* configure.ac (DEBUGDIR_RELOCATABLE): Define for debugdir inside
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 #include "defs.h"
27 #include "bfdlink.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcore.h"
31 #include "frame.h"
32 #include "target.h"
33 #include "value.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "source.h"
37 #include "gdbcmd.h"
38 #include "breakpoint.h"
39 #include "language.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "inferior.h" /* for write_pc */
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54 #include "parser-defs.h"
55
56 #include <sys/types.h>
57 #include <fcntl.h>
58 #include "gdb_string.h"
59 #include "gdb_stat.h"
60 #include <ctype.h>
61 #include <time.h>
62 #include <sys/time.h>
63
64
65 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
66 void (*deprecated_show_load_progress) (const char *section,
67 unsigned long section_sent,
68 unsigned long section_size,
69 unsigned long total_sent,
70 unsigned long total_size);
71 void (*deprecated_pre_add_symbol_hook) (const char *);
72 void (*deprecated_post_add_symbol_hook) (void);
73 void (*deprecated_target_new_objfile_hook) (struct objfile *);
74
75 static void clear_symtab_users_cleanup (void *ignore);
76
77 /* Global variables owned by this file */
78 int readnow_symbol_files; /* Read full symbols immediately */
79
80 /* External variables and functions referenced. */
81
82 extern void report_transfer_performance (unsigned long, time_t, time_t);
83
84 /* Functions this file defines */
85
86 #if 0
87 static int simple_read_overlay_region_table (void);
88 static void simple_free_overlay_region_table (void);
89 #endif
90
91 static void set_initial_language (void);
92
93 static void load_command (char *, int);
94
95 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
96
97 static void add_symbol_file_command (char *, int);
98
99 static void add_shared_symbol_files_command (char *, int);
100
101 static void reread_separate_symbols (struct objfile *objfile);
102
103 static void cashier_psymtab (struct partial_symtab *);
104
105 bfd *symfile_bfd_open (char *);
106
107 int get_section_index (struct objfile *, char *);
108
109 static void find_sym_fns (struct objfile *);
110
111 static void decrement_reading_symtab (void *);
112
113 static void overlay_invalidate_all (void);
114
115 static int overlay_is_mapped (struct obj_section *);
116
117 void list_overlays_command (char *, int);
118
119 void map_overlay_command (char *, int);
120
121 void unmap_overlay_command (char *, int);
122
123 static void overlay_auto_command (char *, int);
124
125 static void overlay_manual_command (char *, int);
126
127 static void overlay_off_command (char *, int);
128
129 static void overlay_load_command (char *, int);
130
131 static void overlay_command (char *, int);
132
133 static void simple_free_overlay_table (void);
134
135 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
136
137 static int simple_read_overlay_table (void);
138
139 static int simple_overlay_update_1 (struct obj_section *);
140
141 static void add_filename_language (char *ext, enum language lang);
142
143 static void info_ext_lang_command (char *args, int from_tty);
144
145 static char *find_separate_debug_file (struct objfile *objfile);
146
147 static void init_filename_language_table (void);
148
149 void _initialize_symfile (void);
150
151 /* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155 static struct sym_fns *symtab_fns = NULL;
156
157 /* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160 #ifdef SYMBOL_RELOADING_DEFAULT
161 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162 #else
163 int symbol_reloading = 0;
164 #endif
165 static void
166 show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 fprintf_filtered (file, _("\
170 Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172 }
173
174
175 /* If non-zero, shared library symbols will be added automatically
176 when the inferior is created, new libraries are loaded, or when
177 attaching to the inferior. This is almost always what users will
178 want to have happen; but for very large programs, the startup time
179 will be excessive, and so if this is a problem, the user can clear
180 this flag and then add the shared library symbols as needed. Note
181 that there is a potential for confusion, since if the shared
182 library symbols are not loaded, commands like "info fun" will *not*
183 report all the functions that are actually present. */
184
185 int auto_solib_add = 1;
186
187 /* For systems that support it, a threshold size in megabytes. If
188 automatically adding a new library's symbol table to those already
189 known to the debugger would cause the total shared library symbol
190 size to exceed this threshhold, then the shlib's symbols are not
191 added. The threshold is ignored if the user explicitly asks for a
192 shlib to be added, such as when using the "sharedlibrary"
193 command. */
194
195 int auto_solib_limit;
196 \f
197
198 /* This compares two partial symbols by names, using strcmp_iw_ordered
199 for the comparison. */
200
201 static int
202 compare_psymbols (const void *s1p, const void *s2p)
203 {
204 struct partial_symbol *const *s1 = s1p;
205 struct partial_symbol *const *s2 = s2p;
206
207 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
208 SYMBOL_SEARCH_NAME (*s2));
209 }
210
211 void
212 sort_pst_symbols (struct partial_symtab *pst)
213 {
214 /* Sort the global list; don't sort the static list */
215
216 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
217 pst->n_global_syms, sizeof (struct partial_symbol *),
218 compare_psymbols);
219 }
220
221 /* Make a null terminated copy of the string at PTR with SIZE characters in
222 the obstack pointed to by OBSTACKP . Returns the address of the copy.
223 Note that the string at PTR does not have to be null terminated, I.E. it
224 may be part of a larger string and we are only saving a substring. */
225
226 char *
227 obsavestring (const char *ptr, int size, struct obstack *obstackp)
228 {
229 char *p = (char *) obstack_alloc (obstackp, size + 1);
230 /* Open-coded memcpy--saves function call time. These strings are usually
231 short. FIXME: Is this really still true with a compiler that can
232 inline memcpy? */
233 {
234 const char *p1 = ptr;
235 char *p2 = p;
236 const char *end = ptr + size;
237 while (p1 != end)
238 *p2++ = *p1++;
239 }
240 p[size] = 0;
241 return p;
242 }
243
244 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
245 in the obstack pointed to by OBSTACKP. */
246
247 char *
248 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
249 const char *s3)
250 {
251 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
252 char *val = (char *) obstack_alloc (obstackp, len);
253 strcpy (val, s1);
254 strcat (val, s2);
255 strcat (val, s3);
256 return val;
257 }
258
259 /* True if we are nested inside psymtab_to_symtab. */
260
261 int currently_reading_symtab = 0;
262
263 static void
264 decrement_reading_symtab (void *dummy)
265 {
266 currently_reading_symtab--;
267 }
268
269 /* Get the symbol table that corresponds to a partial_symtab.
270 This is fast after the first time you do it. In fact, there
271 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
272 case inline. */
273
274 struct symtab *
275 psymtab_to_symtab (struct partial_symtab *pst)
276 {
277 /* If it's been looked up before, return it. */
278 if (pst->symtab)
279 return pst->symtab;
280
281 /* If it has not yet been read in, read it. */
282 if (!pst->readin)
283 {
284 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
285 currently_reading_symtab++;
286 (*pst->read_symtab) (pst);
287 do_cleanups (back_to);
288 }
289
290 return pst->symtab;
291 }
292
293 /* Remember the lowest-addressed loadable section we've seen.
294 This function is called via bfd_map_over_sections.
295
296 In case of equal vmas, the section with the largest size becomes the
297 lowest-addressed loadable section.
298
299 If the vmas and sizes are equal, the last section is considered the
300 lowest-addressed loadable section. */
301
302 void
303 find_lowest_section (bfd *abfd, asection *sect, void *obj)
304 {
305 asection **lowest = (asection **) obj;
306
307 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
308 return;
309 if (!*lowest)
310 *lowest = sect; /* First loadable section */
311 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
312 *lowest = sect; /* A lower loadable section */
313 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
314 && (bfd_section_size (abfd, (*lowest))
315 <= bfd_section_size (abfd, sect)))
316 *lowest = sect;
317 }
318
319 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
320
321 struct section_addr_info *
322 alloc_section_addr_info (size_t num_sections)
323 {
324 struct section_addr_info *sap;
325 size_t size;
326
327 size = (sizeof (struct section_addr_info)
328 + sizeof (struct other_sections) * (num_sections - 1));
329 sap = (struct section_addr_info *) xmalloc (size);
330 memset (sap, 0, size);
331 sap->num_sections = num_sections;
332
333 return sap;
334 }
335
336
337 /* Return a freshly allocated copy of ADDRS. The section names, if
338 any, are also freshly allocated copies of those in ADDRS. */
339 struct section_addr_info *
340 copy_section_addr_info (struct section_addr_info *addrs)
341 {
342 struct section_addr_info *copy
343 = alloc_section_addr_info (addrs->num_sections);
344 int i;
345
346 copy->num_sections = addrs->num_sections;
347 for (i = 0; i < addrs->num_sections; i++)
348 {
349 copy->other[i].addr = addrs->other[i].addr;
350 if (addrs->other[i].name)
351 copy->other[i].name = xstrdup (addrs->other[i].name);
352 else
353 copy->other[i].name = NULL;
354 copy->other[i].sectindex = addrs->other[i].sectindex;
355 }
356
357 return copy;
358 }
359
360
361
362 /* Build (allocate and populate) a section_addr_info struct from
363 an existing section table. */
364
365 extern struct section_addr_info *
366 build_section_addr_info_from_section_table (const struct section_table *start,
367 const struct section_table *end)
368 {
369 struct section_addr_info *sap;
370 const struct section_table *stp;
371 int oidx;
372
373 sap = alloc_section_addr_info (end - start);
374
375 for (stp = start, oidx = 0; stp != end; stp++)
376 {
377 if (bfd_get_section_flags (stp->bfd,
378 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
379 && oidx < end - start)
380 {
381 sap->other[oidx].addr = stp->addr;
382 sap->other[oidx].name
383 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
384 sap->other[oidx].sectindex = stp->the_bfd_section->index;
385 oidx++;
386 }
387 }
388
389 return sap;
390 }
391
392
393 /* Free all memory allocated by build_section_addr_info_from_section_table. */
394
395 extern void
396 free_section_addr_info (struct section_addr_info *sap)
397 {
398 int idx;
399
400 for (idx = 0; idx < sap->num_sections; idx++)
401 if (sap->other[idx].name)
402 xfree (sap->other[idx].name);
403 xfree (sap);
404 }
405
406
407 /* Initialize OBJFILE's sect_index_* members. */
408 static void
409 init_objfile_sect_indices (struct objfile *objfile)
410 {
411 asection *sect;
412 int i;
413
414 sect = bfd_get_section_by_name (objfile->obfd, ".text");
415 if (sect)
416 objfile->sect_index_text = sect->index;
417
418 sect = bfd_get_section_by_name (objfile->obfd, ".data");
419 if (sect)
420 objfile->sect_index_data = sect->index;
421
422 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
423 if (sect)
424 objfile->sect_index_bss = sect->index;
425
426 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
427 if (sect)
428 objfile->sect_index_rodata = sect->index;
429
430 /* This is where things get really weird... We MUST have valid
431 indices for the various sect_index_* members or gdb will abort.
432 So if for example, there is no ".text" section, we have to
433 accomodate that. Except when explicitly adding symbol files at
434 some address, section_offsets contains nothing but zeros, so it
435 doesn't matter which slot in section_offsets the individual
436 sect_index_* members index into. So if they are all zero, it is
437 safe to just point all the currently uninitialized indices to the
438 first slot. */
439
440 for (i = 0; i < objfile->num_sections; i++)
441 {
442 if (ANOFFSET (objfile->section_offsets, i) != 0)
443 {
444 break;
445 }
446 }
447 if (i == objfile->num_sections)
448 {
449 if (objfile->sect_index_text == -1)
450 objfile->sect_index_text = 0;
451 if (objfile->sect_index_data == -1)
452 objfile->sect_index_data = 0;
453 if (objfile->sect_index_bss == -1)
454 objfile->sect_index_bss = 0;
455 if (objfile->sect_index_rodata == -1)
456 objfile->sect_index_rodata = 0;
457 }
458 }
459
460 /* The arguments to place_section. */
461
462 struct place_section_arg
463 {
464 struct section_offsets *offsets;
465 CORE_ADDR lowest;
466 };
467
468 /* Find a unique offset to use for loadable section SECT if
469 the user did not provide an offset. */
470
471 void
472 place_section (bfd *abfd, asection *sect, void *obj)
473 {
474 struct place_section_arg *arg = obj;
475 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
476 int done;
477 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
478
479 /* We are only interested in loadable sections. */
480 if ((bfd_get_section_flags (abfd, sect) & SEC_LOAD) == 0)
481 return;
482
483 /* If the user specified an offset, honor it. */
484 if (offsets[sect->index] != 0)
485 return;
486
487 /* Otherwise, let's try to find a place for the section. */
488 start_addr = (arg->lowest + align - 1) & -align;
489
490 do {
491 asection *cur_sec;
492
493 done = 1;
494
495 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
496 {
497 int indx = cur_sec->index;
498 CORE_ADDR cur_offset;
499
500 /* We don't need to compare against ourself. */
501 if (cur_sec == sect)
502 continue;
503
504 /* We can only conflict with loadable sections. */
505 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_LOAD) == 0)
506 continue;
507
508 /* We do not expect this to happen; just ignore sections in a
509 relocatable file with an assigned VMA. */
510 if (bfd_section_vma (abfd, cur_sec) != 0)
511 continue;
512
513 /* If the section offset is 0, either the section has not been placed
514 yet, or it was the lowest section placed (in which case LOWEST
515 will be past its end). */
516 if (offsets[indx] == 0)
517 continue;
518
519 /* If this section would overlap us, then we must move up. */
520 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
521 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
522 {
523 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
524 start_addr = (start_addr + align - 1) & -align;
525 done = 0;
526 break;
527 }
528
529 /* Otherwise, we appear to be OK. So far. */
530 }
531 }
532 while (!done);
533
534 offsets[sect->index] = start_addr;
535 arg->lowest = start_addr + bfd_get_section_size (sect);
536
537 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
538 }
539
540 /* Parse the user's idea of an offset for dynamic linking, into our idea
541 of how to represent it for fast symbol reading. This is the default
542 version of the sym_fns.sym_offsets function for symbol readers that
543 don't need to do anything special. It allocates a section_offsets table
544 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
545
546 void
547 default_symfile_offsets (struct objfile *objfile,
548 struct section_addr_info *addrs)
549 {
550 int i;
551
552 objfile->num_sections = bfd_count_sections (objfile->obfd);
553 objfile->section_offsets = (struct section_offsets *)
554 obstack_alloc (&objfile->objfile_obstack,
555 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
556 memset (objfile->section_offsets, 0,
557 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
558
559 /* Now calculate offsets for section that were specified by the
560 caller. */
561 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
562 {
563 struct other_sections *osp ;
564
565 osp = &addrs->other[i] ;
566 if (osp->addr == 0)
567 continue;
568
569 /* Record all sections in offsets */
570 /* The section_offsets in the objfile are here filled in using
571 the BFD index. */
572 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
573 }
574
575 /* For relocatable files, all loadable sections will start at zero.
576 The zero is meaningless, so try to pick arbitrary addresses such
577 that no loadable sections overlap. This algorithm is quadratic,
578 but the number of sections in a single object file is generally
579 small. */
580 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
581 {
582 struct place_section_arg arg;
583 arg.offsets = objfile->section_offsets;
584 arg.lowest = 0;
585 bfd_map_over_sections (objfile->obfd, place_section, &arg);
586 }
587
588 /* Remember the bfd indexes for the .text, .data, .bss and
589 .rodata sections. */
590 init_objfile_sect_indices (objfile);
591 }
592
593
594 /* Process a symbol file, as either the main file or as a dynamically
595 loaded file.
