* gdb/defs.h: unconditionally include <fcntl.h>, and
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 #include "defs.h"
27 #include "bfdlink.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcore.h"
31 #include "frame.h"
32 #include "target.h"
33 #include "value.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "source.h"
37 #include "gdbcmd.h"
38 #include "breakpoint.h"
39 #include "language.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "inferior.h" /* for write_pc */
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54
55 #include <sys/types.h>
56 #include <fcntl.h>
57 #include "gdb_string.h"
58 #include "gdb_stat.h"
59 #include <ctype.h>
60 #include <time.h>
61 #include <sys/time.h>
62
63
64 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
65 void (*deprecated_show_load_progress) (const char *section,
66 unsigned long section_sent,
67 unsigned long section_size,
68 unsigned long total_sent,
69 unsigned long total_size);
70 void (*deprecated_pre_add_symbol_hook) (const char *);
71 void (*deprecated_post_add_symbol_hook) (void);
72 void (*deprecated_target_new_objfile_hook) (struct objfile *);
73
74 static void clear_symtab_users_cleanup (void *ignore);
75
76 /* Global variables owned by this file */
77 int readnow_symbol_files; /* Read full symbols immediately */
78
79 /* External variables and functions referenced. */
80
81 extern void report_transfer_performance (unsigned long, time_t, time_t);
82
83 /* Functions this file defines */
84
85 #if 0
86 static int simple_read_overlay_region_table (void);
87 static void simple_free_overlay_region_table (void);
88 #endif
89
90 static void set_initial_language (void);
91
92 static void load_command (char *, int);
93
94 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
95
96 static void add_symbol_file_command (char *, int);
97
98 static void add_shared_symbol_files_command (char *, int);
99
100 static void reread_separate_symbols (struct objfile *objfile);
101
102 static void cashier_psymtab (struct partial_symtab *);
103
104 bfd *symfile_bfd_open (char *);
105
106 int get_section_index (struct objfile *, char *);
107
108 static void find_sym_fns (struct objfile *);
109
110 static void decrement_reading_symtab (void *);
111
112 static void overlay_invalidate_all (void);
113
114 static int overlay_is_mapped (struct obj_section *);
115
116 void list_overlays_command (char *, int);
117
118 void map_overlay_command (char *, int);
119
120 void unmap_overlay_command (char *, int);
121
122 static void overlay_auto_command (char *, int);
123
124 static void overlay_manual_command (char *, int);
125
126 static void overlay_off_command (char *, int);
127
128 static void overlay_load_command (char *, int);
129
130 static void overlay_command (char *, int);
131
132 static void simple_free_overlay_table (void);
133
134 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
135
136 static int simple_read_overlay_table (void);
137
138 static int simple_overlay_update_1 (struct obj_section *);
139
140 static void add_filename_language (char *ext, enum language lang);
141
142 static void info_ext_lang_command (char *args, int from_tty);
143
144 static char *find_separate_debug_file (struct objfile *objfile);
145
146 static void init_filename_language_table (void);
147
148 void _initialize_symfile (void);
149
150 /* List of all available sym_fns. On gdb startup, each object file reader
151 calls add_symtab_fns() to register information on each format it is
152 prepared to read. */
153
154 static struct sym_fns *symtab_fns = NULL;
155
156 /* Flag for whether user will be reloading symbols multiple times.
157 Defaults to ON for VxWorks, otherwise OFF. */
158
159 #ifdef SYMBOL_RELOADING_DEFAULT
160 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
161 #else
162 int symbol_reloading = 0;
163 #endif
164 static void
165 show_symbol_reloading (struct ui_file *file, int from_tty,
166 struct cmd_list_element *c, const char *value)
167 {
168 fprintf_filtered (file, _("\
169 Dynamic symbol table reloading multiple times in one run is %s.\n"),
170 value);
171 }
172
173
174 /* If non-zero, shared library symbols will be added automatically
175 when the inferior is created, new libraries are loaded, or when
176 attaching to the inferior. This is almost always what users will
177 want to have happen; but for very large programs, the startup time
178 will be excessive, and so if this is a problem, the user can clear
179 this flag and then add the shared library symbols as needed. Note
180 that there is a potential for confusion, since if the shared
181 library symbols are not loaded, commands like "info fun" will *not*
182 report all the functions that are actually present. */
183
184 int auto_solib_add = 1;
185
186 /* For systems that support it, a threshold size in megabytes. If
187 automatically adding a new library's symbol table to those already
188 known to the debugger would cause the total shared library symbol
189 size to exceed this threshhold, then the shlib's symbols are not
190 added. The threshold is ignored if the user explicitly asks for a
191 shlib to be added, such as when using the "sharedlibrary"
192 command. */
193
194 int auto_solib_limit;
195 \f
196
197 /* This compares two partial symbols by names, using strcmp_iw_ordered
198 for the comparison. */
199
200 static int
201 compare_psymbols (const void *s1p, const void *s2p)
202 {
203 struct partial_symbol *const *s1 = s1p;
204 struct partial_symbol *const *s2 = s2p;
205
206 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
207 SYMBOL_SEARCH_NAME (*s2));
208 }
209
210 void
211 sort_pst_symbols (struct partial_symtab *pst)
212 {
213 /* Sort the global list; don't sort the static list */
214
215 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
216 pst->n_global_syms, sizeof (struct partial_symbol *),
217 compare_psymbols);
218 }
219
220 /* Make a null terminated copy of the string at PTR with SIZE characters in
221 the obstack pointed to by OBSTACKP . Returns the address of the copy.
222 Note that the string at PTR does not have to be null terminated, I.E. it
223 may be part of a larger string and we are only saving a substring. */
224
225 char *
226 obsavestring (const char *ptr, int size, struct obstack *obstackp)
227 {
228 char *p = (char *) obstack_alloc (obstackp, size + 1);
229 /* Open-coded memcpy--saves function call time. These strings are usually
230 short. FIXME: Is this really still true with a compiler that can
231 inline memcpy? */
232 {
233 const char *p1 = ptr;
234 char *p2 = p;
235 const char *end = ptr + size;
236 while (p1 != end)
237 *p2++ = *p1++;
238 }
239 p[size] = 0;
240 return p;
241 }
242
243 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
244 in the obstack pointed to by OBSTACKP. */
245
246 char *
247 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
248 const char *s3)
249 {
250 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
251 char *val = (char *) obstack_alloc (obstackp, len);
252 strcpy (val, s1);
253 strcat (val, s2);
254 strcat (val, s3);
255 return val;
256 }
257
258 /* True if we are nested inside psymtab_to_symtab. */
259
260 int currently_reading_symtab = 0;
261
262 static void
263 decrement_reading_symtab (void *dummy)
264 {
265 currently_reading_symtab--;
266 }
267
268 /* Get the symbol table that corresponds to a partial_symtab.
269 This is fast after the first time you do it. In fact, there
270 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
271 case inline. */
272
273 struct symtab *
274 psymtab_to_symtab (struct partial_symtab *pst)
275 {
276 /* If it's been looked up before, return it. */
277 if (pst->symtab)
278 return pst->symtab;
279
280 /* If it has not yet been read in, read it. */
281 if (!pst->readin)
282 {
283 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
284 currently_reading_symtab++;
285 (*pst->read_symtab) (pst);
286 do_cleanups (back_to);
287 }
288
289 return pst->symtab;
290 }
291
292 /* Remember the lowest-addressed loadable section we've seen.
293 This function is called via bfd_map_over_sections.
294
295 In case of equal vmas, the section with the largest size becomes the
296 lowest-addressed loadable section.
297
298 If the vmas and sizes are equal, the last section is considered the
299 lowest-addressed loadable section. */
300
301 void
302 find_lowest_section (bfd *abfd, asection *sect, void *obj)
303 {
304 asection **lowest = (asection **) obj;
305
306 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
307 return;
308 if (!*lowest)
309 *lowest = sect; /* First loadable section */
310 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
311 *lowest = sect; /* A lower loadable section */
312 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
313 && (bfd_section_size (abfd, (*lowest))
314 <= bfd_section_size (abfd, sect)))
315 *lowest = sect;
316 }
317
318 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
319
320 struct section_addr_info *
321 alloc_section_addr_info (size_t num_sections)
322 {
323 struct section_addr_info *sap;
324 size_t size;
325
326 size = (sizeof (struct section_addr_info)
327 + sizeof (struct other_sections) * (num_sections - 1));
328 sap = (struct section_addr_info *) xmalloc (size);
329 memset (sap, 0, size);
330 sap->num_sections = num_sections;
331
332 return sap;
333 }
334
335
336 /* Return a freshly allocated copy of ADDRS. The section names, if
337 any, are also freshly allocated copies of those in ADDRS. */
338 struct section_addr_info *
339 copy_section_addr_info (struct section_addr_info *addrs)
340 {
341 struct section_addr_info *copy
342 = alloc_section_addr_info (addrs->num_sections);
343 int i;
344
345 copy->num_sections = addrs->num_sections;
346 for (i = 0; i < addrs->num_sections; i++)
347 {
348 copy->other[i].addr = addrs->other[i].addr;
349 if (addrs->other[i].name)
350 copy->other[i].name = xstrdup (addrs->other[i].name);
351 else
352 copy->other[i].name = NULL;
353 copy->other[i].sectindex = addrs->other[i].sectindex;
354 }
355
356 return copy;
357 }
358
359
360
361 /* Build (allocate and populate) a section_addr_info struct from
362 an existing section table. */
363
364 extern struct section_addr_info *
365 build_section_addr_info_from_section_table (const struct section_table *start,
366 const struct section_table *end)
367 {
368 struct section_addr_info *sap;
369 const struct section_table *stp;
370 int oidx;
371
372 sap = alloc_section_addr_info (end - start);
373
374 for (stp = start, oidx = 0; stp != end; stp++)
375 {
376 if (bfd_get_section_flags (stp->bfd,
377 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
378 && oidx < end - start)
379 {
380 sap->other[oidx].addr = stp->addr;
381 sap->other[oidx].name
382 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
383 sap->other[oidx].sectindex = stp->the_bfd_section->index;
384 oidx++;
385 }
386 }
387
388 return sap;
389 }
390
391
392 /* Free all memory allocated by build_section_addr_info_from_section_table. */
393
394 extern void
395 free_section_addr_info (struct section_addr_info *sap)
396 {
397 int idx;
398
399 for (idx = 0; idx < sap->num_sections; idx++)
400 if (sap->other[idx].name)
401 xfree (sap->other[idx].name);
402 xfree (sap);
403 }
404
405
406 /* Initialize OBJFILE's sect_index_* members. */
407 static void
408 init_objfile_sect_indices (struct objfile *objfile)
409 {
410 asection *sect;
411 int i;
412
413 sect = bfd_get_section_by_name (objfile->obfd, ".text");
414 if (sect)
415 objfile->sect_index_text = sect->index;
416
417 sect = bfd_get_section_by_name (objfile->obfd, ".data");
418 if (sect)
419 objfile->sect_index_data = sect->index;
420
421 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
422 if (sect)
423 objfile->sect_index_bss = sect->index;
424
425 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
426 if (sect)
427 objfile->sect_index_rodata = sect->index;
428
429 /* This is where things get really weird... We MUST have valid
430 indices for the various sect_index_* members or gdb will abort.
431 So if for example, there is no ".text" section, we have to
432 accomodate that. Except when explicitly adding symbol files at
433 some address, section_offsets contains nothing but zeros, so it
434 doesn't matter which slot in section_offsets the individual
435 sect_index_* members index into. So if they are all zero, it is
436 safe to just point all the currently uninitialized indices to the
437 first slot. */
438
439 for (i = 0; i < objfile->num_sections; i++)
440 {
441 if (ANOFFSET (objfile->section_offsets, i) != 0)
442 {
443 break;
444 }
445 }
446 if (i == objfile->num_sections)
447 {
448 if (objfile->sect_index_text == -1)
449 objfile->sect_index_text = 0;
450 if (objfile->sect_index_data == -1)
451 objfile->sect_index_data = 0;
452 if (objfile->sect_index_bss == -1)
453 objfile->sect_index_bss = 0;
454 if (objfile->sect_index_rodata == -1)
455 objfile->sect_index_rodata = 0;
456 }
457 }
458
459 /* The arguments to place_section. */
460
461 struct place_section_arg
462 {
463 struct section_offsets *offsets;
464 CORE_ADDR lowest;
465 };
466
467 /* Find a unique offset to use for loadable section SECT if
468 the user did not provide an offset. */
469
470 void
471 place_section (bfd *abfd, asection *sect, void *obj)
472 {
473 struct place_section_arg *arg = obj;
474 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
475 int done;
476 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
477
478 /* We are only interested in loadable sections. */
479 if ((bfd_get_section_flags (abfd, sect) & SEC_LOAD) == 0)
480 return;
481
482 /* If the user specified an offset, honor it. */
483 if (offsets[sect->index] != 0)
484 return;
485
486 /* Otherwise, let's try to find a place for the section. */
487 start_addr = (arg->lowest + align - 1) & -align;
488
489 do {
490 asection *cur_sec;
491
492 done = 1;
493
494 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
495 {
496 int indx = cur_sec->index;
497 CORE_ADDR cur_offset;
498
499 /* We don't need to compare against ourself. */
500 if (cur_sec == sect)
501 continue;
502
503 /* We can only conflict with loadable sections. */
504 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_LOAD) == 0)
505 continue;
506
507 /* We do not expect this to happen; just ignore sections in a
508 relocatable file with an assigned VMA. */
509 if (bfd_section_vma (abfd, cur_sec) != 0)
510 continue;
511
512 /* If the section offset is 0, either the section has not been placed
513 yet, or it was the lowest section placed (in which case LOWEST
514 will be past its end). */
515 if (offsets[indx] == 0)
516 continue;
517
518 /* If this section would overlap us, then we must move up. */
519 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
520 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
521 {
522 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
523 start_addr = (start_addr + align - 1) & -align;
524 done = 0;
525 break;
526 }
527
528 /* Otherwise, we appear to be OK. So far. */
529 }
530 }
531 while (!done);
532
533 offsets[sect->index] = start_addr;
534 arg->lowest = start_addr + bfd_get_section_size (sect);
535
536 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
537 }
538
539 /* Parse the user's idea of an offset for dynamic linking, into our idea
540 of how to represent it for fast symbol reading. This is the default
541 version of the sym_fns.sym_offsets function for symbol readers that
542 don't need to do anything special. It allocates a section_offsets table
543 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
544
545 void
546 default_symfile_offsets (struct objfile *objfile,
547 struct section_addr_info *addrs)
548 {
549 int i;
550
551 objfile->num_sections = bfd_count_sections (objfile->obfd);
552 objfile->section_offsets = (struct section_offsets *)
553 obstack_alloc (&objfile->objfile_obstack,
554 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
555 memset (objfile->section_offsets, 0,
556 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
557
558 /* Now calculate offsets for section that were specified by the
559 caller. */
560 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
561 {
562 struct other_sections *osp ;
563
564 osp = &addrs->other[i] ;
565 if (osp->addr == 0)
566 continue;
567
568 /* Record all sections in offsets */
569 /* The section_offsets in the objfile are here filled in using
570 the BFD index. */
571 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
572 }
573
574 /* For relocatable files, all loadable sections will start at zero.
