2566 discarded if symbol reading is successful. */
2567
2568 #if 0
2569 /* FIXME: As free_named_symtabs is currently a big noop this function
2570 is no longer needed. */
2571 static void clear_symtab_users_once (void);
2572
2573 static int clear_symtab_users_queued;
2574 static int clear_symtab_users_done;
2575
2576 static void
2577 clear_symtab_users_once (void)
2578 {
2579 /* Enforce once-per-`do_cleanups'-semantics */
2580 if (clear_symtab_users_queued <= clear_symtab_users_done)
2581 return;
2582 clear_symtab_users_done = clear_symtab_users_queued;
2583
2584 clear_symtab_users ();
2585 }
2586 #endif
2587
2588 /* Delete the specified psymtab, and any others that reference it. */
2589
2590 static void
2591 cashier_psymtab (struct partial_symtab *pst)
2592 {
2593 struct partial_symtab *ps, *pprev = NULL;
2594 int i;
2595
2596 /* Find its previous psymtab in the chain */
2597 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2598 {
2599 if (ps == pst)
2600 break;
2601 pprev = ps;
2602 }
2603
2604 if (ps)
2605 {
2606 /* Unhook it from the chain. */
2607 if (ps == pst->objfile->psymtabs)
2608 pst->objfile->psymtabs = ps->next;
2609 else
2610 pprev->next = ps->next;
2611
2612 /* FIXME, we can't conveniently deallocate the entries in the
2613 partial_symbol lists (global_psymbols/static_psymbols) that
2614 this psymtab points to. These just take up space until all
2615 the psymtabs are reclaimed. Ditto the dependencies list and
2616 filename, which are all in the objfile_obstack. */
2617
2618 /* We need to cashier any psymtab that has this one as a dependency... */
2619 again:
2620 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2621 {
2622 for (i = 0; i < ps->number_of_dependencies; i++)
2623 {
2624 if (ps->dependencies[i] == pst)
2625 {
2626 cashier_psymtab (ps);
2627 goto again; /* Must restart, chain has been munged. */
2628 }
2629 }
2630 }
2631 }
2632 }
2633
2634 /* If a symtab or psymtab for filename NAME is found, free it along
2635 with any dependent breakpoints, displays, etc.
2636 Used when loading new versions of object modules with the "add-file"
2637 command. This is only called on the top-level symtab or psymtab's name;
2638 it is not called for subsidiary files such as .h files.
2639
2640 Return value is 1 if we blew away the environment, 0 if not.
2641 FIXME. The return value appears to never be used.
2642
2643 FIXME. I think this is not the best way to do this. We should
2644 work on being gentler to the environment while still cleaning up
2645 all stray pointers into the freed symtab. */
2646
2647 int
2648 free_named_symtabs (char *name)
2649 {
2650 #if 0
2651 /* FIXME: With the new method of each objfile having it's own
2652 psymtab list, this function needs serious rethinking. In particular,
2653 why was it ever necessary to toss psymtabs with specific compilation
2654 unit filenames, as opposed to all psymtabs from a particular symbol
2655 file? -- fnf
2656 Well, the answer is that some systems permit reloading of particular
2657 compilation units. We want to blow away any old info about these
2658 compilation units, regardless of which objfiles they arrived in. --gnu. */
2659
2660 struct symtab *s;
2661 struct symtab *prev;
2662 struct partial_symtab *ps;
2663 struct blockvector *bv;
2664 int blewit = 0;
2665
2666 /* We only wack things if the symbol-reload switch is set. */
2667 if (!symbol_reloading)
2668 return 0;
2669
2670 /* Some symbol formats have trouble providing file names... */
2671 if (name == 0 || *name == '\0')
2672 return 0;
2673
2674 /* Look for a psymtab with the specified name. */
2675
2676 again2:
2677 for (ps = partial_symtab_list; ps; ps = ps->next)
2678 {
2679 if (strcmp (name, ps->filename) == 0)
2680 {
2681 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2682 goto again2; /* Must restart, chain has been munged */
2683 }
2684 }
2685
2686 /* Look for a symtab with the specified name. */
2687
2688 for (s = symtab_list; s; s = s->next)
2689 {
2690 if (strcmp (name, s->filename) == 0)
2691 break;
2692 prev = s;
2693 }
2694
2695 if (s)
2696 {
2697 if (s == symtab_list)
2698 symtab_list = s->next;
2699 else
2700 prev->next = s->next;
2701
2702 /* For now, queue a delete for all breakpoints, displays, etc., whether
2703 or not they depend on the symtab being freed. This should be
2704 changed so that only those data structures affected are deleted. */
2705
2706 /* But don't delete anything if the symtab is empty.
2707 This test is necessary due to a bug in "dbxread.c" that
2708 causes empty symtabs to be created for N_SO symbols that
2709 contain the pathname of the object file. (This problem
2710 has been fixed in GDB 3.9x). */
2711
2712 bv = BLOCKVECTOR (s);
2713 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2714 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2715 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2716 {
2717 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
2718 name);
2719 clear_symtab_users_queued++;
2720 make_cleanup (clear_symtab_users_once, 0);
2721 blewit = 1;
2722 }
2723 else
2724 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2725 name);
2726
2727 free_symtab (s);
2728 }
2729 else
2730 {
2731 /* It is still possible that some breakpoints will be affected
2732 even though no symtab was found, since the file might have
2733 been compiled without debugging, and hence not be associated
2734 with a symtab. In order to handle this correctly, we would need
2735 to keep a list of text address ranges for undebuggable files.
