Make symfile_add_flags and objfile->flags strongly typed
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2016 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observer.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include <sys/stat.h>
63 #include <ctype.h>
64 #include <time.h>
65 #include "gdb_sys_time.h"
66
67 #include "psymtab.h"
68
69 int (*deprecated_ui_load_progress_hook) (const char *section,
70 unsigned long num);
71 void (*deprecated_show_load_progress) (const char *section,
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
75 unsigned long total_size);
76 void (*deprecated_pre_add_symbol_hook) (const char *);
77 void (*deprecated_post_add_symbol_hook) (void);
78
79 static void clear_symtab_users_cleanup (void *ignore);
80
81 /* Global variables owned by this file. */
82 int readnow_symbol_files; /* Read full symbols immediately. */
83
84 /* Functions this file defines. */
85
86 static void load_command (char *, int);
87
88 static void symbol_file_add_main_1 (const char *args, int from_tty,
89 objfile_flags flags);
90
91 static void add_symbol_file_command (char *, int);
92
93 static const struct sym_fns *find_sym_fns (bfd *);
94
95 static void decrement_reading_symtab (void *);
96
97 static void overlay_invalidate_all (void);
98
99 static void overlay_auto_command (char *, int);
100
101 static void overlay_manual_command (char *, int);
102
103 static void overlay_off_command (char *, int);
104
105 static void overlay_load_command (char *, int);
106
107 static void overlay_command (char *, int);
108
109 static void simple_free_overlay_table (void);
110
111 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
112 enum bfd_endian);
113
114 static int simple_read_overlay_table (void);
115
116 static int simple_overlay_update_1 (struct obj_section *);
117
118 static void info_ext_lang_command (char *args, int from_tty);
119
120 static void symfile_find_segment_sections (struct objfile *objfile);
121
122 void _initialize_symfile (void);
123
124 /* List of all available sym_fns. On gdb startup, each object file reader
125 calls add_symtab_fns() to register information on each format it is
126 prepared to read. */
127
128 typedef struct
129 {
130 /* BFD flavour that we handle. */
131 enum bfd_flavour sym_flavour;
132
133 /* The "vtable" of symbol functions. */
134 const struct sym_fns *sym_fns;
135 } registered_sym_fns;
136
137 DEF_VEC_O (registered_sym_fns);
138
139 static VEC (registered_sym_fns) *symtab_fns = NULL;
140
141 /* Values for "set print symbol-loading". */
142
143 const char print_symbol_loading_off[] = "off";
144 const char print_symbol_loading_brief[] = "brief";
145 const char print_symbol_loading_full[] = "full";
146 static const char *print_symbol_loading_enums[] =
147 {
148 print_symbol_loading_off,
149 print_symbol_loading_brief,
150 print_symbol_loading_full,
151 NULL
152 };
153 static const char *print_symbol_loading = print_symbol_loading_full;
154
155 /* If non-zero, shared library symbols will be added automatically
156 when the inferior is created, new libraries are loaded, or when
157 attaching to the inferior. This is almost always what users will
158 want to have happen; but for very large programs, the startup time
159 will be excessive, and so if this is a problem, the user can clear
160 this flag and then add the shared library symbols as needed. Note
161 that there is a potential for confusion, since if the shared
162 library symbols are not loaded, commands like "info fun" will *not*
163 report all the functions that are actually present. */
164
165 int auto_solib_add = 1;
166 \f
167
168 /* Return non-zero if symbol-loading messages should be printed.