575 The zero is meaningless, so try to pick arbitrary addresses such
576 that no loadable sections overlap. This algorithm is quadratic,
577 but the number of sections in a single object file is generally
578 small. */
579 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
580 {
581 struct place_section_arg arg;
582 arg.offsets = objfile->section_offsets;
583 arg.lowest = 0;
584 bfd_map_over_sections (objfile->obfd, place_section, &arg);
585 }
586
587 /* Remember the bfd indexes for the .text, .data, .bss and
588 .rodata sections. */
589 init_objfile_sect_indices (objfile);
590 }
591
592
593 /* Process a symbol file, as either the main file or as a dynamically
594 loaded file.
595
596 OBJFILE is where the symbols are to be read from.
597
598 ADDRS is the list of section load addresses. If the user has given
599 an 'add-symbol-file' command, then this is the list of offsets and
600 addresses he or she provided as arguments to the command; or, if
601 we're handling a shared library, these are the actual addresses the
602 sections are loaded at, according to the inferior's dynamic linker
603 (as gleaned by GDB's shared library code). We convert each address
604 into an offset from the section VMA's as it appears in the object
605 file, and then call the file's sym_offsets function to convert this
606 into a format-specific offset table --- a `struct section_offsets'.
607 If ADDRS is non-zero, OFFSETS must be zero.
608
609 OFFSETS is a table of section offsets already in the right
610 format-specific representation. NUM_OFFSETS is the number of
611 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
612 assume this is the proper table the call to sym_offsets described
613 above would produce. Instead of calling sym_offsets, we just dump
614 it right into objfile->section_offsets. (When we're re-reading
615 symbols from an objfile, we don't have the original load address
616 list any more; all we have is the section offset table.) If
617 OFFSETS is non-zero, ADDRS must be zero.
618
619 MAINLINE is nonzero if this is the main symbol file, or zero if
620 it's an extra symbol file such as dynamically loaded code.
621
622 VERBO is nonzero if the caller has printed a verbose message about
623 the symbol reading (and complaints can be more terse about it). */
624
625 void
626 syms_from_objfile (struct objfile *objfile,
627 struct section_addr_info *addrs,
628 struct section_offsets *offsets,
629 int num_offsets,
630 int mainline,
631 int verbo)
632 {
633 struct section_addr_info *local_addr = NULL;
634 struct cleanup *old_chain;
635
636 gdb_assert (! (addrs && offsets));
637
638 init_entry_point_info (objfile);
639 find_sym_fns (objfile);
640
641 if (objfile->sf == NULL)
642 return; /* No symbols. */
643
644 /* Make sure that partially constructed symbol tables will be cleaned up
645 if an error occurs during symbol reading. */
646 old_chain = make_cleanup_free_objfile (objfile);
647
648 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
649 list. We now establish the convention that an addr of zero means
650 no load address was specified. */
651 if (! addrs && ! offsets)
652 {
653 local_addr
654 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
655 make_cleanup (xfree, local_addr);
656 addrs = local_addr;
657 }
658
659 /* Now either addrs or offsets is non-zero. */
660
661 if (mainline)
662 {
663 /* We will modify the main symbol table, make sure that all its users
664 will be cleaned up if an error occurs during symbol reading. */
665 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
666
667 /* Since no error yet, throw away the old symbol table. */
668
669 if (symfile_objfile != NULL)
670 {
671 free_objfile (symfile_objfile);
672 symfile_objfile = NULL;
673 }
674
675 /* Currently we keep symbols from the add-symbol-file command.
676 If the user wants to get rid of them, they should do "symbol-file"
677 without arguments first. Not sure this is the best behavior
678 (PR 2207). */
679
680 (*objfile->sf->sym_new_init) (objfile);
681 }
682
683 /* Convert addr into an offset rather than an absolute address.
684 We find the lowest address of a loaded segment in the objfile,
685 and assume that <addr> is where that got loaded.
686
687 We no longer warn if the lowest section is not a text segment (as
688 happens for the PA64 port. */
689 if (!mainline && addrs && addrs->other[0].name)
690 {
691 asection *lower_sect;
692 asection *sect;
693 CORE_ADDR lower_offset;
694 int i;
695
696 /* Find lowest loadable section to be used as starting point for
697 continguous sections. FIXME!! won't work without call to find
698 .text first, but this assumes text is lowest section. */
699 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
700 if (lower_sect == NULL)
701 bfd_map_over_sections (objfile->obfd, find_lowest_section,
702 &lower_sect);
703 if (lower_sect == NULL)
704 warning (_("no loadable sections found in added symbol-file %s"),
705 objfile->name);
706 else
707 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
708 warning (_("Lowest section in %s is %s at %s"),
709 objfile->name,
710 bfd_section_name (objfile->obfd, lower_sect),
711 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
712 if (lower_sect != NULL)
713 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
714 else
715 lower_offset = 0;
716
717 /* Calculate offsets for the loadable sections.
718 FIXME! Sections must be in order of increasing loadable section
719 so that contiguous sections can use the lower-offset!!!
720
721 Adjust offsets if the segments are not contiguous.
722 If the section is contiguous, its offset should be set to
723 the offset of the highest loadable section lower than it
724 (the loadable section directly below it in memory).
725 this_offset = lower_offset = lower_addr - lower_orig_addr */
726
727 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
728 {
729 if (addrs->other[i].addr != 0)
730 {
731 sect = bfd_get_section_by_name (objfile->obfd,
732 addrs->other[i].name);
733 if (sect)
734 {
735 addrs->other[i].addr
736 -= bfd_section_vma (objfile->obfd, sect);
737 lower_offset = addrs->other[i].addr;
738 /* This is the index used by BFD. */
739 addrs->other[i].sectindex = sect->index ;
740 }
741 else
742 {
743 warning (_("section %s not found in %s"),
744 addrs->other[i].name,
745 objfile->name);
746 addrs->other[i].addr = 0;
747 }
748 }
749 else
750 addrs->other[i].addr = lower_offset;
751 }
752 }
753
754 /* Initialize symbol reading routines for this objfile, allow complaints to
755 appear for this new file, and record how verbose to be, then do the
756 initial symbol reading for this file. */
757
758 (*objfile->sf->sym_init) (objfile);
759 clear_complaints (&symfile_complaints, 1, verbo);
760
761 if (addrs)
762 (*objfile->sf->sym_offsets) (objfile, addrs);
763 else
764 {
765 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
766
767 /* Just copy in the offset table directly as given to us. */
768 objfile->num_sections = num_offsets;
769 objfile->section_offsets
770 = ((struct section_offsets *)
771 obstack_alloc (&objfile->objfile_obstack, size));
772 memcpy (objfile->section_offsets, offsets, size);
773
774 init_objfile_sect_indices (objfile);
775 }
776
777 #ifndef DEPRECATED_IBM6000_TARGET
778 /* This is a SVR4/SunOS specific hack, I think. In any event, it
779 screws RS/6000. sym_offsets should be doing this sort of thing,
780 because it knows the mapping between bfd sections and
781 section_offsets. */
782 /* This is a hack. As far as I can tell, section offsets are not
783 target dependent. They are all set to addr with a couple of
784 exceptions. The exceptions are sysvr4 shared libraries, whose
785 offsets are kept in solib structures anyway and rs6000 xcoff
786 which handles shared libraries in a completely unique way.
787
788 Section offsets are built similarly, except that they are built
789 by adding addr in all cases because there is no clear mapping
790 from section_offsets into actual sections. Note that solib.c
791 has a different algorithm for finding section offsets.
792
793 These should probably all be collapsed into some target
794 independent form of shared library support. FIXME. */
795
796 if (addrs)
797 {
798 struct obj_section *s;
799
800 /* Map section offsets in "addr" back to the object's
801 sections by comparing the section names with bfd's
802 section names. Then adjust the section address by
803 the offset. */ /* for gdb/13815 */
804
805 ALL_OBJFILE_OSECTIONS (objfile, s)
806 {
807 CORE_ADDR s_addr = 0;
808 int i;
809
810 for (i = 0;
811 !s_addr && i < addrs->num_sections && addrs->other[i].name;
812 i++)
813 if (strcmp (bfd_section_name (s->objfile->obfd,
814 s->the_bfd_section),
815 addrs->other[i].name) == 0)
816 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
817
818 s->addr -= s->offset;
819 s->addr += s_addr;
820 s->endaddr -= s->offset;
821 s->endaddr += s_addr;
822 s->offset += s_addr;
823 }
824 }
825 #endif /* not DEPRECATED_IBM6000_TARGET */
826
827 (*objfile->sf->sym_read) (objfile, mainline);
828
829 /* Don't allow char * to have a typename (else would get caddr_t).
830 Ditto void *. FIXME: Check whether this is now done by all the
831 symbol readers themselves (many of them now do), and if so remove
832 it from here. */
833
834 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
835 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
836
837 /* Mark the objfile has having had initial symbol read attempted. Note
838 that this does not mean we found any symbols... */
839
840 objfile->flags |= OBJF_SYMS;
841
842 /* Discard cleanups as symbol reading was successful. */
843
844 discard_cleanups (old_chain);
845 }
846
847 /* Perform required actions after either reading in the initial
848 symbols for a new objfile, or mapping in the symbols from a reusable
849 objfile. */
850
851 void
852 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
853 {
854
855 /* If this is the main symbol file we have to clean up all users of the
856 old main symbol file. Otherwise it is sufficient to fixup all the
857 breakpoints that may have been redefined by this symbol file. */
858 if (mainline)
859 {
860 /* OK, make it the "real" symbol file. */
861 symfile_objfile = objfile;
862
863 clear_symtab_users ();
864 }
865 else
866 {
867 breakpoint_re_set ();
868 }
869
870 /* We're done reading the symbol file; finish off complaints. */
871 clear_complaints (&symfile_complaints, 0, verbo);
872 }
873
874 /* Process a symbol file, as either the main file or as a dynamically
875 loaded file.
876
877 ABFD is a BFD already open on the file, as from symfile_bfd_open.
878 This BFD will be closed on error, and is always consumed by this function.
879
880 FROM_TTY says how verbose to be.
881
882 MAINLINE specifies whether this is the main symbol file, or whether
883 it's an extra symbol file such as dynamically loaded code.
884
885 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
886 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
887 non-zero.
888
889 Upon success, returns a pointer to the objfile that was added.
890 Upon failure, jumps back to command level (never returns). */
891 static struct objfile *
892 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
893 struct section_addr_info *addrs,
894 struct section_offsets *offsets,
895 int num_offsets,
896 int mainline, int flags)
897 {
898 struct objfile *objfile;
899 struct partial_symtab *psymtab;
900 char *debugfile;
901 struct section_addr_info *orig_addrs = NULL;
902 struct cleanup *my_cleanups;
903 const char *name = bfd_get_filename (abfd);
904
905 my_cleanups = make_cleanup_bfd_close (abfd);
906
907 /* Give user a chance to burp if we'd be
908 interactively wiping out any existing symbols. */
909
910 if ((have_full_symbols () || have_partial_symbols ())
911 && mainline
912 && from_tty
913 && !query ("Load new symbol table from \"%s\"? ", name))
914 error (_("Not confirmed."));
915
916 objfile = allocate_objfile (abfd, flags);
917 discard_cleanups (my_cleanups);
918
919 if (addrs)
920 {
921 orig_addrs = copy_section_addr_info (addrs);
922 make_cleanup_free_section_addr_info (orig_addrs);
923 }
924
925 /* We either created a new mapped symbol table, mapped an existing
926 symbol table file which has not had initial symbol reading
927 performed, or need to read an unmapped symbol table. */
928 if (from_tty || info_verbose)
929 {
930 if (deprecated_pre_add_symbol_hook)
931 deprecated_pre_add_symbol_hook (name);
932 else
933 {
934 printf_unfiltered (_("Reading symbols from %s..."), name);
935 wrap_here ("");
936 gdb_flush (gdb_stdout);
937 }
938 }
939 syms_from_objfile (objfile, addrs, offsets, num_offsets,
940 mainline, from_tty);
941
942 /* We now have at least a partial symbol table. Check to see if the
943 user requested that all symbols be read on initial access via either
944 the gdb startup command line or on a per symbol file basis. Expand
945 all partial symbol tables for this objfile if so. */
946
947 if ((flags & OBJF_READNOW) || readnow_symbol_files)
948 {
949 if (from_tty || info_verbose)
950 {
951 printf_unfiltered (_("expanding to full symbols..."));
952 wrap_here ("");
953 gdb_flush (gdb_stdout);
954 }
955
956 for (psymtab = objfile->psymtabs;
957 psymtab != NULL;
958 psymtab = psymtab->next)
959 {
960 psymtab_to_symtab (psymtab);
961 }
962 }
963
964 debugfile = find_separate_debug_file (objfile);
965 if (debugfile)
966 {
967 if (addrs != NULL)
968 {
969 objfile->separate_debug_objfile
970 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
971 }
972 else
973 {
974 objfile->separate_debug_objfile
975 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
976 }
977 objfile->separate_debug_objfile->separate_debug_objfile_backlink
978 = objfile;
979
980 /* Put the separate debug object before the normal one, this is so that
981 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
982 put_objfile_before (objfile->separate_debug_objfile, objfile);
983
984 xfree (debugfile);
985 }
986
987 if (!have_partial_symbols () && !have_full_symbols ())
988 {
989 wrap_here ("");
990 printf_filtered (_("(no debugging symbols found)"));
991 if (from_tty || info_verbose)
992 printf_filtered ("...");
993 else
994 printf_filtered ("\n");
995 wrap_here ("");
996 }
997
998 if (from_tty || info_verbose)
999 {
1000 if (deprecated_post_add_symbol_hook)
1001 deprecated_post_add_symbol_hook ();
1002 else
1003 {
1004 printf_unfiltered (_("done.\n"));
1005 }
1006 }
1007
1008 /* We print some messages regardless of whether 'from_tty ||
1009 info_verbose' is true, so make sure they go out at the right
1010 time. */
1011 gdb_flush (gdb_stdout);
1012
1013 do_cleanups (my_cleanups);
1014
1015 if (objfile->sf == NULL)
1016 return objfile; /* No symbols. */
1017
1018 new_symfile_objfile (objfile, mainline, from_tty);
1019
1020 if (deprecated_target_new_objfile_hook)
1021 deprecated_target_new_objfile_hook (objfile);
1022
1023 bfd_cache_close_all ();
1024 return (objfile);
1025 }
1026
1027
1028 /* Process the symbol file ABFD, as either the main file or as a
1029 dynamically loaded file.
