* symfile.c (reread_symbols): Reset psymtabs_addrmap to NULL
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "bfdlink.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcore.h"
29 #include "frame.h"
30 #include "target.h"
31 #include "value.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "source.h"
35 #include "gdbcmd.h"
36 #include "breakpoint.h"
37 #include "language.h"
38 #include "complaints.h"
39 #include "demangle.h"
40 #include "inferior.h"
41 #include "regcache.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "gdb-stabs.h"
44 #include "gdb_obstack.h"
45 #include "completer.h"
46 #include "bcache.h"
47 #include "hashtab.h"
48 #include "readline/readline.h"
49 #include "gdb_assert.h"
50 #include "block.h"
51 #include "observer.h"
52 #include "exec.h"
53 #include "parser-defs.h"
54 #include "varobj.h"
55 #include "elf-bfd.h"
56 #include "solib.h"
57 #include "remote.h"
58
59 #include <sys/types.h>
60 #include <fcntl.h>
61 #include "gdb_string.h"
62 #include "gdb_stat.h"
63 #include <ctype.h>
64 #include <time.h>
65 #include <sys/time.h>
66
67
68 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
69 void (*deprecated_show_load_progress) (const char *section,
70 unsigned long section_sent,
71 unsigned long section_size,
72 unsigned long total_sent,
73 unsigned long total_size);
74 void (*deprecated_pre_add_symbol_hook) (const char *);
75 void (*deprecated_post_add_symbol_hook) (void);
76
77 static void clear_symtab_users_cleanup (void *ignore);
78
79 /* Global variables owned by this file */
80 int readnow_symbol_files; /* Read full symbols immediately */
81
82 /* External variables and functions referenced. */
83
84 extern void report_transfer_performance (unsigned long, time_t, time_t);
85
86 /* Functions this file defines */
87
88 #if 0
89 static int simple_read_overlay_region_table (void);
90 static void simple_free_overlay_region_table (void);
91 #endif
92
93 static void load_command (char *, int);
94
95 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
96
97 static void add_symbol_file_command (char *, int);
98
99 static void reread_separate_symbols (struct objfile *objfile);
100
101 static void cashier_psymtab (struct partial_symtab *);
102
103 bfd *symfile_bfd_open (char *);
104
105 int get_section_index (struct objfile *, char *);
106
107 static struct sym_fns *find_sym_fns (bfd *);
108
109 static void decrement_reading_symtab (void *);
110
111 static void overlay_invalidate_all (void);
112
113 void list_overlays_command (char *, int);
114
115 void map_overlay_command (char *, int);
116
117 void unmap_overlay_command (char *, int);
118
119 static void overlay_auto_command (char *, int);
120
121 static void overlay_manual_command (char *, int);
122
123 static void overlay_off_command (char *, int);
124
125 static void overlay_load_command (char *, int);
126
127 static void overlay_command (char *, int);
128
129 static void simple_free_overlay_table (void);
130
131 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
132
133 static int simple_read_overlay_table (void);
134
135 static int simple_overlay_update_1 (struct obj_section *);
136
137 static void add_filename_language (char *ext, enum language lang);
138
139 static void info_ext_lang_command (char *args, int from_tty);
140
141 static char *find_separate_debug_file (struct objfile *objfile);
142
143 static void init_filename_language_table (void);
144
145 static void symfile_find_segment_sections (struct objfile *objfile);
146
147 void _initialize_symfile (void);
148
149 /* List of all available sym_fns. On gdb startup, each object file reader
150 calls add_symtab_fns() to register information on each format it is
151 prepared to read. */
152
153 static struct sym_fns *symtab_fns = NULL;
154
155 /* Flag for whether user will be reloading symbols multiple times.
156 Defaults to ON for VxWorks, otherwise OFF. */
157
158 #ifdef SYMBOL_RELOADING_DEFAULT
159 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
160 #else
161 int symbol_reloading = 0;
162 #endif
163 static void
164 show_symbol_reloading (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166 {
167 fprintf_filtered (file, _("\
168 Dynamic symbol table reloading multiple times in one run is %s.\n"),
169 value);
170 }
171
172 /* If non-zero, gdb will notify the user when it is loading symbols
173 from a file. This is almost always what users will want to have happen;
174 but for programs with lots of dynamically linked libraries, the output
175 can be more noise than signal. */
176
177 int print_symbol_loading = 1;
178
179 /* If non-zero, shared library symbols will be added automatically
180 when the inferior is created, new libraries are loaded, or when
181 attaching to the inferior. This is almost always what users will
182 want to have happen; but for very large programs, the startup time
183 will be excessive, and so if this is a problem, the user can clear
184 this flag and then add the shared library symbols as needed. Note
185 that there is a potential for confusion, since if the shared
186 library symbols are not loaded, commands like "info fun" will *not*
187 report all the functions that are actually present. */
188
189 int auto_solib_add = 1;
190
191 /* For systems that support it, a threshold size in megabytes. If
192 automatically adding a new library's symbol table to those already
193 known to the debugger would cause the total shared library symbol
194 size to exceed this threshhold, then the shlib's symbols are not
195 added. The threshold is ignored if the user explicitly asks for a
196 shlib to be added, such as when using the "sharedlibrary"
197 command. */
198
199 int auto_solib_limit;
200 \f
201
202 /* This compares two partial symbols by names, using strcmp_iw_ordered
203 for the comparison. */
204
205 static int
206 compare_psymbols (const void *s1p, const void *s2p)
207 {
208 struct partial_symbol *const *s1 = s1p;
209 struct partial_symbol *const *s2 = s2p;
210
211 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
212 SYMBOL_SEARCH_NAME (*s2));
213 }
214
215 void
216 sort_pst_symbols (struct partial_symtab *pst)
217 {
218 /* Sort the global list; don't sort the static list */
219
220 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
221 pst->n_global_syms, sizeof (struct partial_symbol *),
222 compare_psymbols);
223 }
224
225 /* Make a null terminated copy of the string at PTR with SIZE characters in
226 the obstack pointed to by OBSTACKP . Returns the address of the copy.
227 Note that the string at PTR does not have to be null terminated, I.E. it
228 may be part of a larger string and we are only saving a substring. */
229
230 char *
231 obsavestring (const char *ptr, int size, struct obstack *obstackp)
232 {
233 char *p = (char *) obstack_alloc (obstackp, size + 1);
234 /* Open-coded memcpy--saves function call time. These strings are usually
235 short. FIXME: Is this really still true with a compiler that can
236 inline memcpy? */
237 {
238 const char *p1 = ptr;
239 char *p2 = p;
240 const char *end = ptr + size;
241 while (p1 != end)
242 *p2++ = *p1++;
243 }
244 p[size] = 0;
245 return p;
246 }
247
248 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
249 in the obstack pointed to by OBSTACKP. */
250
251 char *
252 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
253 const char *s3)
254 {
255 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
256 char *val = (char *) obstack_alloc (obstackp, len);
257 strcpy (val, s1);
258 strcat (val, s2);
259 strcat (val, s3);
260 return val;
261 }
262
263 /* True if we are nested inside psymtab_to_symtab. */
264
265 int currently_reading_symtab = 0;
266
267 static void
268 decrement_reading_symtab (void *dummy)
269 {
270 currently_reading_symtab--;
271 }
272
273 /* Get the symbol table that corresponds to a partial_symtab.
274 This is fast after the first time you do it. In fact, there
275 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
276 case inline. */
277
278 struct symtab *
279 psymtab_to_symtab (struct partial_symtab *pst)
280 {
281 /* If it's been looked up before, return it. */
282 if (pst->symtab)
283 return pst->symtab;
284
285 /* If it has not yet been read in, read it. */
286 if (!pst->readin)
287 {
288 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
289 currently_reading_symtab++;
290 (*pst->read_symtab) (pst);
291 do_cleanups (back_to);
292 }
293
294 return pst->symtab;
295 }
296
297 /* Remember the lowest-addressed loadable section we've seen.
298 This function is called via bfd_map_over_sections.
299
300 In case of equal vmas, the section with the largest size becomes the
301 lowest-addressed loadable section.
302
303 If the vmas and sizes are equal, the last section is considered the
304 lowest-addressed loadable section. */
305
306 void
307 find_lowest_section (bfd *abfd, asection *sect, void *obj)
308 {
309 asection **lowest = (asection **) obj;
310
311 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
312 return;
313 if (!*lowest)
314 *lowest = sect; /* First loadable section */
315 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
316 *lowest = sect; /* A lower loadable section */
317 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
318 && (bfd_section_size (abfd, (*lowest))
319 <= bfd_section_size (abfd, sect)))
320 *lowest = sect;
321 }
322
323 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
324
325 struct section_addr_info *
326 alloc_section_addr_info (size_t num_sections)
327 {
328 struct section_addr_info *sap;
329 size_t size;
330
331 size = (sizeof (struct section_addr_info)
332 + sizeof (struct other_sections) * (num_sections - 1));
333 sap = (struct section_addr_info *) xmalloc (size);
334 memset (sap, 0, size);
335 sap->num_sections = num_sections;
336
337 return sap;
338 }
339
340
341 /* Return a freshly allocated copy of ADDRS. The section names, if
342 any, are also freshly allocated copies of those in ADDRS. */
343 struct section_addr_info *
344 copy_section_addr_info (struct section_addr_info *addrs)
345 {
346 struct section_addr_info *copy
347 = alloc_section_addr_info (addrs->num_sections);
348 int i;
349
350 copy->num_sections = addrs->num_sections;
351 for (i = 0; i < addrs->num_sections; i++)
352 {
353 copy->other[i].addr = addrs->other[i].addr;
354 if (addrs->other[i].name)
355 copy->other[i].name = xstrdup (addrs->other[i].name);
356 else
357 copy->other[i].name = NULL;
358 copy->other[i].sectindex = addrs->other[i].sectindex;
359 }
360
361 return copy;
362 }
363
364
365
366 /* Build (allocate and populate) a section_addr_info struct from
367 an existing section table. */
368
369 extern struct section_addr_info *
370 build_section_addr_info_from_section_table (const struct target_section *start,
371 const struct target_section *end)
372 {
373 struct section_addr_info *sap;
374 const struct target_section *stp;
375 int oidx;
376
377 sap = alloc_section_addr_info (end - start);
378
379 for (stp = start, oidx = 0; stp != end; stp++)
380 {
381 if (bfd_get_section_flags (stp->bfd,
382 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
383 && oidx < end - start)
384 {
385 sap->other[oidx].addr = stp->addr;
386 sap->other[oidx].name
387 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
388 sap->other[oidx].sectindex = stp->the_bfd_section->index;
389 oidx++;
390 }
391 }
392
393 return sap;
394 }
395
396
397 /* Free all memory allocated by build_section_addr_info_from_section_table. */
398
399 extern void
400 free_section_addr_info (struct section_addr_info *sap)
401 {
402 int idx;
403
404 for (idx = 0; idx < sap->num_sections; idx++)
405 if (sap->other[idx].name)
406 xfree (sap->other[idx].name);
407 xfree (sap);
408 }
409
410
411 /* Initialize OBJFILE's sect_index_* members. */
412 static void
413 init_objfile_sect_indices (struct objfile *objfile)
414 {
415 asection *sect;
416 int i;
417
418 sect = bfd_get_section_by_name (objfile->obfd, ".text");
419 if (sect)
420 objfile->sect_index_text = sect->index;
421
422 sect = bfd_get_section_by_name (objfile->obfd, ".data");
423 if (sect)
424 objfile->sect_index_data = sect->index;
425
426 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
427 if (sect)
428 objfile->sect_index_bss = sect->index;
429
430 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
431 if (sect)
432 objfile->sect_index_rodata = sect->index;
433
434 /* This is where things get really weird... We MUST have valid
435 indices for the various sect_index_* members or gdb will abort.
436 So if for example, there is no ".text" section, we have to
437 accomodate that. First, check for a file with the standard
438 one or two segments. */
439
440 symfile_find_segment_sections (objfile);
441
442 /* Except when explicitly adding symbol files at some address,
443 section_offsets contains nothing but zeros, so it doesn't matter
444 which slot in section_offsets the individual sect_index_* members
445 index into. So if they are all zero, it is safe to just point
446 all the currently uninitialized indices to the first slot. But
447 beware: if this is the main executable, it may be relocated
448 later, e.g. by the remote qOffsets packet, and then this will
449 be wrong! That's why we try segments first. */
450
451 for (i = 0; i < objfile->num_sections; i++)
452 {
453 if (ANOFFSET (objfile->section_offsets, i) != 0)
454 {
455 break;
456 }
457 }
458 if (i == objfile->num_sections)
459 {
460 if (objfile->sect_index_text == -1)
461 objfile->sect_index_text = 0;
462 if (objfile->sect_index_data == -1)
463 objfile->sect_index_data = 0;
464 if (objfile->sect_index_bss == -1)
465 objfile->sect_index_bss = 0;
466 if (objfile->sect_index_rodata == -1)
467 objfile->sect_index_rodata = 0;
468 }
469 }
470
471 /* The arguments to place_section. */
472
473 struct place_section_arg
474 {
475 struct section_offsets *offsets;
476 CORE_ADDR lowest;
477 };
478
479 /* Find a unique offset to use for loadable section SECT if
480 the user did not provide an offset. */
481
482 static void
483 place_section (bfd *abfd, asection *sect, void *obj)
484 {
485 struct place_section_arg *arg = obj;
486 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
487 int done;
488 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
489
490 /* We are only interested in allocated sections. */
491 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
492 return;
493
494 /* If the user specified an offset, honor it. */
495 if (offsets[sect->index] != 0)
496 return;
497
498 /* Otherwise, let's try to find a place for the section. */
499 start_addr = (arg->lowest + align - 1) & -align;
500
501 do {
502 asection *cur_sec;
503
504 done = 1;
505
506 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
507 {
508 int indx = cur_sec->index;
509 CORE_ADDR cur_offset;
510
511 /* We don't need to compare against ourself. */
512 if (cur_sec == sect)
513 continue;
514
515 /* We can only conflict with allocated sections. */
516 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
517 continue;
518
519 /* If the section offset is 0, either the section has not been placed
520 yet, or it was the lowest section placed (in which case LOWEST
521 will be past its end). */
522 if (offsets[indx] == 0)
523 continue;
524
525 /* If this section would overlap us, then we must move up. */
526 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
527 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
528 {
529 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
530 start_addr = (start_addr + align - 1) & -align;
531 done = 0;
532 break;
533 }
534
535 /* Otherwise, we appear to be OK. So far. */
536 }
537 }
538 while (!done);
539
540 offsets[sect->index] = start_addr;
541 arg->lowest = start_addr + bfd_get_section_size (sect);
542 }
543
544 /* Parse the user's idea of an offset for dynamic linking, into our idea
545 of how to represent it for fast symbol reading. This is the default
546 version of the sym_fns.sym_offsets function for symbol readers that
547 don't need to do anything special. It allocates a section_offsets table
548 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
549
550 void
551 default_symfile_offsets (struct objfile *objfile,
552 struct section_addr_info *addrs)
553 {
554 int i;
555
556 objfile->num_sections = bfd_count_sections (objfile->obfd);
557 objfile->section_offsets = (struct section_offsets *)
558 obstack_alloc (&objfile->objfile_obstack,
559 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
560 memset (objfile->section_offsets, 0,
561 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
562
563 /* Now calculate offsets for section that were specified by the
564 caller. */
565 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
566 {
567 struct other_sections *osp ;
568
569 osp = &addrs->other[i] ;
570 if (osp->addr == 0)
571 continue;
572
573 /* Record all sections in offsets */
574 /* The section_offsets in the objfile are here filled in using
575 the BFD index. */
576 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
577 }
578
579 /* For relocatable files, all loadable sections will start at zero.
580 The zero is meaningless, so try to pick arbitrary addresses such
581 that no loadable sections overlap. This algorithm is quadratic,
582 but the number of sections in a single object file is generally
583 small. */
584 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
585 {
586 struct place_section_arg arg;
587 bfd *abfd = objfile->obfd;
588 asection *cur_sec;
589 CORE_ADDR lowest = 0;
590
591 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
592 /* We do not expect this to happen; just skip this step if the
593 relocatable file has a section with an assigned VMA. */
594 if (bfd_section_vma (abfd, cur_sec) != 0)
595 break;
596
597 if (cur_sec == NULL)
598 {
599 CORE_ADDR *offsets = objfile->section_offsets->offsets;
600
601 /* Pick non-overlapping offsets for sections the user did not
602 place explicitly. */
603 arg.offsets = objfile->section_offsets;
604 arg.lowest = 0;
605 bfd_map_over_sections (objfile->obfd, place_section, &arg);
606
607 /* Correctly filling in the section offsets is not quite
608 enough. Relocatable files have two properties that
609 (most) shared objects do not:
610
611 - Their debug information will contain relocations. Some
612 shared libraries do also, but many do not, so this can not
613 be assumed.