596
597 OBJFILE is where the symbols are to be read from.
598
599 ADDRS is the list of section load addresses. If the user has given
600 an 'add-symbol-file' command, then this is the list of offsets and
601 addresses he or she provided as arguments to the command; or, if
602 we're handling a shared library, these are the actual addresses the
603 sections are loaded at, according to the inferior's dynamic linker
604 (as gleaned by GDB's shared library code). We convert each address
605 into an offset from the section VMA's as it appears in the object
606 file, and then call the file's sym_offsets function to convert this
607 into a format-specific offset table --- a `struct section_offsets'.
608 If ADDRS is non-zero, OFFSETS must be zero.
609
610 OFFSETS is a table of section offsets already in the right
611 format-specific representation. NUM_OFFSETS is the number of
612 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
613 assume this is the proper table the call to sym_offsets described
614 above would produce. Instead of calling sym_offsets, we just dump
615 it right into objfile->section_offsets. (When we're re-reading
616 symbols from an objfile, we don't have the original load address
617 list any more; all we have is the section offset table.) If
618 OFFSETS is non-zero, ADDRS must be zero.
619
620 MAINLINE is nonzero if this is the main symbol file, or zero if
621 it's an extra symbol file such as dynamically loaded code.
622
623 VERBO is nonzero if the caller has printed a verbose message about
624 the symbol reading (and complaints can be more terse about it). */
625
626 void
627 syms_from_objfile (struct objfile *objfile,
628 struct section_addr_info *addrs,
629 struct section_offsets *offsets,
630 int num_offsets,
631 int mainline,
632 int verbo)
633 {
634 struct section_addr_info *local_addr = NULL;
635 struct cleanup *old_chain;
636
637 gdb_assert (! (addrs && offsets));
638
639 init_entry_point_info (objfile);
640 find_sym_fns (objfile);
641
642 if (objfile->sf == NULL)
643 return; /* No symbols. */
644
645 /* Make sure that partially constructed symbol tables will be cleaned up
646 if an error occurs during symbol reading. */
647 old_chain = make_cleanup_free_objfile (objfile);
648
649 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
650 list. We now establish the convention that an addr of zero means
651 no load address was specified. */
652 if (! addrs && ! offsets)
653 {
654 local_addr
655 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
656 make_cleanup (xfree, local_addr);
657 addrs = local_addr;
658 }
659
660 /* Now either addrs or offsets is non-zero. */
661
662 if (mainline)
663 {
664 /* We will modify the main symbol table, make sure that all its users
665 will be cleaned up if an error occurs during symbol reading. */
666 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
667
668 /* Since no error yet, throw away the old symbol table. */
669
670 if (symfile_objfile != NULL)
671 {
672 free_objfile (symfile_objfile);
673 symfile_objfile = NULL;
674 }
675
676 /* Currently we keep symbols from the add-symbol-file command.
677 If the user wants to get rid of them, they should do "symbol-file"
678 without arguments first. Not sure this is the best behavior
679 (PR 2207). */
680
681 (*objfile->sf->sym_new_init) (objfile);
682 }
683
684 /* Convert addr into an offset rather than an absolute address.
685 We find the lowest address of a loaded segment in the objfile,
686 and assume that <addr> is where that got loaded.
687
688 We no longer warn if the lowest section is not a text segment (as
689 happens for the PA64 port. */
690 if (!mainline && addrs && addrs->other[0].name)
691 {
692 asection *lower_sect;
693 asection *sect;
694 CORE_ADDR lower_offset;
695 int i;
696
697 /* Find lowest loadable section to be used as starting point for
698 continguous sections. FIXME!! won't work without call to find
699 .text first, but this assumes text is lowest section. */
700 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
701 if (lower_sect == NULL)
702 bfd_map_over_sections (objfile->obfd, find_lowest_section,
703 &lower_sect);
704 if (lower_sect == NULL)
705 warning (_("no loadable sections found in added symbol-file %s"),
706 objfile->name);
707 else
708 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
709 warning (_("Lowest section in %s is %s at %s"),
710 objfile->name,
711 bfd_section_name (objfile->obfd, lower_sect),
712 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
713 if (lower_sect != NULL)
714 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
715 else
716 lower_offset = 0;
717
718 /* Calculate offsets for the loadable sections.
719 FIXME! Sections must be in order of increasing loadable section
720 so that contiguous sections can use the lower-offset!!!
721
722 Adjust offsets if the segments are not contiguous.
723 If the section is contiguous, its offset should be set to
724 the offset of the highest loadable section lower than it
725 (the loadable section directly below it in memory).
726 this_offset = lower_offset = lower_addr - lower_orig_addr */
727
728 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
729 {
730 if (addrs->other[i].addr != 0)
731 {
732 sect = bfd_get_section_by_name (objfile->obfd,
733 addrs->other[i].name);
734 if (sect)
735 {
736 addrs->other[i].addr
737 -= bfd_section_vma (objfile->obfd, sect);
738 lower_offset = addrs->other[i].addr;
739 /* This is the index used by BFD. */
740 addrs->other[i].sectindex = sect->index ;
741 }
742 else
743 {
744 warning (_("section %s not found in %s"),
745 addrs->other[i].name,
746 objfile->name);
747 addrs->other[i].addr = 0;
748 }
749 }
750 else
751 addrs->other[i].addr = lower_offset;
752 }
753 }
754
755 /* Initialize symbol reading routines for this objfile, allow complaints to
756 appear for this new file, and record how verbose to be, then do the
757 initial symbol reading for this file. */
758
759 (*objfile->sf->sym_init) (objfile);
760 clear_complaints (&symfile_complaints, 1, verbo);
761
762 if (addrs)
763 (*objfile->sf->sym_offsets) (objfile, addrs);
764 else
765 {
766 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
767
768 /* Just copy in the offset table directly as given to us. */
769 objfile->num_sections = num_offsets;
770 objfile->section_offsets
771 = ((struct section_offsets *)
772 obstack_alloc (&objfile->objfile_obstack, size));
773 memcpy (objfile->section_offsets, offsets, size);
774
775 init_objfile_sect_indices (objfile);
776 }
777
778 #ifndef DEPRECATED_IBM6000_TARGET
779 /* This is a SVR4/SunOS specific hack, I think. In any event, it
780 screws RS/6000. sym_offsets should be doing this sort of thing,
781 because it knows the mapping between bfd sections and
782 section_offsets. */
783 /* This is a hack. As far as I can tell, section offsets are not
784 target dependent. They are all set to addr with a couple of
785 exceptions. The exceptions are sysvr4 shared libraries, whose
786 offsets are kept in solib structures anyway and rs6000 xcoff
787 which handles shared libraries in a completely unique way.
788
789 Section offsets are built similarly, except that they are built
790 by adding addr in all cases because there is no clear mapping
791 from section_offsets into actual sections. Note that solib.c
792 has a different algorithm for finding section offsets.
793
794 These should probably all be collapsed into some target
795 independent form of shared library support. FIXME. */
796
797 if (addrs)
798 {
799 struct obj_section *s;
800
801 /* Map section offsets in "addr" back to the object's
802 sections by comparing the section names with bfd's
803 section names. Then adjust the section address by
804 the offset. */ /* for gdb/13815 */
805
806 ALL_OBJFILE_OSECTIONS (objfile, s)
807 {
808 CORE_ADDR s_addr = 0;
809 int i;
810
811 for (i = 0;
812 !s_addr && i < addrs->num_sections && addrs->other[i].name;
813 i++)
814 if (strcmp (bfd_section_name (s->objfile->obfd,
815 s->the_bfd_section),
816 addrs->other[i].name) == 0)
817 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
818
819 s->addr -= s->offset;
820 s->addr += s_addr;
821 s->endaddr -= s->offset;
822 s->endaddr += s_addr;
823 s->offset += s_addr;
824 }
825 }
826 #endif /* not DEPRECATED_IBM6000_TARGET */
827
828 (*objfile->sf->sym_read) (objfile, mainline);
829
830 /* Don't allow char * to have a typename (else would get caddr_t).
831 Ditto void *. FIXME: Check whether this is now done by all the
832 symbol readers themselves (many of them now do), and if so remove
833 it from here. */
834
835 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
836 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
837
838 /* Mark the objfile has having had initial symbol read attempted. Note
839 that this does not mean we found any symbols... */
840
841 objfile->flags |= OBJF_SYMS;
842
843 /* Discard cleanups as symbol reading was successful. */
844
845 discard_cleanups (old_chain);
846 }
847
848 /* Perform required actions after either reading in the initial
849 symbols for a new objfile, or mapping in the symbols from a reusable
850 objfile. */
851
852 void
853 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
854 {
855
856 /* If this is the main symbol file we have to clean up all users of the
857 old main symbol file. Otherwise it is sufficient to fixup all the
858 breakpoints that may have been redefined by this symbol file. */
859 if (mainline)
860 {
861 /* OK, make it the "real" symbol file. */
862 symfile_objfile = objfile;
863
864 clear_symtab_users ();
865 }
866 else
867 {
868 breakpoint_re_set ();
869 }
870
871 /* We're done reading the symbol file; finish off complaints. */
872 clear_complaints (&symfile_complaints, 0, verbo);
873 }
874
875 /* Process a symbol file, as either the main file or as a dynamically
876 loaded file.
877
878 ABFD is a BFD already open on the file, as from symfile_bfd_open.
879 This BFD will be closed on error, and is always consumed by this function.
880
881 FROM_TTY says how verbose to be.
882
883 MAINLINE specifies whether this is the main symbol file, or whether
884 it's an extra symbol file such as dynamically loaded code.
885
886 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
887 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
888 non-zero.
889
890 Upon success, returns a pointer to the objfile that was added.
891 Upon failure, jumps back to command level (never returns). */
892 static struct objfile *
893 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
894 struct section_addr_info *addrs,
895 struct section_offsets *offsets,
896 int num_offsets,
897 int mainline, int flags)
898 {
899 struct objfile *objfile;
900 struct partial_symtab *psymtab;
901 char *debugfile;
902 struct section_addr_info *orig_addrs = NULL;
903 struct cleanup *my_cleanups;
904 const char *name = bfd_get_filename (abfd);
905
906 my_cleanups = make_cleanup_bfd_close (abfd);
907
908 /* Give user a chance to burp if we'd be
909 interactively wiping out any existing symbols. */
910
911 if ((have_full_symbols () || have_partial_symbols ())
912 && mainline
913 && from_tty
914 && !query ("Load new symbol table from \"%s\"? ", name))
915 error (_("Not confirmed."));
916
917 objfile = allocate_objfile (abfd, flags);
918 discard_cleanups (my_cleanups);
919
920 if (addrs)
921 {
922 orig_addrs = copy_section_addr_info (addrs);
923 make_cleanup_free_section_addr_info (orig_addrs);
924 }
925
926 /* We either created a new mapped symbol table, mapped an existing
927 symbol table file which has not had initial symbol reading
928 performed, or need to read an unmapped symbol table. */
929 if (from_tty || info_verbose)
930 {
931 if (deprecated_pre_add_symbol_hook)
932 deprecated_pre_add_symbol_hook (name);
933 else
934 {
935 printf_unfiltered (_("Reading symbols from %s..."), name);
936 wrap_here ("");
937 gdb_flush (gdb_stdout);
938 }
939 }
940 syms_from_objfile (objfile, addrs, offsets, num_offsets,
941 mainline, from_tty);
942
943 /* We now have at least a partial symbol table. Check to see if the
944 user requested that all symbols be read on initial access via either
945 the gdb startup command line or on a per symbol file basis. Expand
946 all partial symbol tables for this objfile if so. */
947
948 if ((flags & OBJF_READNOW) || readnow_symbol_files)
949 {
950 if (from_tty || info_verbose)
951 {
952 printf_unfiltered (_("expanding to full symbols..."));
953 wrap_here ("");
954 gdb_flush (gdb_stdout);
955 }
956
957 for (psymtab = objfile->psymtabs;
958 psymtab != NULL;
959 psymtab = psymtab->next)
960 {
961 psymtab_to_symtab (psymtab);
962 }
963 }
964
965 debugfile = find_separate_debug_file (objfile);
966 if (debugfile)
967 {
968 if (addrs != NULL)
969 {
970 objfile->separate_debug_objfile
971 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
972 }
973 else
974 {
975 objfile->separate_debug_objfile
976 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
977 }
978 objfile->separate_debug_objfile->separate_debug_objfile_backlink
979 = objfile;
980
981 /* Put the separate debug object before the normal one, this is so that
982 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
983 put_objfile_before (objfile->separate_debug_objfile, objfile);
984
985 xfree (debugfile);
986 }
987
988 if (!have_partial_symbols () && !have_full_symbols ())
989 {
990 wrap_here ("");
991 printf_filtered (_("(no debugging symbols found)"));
992 if (from_tty || info_verbose)
993 printf_filtered ("...");
994 else
995 printf_filtered ("\n");
996 wrap_here ("");
997 }
998
999 if (from_tty || info_verbose)
1000 {
1001 if (deprecated_post_add_symbol_hook)
1002 deprecated_post_add_symbol_hook ();
1003 else
1004 {
1005 printf_unfiltered (_("done.\n"));
1006 }
1007 }
1008
1009 /* We print some messages regardless of whether 'from_tty ||
1010 info_verbose' is true, so make sure they go out at the right
1011 time. */
1012 gdb_flush (gdb_stdout);
1013
1014 do_cleanups (my_cleanups);
1015
1016 if (objfile->sf == NULL)
1017 return objfile; /* No symbols. */
1018
1019 new_symfile_objfile (objfile, mainline, from_tty);
1020
1021 if (deprecated_target_new_objfile_hook)
1022 deprecated_target_new_objfile_hook (objfile);
1023
1024 bfd_cache_close_all ();
1025 return (objfile);
1026 }
1027
1028
1029 /* Process the symbol file ABFD, as either the main file or as a
1030 dynamically loaded file.
1031
1032 See symbol_file_add_with_addrs_or_offsets's comments for
1033 details. */
1034 struct objfile *
1035 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1036 struct section_addr_info *addrs,
1037 int mainline, int flags)
1038 {
1039 return symbol_file_add_with_addrs_or_offsets (abfd,
1040 from_tty, addrs, 0, 0,
1041 mainline, flags);
1042 }
1043
1044
1045 /* Process a symbol file, as either the main file or as a dynamically
1046 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1047 for details. */
1048 struct objfile *
1049 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1050 int mainline, int flags)
1051 {
1052 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1053 addrs, mainline, flags);
1054 }
1055
1056
1057 /* Call symbol_file_add() with default values and update whatever is
1058 affected by the loading of a new main().
1059 Used when the file is supplied in the gdb command line
1060 and by some targets with special loading requirements.