1030
1031 See symbol_file_add_with_addrs_or_offsets's comments for
1032 details. */
1033 struct objfile *
1034 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1035 struct section_addr_info *addrs,
1036 int mainline, int flags)
1037 {
1038 return symbol_file_add_with_addrs_or_offsets (abfd,
1039 from_tty, addrs, 0, 0,
1040 mainline, flags);
1041 }
1042
1043
1044 /* Process a symbol file, as either the main file or as a dynamically
1045 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1046 for details. */
1047 struct objfile *
1048 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1049 int mainline, int flags)
1050 {
1051 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1052 addrs, mainline, flags);
1053 }
1054
1055
1056 /* Call symbol_file_add() with default values and update whatever is
1057 affected by the loading of a new main().
1058 Used when the file is supplied in the gdb command line
1059 and by some targets with special loading requirements.
1060 The auxiliary function, symbol_file_add_main_1(), has the flags
1061 argument for the switches that can only be specified in the symbol_file
1062 command itself. */
1063
1064 void
1065 symbol_file_add_main (char *args, int from_tty)
1066 {
1067 symbol_file_add_main_1 (args, from_tty, 0);
1068 }
1069
1070 static void
1071 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1072 {
1073 symbol_file_add (args, from_tty, NULL, 1, flags);
1074
1075 /* Getting new symbols may change our opinion about
1076 what is frameless. */
1077 reinit_frame_cache ();
1078
1079 set_initial_language ();
1080 }
1081
1082 void
1083 symbol_file_clear (int from_tty)
1084 {
1085 if ((have_full_symbols () || have_partial_symbols ())
1086 && from_tty
1087 && (symfile_objfile
1088 ? !query (_("Discard symbol table from `%s'? "),
1089 symfile_objfile->name)
1090 : !query (_("Discard symbol table? "))))
1091 error (_("Not confirmed."));
1092 free_all_objfiles ();
1093
1094 /* solib descriptors may have handles to objfiles. Since their
1095 storage has just been released, we'd better wipe the solib
1096 descriptors as well.
1097 */
1098 #if defined(SOLIB_RESTART)
1099 SOLIB_RESTART ();
1100 #endif
1101
1102 symfile_objfile = NULL;
1103 if (from_tty)
1104 printf_unfiltered (_("No symbol file now.\n"));
1105 }
1106
1107 static char *
1108 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1109 {
1110 asection *sect;
1111 bfd_size_type debuglink_size;
1112 unsigned long crc32;
1113 char *contents;
1114 int crc_offset;
1115 unsigned char *p;
1116
1117 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1118
1119 if (sect == NULL)
1120 return NULL;
1121
1122 debuglink_size = bfd_section_size (objfile->obfd, sect);
1123
1124 contents = xmalloc (debuglink_size);
1125 bfd_get_section_contents (objfile->obfd, sect, contents,
1126 (file_ptr)0, (bfd_size_type)debuglink_size);
1127
1128 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1129 crc_offset = strlen (contents) + 1;
1130 crc_offset = (crc_offset + 3) & ~3;
1131
1132 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1133
1134 *crc32_out = crc32;
1135 return contents;
1136 }
1137
1138 static int
1139 separate_debug_file_exists (const char *name, unsigned long crc)
1140 {
1141 unsigned long file_crc = 0;
1142 int fd;
1143 gdb_byte buffer[8*1024];
1144 int count;
1145
1146 fd = open (name, O_RDONLY | O_BINARY);
1147 if (fd < 0)
1148 return 0;
1149
1150 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1151 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1152
1153 close (fd);
1154
1155 return crc == file_crc;
1156 }
1157
1158 static char *debug_file_directory = NULL;
1159 static void
1160 show_debug_file_directory (struct ui_file *file, int from_tty,
1161 struct cmd_list_element *c, const char *value)
1162 {
1163 fprintf_filtered (file, _("\
1164 The directory where separate debug symbols are searched for is \"%s\".\n"),
1165 value);
1166 }
1167
1168 #if ! defined (DEBUG_SUBDIRECTORY)
1169 #define DEBUG_SUBDIRECTORY ".debug"
1170 #endif
1171
1172 static char *
1173 find_separate_debug_file (struct objfile *objfile)
1174 {
1175 asection *sect;
1176 char *basename;
1177 char *dir;
1178 char *debugfile;
1179 char *name_copy;
1180 bfd_size_type debuglink_size;
1181 unsigned long crc32;
1182 int i;
1183
1184 basename = get_debug_link_info (objfile, &crc32);
1185
1186 if (basename == NULL)
1187 return NULL;
1188
1189 dir = xstrdup (objfile->name);
1190
1191 /* Strip off the final filename part, leaving the directory name,
1192 followed by a slash. Objfile names should always be absolute and
1193 tilde-expanded, so there should always be a slash in there
1194 somewhere. */
1195 for (i = strlen(dir) - 1; i >= 0; i--)
1196 {
1197 if (IS_DIR_SEPARATOR (dir[i]))
1198 break;
1199 }
1200 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1201 dir[i+1] = '\0';
1202
1203 debugfile = alloca (strlen (debug_file_directory) + 1
1204 + strlen (dir)
1205 + strlen (DEBUG_SUBDIRECTORY)
1206 + strlen ("/")
1207 + strlen (basename)
1208 + 1);
1209
1210 /* First try in the same directory as the original file. */
1211 strcpy (debugfile, dir);
1212 strcat (debugfile, basename);
1213
1214 if (separate_debug_file_exists (debugfile, crc32))
1215 {
1216 xfree (basename);
1217 xfree (dir);
1218 return xstrdup (debugfile);
1219 }
1220
1221 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1222 strcpy (debugfile, dir);
1223 strcat (debugfile, DEBUG_SUBDIRECTORY);
1224 strcat (debugfile, "/");
1225 strcat (debugfile, basename);
1226
1227 if (separate_debug_file_exists (debugfile, crc32))
1228 {
1229 xfree (basename);
1230 xfree (dir);
1231 return xstrdup (debugfile);
1232 }
1233
1234 /* Then try in the global debugfile directory. */
1235 strcpy (debugfile, debug_file_directory);
1236 strcat (debugfile, "/");
1237 strcat (debugfile, dir);
1238 strcat (debugfile, basename);
1239
1240 if (separate_debug_file_exists (debugfile, crc32))
1241 {
1242 xfree (basename);
1243 xfree (dir);
1244 return xstrdup (debugfile);
1245 }
1246
1247 xfree (basename);
1248 xfree (dir);
1249 return NULL;
1250 }
1251
1252
1253 /* This is the symbol-file command. Read the file, analyze its
1254 symbols, and add a struct symtab to a symtab list. The syntax of
1255 the command is rather bizarre:
1256
1257 1. The function buildargv implements various quoting conventions
1258 which are undocumented and have little or nothing in common with
1259 the way things are quoted (or not quoted) elsewhere in GDB.
1260
1261 2. Options are used, which are not generally used in GDB (perhaps
1262 "set mapped on", "set readnow on" would be better)
1263
1264 3. The order of options matters, which is contrary to GNU
1265 conventions (because it is confusing and inconvenient). */
1266
1267 void
1268 symbol_file_command (char *args, int from_tty)
1269 {
1270 dont_repeat ();
1271
1272 if (args == NULL)
1273 {
1274 symbol_file_clear (from_tty);
1275 }
1276 else
1277 {
1278 char **argv = buildargv (args);
1279 int flags = OBJF_USERLOADED;
1280 struct cleanup *cleanups;
1281 char *name = NULL;
1282
1283 if (argv == NULL)
1284 nomem (0);
1285
1286 cleanups = make_cleanup_freeargv (argv);
1287 while (*argv != NULL)
1288 {
1289 if (strcmp (*argv, "-readnow") == 0)
1290 flags |= OBJF_READNOW;
1291 else if (**argv == '-')
1292 error (_("unknown option `%s'"), *argv);
1293 else
1294 {
1295 symbol_file_add_main_1 (*argv, from_tty, flags);
1296 name = *argv;
1297 }
1298
1299 argv++;
1300 }
1301
1302 if (name == NULL)
1303 error (_("no symbol file name was specified"));
1304
1305 do_cleanups (cleanups);
1306 }
1307 }
1308
1309 /* Set the initial language.
1310
1311 FIXME: A better solution would be to record the language in the
1312 psymtab when reading partial symbols, and then use it (if known) to
1313 set the language. This would be a win for formats that encode the
1314 language in an easily discoverable place, such as DWARF. For
1315 stabs, we can jump through hoops looking for specially named
1316 symbols or try to intuit the language from the specific type of
1317 stabs we find, but we can't do that until later when we read in
1318 full symbols. */
1319
1320 static void
1321 set_initial_language (void)
1322 {
1323 struct partial_symtab *pst;
1324 enum language lang = language_unknown;
1325
1326 pst = find_main_psymtab ();
1327 if (pst != NULL)
1328 {
1329 if (pst->filename != NULL)
1330 lang = deduce_language_from_filename (pst->filename);
1331
1332 if (lang == language_unknown)
1333 {
1334 /* Make C the default language */
1335 lang = language_c;
1336 }
1337
1338 set_language (lang);
1339 expected_language = current_language; /* Don't warn the user. */
1340 }
1341 }
1342
1343 /* Open the file specified by NAME and hand it off to BFD for
1344 preliminary analysis. Return a newly initialized bfd *, which
1345 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1346 absolute). In case of trouble, error() is called. */
1347
1348 bfd *
1349 symfile_bfd_open (char *name)
1350 {
1351 bfd *sym_bfd;
1352 int desc;
1353 char *absolute_name;
1354
1355 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1356
1357 /* Look down path for it, allocate 2nd new malloc'd copy. */
1358 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1359 O_RDONLY | O_BINARY, 0, &absolute_name);
1360 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1361 if (desc < 0)
1362 {
1363 char *exename = alloca (strlen (name) + 5);
1364 strcat (strcpy (exename, name), ".exe");
1365 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1366 O_RDONLY | O_BINARY, 0, &absolute_name);
1367 }
1368 #endif
1369 if (desc < 0)
1370 {
1371 make_cleanup (xfree, name);
1372 perror_with_name (name);
1373 }
1374
1375 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1376 bfd. It'll be freed in free_objfile(). */
1377 xfree (name);
1378 name = absolute_name;
1379
1380 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1381 if (!sym_bfd)
1382 {
1383 close (desc);
1384 make_cleanup (xfree, name);
1385 error (_("\"%s\": can't open to read symbols: %s."), name,
1386 bfd_errmsg (bfd_get_error ()));
1387 }
1388 bfd_set_cacheable (sym_bfd, 1);
1389
1390 if (!bfd_check_format (sym_bfd, bfd_object))
1391 {
1392 /* FIXME: should be checking for errors from bfd_close (for one
1393 thing, on error it does not free all the storage associated
1394 with the bfd). */
1395 bfd_close (sym_bfd); /* This also closes desc. */
1396 make_cleanup (xfree, name);
1397 error (_("\"%s\": can't read symbols: %s."), name,
1398 bfd_errmsg (bfd_get_error ()));
1399 }
1400
1401 return sym_bfd;
1402 }
1403
1404 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1405 the section was not found. */
1406
1407 int
1408 get_section_index (struct objfile *objfile, char *section_name)
1409 {
1410 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1411
1412 if (sect)
1413 return sect->index;
1414 else
1415 return -1;
1416 }
1417
1418 /* Link SF into the global symtab_fns list. Called on startup by the
1419 _initialize routine in each object file format reader, to register
1420 information about each format the the reader is prepared to
1421 handle. */
1422
1423 void
1424 add_symtab_fns (struct sym_fns *sf)
1425 {
1426 sf->next = symtab_fns;
1427 symtab_fns = sf;
1428 }
1429
1430 /* Initialize OBJFILE to read symbols from its associated BFD. It
1431 either returns or calls error(). The result is an initialized
1432 struct sym_fns in the objfile structure, that contains cached
1433 information about the symbol file. */
1434
1435 static void
1436 find_sym_fns (struct objfile *objfile)
1437 {
1438 struct sym_fns *sf;
1439 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1440 char *our_target = bfd_get_target (objfile->obfd);
1441
1442 if (our_flavour == bfd_target_srec_flavour
1443 || our_flavour == bfd_target_ihex_flavour
1444 || our_flavour == bfd_target_tekhex_flavour)
1445 return; /* No symbols. */
1446
1447 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1448 {
1449 if (our_flavour == sf->sym_flavour)
1450 {
1451 objfile->sf = sf;
1452 return;
1453 }
1454 }
1455
1456 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1457 bfd_get_target (objfile->obfd));
1458 }
1459 \f
1460
1461 /* This function runs the load command of our current target. */
1462
1463 static void
1464 load_command (char *arg, int from_tty)
1465 {
1466 if (arg == NULL)
1467 {
1468 char *parg;
1469 int count = 0;
1470
1471 parg = arg = get_exec_file (1);
1472
1473 /* Count how many \ " ' tab space there are in the name. */
1474 while ((parg = strpbrk (parg, "\\\"'\t ")))
1475 {
1476 parg++;
1477 count++;
1478 }
1479
1480 if (count)
1481 {
1482 /* We need to quote this string so buildargv can pull it apart. */
1483 char *temp = xmalloc (strlen (arg) + count + 1 );
1484 char *ptemp = temp;
1485 char *prev;
1486
1487 make_cleanup (xfree, temp);
1488
1489 prev = parg = arg;
1490 while ((parg = strpbrk (parg, "\\\"'\t ")))
1491 {
1492 strncpy (ptemp, prev, parg - prev);
1493 ptemp += parg - prev;
1494 prev = parg++;
1495 *ptemp++ = '\\';
1496 }
1497 strcpy (ptemp, prev);
1498
1499 arg = temp;
1500 }
1501 }
1502
1503 target_load (arg, from_tty);
1504
1505 /* After re-loading the executable, we don't really know which
1506 overlays are mapped any more. */
1507 overlay_cache_invalid = 1;
1508 }
1509
1510 /* This version of "load" should be usable for any target. Currently
1511 it is just used for remote targets, not inftarg.c or core files,
1512 on the theory that only in that case is it useful.