169 FROM_TTY is the standard from_tty argument to gdb commands.
170 If EXEC is non-zero the messages are for the executable.
171 Otherwise, messages are for shared libraries.
172 If FULL is non-zero then the caller is printing a detailed message.
173 E.g., the message includes the shared library name.
174 Otherwise, the caller is printing a brief "summary" message. */
175
176 int
177 print_symbol_loading_p (int from_tty, int exec, int full)
178 {
179 if (!from_tty && !info_verbose)
180 return 0;
181
182 if (exec)
183 {
184 /* We don't check FULL for executables, there are few such
185 messages, therefore brief == full. */
186 return print_symbol_loading != print_symbol_loading_off;
187 }
188 if (full)
189 return print_symbol_loading == print_symbol_loading_full;
190 return print_symbol_loading == print_symbol_loading_brief;
191 }
192
193 /* True if we are reading a symbol table. */
194
195 int currently_reading_symtab = 0;
196
197 static void
198 decrement_reading_symtab (void *dummy)
199 {
200 currently_reading_symtab--;
201 gdb_assert (currently_reading_symtab >= 0);
202 }
203
204 /* Increment currently_reading_symtab and return a cleanup that can be
205 used to decrement it. */
206
207 struct cleanup *
208 increment_reading_symtab (void)
209 {
210 ++currently_reading_symtab;
211 gdb_assert (currently_reading_symtab > 0);
212 return make_cleanup (decrement_reading_symtab, NULL);
213 }
214
215 /* Remember the lowest-addressed loadable section we've seen.
216 This function is called via bfd_map_over_sections.
217
218 In case of equal vmas, the section with the largest size becomes the
219 lowest-addressed loadable section.
220
221 If the vmas and sizes are equal, the last section is considered the
222 lowest-addressed loadable section. */
223
224 void
225 find_lowest_section (bfd *abfd, asection *sect, void *obj)
226 {
227 asection **lowest = (asection **) obj;
228
229 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
230 return;
231 if (!*lowest)
232 *lowest = sect; /* First loadable section */
233 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
234 *lowest = sect; /* A lower loadable section */
235 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
236 && (bfd_section_size (abfd, (*lowest))
237 <= bfd_section_size (abfd, sect)))
238 *lowest = sect;
239 }
240
241 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
242 new object's 'num_sections' field is set to 0; it must be updated
243 by the caller. */
244
245 struct section_addr_info *
246 alloc_section_addr_info (size_t num_sections)
247 {
248 struct section_addr_info *sap;
249 size_t size;
250
251 size = (sizeof (struct section_addr_info)
252 + sizeof (struct other_sections) * (num_sections - 1));
253 sap = (struct section_addr_info *) xmalloc (size);
254 memset (sap, 0, size);
255
256 return sap;
257 }
258
259 /* Build (allocate and populate) a section_addr_info struct from
260 an existing section table. */
261
262 extern struct section_addr_info *
263 build_section_addr_info_from_section_table (const struct target_section *start,
264 const struct target_section *end)
265 {
266 struct section_addr_info *sap;
267 const struct target_section *stp;
268 int oidx;
269
270 sap = alloc_section_addr_info (end - start);
271
272 for (stp = start, oidx = 0; stp != end; stp++)
273 {
274 struct bfd_section *asect = stp->the_bfd_section;
275 bfd *abfd = asect->owner;
276
277 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
278 && oidx < end - start)
279 {
280 sap->other[oidx].addr = stp->addr;
281 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
282 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
283 oidx++;
284 }
285 }
286
287 sap->num_sections = oidx;
288
289 return sap;
290 }
291
292 /* Create a section_addr_info from section offsets in ABFD. */
293
294 static struct section_addr_info *
295 build_section_addr_info_from_bfd (bfd *abfd)
296 {
297 struct section_addr_info *sap;
298 int i;
299 struct bfd_section *sec;
300
301 sap = alloc_section_addr_info (bfd_count_sections (abfd));
302 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
303 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
304 {
305 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
306 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
307 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
308 i++;
309 }
310
311 sap->num_sections = i;
312
313 return sap;
