* Makefile.in (objfiles.o, symfile.o): Update.
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 #include "defs.h"
27 #include "bfdlink.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcore.h"
31 #include "frame.h"
32 #include "target.h"
33 #include "value.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "source.h"
37 #include "gdbcmd.h"
38 #include "breakpoint.h"
39 #include "language.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "inferior.h" /* for write_pc */
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54 #include "parser-defs.h"
55
56 #include <sys/types.h>
57 #include <fcntl.h>
58 #include "gdb_string.h"
59 #include "gdb_stat.h"
60 #include <ctype.h>
61 #include <time.h>
62 #include <sys/time.h>
63
64
65 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
66 void (*deprecated_show_load_progress) (const char *section,
67 unsigned long section_sent,
68 unsigned long section_size,
69 unsigned long total_sent,
70 unsigned long total_size);
71 void (*deprecated_pre_add_symbol_hook) (const char *);
72 void (*deprecated_post_add_symbol_hook) (void);
73 void (*deprecated_target_new_objfile_hook) (struct objfile *);
74
75 static void clear_symtab_users_cleanup (void *ignore);
76
77 /* Global variables owned by this file */
78 int readnow_symbol_files; /* Read full symbols immediately */
79
80 /* External variables and functions referenced. */
81
82 extern void report_transfer_performance (unsigned long, time_t, time_t);
83
84 /* Functions this file defines */
85
86 #if 0
87 static int simple_read_overlay_region_table (void);
88 static void simple_free_overlay_region_table (void);
89 #endif
90
91 static void set_initial_language (void);
92
93 static void load_command (char *, int);
94
95 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
96
97 static void add_symbol_file_command (char *, int);
98
99 static void add_shared_symbol_files_command (char *, int);
100
101 static void reread_separate_symbols (struct objfile *objfile);
102
103 static void cashier_psymtab (struct partial_symtab *);
104
105 bfd *symfile_bfd_open (char *);
106
107 int get_section_index (struct objfile *, char *);
108
109 static void find_sym_fns (struct objfile *);
110
111 static void decrement_reading_symtab (void *);
112
113 static void overlay_invalidate_all (void);
114
115 static int overlay_is_mapped (struct obj_section *);
116
117 void list_overlays_command (char *, int);
118
119 void map_overlay_command (char *, int);
120
121 void unmap_overlay_command (char *, int);
122
123 static void overlay_auto_command (char *, int);
124
125 static void overlay_manual_command (char *, int);
126
127 static void overlay_off_command (char *, int);
128
129 static void overlay_load_command (char *, int);
130
131 static void overlay_command (char *, int);
132
133 static void simple_free_overlay_table (void);
134
135 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
136
137 static int simple_read_overlay_table (void);
138
139 static int simple_overlay_update_1 (struct obj_section *);
140
141 static void add_filename_language (char *ext, enum language lang);
142
143 static void info_ext_lang_command (char *args, int from_tty);
144
145 static char *find_separate_debug_file (struct objfile *objfile);
146
147 static void init_filename_language_table (void);
148
149 void _initialize_symfile (void);
150
151 /* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155 static struct sym_fns *symtab_fns = NULL;
156
157 /* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160 #ifdef SYMBOL_RELOADING_DEFAULT
161 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162 #else
163 int symbol_reloading = 0;
164 #endif
165 static void
166 show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 fprintf_filtered (file, _("\
170 Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172 }
173
174
175 /* If non-zero, shared library symbols will be added automatically
176 when the inferior is created, new libraries are loaded, or when
177 attaching to the inferior. This is almost always what users will
178 want to have happen; but for very large programs, the startup time
179 will be excessive, and so if this is a problem, the user can clear
180 this flag and then add the shared library symbols as needed. Note
181 that there is a potential for confusion, since if the shared
182 library symbols are not loaded, commands like "info fun" will *not*
183 report all the functions that are actually present. */
184
185 int auto_solib_add = 1;
186
187 /* For systems that support it, a threshold size in megabytes. If
188 automatically adding a new library's symbol table to those already
189 known to the debugger would cause the total shared library symbol
190 size to exceed this threshhold, then the shlib's symbols are not
191 added. The threshold is ignored if the user explicitly asks for a
192 shlib to be added, such as when using the "sharedlibrary"
193 command. */
194
195 int auto_solib_limit;
196 \f
197
198 /* This compares two partial symbols by names, using strcmp_iw_ordered
199 for the comparison. */
200
201 static int
202 compare_psymbols (const void *s1p, const void *s2p)
203 {
204 struct partial_symbol *const *s1 = s1p;
205 struct partial_symbol *const *s2 = s2p;
206
207 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
208 SYMBOL_SEARCH_NAME (*s2));
209 }
210
211 void
212 sort_pst_symbols (struct partial_symtab *pst)
213 {
214 /* Sort the global list; don't sort the static list */
215
216 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
217 pst->n_global_syms, sizeof (struct partial_symbol *),
218 compare_psymbols);
219 }
220
221 /* Make a null terminated copy of the string at PTR with SIZE characters in
222 the obstack pointed to by OBSTACKP . Returns the address of the copy.
223 Note that the string at PTR does not have to be null terminated, I.E. it
224 may be part of a larger string and we are only saving a substring. */
225
226 char *
227 obsavestring (const char *ptr, int size, struct obstack *obstackp)
228 {
229 char *p = (char *) obstack_alloc (obstackp, size + 1);
230 /* Open-coded memcpy--saves function call time. These strings are usually
231 short. FIXME: Is this really still true with a compiler that can
232 inline memcpy? */
233 {
234 const char *p1 = ptr;
235 char *p2 = p;
236 const char *end = ptr + size;
237 while (p1 != end)
238 *p2++ = *p1++;
239 }
240 p[size] = 0;
241 return p;
242 }
243
244 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
245 in the obstack pointed to by OBSTACKP. */
246
247 char *
248 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
249 const char *s3)
250 {
251 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
252 char *val = (char *) obstack_alloc (obstackp, len);
253 strcpy (val, s1);
254 strcat (val, s2);
255 strcat (val, s3);
256 return val;
257 }
258
259 /* True if we are nested inside psymtab_to_symtab. */
260
261 int currently_reading_symtab = 0;
262
263 static void
264 decrement_reading_symtab (void *dummy)
265 {
266 currently_reading_symtab--;
267 }
268
269 /* Get the symbol table that corresponds to a partial_symtab.
270 This is fast after the first time you do it. In fact, there
271 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
272 case inline. */
273
274 struct symtab *
275 psymtab_to_symtab (struct partial_symtab *pst)
276 {
277 /* If it's been looked up before, return it. */
278 if (pst->symtab)
279 return pst->symtab;
280
281 /* If it has not yet been read in, read it. */
282 if (!pst->readin)
283 {
284 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
285 currently_reading_symtab++;
286 (*pst->read_symtab) (pst);
287 do_cleanups (back_to);
288 }
289
290 return pst->symtab;
291 }
292
293 /* Remember the lowest-addressed loadable section we've seen.
294 This function is called via bfd_map_over_sections.
295
296 In case of equal vmas, the section with the largest size becomes the
297 lowest-addressed loadable section.
298
299 If the vmas and sizes are equal, the last section is considered the
300 lowest-addressed loadable section. */
301
302 void
303 find_lowest_section (bfd *abfd, asection *sect, void *obj)
304 {
305 asection **lowest = (asection **) obj;
306
307 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
308 return;
309 if (!*lowest)
310 *lowest = sect; /* First loadable section */
311 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
312 *lowest = sect; /* A lower loadable section */
313 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
314 && (bfd_section_size (abfd, (*lowest))
315 <= bfd_section_size (abfd, sect)))
316 *lowest = sect;
317 }
318
319 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
320
321 struct section_addr_info *
322 alloc_section_addr_info (size_t num_sections)
323 {
324 struct section_addr_info *sap;
325 size_t size;
326
327 size = (sizeof (struct section_addr_info)
328 + sizeof (struct other_sections) * (num_sections - 1));
329 sap = (struct section_addr_info *) xmalloc (size);
330 memset (sap, 0, size);
331 sap->num_sections = num_sections;
332
333 return sap;
334 }
335
336
337 /* Return a freshly allocated copy of ADDRS. The section names, if
338 any, are also freshly allocated copies of those in ADDRS. */
339 struct section_addr_info *
340 copy_section_addr_info (struct section_addr_info *addrs)
341 {
342 struct section_addr_info *copy
343 = alloc_section_addr_info (addrs->num_sections);
344 int i;
345
346 copy->num_sections = addrs->num_sections;
347 for (i = 0; i < addrs->num_sections; i++)
348 {
349 copy->other[i].addr = addrs->other[i].addr;
350 if (addrs->other[i].name)
351 copy->other[i].name = xstrdup (addrs->other[i].name);
352 else
353 copy->other[i].name = NULL;
354 copy->other[i].sectindex = addrs->other[i].sectindex;
355 }
356
357 return copy;
358 }
359
360
361
362 /* Build (allocate and populate) a section_addr_info struct from
363 an existing section table. */
364
365 extern struct section_addr_info *
366 build_section_addr_info_from_section_table (const struct section_table *start,
367 const struct section_table *end)
368 {
369 struct section_addr_info *sap;
370 const struct section_table *stp;
371 int oidx;
372
373 sap = alloc_section_addr_info (end - start);
374
375 for (stp = start, oidx = 0; stp != end; stp++)
376 {
377 if (bfd_get_section_flags (stp->bfd,
378 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
379 && oidx < end - start)
380 {
381 sap->other[oidx].addr = stp->addr;
382 sap->other[oidx].name
383 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
384 sap->other[oidx].sectindex = stp->the_bfd_section->index;
385 oidx++;
386 }
387 }
388
389 return sap;
390 }
391
392
393 /* Free all memory allocated by build_section_addr_info_from_section_table. */
394
395 extern void
396 free_section_addr_info (struct section_addr_info *sap)
397 {
398 int idx;
399
400 for (idx = 0; idx < sap->num_sections; idx++)
401 if (sap->other[idx].name)
402 xfree (sap->other[idx].name);
403 xfree (sap);
404 }
405
406
407 /* Initialize OBJFILE's sect_index_* members. */
408 static void
409 init_objfile_sect_indices (struct objfile *objfile)
410 {
411 asection *sect;
412 int i;
413
414 sect = bfd_get_section_by_name (objfile->obfd, ".text");
415 if (sect)
416 objfile->sect_index_text = sect->index;
417
418 sect = bfd_get_section_by_name (objfile->obfd, ".data");
419 if (sect)
420 objfile->sect_index_data = sect->index;
421
422 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
423 if (sect)
424 objfile->sect_index_bss = sect->index;
425
426 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
427 if (sect)
428 objfile->sect_index_rodata = sect->index;
429
430 /* This is where things get really weird... We MUST have valid
431 indices for the various sect_index_* members or gdb will abort.
432 So if for example, there is no ".text" section, we have to
433 accomodate that. Except when explicitly adding symbol files at
434 some address, section_offsets contains nothing but zeros, so it
435 doesn't matter which slot in section_offsets the individual
436 sect_index_* members index into. So if they are all zero, it is
437 safe to just point all the currently uninitialized indices to the
438 first slot. */
439
440 for (i = 0; i < objfile->num_sections; i++)
441 {
442 if (ANOFFSET (objfile->section_offsets, i) != 0)
443 {
444 break;
445 }
446 }
447 if (i == objfile->num_sections)
448 {
449 if (objfile->sect_index_text == -1)
450 objfile->sect_index_text = 0;
451 if (objfile->sect_index_data == -1)
452 objfile->sect_index_data = 0;
453 if (objfile->sect_index_bss == -1)
454 objfile->sect_index_bss = 0;
455 if (objfile->sect_index_rodata == -1)
456 objfile->sect_index_rodata = 0;
457 }
458 }
459
460 /* The arguments to place_section. */
461
462 struct place_section_arg
463 {
464 struct section_offsets *offsets;
465 CORE_ADDR lowest;
466 };
467
468 /* Find a unique offset to use for loadable section SECT if
469 the user did not provide an offset. */
470
471 void
472 place_section (bfd *abfd, asection *sect, void *obj)
473 {
474 struct place_section_arg *arg = obj;
475 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
476 int done;
477 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
478
479 /* We are only interested in loadable sections. */
480 if ((bfd_get_section_flags (abfd, sect) & SEC_LOAD) == 0)
481 return;
482
483 /* If the user specified an offset, honor it. */
484 if (offsets[sect->index] != 0)
485 return;
486
487 /* Otherwise, let's try to find a place for the section. */
488 start_addr = (arg->lowest + align - 1) & -align;
489
490 do {
491 asection *cur_sec;
492
493 done = 1;
494
495 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
496 {
497 int indx = cur_sec->index;
498 CORE_ADDR cur_offset;
499
500 /* We don't need to compare against ourself. */
501 if (cur_sec == sect)
502 continue;
503
504 /* We can only conflict with loadable sections. */
505 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_LOAD) == 0)
506 continue;
507
508 /* We do not expect this to happen; just ignore sections in a
509 relocatable file with an assigned VMA. */
510 if (bfd_section_vma (abfd, cur_sec) != 0)
511 continue;
512
513 /* If the section offset is 0, either the section has not been placed
514 yet, or it was the lowest section placed (in which case LOWEST
515 will be past its end). */
516 if (offsets[indx] == 0)
517 continue;
518
519 /* If this section would overlap us, then we must move up. */
520 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
521 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
522 {
523 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
524 start_addr = (start_addr + align - 1) & -align;
525 done = 0;
526 break;
527 }
528
529 /* Otherwise, we appear to be OK. So far. */
530 }
531 }
532 while (!done);
533
534 offsets[sect->index] = start_addr;
535 arg->lowest = start_addr + bfd_get_section_size (sect);
536
537 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
538 }
539
540 /* Parse the user's idea of an offset for dynamic linking, into our idea
541 of how to represent it for fast symbol reading. This is the default
542 version of the sym_fns.sym_offsets function for symbol readers that
543 don't need to do anything special. It allocates a section_offsets table
544 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
545
546 void
547 default_symfile_offsets (struct objfile *objfile,
548 struct section_addr_info *addrs)
549 {
550 int i;
551
552 objfile->num_sections = bfd_count_sections (objfile->obfd);
553 objfile->section_offsets = (struct section_offsets *)
554 obstack_alloc (&objfile->objfile_obstack,
555 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
556 memset (objfile->section_offsets, 0,
557 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
558
559 /* Now calculate offsets for section that were specified by the
560 caller. */
561 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
562 {
563 struct other_sections *osp ;
564
565 osp = &addrs->other[i] ;
566 if (osp->addr == 0)
567 continue;
568
569 /* Record all sections in offsets */
570 /* The section_offsets in the objfile are here filled in using
571 the BFD index. */
572 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
573 }
574
575 /* For relocatable files, all loadable sections will start at zero.