1513
1514 Avoiding xmodem and the like seems like a win (a) because we don't have
1515 to worry about finding it, and (b) On VMS, fork() is very slow and so
1516 we don't want to run a subprocess. On the other hand, I'm not sure how
1517 performance compares. */
1518
1519 static int download_write_size = 512;
1520 static void
1521 show_download_write_size (struct ui_file *file, int from_tty,
1522 struct cmd_list_element *c, const char *value)
1523 {
1524 fprintf_filtered (file, _("\
1525 The write size used when downloading a program is %s.\n"),
1526 value);
1527 }
1528 static int validate_download = 0;
1529
1530 /* Callback service function for generic_load (bfd_map_over_sections). */
1531
1532 static void
1533 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1534 {
1535 bfd_size_type *sum = data;
1536
1537 *sum += bfd_get_section_size (asec);
1538 }
1539
1540 /* Opaque data for load_section_callback. */
1541 struct load_section_data {
1542 unsigned long load_offset;
1543 unsigned long write_count;
1544 unsigned long data_count;
1545 bfd_size_type total_size;
1546 };
1547
1548 /* Callback service function for generic_load (bfd_map_over_sections). */
1549
1550 static void
1551 load_section_callback (bfd *abfd, asection *asec, void *data)
1552 {
1553 struct load_section_data *args = data;
1554
1555 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1556 {
1557 bfd_size_type size = bfd_get_section_size (asec);
1558 if (size > 0)
1559 {
1560 gdb_byte *buffer;
1561 struct cleanup *old_chain;
1562 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1563 bfd_size_type block_size;
1564 int err;
1565 const char *sect_name = bfd_get_section_name (abfd, asec);
1566 bfd_size_type sent;
1567
1568 if (download_write_size > 0 && size > download_write_size)
1569 block_size = download_write_size;
1570 else
1571 block_size = size;
1572
1573 buffer = xmalloc (size);
1574 old_chain = make_cleanup (xfree, buffer);
1575
1576 /* Is this really necessary? I guess it gives the user something
1577 to look at during a long download. */
1578 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1579 sect_name, paddr_nz (size), paddr_nz (lma));
1580
1581 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1582
1583 sent = 0;
1584 do
1585 {
1586 int len;
1587 bfd_size_type this_transfer = size - sent;
1588
1589 if (this_transfer >= block_size)
1590 this_transfer = block_size;
1591 len = target_write_memory_partial (lma, buffer,
1592 this_transfer, &err);
1593 if (err)
1594 break;
1595 if (validate_download)
1596 {
1597 /* Broken memories and broken monitors manifest
1598 themselves here when bring new computers to
1599 life. This doubles already slow downloads. */
1600 /* NOTE: cagney/1999-10-18: A more efficient
1601 implementation might add a verify_memory()
1602 method to the target vector and then use
1603 that. remote.c could implement that method
1604 using the ``qCRC'' packet. */
1605 gdb_byte *check = xmalloc (len);
1606 struct cleanup *verify_cleanups =
1607 make_cleanup (xfree, check);
1608
1609 if (target_read_memory (lma, check, len) != 0)
1610 error (_("Download verify read failed at 0x%s"),
1611 paddr (lma));
1612 if (memcmp (buffer, check, len) != 0)
1613 error (_("Download verify compare failed at 0x%s"),
1614 paddr (lma));
1615 do_cleanups (verify_cleanups);
1616 }
1617 args->data_count += len;
1618 lma += len;
1619 buffer += len;
1620 args->write_count += 1;
1621 sent += len;
1622 if (quit_flag
1623 || (deprecated_ui_load_progress_hook != NULL
1624 && deprecated_ui_load_progress_hook (sect_name, sent)))
1625 error (_("Canceled the download"));
1626
1627 if (deprecated_show_load_progress != NULL)
1628 deprecated_show_load_progress (sect_name, sent, size,
1629 args->data_count,
1630 args->total_size);
1631 }
1632 while (sent < size);
1633
1634 if (err != 0)
1635 error (_("Memory access error while loading section %s."), sect_name);
1636
1637 do_cleanups (old_chain);
1638 }
1639 }
1640 }
1641
1642 void
1643 generic_load (char *args, int from_tty)
1644 {
1645 asection *s;
1646 bfd *loadfile_bfd;
1647 struct timeval start_time, end_time;
1648 char *filename;
1649 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1650 struct load_section_data cbdata;
1651 CORE_ADDR entry;
1652 char **argv;
1653
1654 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1655 cbdata.write_count = 0; /* Number of writes needed. */
1656 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1657 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1658
1659 argv = buildargv (args);
1660
1661 if (argv == NULL)
1662 nomem(0);
1663
1664 make_cleanup_freeargv (argv);
1665
1666 filename = tilde_expand (argv[0]);
1667 make_cleanup (xfree, filename);
1668
1669 if (argv[1] != NULL)
1670 {
1671 char *endptr;
1672
1673 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1674
1675 /* If the last word was not a valid number then
1676 treat it as a file name with spaces in. */
1677 if (argv[1] == endptr)
1678 error (_("Invalid download offset:%s."), argv[1]);
1679
1680 if (argv[2] != NULL)
1681 error (_("Too many parameters."));
1682 }
1683
1684 /* Open the file for loading. */
1685 loadfile_bfd = bfd_openr (filename, gnutarget);
1686 if (loadfile_bfd == NULL)
1687 {
1688 perror_with_name (filename);
1689 return;
1690 }
1691
1692 /* FIXME: should be checking for errors from bfd_close (for one thing,
1693 on error it does not free all the storage associated with the
1694 bfd). */
1695 make_cleanup_bfd_close (loadfile_bfd);
1696
1697 if (!bfd_check_format (loadfile_bfd, bfd_object))
1698 {
1699 error (_("\"%s\" is not an object file: %s"), filename,
1700 bfd_errmsg (bfd_get_error ()));
1701 }
1702
1703 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1704 (void *) &cbdata.total_size);
1705
1706 gettimeofday (&start_time, NULL);
1707
1708 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1709
1710 gettimeofday (&end_time, NULL);
1711
1712 entry = bfd_get_start_address (loadfile_bfd);
1713 ui_out_text (uiout, "Start address ");
1714 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1715 ui_out_text (uiout, ", load size ");
1716 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1717 ui_out_text (uiout, "\n");
1718 /* We were doing this in remote-mips.c, I suspect it is right
1719 for other targets too. */
1720 write_pc (entry);
1721
1722 /* FIXME: are we supposed to call symbol_file_add or not? According
1723 to a comment from remote-mips.c (where a call to symbol_file_add
1724 was commented out), making the call confuses GDB if more than one
1725 file is loaded in. Some targets do (e.g., remote-vx.c) but
1726 others don't (or didn't - perhaps they have all been deleted). */
1727
1728 print_transfer_performance (gdb_stdout, cbdata.data_count,
1729 cbdata.write_count, &start_time, &end_time);
1730
1731 do_cleanups (old_cleanups);
1732 }
1733
1734 /* Report how fast the transfer went. */
1735
1736 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1737 replaced by print_transfer_performance (with a very different
1738 function signature). */
1739
1740 void
1741 report_transfer_performance (unsigned long data_count, time_t start_time,
1742 time_t end_time)
1743 {
1744 struct timeval start, end;
1745
1746 start.tv_sec = start_time;
1747 start.tv_usec = 0;
1748 end.tv_sec = end_time;
1749 end.tv_usec = 0;
1750
1751 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
1752 }
1753
1754 void
1755 print_transfer_performance (struct ui_file *stream,
1756 unsigned long data_count,
1757 unsigned long write_count,
1758 const struct timeval *start_time,
1759 const struct timeval *end_time)
1760 {
1761 unsigned long time_count;
1762
1763 /* Compute the elapsed time in milliseconds, as a tradeoff between
1764 accuracy and overflow. */
1765 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
1766 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
1767
1768 ui_out_text (uiout, "Transfer rate: ");
1769 if (time_count > 0)
1770 {
1771 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1772 1000 * (data_count * 8) / time_count);
1773 ui_out_text (uiout, " bits/sec");
1774 }
1775 else
1776 {
1777 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1778 ui_out_text (uiout, " bits in <1 sec");
1779 }
1780 if (write_count > 0)
1781 {
1782 ui_out_text (uiout, ", ");
1783 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1784 ui_out_text (uiout, " bytes/write");
1785 }
1786 ui_out_text (uiout, ".\n");
1787 }
1788
1789 /* This function allows the addition of incrementally linked object files.
1790 It does not modify any state in the target, only in the debugger. */
1791 /* Note: ezannoni 2000-04-13 This function/command used to have a
1792 special case syntax for the rombug target (Rombug is the boot
1793 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1794 rombug case, the user doesn't need to supply a text address,
1795 instead a call to target_link() (in target.c) would supply the
1796 value to use. We are now discontinuing this type of ad hoc syntax. */
1797
1798 static void
1799 add_symbol_file_command (char *args, int from_tty)
1800 {
1801 char *filename = NULL;
1802 int flags = OBJF_USERLOADED;
1803 char *arg;
1804 int expecting_option = 0;
1805 int section_index = 0;
1806 int argcnt = 0;
1807 int sec_num = 0;
1808 int i;
1809 int expecting_sec_name = 0;
1810 int expecting_sec_addr = 0;
1811 char **argv;
1812
1813 struct sect_opt
1814 {
1815 char *name;
1816 char *value;
1817 };
1818
1819 struct section_addr_info *section_addrs;
1820 struct sect_opt *sect_opts = NULL;
1821 size_t num_sect_opts = 0;
1822 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1823
1824 num_sect_opts = 16;
1825 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1826 * sizeof (struct sect_opt));
1827
1828 dont_repeat ();
1829
1830 if (args == NULL)
1831 error (_("add-symbol-file takes a file name and an address"));
1832
1833 argv = buildargv (args);
1834 make_cleanup_freeargv (argv);
1835
1836 if (argv == NULL)
1837 nomem (0);
1838
1839 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
1840 {
1841 /* Process the argument. */
1842 if (argcnt == 0)
1843 {
1844 /* The first argument is the file name. */
1845 filename = tilde_expand (arg);
1846 make_cleanup (xfree, filename);
1847 }
1848 else
1849 if (argcnt == 1)
1850 {
1851 /* The second argument is always the text address at which
1852 to load the program. */
1853 sect_opts[section_index].name = ".text";
1854 sect_opts[section_index].value = arg;
1855 if (++section_index > num_sect_opts)
1856 {
1857 num_sect_opts *= 2;
1858 sect_opts = ((struct sect_opt *)
1859 xrealloc (sect_opts,
1860 num_sect_opts
1861 * sizeof (struct sect_opt)));
1862 }
1863 }
1864 else
1865 {
1866 /* It's an option (starting with '-') or it's an argument
1867 to an option */
1868
1869 if (*arg == '-')
1870 {
1871 if (strcmp (arg, "-readnow") == 0)
1872 flags |= OBJF_READNOW;
1873 else if (strcmp (arg, "-s") == 0)
1874 {
1875 expecting_sec_name = 1;
1876 expecting_sec_addr = 1;
1877 }
1878 }
1879 else
1880 {
1881 if (expecting_sec_name)
1882 {
1883 sect_opts[section_index].name = arg;
1884 expecting_sec_name = 0;
1885 }
1886 else
1887 if (expecting_sec_addr)
1888 {
1889 sect_opts[section_index].value = arg;
1890 expecting_sec_addr = 0;
1891 if (++section_index > num_sect_opts)
1892 {
1893 num_sect_opts *= 2;
1894 sect_opts = ((struct sect_opt *)
1895 xrealloc (sect_opts,
1896 num_sect_opts
1897 * sizeof (struct sect_opt)));
1898 }
1899 }
1900 else
1901 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
1902 }
1903 }
1904 }
1905
1906 /* This command takes at least two arguments. The first one is a
1907 filename, and the second is the address where this file has been
1908 loaded. Abort now if this address hasn't been provided by the
1909 user. */
1910 if (section_index < 1)
1911 error (_("The address where %s has been loaded is missing"), filename);
1912
1913 /* Print the prompt for the query below. And save the arguments into
1914 a sect_addr_info structure to be passed around to other
1915 functions. We have to split this up into separate print
1916 statements because hex_string returns a local static
1917 string. */
1918
1919 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
1920 section_addrs = alloc_section_addr_info (section_index);
1921 make_cleanup (xfree, section_addrs);
1922 for (i = 0; i < section_index; i++)
1923 {
1924 CORE_ADDR addr;
1925 char *val = sect_opts[i].value;
1926 char *sec = sect_opts[i].name;
1927
1928 addr = parse_and_eval_address (val);
1929
1930 /* Here we store the section offsets in the order they were
1931 entered on the command line. */
1932 section_addrs->other[sec_num].name = sec;
1933 section_addrs->other[sec_num].addr = addr;
1934 printf_unfiltered ("\t%s_addr = %s\n",
1935 sec, hex_string ((unsigned long)addr));
1936 sec_num++;
1937
1938 /* The object's sections are initialized when a
1939 call is made to build_objfile_section_table (objfile).
1940 This happens in reread_symbols.
1941 At this point, we don't know what file type this is,
1942 so we can't determine what section names are valid. */
1943 }
1944
1945 if (from_tty && (!query ("%s", "")))
1946 error (_("Not confirmed."));
1947
1948 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
1949
1950 /* Getting new symbols may change our opinion about what is
1951 frameless. */
1952 reinit_frame_cache ();
1953 do_cleanups (my_cleanups);
1954 }
1955 \f
1956 static void
1957 add_shared_symbol_files_command (char *args, int from_tty)
1958 {
1959 #ifdef ADD_SHARED_SYMBOL_FILES
1960 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1961 #else
1962 error (_("This command is not available in this configuration of GDB."));
1963 #endif
1964 }
1965 \f
1966 /* Re-read symbols if a symbol-file has changed. */
1967 void
1968 reread_symbols (void)
1969 {
1970 struct objfile *objfile;
1971 long new_modtime;
1972 int reread_one = 0;
1973 struct stat new_statbuf;
1974 int res;
1975
1976 /* With the addition of shared libraries, this should be modified,
1977 the load time should be saved in the partial symbol tables, since
1978 different tables may come from different source files. FIXME.