1061 The auxiliary function, symbol_file_add_main_1(), has the flags
1062 argument for the switches that can only be specified in the symbol_file
1063 command itself. */
1064
1065 void
1066 symbol_file_add_main (char *args, int from_tty)
1067 {
1068 symbol_file_add_main_1 (args, from_tty, 0);
1069 }
1070
1071 static void
1072 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1073 {
1074 symbol_file_add (args, from_tty, NULL, 1, flags);
1075
1076 /* Getting new symbols may change our opinion about
1077 what is frameless. */
1078 reinit_frame_cache ();
1079
1080 set_initial_language ();
1081 }
1082
1083 void
1084 symbol_file_clear (int from_tty)
1085 {
1086 if ((have_full_symbols () || have_partial_symbols ())
1087 && from_tty
1088 && (symfile_objfile
1089 ? !query (_("Discard symbol table from `%s'? "),
1090 symfile_objfile->name)
1091 : !query (_("Discard symbol table? "))))
1092 error (_("Not confirmed."));
1093 free_all_objfiles ();
1094
1095 /* solib descriptors may have handles to objfiles. Since their
1096 storage has just been released, we'd better wipe the solib
1097 descriptors as well.
1098 */
1099 #if defined(SOLIB_RESTART)
1100 SOLIB_RESTART ();
1101 #endif
1102
1103 symfile_objfile = NULL;
1104 if (from_tty)
1105 printf_unfiltered (_("No symbol file now.\n"));
1106 }
1107
1108 static char *
1109 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1110 {
1111 asection *sect;
1112 bfd_size_type debuglink_size;
1113 unsigned long crc32;
1114 char *contents;
1115 int crc_offset;
1116 unsigned char *p;
1117
1118 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1119
1120 if (sect == NULL)
1121 return NULL;
1122
1123 debuglink_size = bfd_section_size (objfile->obfd, sect);
1124
1125 contents = xmalloc (debuglink_size);
1126 bfd_get_section_contents (objfile->obfd, sect, contents,
1127 (file_ptr)0, (bfd_size_type)debuglink_size);
1128
1129 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1130 crc_offset = strlen (contents) + 1;
1131 crc_offset = (crc_offset + 3) & ~3;
1132
1133 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1134
1135 *crc32_out = crc32;
1136 return contents;
1137 }
1138
1139 static int
1140 separate_debug_file_exists (const char *name, unsigned long crc)
1141 {
1142 unsigned long file_crc = 0;
1143 int fd;
1144 gdb_byte buffer[8*1024];
1145 int count;
1146
1147 fd = open (name, O_RDONLY | O_BINARY);
1148 if (fd < 0)
1149 return 0;
1150
1151 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1152 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1153
1154 close (fd);
1155
1156 return crc == file_crc;
1157 }
1158
1159 char *debug_file_directory = NULL;
1160 static void
1161 show_debug_file_directory (struct ui_file *file, int from_tty,
1162 struct cmd_list_element *c, const char *value)
1163 {
1164 fprintf_filtered (file, _("\
1165 The directory where separate debug symbols are searched for is \"%s\".\n"),
1166 value);
1167 }
1168
1169 #if ! defined (DEBUG_SUBDIRECTORY)
1170 #define DEBUG_SUBDIRECTORY ".debug"
1171 #endif
1172
1173 static char *
1174 find_separate_debug_file (struct objfile *objfile)
1175 {
1176 asection *sect;
1177 char *basename;
1178 char *dir;
1179 char *debugfile;
1180 char *name_copy;
1181 char *canon_name;
1182 bfd_size_type debuglink_size;
1183 unsigned long crc32;
1184 int i;
1185
1186 basename = get_debug_link_info (objfile, &crc32);
1187
1188 if (basename == NULL)
1189 return NULL;
1190
1191 dir = xstrdup (objfile->name);
1192
1193 /* Strip off the final filename part, leaving the directory name,
1194 followed by a slash. Objfile names should always be absolute and
1195 tilde-expanded, so there should always be a slash in there
1196 somewhere. */
1197 for (i = strlen(dir) - 1; i >= 0; i--)
1198 {
1199 if (IS_DIR_SEPARATOR (dir[i]))
1200 break;
1201 }
1202 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1203 dir[i+1] = '\0';
1204
1205 debugfile = alloca (strlen (debug_file_directory) + 1
1206 + strlen (dir)
1207 + strlen (DEBUG_SUBDIRECTORY)
1208 + strlen ("/")
1209 + strlen (basename)
1210 + 1);
1211
1212 /* First try in the same directory as the original file. */
1213 strcpy (debugfile, dir);
1214 strcat (debugfile, basename);
1215
1216 if (separate_debug_file_exists (debugfile, crc32))
1217 {
1218 xfree (basename);
1219 xfree (dir);
1220 return xstrdup (debugfile);
1221 }
1222
1223 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1224 strcpy (debugfile, dir);
1225 strcat (debugfile, DEBUG_SUBDIRECTORY);
1226 strcat (debugfile, "/");
1227 strcat (debugfile, basename);
1228
1229 if (separate_debug_file_exists (debugfile, crc32))
1230 {
1231 xfree (basename);
1232 xfree (dir);
1233 return xstrdup (debugfile);
1234 }
1235
1236 /* Then try in the global debugfile directory. */
1237 strcpy (debugfile, debug_file_directory);
1238 strcat (debugfile, "/");
1239 strcat (debugfile, dir);
1240 strcat (debugfile, basename);
1241
1242 if (separate_debug_file_exists (debugfile, crc32))
1243 {
1244 xfree (basename);
1245 xfree (dir);
1246 return xstrdup (debugfile);
1247 }
1248
1249 /* If the file is in the sysroot, try using its base path in the
1250 global debugfile directory. */
1251 canon_name = lrealpath (dir);
1252 if (canon_name
1253 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1254 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1255 {
1256 strcpy (debugfile, debug_file_directory);
1257 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1258 strcat (debugfile, "/");
1259 strcat (debugfile, basename);
1260
1261 if (separate_debug_file_exists (debugfile, crc32))
1262 {
1263 xfree (canon_name);
1264 xfree (basename);
1265 xfree (dir);
1266 return xstrdup (debugfile);
1267 }
1268 }
1269
1270 if (canon_name)
1271 xfree (canon_name);
1272
1273 xfree (basename);
1274 xfree (dir);
1275 return NULL;
1276 }
1277
1278
1279 /* This is the symbol-file command. Read the file, analyze its
1280 symbols, and add a struct symtab to a symtab list. The syntax of
1281 the command is rather bizarre:
1282
1283 1. The function buildargv implements various quoting conventions
1284 which are undocumented and have little or nothing in common with
1285 the way things are quoted (or not quoted) elsewhere in GDB.
1286
1287 2. Options are used, which are not generally used in GDB (perhaps
1288 "set mapped on", "set readnow on" would be better)
1289
1290 3. The order of options matters, which is contrary to GNU
1291 conventions (because it is confusing and inconvenient). */
1292
1293 void
1294 symbol_file_command (char *args, int from_tty)
1295 {
1296 dont_repeat ();
1297
1298 if (args == NULL)
1299 {
1300 symbol_file_clear (from_tty);
1301 }
1302 else
1303 {
1304 char **argv = buildargv (args);
1305 int flags = OBJF_USERLOADED;
1306 struct cleanup *cleanups;
1307 char *name = NULL;
1308
1309 if (argv == NULL)
1310 nomem (0);
1311
1312 cleanups = make_cleanup_freeargv (argv);
1313 while (*argv != NULL)
1314 {
1315 if (strcmp (*argv, "-readnow") == 0)
1316 flags |= OBJF_READNOW;
1317 else if (**argv == '-')
1318 error (_("unknown option `%s'"), *argv);
1319 else
1320 {
1321 symbol_file_add_main_1 (*argv, from_tty, flags);
1322 name = *argv;
1323 }
1324
1325 argv++;
1326 }
1327
1328 if (name == NULL)
1329 error (_("no symbol file name was specified"));
1330
1331 do_cleanups (cleanups);
1332 }
1333 }
1334
1335 /* Set the initial language.
1336
1337 FIXME: A better solution would be to record the language in the
1338 psymtab when reading partial symbols, and then use it (if known) to
1339 set the language. This would be a win for formats that encode the
1340 language in an easily discoverable place, such as DWARF. For
1341 stabs, we can jump through hoops looking for specially named
1342 symbols or try to intuit the language from the specific type of
1343 stabs we find, but we can't do that until later when we read in
1344 full symbols. */
1345
1346 static void
1347 set_initial_language (void)
1348 {
1349 struct partial_symtab *pst;
1350 enum language lang = language_unknown;
1351
1352 pst = find_main_psymtab ();
1353 if (pst != NULL)
1354 {
1355 if (pst->filename != NULL)
1356 lang = deduce_language_from_filename (pst->filename);
1357
1358 if (lang == language_unknown)
1359 {
1360 /* Make C the default language */
1361 lang = language_c;
1362 }
1363
1364 set_language (lang);
1365 expected_language = current_language; /* Don't warn the user. */
1366 }
1367 }
1368
1369 /* Open the file specified by NAME and hand it off to BFD for
1370 preliminary analysis. Return a newly initialized bfd *, which
1371 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1372 absolute). In case of trouble, error() is called. */
1373
1374 bfd *
1375 symfile_bfd_open (char *name)
1376 {
1377 bfd *sym_bfd;
1378 int desc;
1379 char *absolute_name;
1380
1381 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1382
1383 /* Look down path for it, allocate 2nd new malloc'd copy. */
1384 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1385 O_RDONLY | O_BINARY, 0, &absolute_name);
1386 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1387 if (desc < 0)
1388 {
1389 char *exename = alloca (strlen (name) + 5);
1390 strcat (strcpy (exename, name), ".exe");
1391 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1392 O_RDONLY | O_BINARY, 0, &absolute_name);
1393 }
1394 #endif
1395 if (desc < 0)
1396 {
1397 make_cleanup (xfree, name);
1398 perror_with_name (name);
1399 }
1400
1401 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1402 bfd. It'll be freed in free_objfile(). */
1403 xfree (name);
1404 name = absolute_name;
1405
1406 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1407 if (!sym_bfd)
1408 {
1409 close (desc);
1410 make_cleanup (xfree, name);
1411 error (_("\"%s\": can't open to read symbols: %s."), name,
1412 bfd_errmsg (bfd_get_error ()));
1413 }
1414 bfd_set_cacheable (sym_bfd, 1);
1415
1416 if (!bfd_check_format (sym_bfd, bfd_object))
1417 {
1418 /* FIXME: should be checking for errors from bfd_close (for one
1419 thing, on error it does not free all the storage associated
1420 with the bfd). */
1421 bfd_close (sym_bfd); /* This also closes desc. */
1422 make_cleanup (xfree, name);
1423 error (_("\"%s\": can't read symbols: %s."), name,
1424 bfd_errmsg (bfd_get_error ()));
1425 }
1426
1427 return sym_bfd;
1428 }
1429
1430 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1431 the section was not found. */
1432
1433 int
1434 get_section_index (struct objfile *objfile, char *section_name)
1435 {
1436 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1437
1438 if (sect)
1439 return sect->index;
1440 else
1441 return -1;
1442 }
1443
1444 /* Link SF into the global symtab_fns list. Called on startup by the
1445 _initialize routine in each object file format reader, to register
1446 information about each format the the reader is prepared to
1447 handle. */
1448
1449 void
1450 add_symtab_fns (struct sym_fns *sf)
1451 {
1452 sf->next = symtab_fns;
1453 symtab_fns = sf;
1454 }
1455
1456 /* Initialize OBJFILE to read symbols from its associated BFD. It
1457 either returns or calls error(). The result is an initialized
1458 struct sym_fns in the objfile structure, that contains cached
1459 information about the symbol file. */
1460
1461 static void
1462 find_sym_fns (struct objfile *objfile)
1463 {
1464 struct sym_fns *sf;
1465 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1466 char *our_target = bfd_get_target (objfile->obfd);
1467
1468 if (our_flavour == bfd_target_srec_flavour
1469 || our_flavour == bfd_target_ihex_flavour
1470 || our_flavour == bfd_target_tekhex_flavour)
1471 return; /* No symbols. */
1472
1473 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1474 {
1475 if (our_flavour == sf->sym_flavour)
1476 {
1477 objfile->sf = sf;
1478 return;
1479 }
1480 }
1481
1482 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1483 bfd_get_target (objfile->obfd));
1484 }
1485 \f
1486
1487 /* This function runs the load command of our current target. */
1488
1489 static void
1490 load_command (char *arg, int from_tty)
1491 {
1492 if (arg == NULL)
1493 {
1494 char *parg;
1495 int count = 0;
1496
1497 parg = arg = get_exec_file (1);
1498
1499 /* Count how many \ " ' tab space there are in the name. */
1500 while ((parg = strpbrk (parg, "\\\"'\t ")))
1501 {
1502 parg++;
1503 count++;
1504 }
1505
1506 if (count)
1507 {
1508 /* We need to quote this string so buildargv can pull it apart. */
1509 char *temp = xmalloc (strlen (arg) + count + 1 );
1510 char *ptemp = temp;
1511 char *prev;
1512
1513 make_cleanup (xfree, temp);
1514
1515 prev = parg = arg;
1516 while ((parg = strpbrk (parg, "\\\"'\t ")))
1517 {
1518 strncpy (ptemp, prev, parg - prev);
1519 ptemp += parg - prev;
1520 prev = parg++;
1521 *ptemp++ = '\\';
1522 }
1523 strcpy (ptemp, prev);
1524
1525 arg = temp;
1526 }
1527 }
1528
1529 /* The user might be reloading because the binary has changed. Take
1530 this opportunity to check. */
1531 reopen_exec_file ();
1532 reread_symbols ();
1533
1534 target_load (arg, from_tty);
1535
1536 /* After re-loading the executable, we don't really know which
1537 overlays are mapped any more. */
1538 overlay_cache_invalid = 1;
1539 }
1540
1541 /* This version of "load" should be usable for any target. Currently
1542 it is just used for remote targets, not inftarg.c or core files,
1543 on the theory that only in that case is it useful.