576 The zero is meaningless, so try to pick arbitrary addresses such
577 that no loadable sections overlap. This algorithm is quadratic,
578 but the number of sections in a single object file is generally
579 small. */
580 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
581 {
582 struct place_section_arg arg;
583 arg.offsets = objfile->section_offsets;
584 arg.lowest = 0;
585 bfd_map_over_sections (objfile->obfd, place_section, &arg);
586 }
587
588 /* Remember the bfd indexes for the .text, .data, .bss and
589 .rodata sections. */
590 init_objfile_sect_indices (objfile);
591 }
592
593
594 /* Process a symbol file, as either the main file or as a dynamically
595 loaded file.
596
597 OBJFILE is where the symbols are to be read from.
598
599 ADDRS is the list of section load addresses. If the user has given
600 an 'add-symbol-file' command, then this is the list of offsets and
601 addresses he or she provided as arguments to the command; or, if
602 we're handling a shared library, these are the actual addresses the
603 sections are loaded at, according to the inferior's dynamic linker
604 (as gleaned by GDB's shared library code). We convert each address
605 into an offset from the section VMA's as it appears in the object
606 file, and then call the file's sym_offsets function to convert this
607 into a format-specific offset table --- a `struct section_offsets'.
608 If ADDRS is non-zero, OFFSETS must be zero.
609
610 OFFSETS is a table of section offsets already in the right
611 format-specific representation. NUM_OFFSETS is the number of
612 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
613 assume this is the proper table the call to sym_offsets described
614 above would produce. Instead of calling sym_offsets, we just dump
615 it right into objfile->section_offsets. (When we're re-reading
616 symbols from an objfile, we don't have the original load address
617 list any more; all we have is the section offset table.) If
618 OFFSETS is non-zero, ADDRS must be zero.
619
620 MAINLINE is nonzero if this is the main symbol file, or zero if
621 it's an extra symbol file such as dynamically loaded code.
622
623 VERBO is nonzero if the caller has printed a verbose message about
624 the symbol reading (and complaints can be more terse about it). */
625
626 void
627 syms_from_objfile (struct objfile *objfile,
628 struct section_addr_info *addrs,
629 struct section_offsets *offsets,
630 int num_offsets,
631 int mainline,
632 int verbo)
633 {
634 struct section_addr_info *local_addr = NULL;
635 struct cleanup *old_chain;
636
637 gdb_assert (! (addrs && offsets));
638
639 init_entry_point_info (objfile);
640 find_sym_fns (objfile);
641
642 if (objfile->sf == NULL)
643 return; /* No symbols. */
644
645 /* Make sure that partially constructed symbol tables will be cleaned up
646 if an error occurs during symbol reading. */
647 old_chain = make_cleanup_free_objfile (objfile);
648
649 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
650 list. We now establish the convention that an addr of zero means
651 no load address was specified. */
652 if (! addrs && ! offsets)
653 {
654 local_addr
655 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
656 make_cleanup (xfree, local_addr);
657 addrs = local_addr;
658 }
659
660 /* Now either addrs or offsets is non-zero. */
661
662 if (mainline)
663 {
664 /* We will modify the main symbol table, make sure that all its users
665 will be cleaned up if an error occurs during symbol reading. */
666 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
667
668 /* Since no error yet, throw away the old symbol table. */
669
670 if (symfile_objfile != NULL)
671 {
672 free_objfile (symfile_objfile);
673 symfile_objfile = NULL;
674 }
675
676 /* Currently we keep symbols from the add-symbol-file command.
677 If the user wants to get rid of them, they should do "symbol-file"
678 without arguments first. Not sure this is the best behavior
679 (PR 2207). */
680
681 (*objfile->sf->sym_new_init) (objfile);
682 }
683
684 /* Convert addr into an offset rather than an absolute address.
685 We find the lowest address of a loaded segment in the objfile,
686 and assume that <addr> is where that got loaded.
687
688 We no longer warn if the lowest section is not a text segment (as
689 happens for the PA64 port. */
690 if (!mainline && addrs && addrs->other[0].name)
691 {
692 asection *lower_sect;
693 asection *sect;
694 CORE_ADDR lower_offset;
695 int i;
696
697 /* Find lowest loadable section to be used as starting point for
698 continguous sections. FIXME!! won't work without call to find
699 .text first, but this assumes text is lowest section. */
700 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
701 if (lower_sect == NULL)
702 bfd_map_over_sections (objfile->obfd, find_lowest_section,
703 &lower_sect);
704 if (lower_sect == NULL)
705 warning (_("no loadable sections found in added symbol-file %s"),
706 objfile->name);
707 else
708 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
709 warning (_("Lowest section in %s is %s at %s"),
710 objfile->name,
711 bfd_section_name (objfile->obfd, lower_sect),
712 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
713 if (lower_sect != NULL)
714 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
715 else
716 lower_offset = 0;
717
718 /* Calculate offsets for the loadable sections.
719 FIXME! Sections must be in order of increasing loadable section
720 so that contiguous sections can use the lower-offset!!!
721
722 Adjust offsets if the segments are not contiguous.
723 If the section is contiguous, its offset should be set to
724 the offset of the highest loadable section lower than it
725 (the loadable section directly below it in memory).
726 this_offset = lower_offset = lower_addr - lower_orig_addr */
727
728 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
729 {
730 if (addrs->other[i].addr != 0)
731 {
732 sect = bfd_get_section_by_name (objfile->obfd,
733 addrs->other[i].name);
734 if (sect)
735 {
736 addrs->other[i].addr
737 -= bfd_section_vma (objfile->obfd, sect);
738 lower_offset = addrs->other[i].addr;
739 /* This is the index used by BFD. */
740 addrs->other[i].sectindex = sect->index ;
741 }
742 else
743 {
744 warning (_("section %s not found in %s"),
745 addrs->other[i].name,
746 objfile->name);
747 addrs->other[i].addr = 0;
748 }
749 }
750 else
751 addrs->other[i].addr = lower_offset;
752 }
753 }
754
755 /* Initialize symbol reading routines for this objfile, allow complaints to
756 appear for this new file, and record how verbose to be, then do the
757 initial symbol reading for this file. */
758
759 (*objfile->sf->sym_init) (objfile);
760 clear_complaints (&symfile_complaints, 1, verbo);
761
762 if (addrs)
763 (*objfile->sf->sym_offsets) (objfile, addrs);
764 else
765 {
766 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
767
768 /* Just copy in the offset table directly as given to us. */
769 objfile->num_sections = num_offsets;
770 objfile->section_offsets
771 = ((struct section_offsets *)
772 obstack_alloc (&objfile->objfile_obstack, size));
773 memcpy (objfile->section_offsets, offsets, size);
774
775 init_objfile_sect_indices (objfile);
776 }
777
778 #ifndef DEPRECATED_IBM6000_TARGET
779 /* This is a SVR4/SunOS specific hack, I think. In any event, it
780 screws RS/6000. sym_offsets should be doing this sort of thing,
781 because it knows the mapping between bfd sections and
782 section_offsets. */
783 /* This is a hack. As far as I can tell, section offsets are not
784 target dependent. They are all set to addr with a couple of
785 exceptions. The exceptions are sysvr4 shared libraries, whose
786 offsets are kept in solib structures anyway and rs6000 xcoff
787 which handles shared libraries in a completely unique way.
788
789 Section offsets are built similarly, except that they are built
790 by adding addr in all cases because there is no clear mapping
791 from section_offsets into actual sections. Note that solib.c
792 has a different algorithm for finding section offsets.
793
794 These should probably all be collapsed into some target
795 independent form of shared library support. FIXME. */
796
797 if (addrs)
798 {
799 struct obj_section *s;
800
801 /* Map section offsets in "addr" back to the object's
802 sections by comparing the section names with bfd's
803 section names. Then adjust the section address by
804 the offset. */ /* for gdb/13815 */
805
806 ALL_OBJFILE_OSECTIONS (objfile, s)
807 {
808 CORE_ADDR s_addr = 0;
809 int i;
810
811 for (i = 0;
812 !s_addr && i < addrs->num_sections && addrs->other[i].name;
813 i++)
814 if (strcmp (bfd_section_name (s->objfile->obfd,
815 s->the_bfd_section),
816 addrs->other[i].name) == 0)
817 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
818
819 s->addr -= s->offset;
820 s->addr += s_addr;
821 s->endaddr -= s->offset;
822 s->endaddr += s_addr;
823 s->offset += s_addr;
824 }
825 }
826 #endif /* not DEPRECATED_IBM6000_TARGET */
827
828 (*objfile->sf->sym_read) (objfile, mainline);
829
830 /* Don't allow char * to have a typename (else would get caddr_t).
831 Ditto void *. FIXME: Check whether this is now done by all the
832 symbol readers themselves (many of them now do), and if so remove
833 it from here. */
834
835 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
836 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
837
838 /* Mark the objfile has having had initial symbol read attempted. Note
839 that this does not mean we found any symbols... */
840
841 objfile->flags |= OBJF_SYMS;
842
843 /* Discard cleanups as symbol reading was successful. */
844
845 discard_cleanups (old_chain);
846 }
847
848 /* Perform required actions after either reading in the initial
849 symbols for a new objfile, or mapping in the symbols from a reusable
850 objfile. */
851
852 void
853 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
854 {
855
856 /* If this is the main symbol file we have to clean up all users of the
857 old main symbol file. Otherwise it is sufficient to fixup all the
858 breakpoints that may have been redefined by this symbol file. */
859 if (mainline)
860 {
861 /* OK, make it the "real" symbol file. */
862 symfile_objfile = objfile;
863
864 clear_symtab_users ();
865 }
866 else
867 {
868 breakpoint_re_set ();
869 }
870
871 /* We're done reading the symbol file; finish off complaints. */
872 clear_complaints (&symfile_complaints, 0, verbo);
873 }
874
875 /* Process a symbol file, as either the main file or as a dynamically
876 loaded file.
877
878 ABFD is a BFD already open on the file, as from symfile_bfd_open.
879 This BFD will be closed on error, and is always consumed by this function.
880
881 FROM_TTY says how verbose to be.
882
883 MAINLINE specifies whether this is the main symbol file, or whether
884 it's an extra symbol file such as dynamically loaded code.
885
886 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
887 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
888 non-zero.
889
890 Upon success, returns a pointer to the objfile that was added.
891 Upon failure, jumps back to command level (never returns). */
892 static struct objfile *
893 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
894 struct section_addr_info *addrs,
895 struct section_offsets *offsets,
896 int num_offsets,
897 int mainline, int flags)
898 {
899 struct objfile *objfile;
900 struct partial_symtab *psymtab;
901 char *debugfile;
902 struct section_addr_info *orig_addrs = NULL;
903 struct cleanup *my_cleanups;
904 const char *name = bfd_get_filename (abfd);
905
906 my_cleanups = make_cleanup_bfd_close (abfd);
907
908 /* Give user a chance to burp if we'd be
909 interactively wiping out any existing symbols. */
910
911 if ((have_full_symbols () || have_partial_symbols ())
912 && mainline
913 && from_tty
914 && !query ("Load new symbol table from \"%s\"? ", name))
915 error (_("Not confirmed."));
916
917 objfile = allocate_objfile (abfd, flags);
918 discard_cleanups (my_cleanups);
919
920 if (addrs)
921 {
922 orig_addrs = copy_section_addr_info (addrs);
923 make_cleanup_free_section_addr_info (orig_addrs);
924 }
925
926 /* We either created a new mapped symbol table, mapped an existing
927 symbol table file which has not had initial symbol reading
928 performed, or need to read an unmapped symbol table. */
929 if (from_tty || info_verbose)
930 {
931 if (deprecated_pre_add_symbol_hook)
932 deprecated_pre_add_symbol_hook (name);
933 else
934 {
935 printf_unfiltered (_("Reading symbols from %s..."), name);
936 wrap_here ("");
937 gdb_flush (gdb_stdout);
938 }
939 }
940 syms_from_objfile (objfile, addrs, offsets, num_offsets,
941 mainline, from_tty);
942
943 /* We now have at least a partial symbol table. Check to see if the
944 user requested that all symbols be read on initial access via either
945 the gdb startup command line or on a per symbol file basis. Expand
946 all partial symbol tables for this objfile if so. */
947
948 if ((flags & OBJF_READNOW) || readnow_symbol_files)
949 {
950 if (from_tty || info_verbose)
951 {
952 printf_unfiltered (_("expanding to full symbols..."));
953 wrap_here ("");
954 gdb_flush (gdb_stdout);
955 }
956
957 for (psymtab = objfile->psymtabs;
958 psymtab != NULL;
959 psymtab = psymtab->next)
960 {
961 psymtab_to_symtab (psymtab);
962 }
963 }
964
965 debugfile = find_separate_debug_file (objfile);
966 if (debugfile)
967 {
968 if (addrs != NULL)
969 {
970 objfile->separate_debug_objfile
971 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
972 }
973 else
974 {
975 objfile->separate_debug_objfile
976 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
977 }
978 objfile->separate_debug_objfile->separate_debug_objfile_backlink
979 = objfile;
980
981 /* Put the separate debug object before the normal one, this is so that
982 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
983 put_objfile_before (objfile->separate_debug_objfile, objfile);
984
985 xfree (debugfile);
986 }
987
988 if (!have_partial_symbols () && !have_full_symbols ())
989 {
990 wrap_here ("");
991 printf_filtered (_("(no debugging symbols found)"));
992 if (from_tty || info_verbose)
993 printf_filtered ("...");
994 else
995 printf_filtered ("\n");
996 wrap_here ("");
997 }
998
999 if (from_tty || info_verbose)
1000 {
1001 if (deprecated_post_add_symbol_hook)
1002 deprecated_post_add_symbol_hook ();
1003 else
1004 {
1005 printf_unfiltered (_("done.\n"));
1006 }
1007 }
1008
1009 /* We print some messages regardless of whether 'from_tty ||
1010 info_verbose' is true, so make sure they go out at the right
1011 time. */
1012 gdb_flush (gdb_stdout);
1013
1014 do_cleanups (my_cleanups);
1015
1016 if (objfile->sf == NULL)
1017 return objfile; /* No symbols. */
1018
1019 new_symfile_objfile (objfile, mainline, from_tty);
1020
1021 if (deprecated_target_new_objfile_hook)
1022 deprecated_target_new_objfile_hook (objfile);
1023
1024 bfd_cache_close_all ();
1025 return (objfile);
1026 }
1027
1028
1029 /* Process the symbol file ABFD, as either the main file or as a
1030 dynamically loaded file.
1031
1032 See symbol_file_add_with_addrs_or_offsets's comments for
1033 details. */
1034 struct objfile *
1035 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1036 struct section_addr_info *addrs,
1037 int mainline, int flags)
1038 {
1039 return symbol_file_add_with_addrs_or_offsets (abfd,
1040 from_tty, addrs, 0, 0,
1041 mainline, flags);
1042 }
1043
1044
1045 /* Process a symbol file, as either the main file or as a dynamically
1046 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1047 for details. */
1048 struct objfile *
1049 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1050 int mainline, int flags)
1051 {
1052 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1053 addrs, mainline, flags);
1054 }
1055
1056
1057 /* Call symbol_file_add() with default values and update whatever is
1058 affected by the loading of a new main().