1979 This routine should then walk down each partial symbol table
1980 and see if the symbol table that it originates from has been changed */
1981
1982 for (objfile = object_files; objfile; objfile = objfile->next)
1983 {
1984 if (objfile->obfd)
1985 {
1986 #ifdef DEPRECATED_IBM6000_TARGET
1987 /* If this object is from a shared library, then you should
1988 stat on the library name, not member name. */
1989
1990 if (objfile->obfd->my_archive)
1991 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1992 else
1993 #endif
1994 res = stat (objfile->name, &new_statbuf);
1995 if (res != 0)
1996 {
1997 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1998 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
1999 objfile->name);
2000 continue;
2001 }
2002 new_modtime = new_statbuf.st_mtime;
2003 if (new_modtime != objfile->mtime)
2004 {
2005 struct cleanup *old_cleanups;
2006 struct section_offsets *offsets;
2007 int num_offsets;
2008 char *obfd_filename;
2009
2010 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2011 objfile->name);
2012
2013 /* There are various functions like symbol_file_add,
2014 symfile_bfd_open, syms_from_objfile, etc., which might
2015 appear to do what we want. But they have various other
2016 effects which we *don't* want. So we just do stuff
2017 ourselves. We don't worry about mapped files (for one thing,
2018 any mapped file will be out of date). */
2019
2020 /* If we get an error, blow away this objfile (not sure if
2021 that is the correct response for things like shared
2022 libraries). */
2023 old_cleanups = make_cleanup_free_objfile (objfile);
2024 /* We need to do this whenever any symbols go away. */
2025 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2026
2027 /* Clean up any state BFD has sitting around. We don't need
2028 to close the descriptor but BFD lacks a way of closing the
2029 BFD without closing the descriptor. */
2030 obfd_filename = bfd_get_filename (objfile->obfd);
2031 if (!bfd_close (objfile->obfd))
2032 error (_("Can't close BFD for %s: %s"), objfile->name,
2033 bfd_errmsg (bfd_get_error ()));
2034 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2035 if (objfile->obfd == NULL)
2036 error (_("Can't open %s to read symbols."), objfile->name);
2037 /* bfd_openr sets cacheable to true, which is what we want. */
2038 if (!bfd_check_format (objfile->obfd, bfd_object))
2039 error (_("Can't read symbols from %s: %s."), objfile->name,
2040 bfd_errmsg (bfd_get_error ()));
2041
2042 /* Save the offsets, we will nuke them with the rest of the
2043 objfile_obstack. */
2044 num_offsets = objfile->num_sections;
2045 offsets = ((struct section_offsets *)
2046 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2047 memcpy (offsets, objfile->section_offsets,
2048 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2049
2050 /* Remove any references to this objfile in the global
2051 value lists. */
2052 preserve_values (objfile);
2053
2054 /* Nuke all the state that we will re-read. Much of the following
2055 code which sets things to NULL really is necessary to tell
2056 other parts of GDB that there is nothing currently there. */
2057
2058 /* FIXME: Do we have to free a whole linked list, or is this
2059 enough? */
2060 if (objfile->global_psymbols.list)
2061 xfree (objfile->global_psymbols.list);
2062 memset (&objfile->global_psymbols, 0,
2063 sizeof (objfile->global_psymbols));
2064 if (objfile->static_psymbols.list)
2065 xfree (objfile->static_psymbols.list);
2066 memset (&objfile->static_psymbols, 0,
2067 sizeof (objfile->static_psymbols));
2068
2069 /* Free the obstacks for non-reusable objfiles */
2070 bcache_xfree (objfile->psymbol_cache);
2071 objfile->psymbol_cache = bcache_xmalloc ();
2072 bcache_xfree (objfile->macro_cache);
2073 objfile->macro_cache = bcache_xmalloc ();
2074 if (objfile->demangled_names_hash != NULL)
2075 {
2076 htab_delete (objfile->demangled_names_hash);
2077 objfile->demangled_names_hash = NULL;
2078 }
2079 obstack_free (&objfile->objfile_obstack, 0);
2080 objfile->sections = NULL;
2081 objfile->symtabs = NULL;
2082 objfile->psymtabs = NULL;
2083 objfile->free_psymtabs = NULL;
2084 objfile->cp_namespace_symtab = NULL;
2085 objfile->msymbols = NULL;
2086 objfile->deprecated_sym_private = NULL;
2087 objfile->minimal_symbol_count = 0;
2088 memset (&objfile->msymbol_hash, 0,
2089 sizeof (objfile->msymbol_hash));
2090 memset (&objfile->msymbol_demangled_hash, 0,
2091 sizeof (objfile->msymbol_demangled_hash));
2092 objfile->fundamental_types = NULL;
2093 clear_objfile_data (objfile);
2094 if (objfile->sf != NULL)
2095 {
2096 (*objfile->sf->sym_finish) (objfile);
2097 }
2098
2099 /* We never make this a mapped file. */
2100 objfile->md = NULL;
2101 objfile->psymbol_cache = bcache_xmalloc ();
2102 objfile->macro_cache = bcache_xmalloc ();
2103 /* obstack_init also initializes the obstack so it is
2104 empty. We could use obstack_specify_allocation but
2105 gdb_obstack.h specifies the alloc/dealloc
2106 functions. */
2107 obstack_init (&objfile->objfile_obstack);
2108 if (build_objfile_section_table (objfile))
2109 {
2110 error (_("Can't find the file sections in `%s': %s"),
2111 objfile->name, bfd_errmsg (bfd_get_error ()));
2112 }
2113 terminate_minimal_symbol_table (objfile);
2114
2115 /* We use the same section offsets as from last time. I'm not
2116 sure whether that is always correct for shared libraries. */
2117 objfile->section_offsets = (struct section_offsets *)
2118 obstack_alloc (&objfile->objfile_obstack,
2119 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2120 memcpy (objfile->section_offsets, offsets,
2121 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2122 objfile->num_sections = num_offsets;
2123
2124 /* What the hell is sym_new_init for, anyway? The concept of
2125 distinguishing between the main file and additional files
2126 in this way seems rather dubious. */
2127 if (objfile == symfile_objfile)
2128 {
2129 (*objfile->sf->sym_new_init) (objfile);
2130 }
2131
2132 (*objfile->sf->sym_init) (objfile);
2133 clear_complaints (&symfile_complaints, 1, 1);
2134 /* The "mainline" parameter is a hideous hack; I think leaving it
2135 zero is OK since dbxread.c also does what it needs to do if
2136 objfile->global_psymbols.size is 0. */
2137 (*objfile->sf->sym_read) (objfile, 0);
2138 if (!have_partial_symbols () && !have_full_symbols ())
2139 {
2140 wrap_here ("");
2141 printf_unfiltered (_("(no debugging symbols found)\n"));
2142 wrap_here ("");
2143 }
2144 objfile->flags |= OBJF_SYMS;
2145
2146 /* We're done reading the symbol file; finish off complaints. */
2147 clear_complaints (&symfile_complaints, 0, 1);
2148
2149 /* Getting new symbols may change our opinion about what is
2150 frameless. */
2151
2152 reinit_frame_cache ();
2153
2154 /* Discard cleanups as symbol reading was successful. */
2155 discard_cleanups (old_cleanups);
2156
2157 /* If the mtime has changed between the time we set new_modtime
2158 and now, we *want* this to be out of date, so don't call stat
2159 again now. */
2160 objfile->mtime = new_modtime;
2161 reread_one = 1;
2162 reread_separate_symbols (objfile);
2163 }
2164 }
2165 }
2166
2167 if (reread_one)
2168 {
2169 clear_symtab_users ();
2170 /* At least one objfile has changed, so we can consider that
2171 the executable we're debugging has changed too. */
2172 observer_notify_executable_changed (NULL);
2173 }
2174
2175 }
2176
2177
2178 /* Handle separate debug info for OBJFILE, which has just been
2179 re-read:
2180 - If we had separate debug info before, but now we don't, get rid
2181 of the separated objfile.
2182 - If we didn't have separated debug info before, but now we do,
2183 read in the new separated debug info file.
2184 - If the debug link points to a different file, toss the old one
2185 and read the new one.
2186 This function does *not* handle the case where objfile is still
2187 using the same separate debug info file, but that file's timestamp
2188 has changed. That case should be handled by the loop in
2189 reread_symbols already. */
2190 static void
2191 reread_separate_symbols (struct objfile *objfile)
2192 {
2193 char *debug_file;
2194 unsigned long crc32;
2195
2196 /* Does the updated objfile's debug info live in a
2197 separate file? */
2198 debug_file = find_separate_debug_file (objfile);
2199
2200 if (objfile->separate_debug_objfile)
2201 {
2202 /* There are two cases where we need to get rid of
2203 the old separated debug info objfile:
2204 - if the new primary objfile doesn't have
2205 separated debug info, or
2206 - if the new primary objfile has separate debug
2207 info, but it's under a different filename.
2208
2209 If the old and new objfiles both have separate
2210 debug info, under the same filename, then we're
2211 okay --- if the separated file's contents have
2212 changed, we will have caught that when we
2213 visited it in this function's outermost
2214 loop. */
2215 if (! debug_file
2216 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2217 free_objfile (objfile->separate_debug_objfile);
2218 }
2219
2220 /* If the new objfile has separate debug info, and we
2221 haven't loaded it already, do so now. */
2222 if (debug_file
2223 && ! objfile->separate_debug_objfile)
2224 {
2225 /* Use the same section offset table as objfile itself.
2226 Preserve the flags from objfile that make sense. */
2227 objfile->separate_debug_objfile
2228 = (symbol_file_add_with_addrs_or_offsets
2229 (symfile_bfd_open (debug_file),
2230 info_verbose, /* from_tty: Don't override the default. */
2231 0, /* No addr table. */
2232 objfile->section_offsets, objfile->num_sections,
2233 0, /* Not mainline. See comments about this above. */
2234 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2235 | OBJF_USERLOADED)));
2236 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2237 = objfile;
2238 }
2239 }
2240
2241
2242 \f
2243
2244
2245 typedef struct
2246 {
2247 char *ext;
2248 enum language lang;
2249 }
2250 filename_language;
2251
2252 static filename_language *filename_language_table;
2253 static int fl_table_size, fl_table_next;
2254
2255 static void
2256 add_filename_language (char *ext, enum language lang)
2257 {
2258 if (fl_table_next >= fl_table_size)
2259 {
2260 fl_table_size += 10;
2261 filename_language_table =
2262 xrealloc (filename_language_table,
2263 fl_table_size * sizeof (*filename_language_table));
2264 }
2265
2266 filename_language_table[fl_table_next].ext = xstrdup (ext);
2267 filename_language_table[fl_table_next].lang = lang;
2268 fl_table_next++;
2269 }
2270
2271 static char *ext_args;
2272 static void
2273 show_ext_args (struct ui_file *file, int from_tty,
2274 struct cmd_list_element *c, const char *value)
2275 {
2276 fprintf_filtered (file, _("\
2277 Mapping between filename extension and source language is \"%s\".\n"),
2278 value);
2279 }
2280
2281 static void
2282 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2283 {
2284 int i;
2285 char *cp = ext_args;
2286 enum language lang;
2287
2288 /* First arg is filename extension, starting with '.' */
2289 if (*cp != '.')
2290 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2291
2292 /* Find end of first arg. */
2293 while (*cp && !isspace (*cp))
2294 cp++;
2295
2296 if (*cp == '\0')
2297 error (_("'%s': two arguments required -- filename extension and language"),
2298 ext_args);
2299
2300 /* Null-terminate first arg */
2301 *cp++ = '\0';
2302
2303 /* Find beginning of second arg, which should be a source language. */
2304 while (*cp && isspace (*cp))
2305 cp++;
2306
2307 if (*cp == '\0')
2308 error (_("'%s': two arguments required -- filename extension and language"),
2309 ext_args);
2310
2311 /* Lookup the language from among those we know. */
2312 lang = language_enum (cp);
2313
2314 /* Now lookup the filename extension: do we already know it? */
2315 for (i = 0; i < fl_table_next; i++)
2316 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2317 break;
2318
2319 if (i >= fl_table_next)
2320 {
2321 /* new file extension */
2322 add_filename_language (ext_args, lang);
2323 }
2324 else
2325 {
2326 /* redefining a previously known filename extension */
2327
2328 /* if (from_tty) */
2329 /* query ("Really make files of type %s '%s'?", */
2330 /* ext_args, language_str (lang)); */
2331
2332 xfree (filename_language_table[i].ext);
2333 filename_language_table[i].ext = xstrdup (ext_args);
2334 filename_language_table[i].lang = lang;
2335 }
2336 }
2337
2338 static void
2339 info_ext_lang_command (char *args, int from_tty)
2340 {
2341 int i;
2342
2343 printf_filtered (_("Filename extensions and the languages they represent:"));
2344 printf_filtered ("\n\n");
2345 for (i = 0; i < fl_table_next; i++)
2346 printf_filtered ("\t%s\t- %s\n",
2347 filename_language_table[i].ext,
2348 language_str (filename_language_table[i].lang));
2349 }
2350
2351 static void
2352 init_filename_language_table (void)
2353 {
2354 if (fl_table_size == 0) /* protect against repetition */
2355 {
2356 fl_table_size = 20;
2357 fl_table_next = 0;
2358 filename_language_table =
2359 xmalloc (fl_table_size * sizeof (*filename_language_table));
2360 add_filename_language (".c", language_c);
2361 add_filename_language (".C", language_cplus);
2362 add_filename_language (".cc", language_cplus);
2363 add_filename_language (".cp", language_cplus);
2364 add_filename_language (".cpp", language_cplus);
2365 add_filename_language (".cxx", language_cplus);
2366 add_filename_language (".c++", language_cplus);
2367 add_filename_language (".java", language_java);
2368 add_filename_language (".class", language_java);
2369 add_filename_language (".m", language_objc);
2370 add_filename_language (".f", language_fortran);
2371 add_filename_language (".F", language_fortran);
2372 add_filename_language (".s", language_asm);
2373 add_filename_language (".S", language_asm);
2374 add_filename_language (".pas", language_pascal);
2375 add_filename_language (".p", language_pascal);
2376 add_filename_language (".pp", language_pascal);
2377 add_filename_language (".adb", language_ada);
2378 add_filename_language (".ads", language_ada);
2379 add_filename_language (".a", language_ada);
2380 add_filename_language (".ada", language_ada);
2381 }
2382 }
2383
2384 enum language
2385 deduce_language_from_filename (char *filename)
2386 {
2387 int i;
2388 char *cp;
2389
2390 if (filename != NULL)
2391 if ((cp = strrchr (filename, '.')) != NULL)
2392 for (i = 0; i < fl_table_next; i++)
2393 if (strcmp (cp, filename_language_table[i].ext) == 0)
2394 return filename_language_table[i].lang;
2395
2396 return language_unknown;
2397 }
2398 \f
2399 /* allocate_symtab:
2400
2401 Allocate and partly initialize a new symbol table. Return a pointer
2402 to it. error() if no space.
2403
2404 Caller must set these fields:
2405 LINETABLE(symtab)
2406 symtab->blockvector
2407 symtab->dirname
2408 symtab->free_code
2409 symtab->free_ptr
2410 possibly free_named_symtabs (symtab->filename);
2411 */
2412
2413 struct symtab *
2414 allocate_symtab (char *filename, struct objfile *objfile)
2415 {
2416 struct symtab *symtab;
2417
2418 symtab = (struct symtab *)
2419 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2420 memset (symtab, 0, sizeof (*symtab));
2421 symtab->filename = obsavestring (filename, strlen (filename),
2422 &objfile->objfile_obstack);
2423 symtab->fullname = NULL;
2424 symtab->language = deduce_language_from_filename (filename);
2425 symtab->debugformat = obsavestring ("unknown", 7,
2426 &objfile->objfile_obstack);
2427
2428 /* Hook it to the objfile it comes from */
2429
2430 symtab->objfile = objfile;
2431 symtab->next = objfile->symtabs;
2432 objfile->symtabs = symtab;
2433
2434 /* FIXME: This should go away. It is only defined for the Z8000,
2435 and the Z8000 definition of this macro doesn't have anything to
2436 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2437 here for convenience. */
2438 #ifdef INIT_EXTRA_SYMTAB_INFO
2439 INIT_EXTRA_SYMTAB_INFO (symtab);
2440 #endif
2441
2442 return (symtab);
2443 }
2444
2445 struct partial_symtab *
2446 allocate_psymtab (char *filename, struct objfile *objfile)
2447 {
2448 struct partial_symtab *psymtab;
2449
2450 if (objfile->free_psymtabs)
2451 {
2452 psymtab = objfile->free_psymtabs;
2453 objfile->free_psymtabs = psymtab->next;
2454 }
2455 else
2456 psymtab = (struct partial_symtab *)
2457 obstack_alloc (&objfile->objfile_obstack,
2458 sizeof (struct partial_symtab));
2459
2460 memset (psymtab, 0, sizeof (struct partial_symtab));
2461 psymtab->filename = obsavestring (filename, strlen (filename),
2462 &objfile->objfile_obstack);
2463 psymtab->symtab = NULL;
2464
2465 /* Prepend it to the psymtab list for the objfile it belongs to.
