Update usage text for add-symbol-file, symbol-file, and load
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observer.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "common/byte-vector.h"
60 #include "selftest.h"
61
62 #include <sys/types.h>
63 #include <fcntl.h>
64 #include <sys/stat.h>
65 #include <ctype.h>
66 #include <chrono>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
72 void (*deprecated_show_load_progress) (const char *section,
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
76 unsigned long total_size);
77 void (*deprecated_pre_add_symbol_hook) (const char *);
78 void (*deprecated_post_add_symbol_hook) (void);
79
80 static void clear_symtab_users_cleanup (void *ignore);
81
82 /* Global variables owned by this file. */
83 int readnow_symbol_files; /* Read full symbols immediately. */
84
85 /* Functions this file defines. */
86
87 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
88 objfile_flags flags);
89
90 static const struct sym_fns *find_sym_fns (bfd *);
91
92 static void overlay_invalidate_all (void);
93
94 static void simple_free_overlay_table (void);
95
96 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
97 enum bfd_endian);
98
99 static int simple_read_overlay_table (void);
100
101 static int simple_overlay_update_1 (struct obj_section *);
102
103 static void symfile_find_segment_sections (struct objfile *objfile);
104
105 /* List of all available sym_fns. On gdb startup, each object file reader
106 calls add_symtab_fns() to register information on each format it is
107 prepared to read. */
108
109 struct registered_sym_fns
110 {
111 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
112 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
113 {}
114
115 /* BFD flavour that we handle. */
116 enum bfd_flavour sym_flavour;
117
118 /* The "vtable" of symbol functions. */
119 const struct sym_fns *sym_fns;
120 };
121
122 static std::vector<registered_sym_fns> symtab_fns;
123
124 /* Values for "set print symbol-loading". */
125
126 const char print_symbol_loading_off[] = "off";
127 const char print_symbol_loading_brief[] = "brief";
128 const char print_symbol_loading_full[] = "full";
129 static const char *print_symbol_loading_enums[] =
130 {
131 print_symbol_loading_off,
132 print_symbol_loading_brief,
133 print_symbol_loading_full,
134 NULL
135 };
136 static const char *print_symbol_loading = print_symbol_loading_full;
137
138 /* If non-zero, shared library symbols will be added automatically
139 when the inferior is created, new libraries are loaded, or when
140 attaching to the inferior. This is almost always what users will
141 want to have happen; but for very large programs, the startup time
142 will be excessive, and so if this is a problem, the user can clear
143 this flag and then add the shared library symbols as needed. Note
144 that there is a potential for confusion, since if the shared
145 library symbols are not loaded, commands like "info fun" will *not*
146 report all the functions that are actually present. */
147
148 int auto_solib_add = 1;
149 \f
150
151 /* Return non-zero if symbol-loading messages should be printed.
152 FROM_TTY is the standard from_tty argument to gdb commands.
153 If EXEC is non-zero the messages are for the executable.
154 Otherwise, messages are for shared libraries.
155 If FULL is non-zero then the caller is printing a detailed message.
156 E.g., the message includes the shared library name.
157 Otherwise, the caller is printing a brief "summary" message. */
158
159 int
160 print_symbol_loading_p (int from_tty, int exec, int full)
161 {
162 if (!from_tty && !info_verbose)
163 return 0;
164
165 if (exec)
166 {
167 /* We don't check FULL for executables, there are few such
168 messages, therefore brief == full. */
169 return print_symbol_loading != print_symbol_loading_off;
170 }
171 if (full)
172 return print_symbol_loading == print_symbol_loading_full;
173 return print_symbol_loading == print_symbol_loading_brief;
174 }
175
176 /* True if we are reading a symbol table. */
177
178 int currently_reading_symtab = 0;
179
180 /* Increment currently_reading_symtab and return a cleanup that can be
181 used to decrement it. */
182
183 scoped_restore_tmpl<int>
184 increment_reading_symtab (void)
185 {
186 gdb_assert (currently_reading_symtab >= 0);
187 return make_scoped_restore (&currently_reading_symtab,
188 currently_reading_symtab + 1);
189 }
190
191 /* Remember the lowest-addressed loadable section we've seen.
192 This function is called via bfd_map_over_sections.
193
194 In case of equal vmas, the section with the largest size becomes the
195 lowest-addressed loadable section.
196
197 If the vmas and sizes are equal, the last section is considered the
198 lowest-addressed loadable section. */
199
200 void
201 find_lowest_section (bfd *abfd, asection *sect, void *obj)
202 {
203 asection **lowest = (asection **) obj;
204
205 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
206 return;
207 if (!*lowest)
208 *lowest = sect; /* First loadable section */
209 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
210 *lowest = sect; /* A lower loadable section */
211 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
212 && (bfd_section_size (abfd, (*lowest))
213 <= bfd_section_size (abfd, sect)))
214 *lowest = sect;
215 }
216
217 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
218 new object's 'num_sections' field is set to 0; it must be updated
219 by the caller. */
220
221 struct section_addr_info *
222 alloc_section_addr_info (size_t num_sections)
223 {
224 struct section_addr_info *sap;
225 size_t size;
226
227 size = (sizeof (struct section_addr_info)
228 + sizeof (struct other_sections) * (num_sections - 1));
229 sap = (struct section_addr_info *) xmalloc (size);
230 memset (sap, 0, size);
231
232 return sap;
233 }
234
235 /* Build (allocate and populate) a section_addr_info struct from
236 an existing section table. */
237
238 extern struct section_addr_info *
239 build_section_addr_info_from_section_table (const struct target_section *start,
240 const struct target_section *end)
241 {
242 struct section_addr_info *sap;
243 const struct target_section *stp;
244 int oidx;
245
246 sap = alloc_section_addr_info (end - start);
247
248 for (stp = start, oidx = 0; stp != end; stp++)
249 {
250 struct bfd_section *asect = stp->the_bfd_section;
251 bfd *abfd = asect->owner;
252
253 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
254 && oidx < end - start)
255 {
256 sap->other[oidx].addr = stp->addr;
257 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
258 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
259 oidx++;
260 }
261 }
262
263 sap->num_sections = oidx;
264
265 return sap;
266 }
267
268 /* Create a section_addr_info from section offsets in ABFD. */
269
270 static struct section_addr_info *
271 build_section_addr_info_from_bfd (bfd *abfd)
272 {
273 struct section_addr_info *sap;
274 int i;
275 struct bfd_section *sec;
276
277 sap = alloc_section_addr_info (bfd_count_sections (abfd));
278 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
279 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
280 {
281 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
282 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
283 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
284 i++;
285 }
286
287 sap->num_sections = i;
288
289 return sap;
290 }
291
292 /* Create a section_addr_info from section offsets in OBJFILE. */
293
294 struct section_addr_info *
295 build_section_addr_info_from_objfile (const struct objfile *objfile)
296 {
297 struct section_addr_info *sap;
298 int i;
299
300 /* Before reread_symbols gets rewritten it is not safe to call:
301 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
302 */
303 sap = build_section_addr_info_from_bfd (objfile->obfd);
304 for (i = 0; i < sap->num_sections; i++)
305 {
306 int sectindex = sap->other[i].sectindex;
307
308 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
309 }
310 return sap;
311 }
312
313 /* Free all memory allocated by build_section_addr_info_from_section_table. */
314
315 extern void
316 free_section_addr_info (struct section_addr_info *sap)
317 {
318 int idx;
319
320 for (idx = 0; idx < sap->num_sections; idx++)
321 xfree (sap->other[idx].name);
322 xfree (sap);
323 }
324
325 /* Initialize OBJFILE's sect_index_* members. */
326
327 static void
328 init_objfile_sect_indices (struct objfile *objfile)
329 {
330 asection *sect;
331 int i;
332
333 sect = bfd_get_section_by_name (objfile->obfd, ".text");
334 if (sect)
335 objfile->sect_index_text = sect->index;
336
337 sect = bfd_get_section_by_name (objfile->obfd, ".data");
338 if (sect)
339 objfile->sect_index_data = sect->index;
340
341 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
342 if (sect)
343 objfile->sect_index_bss = sect->index;
344
345 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
346 if (sect)
347 objfile->sect_index_rodata = sect->index;
348
349 /* This is where things get really weird... We MUST have valid
350 indices for the various sect_index_* members or gdb will abort.
351 So if for example, there is no ".text" section, we have to
352 accomodate that. First, check for a file with the standard
353 one or two segments. */
354
355 symfile_find_segment_sections (objfile);
356
357 /* Except when explicitly adding symbol files at some address,
358 section_offsets contains nothing but zeros, so it doesn't matter
359 which slot in section_offsets the individual sect_index_* members
360 index into. So if they are all zero, it is safe to just point
361 all the currently uninitialized indices to the first slot. But
362 beware: if this is the main executable, it may be relocated
363 later, e.g. by the remote qOffsets packet, and then this will
364 be wrong! That's why we try segments first. */
365
366 for (i = 0; i < objfile->num_sections; i++)
367 {
368 if (ANOFFSET (objfile->section_offsets, i) != 0)
369 {
370 break;
371 }
372 }
373 if (i == objfile->num_sections)
374 {
375 if (objfile->sect_index_text == -1)
376 objfile->sect_index_text = 0;
377 if (objfile->sect_index_data == -1)
378 objfile->sect_index_data = 0;
379 if (objfile->sect_index_bss == -1)
380 objfile->sect_index_bss = 0;
381 if (objfile->sect_index_rodata == -1)
382 objfile->sect_index_rodata = 0;
383 }
384 }
385
386 /* The arguments to place_section. */
387
388 struct place_section_arg
389 {
390 struct section_offsets *offsets;
391 CORE_ADDR lowest;
392 };
393
394 /* Find a unique offset to use for loadable section SECT if
395 the user did not provide an offset. */
396
397 static void
398 place_section (bfd *abfd, asection *sect, void *obj)
399 {
400 struct place_section_arg *arg = (struct place_section_arg *) obj;
401 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
402 int done;
403 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
404
405 /* We are only interested in allocated sections. */
406 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
407 return;
408
409 /* If the user specified an offset, honor it. */
410 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
411 return;
412
413 /* Otherwise, let's try to find a place for the section. */
414 start_addr = (arg->lowest + align - 1) & -align;
415
416 do {
417 asection *cur_sec;
418
419 done = 1;
420
421 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
422 {
423 int indx = cur_sec->index;
424
425 /* We don't need to compare against ourself. */
426 if (cur_sec == sect)
427 continue;
428
429 /* We can only conflict with allocated sections. */
430 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
431 continue;
432
433 /* If the section offset is 0, either the section has not been placed
434 yet, or it was the lowest section placed (in which case LOWEST
435 will be past its end). */
436 if (offsets[indx] == 0)
437 continue;
438
439 /* If this section would overlap us, then we must move up. */
440 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
441 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
442 {
443 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
444 start_addr = (start_addr + align - 1) & -align;
445 done = 0;
446 break;
447 }
448
449 /* Otherwise, we appear to be OK. So far. */
450 }
451 }
452 while (!done);
453
454 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
455 arg->lowest = start_addr + bfd_get_section_size (sect);
456 }
457
458 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
459 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
460 entries. */
461
462 void
463 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
464 int num_sections,
465 const struct section_addr_info *addrs)
466 {
467 int i;
468
469 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
470
471 /* Now calculate offsets for section that were specified by the caller. */
472 for (i = 0; i < addrs->num_sections; i++)
473 {
474 const struct other_sections *osp;
475
476 osp = &addrs->other[i];
477 if (osp->sectindex == -1)
478 continue;
479
480 /* Record all sections in offsets. */
481 /* The section_offsets in the objfile are here filled in using
482 the BFD index. */
483 section_offsets->offsets[osp->sectindex] = osp->addr;
484 }
485 }
486
487 /* Transform section name S for a name comparison. prelink can split section
488 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
489 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
490 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
491 (`.sbss') section has invalid (increased) virtual address. */
492
493 static const char *
494 addr_section_name (const char *s)
495 {
496 if (strcmp (s, ".dynbss") == 0)
497 return ".bss";
498 if (strcmp (s, ".sdynbss") == 0)
499 return ".sbss";
500
501 return s;
502 }
503
504 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
505 their (name, sectindex) pair. sectindex makes the sort by name stable. */
506
507 static int
508 addrs_section_compar (const void *ap, const void *bp)
509 {
510 const struct other_sections *a = *((struct other_sections **) ap);
511 const struct other_sections *b = *((struct other_sections **) bp);
512 int retval;
513
514 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
515 if (retval)
516 return retval;
517
518 return a->sectindex - b->sectindex;
519 }
520
521 /* Provide sorted array of pointers to sections of ADDRS. The array is
522 terminated by NULL. Caller is responsible to call xfree for it. */
523
524 static struct other_sections **
525 addrs_section_sort (struct section_addr_info *addrs)
526 {
527 struct other_sections **array;
528 int i;
529
530 /* `+ 1' for the NULL terminator. */
531 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
532 for (i = 0; i < addrs->num_sections; i++)
533 array[i] = &addrs->other[i];
534 array[i] = NULL;
535
536 qsort (array, i, sizeof (*array), addrs_section_compar);
537
538 return array;
539 }
540
541 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
542 also SECTINDEXes specific to ABFD there. This function can be used to
543 rebase ADDRS to start referencing different BFD than before. */
544
545 void
546 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
547 {
548 asection *lower_sect;
549 CORE_ADDR lower_offset;
550 int i;
551 struct cleanup *my_cleanup;
552 struct section_addr_info *abfd_addrs;
553 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
554 struct other_sections **addrs_to_abfd_addrs;
555
556 /* Find lowest loadable section to be used as starting point for
557 continguous sections. */
558 lower_sect = NULL;
559 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
560 if (lower_sect == NULL)
561 {
562 warning (_("no loadable sections found in added symbol-file %s"),
563 bfd_get_filename (abfd));
564 lower_offset = 0;
565 }
566 else
567 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
568
569 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
570 in ABFD. Section names are not unique - there can be multiple sections of
571 the same name. Also the sections of the same name do not have to be
572 adjacent to each other. Some sections may be present only in one of the
573 files. Even sections present in both files do not have to be in the same
574 order.
575
576 Use stable sort by name for the sections in both files. Then linearly
577 scan both lists matching as most of the entries as possible. */
578
579 addrs_sorted = addrs_section_sort (addrs);
580 my_cleanup = make_cleanup (xfree, addrs_sorted);
581
582 abfd_addrs = build_section_addr_info_from_bfd (abfd);
583 make_cleanup_free_section_addr_info (abfd_addrs);
584 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
585 make_cleanup (xfree, abfd_addrs_sorted);
586
587 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
588 ABFD_ADDRS_SORTED. */
589
590 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
591 make_cleanup (xfree, addrs_to_abfd_addrs);
592
593 while (*addrs_sorted)
594 {
595 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
596
597 while (*abfd_addrs_sorted
598 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
599 sect_name) < 0)
600 abfd_addrs_sorted++;
601
602 if (*abfd_addrs_sorted
603 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
604 sect_name) == 0)
605 {
606 int index_in_addrs;
607
608 /* Make the found item directly addressable from ADDRS. */
609 index_in_addrs = *addrs_sorted - addrs->other;
610 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
611 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
612
613 /* Never use the same ABFD entry twice. */
614 abfd_addrs_sorted++;
615 }
616
617 addrs_sorted++;
618 }
619
620 /* Calculate offsets for the loadable sections.