1059 Used when the file is supplied in the gdb command line
1060 and by some targets with special loading requirements.
1061 The auxiliary function, symbol_file_add_main_1(), has the flags
1062 argument for the switches that can only be specified in the symbol_file
1063 command itself. */
1064
1065 void
1066 symbol_file_add_main (char *args, int from_tty)
1067 {
1068 symbol_file_add_main_1 (args, from_tty, 0);
1069 }
1070
1071 static void
1072 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1073 {
1074 symbol_file_add (args, from_tty, NULL, 1, flags);
1075
1076 /* Getting new symbols may change our opinion about
1077 what is frameless. */
1078 reinit_frame_cache ();
1079
1080 set_initial_language ();
1081 }
1082
1083 void
1084 symbol_file_clear (int from_tty)
1085 {
1086 if ((have_full_symbols () || have_partial_symbols ())
1087 && from_tty
1088 && (symfile_objfile
1089 ? !query (_("Discard symbol table from `%s'? "),
1090 symfile_objfile->name)
1091 : !query (_("Discard symbol table? "))))
1092 error (_("Not confirmed."));
1093 free_all_objfiles ();
1094
1095 /* solib descriptors may have handles to objfiles. Since their
1096 storage has just been released, we'd better wipe the solib
1097 descriptors as well.
1098 */
1099 #if defined(SOLIB_RESTART)
1100 SOLIB_RESTART ();
1101 #endif
1102
1103 symfile_objfile = NULL;
1104 if (from_tty)
1105 printf_unfiltered (_("No symbol file now.\n"));
1106 }
1107
1108 static char *
1109 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1110 {
1111 asection *sect;
1112 bfd_size_type debuglink_size;
1113 unsigned long crc32;
1114 char *contents;
1115 int crc_offset;
1116 unsigned char *p;
1117
1118 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1119
1120 if (sect == NULL)
1121 return NULL;
1122
1123 debuglink_size = bfd_section_size (objfile->obfd, sect);
1124
1125 contents = xmalloc (debuglink_size);
1126 bfd_get_section_contents (objfile->obfd, sect, contents,
1127 (file_ptr)0, (bfd_size_type)debuglink_size);
1128
1129 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1130 crc_offset = strlen (contents) + 1;
1131 crc_offset = (crc_offset + 3) & ~3;
1132
1133 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1134
1135 *crc32_out = crc32;
1136 return contents;
1137 }
1138
1139 static int
1140 separate_debug_file_exists (const char *name, unsigned long crc)
1141 {
1142 unsigned long file_crc = 0;
1143 int fd;
1144 gdb_byte buffer[8*1024];
1145 int count;
1146
1147 fd = open (name, O_RDONLY | O_BINARY);
1148 if (fd < 0)
1149 return 0;
1150
1151 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1152 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1153
1154 close (fd);
1155
1156 return crc == file_crc;
1157 }
1158
1159 static char *debug_file_directory = NULL;
1160 static void
1161 show_debug_file_directory (struct ui_file *file, int from_tty,
1162 struct cmd_list_element *c, const char *value)
1163 {
1164 fprintf_filtered (file, _("\
1165 The directory where separate debug symbols are searched for is \"%s\".\n"),
1166 value);
1167 }
1168
1169 #if ! defined (DEBUG_SUBDIRECTORY)
1170 #define DEBUG_SUBDIRECTORY ".debug"
1171 #endif
1172
1173 static char *
1174 find_separate_debug_file (struct objfile *objfile)
1175 {
1176 asection *sect;
1177 char *basename;
1178 char *dir;
1179 char *debugfile;
1180 char *name_copy;
1181 bfd_size_type debuglink_size;
1182 unsigned long crc32;
1183 int i;
1184
1185 basename = get_debug_link_info (objfile, &crc32);
1186
1187 if (basename == NULL)
1188 return NULL;
1189
1190 dir = xstrdup (objfile->name);
1191
1192 /* Strip off the final filename part, leaving the directory name,
1193 followed by a slash. Objfile names should always be absolute and
1194 tilde-expanded, so there should always be a slash in there
1195 somewhere. */
1196 for (i = strlen(dir) - 1; i >= 0; i--)
1197 {
1198 if (IS_DIR_SEPARATOR (dir[i]))
1199 break;
1200 }
1201 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1202 dir[i+1] = '\0';
1203
1204 debugfile = alloca (strlen (debug_file_directory) + 1
1205 + strlen (dir)
1206 + strlen (DEBUG_SUBDIRECTORY)
1207 + strlen ("/")
1208 + strlen (basename)
1209 + 1);
1210
1211 /* First try in the same directory as the original file. */
1212 strcpy (debugfile, dir);
1213 strcat (debugfile, basename);
1214
1215 if (separate_debug_file_exists (debugfile, crc32))
1216 {
1217 xfree (basename);
1218 xfree (dir);
1219 return xstrdup (debugfile);
1220 }
1221
1222 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1223 strcpy (debugfile, dir);
1224 strcat (debugfile, DEBUG_SUBDIRECTORY);
1225 strcat (debugfile, "/");
1226 strcat (debugfile, basename);
1227
1228 if (separate_debug_file_exists (debugfile, crc32))
1229 {
1230 xfree (basename);
1231 xfree (dir);
1232 return xstrdup (debugfile);
1233 }
1234
1235 /* Then try in the global debugfile directory. */
1236 strcpy (debugfile, debug_file_directory);
1237 strcat (debugfile, "/");
1238 strcat (debugfile, dir);
1239 strcat (debugfile, basename);
1240
1241 if (separate_debug_file_exists (debugfile, crc32))
1242 {
1243 xfree (basename);
1244 xfree (dir);
1245 return xstrdup (debugfile);
1246 }
1247
1248 xfree (basename);
1249 xfree (dir);
1250 return NULL;
1251 }
1252
1253
1254 /* This is the symbol-file command. Read the file, analyze its
1255 symbols, and add a struct symtab to a symtab list. The syntax of
1256 the command is rather bizarre:
1257
1258 1. The function buildargv implements various quoting conventions
1259 which are undocumented and have little or nothing in common with
1260 the way things are quoted (or not quoted) elsewhere in GDB.
1261
1262 2. Options are used, which are not generally used in GDB (perhaps
1263 "set mapped on", "set readnow on" would be better)
1264
1265 3. The order of options matters, which is contrary to GNU
1266 conventions (because it is confusing and inconvenient). */
1267
1268 void
1269 symbol_file_command (char *args, int from_tty)
1270 {
1271 dont_repeat ();
1272
1273 if (args == NULL)
1274 {
1275 symbol_file_clear (from_tty);
1276 }
1277 else
1278 {
1279 char **argv = buildargv (args);
1280 int flags = OBJF_USERLOADED;
1281 struct cleanup *cleanups;
1282 char *name = NULL;
1283
1284 if (argv == NULL)
1285 nomem (0);
1286
1287 cleanups = make_cleanup_freeargv (argv);
1288 while (*argv != NULL)
1289 {
1290 if (strcmp (*argv, "-readnow") == 0)
1291 flags |= OBJF_READNOW;
1292 else if (**argv == '-')
1293 error (_("unknown option `%s'"), *argv);
1294 else
1295 {
1296 symbol_file_add_main_1 (*argv, from_tty, flags);
1297 name = *argv;
1298 }
1299
1300 argv++;
1301 }
1302
1303 if (name == NULL)
1304 error (_("no symbol file name was specified"));
1305
1306 do_cleanups (cleanups);
1307 }
1308 }
1309
1310 /* Set the initial language.
1311
1312 FIXME: A better solution would be to record the language in the
1313 psymtab when reading partial symbols, and then use it (if known) to
1314 set the language. This would be a win for formats that encode the
1315 language in an easily discoverable place, such as DWARF. For
1316 stabs, we can jump through hoops looking for specially named
1317 symbols or try to intuit the language from the specific type of
1318 stabs we find, but we can't do that until later when we read in
1319 full symbols. */
1320
1321 static void
1322 set_initial_language (void)
1323 {
1324 struct partial_symtab *pst;
1325 enum language lang = language_unknown;
1326
1327 pst = find_main_psymtab ();
1328 if (pst != NULL)
1329 {
1330 if (pst->filename != NULL)
1331 lang = deduce_language_from_filename (pst->filename);
1332
1333 if (lang == language_unknown)
1334 {
1335 /* Make C the default language */
1336 lang = language_c;
1337 }
1338
1339 set_language (lang);
1340 expected_language = current_language; /* Don't warn the user. */
1341 }
1342 }
1343
1344 /* Open the file specified by NAME and hand it off to BFD for
1345 preliminary analysis. Return a newly initialized bfd *, which
1346 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1347 absolute). In case of trouble, error() is called. */
1348
1349 bfd *
1350 symfile_bfd_open (char *name)
1351 {
1352 bfd *sym_bfd;
1353 int desc;
1354 char *absolute_name;
1355
1356 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1357
1358 /* Look down path for it, allocate 2nd new malloc'd copy. */
1359 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1360 O_RDONLY | O_BINARY, 0, &absolute_name);
1361 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1362 if (desc < 0)
1363 {
1364 char *exename = alloca (strlen (name) + 5);
1365 strcat (strcpy (exename, name), ".exe");
1366 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1367 O_RDONLY | O_BINARY, 0, &absolute_name);
1368 }
1369 #endif
1370 if (desc < 0)
1371 {
1372 make_cleanup (xfree, name);
1373 perror_with_name (name);
1374 }
1375
1376 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1377 bfd. It'll be freed in free_objfile(). */
1378 xfree (name);
1379 name = absolute_name;
1380
1381 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1382 if (!sym_bfd)
1383 {
1384 close (desc);
1385 make_cleanup (xfree, name);
1386 error (_("\"%s\": can't open to read symbols: %s."), name,
1387 bfd_errmsg (bfd_get_error ()));
1388 }
1389 bfd_set_cacheable (sym_bfd, 1);
1390
1391 if (!bfd_check_format (sym_bfd, bfd_object))
1392 {
1393 /* FIXME: should be checking for errors from bfd_close (for one
1394 thing, on error it does not free all the storage associated
1395 with the bfd). */
1396 bfd_close (sym_bfd); /* This also closes desc. */
1397 make_cleanup (xfree, name);
1398 error (_("\"%s\": can't read symbols: %s."), name,
1399 bfd_errmsg (bfd_get_error ()));
1400 }
1401
1402 return sym_bfd;
1403 }
1404
1405 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1406 the section was not found. */
1407
1408 int
1409 get_section_index (struct objfile *objfile, char *section_name)
1410 {
1411 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1412
1413 if (sect)
1414 return sect->index;
1415 else
1416 return -1;
1417 }
1418
1419 /* Link SF into the global symtab_fns list. Called on startup by the
1420 _initialize routine in each object file format reader, to register
1421 information about each format the the reader is prepared to
1422 handle. */
1423
1424 void
1425 add_symtab_fns (struct sym_fns *sf)
1426 {
1427 sf->next = symtab_fns;
1428 symtab_fns = sf;
1429 }
1430
1431 /* Initialize OBJFILE to read symbols from its associated BFD. It
1432 either returns or calls error(). The result is an initialized
1433 struct sym_fns in the objfile structure, that contains cached
1434 information about the symbol file. */
1435
1436 static void
1437 find_sym_fns (struct objfile *objfile)
1438 {
1439 struct sym_fns *sf;
1440 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1441 char *our_target = bfd_get_target (objfile->obfd);
1442
1443 if (our_flavour == bfd_target_srec_flavour
1444 || our_flavour == bfd_target_ihex_flavour
1445 || our_flavour == bfd_target_tekhex_flavour)
1446 return; /* No symbols. */
1447
1448 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1449 {
1450 if (our_flavour == sf->sym_flavour)
1451 {
1452 objfile->sf = sf;
1453 return;
1454 }
1455 }
1456
1457 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1458 bfd_get_target (objfile->obfd));
1459 }
1460 \f
1461
1462 /* This function runs the load command of our current target. */
1463
1464 static void
1465 load_command (char *arg, int from_tty)
1466 {
1467 if (arg == NULL)
1468 {
1469 char *parg;
1470 int count = 0;
1471
1472 parg = arg = get_exec_file (1);
1473
1474 /* Count how many \ " ' tab space there are in the name. */
1475 while ((parg = strpbrk (parg, "\\\"'\t ")))
1476 {
1477 parg++;
1478 count++;
1479 }
1480
1481 if (count)
1482 {
1483 /* We need to quote this string so buildargv can pull it apart. */
1484 char *temp = xmalloc (strlen (arg) + count + 1 );
1485 char *ptemp = temp;
1486 char *prev;
1487
1488 make_cleanup (xfree, temp);
1489
1490 prev = parg = arg;
1491 while ((parg = strpbrk (parg, "\\\"'\t ")))
1492 {
1493 strncpy (ptemp, prev, parg - prev);
1494 ptemp += parg - prev;
1495 prev = parg++;
1496 *ptemp++ = '\\';
1497 }
1498 strcpy (ptemp, prev);
1499
1500 arg = temp;
1501 }
1502 }
1503
1504 /* The user might be reloading because the binary has changed. Take
1505 this opportunity to check. */
1506 reopen_exec_file ();
1507 reread_symbols ();
1508
1509 target_load (arg, from_tty);
1510
1511 /* After re-loading the executable, we don't really know which
1512 overlays are mapped any more. */
1513 overlay_cache_invalid = 1;
1514 }
1515
1516 /* This version of "load" should be usable for any target. Currently
1517 it is just used for remote targets, not inftarg.c or core files,
1518 on the theory that only in that case is it useful.