2466 Psymtabs are searched in most recent inserted -> least recent
2467 inserted order. */
2468
2469 psymtab->objfile = objfile;
2470 psymtab->next = objfile->psymtabs;
2471 objfile->psymtabs = psymtab;
2472 #if 0
2473 {
2474 struct partial_symtab **prev_pst;
2475 psymtab->objfile = objfile;
2476 psymtab->next = NULL;
2477 prev_pst = &(objfile->psymtabs);
2478 while ((*prev_pst) != NULL)
2479 prev_pst = &((*prev_pst)->next);
2480 (*prev_pst) = psymtab;
2481 }
2482 #endif
2483
2484 return (psymtab);
2485 }
2486
2487 void
2488 discard_psymtab (struct partial_symtab *pst)
2489 {
2490 struct partial_symtab **prev_pst;
2491
2492 /* From dbxread.c:
2493 Empty psymtabs happen as a result of header files which don't
2494 have any symbols in them. There can be a lot of them. But this
2495 check is wrong, in that a psymtab with N_SLINE entries but
2496 nothing else is not empty, but we don't realize that. Fixing
2497 that without slowing things down might be tricky. */
2498
2499 /* First, snip it out of the psymtab chain */
2500
2501 prev_pst = &(pst->objfile->psymtabs);
2502 while ((*prev_pst) != pst)
2503 prev_pst = &((*prev_pst)->next);
2504 (*prev_pst) = pst->next;
2505
2506 /* Next, put it on a free list for recycling */
2507
2508 pst->next = pst->objfile->free_psymtabs;
2509 pst->objfile->free_psymtabs = pst;
2510 }
2511 \f
2512
2513 /* Reset all data structures in gdb which may contain references to symbol
2514 table data. */
2515
2516 void
2517 clear_symtab_users (void)
2518 {
2519 /* Someday, we should do better than this, by only blowing away
2520 the things that really need to be blown. */
2521
2522 /* Clear the "current" symtab first, because it is no longer valid.
2523 breakpoint_re_set may try to access the current symtab. */
2524 clear_current_source_symtab_and_line ();
2525
2526 clear_displays ();
2527 breakpoint_re_set ();
2528 set_default_breakpoint (0, 0, 0, 0);
2529 clear_pc_function_cache ();
2530 if (deprecated_target_new_objfile_hook)
2531 deprecated_target_new_objfile_hook (NULL);
2532 }
2533
2534 static void
2535 clear_symtab_users_cleanup (void *ignore)
2536 {
2537 clear_symtab_users ();
2538 }
2539
2540 /* clear_symtab_users_once:
2541
2542 This function is run after symbol reading, or from a cleanup.
2543 If an old symbol table was obsoleted, the old symbol table
2544 has been blown away, but the other GDB data structures that may
2545 reference it have not yet been cleared or re-directed. (The old
2546 symtab was zapped, and the cleanup queued, in free_named_symtab()
2547 below.)
2548
2549 This function can be queued N times as a cleanup, or called
2550 directly; it will do all the work the first time, and then will be a
2551 no-op until the next time it is queued. This works by bumping a
2552 counter at queueing time. Much later when the cleanup is run, or at
2553 the end of symbol processing (in case the cleanup is discarded), if
2554 the queued count is greater than the "done-count", we do the work
2555 and set the done-count to the queued count. If the queued count is
2556 less than or equal to the done-count, we just ignore the call. This
2557 is needed because reading a single .o file will often replace many
2558 symtabs (one per .h file, for example), and we don't want to reset
2559 the breakpoints N times in the user's face.
2560
2561 The reason we both queue a cleanup, and call it directly after symbol
2562 reading, is because the cleanup protects us in case of errors, but is
2563 discarded if symbol reading is successful. */
2564
2565 #if 0
2566 /* FIXME: As free_named_symtabs is currently a big noop this function
2567 is no longer needed. */
2568 static void clear_symtab_users_once (void);
2569
2570 static int clear_symtab_users_queued;
2571 static int clear_symtab_users_done;
2572
2573 static void
2574 clear_symtab_users_once (void)
2575 {
2576 /* Enforce once-per-`do_cleanups'-semantics */
2577 if (clear_symtab_users_queued <= clear_symtab_users_done)
2578 return;
2579 clear_symtab_users_done = clear_symtab_users_queued;
2580
2581 clear_symtab_users ();
2582 }
2583 #endif
2584
2585 /* Delete the specified psymtab, and any others that reference it. */
2586
2587 static void
2588 cashier_psymtab (struct partial_symtab *pst)
2589 {
2590 struct partial_symtab *ps, *pprev = NULL;
2591 int i;
2592
2593 /* Find its previous psymtab in the chain */
2594 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2595 {
2596 if (ps == pst)
2597 break;
2598 pprev = ps;
2599 }
2600
2601 if (ps)
2602 {
2603 /* Unhook it from the chain. */
2604 if (ps == pst->objfile->psymtabs)
2605 pst->objfile->psymtabs = ps->next;
2606 else
2607 pprev->next = ps->next;
2608
2609 /* FIXME, we can't conveniently deallocate the entries in the
2610 partial_symbol lists (global_psymbols/static_psymbols) that
2611 this psymtab points to. These just take up space until all
2612 the psymtabs are reclaimed. Ditto the dependencies list and
2613 filename, which are all in the objfile_obstack. */
2614
2615 /* We need to cashier any psymtab that has this one as a dependency... */
2616 again:
2617 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2618 {
2619 for (i = 0; i < ps->number_of_dependencies; i++)
2620 {
2621 if (ps->dependencies[i] == pst)
2622 {
2623 cashier_psymtab (ps);
2624 goto again; /* Must restart, chain has been munged. */
2625 }
2626 }
2627 }
2628 }
2629 }
2630
2631 /* If a symtab or psymtab for filename NAME is found, free it along
2632 with any dependent breakpoints, displays, etc.
2633 Used when loading new versions of object modules with the "add-file"
2634 command. This is only called on the top-level symtab or psymtab's name;
2635 it is not called for subsidiary files such as .h files.
2636
2637 Return value is 1 if we blew away the environment, 0 if not.
2638 FIXME. The return value appears to never be used.
2639
2640 FIXME. I think this is not the best way to do this. We should
2641 work on being gentler to the environment while still cleaning up
2642 all stray pointers into the freed symtab. */
2643
2644 int
2645 free_named_symtabs (char *name)
2646 {
2647 #if 0
2648 /* FIXME: With the new method of each objfile having it's own
2649 psymtab list, this function needs serious rethinking. In particular,
2650 why was it ever necessary to toss psymtabs with specific compilation
2651 unit filenames, as opposed to all psymtabs from a particular symbol
2652 file? -- fnf
2653 Well, the answer is that some systems permit reloading of particular
2654 compilation units. We want to blow away any old info about these
2655 compilation units, regardless of which objfiles they arrived in. --gnu. */
2656
2657 struct symtab *s;
2658 struct symtab *prev;
2659 struct partial_symtab *ps;
2660 struct blockvector *bv;
2661 int blewit = 0;
2662
2663 /* We only wack things if the symbol-reload switch is set. */
2664 if (!symbol_reloading)
2665 return 0;
2666
2667 /* Some symbol formats have trouble providing file names... */
2668 if (name == 0 || *name == '\0')
2669 return 0;
2670
2671 /* Look for a psymtab with the specified name. */
2672
2673 again2:
2674 for (ps = partial_symtab_list; ps; ps = ps->next)
2675 {
2676 if (strcmp (name, ps->filename) == 0)
2677 {
2678 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2679 goto again2; /* Must restart, chain has been munged */
2680 }
2681 }
2682
2683 /* Look for a symtab with the specified name. */
2684
2685 for (s = symtab_list; s; s = s->next)
2686 {
2687 if (strcmp (name, s->filename) == 0)
2688 break;
2689 prev = s;
2690 }
2691
2692 if (s)
2693 {
2694 if (s == symtab_list)
2695 symtab_list = s->next;
2696 else
2697 prev->next = s->next;
2698
2699 /* For now, queue a delete for all breakpoints, displays, etc., whether
2700 or not they depend on the symtab being freed. This should be
2701 changed so that only those data structures affected are deleted. */
2702
2703 /* But don't delete anything if the symtab is empty.
2704 This test is necessary due to a bug in "dbxread.c" that
2705 causes empty symtabs to be created for N_SO symbols that
2706 contain the pathname of the object file. (This problem
2707 has been fixed in GDB 3.9x). */
2708
2709 bv = BLOCKVECTOR (s);
2710 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2711 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2712 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2713 {
2714 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
2715 name);
2716 clear_symtab_users_queued++;
2717 make_cleanup (clear_symtab_users_once, 0);
2718 blewit = 1;
2719 }
2720 else
2721 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2722 name);
2723
2724 free_symtab (s);
2725 }
2726 else
2727 {
2728 /* It is still possible that some breakpoints will be affected
2729 even though no symtab was found, since the file might have
2730 been compiled without debugging, and hence not be associated
2731 with a symtab. In order to handle this correctly, we would need
2732 to keep a list of text address ranges for undebuggable files.
2733 For now, we do nothing, since this is a fairly obscure case. */
2734 ;
2735 }
2736
2737 /* FIXME, what about the minimal symbol table? */
2738 return blewit;
2739 #else
2740 return (0);
2741 #endif
2742 }
2743 \f
2744 /* Allocate and partially fill a partial symtab. It will be
2745 completely filled at the end of the symbol list.
2746
2747 FILENAME is the name of the symbol-file we are reading from. */
2748
2749 struct partial_symtab *
2750 start_psymtab_common (struct objfile *objfile,
2751 struct section_offsets *section_offsets, char *filename,
2752 CORE_ADDR textlow, struct partial_symbol **global_syms,
2753 struct partial_symbol **static_syms)
2754 {
2755 struct partial_symtab *psymtab;
2756
2757 psymtab = allocate_psymtab (filename, objfile);
2758 psymtab->section_offsets = section_offsets;
2759 psymtab->textlow = textlow;
2760 psymtab->texthigh = psymtab->textlow; /* default */
2761 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2762 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2763 return (psymtab);
2764 }
2765 \f
2766 /* Add a symbol with a long value to a psymtab.
2767 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2768 Return the partial symbol that has been added. */
2769
2770 /* NOTE: carlton/2003-09-11: The reason why we return the partial
2771 symbol is so that callers can get access to the symbol's demangled
2772 name, which they don't have any cheap way to determine otherwise.
2773 (Currenly, dwarf2read.c is the only file who uses that information,
2774 though it's possible that other readers might in the future.)
2775 Elena wasn't thrilled about that, and I don't blame her, but we
2776 couldn't come up with a better way to get that information. If
2777 it's needed in other situations, we could consider breaking up
2778 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2779 cache. */
2780
2781 const struct partial_symbol *
2782 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2783 enum address_class class,
2784 struct psymbol_allocation_list *list, long val, /* Value as a long */
2785 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2786 enum language language, struct objfile *objfile)
2787 {
2788 struct partial_symbol *psym;
2789 char *buf = alloca (namelength + 1);
2790 /* psymbol is static so that there will be no uninitialized gaps in the
2791 structure which might contain random data, causing cache misses in
2792 bcache. */
2793 static struct partial_symbol psymbol;
2794
2795 /* Create local copy of the partial symbol */
2796 memcpy (buf, name, namelength);
2797 buf[namelength] = '\0';
2798 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2799 if (val != 0)
2800 {
2801 SYMBOL_VALUE (&psymbol) = val;
2802 }
2803 else
2804 {
2805 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2806 }
2807 SYMBOL_SECTION (&psymbol) = 0;
2808 SYMBOL_LANGUAGE (&psymbol) = language;
2809 PSYMBOL_DOMAIN (&psymbol) = domain;
2810 PSYMBOL_CLASS (&psymbol) = class;
2811
2812 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2813
2814 /* Stash the partial symbol away in the cache */
2815 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2816 objfile->psymbol_cache);
2817
2818 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2819 if (list->next >= list->list + list->size)
2820 {
2821 extend_psymbol_list (list, objfile);
2822 }
2823 *list->next++ = psym;
2824 OBJSTAT (objfile, n_psyms++);
2825
2826 return psym;
2827 }
2828
2829 /* Add a symbol with a long value to a psymtab. This differs from
2830 * add_psymbol_to_list above in taking both a mangled and a demangled
2831 * name. */
2832
2833 void
2834 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2835 int dem_namelength, domain_enum domain,
2836 enum address_class class,
2837 struct psymbol_allocation_list *list, long val, /* Value as a long */
2838 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2839 enum language language,
2840 struct objfile *objfile)
2841 {
2842 struct partial_symbol *psym;
2843 char *buf = alloca (namelength + 1);
2844 /* psymbol is static so that there will be no uninitialized gaps in the
2845 structure which might contain random data, causing cache misses in
2846 bcache. */
2847 static struct partial_symbol psymbol;
2848
2849 /* Create local copy of the partial symbol */
2850
2851 memcpy (buf, name, namelength);
2852 buf[namelength] = '\0';
2853 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2854 objfile->psymbol_cache);
2855
2856 buf = alloca (dem_namelength + 1);
2857 memcpy (buf, dem_name, dem_namelength);
2858 buf[dem_namelength] = '\0';
2859
2860 switch (language)
2861 {
2862 case language_c:
2863 case language_cplus:
2864 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2865 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2866 break;
2867 /* FIXME What should be done for the default case? Ignoring for now. */
2868 }
2869
2870 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2871 if (val != 0)
2872 {
2873 SYMBOL_VALUE (&psymbol) = val;
2874 }
2875 else
2876 {
2877 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2878 }
2879 SYMBOL_SECTION (&psymbol) = 0;
2880 SYMBOL_LANGUAGE (&psymbol) = language;
2881 PSYMBOL_DOMAIN (&psymbol) = domain;
2882 PSYMBOL_CLASS (&psymbol) = class;
2883 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2884
2885 /* Stash the partial symbol away in the cache */
2886 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2887 objfile->psymbol_cache);
2888
2889 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2890 if (list->next >= list->list + list->size)
2891 {
2892 extend_psymbol_list (list, objfile);
2893 }
2894 *list->next++ = psym;
2895 OBJSTAT (objfile, n_psyms++);
2896 }
2897
2898 /* Initialize storage for partial symbols. */
2899
2900 void
2901 init_psymbol_list (struct objfile *objfile, int total_symbols)
2902 {
2903 /* Free any previously allocated psymbol lists. */
2904
2905 if (objfile->global_psymbols.list)
2906 {
2907 xfree (objfile->global_psymbols.list);
2908 }
2909 if (objfile->static_psymbols.list)
2910 {
2911 xfree (objfile->static_psymbols.list);
2912 }
2913
2914 /* Current best guess is that approximately a twentieth
2915 of the total symbols (in a debugging file) are global or static
2916 oriented symbols */
2917
2918 objfile->global_psymbols.size = total_symbols / 10;
2919 objfile->static_psymbols.size = total_symbols / 10;
2920
2921 if (objfile->global_psymbols.size > 0)
2922 {
2923 objfile->global_psymbols.next =
2924 objfile->global_psymbols.list = (struct partial_symbol **)
2925 xmalloc ((objfile->global_psymbols.size
2926 * sizeof (struct partial_symbol *)));
2927 }
2928 if (objfile->static_psymbols.size > 0)
2929 {
2930 objfile->static_psymbols.next =
2931 objfile->static_psymbols.list = (struct partial_symbol **)
2932 xmalloc ((objfile->static_psymbols.size
2933 * sizeof (struct partial_symbol *)));
2934 }
2935 }
2936
2937 /* OVERLAYS:
2938 The following code implements an abstraction for debugging overlay sections.
2939
2940 The target model is as follows:
2941 1) The gnu linker will permit multiple sections to be mapped into the
2942 same VMA, each with its own unique LMA (or load address).