621 FIXME! Sections must be in order of increasing loadable section
622 so that contiguous sections can use the lower-offset!!!
623
624 Adjust offsets if the segments are not contiguous.
625 If the section is contiguous, its offset should be set to
626 the offset of the highest loadable section lower than it
627 (the loadable section directly below it in memory).
628 this_offset = lower_offset = lower_addr - lower_orig_addr */
629
630 for (i = 0; i < addrs->num_sections; i++)
631 {
632 struct other_sections *sect = addrs_to_abfd_addrs[i];
633
634 if (sect)
635 {
636 /* This is the index used by BFD. */
637 addrs->other[i].sectindex = sect->sectindex;
638
639 if (addrs->other[i].addr != 0)
640 {
641 addrs->other[i].addr -= sect->addr;
642 lower_offset = addrs->other[i].addr;
643 }
644 else
645 addrs->other[i].addr = lower_offset;
646 }
647 else
648 {
649 /* addr_section_name transformation is not used for SECT_NAME. */
650 const char *sect_name = addrs->other[i].name;
651
652 /* This section does not exist in ABFD, which is normally
653 unexpected and we want to issue a warning.
654
655 However, the ELF prelinker does create a few sections which are
656 marked in the main executable as loadable (they are loaded in
657 memory from the DYNAMIC segment) and yet are not present in
658 separate debug info files. This is fine, and should not cause
659 a warning. Shared libraries contain just the section
660 ".gnu.liblist" but it is not marked as loadable there. There is
661 no other way to identify them than by their name as the sections
662 created by prelink have no special flags.
663
664 For the sections `.bss' and `.sbss' see addr_section_name. */
665
666 if (!(strcmp (sect_name, ".gnu.liblist") == 0
667 || strcmp (sect_name, ".gnu.conflict") == 0
668 || (strcmp (sect_name, ".bss") == 0
669 && i > 0
670 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
671 && addrs_to_abfd_addrs[i - 1] != NULL)
672 || (strcmp (sect_name, ".sbss") == 0
673 && i > 0
674 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
675 && addrs_to_abfd_addrs[i - 1] != NULL)))
676 warning (_("section %s not found in %s"), sect_name,
677 bfd_get_filename (abfd));
678
679 addrs->other[i].addr = 0;
680 addrs->other[i].sectindex = -1;
681 }
682 }
683
684 do_cleanups (my_cleanup);
685 }
686
687 /* Parse the user's idea of an offset for dynamic linking, into our idea
688 of how to represent it for fast symbol reading. This is the default
689 version of the sym_fns.sym_offsets function for symbol readers that
690 don't need to do anything special. It allocates a section_offsets table
691 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
692
693 void
694 default_symfile_offsets (struct objfile *objfile,
695 const struct section_addr_info *addrs)
696 {
697 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
698 objfile->section_offsets = (struct section_offsets *)
699 obstack_alloc (&objfile->objfile_obstack,
700 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
701 relative_addr_info_to_section_offsets (objfile->section_offsets,
702 objfile->num_sections, addrs);
703
704 /* For relocatable files, all loadable sections will start at zero.
705 The zero is meaningless, so try to pick arbitrary addresses such
706 that no loadable sections overlap. This algorithm is quadratic,
707 but the number of sections in a single object file is generally
708 small. */
709 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
710 {
711 struct place_section_arg arg;
712 bfd *abfd = objfile->obfd;
713 asection *cur_sec;
714
715 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
716 /* We do not expect this to happen; just skip this step if the
717 relocatable file has a section with an assigned VMA. */
718 if (bfd_section_vma (abfd, cur_sec) != 0)
719 break;
720
721 if (cur_sec == NULL)
722 {
723 CORE_ADDR *offsets = objfile->section_offsets->offsets;
724
725 /* Pick non-overlapping offsets for sections the user did not
726 place explicitly. */
727 arg.offsets = objfile->section_offsets;
728 arg.lowest = 0;
729 bfd_map_over_sections (objfile->obfd, place_section, &arg);
730
731 /* Correctly filling in the section offsets is not quite
732 enough. Relocatable files have two properties that
733 (most) shared objects do not:
734
735 - Their debug information will contain relocations. Some
736 shared libraries do also, but many do not, so this can not
737 be assumed.
738
739 - If there are multiple code sections they will be loaded
740 at different relative addresses in memory than they are
741 in the objfile, since all sections in the file will start
742 at address zero.
743
744 Because GDB has very limited ability to map from an
745 address in debug info to the correct code section,
746 it relies on adding SECT_OFF_TEXT to things which might be
747 code. If we clear all the section offsets, and set the
748 section VMAs instead, then symfile_relocate_debug_section
749 will return meaningful debug information pointing at the
750 correct sections.
751
752 GDB has too many different data structures for section
753 addresses - a bfd, objfile, and so_list all have section
754 tables, as does exec_ops. Some of these could probably
755 be eliminated. */
756
757 for (cur_sec = abfd->sections; cur_sec != NULL;
758 cur_sec = cur_sec->next)
759 {
760 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
761 continue;
762
763 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
764 exec_set_section_address (bfd_get_filename (abfd),
765 cur_sec->index,
766 offsets[cur_sec->index]);
767 offsets[cur_sec->index] = 0;
768 }
769 }
770 }
771
772 /* Remember the bfd indexes for the .text, .data, .bss and
773 .rodata sections. */
774 init_objfile_sect_indices (objfile);
775 }
776
777 /* Divide the file into segments, which are individual relocatable units.
778 This is the default version of the sym_fns.sym_segments function for
779 symbol readers that do not have an explicit representation of segments.
780 It assumes that object files do not have segments, and fully linked
781 files have a single segment. */
782
783 struct symfile_segment_data *
784 default_symfile_segments (bfd *abfd)
785 {
786 int num_sections, i;
787 asection *sect;
788 struct symfile_segment_data *data;
789 CORE_ADDR low, high;
790
791 /* Relocatable files contain enough information to position each
792 loadable section independently; they should not be relocated
793 in segments. */
794 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
795 return NULL;
796
797 /* Make sure there is at least one loadable section in the file. */
798 for (sect = abfd->sections; sect != NULL; sect = sect->next)
799 {
800 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
801 continue;
802
803 break;
804 }
805 if (sect == NULL)
806 return NULL;
807
808 low = bfd_get_section_vma (abfd, sect);
809 high = low + bfd_get_section_size (sect);
810
811 data = XCNEW (struct symfile_segment_data);
812 data->num_segments = 1;
813 data->segment_bases = XCNEW (CORE_ADDR);
814 data->segment_sizes = XCNEW (CORE_ADDR);
815
816 num_sections = bfd_count_sections (abfd);
817 data->segment_info = XCNEWVEC (int, num_sections);
818
819 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
820 {
821 CORE_ADDR vma;
822
823 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
824 continue;
825
826 vma = bfd_get_section_vma (abfd, sect);
827 if (vma < low)
828 low = vma;
829 if (vma + bfd_get_section_size (sect) > high)
830 high = vma + bfd_get_section_size (sect);
831
832 data->segment_info[i] = 1;
833 }
834
835 data->segment_bases[0] = low;
836 data->segment_sizes[0] = high - low;
837
838 return data;
839 }
840
841 /* This is a convenience function to call sym_read for OBJFILE and
842 possibly force the partial symbols to be read. */
843
844 static void
845 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
846 {
847 (*objfile->sf->sym_read) (objfile, add_flags);
848 objfile->per_bfd->minsyms_read = true;
849
850 /* find_separate_debug_file_in_section should be called only if there is
851 single binary with no existing separate debug info file. */
852 if (!objfile_has_partial_symbols (objfile)
853 && objfile->separate_debug_objfile == NULL
854 && objfile->separate_debug_objfile_backlink == NULL)
855 {
856 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
857
858 if (abfd != NULL)
859 {
860 /* find_separate_debug_file_in_section uses the same filename for the
861 virtual section-as-bfd like the bfd filename containing the
862 section. Therefore use also non-canonical name form for the same
863 file containing the section. */
864 symbol_file_add_separate (abfd.get (), objfile->original_name,
865 add_flags, objfile);
866 }
867 }
868 if ((add_flags & SYMFILE_NO_READ) == 0)
869 require_partial_symbols (objfile, 0);
870 }
871
872 /* Initialize entry point information for this objfile. */
873
874 static void
875 init_entry_point_info (struct objfile *objfile)
876 {
877 struct entry_info *ei = &objfile->per_bfd->ei;
878
879 if (ei->initialized)
880 return;
881 ei->initialized = 1;
882
883 /* Save startup file's range of PC addresses to help blockframe.c
884 decide where the bottom of the stack is. */
885
886 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
887 {
888 /* Executable file -- record its entry point so we'll recognize
889 the startup file because it contains the entry point. */
890 ei->entry_point = bfd_get_start_address (objfile->obfd);
891 ei->entry_point_p = 1;
892 }
893 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
894 && bfd_get_start_address (objfile->obfd) != 0)
895 {
896 /* Some shared libraries may have entry points set and be
897 runnable. There's no clear way to indicate this, so just check
898 for values other than zero. */
899 ei->entry_point = bfd_get_start_address (objfile->obfd);
900 ei->entry_point_p = 1;
901 }
902 else
903 {
904 /* Examination of non-executable.o files. Short-circuit this stuff. */
905 ei->entry_point_p = 0;
906 }
907
908 if (ei->entry_point_p)
909 {
910 struct obj_section *osect;
911 CORE_ADDR entry_point = ei->entry_point;
912 int found;
913
914 /* Make certain that the address points at real code, and not a
915 function descriptor. */
916 entry_point
917 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
918 entry_point,
919 &current_target);
920
921 /* Remove any ISA markers, so that this matches entries in the
922 symbol table. */
923 ei->entry_point
924 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
925
926 found = 0;
927 ALL_OBJFILE_OSECTIONS (objfile, osect)
928 {
929 struct bfd_section *sect = osect->the_bfd_section;
930
931 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
932 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
933 + bfd_get_section_size (sect)))
934 {
935 ei->the_bfd_section_index
936 = gdb_bfd_section_index (objfile->obfd, sect);
937 found = 1;
938 break;
939 }
940 }
941
942 if (!found)
943 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
944 }
945 }
946
947 /* Process a symbol file, as either the main file or as a dynamically
948 loaded file.
949
950 This function does not set the OBJFILE's entry-point info.
951
952 OBJFILE is where the symbols are to be read from.
953
954 ADDRS is the list of section load addresses. If the user has given
955 an 'add-symbol-file' command, then this is the list of offsets and
956 addresses he or she provided as arguments to the command; or, if
957 we're handling a shared library, these are the actual addresses the
958 sections are loaded at, according to the inferior's dynamic linker
959 (as gleaned by GDB's shared library code). We convert each address
960 into an offset from the section VMA's as it appears in the object
961 file, and then call the file's sym_offsets function to convert this
962 into a format-specific offset table --- a `struct section_offsets'.
963
964 ADD_FLAGS encodes verbosity level, whether this is main symbol or
965 an extra symbol file such as dynamically loaded code, and wether
966 breakpoint reset should be deferred. */
967
968 static void
969 syms_from_objfile_1 (struct objfile *objfile,
970 struct section_addr_info *addrs,
971 symfile_add_flags add_flags)
972 {
973 struct section_addr_info *local_addr = NULL;
974 struct cleanup *old_chain;
975 const int mainline = add_flags & SYMFILE_MAINLINE;
976
977 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
978
979 if (objfile->sf == NULL)
980 {
981 /* No symbols to load, but we still need to make sure
982 that the section_offsets table is allocated. */
983 int num_sections = gdb_bfd_count_sections (objfile->obfd);
984 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
985
986 objfile->num_sections = num_sections;
987 objfile->section_offsets
988 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
989 size);
990 memset (objfile->section_offsets, 0, size);
991 return;
992 }
993
994 /* Make sure that partially constructed symbol tables will be cleaned up
995 if an error occurs during symbol reading. */
996 old_chain = make_cleanup (null_cleanup, NULL);
997 std::unique_ptr<struct objfile> objfile_holder (objfile);
998
999 /* If ADDRS is NULL, put together a dummy address list.
1000 We now establish the convention that an addr of zero means
1001 no load address was specified. */
1002 if (! addrs)
1003 {
1004 local_addr = alloc_section_addr_info (1);
1005 make_cleanup (xfree, local_addr);
1006 addrs = local_addr;
1007 }
1008
1009 if (mainline)
1010 {
1011 /* We will modify the main symbol table, make sure that all its users
1012 will be cleaned up if an error occurs during symbol reading. */
1013 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1014
1015 /* Since no error yet, throw away the old symbol table. */
1016
1017 if (symfile_objfile != NULL)
1018 {
1019 delete symfile_objfile;
1020 gdb_assert (symfile_objfile == NULL);
1021 }
1022
1023 /* Currently we keep symbols from the add-symbol-file command.
1024 If the user wants to get rid of them, they should do "symbol-file"
1025 without arguments first. Not sure this is the best behavior
1026 (PR 2207). */
1027
1028 (*objfile->sf->sym_new_init) (objfile);
1029 }
1030
1031 /* Convert addr into an offset rather than an absolute address.
1032 We find the lowest address of a loaded segment in the objfile,
1033 and assume that <addr> is where that got loaded.
1034
1035 We no longer warn if the lowest section is not a text segment (as
1036 happens for the PA64 port. */
1037 if (addrs->num_sections > 0)
1038 addr_info_make_relative (addrs, objfile->obfd);
1039
1040 /* Initialize symbol reading routines for this objfile, allow complaints to
1041 appear for this new file, and record how verbose to be, then do the
1042 initial symbol reading for this file. */
1043
1044 (*objfile->sf->sym_init) (objfile);
1045 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1046
1047 (*objfile->sf->sym_offsets) (objfile, addrs);
1048
1049 read_symbols (objfile, add_flags);
1050
1051 /* Discard cleanups as symbol reading was successful. */
1052
1053 objfile_holder.release ();
1054 discard_cleanups (old_chain);
1055 xfree (local_addr);
1056 }
1057
1058 /* Same as syms_from_objfile_1, but also initializes the objfile
1059 entry-point info. */
1060
1061 static void
1062 syms_from_objfile (struct objfile *objfile,
1063 struct section_addr_info *addrs,
1064 symfile_add_flags add_flags)
1065 {
1066 syms_from_objfile_1 (objfile, addrs, add_flags);
1067 init_entry_point_info (objfile);
1068 }
1069
1070 /* Perform required actions after either reading in the initial
1071 symbols for a new objfile, or mapping in the symbols from a reusable
1072 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1073
1074 static void
1075 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1076 {
1077 /* If this is the main symbol file we have to clean up all users of the
1078 old main symbol file. Otherwise it is sufficient to fixup all the
1079 breakpoints that may have been redefined by this symbol file. */
1080 if (add_flags & SYMFILE_MAINLINE)
1081 {
1082 /* OK, make it the "real" symbol file. */
1083 symfile_objfile = objfile;
1084
1085 clear_symtab_users (add_flags);
1086 }
1087 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1088 {
1089 breakpoint_re_set ();
1090 }
1091
1092 /* We're done reading the symbol file; finish off complaints. */
1093 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1094 }
1095
1096 /* Process a symbol file, as either the main file or as a dynamically
1097 loaded file.
1098
1099 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1100 A new reference is acquired by this function.