1519
1520 Avoiding xmodem and the like seems like a win (a) because we don't have
1521 to worry about finding it, and (b) On VMS, fork() is very slow and so
1522 we don't want to run a subprocess. On the other hand, I'm not sure how
1523 performance compares. */
1524
1525 static int validate_download = 0;
1526
1527 /* Callback service function for generic_load (bfd_map_over_sections). */
1528
1529 static void
1530 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1531 {
1532 bfd_size_type *sum = data;
1533
1534 *sum += bfd_get_section_size (asec);
1535 }
1536
1537 /* Opaque data for load_section_callback. */
1538 struct load_section_data {
1539 unsigned long load_offset;
1540 unsigned long write_count;
1541 unsigned long data_count;
1542 bfd_size_type total_size;
1543 };
1544
1545 /* Callback service function for generic_load (bfd_map_over_sections). */
1546
1547 static void
1548 load_section_callback (bfd *abfd, asection *asec, void *data)
1549 {
1550 struct load_section_data *args = data;
1551
1552 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1553 {
1554 bfd_size_type size = bfd_get_section_size (asec);
1555 if (size > 0)
1556 {
1557 gdb_byte *buffer;
1558 struct cleanup *old_chain;
1559 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1560 bfd_size_type block_size;
1561 int err;
1562 const char *sect_name = bfd_get_section_name (abfd, asec);
1563 bfd_size_type sent;
1564
1565 buffer = xmalloc (size);
1566 old_chain = make_cleanup (xfree, buffer);
1567
1568 /* Is this really necessary? I guess it gives the user something
1569 to look at during a long download. */
1570 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1571 sect_name, paddr_nz (size), paddr_nz (lma));
1572
1573 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1574
1575 sent = 0;
1576 do
1577 {
1578 int len;
1579 bfd_size_type this_transfer = size - sent;
1580
1581 len = target_write_memory_partial (lma, buffer,
1582 this_transfer, &err);
1583 if (err)
1584 break;
1585 if (validate_download)
1586 {
1587 /* Broken memories and broken monitors manifest
1588 themselves here when bring new computers to
1589 life. This doubles already slow downloads. */
1590 /* NOTE: cagney/1999-10-18: A more efficient
1591 implementation might add a verify_memory()
1592 method to the target vector and then use
1593 that. remote.c could implement that method
1594 using the ``qCRC'' packet. */
1595 gdb_byte *check = xmalloc (len);
1596 struct cleanup *verify_cleanups =
1597 make_cleanup (xfree, check);
1598
1599 if (target_read_memory (lma, check, len) != 0)
1600 error (_("Download verify read failed at 0x%s"),
1601 paddr (lma));
1602 if (memcmp (buffer, check, len) != 0)
1603 error (_("Download verify compare failed at 0x%s"),
1604 paddr (lma));
1605 do_cleanups (verify_cleanups);
1606 }
1607 args->data_count += len;
1608 lma += len;
1609 buffer += len;
1610 args->write_count += 1;
1611 sent += len;
1612 if (quit_flag
1613 || (deprecated_ui_load_progress_hook != NULL
1614 && deprecated_ui_load_progress_hook (sect_name, sent)))
1615 error (_("Canceled the download"));
1616
1617 if (deprecated_show_load_progress != NULL)
1618 deprecated_show_load_progress (sect_name, sent, size,
1619 args->data_count,
1620 args->total_size);
1621 }
1622 while (sent < size);
1623
1624 if (err != 0)
1625 error (_("Memory access error while loading section %s."), sect_name);
1626
1627 do_cleanups (old_chain);
1628 }
1629 }
1630 }
1631
1632 void
1633 generic_load (char *args, int from_tty)
1634 {
1635 asection *s;
1636 bfd *loadfile_bfd;
1637 struct timeval start_time, end_time;
1638 char *filename;
1639 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1640 struct load_section_data cbdata;
1641 CORE_ADDR entry;
1642 char **argv;
1643
1644 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1645 cbdata.write_count = 0; /* Number of writes needed. */
1646 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1647 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1648
1649 argv = buildargv (args);
1650
1651 if (argv == NULL)
1652 nomem(0);
1653
1654 make_cleanup_freeargv (argv);
1655
1656 filename = tilde_expand (argv[0]);
1657 make_cleanup (xfree, filename);
1658
1659 if (argv[1] != NULL)
1660 {
1661 char *endptr;
1662
1663 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1664
1665 /* If the last word was not a valid number then
1666 treat it as a file name with spaces in. */
1667 if (argv[1] == endptr)
1668 error (_("Invalid download offset:%s."), argv[1]);
1669
1670 if (argv[2] != NULL)
1671 error (_("Too many parameters."));
1672 }
1673
1674 /* Open the file for loading. */
1675 loadfile_bfd = bfd_openr (filename, gnutarget);
1676 if (loadfile_bfd == NULL)
1677 {
1678 perror_with_name (filename);
1679 return;
1680 }
1681
1682 /* FIXME: should be checking for errors from bfd_close (for one thing,
1683 on error it does not free all the storage associated with the
1684 bfd). */
1685 make_cleanup_bfd_close (loadfile_bfd);
1686
1687 if (!bfd_check_format (loadfile_bfd, bfd_object))
1688 {
1689 error (_("\"%s\" is not an object file: %s"), filename,
1690 bfd_errmsg (bfd_get_error ()));
1691 }
1692
1693 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1694 (void *) &cbdata.total_size);
1695
1696 gettimeofday (&start_time, NULL);
1697
1698 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1699
1700 gettimeofday (&end_time, NULL);
1701
1702 entry = bfd_get_start_address (loadfile_bfd);
1703 ui_out_text (uiout, "Start address ");
1704 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1705 ui_out_text (uiout, ", load size ");
1706 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1707 ui_out_text (uiout, "\n");
1708 /* We were doing this in remote-mips.c, I suspect it is right
1709 for other targets too. */
1710 write_pc (entry);
1711
1712 /* FIXME: are we supposed to call symbol_file_add or not? According
1713 to a comment from remote-mips.c (where a call to symbol_file_add
1714 was commented out), making the call confuses GDB if more than one
1715 file is loaded in. Some targets do (e.g., remote-vx.c) but
1716 others don't (or didn't - perhaps they have all been deleted). */
1717
1718 print_transfer_performance (gdb_stdout, cbdata.data_count,
1719 cbdata.write_count, &start_time, &end_time);
1720
1721 do_cleanups (old_cleanups);
1722 }
1723
1724 /* Report how fast the transfer went. */
1725
1726 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1727 replaced by print_transfer_performance (with a very different
1728 function signature). */
1729
1730 void
1731 report_transfer_performance (unsigned long data_count, time_t start_time,
1732 time_t end_time)
1733 {
1734 struct timeval start, end;
1735
1736 start.tv_sec = start_time;
1737 start.tv_usec = 0;
1738 end.tv_sec = end_time;
1739 end.tv_usec = 0;
1740
1741 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
1742 }
1743
1744 void
1745 print_transfer_performance (struct ui_file *stream,
1746 unsigned long data_count,
1747 unsigned long write_count,
1748 const struct timeval *start_time,
1749 const struct timeval *end_time)
1750 {
1751 unsigned long time_count;
1752
1753 /* Compute the elapsed time in milliseconds, as a tradeoff between
1754 accuracy and overflow. */
1755 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
1756 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
1757
1758 ui_out_text (uiout, "Transfer rate: ");
1759 if (time_count > 0)
1760 {
1761 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1762 1000 * (data_count * 8) / time_count);
1763 ui_out_text (uiout, " bits/sec");
1764 }
1765 else
1766 {
1767 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1768 ui_out_text (uiout, " bits in <1 sec");
1769 }
1770 if (write_count > 0)
1771 {
1772 ui_out_text (uiout, ", ");
1773 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1774 ui_out_text (uiout, " bytes/write");
1775 }
1776 ui_out_text (uiout, ".\n");
1777 }
1778
1779 /* This function allows the addition of incrementally linked object files.
1780 It does not modify any state in the target, only in the debugger. */
1781 /* Note: ezannoni 2000-04-13 This function/command used to have a
1782 special case syntax for the rombug target (Rombug is the boot
1783 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1784 rombug case, the user doesn't need to supply a text address,
1785 instead a call to target_link() (in target.c) would supply the
1786 value to use. We are now discontinuing this type of ad hoc syntax. */
1787
1788 static void
1789 add_symbol_file_command (char *args, int from_tty)
1790 {
1791 char *filename = NULL;
1792 int flags = OBJF_USERLOADED;
1793 char *arg;
1794 int expecting_option = 0;
1795 int section_index = 0;
1796 int argcnt = 0;
1797 int sec_num = 0;
1798 int i;
1799 int expecting_sec_name = 0;
1800 int expecting_sec_addr = 0;
1801 char **argv;
1802
1803 struct sect_opt
1804 {
1805 char *name;
1806 char *value;
1807 };
1808
1809 struct section_addr_info *section_addrs;
1810 struct sect_opt *sect_opts = NULL;
1811 size_t num_sect_opts = 0;
1812 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1813
1814 num_sect_opts = 16;
1815 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1816 * sizeof (struct sect_opt));
1817
1818 dont_repeat ();
1819
1820 if (args == NULL)
1821 error (_("add-symbol-file takes a file name and an address"));
1822
1823 argv = buildargv (args);
1824 make_cleanup_freeargv (argv);
1825
1826 if (argv == NULL)
1827 nomem (0);
1828
1829 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
1830 {
1831 /* Process the argument. */
1832 if (argcnt == 0)
1833 {
1834 /* The first argument is the file name. */
1835 filename = tilde_expand (arg);
1836 make_cleanup (xfree, filename);
1837 }
1838 else
1839 if (argcnt == 1)
1840 {
1841 /* The second argument is always the text address at which
1842 to load the program. */
1843 sect_opts[section_index].name = ".text";
1844 sect_opts[section_index].value = arg;
1845 if (++section_index > num_sect_opts)
1846 {
1847 num_sect_opts *= 2;
1848 sect_opts = ((struct sect_opt *)
1849 xrealloc (sect_opts,
1850 num_sect_opts
1851 * sizeof (struct sect_opt)));
1852 }
1853 }
1854 else
1855 {
1856 /* It's an option (starting with '-') or it's an argument
1857 to an option */
1858
1859 if (*arg == '-')
1860 {
1861 if (strcmp (arg, "-readnow") == 0)
1862 flags |= OBJF_READNOW;
1863 else if (strcmp (arg, "-s") == 0)
1864 {
1865 expecting_sec_name = 1;
1866 expecting_sec_addr = 1;
1867 }
1868 }
1869 else
1870 {
1871 if (expecting_sec_name)
1872 {
1873 sect_opts[section_index].name = arg;
1874 expecting_sec_name = 0;
1875 }
1876 else
1877 if (expecting_sec_addr)
1878 {
1879 sect_opts[section_index].value = arg;
1880 expecting_sec_addr = 0;
1881 if (++section_index > num_sect_opts)
1882 {
1883 num_sect_opts *= 2;
1884 sect_opts = ((struct sect_opt *)
1885 xrealloc (sect_opts,
1886 num_sect_opts
1887 * sizeof (struct sect_opt)));
1888 }
1889 }
1890 else
1891 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
1892 }
1893 }
1894 }
1895
1896 /* This command takes at least two arguments. The first one is a
1897 filename, and the second is the address where this file has been
1898 loaded. Abort now if this address hasn't been provided by the
1899 user. */
1900 if (section_index < 1)
1901 error (_("The address where %s has been loaded is missing"), filename);
1902
1903 /* Print the prompt for the query below. And save the arguments into
1904 a sect_addr_info structure to be passed around to other
1905 functions. We have to split this up into separate print
1906 statements because hex_string returns a local static
1907 string. */
1908
1909 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
1910 section_addrs = alloc_section_addr_info (section_index);
1911 make_cleanup (xfree, section_addrs);
1912 for (i = 0; i < section_index; i++)
1913 {
1914 CORE_ADDR addr;
1915 char *val = sect_opts[i].value;
1916 char *sec = sect_opts[i].name;
1917
1918 addr = parse_and_eval_address (val);
1919
1920 /* Here we store the section offsets in the order they were
1921 entered on the command line. */
1922 section_addrs->other[sec_num].name = sec;
1923 section_addrs->other[sec_num].addr = addr;
1924 printf_unfiltered ("\t%s_addr = %s\n",
1925 sec, hex_string ((unsigned long)addr));
1926 sec_num++;
1927
1928 /* The object's sections are initialized when a
1929 call is made to build_objfile_section_table (objfile).
1930 This happens in reread_symbols.
1931 At this point, we don't know what file type this is,
1932 so we can't determine what section names are valid. */
1933 }
1934
1935 if (from_tty && (!query ("%s", "")))
1936 error (_("Not confirmed."));
1937
1938 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
1939
1940 /* Getting new symbols may change our opinion about what is
1941 frameless. */
1942 reinit_frame_cache ();
1943 do_cleanups (my_cleanups);
1944 }
1945 \f
1946 static void
1947 add_shared_symbol_files_command (char *args, int from_tty)
1948 {
1949 #ifdef ADD_SHARED_SYMBOL_FILES
1950 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1951 #else
1952 error (_("This command is not available in this configuration of GDB."));
1953 #endif
1954 }
1955 \f
1956 /* Re-read symbols if a symbol-file has changed. */
1957 void
1958 reread_symbols (void)
1959 {
1960 struct objfile *objfile;
1961 long new_modtime;
1962 int reread_one = 0;
1963 struct stat new_statbuf;
1964 int res;
1965
1966 /* With the addition of shared libraries, this should be modified,
1967 the load time should be saved in the partial symbol tables, since
1968 different tables may come from different source files. FIXME.