314 }
315
316 /* Create a section_addr_info from section offsets in OBJFILE. */
317
318 struct section_addr_info *
319 build_section_addr_info_from_objfile (const struct objfile *objfile)
320 {
321 struct section_addr_info *sap;
322 int i;
323
324 /* Before reread_symbols gets rewritten it is not safe to call:
325 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
326 */
327 sap = build_section_addr_info_from_bfd (objfile->obfd);
328 for (i = 0; i < sap->num_sections; i++)
329 {
330 int sectindex = sap->other[i].sectindex;
331
332 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
333 }
334 return sap;
335 }
336
337 /* Free all memory allocated by build_section_addr_info_from_section_table. */
338
339 extern void
340 free_section_addr_info (struct section_addr_info *sap)
341 {
342 int idx;
343
344 for (idx = 0; idx < sap->num_sections; idx++)
345 xfree (sap->other[idx].name);
346 xfree (sap);
347 }
348
349 /* Initialize OBJFILE's sect_index_* members. */
350
351 static void
352 init_objfile_sect_indices (struct objfile *objfile)
353 {
354 asection *sect;
355 int i;
356
357 sect = bfd_get_section_by_name (objfile->obfd, ".text");
358 if (sect)
359 objfile->sect_index_text = sect->index;
360
361 sect = bfd_get_section_by_name (objfile->obfd, ".data");
362 if (sect)
363 objfile->sect_index_data = sect->index;
364
365 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
366 if (sect)
367 objfile->sect_index_bss = sect->index;
368
369 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
370 if (sect)
371 objfile->sect_index_rodata = sect->index;
372
373 /* This is where things get really weird... We MUST have valid
374 indices for the various sect_index_* members or gdb will abort.
375 So if for example, there is no ".text" section, we have to
376 accomodate that. First, check for a file with the standard
377 one or two segments. */
378
379 symfile_find_segment_sections (objfile);
380
381 /* Except when explicitly adding symbol files at some address,
382 section_offsets contains nothing but zeros, so it doesn't matter
383 which slot in section_offsets the individual sect_index_* members
384 index into. So if they are all zero, it is safe to just point
385 all the currently uninitialized indices to the first slot. But
386 beware: if this is the main executable, it may be relocated
387 later, e.g. by the remote qOffsets packet, and then this will
388 be wrong! That's why we try segments first. */
389
390 for (i = 0; i < objfile->num_sections; i++)
391 {
392 if (ANOFFSET (objfile->section_offsets, i) != 0)
393 {
394 break;
395 }
396 }
397 if (i == objfile->num_sections)
398 {
399 if (objfile->sect_index_text == -1)
400 objfile->sect_index_text = 0;
401 if (objfile->sect_index_data == -1)
402 objfile->sect_index_data = 0;
403 if (objfile->sect_index_bss == -1)
404 objfile->sect_index_bss = 0;
405 if (objfile->sect_index_rodata == -1)
406 objfile->sect_index_rodata = 0;
407 }
408 }
409
410 /* The arguments to place_section. */
411
412 struct place_section_arg
413 {
414 struct section_offsets *offsets;
415 CORE_ADDR lowest;
416 };
417
418 /* Find a unique offset to use for loadable section SECT if
419 the user did not provide an offset. */
420
421 static void
422 place_section (bfd *abfd, asection *sect, void *obj)
423 {
424 struct place_section_arg *arg = (struct place_section_arg *) obj;
425 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
426 int done;
427 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
428
429 /* We are only interested in allocated sections. */
430 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
431 return;
432
433 /* If the user specified an offset, honor it. */
434 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
435 return;
436
437 /* Otherwise, let's try to find a place for the section. */
438 start_addr = (arg->lowest + align - 1) & -align;
439
440 do {
441 asection *cur_sec;
442
443 done = 1;
444
445 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
446 {
447 int indx = cur_sec->index;
448
449 /* We don't need to compare against ourself. */
450 if (cur_sec == sect)
451 continue;
452
453 /* We can only conflict with allocated sections. */
454 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
455 continue;
456
457 /* If the section offset is 0, either the section has not been placed
458 yet, or it was the lowest section placed (in which case LOWEST