614
615 - If there are multiple code sections they will be loaded
616 at different relative addresses in memory than they are
617 in the objfile, since all sections in the file will start
618 at address zero.
619
620 Because GDB has very limited ability to map from an
621 address in debug info to the correct code section,
622 it relies on adding SECT_OFF_TEXT to things which might be
623 code. If we clear all the section offsets, and set the
624 section VMAs instead, then symfile_relocate_debug_section
625 will return meaningful debug information pointing at the
626 correct sections.
627
628 GDB has too many different data structures for section
629 addresses - a bfd, objfile, and so_list all have section
630 tables, as does exec_ops. Some of these could probably
631 be eliminated. */
632
633 for (cur_sec = abfd->sections; cur_sec != NULL;
634 cur_sec = cur_sec->next)
635 {
636 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
637 continue;
638
639 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
640 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
641 offsets[cur_sec->index]);
642 offsets[cur_sec->index] = 0;
643 }
644 }
645 }
646
647 /* Remember the bfd indexes for the .text, .data, .bss and
648 .rodata sections. */
649 init_objfile_sect_indices (objfile);
650 }
651
652
653 /* Divide the file into segments, which are individual relocatable units.
654 This is the default version of the sym_fns.sym_segments function for
655 symbol readers that do not have an explicit representation of segments.
656 It assumes that object files do not have segments, and fully linked
657 files have a single segment. */
658
659 struct symfile_segment_data *
660 default_symfile_segments (bfd *abfd)
661 {
662 int num_sections, i;
663 asection *sect;
664 struct symfile_segment_data *data;
665 CORE_ADDR low, high;
666
667 /* Relocatable files contain enough information to position each
668 loadable section independently; they should not be relocated
669 in segments. */
670 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
671 return NULL;
672
673 /* Make sure there is at least one loadable section in the file. */
674 for (sect = abfd->sections; sect != NULL; sect = sect->next)
675 {
676 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
677 continue;
678
679 break;
680 }
681 if (sect == NULL)
682 return NULL;
683
684 low = bfd_get_section_vma (abfd, sect);
685 high = low + bfd_get_section_size (sect);
686
687 data = XZALLOC (struct symfile_segment_data);
688 data->num_segments = 1;
689 data->segment_bases = XCALLOC (1, CORE_ADDR);
690 data->segment_sizes = XCALLOC (1, CORE_ADDR);
691
692 num_sections = bfd_count_sections (abfd);
693 data->segment_info = XCALLOC (num_sections, int);
694
695 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
696 {
697 CORE_ADDR vma;
698
699 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
700 continue;
701
702 vma = bfd_get_section_vma (abfd, sect);
703 if (vma < low)
704 low = vma;
705 if (vma + bfd_get_section_size (sect) > high)
706 high = vma + bfd_get_section_size (sect);
707
708 data->segment_info[i] = 1;
709 }
710
711 data->segment_bases[0] = low;
712 data->segment_sizes[0] = high - low;
713
714 return data;
715 }
716
717 /* Process a symbol file, as either the main file or as a dynamically
718 loaded file.
719
720 OBJFILE is where the symbols are to be read from.
721
722 ADDRS is the list of section load addresses. If the user has given
723 an 'add-symbol-file' command, then this is the list of offsets and
724 addresses he or she provided as arguments to the command; or, if
725 we're handling a shared library, these are the actual addresses the
726 sections are loaded at, according to the inferior's dynamic linker
727 (as gleaned by GDB's shared library code). We convert each address
728 into an offset from the section VMA's as it appears in the object
729 file, and then call the file's sym_offsets function to convert this
730 into a format-specific offset table --- a `struct section_offsets'.
731 If ADDRS is non-zero, OFFSETS must be zero.
732
733 OFFSETS is a table of section offsets already in the right
734 format-specific representation. NUM_OFFSETS is the number of
735 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
736 assume this is the proper table the call to sym_offsets described
737 above would produce. Instead of calling sym_offsets, we just dump
738 it right into objfile->section_offsets. (When we're re-reading
739 symbols from an objfile, we don't have the original load address
740 list any more; all we have is the section offset table.) If
741 OFFSETS is non-zero, ADDRS must be zero.
742
743 MAINLINE is nonzero if this is the main symbol file, or zero if
744 it's an extra symbol file such as dynamically loaded code.
745
746 VERBO is nonzero if the caller has printed a verbose message about
747 the symbol reading (and complaints can be more terse about it). */
748
749 void
750 syms_from_objfile (struct objfile *objfile,
751 struct section_addr_info *addrs,
752 struct section_offsets *offsets,
753 int num_offsets,
754 int mainline,
755 int verbo)
756 {
757 struct section_addr_info *local_addr = NULL;
758 struct cleanup *old_chain;
759
760 gdb_assert (! (addrs && offsets));
761
762 init_entry_point_info (objfile);
763 objfile->sf = find_sym_fns (objfile->obfd);
764
765 if (objfile->sf == NULL)
766 return; /* No symbols. */
767
768 /* Make sure that partially constructed symbol tables will be cleaned up
769 if an error occurs during symbol reading. */
770 old_chain = make_cleanup_free_objfile (objfile);
771
772 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
773 list. We now establish the convention that an addr of zero means
774 no load address was specified. */
775 if (! addrs && ! offsets)
776 {
777 local_addr
778 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
779 make_cleanup (xfree, local_addr);
780 addrs = local_addr;
781 }
782
783 /* Now either addrs or offsets is non-zero. */
784
785 if (mainline)
786 {
787 /* We will modify the main symbol table, make sure that all its users
788 will be cleaned up if an error occurs during symbol reading. */
789 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
790
791 /* Since no error yet, throw away the old symbol table. */
792
793 if (symfile_objfile != NULL)
794 {
795 free_objfile (symfile_objfile);
796 symfile_objfile = NULL;
797 }
798
799 /* Currently we keep symbols from the add-symbol-file command.
800 If the user wants to get rid of them, they should do "symbol-file"
801 without arguments first. Not sure this is the best behavior
802 (PR 2207). */
803
804 (*objfile->sf->sym_new_init) (objfile);
805 }
806
807 /* Convert addr into an offset rather than an absolute address.
808 We find the lowest address of a loaded segment in the objfile,
809 and assume that <addr> is where that got loaded.
810
811 We no longer warn if the lowest section is not a text segment (as
812 happens for the PA64 port. */
813 if (!mainline && addrs && addrs->other[0].name)
814 {
815 asection *lower_sect;
816 asection *sect;
817 CORE_ADDR lower_offset;
818 int i;
819
820 /* Find lowest loadable section to be used as starting point for
821 continguous sections. FIXME!! won't work without call to find
822 .text first, but this assumes text is lowest section. */
823 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
824 if (lower_sect == NULL)
825 bfd_map_over_sections (objfile->obfd, find_lowest_section,
826 &lower_sect);
827 if (lower_sect == NULL)
828 {
829 warning (_("no loadable sections found in added symbol-file %s"),
830 objfile->name);
831 lower_offset = 0;
832 }
833 else
834 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
835
836 /* Calculate offsets for the loadable sections.
837 FIXME! Sections must be in order of increasing loadable section
838 so that contiguous sections can use the lower-offset!!!
839
840 Adjust offsets if the segments are not contiguous.
841 If the section is contiguous, its offset should be set to
842 the offset of the highest loadable section lower than it
843 (the loadable section directly below it in memory).
844 this_offset = lower_offset = lower_addr - lower_orig_addr */
845
846 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
847 {
848 if (addrs->other[i].addr != 0)
849 {
850 sect = bfd_get_section_by_name (objfile->obfd,
851 addrs->other[i].name);
852 if (sect)
853 {
854 addrs->other[i].addr
855 -= bfd_section_vma (objfile->obfd, sect);
856 lower_offset = addrs->other[i].addr;
857 /* This is the index used by BFD. */
858 addrs->other[i].sectindex = sect->index ;
859 }
860 else
861 {
862 warning (_("section %s not found in %s"),
863 addrs->other[i].name,
864 objfile->name);
865 addrs->other[i].addr = 0;
866 }
867 }
868 else
869 addrs->other[i].addr = lower_offset;
870 }
871 }
872
873 /* Initialize symbol reading routines for this objfile, allow complaints to
874 appear for this new file, and record how verbose to be, then do the
875 initial symbol reading for this file. */
876
877 (*objfile->sf->sym_init) (objfile);
878 clear_complaints (&symfile_complaints, 1, verbo);
879
880 if (addrs)
881 (*objfile->sf->sym_offsets) (objfile, addrs);
882 else
883 {
884 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
885
886 /* Just copy in the offset table directly as given to us. */
887 objfile->num_sections = num_offsets;
888 objfile->section_offsets
889 = ((struct section_offsets *)
890 obstack_alloc (&objfile->objfile_obstack, size));
891 memcpy (objfile->section_offsets, offsets, size);
892
893 init_objfile_sect_indices (objfile);
894 }
895
896 (*objfile->sf->sym_read) (objfile, mainline);
897
898 /* Discard cleanups as symbol reading was successful. */
899
900 discard_cleanups (old_chain);
901 xfree (local_addr);
902 }
903
904 /* Perform required actions after either reading in the initial
905 symbols for a new objfile, or mapping in the symbols from a reusable
906 objfile. */
907
908 void
909 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
910 {
911
912 /* If this is the main symbol file we have to clean up all users of the
913 old main symbol file. Otherwise it is sufficient to fixup all the
914 breakpoints that may have been redefined by this symbol file. */
915 if (mainline)
916 {
917 /* OK, make it the "real" symbol file. */
918 symfile_objfile = objfile;
919
920 clear_symtab_users ();
921 }
922 else
923 {
924 breakpoint_re_set_objfile (objfile);
925 }
926
927 /* We're done reading the symbol file; finish off complaints. */
928 clear_complaints (&symfile_complaints, 0, verbo);
929 }
930
931 /* Process a symbol file, as either the main file or as a dynamically
932 loaded file.
933
934 ABFD is a BFD already open on the file, as from symfile_bfd_open.
935 This BFD will be closed on error, and is always consumed by this function.
936
937 FROM_TTY says how verbose to be.
938
939 MAINLINE specifies whether this is the main symbol file, or whether
940 it's an extra symbol file such as dynamically loaded code.
941
942 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
943 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
944 non-zero.
945
946 Upon success, returns a pointer to the objfile that was added.
947 Upon failure, jumps back to command level (never returns). */
948 static struct objfile *
949 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
950 struct section_addr_info *addrs,
951 struct section_offsets *offsets,
952 int num_offsets,
953 int mainline, int flags)
954 {
955 struct objfile *objfile;
956 struct partial_symtab *psymtab;
957 char *debugfile = NULL;
958 struct section_addr_info *orig_addrs = NULL;
959 struct cleanup *my_cleanups;
960 const char *name = bfd_get_filename (abfd);
961
962 my_cleanups = make_cleanup_bfd_close (abfd);
963
964 /* Give user a chance to burp if we'd be
965 interactively wiping out any existing symbols. */
966
967 if ((have_full_symbols () || have_partial_symbols ())
968 && mainline
969 && from_tty
970 && !query (_("Load new symbol table from \"%s\"? "), name))
971 error (_("Not confirmed."));
972
973 objfile = allocate_objfile (abfd, flags);
974 discard_cleanups (my_cleanups);
975
976 if (addrs)
977 {
978 orig_addrs = copy_section_addr_info (addrs);
979 make_cleanup_free_section_addr_info (orig_addrs);
980 }
981
982 /* We either created a new mapped symbol table, mapped an existing
983 symbol table file which has not had initial symbol reading
984 performed, or need to read an unmapped symbol table. */
985 if (from_tty || info_verbose)
986 {
987 if (deprecated_pre_add_symbol_hook)
988 deprecated_pre_add_symbol_hook (name);
989 else
990 {
991 if (print_symbol_loading)
992 {
993 printf_unfiltered (_("Reading symbols from %s..."), name);
994 wrap_here ("");
995 gdb_flush (gdb_stdout);
996 }
997 }
998 }
999 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1000 mainline, from_tty);
1001
1002 /* We now have at least a partial symbol table. Check to see if the
1003 user requested that all symbols be read on initial access via either
1004 the gdb startup command line or on a per symbol file basis. Expand
1005 all partial symbol tables for this objfile if so. */
1006
1007 if ((flags & OBJF_READNOW) || readnow_symbol_files)
1008 {
1009 if ((from_tty || info_verbose) && print_symbol_loading)
1010 {
1011 printf_unfiltered (_("expanding to full symbols..."));
1012 wrap_here ("");
1013 gdb_flush (gdb_stdout);
1014 }
1015
1016 for (psymtab = objfile->psymtabs;
1017 psymtab != NULL;
1018 psymtab = psymtab->next)
1019 {
1020 psymtab_to_symtab (psymtab);
1021 }
1022 }
1023
1024 /* If the file has its own symbol tables it has no separate debug info.
1025 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1026 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1027 if (objfile->psymtabs == NULL)
1028 debugfile = find_separate_debug_file (objfile);
1029 if (debugfile)
1030 {
1031 if (addrs != NULL)
1032 {
1033 objfile->separate_debug_objfile
1034 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
1035 }
1036 else
1037 {
1038 objfile->separate_debug_objfile
1039 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
1040 }
1041 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1042 = objfile;
1043
1044 /* Put the separate debug object before the normal one, this is so that
1045 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1046 put_objfile_before (objfile->separate_debug_objfile, objfile);
1047
1048 xfree (debugfile);
1049 }
1050
1051 if (!have_partial_symbols () && !have_full_symbols ()
1052 && print_symbol_loading)
1053 {
1054 wrap_here ("");
1055 printf_unfiltered (_("(no debugging symbols found)"));
1056 if (from_tty || info_verbose)
1057 printf_unfiltered ("...");
1058 else
1059 printf_unfiltered ("\n");
1060 wrap_here ("");
1061 }
1062
1063 if (from_tty || info_verbose)
1064 {
1065 if (deprecated_post_add_symbol_hook)
1066 deprecated_post_add_symbol_hook ();
1067 else
1068 {
1069 if (print_symbol_loading)
1070 printf_unfiltered (_("done.\n"));
1071 }
1072 }
1073
1074 /* We print some messages regardless of whether 'from_tty ||
1075 info_verbose' is true, so make sure they go out at the right
1076 time. */
1077 gdb_flush (gdb_stdout);
1078
1079 do_cleanups (my_cleanups);
1080
1081 if (objfile->sf == NULL)
1082 return objfile; /* No symbols. */
1083
1084 new_symfile_objfile (objfile, mainline, from_tty);
1085
1086 observer_notify_new_objfile (objfile);
1087
1088 bfd_cache_close_all ();
1089 return (objfile);
1090 }
1091
1092
1093 /* Process the symbol file ABFD, as either the main file or as a
1094 dynamically loaded file.
1095
1096 See symbol_file_add_with_addrs_or_offsets's comments for
1097 details. */
1098 struct objfile *
1099 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1100 struct section_addr_info *addrs,
1101 int mainline, int flags)
1102 {
1103 return symbol_file_add_with_addrs_or_offsets (abfd,
1104 from_tty, addrs, 0, 0,
1105 mainline, flags);
1106 }
1107
1108
1109 /* Process a symbol file, as either the main file or as a dynamically
1110 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1111 for details. */
1112 struct objfile *
1113 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1114 int mainline, int flags)
1115 {
1116 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1117 addrs, mainline, flags);
1118 }
1119
1120
1121 /* Call symbol_file_add() with default values and update whatever is
1122 affected by the loading of a new main().
1123 Used when the file is supplied in the gdb command line
1124 and by some targets with special loading requirements.