2736 For now, we do nothing, since this is a fairly obscure case. */
2737 ;
2738 }
2739
2740 /* FIXME, what about the minimal symbol table? */
2741 return blewit;
2742 #else
2743 return (0);
2744 #endif
2745 }
2746 \f
2747 /* Allocate and partially fill a partial symtab. It will be
2748 completely filled at the end of the symbol list.
2749
2750 FILENAME is the name of the symbol-file we are reading from. */
2751
2752 struct partial_symtab *
2753 start_psymtab_common (struct objfile *objfile,
2754 struct section_offsets *section_offsets, char *filename,
2755 CORE_ADDR textlow, struct partial_symbol **global_syms,
2756 struct partial_symbol **static_syms)
2757 {
2758 struct partial_symtab *psymtab;
2759
2760 psymtab = allocate_psymtab (filename, objfile);
2761 psymtab->section_offsets = section_offsets;
2762 psymtab->textlow = textlow;
2763 psymtab->texthigh = psymtab->textlow; /* default */
2764 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2765 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2766 return (psymtab);
2767 }
2768 \f
2769 /* Add a symbol with a long value to a psymtab.
2770 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2771 Return the partial symbol that has been added. */
2772
2773 /* NOTE: carlton/2003-09-11: The reason why we return the partial
2774 symbol is so that callers can get access to the symbol's demangled
2775 name, which they don't have any cheap way to determine otherwise.
2776 (Currenly, dwarf2read.c is the only file who uses that information,
2777 though it's possible that other readers might in the future.)
2778 Elena wasn't thrilled about that, and I don't blame her, but we
2779 couldn't come up with a better way to get that information. If
2780 it's needed in other situations, we could consider breaking up
2781 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2782 cache. */
2783
2784 const struct partial_symbol *
2785 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2786 enum address_class class,
2787 struct psymbol_allocation_list *list, long val, /* Value as a long */
2788 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2789 enum language language, struct objfile *objfile)
2790 {
2791 struct partial_symbol *psym;
2792 char *buf = alloca (namelength + 1);
2793 /* psymbol is static so that there will be no uninitialized gaps in the
2794 structure which might contain random data, causing cache misses in
2795 bcache. */
2796 static struct partial_symbol psymbol;
2797
2798 /* Create local copy of the partial symbol */
2799 memcpy (buf, name, namelength);
2800 buf[namelength] = '\0';
2801 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2802 if (val != 0)
2803 {
2804 SYMBOL_VALUE (&psymbol) = val;
2805 }
2806 else
2807 {
2808 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2809 }
2810 SYMBOL_SECTION (&psymbol) = 0;
2811 SYMBOL_LANGUAGE (&psymbol) = language;
2812 PSYMBOL_DOMAIN (&psymbol) = domain;
2813 PSYMBOL_CLASS (&psymbol) = class;
2814
2815 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2816
2817 /* Stash the partial symbol away in the cache */
2818 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2819 objfile->psymbol_cache);
2820
2821 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2822 if (list->next >= list->list + list->size)
2823 {
2824 extend_psymbol_list (list, objfile);
2825 }
2826 *list->next++ = psym;
2827 OBJSTAT (objfile, n_psyms++);
2828
2829 return psym;
2830 }
2831
2832 /* Add a symbol with a long value to a psymtab. This differs from
2833 * add_psymbol_to_list above in taking both a mangled and a demangled
2834 * name. */
2835
2836 void
2837 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2838 int dem_namelength, domain_enum domain,
2839 enum address_class class,
2840 struct psymbol_allocation_list *list, long val, /* Value as a long */
2841 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2842 enum language language,
2843 struct objfile *objfile)
2844 {
2845 struct partial_symbol *psym;
2846 char *buf = alloca (namelength + 1);
2847 /* psymbol is static so that there will be no uninitialized gaps in the
2848 structure which might contain random data, causing cache misses in
2849 bcache. */
2850 static struct partial_symbol psymbol;
2851
2852 /* Create local copy of the partial symbol */
2853
2854 memcpy (buf, name, namelength);
2855 buf[namelength] = '\0';
2856 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2857 objfile->psymbol_cache);
2858
2859 buf = alloca (dem_namelength + 1);
2860 memcpy (buf, dem_name, dem_namelength);
2861 buf[dem_namelength] = '\0';
2862
2863 switch (language)
2864 {
2865 case language_c:
2866 case language_cplus:
2867 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2868 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2869 break;
2870 /* FIXME What should be done for the default case? Ignoring for now. */
2871 }
2872
2873 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2874 if (val != 0)
2875 {
2876 SYMBOL_VALUE (&psymbol) = val;
2877 }
2878 else
2879 {
2880 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2881 }
2882 SYMBOL_SECTION (&psymbol) = 0;
2883 SYMBOL_LANGUAGE (&psymbol) = language;
2884 PSYMBOL_DOMAIN (&psymbol) = domain;
2885 PSYMBOL_CLASS (&psymbol) = class;
2886 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2887
2888 /* Stash the partial symbol away in the cache */
2889 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2890 objfile->psymbol_cache);