459 will be past its end). */
460 if (offsets[indx] == 0)
461 continue;
462
463 /* If this section would overlap us, then we must move up. */
464 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
465 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
466 {
467 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
468 start_addr = (start_addr + align - 1) & -align;
469 done = 0;
470 break;
471 }
472
473 /* Otherwise, we appear to be OK. So far. */
474 }
475 }
476 while (!done);
477
478 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
479 arg->lowest = start_addr + bfd_get_section_size (sect);
480 }
481
482 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
483 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
484 entries. */
485
486 void
487 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
488 int num_sections,
489 const struct section_addr_info *addrs)
490 {
491 int i;
492
493 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
494
495 /* Now calculate offsets for section that were specified by the caller. */
496 for (i = 0; i < addrs->num_sections; i++)
497 {
498 const struct other_sections *osp;
499
500 osp = &addrs->other[i];
501 if (osp->sectindex == -1)
502 continue;
503
504 /* Record all sections in offsets. */
505 /* The section_offsets in the objfile are here filled in using
506 the BFD index. */
507 section_offsets->offsets[osp->sectindex] = osp->addr;
508 }
509 }
510
511 /* Transform section name S for a name comparison. prelink can split section
512 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
513 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
514 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
515 (`.sbss') section has invalid (increased) virtual address. */
516
517 static const char *
518 addr_section_name (const char *s)
519 {
520 if (strcmp (s, ".dynbss") == 0)
521 return ".bss";
522 if (strcmp (s, ".sdynbss") == 0)
523 return ".sbss";
524
525 return s;
526 }
527
528 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
529 their (name, sectindex) pair. sectindex makes the sort by name stable. */
530
531 static int
532 addrs_section_compar (const void *ap, const void *bp)
533 {
534 const struct other_sections *a = *((struct other_sections **) ap);
535 const struct other_sections *b = *((struct other_sections **) bp);
536 int retval;
537
538 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
539 if (retval)
540 return retval;
541
542 return a->sectindex - b->sectindex;
543 }
544
545 /* Provide sorted array of pointers to sections of ADDRS. The array is
546 terminated by NULL. Caller is responsible to call xfree for it. */
547
548 static struct other_sections **
549 addrs_section_sort (struct section_addr_info *addrs)
550 {
551 struct other_sections **array;
552 int i;
553
554 /* `+ 1' for the NULL terminator. */
555 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
556 for (i = 0; i < addrs->num_sections; i++)
557 array[i] = &addrs->other[i];
558 array[i] = NULL;
559
560 qsort (array, i, sizeof (*array), addrs_section_compar);
561
562 return array;
563 }
564
565 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
566 also SECTINDEXes specific to ABFD there. This function can be used to
567 rebase ADDRS to start referencing different BFD than before. */
568
569 void
570 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
571 {
572 asection *lower_sect;
573 CORE_ADDR lower_offset;
574 int i;
575 struct cleanup *my_cleanup;
576 struct section_addr_info *abfd_addrs;
577 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
578 struct other_sections **addrs_to_abfd_addrs;
579
580 /* Find lowest loadable section to be used as starting point for
581 continguous sections. */
582 lower_sect = NULL;
583 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
584 if (lower_sect == NULL)
585 {
586 warning (_("no loadable sections found in added symbol-file %s"),
587 bfd_get_filename (abfd));
588 lower_offset = 0;
589 }
590 else
591 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
592
593 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
594 in ABFD. Section names are not unique - there can be multiple sections of
595 the same name. Also the sections of the same name do not have to be
596 adjacent to each other. Some sections may be present only in one of the
597 files. Even sections present in both files do not have to be in the same
598 order.