1125 The auxiliary function, symbol_file_add_main_1(), has the flags
1126 argument for the switches that can only be specified in the symbol_file
1127 command itself. */
1128
1129 void
1130 symbol_file_add_main (char *args, int from_tty)
1131 {
1132 symbol_file_add_main_1 (args, from_tty, 0);
1133 }
1134
1135 static void
1136 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1137 {
1138 symbol_file_add (args, from_tty, NULL, 1, flags);
1139
1140 /* Getting new symbols may change our opinion about
1141 what is frameless. */
1142 reinit_frame_cache ();
1143
1144 set_initial_language ();
1145 }
1146
1147 void
1148 symbol_file_clear (int from_tty)
1149 {
1150 if ((have_full_symbols () || have_partial_symbols ())
1151 && from_tty
1152 && (symfile_objfile
1153 ? !query (_("Discard symbol table from `%s'? "),
1154 symfile_objfile->name)
1155 : !query (_("Discard symbol table? "))))
1156 error (_("Not confirmed."));
1157
1158 free_all_objfiles ();
1159
1160 /* solib descriptors may have handles to objfiles. Since their
1161 storage has just been released, we'd better wipe the solib
1162 descriptors as well. */
1163 no_shared_libraries (NULL, from_tty);
1164
1165 symfile_objfile = NULL;
1166 if (from_tty)
1167 printf_unfiltered (_("No symbol file now.\n"));
1168 }
1169
1170 struct build_id
1171 {
1172 size_t size;
1173 gdb_byte data[1];
1174 };
1175
1176 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1177
1178 static struct build_id *
1179 build_id_bfd_get (bfd *abfd)
1180 {
1181 struct build_id *retval;
1182
1183 if (!bfd_check_format (abfd, bfd_object)
1184 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1185 || elf_tdata (abfd)->build_id == NULL)
1186 return NULL;
1187
1188 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1189 retval->size = elf_tdata (abfd)->build_id_size;
1190 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1191
1192 return retval;
1193 }
1194
1195 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1196
1197 static int
1198 build_id_verify (const char *filename, struct build_id *check)
1199 {
1200 bfd *abfd;
1201 struct build_id *found = NULL;
1202 int retval = 0;
1203
1204 /* We expect to be silent on the non-existing files. */
1205 if (remote_filename_p (filename))
1206 abfd = remote_bfd_open (filename, gnutarget);
1207 else
1208 abfd = bfd_openr (filename, gnutarget);
1209 if (abfd == NULL)
1210 return 0;
1211
1212 found = build_id_bfd_get (abfd);
1213
1214 if (found == NULL)
1215 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1216 else if (found->size != check->size
1217 || memcmp (found->data, check->data, found->size) != 0)
1218 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1219 else
1220 retval = 1;
1221
1222 if (!bfd_close (abfd))
1223 warning (_("cannot close \"%s\": %s"), filename,
1224 bfd_errmsg (bfd_get_error ()));
1225
1226 xfree (found);
1227
1228 return retval;
1229 }
1230
1231 static char *
1232 build_id_to_debug_filename (struct build_id *build_id)
1233 {
1234 char *link, *s, *retval = NULL;
1235 gdb_byte *data = build_id->data;
1236 size_t size = build_id->size;
1237
1238 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1239 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1240 + 2 * size + (sizeof ".debug" - 1) + 1);
1241 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1242 if (size > 0)
1243 {
1244 size--;
1245 s += sprintf (s, "%02x", (unsigned) *data++);
1246 }
1247 if (size > 0)
1248 *s++ = '/';
1249 while (size-- > 0)
1250 s += sprintf (s, "%02x", (unsigned) *data++);
1251 strcpy (s, ".debug");
1252
1253 /* lrealpath() is expensive even for the usually non-existent files. */
1254 if (access (link, F_OK) == 0)
1255 retval = lrealpath (link);
1256 xfree (link);
1257
1258 if (retval != NULL && !build_id_verify (retval, build_id))
1259 {
1260 xfree (retval);
1261 retval = NULL;
1262 }
1263
1264 return retval;
1265 }
1266
1267 static char *
1268 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1269 {
1270 asection *sect;
1271 bfd_size_type debuglink_size;
1272 unsigned long crc32;
1273 char *contents;
1274 int crc_offset;
1275 unsigned char *p;
1276
1277 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1278
1279 if (sect == NULL)
1280 return NULL;
1281
1282 debuglink_size = bfd_section_size (objfile->obfd, sect);
1283
1284 contents = xmalloc (debuglink_size);
1285 bfd_get_section_contents (objfile->obfd, sect, contents,
1286 (file_ptr)0, (bfd_size_type)debuglink_size);
1287
1288 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1289 crc_offset = strlen (contents) + 1;
1290 crc_offset = (crc_offset + 3) & ~3;
1291
1292 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1293
1294 *crc32_out = crc32;
1295 return contents;
1296 }
1297
1298 static int
1299 separate_debug_file_exists (const char *name, unsigned long crc)
1300 {
1301 unsigned long file_crc = 0;
1302 bfd *abfd;
1303 gdb_byte buffer[8*1024];
1304 int count;
1305
1306 if (remote_filename_p (name))
1307 abfd = remote_bfd_open (name, gnutarget);
1308 else
1309 abfd = bfd_openr (name, gnutarget);
1310
1311 if (!abfd)
1312 return 0;
1313
1314 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1315 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1316
1317 bfd_close (abfd);
1318
1319 return crc == file_crc;
1320 }
1321
1322 char *debug_file_directory = NULL;
1323 static void
1324 show_debug_file_directory (struct ui_file *file, int from_tty,
1325 struct cmd_list_element *c, const char *value)
1326 {
1327 fprintf_filtered (file, _("\
1328 The directory where separate debug symbols are searched for is \"%s\".\n"),
1329 value);
1330 }
1331
1332 #if ! defined (DEBUG_SUBDIRECTORY)
1333 #define DEBUG_SUBDIRECTORY ".debug"
1334 #endif
1335
1336 static char *
1337 find_separate_debug_file (struct objfile *objfile)
1338 {
1339 asection *sect;
1340 char *basename;
1341 char *dir;
1342 char *debugfile;
1343 char *name_copy;
1344 char *canon_name;
1345 bfd_size_type debuglink_size;
1346 unsigned long crc32;
1347 int i;
1348 struct build_id *build_id;
1349
1350 build_id = build_id_bfd_get (objfile->obfd);
1351 if (build_id != NULL)
1352 {
1353 char *build_id_name;
1354
1355 build_id_name = build_id_to_debug_filename (build_id);
1356 xfree (build_id);
1357 /* Prevent looping on a stripped .debug file. */
1358 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1359 {
1360 warning (_("\"%s\": separate debug info file has no debug info"),
1361 build_id_name);
1362 xfree (build_id_name);
1363 }
1364 else if (build_id_name != NULL)
1365 return build_id_name;
1366 }
1367
1368 basename = get_debug_link_info (objfile, &crc32);
1369
1370 if (basename == NULL)
1371 return NULL;
1372
1373 dir = xstrdup (objfile->name);
1374
1375 /* Strip off the final filename part, leaving the directory name,
1376 followed by a slash. Objfile names should always be absolute and
1377 tilde-expanded, so there should always be a slash in there
1378 somewhere. */
1379 for (i = strlen(dir) - 1; i >= 0; i--)
1380 {
1381 if (IS_DIR_SEPARATOR (dir[i]))
1382 break;
1383 }
1384 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1385 dir[i+1] = '\0';
1386
1387 debugfile = alloca (strlen (debug_file_directory) + 1
1388 + strlen (dir)
1389 + strlen (DEBUG_SUBDIRECTORY)
1390 + strlen ("/")
1391 + strlen (basename)
1392 + 1);
1393
1394 /* First try in the same directory as the original file. */
1395 strcpy (debugfile, dir);
1396 strcat (debugfile, basename);
1397
1398 if (separate_debug_file_exists (debugfile, crc32))
1399 {
1400 xfree (basename);
1401 xfree (dir);
1402 return xstrdup (debugfile);
1403 }
1404
1405 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1406 strcpy (debugfile, dir);
1407 strcat (debugfile, DEBUG_SUBDIRECTORY);
1408 strcat (debugfile, "/");
1409 strcat (debugfile, basename);
1410
1411 if (separate_debug_file_exists (debugfile, crc32))
1412 {
1413 xfree (basename);
1414 xfree (dir);
1415 return xstrdup (debugfile);
1416 }
1417
1418 /* Then try in the global debugfile directory. */
1419 strcpy (debugfile, debug_file_directory);
1420 strcat (debugfile, "/");
1421 strcat (debugfile, dir);
1422 strcat (debugfile, basename);
1423
1424 if (separate_debug_file_exists (debugfile, crc32))
1425 {
1426 xfree (basename);
1427 xfree (dir);
1428 return xstrdup (debugfile);
1429 }
1430
1431 /* If the file is in the sysroot, try using its base path in the
1432 global debugfile directory. */
1433 canon_name = lrealpath (dir);
1434 if (canon_name
1435 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1436 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1437 {
1438 strcpy (debugfile, debug_file_directory);
1439 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1440 strcat (debugfile, "/");
1441 strcat (debugfile, basename);
1442
1443 if (separate_debug_file_exists (debugfile, crc32))
1444 {
1445 xfree (canon_name);
1446 xfree (basename);
1447 xfree (dir);
1448 return xstrdup (debugfile);
1449 }
1450 }
1451
1452 if (canon_name)
1453 xfree (canon_name);
1454
1455 xfree (basename);
1456 xfree (dir);
1457 return NULL;
1458 }
1459
1460
1461 /* This is the symbol-file command. Read the file, analyze its
1462 symbols, and add a struct symtab to a symtab list. The syntax of
1463 the command is rather bizarre:
1464
1465 1. The function buildargv implements various quoting conventions
1466 which are undocumented and have little or nothing in common with
1467 the way things are quoted (or not quoted) elsewhere in GDB.
1468
1469 2. Options are used, which are not generally used in GDB (perhaps
1470 "set mapped on", "set readnow on" would be better)
1471
1472 3. The order of options matters, which is contrary to GNU
1473 conventions (because it is confusing and inconvenient). */
1474
1475 void
1476 symbol_file_command (char *args, int from_tty)
1477 {
1478 dont_repeat ();
1479
1480 if (args == NULL)
1481 {
1482 symbol_file_clear (from_tty);
1483 }
1484 else
1485 {
1486 char **argv = gdb_buildargv (args);
1487 int flags = OBJF_USERLOADED;
1488 struct cleanup *cleanups;
1489 char *name = NULL;
1490
1491 cleanups = make_cleanup_freeargv (argv);
1492 while (*argv != NULL)
1493 {
1494 if (strcmp (*argv, "-readnow") == 0)
1495 flags |= OBJF_READNOW;
1496 else if (**argv == '-')
1497 error (_("unknown option `%s'"), *argv);
1498 else
1499 {
1500 symbol_file_add_main_1 (*argv, from_tty, flags);
1501 name = *argv;
1502 }
1503
1504 argv++;
1505 }
1506
1507 if (name == NULL)
1508 error (_("no symbol file name was specified"));
1509
1510 do_cleanups (cleanups);
1511 }
1512 }
1513
1514 /* Set the initial language.
1515
1516 FIXME: A better solution would be to record the language in the
1517 psymtab when reading partial symbols, and then use it (if known) to
1518 set the language. This would be a win for formats that encode the
1519 language in an easily discoverable place, such as DWARF. For
1520 stabs, we can jump through hoops looking for specially named
1521 symbols or try to intuit the language from the specific type of
1522 stabs we find, but we can't do that until later when we read in
1523 full symbols. */
1524
1525 void
1526 set_initial_language (void)
1527 {
1528 struct partial_symtab *pst;
1529 enum language lang = language_unknown;
1530
1531 pst = find_main_psymtab ();
1532 if (pst != NULL)
1533 {
1534 if (pst->filename != NULL)
1535 lang = deduce_language_from_filename (pst->filename);
1536
1537 if (lang == language_unknown)
1538 {
1539 /* Make C the default language */
1540 lang = language_c;
1541 }
1542
1543 set_language (lang);
1544 expected_language = current_language; /* Don't warn the user. */
1545 }
1546 }
1547
1548 /* Open the file specified by NAME and hand it off to BFD for
1549 preliminary analysis. Return a newly initialized bfd *, which
1550 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1551 absolute). In case of trouble, error() is called. */
1552
1553 bfd *
1554 symfile_bfd_open (char *name)
1555 {
1556 bfd *sym_bfd;
1557 int desc;
1558 char *absolute_name;
1559
1560 if (remote_filename_p (name))
1561 {
1562 name = xstrdup (name);
1563 sym_bfd = remote_bfd_open (name, gnutarget);
1564 if (!sym_bfd)
1565 {
1566 make_cleanup (xfree, name);
1567 error (_("`%s': can't open to read symbols: %s."), name,
1568 bfd_errmsg (bfd_get_error ()));
1569 }
1570
1571 if (!bfd_check_format (sym_bfd, bfd_object))
1572 {
1573 bfd_close (sym_bfd);
1574 make_cleanup (xfree, name);
1575 error (_("`%s': can't read symbols: %s."), name,
1576 bfd_errmsg (bfd_get_error ()));
1577 }
1578
1579 return sym_bfd;
1580 }
1581
1582 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1583
1584 /* Look down path for it, allocate 2nd new malloc'd copy. */
1585 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1586 O_RDONLY | O_BINARY, &absolute_name);
1587 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1588 if (desc < 0)
1589 {
1590 char *exename = alloca (strlen (name) + 5);
1591 strcat (strcpy (exename, name), ".exe");
1592 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1593 O_RDONLY | O_BINARY, &absolute_name);
1594 }
1595 #endif
1596 if (desc < 0)
1597 {
1598 make_cleanup (xfree, name);
1599 perror_with_name (name);
1600 }
1601
1602 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1603 bfd. It'll be freed in free_objfile(). */
1604 xfree (name);
1605 name = absolute_name;
1606
1607 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1608 if (!sym_bfd)
1609 {
1610 close (desc);
1611 make_cleanup (xfree, name);
1612 error (_("`%s': can't open to read symbols: %s."), name,
1613 bfd_errmsg (bfd_get_error ()));
1614 }
1615 bfd_set_cacheable (sym_bfd, 1);
1616
1617 if (!bfd_check_format (sym_bfd, bfd_object))
1618 {
1619 /* FIXME: should be checking for errors from bfd_close (for one
1620 thing, on error it does not free all the storage associated
1621 with the bfd). */
1622 bfd_close (sym_bfd); /* This also closes desc. */
1623 make_cleanup (xfree, name);
1624 error (_("`%s': can't read symbols: %s."), name,
1625 bfd_errmsg (bfd_get_error ()));
1626 }
1627
1628 return sym_bfd;
1629 }
1630
1631 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1632 the section was not found. */
1633
1634 int
1635 get_section_index (struct objfile *objfile, char *section_name)
1636 {
1637 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1638
1639 if (sect)
1640 return sect->index;
1641 else
1642 return -1;
1643 }
1644
1645 /* Link SF into the global symtab_fns list. Called on startup by the
1646 _initialize routine in each object file format reader, to register
1647 information about each format the the reader is prepared to
1648 handle. */
1649
1650 void
1651 add_symtab_fns (struct sym_fns *sf)
1652 {
1653 sf->next = symtab_fns;
1654 symtab_fns = sf;
1655 }
1656
1657 /* Initialize OBJFILE to read symbols from its associated BFD. It
1658 either returns or calls error(). The result is an initialized
1659 struct sym_fns in the objfile structure, that contains cached
1660 information about the symbol file. */
1661
1662 static struct sym_fns *
1663 find_sym_fns (bfd *abfd)
1664 {
1665 struct sym_fns *sf;
1666 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1667
1668 if (our_flavour == bfd_target_srec_flavour
1669 || our_flavour == bfd_target_ihex_flavour
1670 || our_flavour == bfd_target_tekhex_flavour)
1671 return NULL; /* No symbols. */
1672
1673 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1674 if (our_flavour == sf->sym_flavour)
1675 return sf;
1676
1677 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1678 bfd_get_target (abfd));
1679 }
1680 \f
1681
1682 /* This function runs the load command of our current target. */
1683
1684 static void
1685 load_command (char *arg, int from_tty)
1686 {
1687 /* The user might be reloading because the binary has changed. Take
1688 this opportunity to check. */
1689 reopen_exec_file ();
1690 reread_symbols ();
1691
1692 if (arg == NULL)
1693 {
1694 char *parg;
1695 int count = 0;
1696
1697 parg = arg = get_exec_file (1);
1698
1699 /* Count how many \ " ' tab space there are in the name. */
1700 while ((parg = strpbrk (parg, "\\\"'\t ")))
1701 {
1702 parg++;
1703 count++;
1704 }
1705
1706 if (count)
1707 {
1708 /* We need to quote this string so buildargv can pull it apart. */
1709 char *temp = xmalloc (strlen (arg) + count + 1 );
1710 char *ptemp = temp;
1711 char *prev;
1712
1713 make_cleanup (xfree, temp);
1714
1715 prev = parg = arg;
1716 while ((parg = strpbrk (parg, "\\\"'\t ")))
1717 {
1718 strncpy (ptemp, prev, parg - prev);
1719 ptemp += parg - prev;
1720 prev = parg++;
1721 *ptemp++ = '\\';
1722 }
1723 strcpy (ptemp, prev);
1724
1725 arg = temp;
1726 }
1727 }
1728
1729 target_load (arg, from_tty);
1730
1731 /* After re-loading the executable, we don't really know which
1732 overlays are mapped any more. */
1733 overlay_cache_invalid = 1;
1734 }
1735
1736 /* This version of "load" should be usable for any target. Currently
1737 it is just used for remote targets, not inftarg.c or core files,
1738 on the theory that only in that case is it useful.