2891
2892 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2893 if (list->next >= list->list + list->size)
2894 {
2895 extend_psymbol_list (list, objfile);
2896 }
2897 *list->next++ = psym;
2898 OBJSTAT (objfile, n_psyms++);
2899 }
2900
2901 /* Initialize storage for partial symbols. */
2902
2903 void
2904 init_psymbol_list (struct objfile *objfile, int total_symbols)
2905 {
2906 /* Free any previously allocated psymbol lists. */
2907
2908 if (objfile->global_psymbols.list)
2909 {
2910 xfree (objfile->global_psymbols.list);
2911 }
2912 if (objfile->static_psymbols.list)
2913 {
2914 xfree (objfile->static_psymbols.list);
2915 }
2916
2917 /* Current best guess is that approximately a twentieth
2918 of the total symbols (in a debugging file) are global or static
2919 oriented symbols */
2920
2921 objfile->global_psymbols.size = total_symbols / 10;
2922 objfile->static_psymbols.size = total_symbols / 10;
2923
2924 if (objfile->global_psymbols.size > 0)
2925 {
2926 objfile->global_psymbols.next =
2927 objfile->global_psymbols.list = (struct partial_symbol **)
2928 xmalloc ((objfile->global_psymbols.size
2929 * sizeof (struct partial_symbol *)));
2930 }
2931 if (objfile->static_psymbols.size > 0)
2932 {
2933 objfile->static_psymbols.next =
2934 objfile->static_psymbols.list = (struct partial_symbol **)
2935 xmalloc ((objfile->static_psymbols.size
2936 * sizeof (struct partial_symbol *)));
2937 }
2938 }
2939
2940 /* OVERLAYS:
2941 The following code implements an abstraction for debugging overlay sections.
2942
2943 The target model is as follows:
2944 1) The gnu linker will permit multiple sections to be mapped into the
2945 same VMA, each with its own unique LMA (or load address).
2946 2) It is assumed that some runtime mechanism exists for mapping the
2947 sections, one by one, from the load address into the VMA address.
2948 3) This code provides a mechanism for gdb to keep track of which
2949 sections should be considered to be mapped from the VMA to the LMA.
2950 This information is used for symbol lookup, and memory read/write.
2951 For instance, if a section has been mapped then its contents
2952 should be read from the VMA, otherwise from the LMA.
2953
2954 Two levels of debugger support for overlays are available. One is
2955 "manual", in which the debugger relies on the user to tell it which
2956 overlays are currently mapped. This level of support is
2957 implemented entirely in the core debugger, and the information about
2958 whether a section is mapped is kept in the objfile->obj_section table.
2959
2960 The second level of support is "automatic", and is only available if
2961 the target-specific code provides functionality to read the target's
2962 overlay mapping table, and translate its contents for the debugger
2963 (by updating the mapped state information in the obj_section tables).
2964
2965 The interface is as follows:
2966 User commands:
2967 overlay map <name> -- tell gdb to consider this section mapped
2968 overlay unmap <name> -- tell gdb to consider this section unmapped
2969 overlay list -- list the sections that GDB thinks are mapped
2970 overlay read-target -- get the target's state of what's mapped
2971 overlay off/manual/auto -- set overlay debugging state
2972 Functional interface:
2973 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2974 section, return that section.
2975 find_pc_overlay(pc): find any overlay section that contains
2976 the pc, either in its VMA or its LMA
2977 overlay_is_mapped(sect): true if overlay is marked as mapped
2978 section_is_overlay(sect): true if section's VMA != LMA
2979 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2980 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2981 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2982 overlay_mapped_address(...): map an address from section's LMA to VMA
2983 overlay_unmapped_address(...): map an address from section's VMA to LMA
2984 symbol_overlayed_address(...): Return a "current" address for symbol:
2985 either in VMA or LMA depending on whether
2986 the symbol's section is currently mapped
2987 */
2988
2989 /* Overlay debugging state: */
2990
2991 enum overlay_debugging_state overlay_debugging = ovly_off;
2992 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2993
2994 /* Target vector for refreshing overlay mapped state */
2995 static void simple_overlay_update (struct obj_section *);
2996 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2997
2998 /* Function: section_is_overlay (SECTION)
2999 Returns true if SECTION has VMA not equal to LMA, ie.
3000 SECTION is loaded at an address different from where it will "run". */
3001
3002 int
3003 section_is_overlay (asection *section)
3004 {
3005 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3006
3007 if (overlay_debugging)
3008 if (section && section->lma != 0 &&
3009 section->vma != section->lma)
3010 return 1;
3011
3012 return 0;
3013 }
3014
3015 /* Function: overlay_invalidate_all (void)
3016 Invalidate the mapped state of all overlay sections (mark it as stale). */
3017
3018 static void
3019 overlay_invalidate_all (void)
3020 {
3021 struct objfile *objfile;
3022 struct obj_section *sect;
3023
3024 ALL_OBJSECTIONS (objfile, sect)
3025 if (section_is_overlay (sect->the_bfd_section))
3026 sect->ovly_mapped = -1;
3027 }
3028
3029 /* Function: overlay_is_mapped (SECTION)