599
600 Use stable sort by name for the sections in both files. Then linearly
601 scan both lists matching as most of the entries as possible. */
602
603 addrs_sorted = addrs_section_sort (addrs);
604 my_cleanup = make_cleanup (xfree, addrs_sorted);
605
606 abfd_addrs = build_section_addr_info_from_bfd (abfd);
607 make_cleanup_free_section_addr_info (abfd_addrs);
608 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
609 make_cleanup (xfree, abfd_addrs_sorted);
610
611 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
612 ABFD_ADDRS_SORTED. */
613
614 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
615 make_cleanup (xfree, addrs_to_abfd_addrs);
616
617 while (*addrs_sorted)
618 {
619 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
620
621 while (*abfd_addrs_sorted
622 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
623 sect_name) < 0)
624 abfd_addrs_sorted++;
625
626 if (*abfd_addrs_sorted
627 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
628 sect_name) == 0)
629 {
630 int index_in_addrs;
631
632 /* Make the found item directly addressable from ADDRS. */
633 index_in_addrs = *addrs_sorted - addrs->other;
634 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
635 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
636
637 /* Never use the same ABFD entry twice. */
638 abfd_addrs_sorted++;
639 }
640
641 addrs_sorted++;
642 }
643
644 /* Calculate offsets for the loadable sections.
645 FIXME! Sections must be in order of increasing loadable section
646 so that contiguous sections can use the lower-offset!!!
647
648 Adjust offsets if the segments are not contiguous.
649 If the section is contiguous, its offset should be set to
650 the offset of the highest loadable section lower than it
651 (the loadable section directly below it in memory).
652 this_offset = lower_offset = lower_addr - lower_orig_addr */
653
654 for (i = 0; i < addrs->num_sections; i++)
655 {
656 struct other_sections *sect = addrs_to_abfd_addrs[i];
657
658 if (sect)
659 {
660 /* This is the index used by BFD. */
661 addrs->other[i].sectindex = sect->sectindex;
662
663 if (addrs->other[i].addr != 0)
664 {
665 addrs->other[i].addr -= sect->addr;
666 lower_offset = addrs->other[i].addr;
667 }
668 else
669 addrs->other[i].addr = lower_offset;
670 }
671 else
672 {
673 /* addr_section_name transformation is not used for SECT_NAME. */
674 const char *sect_name = addrs->other[i].name;
675
676 /* This section does not exist in ABFD, which is normally
677 unexpected and we want to issue a warning.
678
679 However, the ELF prelinker does create a few sections which are
680 marked in the main executable as loadable (they are loaded in
681 memory from the DYNAMIC segment) and yet are not present in
682 separate debug info files. This is fine, and should not cause
683 a warning. Shared libraries contain just the section
684 ".gnu.liblist" but it is not marked as loadable there. There is
685 no other way to identify them than by their name as the sections
686 created by prelink have no special flags.
687
688 For the sections `.bss' and `.sbss' see addr_section_name. */
689
690 if (!(strcmp (sect_name, ".gnu.liblist") == 0
691 || strcmp (sect_name, ".gnu.conflict") == 0
692 || (strcmp (sect_name, ".bss") == 0
693 && i > 0
694 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
695 && addrs_to_abfd_addrs[i - 1] != NULL)
696 || (strcmp (sect_name, ".sbss") == 0
697 && i > 0
698 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
699 && addrs_to_abfd_addrs[i - 1] != NULL)))
700 warning (_("section %s not found in %s"), sect_name,
701 bfd_get_filename (abfd));
702
703 addrs->other[i].addr = 0;
704 addrs->other[i].sectindex = -1;
705 }
706 }
707
708 do_cleanups (my_cleanup);
709 }
710
711 /* Parse the user's idea of an offset for dynamic linking, into our idea
712 of how to represent it for fast symbol reading. This is the default
713 version of the sym_fns.sym_offsets function for symbol readers that
714 don't need to do anything special. It allocates a section_offsets table
715 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
716
717 void
718 default_symfile_offsets (struct objfile *objfile,
719 const struct section_addr_info *addrs)
720 {
721 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
722 objfile->section_offsets = (struct section_offsets *)
723 obstack_alloc (&objfile->objfile_obstack,
724 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
725 relative_addr_info_to_section_offsets (objfile->section_offsets,
726 objfile->num_sections, addrs);
727
728 /* For relocatable files, all loadable sections will start at zero.