2943 2) It is assumed that some runtime mechanism exists for mapping the
2944 sections, one by one, from the load address into the VMA address.
2945 3) This code provides a mechanism for gdb to keep track of which
2946 sections should be considered to be mapped from the VMA to the LMA.
2947 This information is used for symbol lookup, and memory read/write.
2948 For instance, if a section has been mapped then its contents
2949 should be read from the VMA, otherwise from the LMA.
2950
2951 Two levels of debugger support for overlays are available. One is
2952 "manual", in which the debugger relies on the user to tell it which
2953 overlays are currently mapped. This level of support is
2954 implemented entirely in the core debugger, and the information about
2955 whether a section is mapped is kept in the objfile->obj_section table.
2956
2957 The second level of support is "automatic", and is only available if
2958 the target-specific code provides functionality to read the target's
2959 overlay mapping table, and translate its contents for the debugger
2960 (by updating the mapped state information in the obj_section tables).
2961
2962 The interface is as follows:
2963 User commands:
2964 overlay map <name> -- tell gdb to consider this section mapped
2965 overlay unmap <name> -- tell gdb to consider this section unmapped
2966 overlay list -- list the sections that GDB thinks are mapped
2967 overlay read-target -- get the target's state of what's mapped
2968 overlay off/manual/auto -- set overlay debugging state
2969 Functional interface:
2970 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2971 section, return that section.
2972 find_pc_overlay(pc): find any overlay section that contains
2973 the pc, either in its VMA or its LMA
2974 overlay_is_mapped(sect): true if overlay is marked as mapped
2975 section_is_overlay(sect): true if section's VMA != LMA
2976 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2977 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2978 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2979 overlay_mapped_address(...): map an address from section's LMA to VMA
2980 overlay_unmapped_address(...): map an address from section's VMA to LMA
2981 symbol_overlayed_address(...): Return a "current" address for symbol:
2982 either in VMA or LMA depending on whether
2983 the symbol's section is currently mapped
2984 */
2985
2986 /* Overlay debugging state: */
2987
2988 enum overlay_debugging_state overlay_debugging = ovly_off;
2989 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2990
2991 /* Target vector for refreshing overlay mapped state */
2992 static void simple_overlay_update (struct obj_section *);
2993 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2994
2995 /* Function: section_is_overlay (SECTION)
2996 Returns true if SECTION has VMA not equal to LMA, ie.
2997 SECTION is loaded at an address different from where it will "run". */
2998
2999 int
3000 section_is_overlay (asection *section)
3001 {
3002 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3003
3004 if (overlay_debugging)
3005 if (section && section->lma != 0 &&
3006 section->vma != section->lma)
3007 return 1;
3008
3009 return 0;
3010 }
3011
3012 /* Function: overlay_invalidate_all (void)
3013 Invalidate the mapped state of all overlay sections (mark it as stale). */
3014
3015 static void
3016 overlay_invalidate_all (void)
3017 {
3018 struct objfile *objfile;
3019 struct obj_section *sect;
3020
3021 ALL_OBJSECTIONS (objfile, sect)
3022 if (section_is_overlay (sect->the_bfd_section))
3023 sect->ovly_mapped = -1;
3024 }
3025
3026 /* Function: overlay_is_mapped (SECTION)
3027 Returns true if section is an overlay, and is currently mapped.
3028 Private: public access is thru function section_is_mapped.
3029
3030 Access to the ovly_mapped flag is restricted to this function, so
3031 that we can do automatic update. If the global flag
3032 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3033 overlay_invalidate_all. If the mapped state of the particular
3034 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3035
3036 static int
3037 overlay_is_mapped (struct obj_section *osect)
3038 {
3039 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3040 return 0;
3041
3042 switch (overlay_debugging)
3043 {
3044 default:
3045 case ovly_off:
3046 return 0; /* overlay debugging off */
3047 case ovly_auto: /* overlay debugging automatic */
3048 /* Unles there is a target_overlay_update function,
3049 there's really nothing useful to do here (can't really go auto) */
3050 if (target_overlay_update)
3051 {
3052 if (overlay_cache_invalid)
3053 {
3054 overlay_invalidate_all ();
3055 overlay_cache_invalid = 0;
3056 }
3057 if (osect->ovly_mapped == -1)
3058 (*target_overlay_update) (osect);
3059 }
3060 /* fall thru to manual case */
3061 case ovly_on: /* overlay debugging manual */
3062 return osect->ovly_mapped == 1;
3063 }
3064 }
3065
3066 /* Function: section_is_mapped
3067 Returns true if section is an overlay, and is currently mapped. */
3068
3069 int
3070 section_is_mapped (asection *section)
3071 {
3072 struct objfile *objfile;
3073 struct obj_section *osect;
3074
3075 if (overlay_debugging)
3076 if (section && section_is_overlay (section))
3077 ALL_OBJSECTIONS (objfile, osect)
3078 if (osect->the_bfd_section == section)
3079 return overlay_is_mapped (osect);
3080
3081 return 0;
3082 }
3083
3084 /* Function: pc_in_unmapped_range
3085 If PC falls into the lma range of SECTION, return true, else false. */
3086
3087 CORE_ADDR
3088 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
3089 {
3090 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3091
3092 int size;
3093
3094 if (overlay_debugging)
3095 if (section && section_is_overlay (section))
3096 {
3097 size = bfd_get_section_size (section);
3098 if (section->lma <= pc && pc < section->lma + size)
3099 return 1;
3100 }
3101 return 0;
3102 }
3103
3104 /* Function: pc_in_mapped_range
3105 If PC falls into the vma range of SECTION, return true, else false. */
3106
3107 CORE_ADDR
3108 pc_in_mapped_range (CORE_ADDR pc, asection *section)
3109 {
3110 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3111
3112 int size;
3113
3114 if (overlay_debugging)
3115 if (section && section_is_overlay (section))
3116 {
3117 size = bfd_get_section_size (section);
3118 if (section->vma <= pc && pc < section->vma + size)
3119 return 1;
3120 }
3121 return 0;
3122 }
3123
3124
3125 /* Return true if the mapped ranges of sections A and B overlap, false
3126 otherwise. */
3127 static int
3128 sections_overlap (asection *a, asection *b)
3129 {
3130 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3131
3132 CORE_ADDR a_start = a->vma;
3133 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
3134 CORE_ADDR b_start = b->vma;
3135 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
3136
3137 return (a_start < b_end && b_start < a_end);
3138 }
3139
3140 /* Function: overlay_unmapped_address (PC, SECTION)
3141 Returns the address corresponding to PC in the unmapped (load) range.
3142 May be the same as PC. */
3143
3144 CORE_ADDR
3145 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3146 {
3147 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3148
3149 if (overlay_debugging)
3150 if (section && section_is_overlay (section) &&
3151 pc_in_mapped_range (pc, section))
3152 return pc + section->lma - section->vma;
3153
3154 return pc;
3155 }
3156
3157 /* Function: overlay_mapped_address (PC, SECTION)
3158 Returns the address corresponding to PC in the mapped (runtime) range.
3159 May be the same as PC. */
3160
3161 CORE_ADDR
3162 overlay_mapped_address (CORE_ADDR pc, asection *section)
3163 {
3164 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3165
3166 if (overlay_debugging)
3167 if (section && section_is_overlay (section) &&
3168 pc_in_unmapped_range (pc, section))
3169 return pc + section->vma - section->lma;
3170
3171 return pc;
3172 }
3173
3174
3175 /* Function: symbol_overlayed_address
3176 Return one of two addresses (relative to the VMA or to the LMA),
3177 depending on whether the section is mapped or not. */
3178
3179 CORE_ADDR
3180 symbol_overlayed_address (CORE_ADDR address, asection *section)
3181 {
3182 if (overlay_debugging)
3183 {
3184 /* If the symbol has no section, just return its regular address. */
3185 if (section == 0)
3186 return address;
3187 /* If the symbol's section is not an overlay, just return its address */
3188 if (!section_is_overlay (section))
3189 return address;
3190 /* If the symbol's section is mapped, just return its address */
3191 if (section_is_mapped (section))
3192 return address;
3193 /*
3194 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3195 * then return its LOADED address rather than its vma address!!
3196 */
3197 return overlay_unmapped_address (address, section);
3198 }
3199 return address;
3200 }
3201
3202 /* Function: find_pc_overlay (PC)
3203 Return the best-match overlay section for PC:
3204 If PC matches a mapped overlay section's VMA, return that section.
3205 Else if PC matches an unmapped section's VMA, return that section.
3206 Else if PC matches an unmapped section's LMA, return that section. */
3207
3208 asection *
3209 find_pc_overlay (CORE_ADDR pc)
3210 {
3211 struct objfile *objfile;
3212 struct obj_section *osect, *best_match = NULL;
3213
3214 if (overlay_debugging)
3215 ALL_OBJSECTIONS (objfile, osect)
3216 if (section_is_overlay (osect->the_bfd_section))
3217 {
3218 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3219 {
3220 if (overlay_is_mapped (osect))
3221 return osect->the_bfd_section;
3222 else
3223 best_match = osect;
3224 }
3225 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3226 best_match = osect;
3227 }
3228 return best_match ? best_match->the_bfd_section : NULL;
3229 }
3230
3231 /* Function: find_pc_mapped_section (PC)
3232 If PC falls into the VMA address range of an overlay section that is
3233 currently marked as MAPPED, return that section. Else return NULL. */
3234
3235 asection *
3236 find_pc_mapped_section (CORE_ADDR pc)
3237 {
3238 struct objfile *objfile;
3239 struct obj_section *osect;
3240
3241 if (overlay_debugging)
3242 ALL_OBJSECTIONS (objfile, osect)
3243 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3244 overlay_is_mapped (osect))
3245 return osect->the_bfd_section;
3246
3247 return NULL;
3248 }
3249
3250 /* Function: list_overlays_command
3251 Print a list of mapped sections and their PC ranges */
3252
3253 void
3254 list_overlays_command (char *args, int from_tty)
3255 {
3256 int nmapped = 0;
3257 struct objfile *objfile;
3258 struct obj_section *osect;
3259
3260 if (overlay_debugging)
3261 ALL_OBJSECTIONS (objfile, osect)
3262 if (overlay_is_mapped (osect))
3263 {
3264 const char *name;
3265 bfd_vma lma, vma;
3266 int size;
3267
3268 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3269 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3270 size = bfd_get_section_size (osect->the_bfd_section);
3271 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3272
3273 printf_filtered ("Section %s, loaded at ", name);
3274 deprecated_print_address_numeric (lma, 1, gdb_stdout);
3275 puts_filtered (" - ");
3276 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
3277 printf_filtered (", mapped at ");
3278 deprecated_print_address_numeric (vma, 1, gdb_stdout);
3279 puts_filtered (" - ");
3280 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
3281 puts_filtered ("\n");
3282
3283 nmapped++;
3284 }
3285 if (nmapped == 0)
3286 printf_filtered (_("No sections are mapped.\n"));
3287 }
3288
3289 /* Function: map_overlay_command
3290 Mark the named section as mapped (ie. residing at its VMA address). */
3291
3292 void
3293 map_overlay_command (char *args, int from_tty)
3294 {
3295 struct objfile *objfile, *objfile2;
3296 struct obj_section *sec, *sec2;
3297 asection *bfdsec;
3298
3299 if (!overlay_debugging)
3300 error (_("\
3301 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3302 the 'overlay manual' command."));
3303
3304 if (args == 0 || *args == 0)
3305 error (_("Argument required: name of an overlay section"));
3306
3307 /* First, find a section matching the user supplied argument */
3308 ALL_OBJSECTIONS (objfile, sec)
3309 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3310 {
3311 /* Now, check to see if the section is an overlay. */
3312 bfdsec = sec->the_bfd_section;
3313 if (!section_is_overlay (bfdsec))
3314 continue; /* not an overlay section */
3315
3316 /* Mark the overlay as "mapped" */
3317 sec->ovly_mapped = 1;
3318
3319 /* Next, make a pass and unmap any sections that are
3320 overlapped by this new section: */
3321 ALL_OBJSECTIONS (objfile2, sec2)
3322 if (sec2->ovly_mapped
3323 && sec != sec2
3324 && sec->the_bfd_section != sec2->the_bfd_section
3325 && sections_overlap (sec->the_bfd_section,
3326 sec2->the_bfd_section))
3327 {
3328 if (info_verbose)
3329 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3330 bfd_section_name (objfile->obfd,
3331 sec2->the_bfd_section));
3332 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3333 }
3334 return;
3335 }
3336 error (_("No overlay section called %s"), args);
3337 }
3338
3339 /* Function: unmap_overlay_command
3340 Mark the overlay section as unmapped
3341 (ie. resident in its LMA address range, rather than the VMA range). */
3342
3343 void
3344 unmap_overlay_command (char *args, int from_tty)
3345 {
3346 struct objfile *objfile;
3347 struct obj_section *sec;
3348
3349 if (!overlay_debugging)
3350 error (_("\
3351 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3352 the 'overlay manual' command."));
3353
3354 if (args == 0 || *args == 0)
3355 error (_("Argument required: name of an overlay section"));
3356
3357 /* First, find a section matching the user supplied argument */
3358 ALL_OBJSECTIONS (objfile, sec)
3359 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3360 {
3361 if (!sec->ovly_mapped)
3362 error (_("Section %s is not mapped"), args);
3363 sec->ovly_mapped = 0;
3364 return;
3365 }
3366 error (_("No overlay section called %s"), args);
3367 }
3368
3369 /* Function: overlay_auto_command
3370 A utility command to turn on overlay debugging.
3371 Possibly this should be done via a set/show command. */
3372
3373 static void
3374 overlay_auto_command (char *args, int from_tty)
3375 {
3376 overlay_debugging = ovly_auto;
3377 enable_overlay_breakpoints ();
3378 if (info_verbose)
3379 printf_unfiltered (_("Automatic overlay debugging enabled."));
3380 }
3381
3382 /* Function: overlay_manual_command
3383 A utility command to turn on overlay debugging.
3384 Possibly this should be done via a set/show command. */
3385
3386 static void
3387 overlay_manual_command (char *args, int from_tty)
3388 {
3389 overlay_debugging = ovly_on;
3390 disable_overlay_breakpoints ();
3391 if (info_verbose)
3392 printf_unfiltered (_("Overlay debugging enabled."));
3393 }
3394
3395 /* Function: overlay_off_command
3396 A utility command to turn on overlay debugging.
3397 Possibly this should be done via a set/show command. */
3398
3399 static void
3400 overlay_off_command (char *args, int from_tty)
3401 {
3402 overlay_debugging = ovly_off;
3403 disable_overlay_breakpoints ();
3404 if (info_verbose)
3405 printf_unfiltered (_("Overlay debugging disabled."));
3406 }
3407
3408 static void
3409 overlay_load_command (char *args, int from_tty)
3410 {
3411 if (target_overlay_update)
3412 (*target_overlay_update) (NULL);
3413 else
3414 error (_("This target does not know how to read its overlay state."));
3415 }
3416
3417 /* Function: overlay_command
3418 A place-holder for a mis-typed command */
3419
3420 /* Command list chain containing all defined "overlay" subcommands. */
3421 struct cmd_list_element *overlaylist;
3422
3423 static void
3424 overlay_command (char *args, int from_tty)
3425 {
3426 printf_unfiltered
3427 ("\"overlay\" must be followed by the name of an overlay command.\n");
3428 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3429 }
3430
3431
3432 /* Target Overlays for the "Simplest" overlay manager:
3433
3434 This is GDB's default target overlay layer. It works with the
3435 minimal overlay manager supplied as an example by Cygnus. The
3436 entry point is via a function pointer "target_overlay_update",
3437 so targets that use a different runtime overlay manager can
3438 substitute their own overlay_update function and take over the
3439 function pointer.