1739
1740 Avoiding xmodem and the like seems like a win (a) because we don't have
1741 to worry about finding it, and (b) On VMS, fork() is very slow and so
1742 we don't want to run a subprocess. On the other hand, I'm not sure how
1743 performance compares. */
1744
1745 static int validate_download = 0;
1746
1747 /* Callback service function for generic_load (bfd_map_over_sections). */
1748
1749 static void
1750 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1751 {
1752 bfd_size_type *sum = data;
1753
1754 *sum += bfd_get_section_size (asec);
1755 }
1756
1757 /* Opaque data for load_section_callback. */
1758 struct load_section_data {
1759 unsigned long load_offset;
1760 struct load_progress_data *progress_data;
1761 VEC(memory_write_request_s) *requests;
1762 };
1763
1764 /* Opaque data for load_progress. */
1765 struct load_progress_data {
1766 /* Cumulative data. */
1767 unsigned long write_count;
1768 unsigned long data_count;
1769 bfd_size_type total_size;
1770 };
1771
1772 /* Opaque data for load_progress for a single section. */
1773 struct load_progress_section_data {
1774 struct load_progress_data *cumulative;
1775
1776 /* Per-section data. */
1777 const char *section_name;
1778 ULONGEST section_sent;
1779 ULONGEST section_size;
1780 CORE_ADDR lma;
1781 gdb_byte *buffer;
1782 };
1783
1784 /* Target write callback routine for progress reporting. */
1785
1786 static void
1787 load_progress (ULONGEST bytes, void *untyped_arg)
1788 {
1789 struct load_progress_section_data *args = untyped_arg;
1790 struct load_progress_data *totals;
1791
1792 if (args == NULL)
1793 /* Writing padding data. No easy way to get at the cumulative
1794 stats, so just ignore this. */
1795 return;
1796
1797 totals = args->cumulative;
1798
1799 if (bytes == 0 && args->section_sent == 0)
1800 {
1801 /* The write is just starting. Let the user know we've started
1802 this section. */
1803 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1804 args->section_name, paddr_nz (args->section_size),
1805 paddr_nz (args->lma));
1806 return;
1807 }
1808
1809 if (validate_download)
1810 {
1811 /* Broken memories and broken monitors manifest themselves here
1812 when bring new computers to life. This doubles already slow
1813 downloads. */
1814 /* NOTE: cagney/1999-10-18: A more efficient implementation
1815 might add a verify_memory() method to the target vector and
1816 then use that. remote.c could implement that method using
1817 the ``qCRC'' packet. */
1818 gdb_byte *check = xmalloc (bytes);
1819 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1820
1821 if (target_read_memory (args->lma, check, bytes) != 0)
1822 error (_("Download verify read failed at 0x%s"),
1823 paddr (args->lma));
1824 if (memcmp (args->buffer, check, bytes) != 0)
1825 error (_("Download verify compare failed at 0x%s"),
1826 paddr (args->lma));
1827 do_cleanups (verify_cleanups);
1828 }
1829 totals->data_count += bytes;
1830 args->lma += bytes;
1831 args->buffer += bytes;
1832 totals->write_count += 1;
1833 args->section_sent += bytes;
1834 if (quit_flag
1835 || (deprecated_ui_load_progress_hook != NULL
1836 && deprecated_ui_load_progress_hook (args->section_name,
1837 args->section_sent)))
1838 error (_("Canceled the download"));
1839
1840 if (deprecated_show_load_progress != NULL)
1841 deprecated_show_load_progress (args->section_name,
1842 args->section_sent,
1843 args->section_size,
1844 totals->data_count,
1845 totals->total_size);
1846 }
1847
1848 /* Callback service function for generic_load (bfd_map_over_sections). */
1849
1850 static void
1851 load_section_callback (bfd *abfd, asection *asec, void *data)
1852 {
1853 struct memory_write_request *new_request;
1854 struct load_section_data *args = data;
1855 struct load_progress_section_data *section_data;
1856 bfd_size_type size = bfd_get_section_size (asec);
1857 gdb_byte *buffer;
1858 const char *sect_name = bfd_get_section_name (abfd, asec);
1859
1860 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1861 return;
1862
1863 if (size == 0)
1864 return;
1865
1866 new_request = VEC_safe_push (memory_write_request_s,
1867 args->requests, NULL);
1868 memset (new_request, 0, sizeof (struct memory_write_request));
1869 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1870 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1871 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1872 new_request->data = xmalloc (size);
1873 new_request->baton = section_data;
1874
1875 buffer = new_request->data;
1876
1877 section_data->cumulative = args->progress_data;
1878 section_data->section_name = sect_name;
1879 section_data->section_size = size;
1880 section_data->lma = new_request->begin;
1881 section_data->buffer = buffer;
1882
1883 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1884 }
1885
1886 /* Clean up an entire memory request vector, including load
1887 data and progress records. */
1888
1889 static void
1890 clear_memory_write_data (void *arg)
1891 {
1892 VEC(memory_write_request_s) **vec_p = arg;
1893 VEC(memory_write_request_s) *vec = *vec_p;
1894 int i;
1895 struct memory_write_request *mr;
1896
1897 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1898 {
1899 xfree (mr->data);
1900 xfree (mr->baton);
1901 }
1902 VEC_free (memory_write_request_s, vec);
1903 }
1904
1905 void
1906 generic_load (char *args, int from_tty)
1907 {
1908 bfd *loadfile_bfd;
1909 struct timeval start_time, end_time;
1910 char *filename;
1911 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1912 struct load_section_data cbdata;
1913 struct load_progress_data total_progress;
1914
1915 CORE_ADDR entry;
1916 char **argv;
1917
1918 memset (&cbdata, 0, sizeof (cbdata));
1919 memset (&total_progress, 0, sizeof (total_progress));
1920 cbdata.progress_data = &total_progress;
1921
1922 make_cleanup (clear_memory_write_data, &cbdata.requests);
1923
1924 if (args == NULL)
1925 error_no_arg (_("file to load"));
1926
1927 argv = gdb_buildargv (args);
1928 make_cleanup_freeargv (argv);
1929
1930 filename = tilde_expand (argv[0]);
1931 make_cleanup (xfree, filename);
1932
1933 if (argv[1] != NULL)
1934 {
1935 char *endptr;
1936
1937 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1938
1939 /* If the last word was not a valid number then
1940 treat it as a file name with spaces in. */
1941 if (argv[1] == endptr)
1942 error (_("Invalid download offset:%s."), argv[1]);
1943
1944 if (argv[2] != NULL)
1945 error (_("Too many parameters."));
1946 }
1947
1948 /* Open the file for loading. */
1949 loadfile_bfd = bfd_openr (filename, gnutarget);
1950 if (loadfile_bfd == NULL)
1951 {
1952 perror_with_name (filename);
1953 return;
1954 }
1955
1956 /* FIXME: should be checking for errors from bfd_close (for one thing,
1957 on error it does not free all the storage associated with the
1958 bfd). */
1959 make_cleanup_bfd_close (loadfile_bfd);
1960
1961 if (!bfd_check_format (loadfile_bfd, bfd_object))
1962 {
1963 error (_("\"%s\" is not an object file: %s"), filename,
1964 bfd_errmsg (bfd_get_error ()));
1965 }
1966
1967 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1968 (void *) &total_progress.total_size);
1969
1970 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1971
1972 gettimeofday (&start_time, NULL);
1973
1974 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1975 load_progress) != 0)
1976 error (_("Load failed"));
1977
1978 gettimeofday (&end_time, NULL);
1979
1980 entry = bfd_get_start_address (loadfile_bfd);
1981 ui_out_text (uiout, "Start address ");
1982 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1983 ui_out_text (uiout, ", load size ");
1984 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
1985 ui_out_text (uiout, "\n");
1986 /* We were doing this in remote-mips.c, I suspect it is right
1987 for other targets too. */
1988 regcache_write_pc (get_current_regcache (), entry);
1989
1990 /* FIXME: are we supposed to call symbol_file_add or not? According
1991 to a comment from remote-mips.c (where a call to symbol_file_add
1992 was commented out), making the call confuses GDB if more than one
1993 file is loaded in. Some targets do (e.g., remote-vx.c) but
1994 others don't (or didn't - perhaps they have all been deleted). */
1995
1996 print_transfer_performance (gdb_stdout, total_progress.data_count,
1997 total_progress.write_count,
1998 &start_time, &end_time);
1999
2000 do_cleanups (old_cleanups);
2001 }
2002
2003 /* Report how fast the transfer went. */
2004
2005 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2006 replaced by print_transfer_performance (with a very different
2007 function signature). */
2008
2009 void
2010 report_transfer_performance (unsigned long data_count, time_t start_time,
2011 time_t end_time)
2012 {
2013 struct timeval start, end;
2014
2015 start.tv_sec = start_time;
2016 start.tv_usec = 0;
2017 end.tv_sec = end_time;
2018 end.tv_usec = 0;
2019
2020 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2021 }
2022
2023 void
2024 print_transfer_performance (struct ui_file *stream,
2025 unsigned long data_count,
2026 unsigned long write_count,
2027 const struct timeval *start_time,
2028 const struct timeval *end_time)
2029 {
2030 ULONGEST time_count;
2031
2032 /* Compute the elapsed time in milliseconds, as a tradeoff between
2033 accuracy and overflow. */
2034 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2035 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2036
2037 ui_out_text (uiout, "Transfer rate: ");
2038 if (time_count > 0)
2039 {
2040 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2041
2042 if (ui_out_is_mi_like_p (uiout))
2043 {
2044 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2045 ui_out_text (uiout, " bits/sec");
2046 }
2047 else if (rate < 1024)
2048 {
2049 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2050 ui_out_text (uiout, " bytes/sec");
2051 }
2052 else
2053 {
2054 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2055 ui_out_text (uiout, " KB/sec");
2056 }
2057 }
2058 else
2059 {
2060 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2061 ui_out_text (uiout, " bits in <1 sec");
2062 }
2063 if (write_count > 0)
2064 {
2065 ui_out_text (uiout, ", ");
2066 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2067 ui_out_text (uiout, " bytes/write");
2068 }
2069 ui_out_text (uiout, ".\n");
2070 }
2071
2072 /* This function allows the addition of incrementally linked object files.
2073 It does not modify any state in the target, only in the debugger. */
2074 /* Note: ezannoni 2000-04-13 This function/command used to have a
2075 special case syntax for the rombug target (Rombug is the boot
2076 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2077 rombug case, the user doesn't need to supply a text address,
2078 instead a call to target_link() (in target.c) would supply the
2079 value to use. We are now discontinuing this type of ad hoc syntax. */
2080
2081 static void
2082 add_symbol_file_command (char *args, int from_tty)
2083 {
2084 char *filename = NULL;
2085 int flags = OBJF_USERLOADED;
2086 char *arg;
2087 int expecting_option = 0;
2088 int section_index = 0;
2089 int argcnt = 0;
2090 int sec_num = 0;
2091 int i;
2092 int expecting_sec_name = 0;
2093 int expecting_sec_addr = 0;
2094 char **argv;
2095
2096 struct sect_opt
2097 {
2098 char *name;
2099 char *value;
2100 };
2101
2102 struct section_addr_info *section_addrs;
2103 struct sect_opt *sect_opts = NULL;
2104 size_t num_sect_opts = 0;
2105 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2106
2107 num_sect_opts = 16;
2108 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2109 * sizeof (struct sect_opt));
2110
2111 dont_repeat ();
2112
2113 if (args == NULL)
2114 error (_("add-symbol-file takes a file name and an address"));
2115
2116 argv = gdb_buildargv (args);
2117 make_cleanup_freeargv (argv);
2118
2119 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2120 {
2121 /* Process the argument. */
2122 if (argcnt == 0)
2123 {
2124 /* The first argument is the file name. */
2125 filename = tilde_expand (arg);
2126 make_cleanup (xfree, filename);
2127 }
2128 else
2129 if (argcnt == 1)
2130 {
2131 /* The second argument is always the text address at which
2132 to load the program. */
2133 sect_opts[section_index].name = ".text";
2134 sect_opts[section_index].value = arg;
2135 if (++section_index >= num_sect_opts)
2136 {
2137 num_sect_opts *= 2;
2138 sect_opts = ((struct sect_opt *)
2139 xrealloc (sect_opts,
2140 num_sect_opts
2141 * sizeof (struct sect_opt)));
2142 }
2143 }
2144 else
2145 {
2146 /* It's an option (starting with '-') or it's an argument
2147 to an option */
2148
2149 if (*arg == '-')
2150 {
2151 if (strcmp (arg, "-readnow") == 0)
2152 flags |= OBJF_READNOW;
2153 else if (strcmp (arg, "-s") == 0)
2154 {
2155 expecting_sec_name = 1;
2156 expecting_sec_addr = 1;
2157 }
2158 }
2159 else
2160 {
2161 if (expecting_sec_name)
2162 {
2163 sect_opts[section_index].name = arg;
2164 expecting_sec_name = 0;
2165 }
2166 else
2167 if (expecting_sec_addr)
2168 {
2169 sect_opts[section_index].value = arg;
2170 expecting_sec_addr = 0;
2171 if (++section_index >= num_sect_opts)
2172 {
2173 num_sect_opts *= 2;
2174 sect_opts = ((struct sect_opt *)
2175 xrealloc (sect_opts,
2176 num_sect_opts
2177 * sizeof (struct sect_opt)));
2178 }
2179 }
2180 else
2181 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2182 }
2183 }
2184 }
2185
2186 /* This command takes at least two arguments. The first one is a
2187 filename, and the second is the address where this file has been
2188 loaded. Abort now if this address hasn't been provided by the
2189 user. */
2190 if (section_index < 1)
2191 error (_("The address where %s has been loaded is missing"), filename);
2192
2193 /* Print the prompt for the query below. And save the arguments into
2194 a sect_addr_info structure to be passed around to other
2195 functions. We have to split this up into separate print
2196 statements because hex_string returns a local static
2197 string. */
2198
2199 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2200 section_addrs = alloc_section_addr_info (section_index);
2201 make_cleanup (xfree, section_addrs);
2202 for (i = 0; i < section_index; i++)
2203 {
2204 CORE_ADDR addr;
2205 char *val = sect_opts[i].value;
2206 char *sec = sect_opts[i].name;
2207
2208 addr = parse_and_eval_address (val);
2209
2210 /* Here we store the section offsets in the order they were
2211 entered on the command line. */
2212 section_addrs->other[sec_num].name = sec;
2213 section_addrs->other[sec_num].addr = addr;
2214 printf_unfiltered ("\t%s_addr = %s\n", sec, paddress (addr));
2215 sec_num++;
2216
2217 /* The object's sections are initialized when a
2218 call is made to build_objfile_section_table (objfile).