3030 Returns true if section is an overlay, and is currently mapped.
3031 Private: public access is thru function section_is_mapped.
3032
3033 Access to the ovly_mapped flag is restricted to this function, so
3034 that we can do automatic update. If the global flag
3035 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3036 overlay_invalidate_all. If the mapped state of the particular
3037 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3038
3039 static int
3040 overlay_is_mapped (struct obj_section *osect)
3041 {
3042 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3043 return 0;
3044
3045 switch (overlay_debugging)
3046 {
3047 default:
3048 case ovly_off:
3049 return 0; /* overlay debugging off */
3050 case ovly_auto: /* overlay debugging automatic */
3051 /* Unles there is a target_overlay_update function,
3052 there's really nothing useful to do here (can't really go auto) */
3053 if (target_overlay_update)
3054 {
3055 if (overlay_cache_invalid)
3056 {
3057 overlay_invalidate_all ();
3058 overlay_cache_invalid = 0;
3059 }
3060 if (osect->ovly_mapped == -1)
3061 (*target_overlay_update) (osect);
3062 }
3063 /* fall thru to manual case */
3064 case ovly_on: /* overlay debugging manual */
3065 return osect->ovly_mapped == 1;
3066 }
3067 }
3068
3069 /* Function: section_is_mapped
3070 Returns true if section is an overlay, and is currently mapped. */
3071
3072 int
3073 section_is_mapped (asection *section)
3074 {
3075 struct objfile *objfile;
3076 struct obj_section *osect;
3077
3078 if (overlay_debugging)
3079 if (section && section_is_overlay (section))
3080 ALL_OBJSECTIONS (objfile, osect)
3081 if (osect->the_bfd_section == section)
3082 return overlay_is_mapped (osect);
3083
3084 return 0;
3085 }
3086
3087 /* Function: pc_in_unmapped_range
3088 If PC falls into the lma range of SECTION, return true, else false. */
3089
3090 CORE_ADDR
3091 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
3092 {
3093 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3094
3095 int size;
3096
3097 if (overlay_debugging)
3098 if (section && section_is_overlay (section))
3099 {
3100 size = bfd_get_section_size (section);
3101 if (section->lma <= pc && pc < section->lma + size)
3102 return 1;
3103 }
3104 return 0;
3105 }
3106
3107 /* Function: pc_in_mapped_range
3108 If PC falls into the vma range of SECTION, return true, else false. */
3109
3110 CORE_ADDR
3111 pc_in_mapped_range (CORE_ADDR pc, asection *section)
3112 {
3113 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3114
3115 int size;
3116
3117 if (overlay_debugging)
3118 if (section && section_is_overlay (section))
3119 {
3120 size = bfd_get_section_size (section);
3121 if (section->vma <= pc && pc < section->vma + size)
3122 return 1;
3123 }
3124 return 0;
3125 }
3126
3127
3128 /* Return true if the mapped ranges of sections A and B overlap, false
3129 otherwise. */
3130 static int
3131 sections_overlap (asection *a, asection *b)
3132 {
3133 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3134
3135 CORE_ADDR a_start = a->vma;
3136 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
3137 CORE_ADDR b_start = b->vma;
3138 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
3139
3140 return (a_start < b_end && b_start < a_end);
3141 }
3142
3143 /* Function: overlay_unmapped_address (PC, SECTION)
3144 Returns the address corresponding to PC in the unmapped (load) range.
3145 May be the same as PC. */
3146
3147 CORE_ADDR
3148 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3149 {
3150 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3151
3152 if (overlay_debugging)
3153 if (section && section_is_overlay (section) &&
3154 pc_in_mapped_range (pc, section))
3155 return pc + section->lma - section->vma;
3156
3157 return pc;
3158 }
3159
3160 /* Function: overlay_mapped_address (PC, SECTION)
3161 Returns the address corresponding to PC in the mapped (runtime) range.
3162 May be the same as PC. */
3163
3164 CORE_ADDR
3165 overlay_mapped_address (CORE_ADDR pc, asection *section)
3166 {
3167 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3168
3169 if (overlay_debugging)
3170 if (section && section_is_overlay (section) &&
3171 pc_in_unmapped_range (pc, section))
3172 return pc + section->vma - section->lma;
3173
3174 return pc;
3175 }
3176
3177
3178 /* Function: symbol_overlayed_address
3179 Return one of two addresses (relative to the VMA or to the LMA),
3180 depending on whether the section is mapped or not. */
3181
3182 CORE_ADDR
3183 symbol_overlayed_address (CORE_ADDR address, asection *section)
3184 {
3185 if (overlay_debugging)
3186 {
3187 /* If the symbol has no section, just return its regular address. */
3188 if (section == 0)
3189 return address;
3190 /* If the symbol's section is not an overlay, just return its address */
3191 if (!section_is_overlay (section))
3192 return address;
3193 /* If the symbol's section is mapped, just return its address */
3194 if (section_is_mapped (section))
3195 return address;
3196 /*
3197 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3198 * then return its LOADED address rather than its vma address!!