1101
1102 For NAME description see the objfile constructor.
1103
1104 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1105 extra, such as dynamically loaded code, and what to do with breakpoins.
1106
1107 ADDRS is as described for syms_from_objfile_1, above.
1108 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1109
1110 PARENT is the original objfile if ABFD is a separate debug info file.
1111 Otherwise PARENT is NULL.
1112
1113 Upon success, returns a pointer to the objfile that was added.
1114 Upon failure, jumps back to command level (never returns). */
1115
1116 static struct objfile *
1117 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1118 symfile_add_flags add_flags,
1119 struct section_addr_info *addrs,
1120 objfile_flags flags, struct objfile *parent)
1121 {
1122 struct objfile *objfile;
1123 const int from_tty = add_flags & SYMFILE_VERBOSE;
1124 const int mainline = add_flags & SYMFILE_MAINLINE;
1125 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1126 && (readnow_symbol_files
1127 || (add_flags & SYMFILE_NO_READ) == 0));
1128
1129 if (readnow_symbol_files)
1130 {
1131 flags |= OBJF_READNOW;
1132 add_flags &= ~SYMFILE_NO_READ;
1133 }
1134
1135 /* Give user a chance to burp if we'd be
1136 interactively wiping out any existing symbols. */
1137
1138 if ((have_full_symbols () || have_partial_symbols ())
1139 && mainline
1140 && from_tty
1141 && !query (_("Load new symbol table from \"%s\"? "), name))
1142 error (_("Not confirmed."));
1143
1144 if (mainline)
1145 flags |= OBJF_MAINLINE;
1146 objfile = new struct objfile (abfd, name, flags);
1147
1148 if (parent)
1149 add_separate_debug_objfile (objfile, parent);
1150
1151 /* We either created a new mapped symbol table, mapped an existing
1152 symbol table file which has not had initial symbol reading
1153 performed, or need to read an unmapped symbol table. */
1154 if (should_print)
1155 {
1156 if (deprecated_pre_add_symbol_hook)
1157 deprecated_pre_add_symbol_hook (name);
1158 else
1159 {
1160 printf_unfiltered (_("Reading symbols from %s..."), name);
1161 wrap_here ("");
1162 gdb_flush (gdb_stdout);
1163 }
1164 }
1165 syms_from_objfile (objfile, addrs, add_flags);
1166
1167 /* We now have at least a partial symbol table. Check to see if the
1168 user requested that all symbols be read on initial access via either
1169 the gdb startup command line or on a per symbol file basis. Expand
1170 all partial symbol tables for this objfile if so. */
1171
1172 if ((flags & OBJF_READNOW))
1173 {
1174 if (should_print)
1175 {
1176 printf_unfiltered (_("expanding to full symbols..."));
1177 wrap_here ("");
1178 gdb_flush (gdb_stdout);
1179 }
1180
1181 if (objfile->sf)
1182 objfile->sf->qf->expand_all_symtabs (objfile);
1183 }
1184
1185 if (should_print && !objfile_has_symbols (objfile))
1186 {
1187 wrap_here ("");
1188 printf_unfiltered (_("(no debugging symbols found)..."));
1189 wrap_here ("");
1190 }
1191
1192 if (should_print)
1193 {
1194 if (deprecated_post_add_symbol_hook)
1195 deprecated_post_add_symbol_hook ();
1196 else
1197 printf_unfiltered (_("done.\n"));
1198 }
1199
1200 /* We print some messages regardless of whether 'from_tty ||
1201 info_verbose' is true, so make sure they go out at the right
1202 time. */
1203 gdb_flush (gdb_stdout);
1204
1205 if (objfile->sf == NULL)
1206 {
1207 observer_notify_new_objfile (objfile);
1208 return objfile; /* No symbols. */
1209 }
1210
1211 finish_new_objfile (objfile, add_flags);
1212
1213 observer_notify_new_objfile (objfile);
1214
1215 bfd_cache_close_all ();
1216 return (objfile);
1217 }
1218
1219 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1220 see the objfile constructor. */
1221
1222 void
1223 symbol_file_add_separate (bfd *bfd, const char *name,
1224 symfile_add_flags symfile_flags,
1225 struct objfile *objfile)
1226 {
1227 struct section_addr_info *sap;
1228 struct cleanup *my_cleanup;
1229
1230 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1231 because sections of BFD may not match sections of OBJFILE and because
1232 vma may have been modified by tools such as prelink. */
1233 sap = build_section_addr_info_from_objfile (objfile);
1234 my_cleanup = make_cleanup_free_section_addr_info (sap);
1235
1236 symbol_file_add_with_addrs
1237 (bfd, name, symfile_flags, sap,
1238 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1239 | OBJF_USERLOADED),
1240 objfile);
1241
1242 do_cleanups (my_cleanup);
1243 }
1244
1245 /* Process the symbol file ABFD, as either the main file or as a
1246 dynamically loaded file.
1247 See symbol_file_add_with_addrs's comments for details. */
1248
1249 struct objfile *
1250 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1251 symfile_add_flags add_flags,
1252 struct section_addr_info *addrs,
1253 objfile_flags flags, struct objfile *parent)
1254 {
1255 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1256 parent);
1257 }
1258
1259 /* Process a symbol file, as either the main file or as a dynamically
1260 loaded file. See symbol_file_add_with_addrs's comments for details. */
1261
1262 struct objfile *
1263 symbol_file_add (const char *name, symfile_add_flags add_flags,
1264 struct section_addr_info *addrs, objfile_flags flags)
1265 {
1266 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1267
1268 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1269 flags, NULL);
1270 }
1271
1272 /* Call symbol_file_add() with default values and update whatever is
1273 affected by the loading of a new main().
1274 Used when the file is supplied in the gdb command line
1275 and by some targets with special loading requirements.
1276 The auxiliary function, symbol_file_add_main_1(), has the flags
1277 argument for the switches that can only be specified in the symbol_file
1278 command itself. */
1279
1280 void
1281 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1282 {
1283 symbol_file_add_main_1 (args, add_flags, 0);
1284 }
1285
1286 static void
1287 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1288 objfile_flags flags)
1289 {
1290 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1291
1292 symbol_file_add (args, add_flags, NULL, flags);
1293
1294 /* Getting new symbols may change our opinion about
1295 what is frameless. */
1296 reinit_frame_cache ();
1297
1298 if ((add_flags & SYMFILE_NO_READ) == 0)
1299 set_initial_language ();
1300 }
1301
1302 void
1303 symbol_file_clear (int from_tty)
1304 {
1305 if ((have_full_symbols () || have_partial_symbols ())
1306 && from_tty
1307 && (symfile_objfile
1308 ? !query (_("Discard symbol table from `%s'? "),
1309 objfile_name (symfile_objfile))
1310 : !query (_("Discard symbol table? "))))
1311 error (_("Not confirmed."));
1312
1313 /* solib descriptors may have handles to objfiles. Wipe them before their
1314 objfiles get stale by free_all_objfiles. */
1315 no_shared_libraries (NULL, from_tty);
1316
1317 free_all_objfiles ();
1318
1319 gdb_assert (symfile_objfile == NULL);
1320 if (from_tty)
1321 printf_unfiltered (_("No symbol file now.\n"));
1322 }
1323
1324 /* See symfile.h. */
1325
1326 int separate_debug_file_debug = 0;
1327
1328 static int
1329 separate_debug_file_exists (const char *name, unsigned long crc,
1330 struct objfile *parent_objfile)
1331 {
1332 unsigned long file_crc;
1333 int file_crc_p;
1334 struct stat parent_stat, abfd_stat;
1335 int verified_as_different;
1336
1337 /* Find a separate debug info file as if symbols would be present in
1338 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1339 section can contain just the basename of PARENT_OBJFILE without any
1340 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1341 the separate debug infos with the same basename can exist. */
1342
1343 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1344 return 0;
1345
1346 if (separate_debug_file_debug)
1347 printf_unfiltered (_(" Trying %s\n"), name);
1348
1349 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name, gnutarget, -1));
1350
1351 if (abfd == NULL)
1352 return 0;
1353
1354 /* Verify symlinks were not the cause of filename_cmp name difference above.
1355
1356 Some operating systems, e.g. Windows, do not provide a meaningful
1357 st_ino; they always set it to zero. (Windows does provide a
1358 meaningful st_dev.) Files accessed from gdbservers that do not
1359 support the vFile:fstat packet will also have st_ino set to zero.
1360 Do not indicate a duplicate library in either case. While there
1361 is no guarantee that a system that provides meaningful inode
1362 numbers will never set st_ino to zero, this is merely an
1363 optimization, so we do not need to worry about false negatives. */
1364
1365 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1366 && abfd_stat.st_ino != 0
1367 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1368 {
1369 if (abfd_stat.st_dev == parent_stat.st_dev
1370 && abfd_stat.st_ino == parent_stat.st_ino)
1371 return 0;
1372 verified_as_different = 1;
1373 }
1374 else
1375 verified_as_different = 0;
1376
1377 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1378
1379 if (!file_crc_p)
1380 return 0;
1381
1382 if (crc != file_crc)
1383 {
1384 unsigned long parent_crc;
1385
1386 /* If the files could not be verified as different with
1387 bfd_stat then we need to calculate the parent's CRC
1388 to verify whether the files are different or not. */
1389
1390 if (!verified_as_different)
1391 {
1392 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1393 return 0;
1394 }
1395
1396 if (verified_as_different || parent_crc != file_crc)
1397 warning (_("the debug information found in \"%s\""
1398 " does not match \"%s\" (CRC mismatch).\n"),
1399 name, objfile_name (parent_objfile));
1400
1401 return 0;
1402 }
1403
1404 return 1;
1405 }
1406
1407 char *debug_file_directory = NULL;
1408 static void
1409 show_debug_file_directory (struct ui_file *file, int from_tty,
1410 struct cmd_list_element *c, const char *value)
1411 {
1412 fprintf_filtered (file,
1413 _("The directory where separate debug "
1414 "symbols are searched for is \"%s\".\n"),
1415 value);
1416 }
1417
1418 #if ! defined (DEBUG_SUBDIRECTORY)
1419 #define DEBUG_SUBDIRECTORY ".debug"
1420 #endif
1421
1422 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1423 where the original file resides (may not be the same as
1424 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1425 looking for. CANON_DIR is the "realpath" form of DIR.
1426 DIR must contain a trailing '/'.
1427 Returns the path of the file with separate debug info, of NULL. */
1428
1429 static char *
1430 find_separate_debug_file (const char *dir,
1431 const char *canon_dir,
1432 const char *debuglink,
1433 unsigned long crc32, struct objfile *objfile)
1434 {
1435 char *debugdir;
1436 char *debugfile;
1437 int i;
1438 VEC (char_ptr) *debugdir_vec;
1439 struct cleanup *back_to;
1440 int ix;
1441
1442 if (separate_debug_file_debug)
1443 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1444 "%s\n"), objfile_name (objfile));
1445
1446 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1447 i = strlen (dir);
1448 if (canon_dir != NULL && strlen (canon_dir) > i)
1449 i = strlen (canon_dir);
1450
1451 debugfile
1452 = (char *) xmalloc (strlen (debug_file_directory) + 1
1453 + i
1454 + strlen (DEBUG_SUBDIRECTORY)
1455 + strlen ("/")
1456 + strlen (debuglink)
1457 + 1);
1458
1459 /* First try in the same directory as the original file. */
1460 strcpy (debugfile, dir);
1461 strcat (debugfile, debuglink);
1462
1463 if (separate_debug_file_exists (debugfile, crc32, objfile))
1464 return debugfile;
1465
1466 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1467 strcpy (debugfile, dir);
1468 strcat (debugfile, DEBUG_SUBDIRECTORY);
1469 strcat (debugfile, "/");
1470 strcat (debugfile, debuglink);
1471
1472 if (separate_debug_file_exists (debugfile, crc32, objfile))
1473 return debugfile;
1474
1475 /* Then try in the global debugfile directories.
1476
1477 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1478 cause "/..." lookups. */
1479
1480 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1481 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1482
1483 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1484 {
1485 strcpy (debugfile, debugdir);
1486 strcat (debugfile, "/");
1487 strcat (debugfile, dir);
1488 strcat (debugfile, debuglink);
1489
1490 if (separate_debug_file_exists (debugfile, crc32, objfile))
1491 {
1492 do_cleanups (back_to);
1493 return debugfile;
1494 }
1495
1496 /* If the file is in the sysroot, try using its base path in the
1497 global debugfile directory. */
1498 if (canon_dir != NULL
1499 && filename_ncmp (canon_dir, gdb_sysroot,
1500 strlen (gdb_sysroot)) == 0
1501 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1502 {
1503 strcpy (debugfile, debugdir);
1504 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1505 strcat (debugfile, "/");
1506 strcat (debugfile, debuglink);
1507
1508 if (separate_debug_file_exists (debugfile, crc32, objfile))
1509 {
1510 do_cleanups (back_to);
1511 return debugfile;
1512 }
1513 }
1514 }
1515
1516 do_cleanups (back_to);
1517 xfree (debugfile);
1518 return NULL;
1519 }
1520
1521 /* Modify PATH to contain only "[/]directory/" part of PATH.
1522 If there were no directory separators in PATH, PATH will be empty
1523 string on return. */
1524
1525 static void
1526 terminate_after_last_dir_separator (char *path)
1527 {
1528 int i;
1529
1530 /* Strip off the final filename part, leaving the directory name,
1531 followed by a slash. The directory can be relative or absolute. */
1532 for (i = strlen(path) - 1; i >= 0; i--)
1533 if (IS_DIR_SEPARATOR (path[i]))
1534 break;
1535
1536 /* If I is -1 then no directory is present there and DIR will be "". */
1537 path[i + 1] = '\0';
1538 }
1539
1540 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1541 Returns pathname, or NULL. */
1542
1543 char *
1544 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1545 {
1546 char *debugfile;
1547 unsigned long crc32;
1548
1549 gdb::unique_xmalloc_ptr<char> debuglink
1550 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1551
1552 if (debuglink == NULL)
1553 {
1554 /* There's no separate debug info, hence there's no way we could
1555 load it => no warning. */
1556 return NULL;
1557 }
1558
1559 std::string dir = objfile_name (objfile);
1560 terminate_after_last_dir_separator (&dir[0]);
1561 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1562
1563 debugfile = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1564 debuglink.get (), crc32, objfile);
1565
1566 if (debugfile == NULL)
1567 {
1568 /* For PR gdb/9538, try again with realpath (if different from the
1569 original). */
1570
1571 struct stat st_buf;
1572
1573 if (lstat (objfile_name (objfile), &st_buf) == 0
1574 && S_ISLNK (st_buf.st_mode))
1575 {
1576 gdb::unique_xmalloc_ptr<char> symlink_dir
1577 (lrealpath (objfile_name (objfile)));
1578 if (symlink_dir != NULL)
1579 {
1580 terminate_after_last_dir_separator (symlink_dir.get ());
1581 if (dir != symlink_dir.get ())
1582 {
1583 /* Different directory, so try using it. */
1584 debugfile = find_separate_debug_file (symlink_dir.get (),
1585 symlink_dir.get (),
1586 debuglink.get (),
1587 crc32,
1588 objfile);
1589 }
1590 }
1591 }
1592 }
1593
1594 return debugfile;
1595 }
1596
1597 /* This is the symbol-file command. Read the file, analyze its
1598 symbols, and add a struct symtab to a symtab list. The syntax of
1599 the command is rather bizarre:
1600
1601 1. The function buildargv implements various quoting conventions
1602 which are undocumented and have little or nothing in common with
1603 the way things are quoted (or not quoted) elsewhere in GDB.