1544
1545 Avoiding xmodem and the like seems like a win (a) because we don't have
1546 to worry about finding it, and (b) On VMS, fork() is very slow and so
1547 we don't want to run a subprocess. On the other hand, I'm not sure how
1548 performance compares. */
1549
1550 static int validate_download = 0;
1551
1552 /* Callback service function for generic_load (bfd_map_over_sections). */
1553
1554 static void
1555 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1556 {
1557 bfd_size_type *sum = data;
1558
1559 *sum += bfd_get_section_size (asec);
1560 }
1561
1562 /* Opaque data for load_section_callback. */
1563 struct load_section_data {
1564 unsigned long load_offset;
1565 struct load_progress_data *progress_data;
1566 VEC(memory_write_request_s) *requests;
1567 };
1568
1569 /* Opaque data for load_progress. */
1570 struct load_progress_data {
1571 /* Cumulative data. */
1572 unsigned long write_count;
1573 unsigned long data_count;
1574 bfd_size_type total_size;
1575 };
1576
1577 /* Opaque data for load_progress for a single section. */
1578 struct load_progress_section_data {
1579 struct load_progress_data *cumulative;
1580
1581 /* Per-section data. */
1582 const char *section_name;
1583 ULONGEST section_sent;
1584 ULONGEST section_size;
1585 CORE_ADDR lma;
1586 gdb_byte *buffer;
1587 };
1588
1589 /* Target write callback routine for progress reporting. */
1590
1591 static void
1592 load_progress (ULONGEST bytes, void *untyped_arg)
1593 {
1594 struct load_progress_section_data *args = untyped_arg;
1595 struct load_progress_data *totals;
1596
1597 if (args == NULL)
1598 /* Writing padding data. No easy way to get at the cumulative
1599 stats, so just ignore this. */
1600 return;
1601
1602 totals = args->cumulative;
1603
1604 if (bytes == 0 && args->section_sent == 0)
1605 {
1606 /* The write is just starting. Let the user know we've started
1607 this section. */
1608 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1609 args->section_name, paddr_nz (args->section_size),
1610 paddr_nz (args->lma));
1611 return;
1612 }
1613
1614 if (validate_download)
1615 {
1616 /* Broken memories and broken monitors manifest themselves here
1617 when bring new computers to life. This doubles already slow
1618 downloads. */
1619 /* NOTE: cagney/1999-10-18: A more efficient implementation
1620 might add a verify_memory() method to the target vector and
1621 then use that. remote.c could implement that method using
1622 the ``qCRC'' packet. */
1623 gdb_byte *check = xmalloc (bytes);
1624 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1625
1626 if (target_read_memory (args->lma, check, bytes) != 0)
1627 error (_("Download verify read failed at 0x%s"),
1628 paddr (args->lma));
1629 if (memcmp (args->buffer, check, bytes) != 0)
1630 error (_("Download verify compare failed at 0x%s"),
1631 paddr (args->lma));
1632 do_cleanups (verify_cleanups);
1633 }
1634 totals->data_count += bytes;
1635 args->lma += bytes;
1636 args->buffer += bytes;
1637 totals->write_count += 1;
1638 args->section_sent += bytes;
1639 if (quit_flag
1640 || (deprecated_ui_load_progress_hook != NULL
1641 && deprecated_ui_load_progress_hook (args->section_name,
1642 args->section_sent)))
1643 error (_("Canceled the download"));
1644
1645 if (deprecated_show_load_progress != NULL)
1646 deprecated_show_load_progress (args->section_name,
1647 args->section_sent,
1648 args->section_size,
1649 totals->data_count,
1650 totals->total_size);
1651 }
1652
1653 /* Callback service function for generic_load (bfd_map_over_sections). */
1654
1655 static void
1656 load_section_callback (bfd *abfd, asection *asec, void *data)
1657 {
1658 struct memory_write_request *new_request;
1659 struct load_section_data *args = data;
1660 struct load_progress_section_data *section_data;
1661 bfd_size_type size = bfd_get_section_size (asec);
1662 gdb_byte *buffer;
1663 const char *sect_name = bfd_get_section_name (abfd, asec);
1664
1665 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1666 return;
1667
1668 if (size == 0)
1669 return;
1670
1671 new_request = VEC_safe_push (memory_write_request_s,
1672 args->requests, NULL);
1673 memset (new_request, 0, sizeof (struct memory_write_request));
1674 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1675 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1676 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1677 new_request->data = xmalloc (size);
1678 new_request->baton = section_data;
1679
1680 buffer = new_request->data;
1681
1682 section_data->cumulative = args->progress_data;
1683 section_data->section_name = sect_name;
1684 section_data->section_size = size;
1685 section_data->lma = new_request->begin;
1686 section_data->buffer = buffer;
1687
1688 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1689 }
1690
1691 /* Clean up an entire memory request vector, including load
1692 data and progress records. */
1693
1694 static void
1695 clear_memory_write_data (void *arg)
1696 {
1697 VEC(memory_write_request_s) **vec_p = arg;
1698 VEC(memory_write_request_s) *vec = *vec_p;
1699 int i;
1700 struct memory_write_request *mr;
1701
1702 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1703 {
1704 xfree (mr->data);
1705 xfree (mr->baton);
1706 }
1707 VEC_free (memory_write_request_s, vec);
1708 }
1709
1710 void
1711 generic_load (char *args, int from_tty)
1712 {
1713 bfd *loadfile_bfd;
1714 struct timeval start_time, end_time;
1715 char *filename;
1716 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1717 struct load_section_data cbdata;
1718 struct load_progress_data total_progress;
1719
1720 CORE_ADDR entry;
1721 char **argv;
1722
1723 memset (&cbdata, 0, sizeof (cbdata));
1724 memset (&total_progress, 0, sizeof (total_progress));
1725 cbdata.progress_data = &total_progress;
1726
1727 make_cleanup (clear_memory_write_data, &cbdata.requests);
1728
1729 argv = buildargv (args);
1730
1731 if (argv == NULL)
1732 nomem(0);
1733
1734 make_cleanup_freeargv (argv);
1735
1736 filename = tilde_expand (argv[0]);
1737 make_cleanup (xfree, filename);
1738
1739 if (argv[1] != NULL)
1740 {
1741 char *endptr;
1742
1743 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1744
1745 /* If the last word was not a valid number then
1746 treat it as a file name with spaces in. */
1747 if (argv[1] == endptr)
1748 error (_("Invalid download offset:%s."), argv[1]);
1749
1750 if (argv[2] != NULL)
1751 error (_("Too many parameters."));
1752 }
1753
1754 /* Open the file for loading. */
1755 loadfile_bfd = bfd_openr (filename, gnutarget);
1756 if (loadfile_bfd == NULL)
1757 {
1758 perror_with_name (filename);
1759 return;
1760 }
1761
1762 /* FIXME: should be checking for errors from bfd_close (for one thing,
1763 on error it does not free all the storage associated with the
1764 bfd). */
1765 make_cleanup_bfd_close (loadfile_bfd);
1766
1767 if (!bfd_check_format (loadfile_bfd, bfd_object))
1768 {
1769 error (_("\"%s\" is not an object file: %s"), filename,
1770 bfd_errmsg (bfd_get_error ()));
1771 }
1772
1773 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1774 (void *) &total_progress.total_size);
1775
1776 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1777
1778 gettimeofday (&start_time, NULL);
1779
1780 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1781 load_progress) != 0)
1782 error (_("Load failed"));
1783
1784 gettimeofday (&end_time, NULL);
1785
1786 entry = bfd_get_start_address (loadfile_bfd);
1787 ui_out_text (uiout, "Start address ");
1788 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1789 ui_out_text (uiout, ", load size ");
1790 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
1791 ui_out_text (uiout, "\n");
1792 /* We were doing this in remote-mips.c, I suspect it is right
1793 for other targets too. */
1794 write_pc (entry);
1795
1796 /* FIXME: are we supposed to call symbol_file_add or not? According
1797 to a comment from remote-mips.c (where a call to symbol_file_add
1798 was commented out), making the call confuses GDB if more than one
1799 file is loaded in. Some targets do (e.g., remote-vx.c) but
1800 others don't (or didn't - perhaps they have all been deleted). */
1801
1802 print_transfer_performance (gdb_stdout, total_progress.data_count,
1803 total_progress.write_count,
1804 &start_time, &end_time);
1805
1806 do_cleanups (old_cleanups);
1807 }
1808
1809 /* Report how fast the transfer went. */
1810
1811 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1812 replaced by print_transfer_performance (with a very different
1813 function signature). */
1814
1815 void
1816 report_transfer_performance (unsigned long data_count, time_t start_time,
1817 time_t end_time)
1818 {
1819 struct timeval start, end;
1820
1821 start.tv_sec = start_time;
1822 start.tv_usec = 0;
1823 end.tv_sec = end_time;
1824 end.tv_usec = 0;
1825
1826 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
1827 }
1828
1829 void
1830 print_transfer_performance (struct ui_file *stream,
1831 unsigned long data_count,
1832 unsigned long write_count,
1833 const struct timeval *start_time,
1834 const struct timeval *end_time)
1835 {
1836 unsigned long time_count;
1837
1838 /* Compute the elapsed time in milliseconds, as a tradeoff between
1839 accuracy and overflow. */
1840 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
1841 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
1842
1843 ui_out_text (uiout, "Transfer rate: ");
1844 if (time_count > 0)
1845 {
1846 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1847 1000 * (data_count * 8) / time_count);
1848 ui_out_text (uiout, " bits/sec");
1849 }
1850 else
1851 {
1852 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1853 ui_out_text (uiout, " bits in <1 sec");
1854 }
1855 if (write_count > 0)
1856 {
1857 ui_out_text (uiout, ", ");
1858 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1859 ui_out_text (uiout, " bytes/write");
1860 }
1861 ui_out_text (uiout, ".\n");
1862 }
1863
1864 /* This function allows the addition of incrementally linked object files.
1865 It does not modify any state in the target, only in the debugger. */
1866 /* Note: ezannoni 2000-04-13 This function/command used to have a
1867 special case syntax for the rombug target (Rombug is the boot
1868 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1869 rombug case, the user doesn't need to supply a text address,
1870 instead a call to target_link() (in target.c) would supply the
1871 value to use. We are now discontinuing this type of ad hoc syntax. */
1872
1873 static void
1874 add_symbol_file_command (char *args, int from_tty)
1875 {
1876 char *filename = NULL;
1877 int flags = OBJF_USERLOADED;
1878 char *arg;
1879 int expecting_option = 0;
1880 int section_index = 0;
1881 int argcnt = 0;
1882 int sec_num = 0;
1883 int i;
1884 int expecting_sec_name = 0;
1885 int expecting_sec_addr = 0;
1886 char **argv;
1887
1888 struct sect_opt
1889 {
1890 char *name;
1891 char *value;
1892 };
1893
1894 struct section_addr_info *section_addrs;
1895 struct sect_opt *sect_opts = NULL;
1896 size_t num_sect_opts = 0;
1897 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1898
1899 num_sect_opts = 16;
1900 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1901 * sizeof (struct sect_opt));
1902
1903 dont_repeat ();
1904
1905 if (args == NULL)
1906 error (_("add-symbol-file takes a file name and an address"));
1907
1908 argv = buildargv (args);
1909 make_cleanup_freeargv (argv);
1910
1911 if (argv == NULL)
1912 nomem (0);
1913
1914 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
1915 {
1916 /* Process the argument. */
1917 if (argcnt == 0)
1918 {
1919 /* The first argument is the file name. */
1920 filename = tilde_expand (arg);
1921 make_cleanup (xfree, filename);
1922 }
1923 else
1924 if (argcnt == 1)
1925 {
1926 /* The second argument is always the text address at which
1927 to load the program. */
1928 sect_opts[section_index].name = ".text";
1929 sect_opts[section_index].value = arg;
1930 if (++section_index >= num_sect_opts)
1931 {
1932 num_sect_opts *= 2;
1933 sect_opts = ((struct sect_opt *)
1934 xrealloc (sect_opts,
1935 num_sect_opts
1936 * sizeof (struct sect_opt)));
1937 }
1938 }
1939 else
1940 {
1941 /* It's an option (starting with '-') or it's an argument
1942 to an option */
1943
1944 if (*arg == '-')
1945 {
1946 if (strcmp (arg, "-readnow") == 0)
1947 flags |= OBJF_READNOW;
1948 else if (strcmp (arg, "-s") == 0)
1949 {
1950 expecting_sec_name = 1;
1951 expecting_sec_addr = 1;
1952 }
1953 }
1954 else
1955 {
1956 if (expecting_sec_name)
1957 {
1958 sect_opts[section_index].name = arg;
1959 expecting_sec_name = 0;
1960 }
1961 else
1962 if (expecting_sec_addr)
1963 {
1964 sect_opts[section_index].value = arg;
1965 expecting_sec_addr = 0;
1966 if (++section_index >= num_sect_opts)
1967 {
1968 num_sect_opts *= 2;
1969 sect_opts = ((struct sect_opt *)
1970 xrealloc (sect_opts,
1971 num_sect_opts
1972 * sizeof (struct sect_opt)));
1973 }
1974 }
1975 else
1976 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
1977 }
1978 }
1979 }
1980
1981 /* This command takes at least two arguments. The first one is a
1982 filename, and the second is the address where this file has been
1983 loaded. Abort now if this address hasn't been provided by the
1984 user. */
1985 if (section_index < 1)
1986 error (_("The address where %s has been loaded is missing"), filename);
1987
1988 /* Print the prompt for the query below. And save the arguments into
1989 a sect_addr_info structure to be passed around to other
1990 functions. We have to split this up into separate print
1991 statements because hex_string returns a local static
1992 string. */
1993
1994 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
1995 section_addrs = alloc_section_addr_info (section_index);
1996 make_cleanup (xfree, section_addrs);
1997 for (i = 0; i < section_index; i++)
1998 {
1999 CORE_ADDR addr;
2000 char *val = sect_opts[i].value;
2001 char *sec = sect_opts[i].name;
2002
2003 addr = parse_and_eval_address (val);
2004
2005 /* Here we store the section offsets in the order they were
2006 entered on the command line. */
2007 section_addrs->other[sec_num].name = sec;
2008 section_addrs->other[sec_num].addr = addr;
2009 printf_unfiltered ("\t%s_addr = %s\n",
2010 sec, hex_string ((unsigned long)addr));
2011 sec_num++;
2012
2013 /* The object's sections are initialized when a
2014 call is made to build_objfile_section_table (objfile).
2015 This happens in reread_symbols.
2016 At this point, we don't know what file type this is,
2017 so we can't determine what section names are valid. */
2018 }
2019
2020 if (from_tty && (!query ("%s", "")))
2021 error (_("Not confirmed."));
2022
2023 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
2024
2025 /* Getting new symbols may change our opinion about what is
2026 frameless. */
2027 reinit_frame_cache ();
2028 do_cleanups (my_cleanups);
2029 }
2030 \f
2031 static void
2032 add_shared_symbol_files_command (char *args, int from_tty)
2033 {
2034 #ifdef ADD_SHARED_SYMBOL_FILES
2035 ADD_SHARED_SYMBOL_FILES (args, from_tty);
2036 #else
2037 error (_("This command is not available in this configuration of GDB."));
2038 #endif
2039 }
2040 \f
2041 /* Re-read symbols if a symbol-file has changed. */
2042 void
2043 reread_symbols (void)
2044 {
2045 struct objfile *objfile;
2046 long new_modtime;
2047 int reread_one = 0;
2048 struct stat new_statbuf;
2049 int res;
2050
2051 /* With the addition of shared libraries, this should be modified,
2052 the load time should be saved in the partial symbol tables, since
2053 different tables may come from different source files. FIXME.