3199 */
3200 return overlay_unmapped_address (address, section);
3201 }
3202 return address;
3203 }
3204
3205 /* Function: find_pc_overlay (PC)
3206 Return the best-match overlay section for PC:
3207 If PC matches a mapped overlay section's VMA, return that section.
3208 Else if PC matches an unmapped section's VMA, return that section.
3209 Else if PC matches an unmapped section's LMA, return that section. */
3210
3211 asection *
3212 find_pc_overlay (CORE_ADDR pc)
3213 {
3214 struct objfile *objfile;
3215 struct obj_section *osect, *best_match = NULL;
3216
3217 if (overlay_debugging)
3218 ALL_OBJSECTIONS (objfile, osect)
3219 if (section_is_overlay (osect->the_bfd_section))
3220 {
3221 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3222 {
3223 if (overlay_is_mapped (osect))
3224 return osect->the_bfd_section;
3225 else
3226 best_match = osect;
3227 }
3228 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3229 best_match = osect;
3230 }
3231 return best_match ? best_match->the_bfd_section : NULL;
3232 }
3233
3234 /* Function: find_pc_mapped_section (PC)
3235 If PC falls into the VMA address range of an overlay section that is
3236 currently marked as MAPPED, return that section. Else return NULL. */
3237
3238 asection *
3239 find_pc_mapped_section (CORE_ADDR pc)
3240 {
3241 struct objfile *objfile;
3242 struct obj_section *osect;
3243
3244 if (overlay_debugging)
3245 ALL_OBJSECTIONS (objfile, osect)
3246 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3247 overlay_is_mapped (osect))
3248 return osect->the_bfd_section;
3249
3250 return NULL;
3251 }
3252
3253 /* Function: list_overlays_command
3254 Print a list of mapped sections and their PC ranges */
3255
3256 void
3257 list_overlays_command (char *args, int from_tty)
3258 {
3259 int nmapped = 0;
3260 struct objfile *objfile;
3261 struct obj_section *osect;
3262
3263 if (overlay_debugging)
3264 ALL_OBJSECTIONS (objfile, osect)
3265 if (overlay_is_mapped (osect))
3266 {
3267 const char *name;
3268 bfd_vma lma, vma;
3269 int size;
3270
3271 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3272 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3273 size = bfd_get_section_size (osect->the_bfd_section);
3274 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3275
3276 printf_filtered ("Section %s, loaded at ", name);
3277 deprecated_print_address_numeric (lma, 1, gdb_stdout);
3278 puts_filtered (" - ");
3279 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
3280 printf_filtered (", mapped at ");
3281 deprecated_print_address_numeric (vma, 1, gdb_stdout);
3282 puts_filtered (" - ");
3283 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
3284 puts_filtered ("\n");
3285
3286 nmapped++;
3287 }
3288 if (nmapped == 0)
3289 printf_filtered (_("No sections are mapped.\n"));
3290 }
3291
3292 /* Function: map_overlay_command
3293 Mark the named section as mapped (ie. residing at its VMA address). */
3294
3295 void
3296 map_overlay_command (char *args, int from_tty)
3297 {
3298 struct objfile *objfile, *objfile2;
3299 struct obj_section *sec, *sec2;
3300 asection *bfdsec;
3301
3302 if (!overlay_debugging)
3303 error (_("\
3304 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3305 the 'overlay manual' command."));
3306
3307 if (args == 0 || *args == 0)
3308 error (_("Argument required: name of an overlay section"));
3309
3310 /* First, find a section matching the user supplied argument */
3311 ALL_OBJSECTIONS (objfile, sec)
3312 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3313 {
3314 /* Now, check to see if the section is an overlay. */
3315 bfdsec = sec->the_bfd_section;
3316 if (!section_is_overlay (bfdsec))
3317 continue; /* not an overlay section */
3318
3319 /* Mark the overlay as "mapped" */
3320 sec->ovly_mapped = 1;
3321
3322 /* Next, make a pass and unmap any sections that are
3323 overlapped by this new section: */
3324 ALL_OBJSECTIONS (objfile2, sec2)
3325 if (sec2->ovly_mapped
3326 && sec != sec2
3327 && sec->the_bfd_section != sec2->the_bfd_section
3328 && sections_overlap (sec->the_bfd_section,
3329 sec2->the_bfd_section))
3330 {
3331 if (info_verbose)
3332 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3333 bfd_section_name (objfile->obfd,
3334 sec2->the_bfd_section));
3335 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3336 }
3337 return;
3338 }
3339 error (_("No overlay section called %s"), args);
3340 }
3341
3342 /* Function: unmap_overlay_command
3343 Mark the overlay section as unmapped
3344 (ie. resident in its LMA address range, rather than the VMA range). */
3345
3346 void
3347 unmap_overlay_command (char *args, int from_tty)
3348 {
3349 struct objfile *objfile;
3350 struct obj_section *sec;
3351
3352 if (!overlay_debugging)
3353 error (_("\
3354 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3355 the 'overlay manual' command."));
3356
3357 if (args == 0 || *args == 0)
3358 error (_("Argument required: name of an overlay section"));
3359
3360 /* First, find a section matching the user supplied argument */
3361 ALL_OBJSECTIONS (objfile, sec)
3362 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3363 {
3364 if (!sec->ovly_mapped)
3365 error (_("Section %s is not mapped"), args);
3366 sec->ovly_mapped = 0;
3367 return;
3368 }
3369 error (_("No overlay section called %s"), args);
3370 }
3371
3372 /* Function: overlay_auto_command
3373 A utility command to turn on overlay debugging.
3374 Possibly this should be done via a set/show command. */
3375
3376 static void
3377 overlay_auto_command (char *args, int from_tty)
3378 {
3379 overlay_debugging = ovly_auto;
3380 enable_overlay_breakpoints ();
3381 if (info_verbose)
3382 printf_unfiltered (_("Automatic overlay debugging enabled."));