1604
1605 2. Options are used, which are not generally used in GDB (perhaps
1606 "set mapped on", "set readnow on" would be better)
1607
1608 3. The order of options matters, which is contrary to GNU
1609 conventions (because it is confusing and inconvenient). */
1610
1611 void
1612 symbol_file_command (const char *args, int from_tty)
1613 {
1614 dont_repeat ();
1615
1616 if (args == NULL)
1617 {
1618 symbol_file_clear (from_tty);
1619 }
1620 else
1621 {
1622 objfile_flags flags = OBJF_USERLOADED;
1623 symfile_add_flags add_flags = 0;
1624 char *name = NULL;
1625
1626 if (from_tty)
1627 add_flags |= SYMFILE_VERBOSE;
1628
1629 gdb_argv built_argv (args);
1630 for (char *arg : built_argv)
1631 {
1632 if (strcmp (arg, "-readnow") == 0)
1633 flags |= OBJF_READNOW;
1634 else if (*arg == '-')
1635 error (_("unknown option `%s'"), arg);
1636 else
1637 {
1638 symbol_file_add_main_1 (arg, add_flags, flags);
1639 name = arg;
1640 }
1641 }
1642
1643 if (name == NULL)
1644 error (_("no symbol file name was specified"));
1645 }
1646 }
1647
1648 /* Set the initial language.
1649
1650 FIXME: A better solution would be to record the language in the
1651 psymtab when reading partial symbols, and then use it (if known) to
1652 set the language. This would be a win for formats that encode the
1653 language in an easily discoverable place, such as DWARF. For
1654 stabs, we can jump through hoops looking for specially named
1655 symbols or try to intuit the language from the specific type of
1656 stabs we find, but we can't do that until later when we read in
1657 full symbols. */
1658
1659 void
1660 set_initial_language (void)
1661 {
1662 enum language lang = main_language ();
1663
1664 if (lang == language_unknown)
1665 {
1666 char *name = main_name ();
1667 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1668
1669 if (sym != NULL)
1670 lang = SYMBOL_LANGUAGE (sym);
1671 }
1672
1673 if (lang == language_unknown)
1674 {
1675 /* Make C the default language */
1676 lang = language_c;
1677 }
1678
1679 set_language (lang);
1680 expected_language = current_language; /* Don't warn the user. */
1681 }
1682
1683 /* Open the file specified by NAME and hand it off to BFD for
1684 preliminary analysis. Return a newly initialized bfd *, which
1685 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1686 absolute). In case of trouble, error() is called. */
1687
1688 gdb_bfd_ref_ptr
1689 symfile_bfd_open (const char *name)
1690 {
1691 int desc = -1;
1692 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1693
1694 if (!is_target_filename (name))
1695 {
1696 char *absolute_name;
1697
1698 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1699
1700 /* Look down path for it, allocate 2nd new malloc'd copy. */
1701 desc = openp (getenv ("PATH"),
1702 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1703 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1704 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1705 if (desc < 0)
1706 {
1707 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1708
1709 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1710 desc = openp (getenv ("PATH"),
1711 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1712 exename, O_RDONLY | O_BINARY, &absolute_name);
1713 }
1714 #endif
1715 if (desc < 0)
1716 perror_with_name (expanded_name.get ());
1717
1718 make_cleanup (xfree, absolute_name);
1719 name = absolute_name;
1720 }
1721
1722 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1723 if (sym_bfd == NULL)
1724 error (_("`%s': can't open to read symbols: %s."), name,
1725 bfd_errmsg (bfd_get_error ()));
1726
1727 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1728 bfd_set_cacheable (sym_bfd.get (), 1);
1729
1730 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1731 error (_("`%s': can't read symbols: %s."), name,
1732 bfd_errmsg (bfd_get_error ()));
1733
1734 do_cleanups (back_to);
1735
1736 return sym_bfd;
1737 }
1738
1739 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1740 the section was not found. */
1741
1742 int
1743 get_section_index (struct objfile *objfile, const char *section_name)
1744 {
1745 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1746
1747 if (sect)
1748 return sect->index;
1749 else
1750 return -1;
1751 }
1752
1753 /* Link SF into the global symtab_fns list.
1754 FLAVOUR is the file format that SF handles.
1755 Called on startup by the _initialize routine in each object file format
1756 reader, to register information about each format the reader is prepared
1757 to handle. */
1758
1759 void
1760 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1761 {
1762 symtab_fns.emplace_back (flavour, sf);
1763 }
1764
1765 /* Initialize OBJFILE to read symbols from its associated BFD. It
1766 either returns or calls error(). The result is an initialized
1767 struct sym_fns in the objfile structure, that contains cached
1768 information about the symbol file. */
1769
1770 static const struct sym_fns *
1771 find_sym_fns (bfd *abfd)
1772 {
1773 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1774
1775 if (our_flavour == bfd_target_srec_flavour
1776 || our_flavour == bfd_target_ihex_flavour
1777 || our_flavour == bfd_target_tekhex_flavour)
1778 return NULL; /* No symbols. */
1779
1780 for (const registered_sym_fns &rsf : symtab_fns)
1781 if (our_flavour == rsf.sym_flavour)
1782 return rsf.sym_fns;
1783
1784 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1785 bfd_get_target (abfd));
1786 }
1787 \f
1788
1789 /* This function runs the load command of our current target. */
1790
1791 static void
1792 load_command (const char *arg, int from_tty)
1793 {
1794 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1795
1796 dont_repeat ();
1797
1798 /* The user might be reloading because the binary has changed. Take
1799 this opportunity to check. */
1800 reopen_exec_file ();
1801 reread_symbols ();
1802
1803 if (arg == NULL)
1804 {
1805 const char *parg;
1806 int count = 0;
1807
1808 parg = arg = get_exec_file (1);
1809
1810 /* Count how many \ " ' tab space there are in the name. */
1811 while ((parg = strpbrk (parg, "\\\"'\t ")))
1812 {
1813 parg++;
1814 count++;
1815 }
1816
1817 if (count)
1818 {
1819 /* We need to quote this string so buildargv can pull it apart. */
1820 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1821 char *ptemp = temp;
1822 const char *prev;
1823
1824 make_cleanup (xfree, temp);
1825
1826 prev = parg = arg;
1827 while ((parg = strpbrk (parg, "\\\"'\t ")))
1828 {
1829 strncpy (ptemp, prev, parg - prev);
1830 ptemp += parg - prev;
1831 prev = parg++;
1832 *ptemp++ = '\\';
1833 }
1834 strcpy (ptemp, prev);
1835
1836 arg = temp;
1837 }
1838 }
1839
1840 target_load (arg, from_tty);
1841
1842 /* After re-loading the executable, we don't really know which
1843 overlays are mapped any more. */
1844 overlay_cache_invalid = 1;
1845
1846 do_cleanups (cleanup);
1847 }
1848
1849 /* This version of "load" should be usable for any target. Currently
1850 it is just used for remote targets, not inftarg.c or core files,
1851 on the theory that only in that case is it useful.
1852
1853 Avoiding xmodem and the like seems like a win (a) because we don't have
1854 to worry about finding it, and (b) On VMS, fork() is very slow and so
1855 we don't want to run a subprocess. On the other hand, I'm not sure how
1856 performance compares. */
1857
1858 static int validate_download = 0;
1859
1860 /* Callback service function for generic_load (bfd_map_over_sections). */
1861
1862 static void
1863 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1864 {
1865 bfd_size_type *sum = (bfd_size_type *) data;
1866
1867 *sum += bfd_get_section_size (asec);
1868 }
1869
1870 /* Opaque data for load_section_callback. */
1871 struct load_section_data {
1872 CORE_ADDR load_offset;
1873 struct load_progress_data *progress_data;
1874 VEC(memory_write_request_s) *requests;
1875 };
1876
1877 /* Opaque data for load_progress. */
1878 struct load_progress_data {
1879 /* Cumulative data. */
1880 unsigned long write_count;
1881 unsigned long data_count;
1882 bfd_size_type total_size;
1883 };
1884
1885 /* Opaque data for load_progress for a single section. */
1886 struct load_progress_section_data {
1887 struct load_progress_data *cumulative;
1888
1889 /* Per-section data. */
1890 const char *section_name;
1891 ULONGEST section_sent;
1892 ULONGEST section_size;
1893 CORE_ADDR lma;
1894 gdb_byte *buffer;
1895 };
1896
1897 /* Target write callback routine for progress reporting. */
1898
1899 static void
1900 load_progress (ULONGEST bytes, void *untyped_arg)
1901 {
1902 struct load_progress_section_data *args
1903 = (struct load_progress_section_data *) untyped_arg;
1904 struct load_progress_data *totals;
1905
1906 if (args == NULL)
1907 /* Writing padding data. No easy way to get at the cumulative
1908 stats, so just ignore this. */
1909 return;
1910
1911 totals = args->cumulative;
1912
1913 if (bytes == 0 && args->section_sent == 0)
1914 {
1915 /* The write is just starting. Let the user know we've started
1916 this section. */
1917 current_uiout->message ("Loading section %s, size %s lma %s\n",
1918 args->section_name,
1919 hex_string (args->section_size),
1920 paddress (target_gdbarch (), args->lma));
1921 return;
1922 }
1923
1924 if (validate_download)
1925 {
1926 /* Broken memories and broken monitors manifest themselves here
1927 when bring new computers to life. This doubles already slow
1928 downloads. */
1929 /* NOTE: cagney/1999-10-18: A more efficient implementation
1930 might add a verify_memory() method to the target vector and
1931 then use that. remote.c could implement that method using
1932 the ``qCRC'' packet. */
1933 gdb::byte_vector check (bytes);
1934
1935 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1936 error (_("Download verify read failed at %s"),
1937 paddress (target_gdbarch (), args->lma));
1938 if (memcmp (args->buffer, check.data (), bytes) != 0)
1939 error (_("Download verify compare failed at %s"),
1940 paddress (target_gdbarch (), args->lma));
1941 }
1942 totals->data_count += bytes;
1943 args->lma += bytes;
1944 args->buffer += bytes;
1945 totals->write_count += 1;
1946 args->section_sent += bytes;
1947 if (check_quit_flag ()
1948 || (deprecated_ui_load_progress_hook != NULL
1949 && deprecated_ui_load_progress_hook (args->section_name,
1950 args->section_sent)))
1951 error (_("Canceled the download"));
1952
1953 if (deprecated_show_load_progress != NULL)
1954 deprecated_show_load_progress (args->section_name,
1955 args->section_sent,
1956 args->section_size,
1957 totals->data_count,
1958 totals->total_size);
1959 }
1960
1961 /* Callback service function for generic_load (bfd_map_over_sections). */
1962
1963 static void
1964 load_section_callback (bfd *abfd, asection *asec, void *data)
1965 {
1966 struct memory_write_request *new_request;
1967 struct load_section_data *args = (struct load_section_data *) data;
1968 struct load_progress_section_data *section_data;
1969 bfd_size_type size = bfd_get_section_size (asec);
1970 gdb_byte *buffer;
1971 const char *sect_name = bfd_get_section_name (abfd, asec);
1972
1973 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1974 return;
1975
1976 if (size == 0)
1977 return;
1978
1979 new_request = VEC_safe_push (memory_write_request_s,
1980 args->requests, NULL);
1981 memset (new_request, 0, sizeof (struct memory_write_request));
1982 section_data = XCNEW (struct load_progress_section_data);
1983 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1984 new_request->end = new_request->begin + size; /* FIXME Should size
1985 be in instead? */
1986 new_request->data = (gdb_byte *) xmalloc (size);
1987 new_request->baton = section_data;
1988
1989 buffer = new_request->data;
1990
1991 section_data->cumulative = args->progress_data;
1992 section_data->section_name = sect_name;
1993 section_data->section_size = size;
1994 section_data->lma = new_request->begin;
1995 section_data->buffer = buffer;
1996
1997 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1998 }
1999
2000 /* Clean up an entire memory request vector, including load
2001 data and progress records. */
2002
2003 static void
2004 clear_memory_write_data (void *arg)
2005 {
2006 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
2007 VEC(memory_write_request_s) *vec = *vec_p;
2008 int i;
2009 struct memory_write_request *mr;
2010
2011 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2012 {
2013 xfree (mr->data);
2014 xfree (mr->baton);
2015 }
2016 VEC_free (memory_write_request_s, vec);
2017 }
2018
2019 static void print_transfer_performance (struct ui_file *stream,
2020 unsigned long data_count,
2021 unsigned long write_count,
2022 std::chrono::steady_clock::duration d);
2023
2024 void
2025 generic_load (const char *args, int from_tty)
2026 {
2027 struct cleanup *old_cleanups;
2028 struct load_section_data cbdata;
2029 struct load_progress_data total_progress;
2030 struct ui_out *uiout = current_uiout;
2031
2032 CORE_ADDR entry;
2033
2034 memset (&cbdata, 0, sizeof (cbdata));
2035 memset (&total_progress, 0, sizeof (total_progress));
2036 cbdata.progress_data = &total_progress;
2037
2038 old_cleanups = make_cleanup (clear_memory_write_data, &cbdata.requests);
2039
2040 if (args == NULL)
2041 error_no_arg (_("file to load"));
2042
2043 gdb_argv argv (args);
2044
2045 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2046
2047 if (argv[1] != NULL)
2048 {
2049 const char *endptr;
2050
2051 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2052
2053 /* If the last word was not a valid number then
2054 treat it as a file name with spaces in. */
2055 if (argv[1] == endptr)
2056 error (_("Invalid download offset:%s."), argv[1]);
2057
2058 if (argv[2] != NULL)
2059 error (_("Too many parameters."));
2060 }
2061
2062 /* Open the file for loading. */
2063 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
2064 if (loadfile_bfd == NULL)
2065 perror_with_name (filename.get ());
2066
2067 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2068 {
2069 error (_("\"%s\" is not an object file: %s"), filename.get (),
2070 bfd_errmsg (bfd_get_error ()));
2071 }
2072
2073 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2074 (void *) &total_progress.total_size);
2075
2076 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2077
2078 using namespace std::chrono;
2079
2080 steady_clock::time_point start_time = steady_clock::now ();
2081
2082 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2083 load_progress) != 0)
2084 error (_("Load failed"));
2085
2086 steady_clock::time_point end_time = steady_clock::now ();
2087
2088 entry = bfd_get_start_address (loadfile_bfd.get ());
2089 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2090 uiout->text ("Start address ");
2091 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2092 uiout->text (", load size ");
2093 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2094 uiout->text ("\n");
2095 regcache_write_pc (get_current_regcache (), entry);
2096
2097 /* Reset breakpoints, now that we have changed the load image. For
2098 instance, breakpoints may have been set (or reset, by
2099 post_create_inferior) while connected to the target but before we
2100 loaded the program. In that case, the prologue analyzer could
2101 have read instructions from the target to find the right
2102 breakpoint locations. Loading has changed the contents of that
2103 memory. */
2104
2105 breakpoint_re_set ();
2106
2107 print_transfer_performance (gdb_stdout, total_progress.data_count,
2108 total_progress.write_count,
2109 end_time - start_time);
2110
2111 do_cleanups (old_cleanups);
2112 }
2113
2114 /* Report on STREAM the performance of a memory transfer operation,
2115 such as 'load'. DATA_COUNT is the number of bytes transferred.