2054 This routine should then walk down each partial symbol table
2055 and see if the symbol table that it originates from has been changed */
2056
2057 for (objfile = object_files; objfile; objfile = objfile->next)
2058 {
2059 if (objfile->obfd)
2060 {
2061 #ifdef DEPRECATED_IBM6000_TARGET
2062 /* If this object is from a shared library, then you should
2063 stat on the library name, not member name. */
2064
2065 if (objfile->obfd->my_archive)
2066 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2067 else
2068 #endif
2069 res = stat (objfile->name, &new_statbuf);
2070 if (res != 0)
2071 {
2072 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2073 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2074 objfile->name);
2075 continue;
2076 }
2077 new_modtime = new_statbuf.st_mtime;
2078 if (new_modtime != objfile->mtime)
2079 {
2080 struct cleanup *old_cleanups;
2081 struct section_offsets *offsets;
2082 int num_offsets;
2083 char *obfd_filename;
2084
2085 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2086 objfile->name);
2087
2088 /* There are various functions like symbol_file_add,
2089 symfile_bfd_open, syms_from_objfile, etc., which might
2090 appear to do what we want. But they have various other
2091 effects which we *don't* want. So we just do stuff
2092 ourselves. We don't worry about mapped files (for one thing,
2093 any mapped file will be out of date). */
2094
2095 /* If we get an error, blow away this objfile (not sure if
2096 that is the correct response for things like shared
2097 libraries). */
2098 old_cleanups = make_cleanup_free_objfile (objfile);
2099 /* We need to do this whenever any symbols go away. */
2100 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2101
2102 /* Clean up any state BFD has sitting around. We don't need
2103 to close the descriptor but BFD lacks a way of closing the
2104 BFD without closing the descriptor. */
2105 obfd_filename = bfd_get_filename (objfile->obfd);
2106 if (!bfd_close (objfile->obfd))
2107 error (_("Can't close BFD for %s: %s"), objfile->name,
2108 bfd_errmsg (bfd_get_error ()));
2109 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2110 if (objfile->obfd == NULL)
2111 error (_("Can't open %s to read symbols."), objfile->name);
2112 /* bfd_openr sets cacheable to true, which is what we want. */
2113 if (!bfd_check_format (objfile->obfd, bfd_object))
2114 error (_("Can't read symbols from %s: %s."), objfile->name,
2115 bfd_errmsg (bfd_get_error ()));
2116
2117 /* Save the offsets, we will nuke them with the rest of the
2118 objfile_obstack. */
2119 num_offsets = objfile->num_sections;
2120 offsets = ((struct section_offsets *)
2121 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2122 memcpy (offsets, objfile->section_offsets,
2123 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2124
2125 /* Remove any references to this objfile in the global
2126 value lists. */
2127 preserve_values (objfile);
2128
2129 /* Nuke all the state that we will re-read. Much of the following
2130 code which sets things to NULL really is necessary to tell
2131 other parts of GDB that there is nothing currently there. */
2132
2133 /* FIXME: Do we have to free a whole linked list, or is this
2134 enough? */
2135 if (objfile->global_psymbols.list)
2136 xfree (objfile->global_psymbols.list);
2137 memset (&objfile->global_psymbols, 0,
2138 sizeof (objfile->global_psymbols));
2139 if (objfile->static_psymbols.list)
2140 xfree (objfile->static_psymbols.list);
2141 memset (&objfile->static_psymbols, 0,
2142 sizeof (objfile->static_psymbols));
2143
2144 /* Free the obstacks for non-reusable objfiles */
2145 bcache_xfree (objfile->psymbol_cache);
2146 objfile->psymbol_cache = bcache_xmalloc ();
2147 bcache_xfree (objfile->macro_cache);
2148 objfile->macro_cache = bcache_xmalloc ();
2149 if (objfile->demangled_names_hash != NULL)
2150 {
2151 htab_delete (objfile->demangled_names_hash);
2152 objfile->demangled_names_hash = NULL;
2153 }
2154 obstack_free (&objfile->objfile_obstack, 0);
2155 objfile->sections = NULL;
2156 objfile->symtabs = NULL;
2157 objfile->psymtabs = NULL;
2158 objfile->free_psymtabs = NULL;
2159 objfile->cp_namespace_symtab = NULL;
2160 objfile->msymbols = NULL;
2161 objfile->deprecated_sym_private = NULL;
2162 objfile->minimal_symbol_count = 0;
2163 memset (&objfile->msymbol_hash, 0,
2164 sizeof (objfile->msymbol_hash));
2165 memset (&objfile->msymbol_demangled_hash, 0,
2166 sizeof (objfile->msymbol_demangled_hash));
2167 objfile->fundamental_types = NULL;
2168 clear_objfile_data (objfile);
2169 if (objfile->sf != NULL)
2170 {
2171 (*objfile->sf->sym_finish) (objfile);
2172 }
2173
2174 /* We never make this a mapped file. */
2175 objfile->md = NULL;
2176 objfile->psymbol_cache = bcache_xmalloc ();
2177 objfile->macro_cache = bcache_xmalloc ();
2178 /* obstack_init also initializes the obstack so it is
2179 empty. We could use obstack_specify_allocation but
2180 gdb_obstack.h specifies the alloc/dealloc
2181 functions. */
2182 obstack_init (&objfile->objfile_obstack);
2183 if (build_objfile_section_table (objfile))
2184 {
2185 error (_("Can't find the file sections in `%s': %s"),
2186 objfile->name, bfd_errmsg (bfd_get_error ()));
2187 }
2188 terminate_minimal_symbol_table (objfile);
2189
2190 /* We use the same section offsets as from last time. I'm not
2191 sure whether that is always correct for shared libraries. */
2192 objfile->section_offsets = (struct section_offsets *)
2193 obstack_alloc (&objfile->objfile_obstack,
2194 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2195 memcpy (objfile->section_offsets, offsets,
2196 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2197 objfile->num_sections = num_offsets;
2198
2199 /* What the hell is sym_new_init for, anyway? The concept of
2200 distinguishing between the main file and additional files
2201 in this way seems rather dubious. */
2202 if (objfile == symfile_objfile)
2203 {
2204 (*objfile->sf->sym_new_init) (objfile);
2205 }
2206
2207 (*objfile->sf->sym_init) (objfile);
2208 clear_complaints (&symfile_complaints, 1, 1);
2209 /* The "mainline" parameter is a hideous hack; I think leaving it
2210 zero is OK since dbxread.c also does what it needs to do if
2211 objfile->global_psymbols.size is 0. */
2212 (*objfile->sf->sym_read) (objfile, 0);
2213 if (!have_partial_symbols () && !have_full_symbols ())
2214 {
2215 wrap_here ("");
2216 printf_unfiltered (_("(no debugging symbols found)\n"));
2217 wrap_here ("");
2218 }
2219 objfile->flags |= OBJF_SYMS;
2220
2221 /* We're done reading the symbol file; finish off complaints. */
2222 clear_complaints (&symfile_complaints, 0, 1);
2223
2224 /* Getting new symbols may change our opinion about what is
2225 frameless. */
2226
2227 reinit_frame_cache ();
2228
2229 /* Discard cleanups as symbol reading was successful. */
2230 discard_cleanups (old_cleanups);
2231
2232 /* If the mtime has changed between the time we set new_modtime
2233 and now, we *want* this to be out of date, so don't call stat
2234 again now. */
2235 objfile->mtime = new_modtime;
2236 reread_one = 1;
2237 reread_separate_symbols (objfile);
2238 }
2239 }
2240 }
2241
2242 if (reread_one)
2243 {
2244 clear_symtab_users ();
2245 /* At least one objfile has changed, so we can consider that
2246 the executable we're debugging has changed too. */
2247 observer_notify_executable_changed (NULL);
2248 }
2249
2250 }
2251
2252
2253 /* Handle separate debug info for OBJFILE, which has just been
2254 re-read:
2255 - If we had separate debug info before, but now we don't, get rid
2256 of the separated objfile.
2257 - If we didn't have separated debug info before, but now we do,
2258 read in the new separated debug info file.
2259 - If the debug link points to a different file, toss the old one
2260 and read the new one.
2261 This function does *not* handle the case where objfile is still
2262 using the same separate debug info file, but that file's timestamp
2263 has changed. That case should be handled by the loop in
2264 reread_symbols already. */
2265 static void
2266 reread_separate_symbols (struct objfile *objfile)
2267 {
2268 char *debug_file;
2269 unsigned long crc32;
2270
2271 /* Does the updated objfile's debug info live in a
2272 separate file? */
2273 debug_file = find_separate_debug_file (objfile);
2274
2275 if (objfile->separate_debug_objfile)
2276 {
2277 /* There are two cases where we need to get rid of
2278 the old separated debug info objfile:
2279 - if the new primary objfile doesn't have
2280 separated debug info, or
2281 - if the new primary objfile has separate debug
2282 info, but it's under a different filename.
2283
2284 If the old and new objfiles both have separate
2285 debug info, under the same filename, then we're
2286 okay --- if the separated file's contents have
2287 changed, we will have caught that when we
2288 visited it in this function's outermost
2289 loop. */
2290 if (! debug_file
2291 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2292 free_objfile (objfile->separate_debug_objfile);
2293 }
2294
2295 /* If the new objfile has separate debug info, and we
2296 haven't loaded it already, do so now. */
2297 if (debug_file
2298 && ! objfile->separate_debug_objfile)
2299 {
2300 /* Use the same section offset table as objfile itself.
2301 Preserve the flags from objfile that make sense. */
2302 objfile->separate_debug_objfile
2303 = (symbol_file_add_with_addrs_or_offsets
2304 (symfile_bfd_open (debug_file),
2305 info_verbose, /* from_tty: Don't override the default. */
2306 0, /* No addr table. */
2307 objfile->section_offsets, objfile->num_sections,
2308 0, /* Not mainline. See comments about this above. */
2309 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2310 | OBJF_USERLOADED)));
2311 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2312 = objfile;
2313 }
2314 }
2315
2316
2317 \f
2318
2319
2320 typedef struct
2321 {
2322 char *ext;
2323 enum language lang;
2324 }
2325 filename_language;
2326
2327 static filename_language *filename_language_table;
2328 static int fl_table_size, fl_table_next;
2329
2330 static void
2331 add_filename_language (char *ext, enum language lang)
2332 {
2333 if (fl_table_next >= fl_table_size)
2334 {
2335 fl_table_size += 10;
2336 filename_language_table =
2337 xrealloc (filename_language_table,
2338 fl_table_size * sizeof (*filename_language_table));
2339 }
2340
2341 filename_language_table[fl_table_next].ext = xstrdup (ext);
2342 filename_language_table[fl_table_next].lang = lang;
2343 fl_table_next++;
2344 }
2345
2346 static char *ext_args;
2347 static void
2348 show_ext_args (struct ui_file *file, int from_tty,
2349 struct cmd_list_element *c, const char *value)
2350 {
2351 fprintf_filtered (file, _("\
2352 Mapping between filename extension and source language is \"%s\".\n"),
2353 value);
2354 }
2355
2356 static void
2357 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2358 {
2359 int i;
2360 char *cp = ext_args;
2361 enum language lang;
2362
2363 /* First arg is filename extension, starting with '.' */
2364 if (*cp != '.')
2365 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2366
2367 /* Find end of first arg. */
2368 while (*cp && !isspace (*cp))
2369 cp++;
2370
2371 if (*cp == '\0')
2372 error (_("'%s': two arguments required -- filename extension and language"),
2373 ext_args);
2374
2375 /* Null-terminate first arg */
2376 *cp++ = '\0';
2377
2378 /* Find beginning of second arg, which should be a source language. */
2379 while (*cp && isspace (*cp))
2380 cp++;
2381
2382 if (*cp == '\0')
2383 error (_("'%s': two arguments required -- filename extension and language"),
2384 ext_args);
2385
2386 /* Lookup the language from among those we know. */
2387 lang = language_enum (cp);
2388
2389 /* Now lookup the filename extension: do we already know it? */
2390 for (i = 0; i < fl_table_next; i++)
2391 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2392 break;
2393
2394 if (i >= fl_table_next)
2395 {
2396 /* new file extension */
2397 add_filename_language (ext_args, lang);
2398 }
2399 else
2400 {
2401 /* redefining a previously known filename extension */
2402
2403 /* if (from_tty) */
2404 /* query ("Really make files of type %s '%s'?", */
2405 /* ext_args, language_str (lang)); */
2406
2407 xfree (filename_language_table[i].ext);
2408 filename_language_table[i].ext = xstrdup (ext_args);
2409 filename_language_table[i].lang = lang;
2410 }
2411 }
2412
2413 static void
2414 info_ext_lang_command (char *args, int from_tty)
2415 {
2416 int i;
2417
2418 printf_filtered (_("Filename extensions and the languages they represent:"));
2419 printf_filtered ("\n\n");
2420 for (i = 0; i < fl_table_next; i++)
2421 printf_filtered ("\t%s\t- %s\n",
2422 filename_language_table[i].ext,
2423 language_str (filename_language_table[i].lang));
2424 }
2425
2426 static void
2427 init_filename_language_table (void)
2428 {
2429 if (fl_table_size == 0) /* protect against repetition */
2430 {
2431 fl_table_size = 20;
2432 fl_table_next = 0;
2433 filename_language_table =
2434 xmalloc (fl_table_size * sizeof (*filename_language_table));
2435 add_filename_language (".c", language_c);
2436 add_filename_language (".C", language_cplus);
2437 add_filename_language (".cc", language_cplus);
2438 add_filename_language (".cp", language_cplus);
2439 add_filename_language (".cpp", language_cplus);
2440 add_filename_language (".cxx", language_cplus);
2441 add_filename_language (".c++", language_cplus);
2442 add_filename_language (".java", language_java);
2443 add_filename_language (".class", language_java);
2444 add_filename_language (".m", language_objc);
2445 add_filename_language (".f", language_fortran);
2446 add_filename_language (".F", language_fortran);
2447 add_filename_language (".s", language_asm);
2448 add_filename_language (".S", language_asm);
2449 add_filename_language (".pas", language_pascal);
2450 add_filename_language (".p", language_pascal);
2451 add_filename_language (".pp", language_pascal);
2452 add_filename_language (".adb", language_ada);
2453 add_filename_language (".ads", language_ada);
2454 add_filename_language (".a", language_ada);
2455 add_filename_language (".ada", language_ada);
2456 }
2457 }
2458
2459 enum language
2460 deduce_language_from_filename (char *filename)
2461 {
2462 int i;
2463 char *cp;
2464
2465 if (filename != NULL)
2466 if ((cp = strrchr (filename, '.')) != NULL)
2467 for (i = 0; i < fl_table_next; i++)
2468 if (strcmp (cp, filename_language_table[i].ext) == 0)
2469 return filename_language_table[i].lang;
2470
2471 return language_unknown;
2472 }
2473 \f
2474 /* allocate_symtab:
2475
2476 Allocate and partly initialize a new symbol table. Return a pointer
2477 to it. error() if no space.
2478
2479 Caller must set these fields:
2480 LINETABLE(symtab)
2481 symtab->blockvector
2482 symtab->dirname
2483 symtab->free_code
2484 symtab->free_ptr
2485 possibly free_named_symtabs (symtab->filename);
2486 */
2487
2488 struct symtab *
2489 allocate_symtab (char *filename, struct objfile *objfile)
2490 {
2491 struct symtab *symtab;
2492
2493 symtab = (struct symtab *)
2494 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2495 memset (symtab, 0, sizeof (*symtab));
2496 symtab->filename = obsavestring (filename, strlen (filename),
2497 &objfile->objfile_obstack);
2498 symtab->fullname = NULL;
2499 symtab->language = deduce_language_from_filename (filename);
2500 symtab->debugformat = obsavestring ("unknown", 7,
2501 &objfile->objfile_obstack);
2502
2503 /* Hook it to the objfile it comes from */
2504
2505 symtab->objfile = objfile;
2506 symtab->next = objfile->symtabs;
2507 objfile->symtabs = symtab;
2508
2509 /* FIXME: This should go away. It is only defined for the Z8000,
2510 and the Z8000 definition of this macro doesn't have anything to
2511 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2512 here for convenience. */
2513 #ifdef INIT_EXTRA_SYMTAB_INFO
2514 INIT_EXTRA_SYMTAB_INFO (symtab);
2515 #endif
2516
2517 return (symtab);
2518 }
2519
2520 struct partial_symtab *
2521 allocate_psymtab (char *filename, struct objfile *objfile)
2522 {
2523 struct partial_symtab *psymtab;
2524
2525 if (objfile->free_psymtabs)
2526 {
2527 psymtab = objfile->free_psymtabs;
2528 objfile->free_psymtabs = psymtab->next;
2529 }
2530 else
2531 psymtab = (struct partial_symtab *)
2532 obstack_alloc (&objfile->objfile_obstack,
2533 sizeof (struct partial_symtab));
2534
2535 memset (psymtab, 0, sizeof (struct partial_symtab));
2536 psymtab->filename = obsavestring (filename, strlen (filename),
2537 &objfile->objfile_obstack);
2538 psymtab->symtab = NULL;
2539
2540 /* Prepend it to the psymtab list for the objfile it belongs to.