3383 }
3384
3385 /* Function: overlay_manual_command
3386 A utility command to turn on overlay debugging.
3387 Possibly this should be done via a set/show command. */
3388
3389 static void
3390 overlay_manual_command (char *args, int from_tty)
3391 {
3392 overlay_debugging = ovly_on;
3393 disable_overlay_breakpoints ();
3394 if (info_verbose)
3395 printf_unfiltered (_("Overlay debugging enabled."));
3396 }
3397
3398 /* Function: overlay_off_command
3399 A utility command to turn on overlay debugging.
3400 Possibly this should be done via a set/show command. */
3401
3402 static void
3403 overlay_off_command (char *args, int from_tty)
3404 {
3405 overlay_debugging = ovly_off;
3406 disable_overlay_breakpoints ();
3407 if (info_verbose)
3408 printf_unfiltered (_("Overlay debugging disabled."));
3409 }
3410
3411 static void
3412 overlay_load_command (char *args, int from_tty)
3413 {
3414 if (target_overlay_update)
3415 (*target_overlay_update) (NULL);
3416 else
3417 error (_("This target does not know how to read its overlay state."));
3418 }
3419
3420 /* Function: overlay_command
3421 A place-holder for a mis-typed command */
3422
3423 /* Command list chain containing all defined "overlay" subcommands. */
3424 struct cmd_list_element *overlaylist;
3425
3426 static void
3427 overlay_command (char *args, int from_tty)
3428 {
3429 printf_unfiltered
3430 ("\"overlay\" must be followed by the name of an overlay command.\n");
3431 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3432 }
3433
3434
3435 /* Target Overlays for the "Simplest" overlay manager:
3436
3437 This is GDB's default target overlay layer. It works with the
3438 minimal overlay manager supplied as an example by Cygnus. The
3439 entry point is via a function pointer "target_overlay_update",
3440 so targets that use a different runtime overlay manager can
3441 substitute their own overlay_update function and take over the
3442 function pointer.
3443
3444 The overlay_update function pokes around in the target's data structures
3445 to see what overlays are mapped, and updates GDB's overlay mapping with
3446 this information.
3447
3448 In this simple implementation, the target data structures are as follows:
3449 unsigned _novlys; /# number of overlay sections #/
3450 unsigned _ovly_table[_novlys][4] = {
3451 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3452 {..., ..., ..., ...},
3453 }
3454 unsigned _novly_regions; /# number of overlay regions #/
3455 unsigned _ovly_region_table[_novly_regions][3] = {
3456 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3457 {..., ..., ...},
3458 }
3459 These functions will attempt to update GDB's mappedness state in the
3460 symbol section table, based on the target's mappedness state.
3461
3462 To do this, we keep a cached copy of the target's _ovly_table, and
3463 attempt to detect when the cached copy is invalidated. The main
3464 entry point is "simple_overlay_update(SECT), which looks up SECT in
3465 the cached table and re-reads only the entry for that section from
3466 the target (whenever possible).
3467 */
3468
3469 /* Cached, dynamically allocated copies of the target data structures: */
3470 static unsigned (*cache_ovly_table)[4] = 0;
3471 #if 0
3472 static unsigned (*cache_ovly_region_table)[3] = 0;
3473 #endif
3474 static unsigned cache_novlys = 0;
3475 #if 0
3476 static unsigned cache_novly_regions = 0;
3477 #endif
3478 static CORE_ADDR cache_ovly_table_base = 0;
3479 #if 0
3480 static CORE_ADDR cache_ovly_region_table_base = 0;
3481 #endif
3482 enum ovly_index
3483 {
3484 VMA, SIZE, LMA, MAPPED
3485 };
3486 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3487
3488 /* Throw away the cached copy of _ovly_table */
3489 static void
3490 simple_free_overlay_table (void)
3491 {
3492 if (cache_ovly_table)
3493 xfree (cache_ovly_table);
3494 cache_novlys = 0;
3495 cache_ovly_table = NULL;
3496 cache_ovly_table_base = 0;
3497 }
3498
3499 #if 0
3500 /* Throw away the cached copy of _ovly_region_table */
3501 static void
3502 simple_free_overlay_region_table (void)
3503 {
3504 if (cache_ovly_region_table)
3505 xfree (cache_ovly_region_table);
3506 cache_novly_regions = 0;
3507 cache_ovly_region_table = NULL;
3508 cache_ovly_region_table_base = 0;
3509 }
3510 #endif
3511
3512 /* Read an array of ints from the target into a local buffer.