2219 This happens in reread_symbols.
2220 At this point, we don't know what file type this is,
2221 so we can't determine what section names are valid. */
2222 }
2223
2224 if (from_tty && (!query ("%s", "")))
2225 error (_("Not confirmed."));
2226
2227 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
2228
2229 /* Getting new symbols may change our opinion about what is
2230 frameless. */
2231 reinit_frame_cache ();
2232 do_cleanups (my_cleanups);
2233 }
2234 \f
2235
2236 /* Re-read symbols if a symbol-file has changed. */
2237 void
2238 reread_symbols (void)
2239 {
2240 struct objfile *objfile;
2241 long new_modtime;
2242 int reread_one = 0;
2243 struct stat new_statbuf;
2244 int res;
2245
2246 /* With the addition of shared libraries, this should be modified,
2247 the load time should be saved in the partial symbol tables, since
2248 different tables may come from different source files. FIXME.
2249 This routine should then walk down each partial symbol table
2250 and see if the symbol table that it originates from has been changed */
2251
2252 for (objfile = object_files; objfile; objfile = objfile->next)
2253 {
2254 if (objfile->obfd)
2255 {
2256 #ifdef DEPRECATED_IBM6000_TARGET
2257 /* If this object is from a shared library, then you should
2258 stat on the library name, not member name. */
2259
2260 if (objfile->obfd->my_archive)
2261 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2262 else
2263 #endif
2264 res = stat (objfile->name, &new_statbuf);
2265 if (res != 0)
2266 {
2267 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2268 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2269 objfile->name);
2270 continue;
2271 }
2272 new_modtime = new_statbuf.st_mtime;
2273 if (new_modtime != objfile->mtime)
2274 {
2275 struct cleanup *old_cleanups;
2276 struct section_offsets *offsets;
2277 int num_offsets;
2278 char *obfd_filename;
2279
2280 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2281 objfile->name);
2282
2283 /* There are various functions like symbol_file_add,
2284 symfile_bfd_open, syms_from_objfile, etc., which might
2285 appear to do what we want. But they have various other
2286 effects which we *don't* want. So we just do stuff
2287 ourselves. We don't worry about mapped files (for one thing,
2288 any mapped file will be out of date). */
2289
2290 /* If we get an error, blow away this objfile (not sure if
2291 that is the correct response for things like shared
2292 libraries). */
2293 old_cleanups = make_cleanup_free_objfile (objfile);
2294 /* We need to do this whenever any symbols go away. */
2295 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2296
2297 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2298 bfd_get_filename (exec_bfd)) == 0)
2299 {
2300 /* Reload EXEC_BFD without asking anything. */
2301
2302 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2303 }
2304
2305 /* Clean up any state BFD has sitting around. We don't need
2306 to close the descriptor but BFD lacks a way of closing the
2307 BFD without closing the descriptor. */
2308 obfd_filename = bfd_get_filename (objfile->obfd);
2309 if (!bfd_close (objfile->obfd))
2310 error (_("Can't close BFD for %s: %s"), objfile->name,
2311 bfd_errmsg (bfd_get_error ()));
2312 if (remote_filename_p (obfd_filename))
2313 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2314 else
2315 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2316 if (objfile->obfd == NULL)
2317 error (_("Can't open %s to read symbols."), objfile->name);
2318 /* bfd_openr sets cacheable to true, which is what we want. */
2319 if (!bfd_check_format (objfile->obfd, bfd_object))
2320 error (_("Can't read symbols from %s: %s."), objfile->name,
2321 bfd_errmsg (bfd_get_error ()));
2322
2323 /* Save the offsets, we will nuke them with the rest of the
2324 objfile_obstack. */
2325 num_offsets = objfile->num_sections;
2326 offsets = ((struct section_offsets *)
2327 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2328 memcpy (offsets, objfile->section_offsets,
2329 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2330
2331 /* Remove any references to this objfile in the global
2332 value lists. */
2333 preserve_values (objfile);
2334
2335 /* Nuke all the state that we will re-read. Much of the following
2336 code which sets things to NULL really is necessary to tell
2337 other parts of GDB that there is nothing currently there. */
2338
2339 /* FIXME: Do we have to free a whole linked list, or is this
2340 enough? */
2341 if (objfile->global_psymbols.list)
2342 xfree (objfile->global_psymbols.list);
2343 memset (&objfile->global_psymbols, 0,
2344 sizeof (objfile->global_psymbols));
2345 if (objfile->static_psymbols.list)
2346 xfree (objfile->static_psymbols.list);
2347 memset (&objfile->static_psymbols, 0,
2348 sizeof (objfile->static_psymbols));
2349
2350 /* Free the obstacks for non-reusable objfiles */
2351 bcache_xfree (objfile->psymbol_cache);
2352 objfile->psymbol_cache = bcache_xmalloc ();
2353 bcache_xfree (objfile->macro_cache);
2354 objfile->macro_cache = bcache_xmalloc ();
2355 if (objfile->demangled_names_hash != NULL)
2356 {
2357 htab_delete (objfile->demangled_names_hash);
2358 objfile->demangled_names_hash = NULL;
2359 }
2360 obstack_free (&objfile->objfile_obstack, 0);
2361 objfile->sections = NULL;
2362 objfile->symtabs = NULL;
2363 objfile->psymtabs = NULL;
2364 objfile->psymtabs_addrmap = NULL;
2365 objfile->free_psymtabs = NULL;
2366 objfile->cp_namespace_symtab = NULL;
2367 objfile->msymbols = NULL;
2368 objfile->deprecated_sym_private = NULL;
2369 objfile->minimal_symbol_count = 0;
2370 memset (&objfile->msymbol_hash, 0,
2371 sizeof (objfile->msymbol_hash));
2372 memset (&objfile->msymbol_demangled_hash, 0,
2373 sizeof (objfile->msymbol_demangled_hash));
2374 clear_objfile_data (objfile);
2375 if (objfile->sf != NULL)
2376 {
2377 (*objfile->sf->sym_finish) (objfile);
2378 }
2379
2380 objfile->psymbol_cache = bcache_xmalloc ();
2381 objfile->macro_cache = bcache_xmalloc ();
2382 /* obstack_init also initializes the obstack so it is
2383 empty. We could use obstack_specify_allocation but
2384 gdb_obstack.h specifies the alloc/dealloc
2385 functions. */
2386 obstack_init (&objfile->objfile_obstack);
2387 if (build_objfile_section_table (objfile))
2388 {
2389 error (_("Can't find the file sections in `%s': %s"),
2390 objfile->name, bfd_errmsg (bfd_get_error ()));
2391 }
2392 terminate_minimal_symbol_table (objfile);
2393
2394 /* We use the same section offsets as from last time. I'm not
2395 sure whether that is always correct for shared libraries. */
2396 objfile->section_offsets = (struct section_offsets *)
2397 obstack_alloc (&objfile->objfile_obstack,
2398 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2399 memcpy (objfile->section_offsets, offsets,
2400 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2401 objfile->num_sections = num_offsets;
2402
2403 /* What the hell is sym_new_init for, anyway? The concept of
2404 distinguishing between the main file and additional files
2405 in this way seems rather dubious. */
2406 if (objfile == symfile_objfile)
2407 {
2408 (*objfile->sf->sym_new_init) (objfile);
2409 }
2410
2411 (*objfile->sf->sym_init) (objfile);
2412 clear_complaints (&symfile_complaints, 1, 1);
2413 /* The "mainline" parameter is a hideous hack; I think leaving it
2414 zero is OK since dbxread.c also does what it needs to do if
2415 objfile->global_psymbols.size is 0. */
2416 (*objfile->sf->sym_read) (objfile, 0);
2417 if (!have_partial_symbols () && !have_full_symbols ())
2418 {
2419 wrap_here ("");
2420 printf_unfiltered (_("(no debugging symbols found)\n"));
2421 wrap_here ("");
2422 }
2423
2424 /* We're done reading the symbol file; finish off complaints. */
2425 clear_complaints (&symfile_complaints, 0, 1);
2426
2427 /* Getting new symbols may change our opinion about what is
2428 frameless. */
2429
2430 reinit_frame_cache ();
2431
2432 /* Discard cleanups as symbol reading was successful. */
2433 discard_cleanups (old_cleanups);
2434
2435 /* If the mtime has changed between the time we set new_modtime
2436 and now, we *want* this to be out of date, so don't call stat
2437 again now. */
2438 objfile->mtime = new_modtime;
2439 reread_one = 1;
2440 reread_separate_symbols (objfile);
2441 init_entry_point_info (objfile);
2442 }
2443 }
2444 }
2445
2446 if (reread_one)
2447 {
2448 clear_symtab_users ();
2449 /* At least one objfile has changed, so we can consider that
2450 the executable we're debugging has changed too. */
2451 observer_notify_executable_changed ();
2452 }
2453
2454 }
2455
2456
2457 /* Handle separate debug info for OBJFILE, which has just been
2458 re-read:
2459 - If we had separate debug info before, but now we don't, get rid
2460 of the separated objfile.
2461 - If we didn't have separated debug info before, but now we do,
2462 read in the new separated debug info file.
2463 - If the debug link points to a different file, toss the old one
2464 and read the new one.
2465 This function does *not* handle the case where objfile is still
2466 using the same separate debug info file, but that file's timestamp
2467 has changed. That case should be handled by the loop in
2468 reread_symbols already. */
2469 static void
2470 reread_separate_symbols (struct objfile *objfile)
2471 {
2472 char *debug_file;
2473 unsigned long crc32;
2474
2475 /* Does the updated objfile's debug info live in a
2476 separate file? */
2477 debug_file = find_separate_debug_file (objfile);
2478
2479 if (objfile->separate_debug_objfile)
2480 {
2481 /* There are two cases where we need to get rid of
2482 the old separated debug info objfile:
2483 - if the new primary objfile doesn't have
2484 separated debug info, or
2485 - if the new primary objfile has separate debug
2486 info, but it's under a different filename.
2487
2488 If the old and new objfiles both have separate
2489 debug info, under the same filename, then we're
2490 okay --- if the separated file's contents have
2491 changed, we will have caught that when we
2492 visited it in this function's outermost
2493 loop. */
2494 if (! debug_file
2495 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2496 free_objfile (objfile->separate_debug_objfile);
2497 }
2498
2499 /* If the new objfile has separate debug info, and we
2500 haven't loaded it already, do so now. */
2501 if (debug_file
2502 && ! objfile->separate_debug_objfile)
2503 {
2504 /* Use the same section offset table as objfile itself.
2505 Preserve the flags from objfile that make sense. */
2506 objfile->separate_debug_objfile
2507 = (symbol_file_add_with_addrs_or_offsets
2508 (symfile_bfd_open (debug_file),
2509 info_verbose, /* from_tty: Don't override the default. */
2510 0, /* No addr table. */
2511 objfile->section_offsets, objfile->num_sections,
2512 0, /* Not mainline. See comments about this above. */
2513 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2514 | OBJF_USERLOADED)));
2515 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2516 = objfile;
2517 }
2518 if (debug_file)
2519 xfree (debug_file);
2520 }
2521
2522
2523 \f
2524
2525
2526 typedef struct
2527 {
2528 char *ext;
2529 enum language lang;
2530 }
2531 filename_language;
2532
2533 static filename_language *filename_language_table;
2534 static int fl_table_size, fl_table_next;
2535
2536 static void
2537 add_filename_language (char *ext, enum language lang)
2538 {
2539 if (fl_table_next >= fl_table_size)
2540 {
2541 fl_table_size += 10;
2542 filename_language_table =
2543 xrealloc (filename_language_table,
2544 fl_table_size * sizeof (*filename_language_table));
2545 }
2546
2547 filename_language_table[fl_table_next].ext = xstrdup (ext);
2548 filename_language_table[fl_table_next].lang = lang;
2549 fl_table_next++;
2550 }
2551
2552 static char *ext_args;
2553 static void
2554 show_ext_args (struct ui_file *file, int from_tty,
2555 struct cmd_list_element *c, const char *value)
2556 {
2557 fprintf_filtered (file, _("\
2558 Mapping between filename extension and source language is \"%s\".\n"),
2559 value);
2560 }
2561
2562 static void
2563 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2564 {
2565 int i;
2566 char *cp = ext_args;
2567 enum language lang;
2568
2569 /* First arg is filename extension, starting with '.' */
2570 if (*cp != '.')
2571 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2572
2573 /* Find end of first arg. */
2574 while (*cp && !isspace (*cp))
2575 cp++;
2576
2577 if (*cp == '\0')
2578 error (_("'%s': two arguments required -- filename extension and language"),
2579 ext_args);
2580
2581 /* Null-terminate first arg */
2582 *cp++ = '\0';
2583
2584 /* Find beginning of second arg, which should be a source language. */
2585 while (*cp && isspace (*cp))
2586 cp++;
2587
2588 if (*cp == '\0')
2589 error (_("'%s': two arguments required -- filename extension and language"),
2590 ext_args);
2591
2592 /* Lookup the language from among those we know. */
2593 lang = language_enum (cp);
2594
2595 /* Now lookup the filename extension: do we already know it? */
2596 for (i = 0; i < fl_table_next; i++)
2597 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2598 break;
2599
2600 if (i >= fl_table_next)
2601 {
2602 /* new file extension */
2603 add_filename_language (ext_args, lang);
2604 }
2605 else
2606 {
2607 /* redefining a previously known filename extension */
2608
2609 /* if (from_tty) */
2610 /* query ("Really make files of type %s '%s'?", */
2611 /* ext_args, language_str (lang)); */
2612
2613 xfree (filename_language_table[i].ext);
2614 filename_language_table[i].ext = xstrdup (ext_args);
2615 filename_language_table[i].lang = lang;
2616 }
2617 }
2618
2619 static void
2620 info_ext_lang_command (char *args, int from_tty)
2621 {
2622 int i;
2623
2624 printf_filtered (_("Filename extensions and the languages they represent:"));
2625 printf_filtered ("\n\n");
2626 for (i = 0; i < fl_table_next; i++)
2627 printf_filtered ("\t%s\t- %s\n",
2628 filename_language_table[i].ext,
2629 language_str (filename_language_table[i].lang));
2630 }
2631
2632 static void
2633 init_filename_language_table (void)
2634 {
2635 if (fl_table_size == 0) /* protect against repetition */
2636 {
2637 fl_table_size = 20;
2638 fl_table_next = 0;
2639 filename_language_table =
2640 xmalloc (fl_table_size * sizeof (*filename_language_table));
2641 add_filename_language (".c", language_c);
2642 add_filename_language (".C", language_cplus);
2643 add_filename_language (".cc", language_cplus);
2644 add_filename_language (".cp", language_cplus);
2645 add_filename_language (".cpp", language_cplus);
2646 add_filename_language (".cxx", language_cplus);
2647 add_filename_language (".c++", language_cplus);
2648 add_filename_language (".java", language_java);
2649 add_filename_language (".class", language_java);
2650 add_filename_language (".m", language_objc);
2651 add_filename_language (".f", language_fortran);
2652 add_filename_language (".F", language_fortran);
2653 add_filename_language (".s", language_asm);
2654 add_filename_language (".sx", language_asm);
2655 add_filename_language (".S", language_asm);
2656 add_filename_language (".pas", language_pascal);
2657 add_filename_language (".p", language_pascal);
2658 add_filename_language (".pp", language_pascal);
2659 add_filename_language (".adb", language_ada);
2660 add_filename_language (".ads", language_ada);
2661 add_filename_language (".a", language_ada);
2662 add_filename_language (".ada", language_ada);
2663 }
2664 }
2665
2666 enum language
2667 deduce_language_from_filename (char *filename)
2668 {
2669 int i;
2670 char *cp;
2671
2672 if (filename != NULL)
2673 if ((cp = strrchr (filename, '.')) != NULL)
2674 for (i = 0; i < fl_table_next; i++)
2675 if (strcmp (cp, filename_language_table[i].ext) == 0)
2676 return filename_language_table[i].lang;
2677
2678 return language_unknown;
2679 }
2680 \f
2681 /* allocate_symtab:
2682
2683 Allocate and partly initialize a new symbol table. Return a pointer
2684 to it. error() if no space.