2541 Psymtabs are searched in most recent inserted -> least recent
2542 inserted order. */
2543
2544 psymtab->objfile = objfile;
2545 psymtab->next = objfile->psymtabs;
2546 objfile->psymtabs = psymtab;
2547 #if 0
2548 {
2549 struct partial_symtab **prev_pst;
2550 psymtab->objfile = objfile;
2551 psymtab->next = NULL;
2552 prev_pst = &(objfile->psymtabs);
2553 while ((*prev_pst) != NULL)
2554 prev_pst = &((*prev_pst)->next);
2555 (*prev_pst) = psymtab;
2556 }
2557 #endif
2558
2559 return (psymtab);
2560 }
2561
2562 void
2563 discard_psymtab (struct partial_symtab *pst)
2564 {
2565 struct partial_symtab **prev_pst;
2566
2567 /* From dbxread.c:
2568 Empty psymtabs happen as a result of header files which don't
2569 have any symbols in them. There can be a lot of them. But this
2570 check is wrong, in that a psymtab with N_SLINE entries but
2571 nothing else is not empty, but we don't realize that. Fixing
2572 that without slowing things down might be tricky. */
2573
2574 /* First, snip it out of the psymtab chain */
2575
2576 prev_pst = &(pst->objfile->psymtabs);
2577 while ((*prev_pst) != pst)
2578 prev_pst = &((*prev_pst)->next);
2579 (*prev_pst) = pst->next;
2580
2581 /* Next, put it on a free list for recycling */
2582
2583 pst->next = pst->objfile->free_psymtabs;
2584 pst->objfile->free_psymtabs = pst;
2585 }
2586 \f
2587
2588 /* Reset all data structures in gdb which may contain references to symbol
2589 table data. */
2590
2591 void
2592 clear_symtab_users (void)
2593 {
2594 /* Someday, we should do better than this, by only blowing away
2595 the things that really need to be blown. */
2596
2597 /* Clear the "current" symtab first, because it is no longer valid.
2598 breakpoint_re_set may try to access the current symtab. */
2599 clear_current_source_symtab_and_line ();
2600
2601 clear_displays ();
2602 breakpoint_re_set ();
2603 set_default_breakpoint (0, 0, 0, 0);
2604 clear_pc_function_cache ();
2605 if (deprecated_target_new_objfile_hook)
2606 deprecated_target_new_objfile_hook (NULL);
2607
2608 /* Clear globals which might have pointed into a removed objfile.
2609 FIXME: It's not clear which of these are supposed to persist
2610 between expressions and which ought to be reset each time. */
2611 expression_context_block = NULL;
2612 innermost_block = NULL;
2613 }
2614
2615 static void
2616 clear_symtab_users_cleanup (void *ignore)
2617 {
2618 clear_symtab_users ();
2619 }
2620
2621 /* clear_symtab_users_once:
2622
2623 This function is run after symbol reading, or from a cleanup.
2624 If an old symbol table was obsoleted, the old symbol table
2625 has been blown away, but the other GDB data structures that may
2626 reference it have not yet been cleared or re-directed. (The old
2627 symtab was zapped, and the cleanup queued, in free_named_symtab()
2628 below.)
2629
2630 This function can be queued N times as a cleanup, or called
2631 directly; it will do all the work the first time, and then will be a
2632 no-op until the next time it is queued. This works by bumping a
2633 counter at queueing time. Much later when the cleanup is run, or at
2634 the end of symbol processing (in case the cleanup is discarded), if
2635 the queued count is greater than the "done-count", we do the work
2636 and set the done-count to the queued count. If the queued count is
2637 less than or equal to the done-count, we just ignore the call. This
2638 is needed because reading a single .o file will often replace many
2639 symtabs (one per .h file, for example), and we don't want to reset
2640 the breakpoints N times in the user's face.
2641
2642 The reason we both queue a cleanup, and call it directly after symbol
2643 reading, is because the cleanup protects us in case of errors, but is
2644 discarded if symbol reading is successful. */
2645
2646 #if 0
2647 /* FIXME: As free_named_symtabs is currently a big noop this function
2648 is no longer needed. */
2649 static void clear_symtab_users_once (void);
2650
2651 static int clear_symtab_users_queued;
2652 static int clear_symtab_users_done;
2653
2654 static void
2655 clear_symtab_users_once (void)
2656 {
2657 /* Enforce once-per-`do_cleanups'-semantics */
2658 if (clear_symtab_users_queued <= clear_symtab_users_done)
2659 return;
2660 clear_symtab_users_done = clear_symtab_users_queued;
2661
2662 clear_symtab_users ();
2663 }
2664 #endif
2665
2666 /* Delete the specified psymtab, and any others that reference it. */
2667
2668 static void
2669 cashier_psymtab (struct partial_symtab *pst)
2670 {
2671 struct partial_symtab *ps, *pprev = NULL;
2672 int i;
2673
2674 /* Find its previous psymtab in the chain */
2675 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2676 {
2677 if (ps == pst)
2678 break;
2679 pprev = ps;
2680 }
2681
2682 if (ps)
2683 {
2684 /* Unhook it from the chain. */
2685 if (ps == pst->objfile->psymtabs)
2686 pst->objfile->psymtabs = ps->next;
2687 else
2688 pprev->next = ps->next;
2689
2690 /* FIXME, we can't conveniently deallocate the entries in the
2691 partial_symbol lists (global_psymbols/static_psymbols) that
2692 this psymtab points to. These just take up space until all
2693 the psymtabs are reclaimed. Ditto the dependencies list and
2694 filename, which are all in the objfile_obstack. */
2695
2696 /* We need to cashier any psymtab that has this one as a dependency... */
2697 again:
2698 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2699 {
2700 for (i = 0; i < ps->number_of_dependencies; i++)
2701 {
2702 if (ps->dependencies[i] == pst)
2703 {
2704 cashier_psymtab (ps);
2705 goto again; /* Must restart, chain has been munged. */
2706 }
2707 }
2708 }
2709 }
2710 }
2711
2712 /* If a symtab or psymtab for filename NAME is found, free it along
2713 with any dependent breakpoints, displays, etc.
2714 Used when loading new versions of object modules with the "add-file"
2715 command. This is only called on the top-level symtab or psymtab's name;
2716 it is not called for subsidiary files such as .h files.
2717
2718 Return value is 1 if we blew away the environment, 0 if not.
2719 FIXME. The return value appears to never be used.
2720
2721 FIXME. I think this is not the best way to do this. We should
2722 work on being gentler to the environment while still cleaning up
2723 all stray pointers into the freed symtab. */
2724
2725 int
2726 free_named_symtabs (char *name)
2727 {
2728 #if 0
2729 /* FIXME: With the new method of each objfile having it's own
2730 psymtab list, this function needs serious rethinking. In particular,
2731 why was it ever necessary to toss psymtabs with specific compilation
2732 unit filenames, as opposed to all psymtabs from a particular symbol
2733 file? -- fnf
2734 Well, the answer is that some systems permit reloading of particular
2735 compilation units. We want to blow away any old info about these
2736 compilation units, regardless of which objfiles they arrived in. --gnu. */
2737
2738 struct symtab *s;
2739 struct symtab *prev;
2740 struct partial_symtab *ps;
2741 struct blockvector *bv;
2742 int blewit = 0;
2743
2744 /* We only wack things if the symbol-reload switch is set. */
2745 if (!symbol_reloading)
2746 return 0;
2747
2748 /* Some symbol formats have trouble providing file names... */
2749 if (name == 0 || *name == '\0')
2750 return 0;
2751
2752 /* Look for a psymtab with the specified name. */
2753
2754 again2:
2755 for (ps = partial_symtab_list; ps; ps = ps->next)
2756 {
2757 if (strcmp (name, ps->filename) == 0)
2758 {
2759 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2760 goto again2; /* Must restart, chain has been munged */
2761 }
2762 }
2763
2764 /* Look for a symtab with the specified name. */
2765
2766 for (s = symtab_list; s; s = s->next)
2767 {
2768 if (strcmp (name, s->filename) == 0)
2769 break;
2770 prev = s;
2771 }
2772
2773 if (s)
2774 {
2775 if (s == symtab_list)
2776 symtab_list = s->next;
2777 else
2778 prev->next = s->next;
2779
2780 /* For now, queue a delete for all breakpoints, displays, etc., whether
2781 or not they depend on the symtab being freed. This should be
2782 changed so that only those data structures affected are deleted. */
2783
2784 /* But don't delete anything if the symtab is empty.
2785 This test is necessary due to a bug in "dbxread.c" that
2786 causes empty symtabs to be created for N_SO symbols that
2787 contain the pathname of the object file. (This problem
2788 has been fixed in GDB 3.9x). */
2789
2790 bv = BLOCKVECTOR (s);
2791 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2792 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2793 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2794 {
2795 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
2796 name);
2797 clear_symtab_users_queued++;
2798 make_cleanup (clear_symtab_users_once, 0);
2799 blewit = 1;
2800 }
2801 else
2802 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2803 name);
2804
2805 free_symtab (s);
2806 }
2807 else
2808 {
2809 /* It is still possible that some breakpoints will be affected
2810 even though no symtab was found, since the file might have
2811 been compiled without debugging, and hence not be associated
2812 with a symtab. In order to handle this correctly, we would need
2813 to keep a list of text address ranges for undebuggable files.
2814 For now, we do nothing, since this is a fairly obscure case. */
2815 ;
2816 }
2817
2818 /* FIXME, what about the minimal symbol table? */
2819 return blewit;
2820 #else
2821 return (0);
2822 #endif
2823 }
2824 \f
2825 /* Allocate and partially fill a partial symtab. It will be
2826 completely filled at the end of the symbol list.
2827
2828 FILENAME is the name of the symbol-file we are reading from. */
2829
2830 struct partial_symtab *
2831 start_psymtab_common (struct objfile *objfile,
2832 struct section_offsets *section_offsets, char *filename,
2833 CORE_ADDR textlow, struct partial_symbol **global_syms,
2834 struct partial_symbol **static_syms)
2835 {
2836 struct partial_symtab *psymtab;
2837
2838 psymtab = allocate_psymtab (filename, objfile);
2839 psymtab->section_offsets = section_offsets;
2840 psymtab->textlow = textlow;
2841 psymtab->texthigh = psymtab->textlow; /* default */
2842 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2843 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2844 return (psymtab);
2845 }
2846 \f
2847 /* Add a symbol with a long value to a psymtab.
2848 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2849 Return the partial symbol that has been added. */
2850
2851 /* NOTE: carlton/2003-09-11: The reason why we return the partial
2852 symbol is so that callers can get access to the symbol's demangled
2853 name, which they don't have any cheap way to determine otherwise.
2854 (Currenly, dwarf2read.c is the only file who uses that information,
2855 though it's possible that other readers might in the future.)
2856 Elena wasn't thrilled about that, and I don't blame her, but we
2857 couldn't come up with a better way to get that information. If
2858 it's needed in other situations, we could consider breaking up
2859 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2860 cache. */
2861
2862 const struct partial_symbol *
2863 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2864 enum address_class class,
2865 struct psymbol_allocation_list *list, long val, /* Value as a long */
2866 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2867 enum language language, struct objfile *objfile)
2868 {
2869 struct partial_symbol *psym;
2870 char *buf = alloca (namelength + 1);
2871 /* psymbol is static so that there will be no uninitialized gaps in the
2872 structure which might contain random data, causing cache misses in
2873 bcache. */
2874 static struct partial_symbol psymbol;
2875
2876 /* Create local copy of the partial symbol */
2877 memcpy (buf, name, namelength);
2878 buf[namelength] = '\0';
2879 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2880 if (val != 0)
2881 {
2882 SYMBOL_VALUE (&psymbol) = val;
2883 }
2884 else
2885 {
2886 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2887 }
2888 SYMBOL_SECTION (&psymbol) = 0;
2889 SYMBOL_LANGUAGE (&psymbol) = language;
2890 PSYMBOL_DOMAIN (&psymbol) = domain;
2891 PSYMBOL_CLASS (&psymbol) = class;
2892
2893 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2894
2895 /* Stash the partial symbol away in the cache */
2896 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2897 objfile->psymbol_cache);
2898
2899 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2900 if (list->next >= list->list + list->size)
2901 {
2902 extend_psymbol_list (list, objfile);
2903 }
2904 *list->next++ = psym;
2905 OBJSTAT (objfile, n_psyms++);
2906
2907 return psym;
2908 }
2909
2910 /* Add a symbol with a long value to a psymtab. This differs from
2911 * add_psymbol_to_list above in taking both a mangled and a demangled
2912 * name. */
2913
2914 void
2915 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2916 int dem_namelength, domain_enum domain,
2917 enum address_class class,
2918 struct psymbol_allocation_list *list, long val, /* Value as a long */
2919 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2920 enum language language,
2921 struct objfile *objfile)
2922 {
2923 struct partial_symbol *psym;
2924 char *buf = alloca (namelength + 1);
2925 /* psymbol is static so that there will be no uninitialized gaps in the
2926 structure which might contain random data, causing cache misses in
2927 bcache. */
2928 static struct partial_symbol psymbol;
2929
2930 /* Create local copy of the partial symbol */
2931
2932 memcpy (buf, name, namelength);
2933 buf[namelength] = '\0';
2934 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2935 objfile->psymbol_cache);
2936
2937 buf = alloca (dem_namelength + 1);
2938 memcpy (buf, dem_name, dem_namelength);
2939 buf[dem_namelength] = '\0';
2940
2941 switch (language)
2942 {
2943 case language_c:
2944 case language_cplus:
2945 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2946 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2947 break;
2948 /* FIXME What should be done for the default case? Ignoring for now. */
2949 }
2950
2951 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2952 if (val != 0)
2953 {
2954 SYMBOL_VALUE (&psymbol) = val;
2955 }
2956 else
2957 {
2958 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2959 }
2960 SYMBOL_SECTION (&psymbol) = 0;
2961 SYMBOL_LANGUAGE (&psymbol) = language;
2962 PSYMBOL_DOMAIN (&psymbol) = domain;
2963 PSYMBOL_CLASS (&psymbol) = class;
2964 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2965
2966 /* Stash the partial symbol away in the cache */
2967 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2968 objfile->psymbol_cache);
2969
2970 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2971 if (list->next >= list->list + list->size)
2972 {
2973 extend_psymbol_list (list, objfile);
2974 }
2975 *list->next++ = psym;
2976 OBJSTAT (objfile, n_psyms++);
2977 }
2978
2979 /* Initialize storage for partial symbols. */
2980
2981 void
2982 init_psymbol_list (struct objfile *objfile, int total_symbols)
2983 {
2984 /* Free any previously allocated psymbol lists. */
2985
2986 if (objfile->global_psymbols.list)
2987 {
2988 xfree (objfile->global_psymbols.list);
2989 }
2990 if (objfile->static_psymbols.list)
2991 {
2992 xfree (objfile->static_psymbols.list);
2993 }
2994
2995 /* Current best guess is that approximately a twentieth
2996 of the total symbols (in a debugging file) are global or static
2997 oriented symbols */
2998
2999 objfile->global_psymbols.size = total_symbols / 10;
3000 objfile->static_psymbols.size = total_symbols / 10;
3001
3002 if (objfile->global_psymbols.size > 0)
3003 {
3004 objfile->global_psymbols.next =
3005 objfile->global_psymbols.list = (struct partial_symbol **)
3006 xmalloc ((objfile->global_psymbols.size
3007 * sizeof (struct partial_symbol *)));
3008 }
3009 if (objfile->static_psymbols.size > 0)
3010 {
3011 objfile->static_psymbols.next =
3012 objfile->static_psymbols.list = (struct partial_symbol **)
3013 xmalloc ((objfile->static_psymbols.size
3014 * sizeof (struct partial_symbol *)));
3015 }
3016 }
3017
3018 /* OVERLAYS:
3019 The following code implements an abstraction for debugging overlay sections.
3020
3021 The target model is as follows:
3022 1) The gnu linker will permit multiple sections to be mapped into the
3023 same VMA, each with its own unique LMA (or load address).