3513 Convert to host order. int LEN is number of ints */
3514 static void
3515 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3516 {
3517 /* FIXME (alloca): Not safe if array is very large. */
3518 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3519 int i;
3520
3521 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3522 for (i = 0; i < len; i++)
3523 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3524 TARGET_LONG_BYTES);
3525 }
3526
3527 /* Find and grab a copy of the target _ovly_table
3528 (and _novlys, which is needed for the table's size) */
3529 static int
3530 simple_read_overlay_table (void)
3531 {
3532 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3533
3534 simple_free_overlay_table ();
3535 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3536 if (! novlys_msym)
3537 {
3538 error (_("Error reading inferior's overlay table: "
3539 "couldn't find `_novlys' variable\n"
3540 "in inferior. Use `overlay manual' mode."));
3541 return 0;
3542 }
3543
3544 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3545 if (! ovly_table_msym)
3546 {
3547 error (_("Error reading inferior's overlay table: couldn't find "
3548 "`_ovly_table' array\n"
3549 "in inferior. Use `overlay manual' mode."));
3550 return 0;
3551 }
3552
3553 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3554 cache_ovly_table
3555 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3556 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3557 read_target_long_array (cache_ovly_table_base,
3558 (unsigned int *) cache_ovly_table,
3559 cache_novlys * 4);
3560
3561 return 1; /* SUCCESS */
3562 }
3563
3564 #if 0
3565 /* Find and grab a copy of the target _ovly_region_table
3566 (and _novly_regions, which is needed for the table's size) */
3567 static int
3568 simple_read_overlay_region_table (void)
3569 {
3570 struct minimal_symbol *msym;
3571
3572 simple_free_overlay_region_table ();
3573 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3574 if (msym != NULL)
3575 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3576 else
3577 return 0; /* failure */
3578 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3579 if (cache_ovly_region_table != NULL)
3580 {
3581 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3582 if (msym != NULL)
3583 {
3584 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3585 read_target_long_array (cache_ovly_region_table_base,
3586 (unsigned int *) cache_ovly_region_table,
3587 cache_novly_regions * 3);
3588 }
3589 else
3590 return 0; /* failure */
3591 }
3592 else
3593 return 0; /* failure */
3594 return 1; /* SUCCESS */
3595 }
3596 #endif
3597
3598 /* Function: simple_overlay_update_1
3599 A helper function for simple_overlay_update. Assuming a cached copy
3600 of _ovly_table exists, look through it to find an entry whose vma,
3601 lma and size match those of OSECT. Re-read the entry and make sure
3602 it still matches OSECT (else the table may no longer be valid).
3603 Set OSECT's mapped state to match the entry. Return: 1 for
3604 success, 0 for failure. */
3605
3606 static int
3607 simple_overlay_update_1 (struct obj_section *osect)
3608 {
3609 int i, size;
3610 bfd *obfd = osect->objfile->obfd;
3611 asection *bsect = osect->the_bfd_section;
3612
3613 size = bfd_get_section_size (osect->the_bfd_section);
3614 for (i = 0; i < cache_novlys; i++)
3615 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3616 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3617 /* && cache_ovly_table[i][SIZE] == size */ )
3618 {
3619 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3620 (unsigned int *) cache_ovly_table[i], 4);
3621 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3622 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3623 /* && cache_ovly_table[i][SIZE] == size */ )
3624 {
3625 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3626 return 1;
3627 }
3628 else /* Warning! Warning! Target's ovly table has changed! */
3629 return 0;
3630 }
3631 return 0;
3632 }
3633
3634 /* Function: simple_overlay_update
3635 If OSECT is NULL, then update all sections' mapped state
3636 (after re-reading the entire target _ovly_table).
3637 If OSECT is non-NULL, then try to find a matching entry in the
3638 cached ovly_table and update only OSECT's mapped state.
3639 If a cached entry can't be found or the cache isn't valid, then
3640 re-read the entire cache, and go ahead and update all sections. */
3641
3642 static void
3643 simple_overlay_update (struct obj_section *osect)
3644 {
3645 struct objfile *objfile;
3646
3647 /* Were we given an osect to look up? NULL means do all of them. */
3648 if (osect)
3649 /* Have we got a cached copy of the target's overlay table? */
3650 if (cache_ovly_table != NULL)
3651 /* Does its cached location match what's currently in the symtab? */
3652 if (cache_ovly_table_base ==
3653 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3654 /* Then go ahead and try to look up this single section in the cache */
3655 if (simple_overlay_update_1 (osect))
3656 /* Found it! We're done. */
3657 return;
3658
3659 /* Cached table no good: need to read the entire table anew.
3660 Or else we want all the sections, in which case it's actually
3661 more efficient to read the whole table in one block anyway. */
3662
3663 if (! simple_read_overlay_table ())
3664 return;
3665
3666 /* Now may as well update all sections, even if only one was requested. */
3667 ALL_OBJSECTIONS (objfile, osect)
3668 if (section_is_overlay (osect->the_bfd_section))
3669 {
3670 int i, size;
3671 bfd *obfd = osect->objfile->obfd;
3672 asection *bsect = osect->the_bfd_section;
3673
3674 size = bfd_get_section_size (bsect);
3675 for (i = 0; i < cache_novlys; i++)
3676 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3677 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3678 /* && cache_ovly_table[i][SIZE] == size */ )
3679 { /* obj_section matches i'th entry in ovly_table */
3680 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3681 break; /* finished with inner for loop: break out */
3682 }
3683 }
3684 }
3685
3686 /* Set the output sections and output offsets for section SECTP in
3687 ABFD. The relocation code in BFD will read these offsets, so we
3688 need to be sure they're initialized. We map each section to itself,
3689 with no offset; this means that SECTP->vma will be honored. */
3690
3691 static void
3692 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3693 {
3694 sectp->output_section = sectp;
3695 sectp->output_offset = 0;
3696 }
3697
3698 /* Relocate the contents of a debug section SECTP in ABFD. The
3699 contents are stored in BUF if it is non-NULL, or returned in a
3700 malloc'd buffer otherwise.