3440
3441 The overlay_update function pokes around in the target's data structures
3442 to see what overlays are mapped, and updates GDB's overlay mapping with
3443 this information.
3444
3445 In this simple implementation, the target data structures are as follows:
3446 unsigned _novlys; /# number of overlay sections #/
3447 unsigned _ovly_table[_novlys][4] = {
3448 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3449 {..., ..., ..., ...},
3450 }
3451 unsigned _novly_regions; /# number of overlay regions #/
3452 unsigned _ovly_region_table[_novly_regions][3] = {
3453 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3454 {..., ..., ...},
3455 }
3456 These functions will attempt to update GDB's mappedness state in the
3457 symbol section table, based on the target's mappedness state.
3458
3459 To do this, we keep a cached copy of the target's _ovly_table, and
3460 attempt to detect when the cached copy is invalidated. The main
3461 entry point is "simple_overlay_update(SECT), which looks up SECT in
3462 the cached table and re-reads only the entry for that section from
3463 the target (whenever possible).
3464 */
3465
3466 /* Cached, dynamically allocated copies of the target data structures: */
3467 static unsigned (*cache_ovly_table)[4] = 0;
3468 #if 0
3469 static unsigned (*cache_ovly_region_table)[3] = 0;
3470 #endif
3471 static unsigned cache_novlys = 0;
3472 #if 0
3473 static unsigned cache_novly_regions = 0;
3474 #endif
3475 static CORE_ADDR cache_ovly_table_base = 0;
3476 #if 0
3477 static CORE_ADDR cache_ovly_region_table_base = 0;
3478 #endif
3479 enum ovly_index
3480 {
3481 VMA, SIZE, LMA, MAPPED
3482 };
3483 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3484
3485 /* Throw away the cached copy of _ovly_table */
3486 static void
3487 simple_free_overlay_table (void)
3488 {
3489 if (cache_ovly_table)
3490 xfree (cache_ovly_table);
3491 cache_novlys = 0;
3492 cache_ovly_table = NULL;
3493 cache_ovly_table_base = 0;
3494 }
3495
3496 #if 0
3497 /* Throw away the cached copy of _ovly_region_table */
3498 static void
3499 simple_free_overlay_region_table (void)
3500 {
3501 if (cache_ovly_region_table)
3502 xfree (cache_ovly_region_table);
3503 cache_novly_regions = 0;
3504 cache_ovly_region_table = NULL;
3505 cache_ovly_region_table_base = 0;
3506 }
3507 #endif
3508
3509 /* Read an array of ints from the target into a local buffer.
3510 Convert to host order. int LEN is number of ints */
3511 static void
3512 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3513 {
3514 /* FIXME (alloca): Not safe if array is very large. */
3515 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3516 int i;
3517
3518 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3519 for (i = 0; i < len; i++)
3520 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3521 TARGET_LONG_BYTES);
3522 }
3523
3524 /* Find and grab a copy of the target _ovly_table
3525 (and _novlys, which is needed for the table's size) */
3526 static int
3527 simple_read_overlay_table (void)
3528 {
3529 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3530
3531 simple_free_overlay_table ();
3532 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3533 if (! novlys_msym)
3534 {
3535 error (_("Error reading inferior's overlay table: "
3536 "couldn't find `_novlys' variable\n"
3537 "in inferior. Use `overlay manual' mode."));
3538 return 0;
3539 }
3540
3541 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3542 if (! ovly_table_msym)
3543 {
3544 error (_("Error reading inferior's overlay table: couldn't find "
3545 "`_ovly_table' array\n"
3546 "in inferior. Use `overlay manual' mode."));
3547 return 0;
3548 }
3549
3550 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3551 cache_ovly_table
3552 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3553 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3554 read_target_long_array (cache_ovly_table_base,
3555 (unsigned int *) cache_ovly_table,
3556 cache_novlys * 4);
3557
3558 return 1; /* SUCCESS */
3559 }
3560
3561 #if 0
3562 /* Find and grab a copy of the target _ovly_region_table
3563 (and _novly_regions, which is needed for the table's size) */
3564 static int
3565 simple_read_overlay_region_table (void)
3566 {
3567 struct minimal_symbol *msym;
3568
3569 simple_free_overlay_region_table ();
3570 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3571 if (msym != NULL)
3572 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3573 else
3574 return 0; /* failure */
3575 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3576 if (cache_ovly_region_table != NULL)
3577 {
3578 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3579 if (msym != NULL)
3580 {
3581 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3582 read_target_long_array (cache_ovly_region_table_base,
3583 (unsigned int *) cache_ovly_region_table,
3584 cache_novly_regions * 3);
3585 }
3586 else
3587 return 0; /* failure */
3588 }
3589 else
3590 return 0; /* failure */
3591 return 1; /* SUCCESS */
3592 }
3593 #endif
3594
3595 /* Function: simple_overlay_update_1
3596 A helper function for simple_overlay_update. Assuming a cached copy
3597 of _ovly_table exists, look through it to find an entry whose vma,
3598 lma and size match those of OSECT. Re-read the entry and make sure
3599 it still matches OSECT (else the table may no longer be valid).
3600 Set OSECT's mapped state to match the entry. Return: 1 for
3601 success, 0 for failure. */
3602
3603 static int
3604 simple_overlay_update_1 (struct obj_section *osect)
3605 {
3606 int i, size;
3607 bfd *obfd = osect->objfile->obfd;
3608 asection *bsect = osect->the_bfd_section;
3609
3610 size = bfd_get_section_size (osect->the_bfd_section);
3611 for (i = 0; i < cache_novlys; i++)
3612 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3613 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3614 /* && cache_ovly_table[i][SIZE] == size */ )
3615 {
3616 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3617 (unsigned int *) cache_ovly_table[i], 4);
3618 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3619 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3620 /* && cache_ovly_table[i][SIZE] == size */ )
3621 {
3622 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3623 return 1;
3624 }
3625 else /* Warning! Warning! Target's ovly table has changed! */
3626 return 0;
3627 }
3628 return 0;
3629 }
3630
3631 /* Function: simple_overlay_update
3632 If OSECT is NULL, then update all sections' mapped state
3633 (after re-reading the entire target _ovly_table).
3634 If OSECT is non-NULL, then try to find a matching entry in the
3635 cached ovly_table and update only OSECT's mapped state.
3636 If a cached entry can't be found or the cache isn't valid, then
3637 re-read the entire cache, and go ahead and update all sections. */
3638
3639 static void
3640 simple_overlay_update (struct obj_section *osect)
3641 {
3642 struct objfile *objfile;
3643
3644 /* Were we given an osect to look up? NULL means do all of them. */
3645 if (osect)
3646 /* Have we got a cached copy of the target's overlay table? */
3647 if (cache_ovly_table != NULL)
3648 /* Does its cached location match what's currently in the symtab? */
3649 if (cache_ovly_table_base ==
3650 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3651 /* Then go ahead and try to look up this single section in the cache */
3652 if (simple_overlay_update_1 (osect))
3653 /* Found it! We're done. */
3654 return;
3655
3656 /* Cached table no good: need to read the entire table anew.
3657 Or else we want all the sections, in which case it's actually
3658 more efficient to read the whole table in one block anyway. */
3659
3660 if (! simple_read_overlay_table ())
3661 return;
3662
3663 /* Now may as well update all sections, even if only one was requested. */
3664 ALL_OBJSECTIONS (objfile, osect)
3665 if (section_is_overlay (osect->the_bfd_section))
3666 {
3667 int i, size;
3668 bfd *obfd = osect->objfile->obfd;
3669 asection *bsect = osect->the_bfd_section;
3670
3671 size = bfd_get_section_size (bsect);
3672 for (i = 0; i < cache_novlys; i++)
3673 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3674 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3675 /* && cache_ovly_table[i][SIZE] == size */ )
3676 { /* obj_section matches i'th entry in ovly_table */
3677 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3678 break; /* finished with inner for loop: break out */
3679 }
3680 }
3681 }
3682
3683 /* Set the output sections and output offsets for section SECTP in
3684 ABFD. The relocation code in BFD will read these offsets, so we
3685 need to be sure they're initialized. We map each section to itself,
3686 with no offset; this means that SECTP->vma will be honored. */
3687
3688 static void
3689 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3690 {
3691 sectp->output_section = sectp;
3692 sectp->output_offset = 0;
3693 }
3694
3695 /* Relocate the contents of a debug section SECTP in ABFD. The
3696 contents are stored in BUF if it is non-NULL, or returned in a
3697 malloc'd buffer otherwise.
3698
3699 For some platforms and debug info formats, shared libraries contain
3700 relocations against the debug sections (particularly for DWARF-2;
3701 one affected platform is PowerPC GNU/Linux, although it depends on
3702 the version of the linker in use). Also, ELF object files naturally
3703 have unresolved relocations for their debug sections. We need to apply
3704 the relocations in order to get the locations of symbols correct. */
3705
3706 bfd_byte *
3707 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3708 {
3709 /* We're only interested in debugging sections with relocation
3710 information. */
3711 if ((sectp->flags & SEC_RELOC) == 0)
3712 return NULL;
3713 if ((sectp->flags & SEC_DEBUGGING) == 0)
3714 return NULL;
3715
3716 /* We will handle section offsets properly elsewhere, so relocate as if
3717 all sections begin at 0. */
3718 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3719
3720 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3721 }
3722
3723 void
3724 _initialize_symfile (void)
3725 {
3726 struct cmd_list_element *c;
3727
3728 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3729 Load symbol table from executable file FILE.\n\
3730 The `file' command can also load symbol tables, as well as setting the file\n\
3731 to execute."), &cmdlist);
3732 set_cmd_completer (c, filename_completer);
3733
3734 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3735 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3736 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3737 ADDR is the starting address of the file's text.\n\
3738 The optional arguments are section-name section-address pairs and\n\
3739 should be specified if the data and bss segments are not contiguous\n\
3740 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3741 &cmdlist);
3742 set_cmd_completer (c, filename_completer);
3743
3744 c = add_cmd ("add-shared-symbol-files", class_files,
3745 add_shared_symbol_files_command, _("\
3746 Load the symbols from shared objects in the dynamic linker's link map."),
3747 &cmdlist);
3748 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3749 &cmdlist);
3750
3751 c = add_cmd ("load", class_files, load_command, _("\
3752 Dynamically load FILE into the running program, and record its symbols\n\
3753 for access from GDB.\n\
3754 A load OFFSET may also be given."), &cmdlist);
3755 set_cmd_completer (c, filename_completer);
3756
3757 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3758 &symbol_reloading, _("\
3759 Set dynamic symbol table reloading multiple times in one run."), _("\
3760 Show dynamic symbol table reloading multiple times in one run."), NULL,
3761 NULL,
3762 show_symbol_reloading,
3763 &setlist, &showlist);
3764
3765 add_prefix_cmd ("overlay", class_support, overlay_command,
3766 _("Commands for debugging overlays."), &overlaylist,
3767 "overlay ", 0, &cmdlist);
3768
3769 add_com_alias ("ovly", "overlay", class_alias, 1);
3770 add_com_alias ("ov", "overlay", class_alias, 1);
3771
3772 add_cmd ("map-overlay", class_support, map_overlay_command,
3773 _("Assert that an overlay section is mapped."), &overlaylist);
3774
3775 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3776 _("Assert that an overlay section is unmapped."), &overlaylist);
3777
3778 add_cmd ("list-overlays", class_support, list_overlays_command,
3779 _("List mappings of overlay sections."), &overlaylist);
3780
3781 add_cmd ("manual", class_support, overlay_manual_command,
3782 _("Enable overlay debugging."), &overlaylist);
3783 add_cmd ("off", class_support, overlay_off_command,
3784 _("Disable overlay debugging."), &overlaylist);
3785 add_cmd ("auto", class_support, overlay_auto_command,
3786 _("Enable automatic overlay debugging."), &overlaylist);
3787 add_cmd ("load-target", class_support, overlay_load_command,
3788 _("Read the overlay mapping state from the target."), &overlaylist);
3789
3790 /* Filename extension to source language lookup table: */
3791 init_filename_language_table ();
3792 add_setshow_string_noescape_cmd ("extension-language", class_files,
3793 &ext_args, _("\
3794 Set mapping between filename extension and source language."), _("\
3795 Show mapping between filename extension and source language."), _("\
3796 Usage: set extension-language .foo bar"),
3797 set_ext_lang_command,
3798 show_ext_args,
3799 &setlist, &showlist);
3800
3801 add_info ("extensions", info_ext_lang_command,
3802 _("All filename extensions associated with a source language."));
3803
3804 add_setshow_integer_cmd ("download-write-size", class_obscure,
3805 &download_write_size, _("\
3806 Set the write size used when downloading a program."), _("\
3807 Show the write size used when downloading a program."), _("\
3808 Only used when downloading a program onto a remote\n\
3809 target. Specify zero, or a negative value, to disable\n\
3810 blocked writes. The actual size of each transfer is also\n\
3811 limited by the size of the target packet and the memory\n\
3812 cache."),
3813 NULL,
3814 show_download_write_size,
3815 &setlist, &showlist);
3816
3817 debug_file_directory = xstrdup (DEBUGDIR);
3818 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3819 &debug_file_directory, _("\
3820 Set the directory where separate debug symbols are searched for."), _("\
3821 Show the directory where separate debug symbols are searched for."), _("\
3822 Separate debug symbols are first searched for in the same\n\
3823 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3824 and lastly at the path of the directory of the binary with\n\
3825 the global debug-file directory prepended."),
3826 NULL,
3827 show_debug_file_directory,
3828 &setlist, &showlist);
3829 }
This page took 0.10369 seconds and 5 git commands to generate.