3024 2) It is assumed that some runtime mechanism exists for mapping the
3025 sections, one by one, from the load address into the VMA address.
3026 3) This code provides a mechanism for gdb to keep track of which
3027 sections should be considered to be mapped from the VMA to the LMA.
3028 This information is used for symbol lookup, and memory read/write.
3029 For instance, if a section has been mapped then its contents
3030 should be read from the VMA, otherwise from the LMA.
3031
3032 Two levels of debugger support for overlays are available. One is
3033 "manual", in which the debugger relies on the user to tell it which
3034 overlays are currently mapped. This level of support is
3035 implemented entirely in the core debugger, and the information about
3036 whether a section is mapped is kept in the objfile->obj_section table.
3037
3038 The second level of support is "automatic", and is only available if
3039 the target-specific code provides functionality to read the target's
3040 overlay mapping table, and translate its contents for the debugger
3041 (by updating the mapped state information in the obj_section tables).
3042
3043 The interface is as follows:
3044 User commands:
3045 overlay map <name> -- tell gdb to consider this section mapped
3046 overlay unmap <name> -- tell gdb to consider this section unmapped
3047 overlay list -- list the sections that GDB thinks are mapped
3048 overlay read-target -- get the target's state of what's mapped
3049 overlay off/manual/auto -- set overlay debugging state
3050 Functional interface:
3051 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3052 section, return that section.
3053 find_pc_overlay(pc): find any overlay section that contains
3054 the pc, either in its VMA or its LMA
3055 overlay_is_mapped(sect): true if overlay is marked as mapped
3056 section_is_overlay(sect): true if section's VMA != LMA
3057 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3058 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3059 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3060 overlay_mapped_address(...): map an address from section's LMA to VMA
3061 overlay_unmapped_address(...): map an address from section's VMA to LMA
3062 symbol_overlayed_address(...): Return a "current" address for symbol:
3063 either in VMA or LMA depending on whether
3064 the symbol's section is currently mapped
3065 */
3066
3067 /* Overlay debugging state: */
3068
3069 enum overlay_debugging_state overlay_debugging = ovly_off;
3070 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3071
3072 /* Target vector for refreshing overlay mapped state */
3073 static void simple_overlay_update (struct obj_section *);
3074 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
3075
3076 /* Function: section_is_overlay (SECTION)
3077 Returns true if SECTION has VMA not equal to LMA, ie.
3078 SECTION is loaded at an address different from where it will "run". */
3079
3080 int
3081 section_is_overlay (asection *section)
3082 {
3083 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3084
3085 if (overlay_debugging)
3086 if (section && section->lma != 0 &&
3087 section->vma != section->lma)
3088 return 1;
3089
3090 return 0;
3091 }
3092
3093 /* Function: overlay_invalidate_all (void)
3094 Invalidate the mapped state of all overlay sections (mark it as stale). */
3095
3096 static void
3097 overlay_invalidate_all (void)
3098 {
3099 struct objfile *objfile;
3100 struct obj_section *sect;
3101
3102 ALL_OBJSECTIONS (objfile, sect)
3103 if (section_is_overlay (sect->the_bfd_section))
3104 sect->ovly_mapped = -1;
3105 }
3106
3107 /* Function: overlay_is_mapped (SECTION)
3108 Returns true if section is an overlay, and is currently mapped.
3109 Private: public access is thru function section_is_mapped.
3110
3111 Access to the ovly_mapped flag is restricted to this function, so
3112 that we can do automatic update. If the global flag
3113 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3114 overlay_invalidate_all. If the mapped state of the particular
3115 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3116
3117 static int
3118 overlay_is_mapped (struct obj_section *osect)
3119 {
3120 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3121 return 0;
3122
3123 switch (overlay_debugging)
3124 {
3125 default:
3126 case ovly_off:
3127 return 0; /* overlay debugging off */
3128 case ovly_auto: /* overlay debugging automatic */
3129 /* Unles there is a target_overlay_update function,
3130 there's really nothing useful to do here (can't really go auto) */
3131 if (target_overlay_update)
3132 {
3133 if (overlay_cache_invalid)
3134 {
3135 overlay_invalidate_all ();
3136 overlay_cache_invalid = 0;
3137 }
3138 if (osect->ovly_mapped == -1)
3139 (*target_overlay_update) (osect);
3140 }
3141 /* fall thru to manual case */
3142 case ovly_on: /* overlay debugging manual */
3143 return osect->ovly_mapped == 1;
3144 }
3145 }
3146
3147 /* Function: section_is_mapped
3148 Returns true if section is an overlay, and is currently mapped. */
3149
3150 int
3151 section_is_mapped (asection *section)
3152 {
3153 struct objfile *objfile;
3154 struct obj_section *osect;
3155
3156 if (overlay_debugging)
3157 if (section && section_is_overlay (section))
3158 ALL_OBJSECTIONS (objfile, osect)
3159 if (osect->the_bfd_section == section)
3160 return overlay_is_mapped (osect);
3161
3162 return 0;
3163 }
3164
3165 /* Function: pc_in_unmapped_range
3166 If PC falls into the lma range of SECTION, return true, else false. */
3167
3168 CORE_ADDR
3169 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
3170 {
3171 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3172
3173 int size;
3174
3175 if (overlay_debugging)
3176 if (section && section_is_overlay (section))
3177 {
3178 size = bfd_get_section_size (section);
3179 if (section->lma <= pc && pc < section->lma + size)
3180 return 1;
3181 }
3182 return 0;
3183 }
3184
3185 /* Function: pc_in_mapped_range
3186 If PC falls into the vma range of SECTION, return true, else false. */
3187
3188 CORE_ADDR
3189 pc_in_mapped_range (CORE_ADDR pc, asection *section)
3190 {
3191 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3192
3193 int size;
3194
3195 if (overlay_debugging)
3196 if (section && section_is_overlay (section))
3197 {
3198 size = bfd_get_section_size (section);
3199 if (section->vma <= pc && pc < section->vma + size)
3200 return 1;
3201 }
3202 return 0;
3203 }
3204
3205
3206 /* Return true if the mapped ranges of sections A and B overlap, false
3207 otherwise. */
3208 static int
3209 sections_overlap (asection *a, asection *b)
3210 {
3211 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3212
3213 CORE_ADDR a_start = a->vma;
3214 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
3215 CORE_ADDR b_start = b->vma;
3216 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
3217
3218 return (a_start < b_end && b_start < a_end);
3219 }
3220
3221 /* Function: overlay_unmapped_address (PC, SECTION)
3222 Returns the address corresponding to PC in the unmapped (load) range.
3223 May be the same as PC. */
3224
3225 CORE_ADDR
3226 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3227 {
3228 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3229
3230 if (overlay_debugging)
3231 if (section && section_is_overlay (section) &&
3232 pc_in_mapped_range (pc, section))
3233 return pc + section->lma - section->vma;
3234
3235 return pc;
3236 }
3237
3238 /* Function: overlay_mapped_address (PC, SECTION)
3239 Returns the address corresponding to PC in the mapped (runtime) range.
3240 May be the same as PC. */
3241
3242 CORE_ADDR
3243 overlay_mapped_address (CORE_ADDR pc, asection *section)
3244 {
3245 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3246
3247 if (overlay_debugging)
3248 if (section && section_is_overlay (section) &&
3249 pc_in_unmapped_range (pc, section))
3250 return pc + section->vma - section->lma;
3251
3252 return pc;
3253 }
3254
3255
3256 /* Function: symbol_overlayed_address
3257 Return one of two addresses (relative to the VMA or to the LMA),
3258 depending on whether the section is mapped or not. */
3259
3260 CORE_ADDR
3261 symbol_overlayed_address (CORE_ADDR address, asection *section)
3262 {
3263 if (overlay_debugging)
3264 {
3265 /* If the symbol has no section, just return its regular address. */
3266 if (section == 0)
3267 return address;
3268 /* If the symbol's section is not an overlay, just return its address */
3269 if (!section_is_overlay (section))
3270 return address;
3271 /* If the symbol's section is mapped, just return its address */
3272 if (section_is_mapped (section))
3273 return address;
3274 /*
3275 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3276 * then return its LOADED address rather than its vma address!!
3277 */
3278 return overlay_unmapped_address (address, section);
3279 }
3280 return address;
3281 }
3282
3283 /* Function: find_pc_overlay (PC)
3284 Return the best-match overlay section for PC:
3285 If PC matches a mapped overlay section's VMA, return that section.
3286 Else if PC matches an unmapped section's VMA, return that section.
3287 Else if PC matches an unmapped section's LMA, return that section. */
3288
3289 asection *
3290 find_pc_overlay (CORE_ADDR pc)
3291 {
3292 struct objfile *objfile;
3293 struct obj_section *osect, *best_match = NULL;
3294
3295 if (overlay_debugging)
3296 ALL_OBJSECTIONS (objfile, osect)
3297 if (section_is_overlay (osect->the_bfd_section))
3298 {
3299 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3300 {
3301 if (overlay_is_mapped (osect))
3302 return osect->the_bfd_section;
3303 else
3304 best_match = osect;
3305 }
3306 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3307 best_match = osect;
3308 }
3309 return best_match ? best_match->the_bfd_section : NULL;
3310 }
3311
3312 /* Function: find_pc_mapped_section (PC)
3313 If PC falls into the VMA address range of an overlay section that is
3314 currently marked as MAPPED, return that section. Else return NULL. */
3315
3316 asection *
3317 find_pc_mapped_section (CORE_ADDR pc)
3318 {
3319 struct objfile *objfile;
3320 struct obj_section *osect;
3321
3322 if (overlay_debugging)
3323 ALL_OBJSECTIONS (objfile, osect)
3324 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3325 overlay_is_mapped (osect))
3326 return osect->the_bfd_section;
3327
3328 return NULL;
3329 }
3330
3331 /* Function: list_overlays_command
3332 Print a list of mapped sections and their PC ranges */
3333
3334 void
3335 list_overlays_command (char *args, int from_tty)
3336 {
3337 int nmapped = 0;
3338 struct objfile *objfile;
3339 struct obj_section *osect;
3340
3341 if (overlay_debugging)
3342 ALL_OBJSECTIONS (objfile, osect)
3343 if (overlay_is_mapped (osect))
3344 {
3345 const char *name;
3346 bfd_vma lma, vma;
3347 int size;
3348
3349 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3350 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3351 size = bfd_get_section_size (osect->the_bfd_section);
3352 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3353
3354 printf_filtered ("Section %s, loaded at ", name);
3355 deprecated_print_address_numeric (lma, 1, gdb_stdout);
3356 puts_filtered (" - ");
3357 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
3358 printf_filtered (", mapped at ");
3359 deprecated_print_address_numeric (vma, 1, gdb_stdout);
3360 puts_filtered (" - ");
3361 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
3362 puts_filtered ("\n");
3363
3364 nmapped++;
3365 }
3366 if (nmapped == 0)
3367 printf_filtered (_("No sections are mapped.\n"));
3368 }
3369
3370 /* Function: map_overlay_command
3371 Mark the named section as mapped (ie. residing at its VMA address). */
3372
3373 void
3374 map_overlay_command (char *args, int from_tty)
3375 {
3376 struct objfile *objfile, *objfile2;
3377 struct obj_section *sec, *sec2;
3378 asection *bfdsec;
3379
3380 if (!overlay_debugging)
3381 error (_("\
3382 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3383 the 'overlay manual' command."));
3384
3385 if (args == 0 || *args == 0)
3386 error (_("Argument required: name of an overlay section"));
3387
3388 /* First, find a section matching the user supplied argument */
3389 ALL_OBJSECTIONS (objfile, sec)
3390 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3391 {
3392 /* Now, check to see if the section is an overlay. */
3393 bfdsec = sec->the_bfd_section;
3394 if (!section_is_overlay (bfdsec))
3395 continue; /* not an overlay section */
3396
3397 /* Mark the overlay as "mapped" */
3398 sec->ovly_mapped = 1;
3399
3400 /* Next, make a pass and unmap any sections that are
3401 overlapped by this new section: */
3402 ALL_OBJSECTIONS (objfile2, sec2)
3403 if (sec2->ovly_mapped
3404 && sec != sec2
3405 && sec->the_bfd_section != sec2->the_bfd_section
3406 && sections_overlap (sec->the_bfd_section,
3407 sec2->the_bfd_section))
3408 {
3409 if (info_verbose)
3410 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3411 bfd_section_name (objfile->obfd,
3412 sec2->the_bfd_section));
3413 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3414 }
3415 return;
3416 }
3417 error (_("No overlay section called %s"), args);
3418 }
3419
3420 /* Function: unmap_overlay_command
3421 Mark the overlay section as unmapped
3422 (ie. resident in its LMA address range, rather than the VMA range). */
3423
3424 void
3425 unmap_overlay_command (char *args, int from_tty)
3426 {
3427 struct objfile *objfile;
3428 struct obj_section *sec;
3429
3430 if (!overlay_debugging)
3431 error (_("\
3432 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3433 the 'overlay manual' command."));
3434
3435 if (args == 0 || *args == 0)
3436 error (_("Argument required: name of an overlay section"));
3437
3438 /* First, find a section matching the user supplied argument */
3439 ALL_OBJSECTIONS (objfile, sec)
3440 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3441 {
3442 if (!sec->ovly_mapped)
3443 error (_("Section %s is not mapped"), args);
3444 sec->ovly_mapped = 0;
3445 return;
3446 }
3447 error (_("No overlay section called %s"), args);
3448 }
3449
3450 /* Function: overlay_auto_command
3451 A utility command to turn on overlay debugging.
3452 Possibly this should be done via a set/show command. */
3453
3454 static void
3455 overlay_auto_command (char *args, int from_tty)
3456 {
3457 overlay_debugging = ovly_auto;
3458 enable_overlay_breakpoints ();
3459 if (info_verbose)
3460 printf_unfiltered (_("Automatic overlay debugging enabled."));
3461 }
3462
3463 /* Function: overlay_manual_command
3464 A utility command to turn on overlay debugging.
3465 Possibly this should be done via a set/show command. */
3466
3467 static void
3468 overlay_manual_command (char *args, int from_tty)
3469 {
3470 overlay_debugging = ovly_on;
3471 disable_overlay_breakpoints ();
3472 if (info_verbose)
3473 printf_unfiltered (_("Overlay debugging enabled."));
3474 }
3475
3476 /* Function: overlay_off_command
3477 A utility command to turn on overlay debugging.
3478 Possibly this should be done via a set/show command. */
3479
3480 static void
3481 overlay_off_command (char *args, int from_tty)
3482 {
3483 overlay_debugging = ovly_off;
3484 disable_overlay_breakpoints ();
3485 if (info_verbose)
3486 printf_unfiltered (_("Overlay debugging disabled."));
3487 }
3488
3489 static void
3490 overlay_load_command (char *args, int from_tty)
3491 {
3492 if (target_overlay_update)
3493 (*target_overlay_update) (NULL);
3494 else
3495 error (_("This target does not know how to read its overlay state."));
3496 }
3497
3498 /* Function: overlay_command
3499 A place-holder for a mis-typed command */
3500
3501 /* Command list chain containing all defined "overlay" subcommands. */
3502 struct cmd_list_element *overlaylist;
3503
3504 static void
3505 overlay_command (char *args, int from_tty)
3506 {
3507 printf_unfiltered
3508 ("\"overlay\" must be followed by the name of an overlay command.\n");
3509 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3510 }
3511
3512
3513 /* Target Overlays for the "Simplest" overlay manager:
3514
3515 This is GDB's default target overlay layer. It works with the
3516 minimal overlay manager supplied as an example by Cygnus. The
3517 entry point is via a function pointer "target_overlay_update",
3518 so targets that use a different runtime overlay manager can
3519 substitute their own overlay_update function and take over the
3520 function pointer.