2116 WRITE_COUNT is the number of separate write operations, or 0, if
2117 that information is not available. TIME is how long the operation
2118 lasted. */
2119
2120 static void
2121 print_transfer_performance (struct ui_file *stream,
2122 unsigned long data_count,
2123 unsigned long write_count,
2124 std::chrono::steady_clock::duration time)
2125 {
2126 using namespace std::chrono;
2127 struct ui_out *uiout = current_uiout;
2128
2129 milliseconds ms = duration_cast<milliseconds> (time);
2130
2131 uiout->text ("Transfer rate: ");
2132 if (ms.count () > 0)
2133 {
2134 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2135
2136 if (uiout->is_mi_like_p ())
2137 {
2138 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2139 uiout->text (" bits/sec");
2140 }
2141 else if (rate < 1024)
2142 {
2143 uiout->field_fmt ("transfer-rate", "%lu", rate);
2144 uiout->text (" bytes/sec");
2145 }
2146 else
2147 {
2148 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2149 uiout->text (" KB/sec");
2150 }
2151 }
2152 else
2153 {
2154 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2155 uiout->text (" bits in <1 sec");
2156 }
2157 if (write_count > 0)
2158 {
2159 uiout->text (", ");
2160 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2161 uiout->text (" bytes/write");
2162 }
2163 uiout->text (".\n");
2164 }
2165
2166 /* This function allows the addition of incrementally linked object files.
2167 It does not modify any state in the target, only in the debugger. */
2168 /* Note: ezannoni 2000-04-13 This function/command used to have a
2169 special case syntax for the rombug target (Rombug is the boot
2170 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2171 rombug case, the user doesn't need to supply a text address,
2172 instead a call to target_link() (in target.c) would supply the
2173 value to use. We are now discontinuing this type of ad hoc syntax. */
2174
2175 static void
2176 add_symbol_file_command (const char *args, int from_tty)
2177 {
2178 struct gdbarch *gdbarch = get_current_arch ();
2179 gdb::unique_xmalloc_ptr<char> filename;
2180 char *arg;
2181 int argcnt = 0;
2182 int sec_num = 0;
2183 int expecting_sec_name = 0;
2184 int expecting_sec_addr = 0;
2185 struct objfile *objf;
2186 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2187 symfile_add_flags add_flags = 0;
2188
2189 if (from_tty)
2190 add_flags |= SYMFILE_VERBOSE;
2191
2192 struct sect_opt
2193 {
2194 const char *name;
2195 const char *value;
2196 };
2197
2198 struct section_addr_info *section_addrs;
2199 std::vector<sect_opt> sect_opts;
2200 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2201
2202 dont_repeat ();
2203
2204 if (args == NULL)
2205 error (_("add-symbol-file takes a file name and an address"));
2206
2207 gdb_argv argv (args);
2208
2209 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2210 {
2211 /* Process the argument. */
2212 if (argcnt == 0)
2213 {
2214 /* The first argument is the file name. */
2215 filename.reset (tilde_expand (arg));
2216 }
2217 else if (argcnt == 1)
2218 {
2219 /* The second argument is always the text address at which
2220 to load the program. */
2221 sect_opt sect = { ".text", arg };
2222 sect_opts.push_back (sect);
2223 }
2224 else
2225 {
2226 /* It's an option (starting with '-') or it's an argument
2227 to an option. */
2228 if (expecting_sec_name)
2229 {
2230 sect_opt sect = { arg, NULL };
2231 sect_opts.push_back (sect);
2232 expecting_sec_name = 0;
2233 }
2234 else if (expecting_sec_addr)
2235 {
2236 sect_opts.back ().value = arg;
2237 expecting_sec_addr = 0;
2238 }
2239 else if (strcmp (arg, "-readnow") == 0)
2240 flags |= OBJF_READNOW;
2241 else if (strcmp (arg, "-s") == 0)
2242 {
2243 expecting_sec_name = 1;
2244 expecting_sec_addr = 1;
2245 }
2246 else
2247 error (_("Unrecognized argument \"%s\""), arg);
2248 }
2249 }
2250
2251 /* This command takes at least two arguments. The first one is a
2252 filename, and the second is the address where this file has been
2253 loaded. Abort now if this address hasn't been provided by the
2254 user. */
2255 if (sect_opts.empty ())
2256 error (_("The address where %s has been loaded is missing"),
2257 filename.get ());
2258
2259 if (expecting_sec_name)
2260 error (_("Missing section name after \"-s\""));
2261 else if (expecting_sec_addr)
2262 error (_("Missing section address after \"-s\""));
2263
2264 /* Print the prompt for the query below. And save the arguments into
2265 a sect_addr_info structure to be passed around to other
2266 functions. We have to split this up into separate print
2267 statements because hex_string returns a local static
2268 string. */
2269
2270 printf_unfiltered (_("add symbol table from file \"%s\" at\n"),
2271 filename.get ());
2272 section_addrs = alloc_section_addr_info (sect_opts.size ());
2273 make_cleanup (xfree, section_addrs);
2274 for (sect_opt &sect : sect_opts)
2275 {
2276 CORE_ADDR addr;
2277 const char *val = sect.value;
2278 const char *sec = sect.name;
2279
2280 addr = parse_and_eval_address (val);
2281
2282 /* Here we store the section offsets in the order they were
2283 entered on the command line. */
2284 section_addrs->other[sec_num].name = (char *) sec;
2285 section_addrs->other[sec_num].addr = addr;
2286 printf_unfiltered ("\t%s_addr = %s\n", sec,
2287 paddress (gdbarch, addr));
2288 sec_num++;
2289
2290 /* The object's sections are initialized when a
2291 call is made to build_objfile_section_table (objfile).
2292 This happens in reread_symbols.
2293 At this point, we don't know what file type this is,
2294 so we can't determine what section names are valid. */
2295 }
2296 section_addrs->num_sections = sec_num;
2297
2298 if (from_tty && (!query ("%s", "")))
2299 error (_("Not confirmed."));
2300
2301 objf = symbol_file_add (filename.get (), add_flags, section_addrs, flags);
2302
2303 add_target_sections_of_objfile (objf);
2304
2305 /* Getting new symbols may change our opinion about what is
2306 frameless. */
2307 reinit_frame_cache ();
2308 do_cleanups (my_cleanups);
2309 }
2310 \f
2311
2312 /* This function removes a symbol file that was added via add-symbol-file. */
2313
2314 static void
2315 remove_symbol_file_command (const char *args, int from_tty)
2316 {
2317 struct objfile *objf = NULL;
2318 struct program_space *pspace = current_program_space;
2319
2320 dont_repeat ();
2321
2322 if (args == NULL)
2323 error (_("remove-symbol-file: no symbol file provided"));
2324
2325 gdb_argv argv (args);
2326
2327 if (strcmp (argv[0], "-a") == 0)
2328 {
2329 /* Interpret the next argument as an address. */
2330 CORE_ADDR addr;
2331
2332 if (argv[1] == NULL)
2333 error (_("Missing address argument"));
2334
2335 if (argv[2] != NULL)
2336 error (_("Junk after %s"), argv[1]);
2337
2338 addr = parse_and_eval_address (argv[1]);
2339
2340 ALL_OBJFILES (objf)
2341 {
2342 if ((objf->flags & OBJF_USERLOADED) != 0
2343 && (objf->flags & OBJF_SHARED) != 0
2344 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2345 break;
2346 }
2347 }
2348 else if (argv[0] != NULL)
2349 {
2350 /* Interpret the current argument as a file name. */
2351
2352 if (argv[1] != NULL)
2353 error (_("Junk after %s"), argv[0]);
2354
2355 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2356
2357 ALL_OBJFILES (objf)
2358 {
2359 if ((objf->flags & OBJF_USERLOADED) != 0
2360 && (objf->flags & OBJF_SHARED) != 0
2361 && objf->pspace == pspace
2362 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
2363 break;
2364 }
2365 }
2366
2367 if (objf == NULL)
2368 error (_("No symbol file found"));
2369
2370 if (from_tty
2371 && !query (_("Remove symbol table from file \"%s\"? "),
2372 objfile_name (objf)))
2373 error (_("Not confirmed."));
2374
2375 delete objf;
2376 clear_symtab_users (0);
2377 }
2378
2379 /* Re-read symbols if a symbol-file has changed. */
2380
2381 void
2382 reread_symbols (void)
2383 {
2384 struct objfile *objfile;
2385 long new_modtime;
2386 struct stat new_statbuf;
2387 int res;
2388 std::vector<struct objfile *> new_objfiles;
2389
2390 /* With the addition of shared libraries, this should be modified,
2391 the load time should be saved in the partial symbol tables, since
2392 different tables may come from different source files. FIXME.
2393 This routine should then walk down each partial symbol table
2394 and see if the symbol table that it originates from has been changed. */
2395
2396 for (objfile = object_files; objfile; objfile = objfile->next)
2397 {
2398 if (objfile->obfd == NULL)
2399 continue;
2400
2401 /* Separate debug objfiles are handled in the main objfile. */
2402 if (objfile->separate_debug_objfile_backlink)
2403 continue;
2404
2405 /* If this object is from an archive (what you usually create with
2406 `ar', often called a `static library' on most systems, though
2407 a `shared library' on AIX is also an archive), then you should
2408 stat on the archive name, not member name. */
2409 if (objfile->obfd->my_archive)
2410 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2411 else
2412 res = stat (objfile_name (objfile), &new_statbuf);
2413 if (res != 0)
2414 {
2415 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2416 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2417 objfile_name (objfile));
2418 continue;
2419 }
2420 new_modtime = new_statbuf.st_mtime;
2421 if (new_modtime != objfile->mtime)
2422 {
2423 struct cleanup *old_cleanups;
2424 struct section_offsets *offsets;
2425 int num_offsets;
2426 char *original_name;
2427
2428 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2429 objfile_name (objfile));
2430
2431 /* There are various functions like symbol_file_add,
2432 symfile_bfd_open, syms_from_objfile, etc., which might
2433 appear to do what we want. But they have various other
2434 effects which we *don't* want. So we just do stuff
2435 ourselves. We don't worry about mapped files (for one thing,
2436 any mapped file will be out of date). */
2437
2438 /* If we get an error, blow away this objfile (not sure if
2439 that is the correct response for things like shared
2440 libraries). */
2441 std::unique_ptr<struct objfile> objfile_holder (objfile);
2442
2443 /* We need to do this whenever any symbols go away. */
2444 old_cleanups = make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2445
2446 if (exec_bfd != NULL
2447 && filename_cmp (bfd_get_filename (objfile->obfd),
2448 bfd_get_filename (exec_bfd)) == 0)
2449 {
2450 /* Reload EXEC_BFD without asking anything. */
2451
2452 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2453 }
2454
2455 /* Keep the calls order approx. the same as in free_objfile. */
2456
2457 /* Free the separate debug objfiles. It will be
2458 automatically recreated by sym_read. */
2459 free_objfile_separate_debug (objfile);
2460
2461 /* Remove any references to this objfile in the global
2462 value lists. */
2463 preserve_values (objfile);
2464
2465 /* Nuke all the state that we will re-read. Much of the following
2466 code which sets things to NULL really is necessary to tell
2467 other parts of GDB that there is nothing currently there.
2468
2469 Try to keep the freeing order compatible with free_objfile. */
2470
2471 if (objfile->sf != NULL)
2472 {
2473 (*objfile->sf->sym_finish) (objfile);
2474 }
2475
2476 clear_objfile_data (objfile);
2477
2478 /* Clean up any state BFD has sitting around. */
2479 {
2480 gdb_bfd_ref_ptr obfd (objfile->obfd);
2481 char *obfd_filename;
2482
2483 obfd_filename = bfd_get_filename (objfile->obfd);
2484 /* Open the new BFD before freeing the old one, so that
2485 the filename remains live. */
2486 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2487 objfile->obfd = temp.release ();
2488 if (objfile->obfd == NULL)
2489 error (_("Can't open %s to read symbols."), obfd_filename);
2490 }
2491
2492 original_name = xstrdup (objfile->original_name);
2493 make_cleanup (xfree, original_name);
2494
2495 /* bfd_openr sets cacheable to true, which is what we want. */
2496 if (!bfd_check_format (objfile->obfd, bfd_object))
2497 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2498 bfd_errmsg (bfd_get_error ()));
2499
2500 /* Save the offsets, we will nuke them with the rest of the
2501 objfile_obstack. */
2502 num_offsets = objfile->num_sections;
2503 offsets = ((struct section_offsets *)
2504 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2505 memcpy (offsets, objfile->section_offsets,
2506 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2507
2508 /* FIXME: Do we have to free a whole linked list, or is this
2509 enough? */
2510 objfile->global_psymbols.clear ();
2511 objfile->static_psymbols.clear ();
2512
2513 /* Free the obstacks for non-reusable objfiles. */
2514 psymbol_bcache_free (objfile->psymbol_cache);
2515 objfile->psymbol_cache = psymbol_bcache_init ();
2516
2517 /* NB: after this call to obstack_free, objfiles_changed
2518 will need to be called (see discussion below). */
2519 obstack_free (&objfile->objfile_obstack, 0);
2520 objfile->sections = NULL;
2521 objfile->compunit_symtabs = NULL;
2522 objfile->psymtabs = NULL;
2523 objfile->psymtabs_addrmap = NULL;
2524 objfile->free_psymtabs = NULL;
2525 objfile->template_symbols = NULL;
2526
2527 /* obstack_init also initializes the obstack so it is
2528 empty. We could use obstack_specify_allocation but
2529 gdb_obstack.h specifies the alloc/dealloc functions. */
2530 obstack_init (&objfile->objfile_obstack);
2531
2532 /* set_objfile_per_bfd potentially allocates the per-bfd
2533 data on the objfile's obstack (if sharing data across
2534 multiple users is not possible), so it's important to
2535 do it *after* the obstack has been initialized. */
2536 set_objfile_per_bfd (objfile);
2537
2538 objfile->original_name
2539 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2540 strlen (original_name));
2541
2542 /* Reset the sym_fns pointer. The ELF reader can change it
2543 based on whether .gdb_index is present, and we need it to
2544 start over. PR symtab/15885 */
2545 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2546
2547 build_objfile_section_table (objfile);
2548 terminate_minimal_symbol_table (objfile);
2549
2550 /* We use the same section offsets as from last time. I'm not
2551 sure whether that is always correct for shared libraries. */
2552 objfile->section_offsets = (struct section_offsets *)
2553 obstack_alloc (&objfile->objfile_obstack,
2554 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2555 memcpy (objfile->section_offsets, offsets,
2556 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2557 objfile->num_sections = num_offsets;
2558
2559 /* What the hell is sym_new_init for, anyway? The concept of
2560 distinguishing between the main file and additional files
2561 in this way seems rather dubious. */
2562 if (objfile == symfile_objfile)
2563 {
2564 (*objfile->sf->sym_new_init) (objfile);
2565 }
2566
2567 (*objfile->sf->sym_init) (objfile);
2568 clear_complaints (&symfile_complaints, 1, 1);
2569
2570 objfile->flags &= ~OBJF_PSYMTABS_READ;
2571
2572 /* We are about to read new symbols and potentially also
2573 DWARF information. Some targets may want to pass addresses
2574 read from DWARF DIE's through an adjustment function before
2575 saving them, like MIPS, which may call into
2576 "find_pc_section". When called, that function will make
2577 use of per-objfile program space data.