1969 This routine should then walk down each partial symbol table
1970 and see if the symbol table that it originates from has been changed */
1971
1972 for (objfile = object_files; objfile; objfile = objfile->next)
1973 {
1974 if (objfile->obfd)
1975 {
1976 #ifdef DEPRECATED_IBM6000_TARGET
1977 /* If this object is from a shared library, then you should
1978 stat on the library name, not member name. */
1979
1980 if (objfile->obfd->my_archive)
1981 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1982 else
1983 #endif
1984 res = stat (objfile->name, &new_statbuf);
1985 if (res != 0)
1986 {
1987 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1988 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
1989 objfile->name);
1990 continue;
1991 }
1992 new_modtime = new_statbuf.st_mtime;
1993 if (new_modtime != objfile->mtime)
1994 {
1995 struct cleanup *old_cleanups;
1996 struct section_offsets *offsets;
1997 int num_offsets;
1998 char *obfd_filename;
1999
2000 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2001 objfile->name);
2002
2003 /* There are various functions like symbol_file_add,
2004 symfile_bfd_open, syms_from_objfile, etc., which might
2005 appear to do what we want. But they have various other
2006 effects which we *don't* want. So we just do stuff
2007 ourselves. We don't worry about mapped files (for one thing,
2008 any mapped file will be out of date). */
2009
2010 /* If we get an error, blow away this objfile (not sure if
2011 that is the correct response for things like shared
2012 libraries). */
2013 old_cleanups = make_cleanup_free_objfile (objfile);
2014 /* We need to do this whenever any symbols go away. */
2015 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2016
2017 /* Clean up any state BFD has sitting around. We don't need
2018 to close the descriptor but BFD lacks a way of closing the
2019 BFD without closing the descriptor. */
2020 obfd_filename = bfd_get_filename (objfile->obfd);
2021 if (!bfd_close (objfile->obfd))
2022 error (_("Can't close BFD for %s: %s"), objfile->name,
2023 bfd_errmsg (bfd_get_error ()));
2024 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2025 if (objfile->obfd == NULL)
2026 error (_("Can't open %s to read symbols."), objfile->name);
2027 /* bfd_openr sets cacheable to true, which is what we want. */
2028 if (!bfd_check_format (objfile->obfd, bfd_object))
2029 error (_("Can't read symbols from %s: %s."), objfile->name,
2030 bfd_errmsg (bfd_get_error ()));
2031
2032 /* Save the offsets, we will nuke them with the rest of the
2033 objfile_obstack. */
2034 num_offsets = objfile->num_sections;
2035 offsets = ((struct section_offsets *)
2036 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2037 memcpy (offsets, objfile->section_offsets,
2038 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2039
2040 /* Remove any references to this objfile in the global
2041 value lists. */
2042 preserve_values (objfile);
2043
2044 /* Nuke all the state that we will re-read. Much of the following
2045 code which sets things to NULL really is necessary to tell
2046 other parts of GDB that there is nothing currently there. */
2047
2048 /* FIXME: Do we have to free a whole linked list, or is this
2049 enough? */
2050 if (objfile->global_psymbols.list)
2051 xfree (objfile->global_psymbols.list);
2052 memset (&objfile->global_psymbols, 0,
2053 sizeof (objfile->global_psymbols));
2054 if (objfile->static_psymbols.list)
2055 xfree (objfile->static_psymbols.list);
2056 memset (&objfile->static_psymbols, 0,
2057 sizeof (objfile->static_psymbols));
2058
2059 /* Free the obstacks for non-reusable objfiles */
2060 bcache_xfree (objfile->psymbol_cache);
2061 objfile->psymbol_cache = bcache_xmalloc ();
2062 bcache_xfree (objfile->macro_cache);
2063 objfile->macro_cache = bcache_xmalloc ();
2064 if (objfile->demangled_names_hash != NULL)
2065 {
2066 htab_delete (objfile->demangled_names_hash);
2067 objfile->demangled_names_hash = NULL;
2068 }
2069 obstack_free (&objfile->objfile_obstack, 0);
2070 objfile->sections = NULL;
2071 objfile->symtabs = NULL;
2072 objfile->psymtabs = NULL;
2073 objfile->free_psymtabs = NULL;
2074 objfile->cp_namespace_symtab = NULL;
2075 objfile->msymbols = NULL;
2076 objfile->deprecated_sym_private = NULL;
2077 objfile->minimal_symbol_count = 0;
2078 memset (&objfile->msymbol_hash, 0,
2079 sizeof (objfile->msymbol_hash));
2080 memset (&objfile->msymbol_demangled_hash, 0,
2081 sizeof (objfile->msymbol_demangled_hash));
2082 objfile->fundamental_types = NULL;
2083 clear_objfile_data (objfile);
2084 if (objfile->sf != NULL)
2085 {
2086 (*objfile->sf->sym_finish) (objfile);
2087 }
2088
2089 /* We never make this a mapped file. */
2090 objfile->md = NULL;
2091 objfile->psymbol_cache = bcache_xmalloc ();
2092 objfile->macro_cache = bcache_xmalloc ();
2093 /* obstack_init also initializes the obstack so it is
2094 empty. We could use obstack_specify_allocation but
2095 gdb_obstack.h specifies the alloc/dealloc
2096 functions. */
2097 obstack_init (&objfile->objfile_obstack);
2098 if (build_objfile_section_table (objfile))
2099 {
2100 error (_("Can't find the file sections in `%s': %s"),
2101 objfile->name, bfd_errmsg (bfd_get_error ()));
2102 }
2103 terminate_minimal_symbol_table (objfile);
2104
2105 /* We use the same section offsets as from last time. I'm not
2106 sure whether that is always correct for shared libraries. */
2107 objfile->section_offsets = (struct section_offsets *)
2108 obstack_alloc (&objfile->objfile_obstack,
2109 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2110 memcpy (objfile->section_offsets, offsets,
2111 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2112 objfile->num_sections = num_offsets;
2113
2114 /* What the hell is sym_new_init for, anyway? The concept of
2115 distinguishing between the main file and additional files
2116 in this way seems rather dubious. */
2117 if (objfile == symfile_objfile)
2118 {
2119 (*objfile->sf->sym_new_init) (objfile);
2120 }
2121
2122 (*objfile->sf->sym_init) (objfile);
2123 clear_complaints (&symfile_complaints, 1, 1);
2124 /* The "mainline" parameter is a hideous hack; I think leaving it
2125 zero is OK since dbxread.c also does what it needs to do if
2126 objfile->global_psymbols.size is 0. */
2127 (*objfile->sf->sym_read) (objfile, 0);
2128 if (!have_partial_symbols () && !have_full_symbols ())
2129 {
2130 wrap_here ("");
2131 printf_unfiltered (_("(no debugging symbols found)\n"));
2132 wrap_here ("");
2133 }
2134 objfile->flags |= OBJF_SYMS;
2135
2136 /* We're done reading the symbol file; finish off complaints. */
2137 clear_complaints (&symfile_complaints, 0, 1);
2138
2139 /* Getting new symbols may change our opinion about what is
2140 frameless. */
2141
2142 reinit_frame_cache ();
2143
2144 /* Discard cleanups as symbol reading was successful. */
2145 discard_cleanups (old_cleanups);
2146
2147 /* If the mtime has changed between the time we set new_modtime
2148 and now, we *want* this to be out of date, so don't call stat
2149 again now. */
2150 objfile->mtime = new_modtime;
2151 reread_one = 1;
2152 reread_separate_symbols (objfile);
2153 }
2154 }
2155 }
2156
2157 if (reread_one)
2158 {
2159 clear_symtab_users ();
2160 /* At least one objfile has changed, so we can consider that
2161 the executable we're debugging has changed too. */
2162 observer_notify_executable_changed (NULL);
2163 }
2164
2165 }
2166
2167
2168 /* Handle separate debug info for OBJFILE, which has just been
2169 re-read:
2170 - If we had separate debug info before, but now we don't, get rid
2171 of the separated objfile.
2172 - If we didn't have separated debug info before, but now we do,
2173 read in the new separated debug info file.
2174 - If the debug link points to a different file, toss the old one
2175 and read the new one.
2176 This function does *not* handle the case where objfile is still
2177 using the same separate debug info file, but that file's timestamp
2178 has changed. That case should be handled by the loop in
2179 reread_symbols already. */
2180 static void
2181 reread_separate_symbols (struct objfile *objfile)
2182 {
2183 char *debug_file;
2184 unsigned long crc32;
2185
2186 /* Does the updated objfile's debug info live in a
2187 separate file? */
2188 debug_file = find_separate_debug_file (objfile);
2189
2190 if (objfile->separate_debug_objfile)
2191 {
2192 /* There are two cases where we need to get rid of
2193 the old separated debug info objfile:
2194 - if the new primary objfile doesn't have
2195 separated debug info, or
2196 - if the new primary objfile has separate debug
2197 info, but it's under a different filename.
2198
2199 If the old and new objfiles both have separate
2200 debug info, under the same filename, then we're
2201 okay --- if the separated file's contents have
2202 changed, we will have caught that when we
2203 visited it in this function's outermost
2204 loop. */
2205 if (! debug_file
2206 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2207 free_objfile (objfile->separate_debug_objfile);
2208 }
2209
2210 /* If the new objfile has separate debug info, and we
2211 haven't loaded it already, do so now. */
2212 if (debug_file
2213 && ! objfile->separate_debug_objfile)
2214 {
2215 /* Use the same section offset table as objfile itself.
2216 Preserve the flags from objfile that make sense. */
2217 objfile->separate_debug_objfile
2218 = (symbol_file_add_with_addrs_or_offsets
2219 (symfile_bfd_open (debug_file),
2220 info_verbose, /* from_tty: Don't override the default. */
2221 0, /* No addr table. */
2222 objfile->section_offsets, objfile->num_sections,
2223 0, /* Not mainline. See comments about this above. */
2224 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2225 | OBJF_USERLOADED)));
2226 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2227 = objfile;
2228 }
2229 }
2230
2231
2232 \f
2233
2234
2235 typedef struct
2236 {
2237 char *ext;
2238 enum language lang;
2239 }
2240 filename_language;
2241
2242 static filename_language *filename_language_table;
2243 static int fl_table_size, fl_table_next;
2244
2245 static void
2246 add_filename_language (char *ext, enum language lang)
2247 {
2248 if (fl_table_next >= fl_table_size)
2249 {
2250 fl_table_size += 10;
2251 filename_language_table =
2252 xrealloc (filename_language_table,
2253 fl_table_size * sizeof (*filename_language_table));
2254 }
2255
2256 filename_language_table[fl_table_next].ext = xstrdup (ext);
2257 filename_language_table[fl_table_next].lang = lang;
2258 fl_table_next++;
2259 }
2260
2261 static char *ext_args;
2262 static void
2263 show_ext_args (struct ui_file *file, int from_tty,
2264 struct cmd_list_element *c, const char *value)
2265 {
2266 fprintf_filtered (file, _("\
2267 Mapping between filename extension and source language is \"%s\".\n"),
2268 value);
2269 }
2270
2271 static void
2272 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2273 {
2274 int i;
2275 char *cp = ext_args;
2276 enum language lang;
2277
2278 /* First arg is filename extension, starting with '.' */
2279 if (*cp != '.')
2280 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2281
2282 /* Find end of first arg. */
2283 while (*cp && !isspace (*cp))
2284 cp++;
2285
2286 if (*cp == '\0')
2287 error (_("'%s': two arguments required -- filename extension and language"),
2288 ext_args);
2289
2290 /* Null-terminate first arg */
2291 *cp++ = '\0';
2292
2293 /* Find beginning of second arg, which should be a source language. */
2294 while (*cp && isspace (*cp))
2295 cp++;
2296
2297 if (*cp == '\0')
2298 error (_("'%s': two arguments required -- filename extension and language"),
2299 ext_args);
2300
2301 /* Lookup the language from among those we know. */
2302 lang = language_enum (cp);
2303
2304 /* Now lookup the filename extension: do we already know it? */
2305 for (i = 0; i < fl_table_next; i++)
2306 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2307 break;
2308
2309 if (i >= fl_table_next)
2310 {
2311 /* new file extension */
2312 add_filename_language (ext_args, lang);
2313 }
2314 else
2315 {
2316 /* redefining a previously known filename extension */
2317
2318 /* if (from_tty) */
2319 /* query ("Really make files of type %s '%s'?", */
2320 /* ext_args, language_str (lang)); */
2321
2322 xfree (filename_language_table[i].ext);
2323 filename_language_table[i].ext = xstrdup (ext_args);
2324 filename_language_table[i].lang = lang;
2325 }
2326 }
2327
2328 static void
2329 info_ext_lang_command (char *args, int from_tty)
2330 {
2331 int i;
2332
2333 printf_filtered (_("Filename extensions and the languages they represent:"));
2334 printf_filtered ("\n\n");
2335 for (i = 0; i < fl_table_next; i++)
2336 printf_filtered ("\t%s\t- %s\n",
2337 filename_language_table[i].ext,
2338 language_str (filename_language_table[i].lang));
2339 }
2340
2341 static void
2342 init_filename_language_table (void)
2343 {
2344 if (fl_table_size == 0) /* protect against repetition */
2345 {
2346 fl_table_size = 20;
2347 fl_table_next = 0;
2348 filename_language_table =
2349 xmalloc (fl_table_size * sizeof (*filename_language_table));
2350 add_filename_language (".c", language_c);
2351 add_filename_language (".C", language_cplus);
2352 add_filename_language (".cc", language_cplus);
2353 add_filename_language (".cp", language_cplus);
2354 add_filename_language (".cpp", language_cplus);
2355 add_filename_language (".cxx", language_cplus);
2356 add_filename_language (".c++", language_cplus);
2357 add_filename_language (".java", language_java);
2358 add_filename_language (".class", language_java);
2359 add_filename_language (".m", language_objc);
2360 add_filename_language (".f", language_fortran);
2361 add_filename_language (".F", language_fortran);
2362 add_filename_language (".s", language_asm);
2363 add_filename_language (".S", language_asm);
2364 add_filename_language (".pas", language_pascal);
2365 add_filename_language (".p", language_pascal);
2366 add_filename_language (".pp", language_pascal);
2367 add_filename_language (".adb", language_ada);
2368 add_filename_language (".ads", language_ada);
2369 add_filename_language (".a", language_ada);
2370 add_filename_language (".ada", language_ada);
2371 }
2372 }
2373
2374 enum language
2375 deduce_language_from_filename (char *filename)
2376 {
2377 int i;
2378 char *cp;
2379
2380 if (filename != NULL)
2381 if ((cp = strrchr (filename, '.')) != NULL)
2382 for (i = 0; i < fl_table_next; i++)
2383 if (strcmp (cp, filename_language_table[i].ext) == 0)
2384 return filename_language_table[i].lang;
2385
2386 return language_unknown;
2387 }
2388 \f
2389 /* allocate_symtab:
2390
2391 Allocate and partly initialize a new symbol table. Return a pointer
2392 to it. error() if no space.
2393
2394 Caller must set these fields:
2395 LINETABLE(symtab)
2396 symtab->blockvector
2397 symtab->dirname
2398 symtab->free_code
2399 symtab->free_ptr
2400 possibly free_named_symtabs (symtab->filename);
2401 */
2402
2403 struct symtab *
2404 allocate_symtab (char *filename, struct objfile *objfile)
2405 {
2406 struct symtab *symtab;
2407
2408 symtab = (struct symtab *)
2409 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2410 memset (symtab, 0, sizeof (*symtab));
2411 symtab->filename = obsavestring (filename, strlen (filename),
2412 &objfile->objfile_obstack);
2413 symtab->fullname = NULL;
2414 symtab->language = deduce_language_from_filename (filename);
2415 symtab->debugformat = obsavestring ("unknown", 7,
2416 &objfile->objfile_obstack);
2417
2418 /* Hook it to the objfile it comes from */
2419
2420 symtab->objfile = objfile;
2421 symtab->next = objfile->symtabs;
2422 objfile->symtabs = symtab;
2423
2424 /* FIXME: This should go away. It is only defined for the Z8000,
2425 and the Z8000 definition of this macro doesn't have anything to
2426 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2427 here for convenience. */
2428 #ifdef INIT_EXTRA_SYMTAB_INFO
2429 INIT_EXTRA_SYMTAB_INFO (symtab);
2430 #endif
2431
2432 return (symtab);
2433 }
2434
2435 struct partial_symtab *
2436 allocate_psymtab (char *filename, struct objfile *objfile)
2437 {
2438 struct partial_symtab *psymtab;
2439
2440 if (objfile->free_psymtabs)
2441 {
2442 psymtab = objfile->free_psymtabs;
2443 objfile->free_psymtabs = psymtab->next;
2444 }
2445 else
2446 psymtab = (struct partial_symtab *)
2447 obstack_alloc (&objfile->objfile_obstack,
2448 sizeof (struct partial_symtab));
2449
2450 memset (psymtab, 0, sizeof (struct partial_symtab));
2451 psymtab->filename = obsavestring (filename, strlen (filename),
2452 &objfile->objfile_obstack);
2453 psymtab->symtab = NULL;
2454
2455 /* Prepend it to the psymtab list for the objfile it belongs to.