2685
2686 Caller must set these fields:
2687 LINETABLE(symtab)
2688 symtab->blockvector
2689 symtab->dirname
2690 symtab->free_code
2691 symtab->free_ptr
2692 possibly free_named_symtabs (symtab->filename);
2693 */
2694
2695 struct symtab *
2696 allocate_symtab (char *filename, struct objfile *objfile)
2697 {
2698 struct symtab *symtab;
2699
2700 symtab = (struct symtab *)
2701 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2702 memset (symtab, 0, sizeof (*symtab));
2703 symtab->filename = obsavestring (filename, strlen (filename),
2704 &objfile->objfile_obstack);
2705 symtab->fullname = NULL;
2706 symtab->language = deduce_language_from_filename (filename);
2707 symtab->debugformat = obsavestring ("unknown", 7,
2708 &objfile->objfile_obstack);
2709
2710 /* Hook it to the objfile it comes from */
2711
2712 symtab->objfile = objfile;
2713 symtab->next = objfile->symtabs;
2714 objfile->symtabs = symtab;
2715
2716 return (symtab);
2717 }
2718
2719 struct partial_symtab *
2720 allocate_psymtab (char *filename, struct objfile *objfile)
2721 {
2722 struct partial_symtab *psymtab;
2723
2724 if (objfile->free_psymtabs)
2725 {
2726 psymtab = objfile->free_psymtabs;
2727 objfile->free_psymtabs = psymtab->next;
2728 }
2729 else
2730 psymtab = (struct partial_symtab *)
2731 obstack_alloc (&objfile->objfile_obstack,
2732 sizeof (struct partial_symtab));
2733
2734 memset (psymtab, 0, sizeof (struct partial_symtab));
2735 psymtab->filename = obsavestring (filename, strlen (filename),
2736 &objfile->objfile_obstack);
2737 psymtab->symtab = NULL;
2738
2739 /* Prepend it to the psymtab list for the objfile it belongs to.
2740 Psymtabs are searched in most recent inserted -> least recent
2741 inserted order. */
2742
2743 psymtab->objfile = objfile;
2744 psymtab->next = objfile->psymtabs;
2745 objfile->psymtabs = psymtab;
2746 #if 0
2747 {
2748 struct partial_symtab **prev_pst;
2749 psymtab->objfile = objfile;
2750 psymtab->next = NULL;
2751 prev_pst = &(objfile->psymtabs);
2752 while ((*prev_pst) != NULL)
2753 prev_pst = &((*prev_pst)->next);
2754 (*prev_pst) = psymtab;
2755 }
2756 #endif
2757
2758 return (psymtab);
2759 }
2760
2761 void
2762 discard_psymtab (struct partial_symtab *pst)
2763 {
2764 struct partial_symtab **prev_pst;
2765
2766 /* From dbxread.c:
2767 Empty psymtabs happen as a result of header files which don't
2768 have any symbols in them. There can be a lot of them. But this
2769 check is wrong, in that a psymtab with N_SLINE entries but
2770 nothing else is not empty, but we don't realize that. Fixing
2771 that without slowing things down might be tricky. */
2772
2773 /* First, snip it out of the psymtab chain */
2774
2775 prev_pst = &(pst->objfile->psymtabs);
2776 while ((*prev_pst) != pst)
2777 prev_pst = &((*prev_pst)->next);
2778 (*prev_pst) = pst->next;
2779
2780 /* Next, put it on a free list for recycling */
2781
2782 pst->next = pst->objfile->free_psymtabs;
2783 pst->objfile->free_psymtabs = pst;
2784 }
2785 \f
2786
2787 /* Reset all data structures in gdb which may contain references to symbol
2788 table data. */
2789
2790 void
2791 clear_symtab_users (void)
2792 {
2793 /* Someday, we should do better than this, by only blowing away
2794 the things that really need to be blown. */
2795
2796 /* Clear the "current" symtab first, because it is no longer valid.
2797 breakpoint_re_set may try to access the current symtab. */
2798 clear_current_source_symtab_and_line ();
2799
2800 clear_displays ();
2801 breakpoint_re_set ();
2802 set_default_breakpoint (0, 0, 0, 0);
2803 clear_pc_function_cache ();
2804 observer_notify_new_objfile (NULL);
2805
2806 /* Clear globals which might have pointed into a removed objfile.
2807 FIXME: It's not clear which of these are supposed to persist
2808 between expressions and which ought to be reset each time. */
2809 expression_context_block = NULL;
2810 innermost_block = NULL;
2811
2812 /* Varobj may refer to old symbols, perform a cleanup. */
2813 varobj_invalidate ();
2814
2815 }
2816
2817 static void
2818 clear_symtab_users_cleanup (void *ignore)
2819 {
2820 clear_symtab_users ();
2821 }
2822
2823 /* clear_symtab_users_once:
2824
2825 This function is run after symbol reading, or from a cleanup.
2826 If an old symbol table was obsoleted, the old symbol table
2827 has been blown away, but the other GDB data structures that may
2828 reference it have not yet been cleared or re-directed. (The old
2829 symtab was zapped, and the cleanup queued, in free_named_symtab()
2830 below.)
2831
2832 This function can be queued N times as a cleanup, or called
2833 directly; it will do all the work the first time, and then will be a
2834 no-op until the next time it is queued. This works by bumping a
2835 counter at queueing time. Much later when the cleanup is run, or at
2836 the end of symbol processing (in case the cleanup is discarded), if
2837 the queued count is greater than the "done-count", we do the work
2838 and set the done-count to the queued count. If the queued count is
2839 less than or equal to the done-count, we just ignore the call. This
2840 is needed because reading a single .o file will often replace many
2841 symtabs (one per .h file, for example), and we don't want to reset
2842 the breakpoints N times in the user's face.
2843
2844 The reason we both queue a cleanup, and call it directly after symbol
2845 reading, is because the cleanup protects us in case of errors, but is
2846 discarded if symbol reading is successful. */
2847
2848 #if 0
2849 /* FIXME: As free_named_symtabs is currently a big noop this function
2850 is no longer needed. */
2851 static void clear_symtab_users_once (void);
2852
2853 static int clear_symtab_users_queued;
2854 static int clear_symtab_users_done;
2855
2856 static void
2857 clear_symtab_users_once (void)
2858 {
2859 /* Enforce once-per-`do_cleanups'-semantics */
2860 if (clear_symtab_users_queued <= clear_symtab_users_done)
2861 return;
2862 clear_symtab_users_done = clear_symtab_users_queued;
2863
2864 clear_symtab_users ();
2865 }
2866 #endif
2867
2868 /* Delete the specified psymtab, and any others that reference it. */
2869
2870 static void
2871 cashier_psymtab (struct partial_symtab *pst)
2872 {
2873 struct partial_symtab *ps, *pprev = NULL;
2874 int i;
2875
2876 /* Find its previous psymtab in the chain */
2877 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2878 {
2879 if (ps == pst)
2880 break;
2881 pprev = ps;
2882 }
2883
2884 if (ps)
2885 {
2886 /* Unhook it from the chain. */
2887 if (ps == pst->objfile->psymtabs)
2888 pst->objfile->psymtabs = ps->next;
2889 else
2890 pprev->next = ps->next;
2891
2892 /* FIXME, we can't conveniently deallocate the entries in the
2893 partial_symbol lists (global_psymbols/static_psymbols) that
2894 this psymtab points to. These just take up space until all
2895 the psymtabs are reclaimed. Ditto the dependencies list and
2896 filename, which are all in the objfile_obstack. */
2897
2898 /* We need to cashier any psymtab that has this one as a dependency... */
2899 again:
2900 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2901 {
2902 for (i = 0; i < ps->number_of_dependencies; i++)
2903 {
2904 if (ps->dependencies[i] == pst)
2905 {
2906 cashier_psymtab (ps);
2907 goto again; /* Must restart, chain has been munged. */
2908 }
2909 }
2910 }
2911 }
2912 }
2913
2914 /* If a symtab or psymtab for filename NAME is found, free it along
2915 with any dependent breakpoints, displays, etc.
2916 Used when loading new versions of object modules with the "add-file"
2917 command. This is only called on the top-level symtab or psymtab's name;
2918 it is not called for subsidiary files such as .h files.
2919
2920 Return value is 1 if we blew away the environment, 0 if not.
2921 FIXME. The return value appears to never be used.
2922
2923 FIXME. I think this is not the best way to do this. We should
2924 work on being gentler to the environment while still cleaning up
2925 all stray pointers into the freed symtab. */
2926
2927 int
2928 free_named_symtabs (char *name)
2929 {
2930 #if 0
2931 /* FIXME: With the new method of each objfile having it's own
2932 psymtab list, this function needs serious rethinking. In particular,
2933 why was it ever necessary to toss psymtabs with specific compilation
2934 unit filenames, as opposed to all psymtabs from a particular symbol
2935 file? -- fnf
2936 Well, the answer is that some systems permit reloading of particular
2937 compilation units. We want to blow away any old info about these
2938 compilation units, regardless of which objfiles they arrived in. --gnu. */
2939
2940 struct symtab *s;
2941 struct symtab *prev;
2942 struct partial_symtab *ps;
2943 struct blockvector *bv;
2944 int blewit = 0;
2945
2946 /* We only wack things if the symbol-reload switch is set. */
2947 if (!symbol_reloading)
2948 return 0;
2949
2950 /* Some symbol formats have trouble providing file names... */
2951 if (name == 0 || *name == '\0')
2952 return 0;
2953
2954 /* Look for a psymtab with the specified name. */
2955
2956 again2:
2957 for (ps = partial_symtab_list; ps; ps = ps->next)
2958 {
2959 if (strcmp (name, ps->filename) == 0)
2960 {
2961 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2962 goto again2; /* Must restart, chain has been munged */
2963 }
2964 }
2965
2966 /* Look for a symtab with the specified name. */
2967
2968 for (s = symtab_list; s; s = s->next)
2969 {
2970 if (strcmp (name, s->filename) == 0)
2971 break;
2972 prev = s;
2973 }
2974
2975 if (s)
2976 {
2977 if (s == symtab_list)
2978 symtab_list = s->next;
2979 else
2980 prev->next = s->next;
2981
2982 /* For now, queue a delete for all breakpoints, displays, etc., whether
2983 or not they depend on the symtab being freed. This should be
2984 changed so that only those data structures affected are deleted. */
2985
2986 /* But don't delete anything if the symtab is empty.
2987 This test is necessary due to a bug in "dbxread.c" that
2988 causes empty symtabs to be created for N_SO symbols that
2989 contain the pathname of the object file. (This problem
2990 has been fixed in GDB 3.9x). */
2991
2992 bv = BLOCKVECTOR (s);
2993 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2994 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2995 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2996 {
2997 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
2998 name);
2999 clear_symtab_users_queued++;
3000 make_cleanup (clear_symtab_users_once, 0);
3001 blewit = 1;
3002 }
3003 else
3004 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3005 name);
3006
3007 free_symtab (s);
3008 }
3009 else
3010 {
3011 /* It is still possible that some breakpoints will be affected
3012 even though no symtab was found, since the file might have
3013 been compiled without debugging, and hence not be associated
3014 with a symtab. In order to handle this correctly, we would need
3015 to keep a list of text address ranges for undebuggable files.
3016 For now, we do nothing, since this is a fairly obscure case. */
3017 ;
3018 }
3019
3020 /* FIXME, what about the minimal symbol table? */
3021 return blewit;
3022 #else
3023 return (0);
3024 #endif
3025 }
3026 \f
3027 /* Allocate and partially fill a partial symtab. It will be
3028 completely filled at the end of the symbol list.
3029
3030 FILENAME is the name of the symbol-file we are reading from. */
3031
3032 struct partial_symtab *
3033 start_psymtab_common (struct objfile *objfile,
3034 struct section_offsets *section_offsets, char *filename,
3035 CORE_ADDR textlow, struct partial_symbol **global_syms,
3036 struct partial_symbol **static_syms)
3037 {
3038 struct partial_symtab *psymtab;
3039
3040 psymtab = allocate_psymtab (filename, objfile);
3041 psymtab->section_offsets = section_offsets;
3042 psymtab->textlow = textlow;
3043 psymtab->texthigh = psymtab->textlow; /* default */
3044 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3045 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
3046 return (psymtab);
3047 }
3048 \f
3049 /* Helper function, initialises partial symbol structure and stashes
3050 it into objfile's bcache. Note that our caching mechanism will
3051 use all fields of struct partial_symbol to determine hash value of the
3052 structure. In other words, having two symbols with the same name but
3053 different domain (or address) is possible and correct. */
3054
3055 static const struct partial_symbol *
3056 add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3057 enum address_class class,
3058 long val, /* Value as a long */
3059 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3060 enum language language, struct objfile *objfile,
3061 int *added)
3062 {
3063 char *buf = name;
3064 /* psymbol is static so that there will be no uninitialized gaps in the
3065 structure which might contain random data, causing cache misses in
3066 bcache. */
3067 static struct partial_symbol psymbol;
3068
3069 if (name[namelength] != '\0')
3070 {
3071 buf = alloca (namelength + 1);
3072 /* Create local copy of the partial symbol */
3073 memcpy (buf, name, namelength);
3074 buf[namelength] = '\0';
3075 }
3076 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3077 if (val != 0)
3078 {
3079 SYMBOL_VALUE (&psymbol) = val;
3080 }
3081 else
3082 {
3083 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3084 }
3085 SYMBOL_SECTION (&psymbol) = 0;
3086 SYMBOL_LANGUAGE (&psymbol) = language;
3087 PSYMBOL_DOMAIN (&psymbol) = domain;
3088 PSYMBOL_CLASS (&psymbol) = class;
3089
3090 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3091
3092 /* Stash the partial symbol away in the cache */
3093 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3094 objfile->psymbol_cache, added);
3095 }
3096
3097 /* Helper function, adds partial symbol to the given partial symbol
3098 list. */
3099
3100 static void
3101 append_psymbol_to_list (struct psymbol_allocation_list *list,
3102 const struct partial_symbol *psym,
3103 struct objfile *objfile)
3104 {
3105 if (list->next >= list->list + list->size)
3106 extend_psymbol_list (list, objfile);
3107 *list->next++ = (struct partial_symbol *) psym;
3108 OBJSTAT (objfile, n_psyms++);
3109 }
3110
3111 /* Add a symbol with a long value to a psymtab.
3112 Since one arg is a struct, we pass in a ptr and deref it (sigh).
3113 Return the partial symbol that has been added. */
3114
3115 /* NOTE: carlton/2003-09-11: The reason why we return the partial
3116 symbol is so that callers can get access to the symbol's demangled
3117 name, which they don't have any cheap way to determine otherwise.
3118 (Currenly, dwarf2read.c is the only file who uses that information,
3119 though it's possible that other readers might in the future.)
3120 Elena wasn't thrilled about that, and I don't blame her, but we
3121 couldn't come up with a better way to get that information. If
3122 it's needed in other situations, we could consider breaking up
3123 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3124 cache. */
3125
3126 const struct partial_symbol *
3127 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
3128 enum address_class class,
3129 struct psymbol_allocation_list *list,
3130 long val, /* Value as a long */
3131 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3132 enum language language, struct objfile *objfile)
3133 {
3134 const struct partial_symbol *psym;
3135
3136 int added;
3137
3138 /* Stash the partial symbol away in the cache */
3139 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3140 val, coreaddr, language, objfile, &added);
3141
3142 /* Do not duplicate global partial symbols. */
3143 if (list == &objfile->global_psymbols
3144 && !added)
3145 return psym;
3146
3147 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3148 append_psymbol_to_list (list, psym, objfile);
3149 return psym;
3150 }
3151
3152 /* Initialize storage for partial symbols. */
3153
3154 void
3155 init_psymbol_list (struct objfile *objfile, int total_symbols)
3156 {
3157 /* Free any previously allocated psymbol lists. */
3158
3159 if (objfile->global_psymbols.list)
3160 {
3161 xfree (objfile->global_psymbols.list);
3162 }
3163 if (objfile->static_psymbols.list)
3164 {
3165 xfree (objfile->static_psymbols.list);
3166 }
3167
3168 /* Current best guess is that approximately a twentieth
3169 of the total symbols (in a debugging file) are global or static
3170 oriented symbols */
3171
3172 objfile->global_psymbols.size = total_symbols / 10;
3173 objfile->static_psymbols.size = total_symbols / 10;
3174
3175 if (objfile->global_psymbols.size > 0)
3176 {
3177 objfile->global_psymbols.next =
3178 objfile->global_psymbols.list = (struct partial_symbol **)
3179 xmalloc ((objfile->global_psymbols.size
3180 * sizeof (struct partial_symbol *)));
3181 }
3182 if (objfile->static_psymbols.size > 0)
3183 {
3184 objfile->static_psymbols.next =
3185 objfile->static_psymbols.list = (struct partial_symbol **)
3186 xmalloc ((objfile->static_psymbols.size
3187 * sizeof (struct partial_symbol *)));
3188 }
3189 }
3190
3191 /* OVERLAYS:
3192 The following code implements an abstraction for debugging overlay sections.
3193
3194 The target model is as follows:
3195 1) The gnu linker will permit multiple sections to be mapped into the
3196 same VMA, each with its own unique LMA (or load address).