2578
2579 Since we discarded our section information above, we have
2580 dangling pointers in the per-objfile program space data
2581 structure. Force GDB to update the section mapping
2582 information by letting it know the objfile has changed,
2583 making the dangling pointers point to correct data
2584 again. */
2585
2586 objfiles_changed ();
2587
2588 read_symbols (objfile, 0);
2589
2590 if (!objfile_has_symbols (objfile))
2591 {
2592 wrap_here ("");
2593 printf_unfiltered (_("(no debugging symbols found)\n"));
2594 wrap_here ("");
2595 }
2596
2597 /* We're done reading the symbol file; finish off complaints. */
2598 clear_complaints (&symfile_complaints, 0, 1);
2599
2600 /* Getting new symbols may change our opinion about what is
2601 frameless. */
2602
2603 reinit_frame_cache ();
2604
2605 /* Discard cleanups as symbol reading was successful. */
2606 objfile_holder.release ();
2607 discard_cleanups (old_cleanups);
2608
2609 /* If the mtime has changed between the time we set new_modtime
2610 and now, we *want* this to be out of date, so don't call stat
2611 again now. */
2612 objfile->mtime = new_modtime;
2613 init_entry_point_info (objfile);
2614
2615 new_objfiles.push_back (objfile);
2616 }
2617 }
2618
2619 if (!new_objfiles.empty ())
2620 {
2621 clear_symtab_users (0);
2622
2623 /* clear_objfile_data for each objfile was called before freeing it and
2624 observer_notify_new_objfile (NULL) has been called by
2625 clear_symtab_users above. Notify the new files now. */
2626 for (auto iter : new_objfiles)
2627 observer_notify_new_objfile (iter);
2628
2629 /* At least one objfile has changed, so we can consider that
2630 the executable we're debugging has changed too. */
2631 observer_notify_executable_changed ();
2632 }
2633 }
2634 \f
2635
2636 struct filename_language
2637 {
2638 filename_language (const std::string &ext_, enum language lang_)
2639 : ext (ext_), lang (lang_)
2640 {}
2641
2642 std::string ext;
2643 enum language lang;
2644 };
2645
2646 static std::vector<filename_language> filename_language_table;
2647
2648 /* See symfile.h. */
2649
2650 void
2651 add_filename_language (const char *ext, enum language lang)
2652 {
2653 filename_language_table.emplace_back (ext, lang);
2654 }
2655
2656 static char *ext_args;
2657 static void
2658 show_ext_args (struct ui_file *file, int from_tty,
2659 struct cmd_list_element *c, const char *value)
2660 {
2661 fprintf_filtered (file,
2662 _("Mapping between filename extension "
2663 "and source language is \"%s\".\n"),
2664 value);
2665 }
2666
2667 static void
2668 set_ext_lang_command (const char *args,
2669 int from_tty, struct cmd_list_element *e)
2670 {
2671 char *cp = ext_args;
2672 enum language lang;
2673
2674 /* First arg is filename extension, starting with '.' */
2675 if (*cp != '.')
2676 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2677
2678 /* Find end of first arg. */
2679 while (*cp && !isspace (*cp))
2680 cp++;
2681
2682 if (*cp == '\0')
2683 error (_("'%s': two arguments required -- "
2684 "filename extension and language"),
2685 ext_args);
2686
2687 /* Null-terminate first arg. */
2688 *cp++ = '\0';
2689
2690 /* Find beginning of second arg, which should be a source language. */
2691 cp = skip_spaces (cp);
2692
2693 if (*cp == '\0')
2694 error (_("'%s': two arguments required -- "
2695 "filename extension and language"),
2696 ext_args);
2697
2698 /* Lookup the language from among those we know. */
2699 lang = language_enum (cp);
2700
2701 auto it = filename_language_table.begin ();
2702 /* Now lookup the filename extension: do we already know it? */
2703 for (; it != filename_language_table.end (); it++)
2704 {
2705 if (it->ext == ext_args)
2706 break;
2707 }
2708
2709 if (it == filename_language_table.end ())
2710 {
2711 /* New file extension. */
2712 add_filename_language (ext_args, lang);
2713 }
2714 else
2715 {
2716 /* Redefining a previously known filename extension. */
2717
2718 /* if (from_tty) */
2719 /* query ("Really make files of type %s '%s'?", */
2720 /* ext_args, language_str (lang)); */
2721
2722 it->lang = lang;
2723 }
2724 }
2725
2726 static void
2727 info_ext_lang_command (const char *args, int from_tty)
2728 {
2729 printf_filtered (_("Filename extensions and the languages they represent:"));
2730 printf_filtered ("\n\n");
2731 for (const filename_language &entry : filename_language_table)
2732 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2733 language_str (entry.lang));
2734 }
2735
2736 enum language
2737 deduce_language_from_filename (const char *filename)
2738 {
2739 const char *cp;
2740
2741 if (filename != NULL)
2742 if ((cp = strrchr (filename, '.')) != NULL)
2743 {
2744 for (const filename_language &entry : filename_language_table)
2745 if (entry.ext == cp)
2746 return entry.lang;
2747 }
2748
2749 return language_unknown;
2750 }
2751 \f
2752 /* Allocate and initialize a new symbol table.
2753 CUST is from the result of allocate_compunit_symtab. */
2754
2755 struct symtab *
2756 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2757 {
2758 struct objfile *objfile = cust->objfile;
2759 struct symtab *symtab
2760 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2761
2762 symtab->filename
2763 = (const char *) bcache (filename, strlen (filename) + 1,
2764 objfile->per_bfd->filename_cache);
2765 symtab->fullname = NULL;
2766 symtab->language = deduce_language_from_filename (filename);
2767
2768 /* This can be very verbose with lots of headers.
2769 Only print at higher debug levels. */
2770 if (symtab_create_debug >= 2)
2771 {
2772 /* Be a bit clever with debugging messages, and don't print objfile
2773 every time, only when it changes. */
2774 static char *last_objfile_name = NULL;
2775
2776 if (last_objfile_name == NULL
2777 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2778 {
2779 xfree (last_objfile_name);
2780 last_objfile_name = xstrdup (objfile_name (objfile));
2781 fprintf_unfiltered (gdb_stdlog,
2782 "Creating one or more symtabs for objfile %s ...\n",
2783 last_objfile_name);
2784 }
2785 fprintf_unfiltered (gdb_stdlog,
2786 "Created symtab %s for module %s.\n",
2787 host_address_to_string (symtab), filename);
2788 }
2789
2790 /* Add it to CUST's list of symtabs. */
2791 if (cust->filetabs == NULL)
2792 {
2793 cust->filetabs = symtab;
2794 cust->last_filetab = symtab;
2795 }
2796 else
2797 {
2798 cust->last_filetab->next = symtab;
2799 cust->last_filetab = symtab;
2800 }
2801
2802 /* Backlink to the containing compunit symtab. */
2803 symtab->compunit_symtab = cust;
2804
2805 return symtab;
2806 }
2807
2808 /* Allocate and initialize a new compunit.
2809 NAME is the name of the main source file, if there is one, or some
2810 descriptive text if there are no source files. */
2811
2812 struct compunit_symtab *
2813 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2814 {
2815 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2816 struct compunit_symtab);
2817 const char *saved_name;
2818
2819 cu->objfile = objfile;
2820
2821 /* The name we record here is only for display/debugging purposes.
2822 Just save the basename to avoid path issues (too long for display,
2823 relative vs absolute, etc.). */
2824 saved_name = lbasename (name);
2825 cu->name
2826 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2827 strlen (saved_name));
2828
2829 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2830
2831 if (symtab_create_debug)
2832 {
2833 fprintf_unfiltered (gdb_stdlog,
2834 "Created compunit symtab %s for %s.\n",
2835 host_address_to_string (cu),
2836 cu->name);
2837 }
2838
2839 return cu;
2840 }
2841
2842 /* Hook CU to the objfile it comes from. */
2843
2844 void
2845 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2846 {
2847 cu->next = cu->objfile->compunit_symtabs;
2848 cu->objfile->compunit_symtabs = cu;
2849 }
2850 \f
2851
2852 /* Reset all data structures in gdb which may contain references to
2853 symbol table data. */
2854
2855 void
2856 clear_symtab_users (symfile_add_flags add_flags)
2857 {
2858 /* Someday, we should do better than this, by only blowing away
2859 the things that really need to be blown. */
2860
2861 /* Clear the "current" symtab first, because it is no longer valid.
2862 breakpoint_re_set may try to access the current symtab. */
2863 clear_current_source_symtab_and_line ();
2864
2865 clear_displays ();
2866 clear_last_displayed_sal ();
2867 clear_pc_function_cache ();
2868 observer_notify_new_objfile (NULL);
2869
2870 /* Clear globals which might have pointed into a removed objfile.
2871 FIXME: It's not clear which of these are supposed to persist
2872 between expressions and which ought to be reset each time. */
2873 expression_context_block = NULL;
2874 innermost_block = NULL;
2875
2876 /* Varobj may refer to old symbols, perform a cleanup. */
2877 varobj_invalidate ();
2878
2879 /* Now that the various caches have been cleared, we can re_set
2880 our breakpoints without risking it using stale data. */
2881 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2882 breakpoint_re_set ();
2883 }
2884
2885 static void
2886 clear_symtab_users_cleanup (void *ignore)
2887 {
2888 clear_symtab_users (0);
2889 }
2890 \f
2891 /* OVERLAYS:
2892 The following code implements an abstraction for debugging overlay sections.
2893
2894 The target model is as follows:
2895 1) The gnu linker will permit multiple sections to be mapped into the
2896 same VMA, each with its own unique LMA (or load address).
2897 2) It is assumed that some runtime mechanism exists for mapping the
2898 sections, one by one, from the load address into the VMA address.
2899 3) This code provides a mechanism for gdb to keep track of which
2900 sections should be considered to be mapped from the VMA to the LMA.
2901 This information is used for symbol lookup, and memory read/write.
2902 For instance, if a section has been mapped then its contents
2903 should be read from the VMA, otherwise from the LMA.
2904
2905 Two levels of debugger support for overlays are available. One is
2906 "manual", in which the debugger relies on the user to tell it which
2907 overlays are currently mapped. This level of support is
2908 implemented entirely in the core debugger, and the information about
2909 whether a section is mapped is kept in the objfile->obj_section table.
2910
2911 The second level of support is "automatic", and is only available if
2912 the target-specific code provides functionality to read the target's
2913 overlay mapping table, and translate its contents for the debugger
2914 (by updating the mapped state information in the obj_section tables).
2915
2916 The interface is as follows:
2917 User commands:
2918 overlay map <name> -- tell gdb to consider this section mapped
2919 overlay unmap <name> -- tell gdb to consider this section unmapped
2920 overlay list -- list the sections that GDB thinks are mapped
2921 overlay read-target -- get the target's state of what's mapped
2922 overlay off/manual/auto -- set overlay debugging state
2923 Functional interface:
2924 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2925 section, return that section.
2926 find_pc_overlay(pc): find any overlay section that contains
2927 the pc, either in its VMA or its LMA
2928 section_is_mapped(sect): true if overlay is marked as mapped
2929 section_is_overlay(sect): true if section's VMA != LMA
2930 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2931 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2932 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2933 overlay_mapped_address(...): map an address from section's LMA to VMA
2934 overlay_unmapped_address(...): map an address from section's VMA to LMA
2935 symbol_overlayed_address(...): Return a "current" address for symbol:
2936 either in VMA or LMA depending on whether
2937 the symbol's section is currently mapped. */
2938
2939 /* Overlay debugging state: */
2940
2941 enum overlay_debugging_state overlay_debugging = ovly_off;
2942 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2943
2944 /* Function: section_is_overlay (SECTION)
2945 Returns true if SECTION has VMA not equal to LMA, ie.
2946 SECTION is loaded at an address different from where it will "run". */
2947
2948 int
2949 section_is_overlay (struct obj_section *section)
2950 {
2951 if (overlay_debugging && section)
2952 {
2953 bfd *abfd = section->objfile->obfd;
2954 asection *bfd_section = section->the_bfd_section;
2955
2956 if (bfd_section_lma (abfd, bfd_section) != 0
2957 && bfd_section_lma (abfd, bfd_section)
2958 != bfd_section_vma (abfd, bfd_section))
2959 return 1;
2960 }
2961
2962 return 0;
2963 }
2964
2965 /* Function: overlay_invalidate_all (void)
2966 Invalidate the mapped state of all overlay sections (mark it as stale). */
2967
2968 static void
2969 overlay_invalidate_all (void)
2970 {
2971 struct objfile *objfile;
2972 struct obj_section *sect;
2973
2974 ALL_OBJSECTIONS (objfile, sect)
2975 if (section_is_overlay (sect))
2976 sect->ovly_mapped = -1;
2977 }
2978
2979 /* Function: section_is_mapped (SECTION)
2980 Returns true if section is an overlay, and is currently mapped.
2981
2982 Access to the ovly_mapped flag is restricted to this function, so
2983 that we can do automatic update. If the global flag
2984 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2985 overlay_invalidate_all. If the mapped state of the particular
2986 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2987
2988 int
2989 section_is_mapped (struct obj_section *osect)
2990 {
2991 struct gdbarch *gdbarch;
2992
2993 if (osect == 0 || !section_is_overlay (osect))
2994 return 0;
2995
2996 switch (overlay_debugging)
2997 {
2998 default:
2999 case ovly_off:
3000 return 0; /* overlay debugging off */
3001 case ovly_auto: /* overlay debugging automatic */
3002 /* Unles there is a gdbarch_overlay_update function,
3003 there's really nothing useful to do here (can't really go auto). */
3004 gdbarch = get_objfile_arch (osect->objfile);
3005 if (gdbarch_overlay_update_p (gdbarch))
3006 {
3007 if (overlay_cache_invalid)
3008 {
3009 overlay_invalidate_all ();
3010 overlay_cache_invalid = 0;
3011 }
3012 if (osect->ovly_mapped == -1)
3013 gdbarch_overlay_update (gdbarch, osect);
3014 }
3015 /* fall thru to manual case */
3016 case ovly_on: /* overlay debugging manual */
3017 return osect->ovly_mapped == 1;
3018 }
3019 }
3020
3021 /* Function: pc_in_unmapped_range
3022 If PC falls into the lma range of SECTION, return true, else false. */
3023
3024 CORE_ADDR
3025 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3026 {
3027 if (section_is_overlay (section))
3028 {
3029 bfd *abfd = section->objfile->obfd;
3030 asection *bfd_section = section->the_bfd_section;
3031
3032 /* We assume the LMA is relocated by the same offset as the VMA. */
3033 bfd_vma size = bfd_get_section_size (bfd_section);
3034 CORE_ADDR offset = obj_section_offset (section);
3035
3036 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3037 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3038 return 1;
3039 }
3040
3041 return 0;
3042 }
3043
3044 /* Function: pc_in_mapped_range
3045 If PC falls into the vma range of SECTION, return true, else false. */
3046
3047 CORE_ADDR
3048 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3049 {
3050 if (section_is_overlay (section))
3051 {
3052 if (obj_section_addr (section) <= pc
3053 && pc < obj_section_endaddr (section))
3054 return 1;
3055 }
3056
3057 return 0;
3058 }
3059
3060 /* Return true if the mapped ranges of sections A and B overlap, false
3061 otherwise. */
3062
3063 static int
3064 sections_overlap (struct obj_section *a, struct obj_section *b)
3065 {
3066 CORE_ADDR a_start = obj_section_addr (a);
3067 CORE_ADDR a_end = obj_section_endaddr (a);
3068 CORE_ADDR b_start = obj_section_addr (b);
3069 CORE_ADDR b_end = obj_section_endaddr (b);
3070
3071 return (a_start < b_end && b_start < a_end);
3072 }
3073
3074 /* Function: overlay_unmapped_address (PC, SECTION)