2456 Psymtabs are searched in most recent inserted -> least recent
2457 inserted order. */
2458
2459 psymtab->objfile = objfile;
2460 psymtab->next = objfile->psymtabs;
2461 objfile->psymtabs = psymtab;
2462 #if 0
2463 {
2464 struct partial_symtab **prev_pst;
2465 psymtab->objfile = objfile;
2466 psymtab->next = NULL;
2467 prev_pst = &(objfile->psymtabs);
2468 while ((*prev_pst) != NULL)
2469 prev_pst = &((*prev_pst)->next);
2470 (*prev_pst) = psymtab;
2471 }
2472 #endif
2473
2474 return (psymtab);
2475 }
2476
2477 void
2478 discard_psymtab (struct partial_symtab *pst)
2479 {
2480 struct partial_symtab **prev_pst;
2481
2482 /* From dbxread.c:
2483 Empty psymtabs happen as a result of header files which don't
2484 have any symbols in them. There can be a lot of them. But this
2485 check is wrong, in that a psymtab with N_SLINE entries but
2486 nothing else is not empty, but we don't realize that. Fixing
2487 that without slowing things down might be tricky. */
2488
2489 /* First, snip it out of the psymtab chain */
2490
2491 prev_pst = &(pst->objfile->psymtabs);
2492 while ((*prev_pst) != pst)
2493 prev_pst = &((*prev_pst)->next);
2494 (*prev_pst) = pst->next;
2495
2496 /* Next, put it on a free list for recycling */
2497
2498 pst->next = pst->objfile->free_psymtabs;
2499 pst->objfile->free_psymtabs = pst;
2500 }
2501 \f
2502
2503 /* Reset all data structures in gdb which may contain references to symbol
2504 table data. */
2505
2506 void
2507 clear_symtab_users (void)
2508 {
2509 /* Someday, we should do better than this, by only blowing away
2510 the things that really need to be blown. */
2511
2512 /* Clear the "current" symtab first, because it is no longer valid.
2513 breakpoint_re_set may try to access the current symtab. */
2514 clear_current_source_symtab_and_line ();
2515
2516 clear_displays ();
2517 breakpoint_re_set ();
2518 set_default_breakpoint (0, 0, 0, 0);
2519 clear_pc_function_cache ();
2520 if (deprecated_target_new_objfile_hook)
2521 deprecated_target_new_objfile_hook (NULL);
2522
2523 /* Clear globals which might have pointed into a removed objfile.
2524 FIXME: It's not clear which of these are supposed to persist
2525 between expressions and which ought to be reset each time. */
2526 expression_context_block = NULL;
2527 innermost_block = NULL;
2528 }
2529
2530 static void
2531 clear_symtab_users_cleanup (void *ignore)
2532 {
2533 clear_symtab_users ();
2534 }
2535
2536 /* clear_symtab_users_once:
2537
2538 This function is run after symbol reading, or from a cleanup.
2539 If an old symbol table was obsoleted, the old symbol table
2540 has been blown away, but the other GDB data structures that may
2541 reference it have not yet been cleared or re-directed. (The old
2542 symtab was zapped, and the cleanup queued, in free_named_symtab()
2543 below.)
2544
2545 This function can be queued N times as a cleanup, or called
2546 directly; it will do all the work the first time, and then will be a
2547 no-op until the next time it is queued. This works by bumping a
2548 counter at queueing time. Much later when the cleanup is run, or at
2549 the end of symbol processing (in case the cleanup is discarded), if
2550 the queued count is greater than the "done-count", we do the work
2551 and set the done-count to the queued count. If the queued count is
2552 less than or equal to the done-count, we just ignore the call. This
2553 is needed because reading a single .o file will often replace many
2554 symtabs (one per .h file, for example), and we don't want to reset
2555 the breakpoints N times in the user's face.
2556
2557 The reason we both queue a cleanup, and call it directly after symbol
2558 reading, is because the cleanup protects us in case of errors, but is
2559 discarded if symbol reading is successful. */
2560
2561 #if 0
2562 /* FIXME: As free_named_symtabs is currently a big noop this function
2563 is no longer needed. */
2564 static void clear_symtab_users_once (void);
2565
2566 static int clear_symtab_users_queued;
2567 static int clear_symtab_users_done;
2568
2569 static void
2570 clear_symtab_users_once (void)
2571 {
2572 /* Enforce once-per-`do_cleanups'-semantics */
2573 if (clear_symtab_users_queued <= clear_symtab_users_done)
2574 return;
2575 clear_symtab_users_done = clear_symtab_users_queued;
2576
2577 clear_symtab_users ();
2578 }
2579 #endif
2580
2581 /* Delete the specified psymtab, and any others that reference it. */
2582
2583 static void
2584 cashier_psymtab (struct partial_symtab *pst)
2585 {
2586 struct partial_symtab *ps, *pprev = NULL;
2587 int i;
2588
2589 /* Find its previous psymtab in the chain */
2590 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2591 {
2592 if (ps == pst)
2593 break;
2594 pprev = ps;
2595 }
2596
2597 if (ps)
2598 {
2599 /* Unhook it from the chain. */
2600 if (ps == pst->objfile->psymtabs)
2601 pst->objfile->psymtabs = ps->next;
2602 else
2603 pprev->next = ps->next;
2604
2605 /* FIXME, we can't conveniently deallocate the entries in the
2606 partial_symbol lists (global_psymbols/static_psymbols) that
2607 this psymtab points to. These just take up space until all
2608 the psymtabs are reclaimed. Ditto the dependencies list and
2609 filename, which are all in the objfile_obstack. */
2610
2611 /* We need to cashier any psymtab that has this one as a dependency... */
2612 again:
2613 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2614 {
2615 for (i = 0; i < ps->number_of_dependencies; i++)
2616 {
2617 if (ps->dependencies[i] == pst)
2618 {
2619 cashier_psymtab (ps);
2620 goto again; /* Must restart, chain has been munged. */
2621 }
2622 }
2623 }
2624 }
2625 }
2626
2627 /* If a symtab or psymtab for filename NAME is found, free it along
2628 with any dependent breakpoints, displays, etc.
2629 Used when loading new versions of object modules with the "add-file"
2630 command. This is only called on the top-level symtab or psymtab's name;
2631 it is not called for subsidiary files such as .h files.
2632
2633 Return value is 1 if we blew away the environment, 0 if not.
2634 FIXME. The return value appears to never be used.
2635
2636 FIXME. I think this is not the best way to do this. We should
2637 work on being gentler to the environment while still cleaning up
2638 all stray pointers into the freed symtab. */
2639
2640 int
2641 free_named_symtabs (char *name)
2642 {
2643 #if 0
2644 /* FIXME: With the new method of each objfile having it's own
2645 psymtab list, this function needs serious rethinking. In particular,
2646 why was it ever necessary to toss psymtabs with specific compilation
2647 unit filenames, as opposed to all psymtabs from a particular symbol
2648 file? -- fnf
2649 Well, the answer is that some systems permit reloading of particular
2650 compilation units. We want to blow away any old info about these
2651 compilation units, regardless of which objfiles they arrived in. --gnu. */
2652
2653 struct symtab *s;
2654 struct symtab *prev;
2655 struct partial_symtab *ps;
2656 struct blockvector *bv;
2657 int blewit = 0;
2658
2659 /* We only wack things if the symbol-reload switch is set. */
2660 if (!symbol_reloading)
2661 return 0;
2662
2663 /* Some symbol formats have trouble providing file names... */
2664 if (name == 0 || *name == '\0')
2665 return 0;
2666
2667 /* Look for a psymtab with the specified name. */
2668
2669 again2:
2670 for (ps = partial_symtab_list; ps; ps = ps->next)
2671 {
2672 if (strcmp (name, ps->filename) == 0)
2673 {
2674 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2675 goto again2; /* Must restart, chain has been munged */
2676 }
2677 }
2678
2679 /* Look for a symtab with the specified name. */
2680
2681 for (s = symtab_list; s; s = s->next)
2682 {
2683 if (strcmp (name, s->filename) == 0)
2684 break;
2685 prev = s;
2686 }
2687
2688 if (s)
2689 {
2690 if (s == symtab_list)
2691 symtab_list = s->next;
2692 else
2693 prev->next = s->next;
2694
2695 /* For now, queue a delete for all breakpoints, displays, etc., whether
2696 or not they depend on the symtab being freed. This should be
2697 changed so that only those data structures affected are deleted. */
2698
2699 /* But don't delete anything if the symtab is empty.
2700 This test is necessary due to a bug in "dbxread.c" that
2701 causes empty symtabs to be created for N_SO symbols that
2702 contain the pathname of the object file. (This problem
2703 has been fixed in GDB 3.9x). */
2704
2705 bv = BLOCKVECTOR (s);
2706 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2707 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2708 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2709 {
2710 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
2711 name);
2712 clear_symtab_users_queued++;
2713 make_cleanup (clear_symtab_users_once, 0);
2714 blewit = 1;
2715 }
2716 else
2717 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2718 name);
2719
2720 free_symtab (s);
2721 }
2722 else
2723 {
2724 /* It is still possible that some breakpoints will be affected
2725 even though no symtab was found, since the file might have
2726 been compiled without debugging, and hence not be associated
2727 with a symtab. In order to handle this correctly, we would need
2728 to keep a list of text address ranges for undebuggable files.
2729 For now, we do nothing, since this is a fairly obscure case. */
2730 ;
2731 }
2732
2733 /* FIXME, what about the minimal symbol table? */
2734 return blewit;
2735 #else
2736 return (0);
2737 #endif
2738 }
2739 \f
2740 /* Allocate and partially fill a partial symtab. It will be
2741 completely filled at the end of the symbol list.
2742
2743 FILENAME is the name of the symbol-file we are reading from. */
2744
2745 struct partial_symtab *
2746 start_psymtab_common (struct objfile *objfile,
2747 struct section_offsets *section_offsets, char *filename,
2748 CORE_ADDR textlow, struct partial_symbol **global_syms,
2749 struct partial_symbol **static_syms)
2750 {
2751 struct partial_symtab *psymtab;
2752
2753 psymtab = allocate_psymtab (filename, objfile);
2754 psymtab->section_offsets = section_offsets;
2755 psymtab->textlow = textlow;
2756 psymtab->texthigh = psymtab->textlow; /* default */
2757 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2758 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2759 return (psymtab);
2760 }
2761 \f
2762 /* Add a symbol with a long value to a psymtab.
2763 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2764 Return the partial symbol that has been added. */
2765
2766 /* NOTE: carlton/2003-09-11: The reason why we return the partial
2767 symbol is so that callers can get access to the symbol's demangled
2768 name, which they don't have any cheap way to determine otherwise.
2769 (Currenly, dwarf2read.c is the only file who uses that information,
2770 though it's possible that other readers might in the future.)
2771 Elena wasn't thrilled about that, and I don't blame her, but we
2772 couldn't come up with a better way to get that information. If
2773 it's needed in other situations, we could consider breaking up
2774 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2775 cache. */
2776
2777 const struct partial_symbol *
2778 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2779 enum address_class class,
2780 struct psymbol_allocation_list *list, long val, /* Value as a long */
2781 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2782 enum language language, struct objfile *objfile)
2783 {
2784 struct partial_symbol *psym;
2785 char *buf = alloca (namelength + 1);
2786 /* psymbol is static so that there will be no uninitialized gaps in the
2787 structure which might contain random data, causing cache misses in
2788 bcache. */
2789 static struct partial_symbol psymbol;
2790
2791 /* Create local copy of the partial symbol */
2792 memcpy (buf, name, namelength);
2793 buf[namelength] = '\0';
2794 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2795 if (val != 0)
2796 {
2797 SYMBOL_VALUE (&psymbol) = val;
2798 }
2799 else
2800 {
2801 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2802 }
2803 SYMBOL_SECTION (&psymbol) = 0;
2804 SYMBOL_LANGUAGE (&psymbol) = language;
2805 PSYMBOL_DOMAIN (&psymbol) = domain;
2806 PSYMBOL_CLASS (&psymbol) = class;
2807
2808 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2809
2810 /* Stash the partial symbol away in the cache */
2811 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2812 objfile->psymbol_cache);
2813
2814 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2815 if (list->next >= list->list + list->size)
2816 {
2817 extend_psymbol_list (list, objfile);
2818 }
2819 *list->next++ = psym;
2820 OBJSTAT (objfile, n_psyms++);
2821
2822 return psym;
2823 }
2824
2825 /* Add a symbol with a long value to a psymtab. This differs from
2826 * add_psymbol_to_list above in taking both a mangled and a demangled
2827 * name. */
2828
2829 void
2830 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2831 int dem_namelength, domain_enum domain,
2832 enum address_class class,
2833 struct psymbol_allocation_list *list, long val, /* Value as a long */
2834 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2835 enum language language,
2836 struct objfile *objfile)
2837 {
2838 struct partial_symbol *psym;
2839 char *buf = alloca (namelength + 1);
2840 /* psymbol is static so that there will be no uninitialized gaps in the
2841 structure which might contain random data, causing cache misses in
2842 bcache. */
2843 static struct partial_symbol psymbol;
2844
2845 /* Create local copy of the partial symbol */
2846
2847 memcpy (buf, name, namelength);
2848 buf[namelength] = '\0';
2849 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2850 objfile->psymbol_cache);
2851
2852 buf = alloca (dem_namelength + 1);
2853 memcpy (buf, dem_name, dem_namelength);
2854 buf[dem_namelength] = '\0';
2855
2856 switch (language)
2857 {
2858 case language_c:
2859 case language_cplus:
2860 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2861 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2862 break;
2863 /* FIXME What should be done for the default case? Ignoring for now. */
2864 }
2865
2866 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2867 if (val != 0)
2868 {
2869 SYMBOL_VALUE (&psymbol) = val;
2870 }
2871 else
2872 {
2873 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2874 }
2875 SYMBOL_SECTION (&psymbol) = 0;
2876 SYMBOL_LANGUAGE (&psymbol) = language;
2877 PSYMBOL_DOMAIN (&psymbol) = domain;
2878 PSYMBOL_CLASS (&psymbol) = class;
2879 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2880
2881 /* Stash the partial symbol away in the cache */
2882 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2883 objfile->psymbol_cache);
2884
2885 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2886 if (list->next >= list->list + list->size)
2887 {
2888 extend_psymbol_list (list, objfile);
2889 }
2890 *list->next++ = psym;
2891 OBJSTAT (objfile, n_psyms++);
2892 }
2893
2894 /* Initialize storage for partial symbols. */
2895
2896 void
2897 init_psymbol_list (struct objfile *objfile, int total_symbols)
2898 {
2899 /* Free any previously allocated psymbol lists. */
2900
2901 if (objfile->global_psymbols.list)
2902 {
2903 xfree (objfile->global_psymbols.list);
2904 }
2905 if (objfile->static_psymbols.list)
2906 {
2907 xfree (objfile->static_psymbols.list);
2908 }
2909
2910 /* Current best guess is that approximately a twentieth
2911 of the total symbols (in a debugging file) are global or static
2912 oriented symbols */
2913
2914 objfile->global_psymbols.size = total_symbols / 10;
2915 objfile->static_psymbols.size = total_symbols / 10;
2916
2917 if (objfile->global_psymbols.size > 0)
2918 {
2919 objfile->global_psymbols.next =
2920 objfile->global_psymbols.list = (struct partial_symbol **)
2921 xmalloc ((objfile->global_psymbols.size
2922 * sizeof (struct partial_symbol *)));
2923 }
2924 if (objfile->static_psymbols.size > 0)
2925 {
2926 objfile->static_psymbols.next =
2927 objfile->static_psymbols.list = (struct partial_symbol **)
2928 xmalloc ((objfile->static_psymbols.size
2929 * sizeof (struct partial_symbol *)));
2930 }
2931 }
2932
2933 /* OVERLAYS:
2934 The following code implements an abstraction for debugging overlay sections.
2935
2936 The target model is as follows:
2937 1) The gnu linker will permit multiple sections to be mapped into the
2938 same VMA, each with its own unique LMA (or load address).