3197 2) It is assumed that some runtime mechanism exists for mapping the
3198 sections, one by one, from the load address into the VMA address.
3199 3) This code provides a mechanism for gdb to keep track of which
3200 sections should be considered to be mapped from the VMA to the LMA.
3201 This information is used for symbol lookup, and memory read/write.
3202 For instance, if a section has been mapped then its contents
3203 should be read from the VMA, otherwise from the LMA.
3204
3205 Two levels of debugger support for overlays are available. One is
3206 "manual", in which the debugger relies on the user to tell it which
3207 overlays are currently mapped. This level of support is
3208 implemented entirely in the core debugger, and the information about
3209 whether a section is mapped is kept in the objfile->obj_section table.
3210
3211 The second level of support is "automatic", and is only available if
3212 the target-specific code provides functionality to read the target's
3213 overlay mapping table, and translate its contents for the debugger
3214 (by updating the mapped state information in the obj_section tables).
3215
3216 The interface is as follows:
3217 User commands:
3218 overlay map <name> -- tell gdb to consider this section mapped
3219 overlay unmap <name> -- tell gdb to consider this section unmapped
3220 overlay list -- list the sections that GDB thinks are mapped
3221 overlay read-target -- get the target's state of what's mapped
3222 overlay off/manual/auto -- set overlay debugging state
3223 Functional interface:
3224 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3225 section, return that section.
3226 find_pc_overlay(pc): find any overlay section that contains
3227 the pc, either in its VMA or its LMA
3228 section_is_mapped(sect): true if overlay is marked as mapped
3229 section_is_overlay(sect): true if section's VMA != LMA
3230 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3231 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3232 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3233 overlay_mapped_address(...): map an address from section's LMA to VMA
3234 overlay_unmapped_address(...): map an address from section's VMA to LMA
3235 symbol_overlayed_address(...): Return a "current" address for symbol:
3236 either in VMA or LMA depending on whether
3237 the symbol's section is currently mapped
3238 */
3239
3240 /* Overlay debugging state: */
3241
3242 enum overlay_debugging_state overlay_debugging = ovly_off;
3243 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3244
3245 /* Function: section_is_overlay (SECTION)
3246 Returns true if SECTION has VMA not equal to LMA, ie.
3247 SECTION is loaded at an address different from where it will "run". */
3248
3249 int
3250 section_is_overlay (struct obj_section *section)
3251 {
3252 if (overlay_debugging && section)
3253 {
3254 bfd *abfd = section->objfile->obfd;
3255 asection *bfd_section = section->the_bfd_section;
3256
3257 if (bfd_section_lma (abfd, bfd_section) != 0
3258 && bfd_section_lma (abfd, bfd_section)
3259 != bfd_section_vma (abfd, bfd_section))
3260 return 1;
3261 }
3262
3263 return 0;
3264 }
3265
3266 /* Function: overlay_invalidate_all (void)
3267 Invalidate the mapped state of all overlay sections (mark it as stale). */
3268
3269 static void
3270 overlay_invalidate_all (void)
3271 {
3272 struct objfile *objfile;
3273 struct obj_section *sect;
3274
3275 ALL_OBJSECTIONS (objfile, sect)
3276 if (section_is_overlay (sect))
3277 sect->ovly_mapped = -1;
3278 }
3279
3280 /* Function: section_is_mapped (SECTION)
3281 Returns true if section is an overlay, and is currently mapped.
3282
3283 Access to the ovly_mapped flag is restricted to this function, so
3284 that we can do automatic update. If the global flag
3285 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3286 overlay_invalidate_all. If the mapped state of the particular
3287 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3288
3289 int
3290 section_is_mapped (struct obj_section *osect)
3291 {
3292 if (osect == 0 || !section_is_overlay (osect))
3293 return 0;
3294
3295 switch (overlay_debugging)
3296 {
3297 default:
3298 case ovly_off:
3299 return 0; /* overlay debugging off */
3300 case ovly_auto: /* overlay debugging automatic */
3301 /* Unles there is a gdbarch_overlay_update function,
3302 there's really nothing useful to do here (can't really go auto) */
3303 if (gdbarch_overlay_update_p (current_gdbarch))
3304 {
3305 if (overlay_cache_invalid)
3306 {
3307 overlay_invalidate_all ();
3308 overlay_cache_invalid = 0;
3309 }
3310 if (osect->ovly_mapped == -1)
3311 gdbarch_overlay_update (current_gdbarch, osect);
3312 }
3313 /* fall thru to manual case */
3314 case ovly_on: /* overlay debugging manual */
3315 return osect->ovly_mapped == 1;
3316 }
3317 }
3318
3319 /* Function: pc_in_unmapped_range
3320 If PC falls into the lma range of SECTION, return true, else false. */
3321
3322 CORE_ADDR
3323 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3324 {
3325 if (section_is_overlay (section))
3326 {
3327 bfd *abfd = section->objfile->obfd;
3328 asection *bfd_section = section->the_bfd_section;
3329
3330 /* We assume the LMA is relocated by the same offset as the VMA. */
3331 bfd_vma size = bfd_get_section_size (bfd_section);
3332 CORE_ADDR offset = obj_section_offset (section);
3333
3334 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3335 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3336 return 1;
3337 }
3338
3339 return 0;
3340 }
3341
3342 /* Function: pc_in_mapped_range
3343 If PC falls into the vma range of SECTION, return true, else false. */
3344
3345 CORE_ADDR
3346 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3347 {
3348 if (section_is_overlay (section))
3349 {
3350 if (obj_section_addr (section) <= pc
3351 && pc < obj_section_endaddr (section))
3352 return 1;
3353 }
3354
3355 return 0;
3356 }
3357
3358
3359 /* Return true if the mapped ranges of sections A and B overlap, false
3360 otherwise. */
3361 static int
3362 sections_overlap (struct obj_section *a, struct obj_section *b)
3363 {
3364 CORE_ADDR a_start = obj_section_addr (a);
3365 CORE_ADDR a_end = obj_section_endaddr (a);
3366 CORE_ADDR b_start = obj_section_addr (b);
3367 CORE_ADDR b_end = obj_section_endaddr (b);
3368
3369 return (a_start < b_end && b_start < a_end);
3370 }
3371
3372 /* Function: overlay_unmapped_address (PC, SECTION)
3373 Returns the address corresponding to PC in the unmapped (load) range.
3374 May be the same as PC. */
3375
3376 CORE_ADDR
3377 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3378 {
3379 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3380 {
3381 bfd *abfd = section->objfile->obfd;
3382 asection *bfd_section = section->the_bfd_section;
3383
3384 return pc + bfd_section_lma (abfd, bfd_section)
3385 - bfd_section_vma (abfd, bfd_section);
3386 }
3387
3388 return pc;
3389 }
3390
3391 /* Function: overlay_mapped_address (PC, SECTION)
3392 Returns the address corresponding to PC in the mapped (runtime) range.
3393 May be the same as PC. */
3394
3395 CORE_ADDR
3396 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3397 {
3398 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3399 {
3400 bfd *abfd = section->objfile->obfd;
3401 asection *bfd_section = section->the_bfd_section;
3402
3403 return pc + bfd_section_vma (abfd, bfd_section)
3404 - bfd_section_lma (abfd, bfd_section);
3405 }
3406
3407 return pc;
3408 }
3409
3410
3411 /* Function: symbol_overlayed_address
3412 Return one of two addresses (relative to the VMA or to the LMA),
3413 depending on whether the section is mapped or not. */
3414
3415 CORE_ADDR
3416 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3417 {
3418 if (overlay_debugging)
3419 {
3420 /* If the symbol has no section, just return its regular address. */
3421 if (section == 0)
3422 return address;
3423 /* If the symbol's section is not an overlay, just return its address */
3424 if (!section_is_overlay (section))
3425 return address;
3426 /* If the symbol's section is mapped, just return its address */
3427 if (section_is_mapped (section))
3428 return address;
3429 /*
3430 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3431 * then return its LOADED address rather than its vma address!!
3432 */
3433 return overlay_unmapped_address (address, section);
3434 }
3435 return address;
3436 }
3437
3438 /* Function: find_pc_overlay (PC)
3439 Return the best-match overlay section for PC:
3440 If PC matches a mapped overlay section's VMA, return that section.
3441 Else if PC matches an unmapped section's VMA, return that section.
3442 Else if PC matches an unmapped section's LMA, return that section. */
3443
3444 struct obj_section *
3445 find_pc_overlay (CORE_ADDR pc)
3446 {
3447 struct objfile *objfile;
3448 struct obj_section *osect, *best_match = NULL;
3449
3450 if (overlay_debugging)
3451 ALL_OBJSECTIONS (objfile, osect)
3452 if (section_is_overlay (osect))
3453 {
3454 if (pc_in_mapped_range (pc, osect))
3455 {
3456 if (section_is_mapped (osect))
3457 return osect;
3458 else
3459 best_match = osect;
3460 }
3461 else if (pc_in_unmapped_range (pc, osect))
3462 best_match = osect;
3463 }
3464 return best_match;
3465 }
3466
3467 /* Function: find_pc_mapped_section (PC)
3468 If PC falls into the VMA address range of an overlay section that is
3469 currently marked as MAPPED, return that section. Else return NULL. */
3470
3471 struct obj_section *
3472 find_pc_mapped_section (CORE_ADDR pc)
3473 {
3474 struct objfile *objfile;
3475 struct obj_section *osect;
3476
3477 if (overlay_debugging)
3478 ALL_OBJSECTIONS (objfile, osect)
3479 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3480 return osect;
3481
3482 return NULL;
3483 }
3484
3485 /* Function: list_overlays_command
3486 Print a list of mapped sections and their PC ranges */
3487
3488 void
3489 list_overlays_command (char *args, int from_tty)
3490 {
3491 int nmapped = 0;
3492 struct objfile *objfile;
3493 struct obj_section *osect;
3494
3495 if (overlay_debugging)
3496 ALL_OBJSECTIONS (objfile, osect)
3497 if (section_is_mapped (osect))
3498 {
3499 const char *name;
3500 bfd_vma lma, vma;
3501 int size;
3502
3503 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3504 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3505 size = bfd_get_section_size (osect->the_bfd_section);
3506 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3507
3508 printf_filtered ("Section %s, loaded at ", name);
3509 fputs_filtered (paddress (lma), gdb_stdout);
3510 puts_filtered (" - ");
3511 fputs_filtered (paddress (lma + size), gdb_stdout);
3512 printf_filtered (", mapped at ");
3513 fputs_filtered (paddress (vma), gdb_stdout);
3514 puts_filtered (" - ");
3515 fputs_filtered (paddress (vma + size), gdb_stdout);
3516 puts_filtered ("\n");
3517
3518 nmapped++;
3519 }
3520 if (nmapped == 0)
3521 printf_filtered (_("No sections are mapped.\n"));
3522 }
3523
3524 /* Function: map_overlay_command
3525 Mark the named section as mapped (ie. residing at its VMA address). */
3526
3527 void
3528 map_overlay_command (char *args, int from_tty)
3529 {
3530 struct objfile *objfile, *objfile2;
3531 struct obj_section *sec, *sec2;
3532
3533 if (!overlay_debugging)
3534 error (_("\
3535 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3536 the 'overlay manual' command."));
3537
3538 if (args == 0 || *args == 0)
3539 error (_("Argument required: name of an overlay section"));
3540
3541 /* First, find a section matching the user supplied argument */
3542 ALL_OBJSECTIONS (objfile, sec)
3543 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3544 {
3545 /* Now, check to see if the section is an overlay. */
3546 if (!section_is_overlay (sec))
3547 continue; /* not an overlay section */
3548
3549 /* Mark the overlay as "mapped" */
3550 sec->ovly_mapped = 1;
3551
3552 /* Next, make a pass and unmap any sections that are
3553 overlapped by this new section: */
3554 ALL_OBJSECTIONS (objfile2, sec2)
3555 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3556 {
3557 if (info_verbose)
3558 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3559 bfd_section_name (objfile->obfd,
3560 sec2->the_bfd_section));
3561 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3562 }
3563 return;
3564 }
3565 error (_("No overlay section called %s"), args);
3566 }
3567
3568 /* Function: unmap_overlay_command
3569 Mark the overlay section as unmapped
3570 (ie. resident in its LMA address range, rather than the VMA range). */
3571
3572 void
3573 unmap_overlay_command (char *args, int from_tty)
3574 {
3575 struct objfile *objfile;
3576 struct obj_section *sec;
3577
3578 if (!overlay_debugging)
3579 error (_("\
3580 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3581 the 'overlay manual' command."));
3582
3583 if (args == 0 || *args == 0)
3584 error (_("Argument required: name of an overlay section"));
3585
3586 /* First, find a section matching the user supplied argument */
3587 ALL_OBJSECTIONS (objfile, sec)
3588 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3589 {
3590 if (!sec->ovly_mapped)
3591 error (_("Section %s is not mapped"), args);
3592 sec->ovly_mapped = 0;
3593 return;
3594 }
3595 error (_("No overlay section called %s"), args);
3596 }
3597
3598 /* Function: overlay_auto_command
3599 A utility command to turn on overlay debugging.
3600 Possibly this should be done via a set/show command. */
3601
3602 static void
3603 overlay_auto_command (char *args, int from_tty)
3604 {
3605 overlay_debugging = ovly_auto;
3606 enable_overlay_breakpoints ();
3607 if (info_verbose)
3608 printf_unfiltered (_("Automatic overlay debugging enabled."));
3609 }
3610
3611 /* Function: overlay_manual_command
3612 A utility command to turn on overlay debugging.
3613 Possibly this should be done via a set/show command. */
3614
3615 static void
3616 overlay_manual_command (char *args, int from_tty)
3617 {
3618 overlay_debugging = ovly_on;
3619 disable_overlay_breakpoints ();
3620 if (info_verbose)
3621 printf_unfiltered (_("Overlay debugging enabled."));
3622 }
3623
3624 /* Function: overlay_off_command
3625 A utility command to turn on overlay debugging.
3626 Possibly this should be done via a set/show command. */
3627
3628 static void
3629 overlay_off_command (char *args, int from_tty)
3630 {
3631 overlay_debugging = ovly_off;
3632 disable_overlay_breakpoints ();
3633 if (info_verbose)
3634 printf_unfiltered (_("Overlay debugging disabled."));
3635 }
3636
3637 static void
3638 overlay_load_command (char *args, int from_tty)
3639 {
3640 if (gdbarch_overlay_update_p (current_gdbarch))
3641 gdbarch_overlay_update (current_gdbarch, NULL);
3642 else
3643 error (_("This target does not know how to read its overlay state."));
3644 }
3645
3646 /* Function: overlay_command
3647 A place-holder for a mis-typed command */
3648
3649 /* Command list chain containing all defined "overlay" subcommands. */
3650 struct cmd_list_element *overlaylist;
3651
3652 static void
3653 overlay_command (char *args, int from_tty)
3654 {
3655 printf_unfiltered
3656 ("\"overlay\" must be followed by the name of an overlay command.\n");
3657 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3658 }
3659
3660
3661 /* Target Overlays for the "Simplest" overlay manager:
3662
3663 This is GDB's default target overlay layer. It works with the
3664 minimal overlay manager supplied as an example by Cygnus. The
3665 entry point is via a function pointer "gdbarch_overlay_update",
3666 so targets that use a different runtime overlay manager can
3667 substitute their own overlay_update function and take over the
3668 function pointer.
3669
3670 The overlay_update function pokes around in the target's data structures
3671 to see what overlays are mapped, and updates GDB's overlay mapping with
3672 this information.