3075 Returns the address corresponding to PC in the unmapped (load) range.
3076 May be the same as PC. */
3077
3078 CORE_ADDR
3079 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3080 {
3081 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3082 {
3083 bfd *abfd = section->objfile->obfd;
3084 asection *bfd_section = section->the_bfd_section;
3085
3086 return pc + bfd_section_lma (abfd, bfd_section)
3087 - bfd_section_vma (abfd, bfd_section);
3088 }
3089
3090 return pc;
3091 }
3092
3093 /* Function: overlay_mapped_address (PC, SECTION)
3094 Returns the address corresponding to PC in the mapped (runtime) range.
3095 May be the same as PC. */
3096
3097 CORE_ADDR
3098 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3099 {
3100 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3101 {
3102 bfd *abfd = section->objfile->obfd;
3103 asection *bfd_section = section->the_bfd_section;
3104
3105 return pc + bfd_section_vma (abfd, bfd_section)
3106 - bfd_section_lma (abfd, bfd_section);
3107 }
3108
3109 return pc;
3110 }
3111
3112 /* Function: symbol_overlayed_address
3113 Return one of two addresses (relative to the VMA or to the LMA),
3114 depending on whether the section is mapped or not. */
3115
3116 CORE_ADDR
3117 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3118 {
3119 if (overlay_debugging)
3120 {
3121 /* If the symbol has no section, just return its regular address. */
3122 if (section == 0)
3123 return address;
3124 /* If the symbol's section is not an overlay, just return its
3125 address. */
3126 if (!section_is_overlay (section))
3127 return address;
3128 /* If the symbol's section is mapped, just return its address. */
3129 if (section_is_mapped (section))
3130 return address;
3131 /*
3132 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3133 * then return its LOADED address rather than its vma address!!
3134 */
3135 return overlay_unmapped_address (address, section);
3136 }
3137 return address;
3138 }
3139
3140 /* Function: find_pc_overlay (PC)
3141 Return the best-match overlay section for PC:
3142 If PC matches a mapped overlay section's VMA, return that section.
3143 Else if PC matches an unmapped section's VMA, return that section.
3144 Else if PC matches an unmapped section's LMA, return that section. */
3145
3146 struct obj_section *
3147 find_pc_overlay (CORE_ADDR pc)
3148 {
3149 struct objfile *objfile;
3150 struct obj_section *osect, *best_match = NULL;
3151
3152 if (overlay_debugging)
3153 {
3154 ALL_OBJSECTIONS (objfile, osect)
3155 if (section_is_overlay (osect))
3156 {
3157 if (pc_in_mapped_range (pc, osect))
3158 {
3159 if (section_is_mapped (osect))
3160 return osect;
3161 else
3162 best_match = osect;
3163 }
3164 else if (pc_in_unmapped_range (pc, osect))
3165 best_match = osect;
3166 }
3167 }
3168 return best_match;
3169 }
3170
3171 /* Function: find_pc_mapped_section (PC)
3172 If PC falls into the VMA address range of an overlay section that is
3173 currently marked as MAPPED, return that section. Else return NULL. */
3174
3175 struct obj_section *
3176 find_pc_mapped_section (CORE_ADDR pc)
3177 {
3178 struct objfile *objfile;
3179 struct obj_section *osect;
3180
3181 if (overlay_debugging)
3182 {
3183 ALL_OBJSECTIONS (objfile, osect)
3184 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3185 return osect;
3186 }
3187
3188 return NULL;
3189 }
3190
3191 /* Function: list_overlays_command
3192 Print a list of mapped sections and their PC ranges. */
3193
3194 static void
3195 list_overlays_command (const char *args, int from_tty)
3196 {
3197 int nmapped = 0;
3198 struct objfile *objfile;
3199 struct obj_section *osect;
3200
3201 if (overlay_debugging)
3202 {
3203 ALL_OBJSECTIONS (objfile, osect)
3204 if (section_is_mapped (osect))
3205 {
3206 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3207 const char *name;
3208 bfd_vma lma, vma;
3209 int size;
3210
3211 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3212 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3213 size = bfd_get_section_size (osect->the_bfd_section);
3214 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3215
3216 printf_filtered ("Section %s, loaded at ", name);
3217 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3218 puts_filtered (" - ");
3219 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3220 printf_filtered (", mapped at ");
3221 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3222 puts_filtered (" - ");
3223 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3224 puts_filtered ("\n");
3225
3226 nmapped++;
3227 }
3228 }
3229 if (nmapped == 0)
3230 printf_filtered (_("No sections are mapped.\n"));
3231 }
3232
3233 /* Function: map_overlay_command
3234 Mark the named section as mapped (ie. residing at its VMA address). */
3235
3236 static void
3237 map_overlay_command (const char *args, int from_tty)
3238 {
3239 struct objfile *objfile, *objfile2;
3240 struct obj_section *sec, *sec2;
3241
3242 if (!overlay_debugging)
3243 error (_("Overlay debugging not enabled. Use "
3244 "either the 'overlay auto' or\n"
3245 "the 'overlay manual' command."));
3246
3247 if (args == 0 || *args == 0)
3248 error (_("Argument required: name of an overlay section"));
3249
3250 /* First, find a section matching the user supplied argument. */
3251 ALL_OBJSECTIONS (objfile, sec)
3252 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3253 {
3254 /* Now, check to see if the section is an overlay. */
3255 if (!section_is_overlay (sec))
3256 continue; /* not an overlay section */
3257
3258 /* Mark the overlay as "mapped". */
3259 sec->ovly_mapped = 1;
3260
3261 /* Next, make a pass and unmap any sections that are
3262 overlapped by this new section: */
3263 ALL_OBJSECTIONS (objfile2, sec2)
3264 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3265 {
3266 if (info_verbose)
3267 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3268 bfd_section_name (objfile->obfd,
3269 sec2->the_bfd_section));
3270 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3271 }
3272 return;
3273 }
3274 error (_("No overlay section called %s"), args);
3275 }
3276
3277 /* Function: unmap_overlay_command
3278 Mark the overlay section as unmapped
3279 (ie. resident in its LMA address range, rather than the VMA range). */
3280
3281 static void
3282 unmap_overlay_command (const char *args, int from_tty)
3283 {
3284 struct objfile *objfile;
3285 struct obj_section *sec = NULL;
3286
3287 if (!overlay_debugging)
3288 error (_("Overlay debugging not enabled. "
3289 "Use either the 'overlay auto' or\n"
3290 "the 'overlay manual' command."));
3291
3292 if (args == 0 || *args == 0)
3293 error (_("Argument required: name of an overlay section"));
3294
3295 /* First, find a section matching the user supplied argument. */
3296 ALL_OBJSECTIONS (objfile, sec)
3297 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3298 {
3299 if (!sec->ovly_mapped)
3300 error (_("Section %s is not mapped"), args);
3301 sec->ovly_mapped = 0;
3302 return;
3303 }
3304 error (_("No overlay section called %s"), args);
3305 }
3306
3307 /* Function: overlay_auto_command
3308 A utility command to turn on overlay debugging.
3309 Possibly this should be done via a set/show command. */
3310
3311 static void
3312 overlay_auto_command (const char *args, int from_tty)
3313 {
3314 overlay_debugging = ovly_auto;
3315 enable_overlay_breakpoints ();
3316 if (info_verbose)
3317 printf_unfiltered (_("Automatic overlay debugging enabled."));
3318 }
3319
3320 /* Function: overlay_manual_command
3321 A utility command to turn on overlay debugging.
3322 Possibly this should be done via a set/show command. */
3323
3324 static void
3325 overlay_manual_command (const char *args, int from_tty)
3326 {
3327 overlay_debugging = ovly_on;
3328 disable_overlay_breakpoints ();
3329 if (info_verbose)
3330 printf_unfiltered (_("Overlay debugging enabled."));
3331 }
3332
3333 /* Function: overlay_off_command
3334 A utility command to turn on overlay debugging.
3335 Possibly this should be done via a set/show command. */
3336
3337 static void
3338 overlay_off_command (const char *args, int from_tty)
3339 {
3340 overlay_debugging = ovly_off;
3341 disable_overlay_breakpoints ();
3342 if (info_verbose)
3343 printf_unfiltered (_("Overlay debugging disabled."));
3344 }
3345
3346 static void
3347 overlay_load_command (const char *args, int from_tty)
3348 {
3349 struct gdbarch *gdbarch = get_current_arch ();
3350
3351 if (gdbarch_overlay_update_p (gdbarch))
3352 gdbarch_overlay_update (gdbarch, NULL);
3353 else
3354 error (_("This target does not know how to read its overlay state."));
3355 }
3356
3357 /* Function: overlay_command
3358 A place-holder for a mis-typed command. */
3359
3360 /* Command list chain containing all defined "overlay" subcommands. */
3361 static struct cmd_list_element *overlaylist;
3362
3363 static void
3364 overlay_command (const char *args, int from_tty)
3365 {
3366 printf_unfiltered
3367 ("\"overlay\" must be followed by the name of an overlay command.\n");
3368 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3369 }
3370
3371 /* Target Overlays for the "Simplest" overlay manager:
3372
3373 This is GDB's default target overlay layer. It works with the
3374 minimal overlay manager supplied as an example by Cygnus. The
3375 entry point is via a function pointer "gdbarch_overlay_update",
3376 so targets that use a different runtime overlay manager can
3377 substitute their own overlay_update function and take over the
3378 function pointer.
3379
3380 The overlay_update function pokes around in the target's data structures
3381 to see what overlays are mapped, and updates GDB's overlay mapping with
3382 this information.
3383
3384 In this simple implementation, the target data structures are as follows:
3385 unsigned _novlys; /# number of overlay sections #/
3386 unsigned _ovly_table[_novlys][4] = {
3387 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3388 {..., ..., ..., ...},
3389 }
3390 unsigned _novly_regions; /# number of overlay regions #/
3391 unsigned _ovly_region_table[_novly_regions][3] = {
3392 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3393 {..., ..., ...},
3394 }
3395 These functions will attempt to update GDB's mappedness state in the
3396 symbol section table, based on the target's mappedness state.
3397
3398 To do this, we keep a cached copy of the target's _ovly_table, and
3399 attempt to detect when the cached copy is invalidated. The main
3400 entry point is "simple_overlay_update(SECT), which looks up SECT in
3401 the cached table and re-reads only the entry for that section from
3402 the target (whenever possible). */
3403
3404 /* Cached, dynamically allocated copies of the target data structures: */
3405 static unsigned (*cache_ovly_table)[4] = 0;
3406 static unsigned cache_novlys = 0;
3407 static CORE_ADDR cache_ovly_table_base = 0;
3408 enum ovly_index
3409 {
3410 VMA, OSIZE, LMA, MAPPED
3411 };
3412
3413 /* Throw away the cached copy of _ovly_table. */
3414
3415 static void
3416 simple_free_overlay_table (void)
3417 {
3418 if (cache_ovly_table)
3419 xfree (cache_ovly_table);
3420 cache_novlys = 0;
3421 cache_ovly_table = NULL;
3422 cache_ovly_table_base = 0;
3423 }
3424
3425 /* Read an array of ints of size SIZE from the target into a local buffer.
3426 Convert to host order. int LEN is number of ints. */
3427
3428 static void
3429 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3430 int len, int size, enum bfd_endian byte_order)
3431 {
3432 /* FIXME (alloca): Not safe if array is very large. */
3433 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3434 int i;
3435
3436 read_memory (memaddr, buf, len * size);
3437 for (i = 0; i < len; i++)
3438 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3439 }
3440
3441 /* Find and grab a copy of the target _ovly_table
3442 (and _novlys, which is needed for the table's size). */
3443
3444 static int
3445 simple_read_overlay_table (void)
3446 {
3447 struct bound_minimal_symbol novlys_msym;
3448 struct bound_minimal_symbol ovly_table_msym;
3449 struct gdbarch *gdbarch;
3450 int word_size;
3451 enum bfd_endian byte_order;
3452
3453 simple_free_overlay_table ();
3454 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3455 if (! novlys_msym.minsym)
3456 {
3457 error (_("Error reading inferior's overlay table: "
3458 "couldn't find `_novlys' variable\n"
3459 "in inferior. Use `overlay manual' mode."));
3460 return 0;
3461 }
3462
3463 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3464 if (! ovly_table_msym.minsym)
3465 {
3466 error (_("Error reading inferior's overlay table: couldn't find "
3467 "`_ovly_table' array\n"
3468 "in inferior. Use `overlay manual' mode."));
3469 return 0;
3470 }
3471
3472 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3473 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3474 byte_order = gdbarch_byte_order (gdbarch);
3475
3476 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3477 4, byte_order);
3478 cache_ovly_table
3479 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3480 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3481 read_target_long_array (cache_ovly_table_base,
3482 (unsigned int *) cache_ovly_table,
3483 cache_novlys * 4, word_size, byte_order);
3484
3485 return 1; /* SUCCESS */
3486 }
3487
3488 /* Function: simple_overlay_update_1
3489 A helper function for simple_overlay_update. Assuming a cached copy
3490 of _ovly_table exists, look through it to find an entry whose vma,
3491 lma and size match those of OSECT. Re-read the entry and make sure
3492 it still matches OSECT (else the table may no longer be valid).
3493 Set OSECT's mapped state to match the entry. Return: 1 for
3494 success, 0 for failure. */
3495
3496 static int
3497 simple_overlay_update_1 (struct obj_section *osect)
3498 {
3499 int i;
3500 bfd *obfd = osect->objfile->obfd;
3501 asection *bsect = osect->the_bfd_section;
3502 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3503 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3504 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3505
3506 for (i = 0; i < cache_novlys; i++)
3507 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3508 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3509 {
3510 read_target_long_array (cache_ovly_table_base + i * word_size,
3511 (unsigned int *) cache_ovly_table[i],
3512 4, word_size, byte_order);
3513 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3514 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3515 {
3516 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3517 return 1;
3518 }
3519 else /* Warning! Warning! Target's ovly table has changed! */
3520 return 0;
3521 }
3522 return 0;
3523 }
3524
3525 /* Function: simple_overlay_update
3526 If OSECT is NULL, then update all sections' mapped state
3527 (after re-reading the entire target _ovly_table).
3528 If OSECT is non-NULL, then try to find a matching entry in the
3529 cached ovly_table and update only OSECT's mapped state.