2939 2) It is assumed that some runtime mechanism exists for mapping the
2940 sections, one by one, from the load address into the VMA address.
2941 3) This code provides a mechanism for gdb to keep track of which
2942 sections should be considered to be mapped from the VMA to the LMA.
2943 This information is used for symbol lookup, and memory read/write.
2944 For instance, if a section has been mapped then its contents
2945 should be read from the VMA, otherwise from the LMA.
2946
2947 Two levels of debugger support for overlays are available. One is
2948 "manual", in which the debugger relies on the user to tell it which
2949 overlays are currently mapped. This level of support is
2950 implemented entirely in the core debugger, and the information about
2951 whether a section is mapped is kept in the objfile->obj_section table.
2952
2953 The second level of support is "automatic", and is only available if
2954 the target-specific code provides functionality to read the target's
2955 overlay mapping table, and translate its contents for the debugger
2956 (by updating the mapped state information in the obj_section tables).
2957
2958 The interface is as follows:
2959 User commands:
2960 overlay map <name> -- tell gdb to consider this section mapped
2961 overlay unmap <name> -- tell gdb to consider this section unmapped
2962 overlay list -- list the sections that GDB thinks are mapped
2963 overlay read-target -- get the target's state of what's mapped
2964 overlay off/manual/auto -- set overlay debugging state
2965 Functional interface:
2966 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2967 section, return that section.
2968 find_pc_overlay(pc): find any overlay section that contains
2969 the pc, either in its VMA or its LMA
2970 overlay_is_mapped(sect): true if overlay is marked as mapped
2971 section_is_overlay(sect): true if section's VMA != LMA
2972 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2973 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2974 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2975 overlay_mapped_address(...): map an address from section's LMA to VMA
2976 overlay_unmapped_address(...): map an address from section's VMA to LMA
2977 symbol_overlayed_address(...): Return a "current" address for symbol:
2978 either in VMA or LMA depending on whether
2979 the symbol's section is currently mapped
2980 */
2981
2982 /* Overlay debugging state: */
2983
2984 enum overlay_debugging_state overlay_debugging = ovly_off;
2985 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2986
2987 /* Target vector for refreshing overlay mapped state */
2988 static void simple_overlay_update (struct obj_section *);
2989 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2990
2991 /* Function: section_is_overlay (SECTION)
2992 Returns true if SECTION has VMA not equal to LMA, ie.
2993 SECTION is loaded at an address different from where it will "run". */
2994
2995 int
2996 section_is_overlay (asection *section)
2997 {
2998 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2999
3000 if (overlay_debugging)
3001 if (section && section->lma != 0 &&
3002 section->vma != section->lma)
3003 return 1;
3004
3005 return 0;
3006 }
3007
3008 /* Function: overlay_invalidate_all (void)
3009 Invalidate the mapped state of all overlay sections (mark it as stale). */
3010
3011 static void
3012 overlay_invalidate_all (void)
3013 {
3014 struct objfile *objfile;
3015 struct obj_section *sect;
3016
3017 ALL_OBJSECTIONS (objfile, sect)
3018 if (section_is_overlay (sect->the_bfd_section))
3019 sect->ovly_mapped = -1;
3020 }
3021
3022 /* Function: overlay_is_mapped (SECTION)
3023 Returns true if section is an overlay, and is currently mapped.
3024 Private: public access is thru function section_is_mapped.
3025
3026 Access to the ovly_mapped flag is restricted to this function, so
3027 that we can do automatic update. If the global flag
3028 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3029 overlay_invalidate_all. If the mapped state of the particular
3030 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3031
3032 static int
3033 overlay_is_mapped (struct obj_section *osect)
3034 {
3035 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3036 return 0;
3037
3038 switch (overlay_debugging)
3039 {
3040 default:
3041 case ovly_off:
3042 return 0; /* overlay debugging off */
3043 case ovly_auto: /* overlay debugging automatic */
3044 /* Unles there is a target_overlay_update function,
3045 there's really nothing useful to do here (can't really go auto) */
3046 if (target_overlay_update)
3047 {
3048 if (overlay_cache_invalid)
3049 {
3050 overlay_invalidate_all ();
3051 overlay_cache_invalid = 0;
3052 }
3053 if (osect->ovly_mapped == -1)
3054 (*target_overlay_update) (osect);
3055 }
3056 /* fall thru to manual case */
3057 case ovly_on: /* overlay debugging manual */
3058 return osect->ovly_mapped == 1;
3059 }
3060 }
3061
3062 /* Function: section_is_mapped
3063 Returns true if section is an overlay, and is currently mapped. */
3064
3065 int
3066 section_is_mapped (asection *section)
3067 {
3068 struct objfile *objfile;
3069 struct obj_section *osect;
3070
3071 if (overlay_debugging)
3072 if (section && section_is_overlay (section))
3073 ALL_OBJSECTIONS (objfile, osect)
3074 if (osect->the_bfd_section == section)
3075 return overlay_is_mapped (osect);
3076
3077 return 0;
3078 }
3079
3080 /* Function: pc_in_unmapped_range
3081 If PC falls into the lma range of SECTION, return true, else false. */
3082
3083 CORE_ADDR
3084 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
3085 {
3086 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3087
3088 int size;
3089
3090 if (overlay_debugging)
3091 if (section && section_is_overlay (section))
3092 {
3093 size = bfd_get_section_size (section);
3094 if (section->lma <= pc && pc < section->lma + size)
3095 return 1;
3096 }
3097 return 0;
3098 }
3099
3100 /* Function: pc_in_mapped_range
3101 If PC falls into the vma range of SECTION, return true, else false. */
3102
3103 CORE_ADDR
3104 pc_in_mapped_range (CORE_ADDR pc, asection *section)
3105 {
3106 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3107
3108 int size;
3109
3110 if (overlay_debugging)
3111 if (section && section_is_overlay (section))
3112 {
3113 size = bfd_get_section_size (section);
3114 if (section->vma <= pc && pc < section->vma + size)
3115 return 1;
3116 }
3117 return 0;
3118 }
3119
3120
3121 /* Return true if the mapped ranges of sections A and B overlap, false
3122 otherwise. */
3123 static int
3124 sections_overlap (asection *a, asection *b)
3125 {
3126 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3127
3128 CORE_ADDR a_start = a->vma;
3129 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
3130 CORE_ADDR b_start = b->vma;
3131 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
3132
3133 return (a_start < b_end && b_start < a_end);
3134 }
3135
3136 /* Function: overlay_unmapped_address (PC, SECTION)
3137 Returns the address corresponding to PC in the unmapped (load) range.
3138 May be the same as PC. */
3139
3140 CORE_ADDR
3141 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3142 {
3143 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3144
3145 if (overlay_debugging)
3146 if (section && section_is_overlay (section) &&
3147 pc_in_mapped_range (pc, section))
3148 return pc + section->lma - section->vma;
3149
3150 return pc;
3151 }
3152
3153 /* Function: overlay_mapped_address (PC, SECTION)
3154 Returns the address corresponding to PC in the mapped (runtime) range.
3155 May be the same as PC. */
3156
3157 CORE_ADDR
3158 overlay_mapped_address (CORE_ADDR pc, asection *section)
3159 {
3160 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3161
3162 if (overlay_debugging)
3163 if (section && section_is_overlay (section) &&
3164 pc_in_unmapped_range (pc, section))
3165 return pc + section->vma - section->lma;
3166
3167 return pc;
3168 }
3169
3170
3171 /* Function: symbol_overlayed_address
3172 Return one of two addresses (relative to the VMA or to the LMA),
3173 depending on whether the section is mapped or not. */
3174
3175 CORE_ADDR
3176 symbol_overlayed_address (CORE_ADDR address, asection *section)
3177 {
3178 if (overlay_debugging)
3179 {
3180 /* If the symbol has no section, just return its regular address. */
3181 if (section == 0)
3182 return address;
3183 /* If the symbol's section is not an overlay, just return its address */
3184 if (!section_is_overlay (section))
3185 return address;
3186 /* If the symbol's section is mapped, just return its address */
3187 if (section_is_mapped (section))
3188 return address;
3189 /*
3190 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3191 * then return its LOADED address rather than its vma address!!
3192 */
3193 return overlay_unmapped_address (address, section);
3194 }
3195 return address;
3196 }
3197
3198 /* Function: find_pc_overlay (PC)
3199 Return the best-match overlay section for PC:
3200 If PC matches a mapped overlay section's VMA, return that section.
3201 Else if PC matches an unmapped section's VMA, return that section.
3202 Else if PC matches an unmapped section's LMA, return that section. */
3203
3204 asection *
3205 find_pc_overlay (CORE_ADDR pc)
3206 {
3207 struct objfile *objfile;
3208 struct obj_section *osect, *best_match = NULL;
3209
3210 if (overlay_debugging)
3211 ALL_OBJSECTIONS (objfile, osect)
3212 if (section_is_overlay (osect->the_bfd_section))
3213 {
3214 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3215 {
3216 if (overlay_is_mapped (osect))
3217 return osect->the_bfd_section;
3218 else
3219 best_match = osect;
3220 }
3221 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3222 best_match = osect;
3223 }
3224 return best_match ? best_match->the_bfd_section : NULL;
3225 }
3226
3227 /* Function: find_pc_mapped_section (PC)
3228 If PC falls into the VMA address range of an overlay section that is
3229 currently marked as MAPPED, return that section. Else return NULL. */
3230
3231 asection *
3232 find_pc_mapped_section (CORE_ADDR pc)
3233 {
3234 struct objfile *objfile;
3235 struct obj_section *osect;
3236
3237 if (overlay_debugging)
3238 ALL_OBJSECTIONS (objfile, osect)
3239 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3240 overlay_is_mapped (osect))
3241 return osect->the_bfd_section;
3242
3243 return NULL;
3244 }
3245
3246 /* Function: list_overlays_command
3247 Print a list of mapped sections and their PC ranges */
3248
3249 void
3250 list_overlays_command (char *args, int from_tty)
3251 {
3252 int nmapped = 0;
3253 struct objfile *objfile;
3254 struct obj_section *osect;
3255
3256 if (overlay_debugging)
3257 ALL_OBJSECTIONS (objfile, osect)
3258 if (overlay_is_mapped (osect))
3259 {
3260 const char *name;
3261 bfd_vma lma, vma;
3262 int size;
3263
3264 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3265 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3266 size = bfd_get_section_size (osect->the_bfd_section);
3267 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3268
3269 printf_filtered ("Section %s, loaded at ", name);
3270 deprecated_print_address_numeric (lma, 1, gdb_stdout);
3271 puts_filtered (" - ");
3272 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
3273 printf_filtered (", mapped at ");
3274 deprecated_print_address_numeric (vma, 1, gdb_stdout);
3275 puts_filtered (" - ");
3276 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
3277 puts_filtered ("\n");
3278
3279 nmapped++;
3280 }
3281 if (nmapped == 0)
3282 printf_filtered (_("No sections are mapped.\n"));
3283 }
3284
3285 /* Function: map_overlay_command
3286 Mark the named section as mapped (ie. residing at its VMA address). */
3287
3288 void
3289 map_overlay_command (char *args, int from_tty)
3290 {
3291 struct objfile *objfile, *objfile2;
3292 struct obj_section *sec, *sec2;
3293 asection *bfdsec;
3294
3295 if (!overlay_debugging)
3296 error (_("\
3297 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3298 the 'overlay manual' command."));
3299
3300 if (args == 0 || *args == 0)
3301 error (_("Argument required: name of an overlay section"));
3302
3303 /* First, find a section matching the user supplied argument */
3304 ALL_OBJSECTIONS (objfile, sec)
3305 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3306 {
3307 /* Now, check to see if the section is an overlay. */
3308 bfdsec = sec->the_bfd_section;
3309 if (!section_is_overlay (bfdsec))
3310 continue; /* not an overlay section */
3311
3312 /* Mark the overlay as "mapped" */
3313 sec->ovly_mapped = 1;
3314
3315 /* Next, make a pass and unmap any sections that are
3316 overlapped by this new section: */
3317 ALL_OBJSECTIONS (objfile2, sec2)
3318 if (sec2->ovly_mapped
3319 && sec != sec2
3320 && sec->the_bfd_section != sec2->the_bfd_section
3321 && sections_overlap (sec->the_bfd_section,
3322 sec2->the_bfd_section))
3323 {
3324 if (info_verbose)
3325 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3326 bfd_section_name (objfile->obfd,
3327 sec2->the_bfd_section));
3328 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3329 }
3330 return;
3331 }
3332 error (_("No overlay section called %s"), args);
3333 }
3334
3335 /* Function: unmap_overlay_command
3336 Mark the overlay section as unmapped
3337 (ie. resident in its LMA address range, rather than the VMA range). */
3338
3339 void
3340 unmap_overlay_command (char *args, int from_tty)
3341 {
3342 struct objfile *objfile;
3343 struct obj_section *sec;
3344
3345 if (!overlay_debugging)
3346 error (_("\
3347 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3348 the 'overlay manual' command."));
3349
3350 if (args == 0 || *args == 0)
3351 error (_("Argument required: name of an overlay section"));
3352
3353 /* First, find a section matching the user supplied argument */
3354 ALL_OBJSECTIONS (objfile, sec)
3355 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3356 {
3357 if (!sec->ovly_mapped)
3358 error (_("Section %s is not mapped"), args);
3359 sec->ovly_mapped = 0;
3360 return;
3361 }
3362 error (_("No overlay section called %s"), args);
3363 }
3364
3365 /* Function: overlay_auto_command
3366 A utility command to turn on overlay debugging.
3367 Possibly this should be done via a set/show command. */
3368
3369 static void
3370 overlay_auto_command (char *args, int from_tty)
3371 {
3372 overlay_debugging = ovly_auto;
3373 enable_overlay_breakpoints ();
3374 if (info_verbose)
3375 printf_unfiltered (_("Automatic overlay debugging enabled."));
3376 }
3377
3378 /* Function: overlay_manual_command
3379 A utility command to turn on overlay debugging.
3380 Possibly this should be done via a set/show command. */
3381
3382 static void
3383 overlay_manual_command (char *args, int from_tty)
3384 {
3385 overlay_debugging = ovly_on;
3386 disable_overlay_breakpoints ();
3387 if (info_verbose)
3388 printf_unfiltered (_("Overlay debugging enabled."));
3389 }
3390
3391 /* Function: overlay_off_command
3392 A utility command to turn on overlay debugging.
3393 Possibly this should be done via a set/show command. */
3394
3395 static void
3396 overlay_off_command (char *args, int from_tty)
3397 {
3398 overlay_debugging = ovly_off;
3399 disable_overlay_breakpoints ();
3400 if (info_verbose)
3401 printf_unfiltered (_("Overlay debugging disabled."));
3402 }
3403
3404 static void
3405 overlay_load_command (char *args, int from_tty)
3406 {
3407 if (target_overlay_update)
3408 (*target_overlay_update) (NULL);
3409 else
3410 error (_("This target does not know how to read its overlay state."));
3411 }
3412
3413 /* Function: overlay_command
3414 A place-holder for a mis-typed command */
3415
3416 /* Command list chain containing all defined "overlay" subcommands. */
3417 struct cmd_list_element *overlaylist;
3418
3419 static void
3420 overlay_command (char *args, int from_tty)
3421 {
3422 printf_unfiltered
3423 ("\"overlay\" must be followed by the name of an overlay command.\n");
3424 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3425 }
3426
3427
3428 /* Target Overlays for the "Simplest" overlay manager:
3429
3430 This is GDB's default target overlay layer. It works with the
3431 minimal overlay manager supplied as an example by Cygnus. The
3432 entry point is via a function pointer "target_overlay_update",
3433 so targets that use a different runtime overlay manager can
3434 substitute their own overlay_update function and take over the
3435 function pointer.