3673
3674 In this simple implementation, the target data structures are as follows:
3675 unsigned _novlys; /# number of overlay sections #/
3676 unsigned _ovly_table[_novlys][4] = {
3677 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3678 {..., ..., ..., ...},
3679 }
3680 unsigned _novly_regions; /# number of overlay regions #/
3681 unsigned _ovly_region_table[_novly_regions][3] = {
3682 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3683 {..., ..., ...},
3684 }
3685 These functions will attempt to update GDB's mappedness state in the
3686 symbol section table, based on the target's mappedness state.
3687
3688 To do this, we keep a cached copy of the target's _ovly_table, and
3689 attempt to detect when the cached copy is invalidated. The main
3690 entry point is "simple_overlay_update(SECT), which looks up SECT in
3691 the cached table and re-reads only the entry for that section from
3692 the target (whenever possible).
3693 */
3694
3695 /* Cached, dynamically allocated copies of the target data structures: */
3696 static unsigned (*cache_ovly_table)[4] = 0;
3697 #if 0
3698 static unsigned (*cache_ovly_region_table)[3] = 0;
3699 #endif
3700 static unsigned cache_novlys = 0;
3701 #if 0
3702 static unsigned cache_novly_regions = 0;
3703 #endif
3704 static CORE_ADDR cache_ovly_table_base = 0;
3705 #if 0
3706 static CORE_ADDR cache_ovly_region_table_base = 0;
3707 #endif
3708 enum ovly_index
3709 {
3710 VMA, SIZE, LMA, MAPPED
3711 };
3712 #define TARGET_LONG_BYTES (gdbarch_long_bit (current_gdbarch) \
3713 / TARGET_CHAR_BIT)
3714
3715 /* Throw away the cached copy of _ovly_table */
3716 static void
3717 simple_free_overlay_table (void)
3718 {
3719 if (cache_ovly_table)
3720 xfree (cache_ovly_table);
3721 cache_novlys = 0;
3722 cache_ovly_table = NULL;
3723 cache_ovly_table_base = 0;
3724 }
3725
3726 #if 0
3727 /* Throw away the cached copy of _ovly_region_table */
3728 static void
3729 simple_free_overlay_region_table (void)
3730 {
3731 if (cache_ovly_region_table)
3732 xfree (cache_ovly_region_table);
3733 cache_novly_regions = 0;
3734 cache_ovly_region_table = NULL;
3735 cache_ovly_region_table_base = 0;
3736 }
3737 #endif
3738
3739 /* Read an array of ints from the target into a local buffer.
3740 Convert to host order. int LEN is number of ints */
3741 static void
3742 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3743 {
3744 /* FIXME (alloca): Not safe if array is very large. */
3745 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3746 int i;
3747
3748 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3749 for (i = 0; i < len; i++)
3750 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3751 TARGET_LONG_BYTES);
3752 }
3753
3754 /* Find and grab a copy of the target _ovly_table
3755 (and _novlys, which is needed for the table's size) */
3756 static int
3757 simple_read_overlay_table (void)
3758 {
3759 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3760
3761 simple_free_overlay_table ();
3762 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3763 if (! novlys_msym)
3764 {
3765 error (_("Error reading inferior's overlay table: "
3766 "couldn't find `_novlys' variable\n"
3767 "in inferior. Use `overlay manual' mode."));
3768 return 0;
3769 }
3770
3771 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3772 if (! ovly_table_msym)
3773 {
3774 error (_("Error reading inferior's overlay table: couldn't find "
3775 "`_ovly_table' array\n"
3776 "in inferior. Use `overlay manual' mode."));
3777 return 0;
3778 }
3779
3780 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3781 cache_ovly_table
3782 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3783 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3784 read_target_long_array (cache_ovly_table_base,
3785 (unsigned int *) cache_ovly_table,
3786 cache_novlys * 4);
3787
3788 return 1; /* SUCCESS */
3789 }
3790
3791 #if 0
3792 /* Find and grab a copy of the target _ovly_region_table
3793 (and _novly_regions, which is needed for the table's size) */
3794 static int
3795 simple_read_overlay_region_table (void)
3796 {
3797 struct minimal_symbol *msym;
3798
3799 simple_free_overlay_region_table ();
3800 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3801 if (msym != NULL)
3802 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3803 else
3804 return 0; /* failure */
3805 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3806 if (cache_ovly_region_table != NULL)
3807 {
3808 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3809 if (msym != NULL)
3810 {
3811 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3812 read_target_long_array (cache_ovly_region_table_base,
3813 (unsigned int *) cache_ovly_region_table,
3814 cache_novly_regions * 3);
3815 }
3816 else
3817 return 0; /* failure */
3818 }
3819 else
3820 return 0; /* failure */
3821 return 1; /* SUCCESS */
3822 }
3823 #endif
3824
3825 /* Function: simple_overlay_update_1
3826 A helper function for simple_overlay_update. Assuming a cached copy
3827 of _ovly_table exists, look through it to find an entry whose vma,
3828 lma and size match those of OSECT. Re-read the entry and make sure
3829 it still matches OSECT (else the table may no longer be valid).
3830 Set OSECT's mapped state to match the entry. Return: 1 for
3831 success, 0 for failure. */
3832
3833 static int
3834 simple_overlay_update_1 (struct obj_section *osect)
3835 {
3836 int i, size;
3837 bfd *obfd = osect->objfile->obfd;
3838 asection *bsect = osect->the_bfd_section;
3839
3840 size = bfd_get_section_size (osect->the_bfd_section);
3841 for (i = 0; i < cache_novlys; i++)
3842 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3843 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3844 /* && cache_ovly_table[i][SIZE] == size */ )
3845 {
3846 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3847 (unsigned int *) cache_ovly_table[i], 4);
3848 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3849 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3850 /* && cache_ovly_table[i][SIZE] == size */ )
3851 {
3852 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3853 return 1;
3854 }
3855 else /* Warning! Warning! Target's ovly table has changed! */
3856 return 0;
3857 }
3858 return 0;
3859 }
3860
3861 /* Function: simple_overlay_update
3862 If OSECT is NULL, then update all sections' mapped state
3863 (after re-reading the entire target _ovly_table).
3864 If OSECT is non-NULL, then try to find a matching entry in the
3865 cached ovly_table and update only OSECT's mapped state.
3866 If a cached entry can't be found or the cache isn't valid, then
3867 re-read the entire cache, and go ahead and update all sections. */
3868
3869 void
3870 simple_overlay_update (struct obj_section *osect)
3871 {
3872 struct objfile *objfile;
3873
3874 /* Were we given an osect to look up? NULL means do all of them. */
3875 if (osect)
3876 /* Have we got a cached copy of the target's overlay table? */
3877 if (cache_ovly_table != NULL)
3878 /* Does its cached location match what's currently in the symtab? */
3879 if (cache_ovly_table_base ==
3880 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3881 /* Then go ahead and try to look up this single section in the cache */
3882 if (simple_overlay_update_1 (osect))
3883 /* Found it! We're done. */
3884 return;
3885
3886 /* Cached table no good: need to read the entire table anew.
3887 Or else we want all the sections, in which case it's actually
3888 more efficient to read the whole table in one block anyway. */
3889
3890 if (! simple_read_overlay_table ())
3891 return;
3892
3893 /* Now may as well update all sections, even if only one was requested. */
3894 ALL_OBJSECTIONS (objfile, osect)
3895 if (section_is_overlay (osect))
3896 {
3897 int i, size;
3898 bfd *obfd = osect->objfile->obfd;
3899 asection *bsect = osect->the_bfd_section;
3900
3901 size = bfd_get_section_size (bsect);
3902 for (i = 0; i < cache_novlys; i++)
3903 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3904 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3905 /* && cache_ovly_table[i][SIZE] == size */ )
3906 { /* obj_section matches i'th entry in ovly_table */
3907 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3908 break; /* finished with inner for loop: break out */
3909 }
3910 }
3911 }
3912
3913 /* Set the output sections and output offsets for section SECTP in
3914 ABFD. The relocation code in BFD will read these offsets, so we
3915 need to be sure they're initialized. We map each section to itself,
3916 with no offset; this means that SECTP->vma will be honored. */
3917
3918 static void
3919 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3920 {
3921 sectp->output_section = sectp;
3922 sectp->output_offset = 0;
3923 }
3924
3925 /* Relocate the contents of a debug section SECTP in ABFD. The
3926 contents are stored in BUF if it is non-NULL, or returned in a
3927 malloc'd buffer otherwise.
3928
3929 For some platforms and debug info formats, shared libraries contain
3930 relocations against the debug sections (particularly for DWARF-2;
3931 one affected platform is PowerPC GNU/Linux, although it depends on
3932 the version of the linker in use). Also, ELF object files naturally
3933 have unresolved relocations for their debug sections. We need to apply
3934 the relocations in order to get the locations of symbols correct.
3935 Another example that may require relocation processing, is the
3936 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3937 debug section. */
3938
3939 bfd_byte *
3940 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3941 {
3942 /* We're only interested in sections with relocation
3943 information. */
3944 if ((sectp->flags & SEC_RELOC) == 0)
3945 return NULL;
3946
3947 /* We will handle section offsets properly elsewhere, so relocate as if
3948 all sections begin at 0. */
3949 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3950
3951 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3952 }
3953
3954 struct symfile_segment_data *
3955 get_symfile_segment_data (bfd *abfd)
3956 {
3957 struct sym_fns *sf = find_sym_fns (abfd);
3958
3959 if (sf == NULL)
3960 return NULL;
3961
3962 return sf->sym_segments (abfd);
3963 }
3964
3965 void
3966 free_symfile_segment_data (struct symfile_segment_data *data)
3967 {
3968 xfree (data->segment_bases);
3969 xfree (data->segment_sizes);
3970 xfree (data->segment_info);
3971 xfree (data);
3972 }
3973
3974
3975 /* Given:
3976 - DATA, containing segment addresses from the object file ABFD, and
3977 the mapping from ABFD's sections onto the segments that own them,
3978 and
3979 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3980 segment addresses reported by the target,
3981 store the appropriate offsets for each section in OFFSETS.
3982
3983 If there are fewer entries in SEGMENT_BASES than there are segments
3984 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3985
3986 If there are more entries, then ignore the extra. The target may
3987 not be able to distinguish between an empty data segment and a
3988 missing data segment; a missing text segment is less plausible. */
3989 int
3990 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3991 struct section_offsets *offsets,
3992 int num_segment_bases,
3993 const CORE_ADDR *segment_bases)
3994 {
3995 int i;
3996 asection *sect;
3997
3998 /* It doesn't make sense to call this function unless you have some
3999 segment base addresses. */
4000 gdb_assert (segment_bases > 0);
4001
4002 /* If we do not have segment mappings for the object file, we
4003 can not relocate it by segments. */
4004 gdb_assert (data != NULL);
4005 gdb_assert (data->num_segments > 0);
4006
4007 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4008 {
4009 int which = data->segment_info[i];
4010
4011 gdb_assert (0 <= which && which <= data->num_segments);
4012
4013 /* Don't bother computing offsets for sections that aren't
4014 loaded as part of any segment. */
4015 if (! which)
4016 continue;
4017
4018 /* Use the last SEGMENT_BASES entry as the address of any extra
4019 segments mentioned in DATA->segment_info. */
4020 if (which > num_segment_bases)
4021 which = num_segment_bases;
4022
4023 offsets->offsets[i] = (segment_bases[which - 1]
4024 - data->segment_bases[which - 1]);
4025 }
4026
4027 return 1;
4028 }
4029
4030 static void
4031 symfile_find_segment_sections (struct objfile *objfile)
4032 {
4033 bfd *abfd = objfile->obfd;
4034 int i;
4035 asection *sect;
4036 struct symfile_segment_data *data;
4037
4038 data = get_symfile_segment_data (objfile->obfd);
4039 if (data == NULL)
4040 return;
4041
4042 if (data->num_segments != 1 && data->num_segments != 2)
4043 {
4044 free_symfile_segment_data (data);
4045 return;
4046 }
4047
4048 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4049 {
4050 CORE_ADDR vma;
4051 int which = data->segment_info[i];
4052
4053 if (which == 1)
4054 {
4055 if (objfile->sect_index_text == -1)
4056 objfile->sect_index_text = sect->index;
4057
4058 if (objfile->sect_index_rodata == -1)
4059 objfile->sect_index_rodata = sect->index;
4060 }
4061 else if (which == 2)
4062 {
4063 if (objfile->sect_index_data == -1)
4064 objfile->sect_index_data = sect->index;
4065
4066 if (objfile->sect_index_bss == -1)
4067 objfile->sect_index_bss = sect->index;
4068 }
4069 }
4070
4071 free_symfile_segment_data (data);
4072 }
4073
4074 void
4075 _initialize_symfile (void)
4076 {
4077 struct cmd_list_element *c;
4078
4079 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4080 Load symbol table from executable file FILE.\n\
4081 The `file' command can also load symbol tables, as well as setting the file\n\
4082 to execute."), &cmdlist);
4083 set_cmd_completer (c, filename_completer);
4084
4085 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
4086 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
4087 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
4088 ADDR is the starting address of the file's text.\n\
4089 The optional arguments are section-name section-address pairs and\n\
4090 should be specified if the data and bss segments are not contiguous\n\
4091 with the text. SECT is a section name to be loaded at SECT_ADDR."),
4092 &cmdlist);
4093 set_cmd_completer (c, filename_completer);
4094
4095 c = add_cmd ("load", class_files, load_command, _("\
4096 Dynamically load FILE into the running program, and record its symbols\n\
4097 for access from GDB.\n\
4098 A load OFFSET may also be given."), &cmdlist);
4099 set_cmd_completer (c, filename_completer);
4100
4101 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4102 &symbol_reloading, _("\
4103 Set dynamic symbol table reloading multiple times in one run."), _("\
4104 Show dynamic symbol table reloading multiple times in one run."), NULL,
4105 NULL,
4106 show_symbol_reloading,
4107 &setlist, &showlist);
4108
4109 add_prefix_cmd ("overlay", class_support, overlay_command,
4110 _("Commands for debugging overlays."), &overlaylist,
4111 "overlay ", 0, &cmdlist);
4112
4113 add_com_alias ("ovly", "overlay", class_alias, 1);
4114 add_com_alias ("ov", "overlay", class_alias, 1);
4115
4116 add_cmd ("map-overlay", class_support, map_overlay_command,
4117 _("Assert that an overlay section is mapped."), &overlaylist);
4118
4119 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4120 _("Assert that an overlay section is unmapped."), &overlaylist);
4121
4122 add_cmd ("list-overlays", class_support, list_overlays_command,
4123 _("List mappings of overlay sections."), &overlaylist);
4124
4125 add_cmd ("manual", class_support, overlay_manual_command,
4126 _("Enable overlay debugging."), &overlaylist);
4127 add_cmd ("off", class_support, overlay_off_command,
4128 _("Disable overlay debugging."), &overlaylist);
4129 add_cmd ("auto", class_support, overlay_auto_command,
4130 _("Enable automatic overlay debugging."), &overlaylist);
4131 add_cmd ("load-target", class_support, overlay_load_command,
4132 _("Read the overlay mapping state from the target."), &overlaylist);
4133
4134 /* Filename extension to source language lookup table: */
4135 init_filename_language_table ();
4136 add_setshow_string_noescape_cmd ("extension-language", class_files,
4137 &ext_args, _("\
4138 Set mapping between filename extension and source language."), _("\
4139 Show mapping between filename extension and source language."), _("\
4140 Usage: set extension-language .foo bar"),
4141 set_ext_lang_command,
4142 show_ext_args,
4143 &setlist, &showlist);
4144
4145 add_info ("extensions", info_ext_lang_command,
4146 _("All filename extensions associated with a source language."));
4147
4148 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4149 &debug_file_directory, _("\
4150 Set the directory where separate debug symbols are searched for."), _("\
4151 Show the directory where separate debug symbols are searched for."), _("\
4152 Separate debug symbols are first searched for in the same\n\
4153 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4154 and lastly at the path of the directory of the binary with\n\
4155 the global debug-file directory prepended."),
4156 NULL,
4157 show_debug_file_directory,
4158 &setlist, &showlist);
4159
4160 add_setshow_boolean_cmd ("symbol-loading", no_class,
4161 &print_symbol_loading, _("\
4162 Set printing of symbol loading messages."), _("\
4163 Show printing of symbol loading messages."), NULL,
4164 NULL,
4165 NULL,
4166 &setprintlist, &showprintlist);
4167 }
This page took 0.113607 seconds and 5 git commands to generate.