3530 If a cached entry can't be found or the cache isn't valid, then
3531 re-read the entire cache, and go ahead and update all sections. */
3532
3533 void
3534 simple_overlay_update (struct obj_section *osect)
3535 {
3536 struct objfile *objfile;
3537
3538 /* Were we given an osect to look up? NULL means do all of them. */
3539 if (osect)
3540 /* Have we got a cached copy of the target's overlay table? */
3541 if (cache_ovly_table != NULL)
3542 {
3543 /* Does its cached location match what's currently in the
3544 symtab? */
3545 struct bound_minimal_symbol minsym
3546 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3547
3548 if (minsym.minsym == NULL)
3549 error (_("Error reading inferior's overlay table: couldn't "
3550 "find `_ovly_table' array\n"
3551 "in inferior. Use `overlay manual' mode."));
3552
3553 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3554 /* Then go ahead and try to look up this single section in
3555 the cache. */
3556 if (simple_overlay_update_1 (osect))
3557 /* Found it! We're done. */
3558 return;
3559 }
3560
3561 /* Cached table no good: need to read the entire table anew.
3562 Or else we want all the sections, in which case it's actually
3563 more efficient to read the whole table in one block anyway. */
3564
3565 if (! simple_read_overlay_table ())
3566 return;
3567
3568 /* Now may as well update all sections, even if only one was requested. */
3569 ALL_OBJSECTIONS (objfile, osect)
3570 if (section_is_overlay (osect))
3571 {
3572 int i;
3573 bfd *obfd = osect->objfile->obfd;
3574 asection *bsect = osect->the_bfd_section;
3575
3576 for (i = 0; i < cache_novlys; i++)
3577 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3578 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3579 { /* obj_section matches i'th entry in ovly_table. */
3580 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3581 break; /* finished with inner for loop: break out. */
3582 }
3583 }
3584 }
3585
3586 /* Set the output sections and output offsets for section SECTP in
3587 ABFD. The relocation code in BFD will read these offsets, so we
3588 need to be sure they're initialized. We map each section to itself,
3589 with no offset; this means that SECTP->vma will be honored. */
3590
3591 static void
3592 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3593 {
3594 sectp->output_section = sectp;
3595 sectp->output_offset = 0;
3596 }
3597
3598 /* Default implementation for sym_relocate. */
3599
3600 bfd_byte *
3601 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3602 bfd_byte *buf)
3603 {
3604 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3605 DWO file. */
3606 bfd *abfd = sectp->owner;
3607
3608 /* We're only interested in sections with relocation
3609 information. */
3610 if ((sectp->flags & SEC_RELOC) == 0)
3611 return NULL;
3612
3613 /* We will handle section offsets properly elsewhere, so relocate as if
3614 all sections begin at 0. */
3615 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3616
3617 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3618 }
3619
3620 /* Relocate the contents of a debug section SECTP in ABFD. The
3621 contents are stored in BUF if it is non-NULL, or returned in a
3622 malloc'd buffer otherwise.
3623
3624 For some platforms and debug info formats, shared libraries contain
3625 relocations against the debug sections (particularly for DWARF-2;
3626 one affected platform is PowerPC GNU/Linux, although it depends on
3627 the version of the linker in use). Also, ELF object files naturally
3628 have unresolved relocations for their debug sections. We need to apply
3629 the relocations in order to get the locations of symbols correct.
3630 Another example that may require relocation processing, is the
3631 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3632 debug section. */
3633
3634 bfd_byte *
3635 symfile_relocate_debug_section (struct objfile *objfile,
3636 asection *sectp, bfd_byte *buf)
3637 {
3638 gdb_assert (objfile->sf->sym_relocate);
3639
3640 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3641 }
3642
3643 struct symfile_segment_data *
3644 get_symfile_segment_data (bfd *abfd)
3645 {
3646 const struct sym_fns *sf = find_sym_fns (abfd);
3647
3648 if (sf == NULL)
3649 return NULL;
3650
3651 return sf->sym_segments (abfd);
3652 }
3653
3654 void
3655 free_symfile_segment_data (struct symfile_segment_data *data)
3656 {
3657 xfree (data->segment_bases);
3658 xfree (data->segment_sizes);
3659 xfree (data->segment_info);
3660 xfree (data);
3661 }
3662
3663 /* Given:
3664 - DATA, containing segment addresses from the object file ABFD, and
3665 the mapping from ABFD's sections onto the segments that own them,
3666 and
3667 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3668 segment addresses reported by the target,
3669 store the appropriate offsets for each section in OFFSETS.
3670
3671 If there are fewer entries in SEGMENT_BASES than there are segments
3672 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3673
3674 If there are more entries, then ignore the extra. The target may
3675 not be able to distinguish between an empty data segment and a
3676 missing data segment; a missing text segment is less plausible. */
3677
3678 int
3679 symfile_map_offsets_to_segments (bfd *abfd,
3680 const struct symfile_segment_data *data,
3681 struct section_offsets *offsets,
3682 int num_segment_bases,
3683 const CORE_ADDR *segment_bases)
3684 {
3685 int i;
3686 asection *sect;
3687
3688 /* It doesn't make sense to call this function unless you have some
3689 segment base addresses. */
3690 gdb_assert (num_segment_bases > 0);
3691
3692 /* If we do not have segment mappings for the object file, we
3693 can not relocate it by segments. */
3694 gdb_assert (data != NULL);
3695 gdb_assert (data->num_segments > 0);
3696
3697 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3698 {
3699 int which = data->segment_info[i];
3700
3701 gdb_assert (0 <= which && which <= data->num_segments);
3702
3703 /* Don't bother computing offsets for sections that aren't
3704 loaded as part of any segment. */
3705 if (! which)
3706 continue;
3707
3708 /* Use the last SEGMENT_BASES entry as the address of any extra
3709 segments mentioned in DATA->segment_info. */
3710 if (which > num_segment_bases)
3711 which = num_segment_bases;
3712
3713 offsets->offsets[i] = (segment_bases[which - 1]
3714 - data->segment_bases[which - 1]);
3715 }
3716
3717 return 1;
3718 }
3719
3720 static void
3721 symfile_find_segment_sections (struct objfile *objfile)
3722 {
3723 bfd *abfd = objfile->obfd;
3724 int i;
3725 asection *sect;
3726 struct symfile_segment_data *data;
3727
3728 data = get_symfile_segment_data (objfile->obfd);
3729 if (data == NULL)
3730 return;
3731
3732 if (data->num_segments != 1 && data->num_segments != 2)
3733 {
3734 free_symfile_segment_data (data);
3735 return;
3736 }
3737
3738 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3739 {
3740 int which = data->segment_info[i];
3741
3742 if (which == 1)
3743 {
3744 if (objfile->sect_index_text == -1)
3745 objfile->sect_index_text = sect->index;
3746
3747 if (objfile->sect_index_rodata == -1)
3748 objfile->sect_index_rodata = sect->index;
3749 }
3750 else if (which == 2)
3751 {
3752 if (objfile->sect_index_data == -1)
3753 objfile->sect_index_data = sect->index;
3754
3755 if (objfile->sect_index_bss == -1)
3756 objfile->sect_index_bss = sect->index;
3757 }
3758 }
3759
3760 free_symfile_segment_data (data);
3761 }
3762
3763 /* Listen for free_objfile events. */
3764
3765 static void
3766 symfile_free_objfile (struct objfile *objfile)
3767 {
3768 /* Remove the target sections owned by this objfile. */
3769 if (objfile != NULL)
3770 remove_target_sections ((void *) objfile);
3771 }
3772
3773 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3774 Expand all symtabs that match the specified criteria.
3775 See quick_symbol_functions.expand_symtabs_matching for details. */
3776
3777 void
3778 expand_symtabs_matching
3779 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3780 const lookup_name_info &lookup_name,
3781 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3782 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3783 enum search_domain kind)
3784 {
3785 struct objfile *objfile;
3786
3787 ALL_OBJFILES (objfile)
3788 {
3789 if (objfile->sf)
3790 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3791 lookup_name,
3792 symbol_matcher,
3793 expansion_notify, kind);
3794 }
3795 }
3796
3797 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3798 Map function FUN over every file.
3799 See quick_symbol_functions.map_symbol_filenames for details. */
3800
3801 void
3802 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3803 int need_fullname)
3804 {
3805 struct objfile *objfile;
3806
3807 ALL_OBJFILES (objfile)
3808 {
3809 if (objfile->sf)
3810 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3811 need_fullname);
3812 }
3813 }
3814
3815 #if GDB_SELF_TEST
3816
3817 namespace selftests {
3818 namespace filename_language {
3819
3820 static void test_filename_language ()
3821 {
3822 /* This test messes up the filename_language_table global. */
3823 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3824
3825 /* Test deducing an unknown extension. */
3826 language lang = deduce_language_from_filename ("myfile.blah");
3827 SELF_CHECK (lang == language_unknown);
3828
3829 /* Test deducing a known extension. */
3830 lang = deduce_language_from_filename ("myfile.c");
3831 SELF_CHECK (lang == language_c);
3832
3833 /* Test adding a new extension using the internal API. */
3834 add_filename_language (".blah", language_pascal);
3835 lang = deduce_language_from_filename ("myfile.blah");
3836 SELF_CHECK (lang == language_pascal);
3837 }
3838
3839 static void
3840 test_set_ext_lang_command ()
3841 {
3842 /* This test messes up the filename_language_table global. */
3843 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3844
3845 /* Confirm that the .hello extension is not known. */
3846 language lang = deduce_language_from_filename ("cake.hello");
3847 SELF_CHECK (lang == language_unknown);
3848
3849 /* Test adding a new extension using the CLI command. */
3850 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3851 ext_args = args_holder.get ();
3852 set_ext_lang_command (NULL, 1, NULL);
3853
3854 lang = deduce_language_from_filename ("cake.hello");
3855 SELF_CHECK (lang == language_rust);
3856
3857 /* Test overriding an existing extension using the CLI command. */
3858 int size_before = filename_language_table.size ();
3859 args_holder.reset (xstrdup (".hello pascal"));
3860 ext_args = args_holder.get ();
3861 set_ext_lang_command (NULL, 1, NULL);
3862 int size_after = filename_language_table.size ();
3863
3864 lang = deduce_language_from_filename ("cake.hello");
3865 SELF_CHECK (lang == language_pascal);
3866 SELF_CHECK (size_before == size_after);
3867 }
3868
3869 } /* namespace filename_language */
3870 } /* namespace selftests */
3871
3872 #endif /* GDB_SELF_TEST */
3873
3874 void
3875 _initialize_symfile (void)
3876 {
3877 struct cmd_list_element *c;
3878
3879 observer_attach_free_objfile (symfile_free_objfile);
3880
3881 #define READNOW_HELP \
3882 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3883 immediately. This makes the command slower, but may make future operations\n\
3884 faster."
3885
3886 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3887 Load symbol table from executable file FILE.\n\
3888 Usage: symbol-file [-readnow] FILE\n\
3889 The `file' command can also load symbol tables, as well as setting the file\n\
3890 to execute.\n" READNOW_HELP), &cmdlist);
3891 set_cmd_completer (c, filename_completer);
3892
3893 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3894 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3895 Usage: add-symbol-file FILE ADDR [-readnow | -s SECT-NAME SECT-ADDR]...\n\
3896 ADDR is the starting address of the file's text.\n\
3897 Each '-s' argument provides a section name and address, and\n\
3898 should be specified if the data and bss segments are not contiguous\n\
3899 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n"
3900 READNOW_HELP),
3901 &cmdlist);
3902 set_cmd_completer (c, filename_completer);
3903
3904 c = add_cmd ("remove-symbol-file", class_files,
3905 remove_symbol_file_command, _("\
3906 Remove a symbol file added via the add-symbol-file command.\n\
3907 Usage: remove-symbol-file FILENAME\n\
3908 remove-symbol-file -a ADDRESS\n\
3909 The file to remove can be identified by its filename or by an address\n\
3910 that lies within the boundaries of this symbol file in memory."),
3911 &cmdlist);
3912
3913 c = add_cmd ("load", class_files, load_command, _("\
3914 Dynamically load FILE into the running program, and record its symbols\n\
3915 for access from GDB.\n\
3916 Usage: load [FILE] [OFFSET]\n\
3917 An optional load OFFSET may also be given as a literal address.\n\
3918 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3919 on its own."), &cmdlist);
3920 set_cmd_completer (c, filename_completer);
3921
3922 add_prefix_cmd ("overlay", class_support, overlay_command,
3923 _("Commands for debugging overlays."), &overlaylist,
3924 "overlay ", 0, &cmdlist);
3925
3926 add_com_alias ("ovly", "overlay", class_alias, 1);
3927 add_com_alias ("ov", "overlay", class_alias, 1);
3928
3929 add_cmd ("map-overlay", class_support, map_overlay_command,
3930 _("Assert that an overlay section is mapped."), &overlaylist);
3931
3932 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3933 _("Assert that an overlay section is unmapped."), &overlaylist);
3934
3935 add_cmd ("list-overlays", class_support, list_overlays_command,
3936 _("List mappings of overlay sections."), &overlaylist);
3937
3938 add_cmd ("manual", class_support, overlay_manual_command,
3939 _("Enable overlay debugging."), &overlaylist);
3940 add_cmd ("off", class_support, overlay_off_command,
3941 _("Disable overlay debugging."), &overlaylist);
3942 add_cmd ("auto", class_support, overlay_auto_command,
3943 _("Enable automatic overlay debugging."), &overlaylist);
3944 add_cmd ("load-target", class_support, overlay_load_command,
3945 _("Read the overlay mapping state from the target."), &overlaylist);
3946
3947 /* Filename extension to source language lookup table: */
3948 add_setshow_string_noescape_cmd ("extension-language", class_files,
3949 &ext_args, _("\
3950 Set mapping between filename extension and source language."), _("\
3951 Show mapping between filename extension and source language."), _("\
3952 Usage: set extension-language .foo bar"),
3953 set_ext_lang_command,
3954 show_ext_args,
3955 &setlist, &showlist);
3956
3957 add_info ("extensions", info_ext_lang_command,
3958 _("All filename extensions associated with a source language."));
3959
3960 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3961 &debug_file_directory, _("\
3962 Set the directories where separate debug symbols are searched for."), _("\
3963 Show the directories where separate debug symbols are searched for."), _("\
3964 Separate debug symbols are first searched for in the same\n\
3965 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3966 and lastly at the path of the directory of the binary with\n\
3967 each global debug-file-directory component prepended."),
3968 NULL,
3969 show_debug_file_directory,
3970 &setlist, &showlist);
3971
3972 add_setshow_enum_cmd ("symbol-loading", no_class,
3973 print_symbol_loading_enums, &print_symbol_loading,
3974 _("\
3975 Set printing of symbol loading messages."), _("\
3976 Show printing of symbol loading messages."), _("\
3977 off == turn all messages off\n\
3978 brief == print messages for the executable,\n\
3979 and brief messages for shared libraries\n\
3980 full == print messages for the executable,\n\
3981 and messages for each shared library."),
3982 NULL,
3983 NULL,
3984 &setprintlist, &showprintlist);
3985
3986 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3987 &separate_debug_file_debug, _("\
3988 Set printing of separate debug info file search debug."), _("\
3989 Show printing of separate debug info file search debug."), _("\
3990 When on, GDB prints the searched locations while looking for separate debug \
3991 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3992
3993 #if GDB_SELF_TEST
3994 selftests::register_test
3995 ("filename_language", selftests::filename_language::test_filename_language);
3996 selftests::register_test
3997 ("set_ext_lang_command",
3998 selftests::filename_language::test_set_ext_lang_command);
3999 #endif
4000 }
This page took 0.143626 seconds and 5 git commands to generate.