3521
3522 The overlay_update function pokes around in the target's data structures
3523 to see what overlays are mapped, and updates GDB's overlay mapping with
3524 this information.
3525
3526 In this simple implementation, the target data structures are as follows:
3527 unsigned _novlys; /# number of overlay sections #/
3528 unsigned _ovly_table[_novlys][4] = {
3529 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3530 {..., ..., ..., ...},
3531 }
3532 unsigned _novly_regions; /# number of overlay regions #/
3533 unsigned _ovly_region_table[_novly_regions][3] = {
3534 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3535 {..., ..., ...},
3536 }
3537 These functions will attempt to update GDB's mappedness state in the
3538 symbol section table, based on the target's mappedness state.
3539
3540 To do this, we keep a cached copy of the target's _ovly_table, and
3541 attempt to detect when the cached copy is invalidated. The main
3542 entry point is "simple_overlay_update(SECT), which looks up SECT in
3543 the cached table and re-reads only the entry for that section from
3544 the target (whenever possible).
3545 */
3546
3547 /* Cached, dynamically allocated copies of the target data structures: */
3548 static unsigned (*cache_ovly_table)[4] = 0;
3549 #if 0
3550 static unsigned (*cache_ovly_region_table)[3] = 0;
3551 #endif
3552 static unsigned cache_novlys = 0;
3553 #if 0
3554 static unsigned cache_novly_regions = 0;
3555 #endif
3556 static CORE_ADDR cache_ovly_table_base = 0;
3557 #if 0
3558 static CORE_ADDR cache_ovly_region_table_base = 0;
3559 #endif
3560 enum ovly_index
3561 {
3562 VMA, SIZE, LMA, MAPPED
3563 };
3564 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3565
3566 /* Throw away the cached copy of _ovly_table */
3567 static void
3568 simple_free_overlay_table (void)
3569 {
3570 if (cache_ovly_table)
3571 xfree (cache_ovly_table);
3572 cache_novlys = 0;
3573 cache_ovly_table = NULL;
3574 cache_ovly_table_base = 0;
3575 }
3576
3577 #if 0
3578 /* Throw away the cached copy of _ovly_region_table */
3579 static void
3580 simple_free_overlay_region_table (void)
3581 {
3582 if (cache_ovly_region_table)
3583 xfree (cache_ovly_region_table);
3584 cache_novly_regions = 0;
3585 cache_ovly_region_table = NULL;
3586 cache_ovly_region_table_base = 0;
3587 }
3588 #endif
3589
3590 /* Read an array of ints from the target into a local buffer.
3591 Convert to host order. int LEN is number of ints */
3592 static void
3593 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3594 {
3595 /* FIXME (alloca): Not safe if array is very large. */
3596 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3597 int i;
3598
3599 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3600 for (i = 0; i < len; i++)
3601 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3602 TARGET_LONG_BYTES);
3603 }
3604
3605 /* Find and grab a copy of the target _ovly_table
3606 (and _novlys, which is needed for the table's size) */
3607 static int
3608 simple_read_overlay_table (void)
3609 {
3610 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3611
3612 simple_free_overlay_table ();
3613 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3614 if (! novlys_msym)
3615 {
3616 error (_("Error reading inferior's overlay table: "
3617 "couldn't find `_novlys' variable\n"
3618 "in inferior. Use `overlay manual' mode."));
3619 return 0;
3620 }
3621
3622 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3623 if (! ovly_table_msym)
3624 {
3625 error (_("Error reading inferior's overlay table: couldn't find "
3626 "`_ovly_table' array\n"
3627 "in inferior. Use `overlay manual' mode."));
3628 return 0;
3629 }
3630
3631 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3632 cache_ovly_table
3633 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3634 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3635 read_target_long_array (cache_ovly_table_base,
3636 (unsigned int *) cache_ovly_table,
3637 cache_novlys * 4);
3638
3639 return 1; /* SUCCESS */
3640 }
3641
3642 #if 0
3643 /* Find and grab a copy of the target _ovly_region_table
3644 (and _novly_regions, which is needed for the table's size) */
3645 static int
3646 simple_read_overlay_region_table (void)
3647 {
3648 struct minimal_symbol *msym;
3649
3650 simple_free_overlay_region_table ();
3651 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3652 if (msym != NULL)
3653 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3654 else
3655 return 0; /* failure */
3656 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3657 if (cache_ovly_region_table != NULL)
3658 {
3659 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3660 if (msym != NULL)
3661 {
3662 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3663 read_target_long_array (cache_ovly_region_table_base,
3664 (unsigned int *) cache_ovly_region_table,
3665 cache_novly_regions * 3);
3666 }
3667 else
3668 return 0; /* failure */
3669 }
3670 else
3671 return 0; /* failure */
3672 return 1; /* SUCCESS */
3673 }
3674 #endif
3675
3676 /* Function: simple_overlay_update_1
3677 A helper function for simple_overlay_update. Assuming a cached copy
3678 of _ovly_table exists, look through it to find an entry whose vma,
3679 lma and size match those of OSECT. Re-read the entry and make sure
3680 it still matches OSECT (else the table may no longer be valid).
3681 Set OSECT's mapped state to match the entry. Return: 1 for
3682 success, 0 for failure. */
3683
3684 static int
3685 simple_overlay_update_1 (struct obj_section *osect)
3686 {
3687 int i, size;
3688 bfd *obfd = osect->objfile->obfd;
3689 asection *bsect = osect->the_bfd_section;
3690
3691 size = bfd_get_section_size (osect->the_bfd_section);
3692 for (i = 0; i < cache_novlys; i++)
3693 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3694 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3695 /* && cache_ovly_table[i][SIZE] == size */ )
3696 {
3697 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3698 (unsigned int *) cache_ovly_table[i], 4);
3699 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3700 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3701 /* && cache_ovly_table[i][SIZE] == size */ )
3702 {
3703 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3704 return 1;
3705 }
3706 else /* Warning! Warning! Target's ovly table has changed! */
3707 return 0;
3708 }
3709 return 0;
3710 }
3711
3712 /* Function: simple_overlay_update
3713 If OSECT is NULL, then update all sections' mapped state
3714 (after re-reading the entire target _ovly_table).
3715 If OSECT is non-NULL, then try to find a matching entry in the
3716 cached ovly_table and update only OSECT's mapped state.
3717 If a cached entry can't be found or the cache isn't valid, then
3718 re-read the entire cache, and go ahead and update all sections. */
3719
3720 static void
3721 simple_overlay_update (struct obj_section *osect)
3722 {
3723 struct objfile *objfile;
3724
3725 /* Were we given an osect to look up? NULL means do all of them. */
3726 if (osect)
3727 /* Have we got a cached copy of the target's overlay table? */
3728 if (cache_ovly_table != NULL)
3729 /* Does its cached location match what's currently in the symtab? */
3730 if (cache_ovly_table_base ==
3731 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3732 /* Then go ahead and try to look up this single section in the cache */
3733 if (simple_overlay_update_1 (osect))
3734 /* Found it! We're done. */
3735 return;
3736
3737 /* Cached table no good: need to read the entire table anew.
3738 Or else we want all the sections, in which case it's actually
3739 more efficient to read the whole table in one block anyway. */
3740
3741 if (! simple_read_overlay_table ())
3742 return;
3743
3744 /* Now may as well update all sections, even if only one was requested. */
3745 ALL_OBJSECTIONS (objfile, osect)
3746 if (section_is_overlay (osect->the_bfd_section))
3747 {
3748 int i, size;
3749 bfd *obfd = osect->objfile->obfd;
3750 asection *bsect = osect->the_bfd_section;
3751
3752 size = bfd_get_section_size (bsect);
3753 for (i = 0; i < cache_novlys; i++)
3754 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3755 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3756 /* && cache_ovly_table[i][SIZE] == size */ )
3757 { /* obj_section matches i'th entry in ovly_table */
3758 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3759 break; /* finished with inner for loop: break out */
3760 }
3761 }
3762 }
3763
3764 /* Set the output sections and output offsets for section SECTP in
3765 ABFD. The relocation code in BFD will read these offsets, so we
3766 need to be sure they're initialized. We map each section to itself,
3767 with no offset; this means that SECTP->vma will be honored. */
3768
3769 static void
3770 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3771 {
3772 sectp->output_section = sectp;
3773 sectp->output_offset = 0;
3774 }
3775
3776 /* Relocate the contents of a debug section SECTP in ABFD. The
3777 contents are stored in BUF if it is non-NULL, or returned in a
3778 malloc'd buffer otherwise.
3779
3780 For some platforms and debug info formats, shared libraries contain
3781 relocations against the debug sections (particularly for DWARF-2;
3782 one affected platform is PowerPC GNU/Linux, although it depends on
3783 the version of the linker in use). Also, ELF object files naturally
3784 have unresolved relocations for their debug sections. We need to apply
3785 the relocations in order to get the locations of symbols correct. */
3786
3787 bfd_byte *
3788 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3789 {
3790 /* We're only interested in debugging sections with relocation
3791 information. */
3792 if ((sectp->flags & SEC_RELOC) == 0)
3793 return NULL;
3794 if ((sectp->flags & SEC_DEBUGGING) == 0)
3795 return NULL;
3796
3797 /* We will handle section offsets properly elsewhere, so relocate as if
3798 all sections begin at 0. */
3799 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3800
3801 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3802 }
3803
3804 void
3805 _initialize_symfile (void)
3806 {
3807 struct cmd_list_element *c;
3808
3809 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3810 Load symbol table from executable file FILE.\n\
3811 The `file' command can also load symbol tables, as well as setting the file\n\
3812 to execute."), &cmdlist);
3813 set_cmd_completer (c, filename_completer);
3814
3815 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3816 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3817 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3818 ADDR is the starting address of the file's text.\n\
3819 The optional arguments are section-name section-address pairs and\n\
3820 should be specified if the data and bss segments are not contiguous\n\
3821 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3822 &cmdlist);
3823 set_cmd_completer (c, filename_completer);
3824
3825 c = add_cmd ("add-shared-symbol-files", class_files,
3826 add_shared_symbol_files_command, _("\
3827 Load the symbols from shared objects in the dynamic linker's link map."),
3828 &cmdlist);
3829 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3830 &cmdlist);
3831
3832 c = add_cmd ("load", class_files, load_command, _("\
3833 Dynamically load FILE into the running program, and record its symbols\n\
3834 for access from GDB.\n\
3835 A load OFFSET may also be given."), &cmdlist);
3836 set_cmd_completer (c, filename_completer);
3837
3838 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3839 &symbol_reloading, _("\
3840 Set dynamic symbol table reloading multiple times in one run."), _("\
3841 Show dynamic symbol table reloading multiple times in one run."), NULL,
3842 NULL,
3843 show_symbol_reloading,
3844 &setlist, &showlist);
3845
3846 add_prefix_cmd ("overlay", class_support, overlay_command,
3847 _("Commands for debugging overlays."), &overlaylist,
3848 "overlay ", 0, &cmdlist);
3849
3850 add_com_alias ("ovly", "overlay", class_alias, 1);
3851 add_com_alias ("ov", "overlay", class_alias, 1);
3852
3853 add_cmd ("map-overlay", class_support, map_overlay_command,
3854 _("Assert that an overlay section is mapped."), &overlaylist);
3855
3856 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3857 _("Assert that an overlay section is unmapped."), &overlaylist);
3858
3859 add_cmd ("list-overlays", class_support, list_overlays_command,
3860 _("List mappings of overlay sections."), &overlaylist);
3861
3862 add_cmd ("manual", class_support, overlay_manual_command,
3863 _("Enable overlay debugging."), &overlaylist);
3864 add_cmd ("off", class_support, overlay_off_command,
3865 _("Disable overlay debugging."), &overlaylist);
3866 add_cmd ("auto", class_support, overlay_auto_command,
3867 _("Enable automatic overlay debugging."), &overlaylist);
3868 add_cmd ("load-target", class_support, overlay_load_command,
3869 _("Read the overlay mapping state from the target."), &overlaylist);
3870
3871 /* Filename extension to source language lookup table: */
3872 init_filename_language_table ();
3873 add_setshow_string_noescape_cmd ("extension-language", class_files,
3874 &ext_args, _("\
3875 Set mapping between filename extension and source language."), _("\
3876 Show mapping between filename extension and source language."), _("\
3877 Usage: set extension-language .foo bar"),
3878 set_ext_lang_command,
3879 show_ext_args,
3880 &setlist, &showlist);
3881
3882 add_info ("extensions", info_ext_lang_command,
3883 _("All filename extensions associated with a source language."));
3884
3885 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3886 &debug_file_directory, _("\
3887 Set the directory where separate debug symbols are searched for."), _("\
3888 Show the directory where separate debug symbols are searched for."), _("\
3889 Separate debug symbols are first searched for in the same\n\
3890 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3891 and lastly at the path of the directory of the binary with\n\
3892 the global debug-file directory prepended."),
3893 NULL,
3894 show_debug_file_directory,
3895 &setlist, &showlist);
3896 }
This page took 0.104732 seconds and 5 git commands to generate.