3701
3702 For some platforms and debug info formats, shared libraries contain
3703 relocations against the debug sections (particularly for DWARF-2;
3704 one affected platform is PowerPC GNU/Linux, although it depends on
3705 the version of the linker in use). Also, ELF object files naturally
3706 have unresolved relocations for their debug sections. We need to apply
3707 the relocations in order to get the locations of symbols correct. */
3708
3709 bfd_byte *
3710 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3711 {
3712 /* We're only interested in debugging sections with relocation
3713 information. */
3714 if ((sectp->flags & SEC_RELOC) == 0)
3715 return NULL;
3716 if ((sectp->flags & SEC_DEBUGGING) == 0)
3717 return NULL;
3718
3719 /* We will handle section offsets properly elsewhere, so relocate as if
3720 all sections begin at 0. */
3721 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3722
3723 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3724 }
3725
3726 void
3727 _initialize_symfile (void)
3728 {
3729 struct cmd_list_element *c;
3730
3731 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3732 Load symbol table from executable file FILE.\n\
3733 The `file' command can also load symbol tables, as well as setting the file\n\
3734 to execute."), &cmdlist);
3735 set_cmd_completer (c, filename_completer);
3736
3737 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3738 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3739 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3740 ADDR is the starting address of the file's text.\n\
3741 The optional arguments are section-name section-address pairs and\n\
3742 should be specified if the data and bss segments are not contiguous\n\
3743 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3744 &cmdlist);
3745 set_cmd_completer (c, filename_completer);
3746
3747 c = add_cmd ("add-shared-symbol-files", class_files,
3748 add_shared_symbol_files_command, _("\
3749 Load the symbols from shared objects in the dynamic linker's link map."),
3750 &cmdlist);
3751 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3752 &cmdlist);
3753
3754 c = add_cmd ("load", class_files, load_command, _("\
3755 Dynamically load FILE into the running program, and record its symbols\n\
3756 for access from GDB.\n\
3757 A load OFFSET may also be given."), &cmdlist);
3758 set_cmd_completer (c, filename_completer);
3759
3760 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3761 &symbol_reloading, _("\
3762 Set dynamic symbol table reloading multiple times in one run."), _("\
3763 Show dynamic symbol table reloading multiple times in one run."), NULL,
3764 NULL,
3765 show_symbol_reloading,
3766 &setlist, &showlist);
3767
3768 add_prefix_cmd ("overlay", class_support, overlay_command,
3769 _("Commands for debugging overlays."), &overlaylist,
3770 "overlay ", 0, &cmdlist);
3771
3772 add_com_alias ("ovly", "overlay", class_alias, 1);
3773 add_com_alias ("ov", "overlay", class_alias, 1);
3774
3775 add_cmd ("map-overlay", class_support, map_overlay_command,
3776 _("Assert that an overlay section is mapped."), &overlaylist);
3777
3778 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3779 _("Assert that an overlay section is unmapped."), &overlaylist);
3780
3781 add_cmd ("list-overlays", class_support, list_overlays_command,
3782 _("List mappings of overlay sections."), &overlaylist);
3783
3784 add_cmd ("manual", class_support, overlay_manual_command,
3785 _("Enable overlay debugging."), &overlaylist);
3786 add_cmd ("off", class_support, overlay_off_command,
3787 _("Disable overlay debugging."), &overlaylist);
3788 add_cmd ("auto", class_support, overlay_auto_command,
3789 _("Enable automatic overlay debugging."), &overlaylist);
3790 add_cmd ("load-target", class_support, overlay_load_command,
3791 _("Read the overlay mapping state from the target."), &overlaylist);
3792
3793 /* Filename extension to source language lookup table: */
3794 init_filename_language_table ();
3795 add_setshow_string_noescape_cmd ("extension-language", class_files,
3796 &ext_args, _("\
3797 Set mapping between filename extension and source language."), _("\
3798 Show mapping between filename extension and source language."), _("\
3799 Usage: set extension-language .foo bar"),
3800 set_ext_lang_command,
3801 show_ext_args,
3802 &setlist, &showlist);
3803
3804 add_info ("extensions", info_ext_lang_command,
3805 _("All filename extensions associated with a source language."));
3806
3807 add_setshow_integer_cmd ("download-write-size", class_obscure,
3808 &download_write_size, _("\
3809 Set the write size used when downloading a program."), _("\
3810 Show the write size used when downloading a program."), _("\
3811 Only used when downloading a program onto a remote\n\
3812 target. Specify zero, or a negative value, to disable\n\
3813 blocked writes. The actual size of each transfer is also\n\
3814 limited by the size of the target packet and the memory\n\
3815 cache."),
3816 NULL,
3817 show_download_write_size,
3818 &setlist, &showlist);
3819
3820 debug_file_directory = xstrdup (DEBUGDIR);
3821 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3822 &debug_file_directory, _("\
3823 Set the directory where separate debug symbols are searched for."), _("\
3824 Show the directory where separate debug symbols are searched for."), _("\
3825 Separate debug symbols are first searched for in the same\n\
3826 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3827 and lastly at the path of the directory of the binary with\n\
3828 the global debug-file directory prepended."),
3829 NULL,
3830 show_debug_file_directory,
3831 &setlist, &showlist);
3832 }
This page took 0.109554 seconds and 5 git commands to generate.