3436
3437 The overlay_update function pokes around in the target's data structures
3438 to see what overlays are mapped, and updates GDB's overlay mapping with
3439 this information.
3440
3441 In this simple implementation, the target data structures are as follows:
3442 unsigned _novlys; /# number of overlay sections #/
3443 unsigned _ovly_table[_novlys][4] = {
3444 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3445 {..., ..., ..., ...},
3446 }
3447 unsigned _novly_regions; /# number of overlay regions #/
3448 unsigned _ovly_region_table[_novly_regions][3] = {
3449 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3450 {..., ..., ...},
3451 }
3452 These functions will attempt to update GDB's mappedness state in the
3453 symbol section table, based on the target's mappedness state.
3454
3455 To do this, we keep a cached copy of the target's _ovly_table, and
3456 attempt to detect when the cached copy is invalidated. The main
3457 entry point is "simple_overlay_update(SECT), which looks up SECT in
3458 the cached table and re-reads only the entry for that section from
3459 the target (whenever possible).
3460 */
3461
3462 /* Cached, dynamically allocated copies of the target data structures: */
3463 static unsigned (*cache_ovly_table)[4] = 0;
3464 #if 0
3465 static unsigned (*cache_ovly_region_table)[3] = 0;
3466 #endif
3467 static unsigned cache_novlys = 0;
3468 #if 0
3469 static unsigned cache_novly_regions = 0;
3470 #endif
3471 static CORE_ADDR cache_ovly_table_base = 0;
3472 #if 0
3473 static CORE_ADDR cache_ovly_region_table_base = 0;
3474 #endif
3475 enum ovly_index
3476 {
3477 VMA, SIZE, LMA, MAPPED
3478 };
3479 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3480
3481 /* Throw away the cached copy of _ovly_table */
3482 static void
3483 simple_free_overlay_table (void)
3484 {
3485 if (cache_ovly_table)
3486 xfree (cache_ovly_table);
3487 cache_novlys = 0;
3488 cache_ovly_table = NULL;
3489 cache_ovly_table_base = 0;
3490 }
3491
3492 #if 0
3493 /* Throw away the cached copy of _ovly_region_table */
3494 static void
3495 simple_free_overlay_region_table (void)
3496 {
3497 if (cache_ovly_region_table)
3498 xfree (cache_ovly_region_table);
3499 cache_novly_regions = 0;
3500 cache_ovly_region_table = NULL;
3501 cache_ovly_region_table_base = 0;
3502 }
3503 #endif
3504
3505 /* Read an array of ints from the target into a local buffer.
3506 Convert to host order. int LEN is number of ints */
3507 static void
3508 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3509 {
3510 /* FIXME (alloca): Not safe if array is very large. */
3511 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3512 int i;
3513
3514 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3515 for (i = 0; i < len; i++)
3516 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3517 TARGET_LONG_BYTES);
3518 }
3519
3520 /* Find and grab a copy of the target _ovly_table
3521 (and _novlys, which is needed for the table's size) */
3522 static int
3523 simple_read_overlay_table (void)
3524 {
3525 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3526
3527 simple_free_overlay_table ();
3528 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3529 if (! novlys_msym)
3530 {
3531 error (_("Error reading inferior's overlay table: "
3532 "couldn't find `_novlys' variable\n"
3533 "in inferior. Use `overlay manual' mode."));
3534 return 0;
3535 }
3536
3537 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3538 if (! ovly_table_msym)
3539 {
3540 error (_("Error reading inferior's overlay table: couldn't find "
3541 "`_ovly_table' array\n"
3542 "in inferior. Use `overlay manual' mode."));
3543 return 0;
3544 }
3545
3546 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3547 cache_ovly_table
3548 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3549 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3550 read_target_long_array (cache_ovly_table_base,
3551 (unsigned int *) cache_ovly_table,
3552 cache_novlys * 4);
3553
3554 return 1; /* SUCCESS */
3555 }
3556
3557 #if 0
3558 /* Find and grab a copy of the target _ovly_region_table
3559 (and _novly_regions, which is needed for the table's size) */
3560 static int
3561 simple_read_overlay_region_table (void)
3562 {
3563 struct minimal_symbol *msym;
3564
3565 simple_free_overlay_region_table ();
3566 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3567 if (msym != NULL)
3568 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3569 else
3570 return 0; /* failure */
3571 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3572 if (cache_ovly_region_table != NULL)
3573 {
3574 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3575 if (msym != NULL)
3576 {
3577 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3578 read_target_long_array (cache_ovly_region_table_base,
3579 (unsigned int *) cache_ovly_region_table,
3580 cache_novly_regions * 3);
3581 }
3582 else
3583 return 0; /* failure */
3584 }
3585 else
3586 return 0; /* failure */
3587 return 1; /* SUCCESS */
3588 }
3589 #endif
3590
3591 /* Function: simple_overlay_update_1
3592 A helper function for simple_overlay_update. Assuming a cached copy
3593 of _ovly_table exists, look through it to find an entry whose vma,
3594 lma and size match those of OSECT. Re-read the entry and make sure
3595 it still matches OSECT (else the table may no longer be valid).
3596 Set OSECT's mapped state to match the entry. Return: 1 for
3597 success, 0 for failure. */
3598
3599 static int
3600 simple_overlay_update_1 (struct obj_section *osect)
3601 {
3602 int i, size;
3603 bfd *obfd = osect->objfile->obfd;
3604 asection *bsect = osect->the_bfd_section;
3605
3606 size = bfd_get_section_size (osect->the_bfd_section);
3607 for (i = 0; i < cache_novlys; i++)
3608 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3609 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3610 /* && cache_ovly_table[i][SIZE] == size */ )
3611 {
3612 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3613 (unsigned int *) cache_ovly_table[i], 4);
3614 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3615 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3616 /* && cache_ovly_table[i][SIZE] == size */ )
3617 {
3618 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3619 return 1;
3620 }
3621 else /* Warning! Warning! Target's ovly table has changed! */
3622 return 0;
3623 }
3624 return 0;
3625 }
3626
3627 /* Function: simple_overlay_update
3628 If OSECT is NULL, then update all sections' mapped state
3629 (after re-reading the entire target _ovly_table).
3630 If OSECT is non-NULL, then try to find a matching entry in the
3631 cached ovly_table and update only OSECT's mapped state.
3632 If a cached entry can't be found or the cache isn't valid, then
3633 re-read the entire cache, and go ahead and update all sections. */
3634
3635 static void
3636 simple_overlay_update (struct obj_section *osect)
3637 {
3638 struct objfile *objfile;
3639
3640 /* Were we given an osect to look up? NULL means do all of them. */
3641 if (osect)
3642 /* Have we got a cached copy of the target's overlay table? */
3643 if (cache_ovly_table != NULL)
3644 /* Does its cached location match what's currently in the symtab? */
3645 if (cache_ovly_table_base ==
3646 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3647 /* Then go ahead and try to look up this single section in the cache */
3648 if (simple_overlay_update_1 (osect))
3649 /* Found it! We're done. */
3650 return;
3651
3652 /* Cached table no good: need to read the entire table anew.
3653 Or else we want all the sections, in which case it's actually
3654 more efficient to read the whole table in one block anyway. */
3655
3656 if (! simple_read_overlay_table ())
3657 return;
3658
3659 /* Now may as well update all sections, even if only one was requested. */
3660 ALL_OBJSECTIONS (objfile, osect)
3661 if (section_is_overlay (osect->the_bfd_section))
3662 {
3663 int i, size;
3664 bfd *obfd = osect->objfile->obfd;
3665 asection *bsect = osect->the_bfd_section;
3666
3667 size = bfd_get_section_size (bsect);
3668 for (i = 0; i < cache_novlys; i++)
3669 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3670 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3671 /* && cache_ovly_table[i][SIZE] == size */ )
3672 { /* obj_section matches i'th entry in ovly_table */
3673 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3674 break; /* finished with inner for loop: break out */
3675 }
3676 }
3677 }
3678
3679 /* Set the output sections and output offsets for section SECTP in
3680 ABFD. The relocation code in BFD will read these offsets, so we
3681 need to be sure they're initialized. We map each section to itself,
3682 with no offset; this means that SECTP->vma will be honored. */
3683
3684 static void
3685 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3686 {
3687 sectp->output_section = sectp;
3688 sectp->output_offset = 0;
3689 }
3690
3691 /* Relocate the contents of a debug section SECTP in ABFD. The
3692 contents are stored in BUF if it is non-NULL, or returned in a
3693 malloc'd buffer otherwise.
3694
3695 For some platforms and debug info formats, shared libraries contain
3696 relocations against the debug sections (particularly for DWARF-2;
3697 one affected platform is PowerPC GNU/Linux, although it depends on
3698 the version of the linker in use). Also, ELF object files naturally
3699 have unresolved relocations for their debug sections. We need to apply
3700 the relocations in order to get the locations of symbols correct. */
3701
3702 bfd_byte *
3703 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3704 {
3705 /* We're only interested in debugging sections with relocation
3706 information. */
3707 if ((sectp->flags & SEC_RELOC) == 0)
3708 return NULL;
3709 if ((sectp->flags & SEC_DEBUGGING) == 0)
3710 return NULL;
3711
3712 /* We will handle section offsets properly elsewhere, so relocate as if
3713 all sections begin at 0. */
3714 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3715
3716 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3717 }
3718
3719 void
3720 _initialize_symfile (void)
3721 {
3722 struct cmd_list_element *c;
3723
3724 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3725 Load symbol table from executable file FILE.\n\
3726 The `file' command can also load symbol tables, as well as setting the file\n\
3727 to execute."), &cmdlist);
3728 set_cmd_completer (c, filename_completer);
3729
3730 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3731 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3732 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3733 ADDR is the starting address of the file's text.\n\
3734 The optional arguments are section-name section-address pairs and\n\
3735 should be specified if the data and bss segments are not contiguous\n\
3736 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3737 &cmdlist);
3738 set_cmd_completer (c, filename_completer);
3739
3740 c = add_cmd ("add-shared-symbol-files", class_files,
3741 add_shared_symbol_files_command, _("\
3742 Load the symbols from shared objects in the dynamic linker's link map."),
3743 &cmdlist);
3744 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3745 &cmdlist);
3746
3747 c = add_cmd ("load", class_files, load_command, _("\
3748 Dynamically load FILE into the running program, and record its symbols\n\
3749 for access from GDB.\n\
3750 A load OFFSET may also be given."), &cmdlist);
3751 set_cmd_completer (c, filename_completer);
3752
3753 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3754 &symbol_reloading, _("\
3755 Set dynamic symbol table reloading multiple times in one run."), _("\
3756 Show dynamic symbol table reloading multiple times in one run."), NULL,
3757 NULL,
3758 show_symbol_reloading,
3759 &setlist, &showlist);
3760
3761 add_prefix_cmd ("overlay", class_support, overlay_command,
3762 _("Commands for debugging overlays."), &overlaylist,
3763 "overlay ", 0, &cmdlist);
3764
3765 add_com_alias ("ovly", "overlay", class_alias, 1);
3766 add_com_alias ("ov", "overlay", class_alias, 1);
3767
3768 add_cmd ("map-overlay", class_support, map_overlay_command,
3769 _("Assert that an overlay section is mapped."), &overlaylist);
3770
3771 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3772 _("Assert that an overlay section is unmapped."), &overlaylist);
3773
3774 add_cmd ("list-overlays", class_support, list_overlays_command,
3775 _("List mappings of overlay sections."), &overlaylist);
3776
3777 add_cmd ("manual", class_support, overlay_manual_command,
3778 _("Enable overlay debugging."), &overlaylist);
3779 add_cmd ("off", class_support, overlay_off_command,
3780 _("Disable overlay debugging."), &overlaylist);
3781 add_cmd ("auto", class_support, overlay_auto_command,
3782 _("Enable automatic overlay debugging."), &overlaylist);
3783 add_cmd ("load-target", class_support, overlay_load_command,
3784 _("Read the overlay mapping state from the target."), &overlaylist);
3785
3786 /* Filename extension to source language lookup table: */
3787 init_filename_language_table ();
3788 add_setshow_string_noescape_cmd ("extension-language", class_files,
3789 &ext_args, _("\
3790 Set mapping between filename extension and source language."), _("\
3791 Show mapping between filename extension and source language."), _("\
3792 Usage: set extension-language .foo bar"),
3793 set_ext_lang_command,
3794 show_ext_args,
3795 &setlist, &showlist);
3796
3797 add_info ("extensions", info_ext_lang_command,
3798 _("All filename extensions associated with a source language."));
3799
3800 debug_file_directory = xstrdup (DEBUGDIR);
3801 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3802 &debug_file_directory, _("\
3803 Set the directory where separate debug symbols are searched for."), _("\
3804 Show the directory where separate debug symbols are searched for."), _("\
3805 Separate debug symbols are first searched for in the same\n\
3806 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3807 and lastly at the path of the directory of the binary with\n\
3808 the global debug-file directory prepended."),
3809 NULL,
3810 show_debug_file_directory,
3811 &setlist, &showlist);
3812 }
This page took 0.15269 seconds and 5 git commands to generate.