729 The zero is meaningless, so try to pick arbitrary addresses such
730 that no loadable sections overlap. This algorithm is quadratic,
731 but the number of sections in a single object file is generally
732 small. */
733 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
734 {
735 struct place_section_arg arg;
736 bfd *abfd = objfile->obfd;
737 asection *cur_sec;
738
739 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
740 /* We do not expect this to happen; just skip this step if the
741 relocatable file has a section with an assigned VMA. */
742 if (bfd_section_vma (abfd, cur_sec) != 0)
743 break;
744
745 if (cur_sec == NULL)
746 {
747 CORE_ADDR *offsets = objfile->section_offsets->offsets;
748
749 /* Pick non-overlapping offsets for sections the user did not
750 place explicitly. */
751 arg.offsets = objfile->section_offsets;
752 arg.lowest = 0;
753 bfd_map_over_sections (objfile->obfd, place_section, &arg);
754
755 /* Correctly filling in the section offsets is not quite
756 enough. Relocatable files have two properties that
757 (most) shared objects do not:
758
759 - Their debug information will contain relocations. Some
760 shared libraries do also, but many do not, so this can not
761 be assumed.
762
763 - If there are multiple code sections they will be loaded
764 at different relative addresses in memory than they are
765 in the objfile, since all sections in the file will start
766 at address zero.
767
768 Because GDB has very limited ability to map from an
769 address in debug info to the correct code section,
770 it relies on adding SECT_OFF_TEXT to things which might be
771 code. If we clear all the section offsets, and set the
772 section VMAs instead, then symfile_relocate_debug_section
773 will return meaningful debug information pointing at the
774 correct sections.
775
776 GDB has too many different data structures for section
777 addresses - a bfd, objfile, and so_list all have section
778 tables, as does exec_ops. Some of these could probably
779 be eliminated. */
780
781 for (cur_sec = abfd->sections; cur_sec != NULL;
782 cur_sec = cur_sec->next)
783 {
784 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
785 continue;
786
787 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
788 exec_set_section_address (bfd_get_filename (abfd),
789 cur_sec->index,
790 offsets[cur_sec->index]);
791 offsets[cur_sec->index] = 0;
792 }
793 }
794 }
795
796 /* Remember the bfd indexes for the .text, .data, .bss and
797 .rodata sections. */
798 init_objfile_sect_indices (objfile);
799 }
800
801 /* Divide the file into segments, which are individual relocatable units.
802 This is the default version of the sym_fns.sym_segments function for
803 symbol readers that do not have an explicit representation of segments.
804 It assumes that object files do not have segments, and fully linked
805 files have a single segment. */
806
807 struct symfile_segment_data *
808 default_symfile_segments (bfd *abfd)
809 {
810 int num_sections, i;
811 asection *sect;
812 struct symfile_segment_data *data;
813 CORE_ADDR low, high;
814
815 /* Relocatable files contain enough information to position each
816 loadable section independently; they should not be relocated
817 in segments. */
818 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
819 return NULL;
820
821 /* Make sure there is at least one loadable section in the file. */
822 for (sect = abfd->sections; sect != NULL; sect = sect->next)
823 {
824 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
825 continue;
826
827 break;
828 }
829 if (sect == NULL)
830 return NULL;
831
832 low = bfd_get_section_vma (abfd, sect);
833 high = low + bfd_get_section_size (sect);
834
835 data = XCNEW (struct symfile_segment_data);
836 data->num_segments = 1;
837 data->segment_bases = XCNEW (CORE_ADDR);
838 data->segment_sizes = XCNEW (CORE_ADDR);
839
840 num_sections = bfd_count_sections (abfd);
841 data->segment_info = XCNEWVEC (int, num_sections);
842
843 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
844 {
845 CORE_ADDR vma;
846
847 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
848 continue;
849
850 vma = bfd_get_section_vma (abfd, sect);
851 if (vma < low)
852 low = vma;
853 if (vma + bfd_get_section_size (sect) > high)
854 high = vma + bfd_get_section_size (sect);
855
856 data->segment_info[i] = 1;
857 }
858
859 data->segment_bases[0] = low;
860 data->segment_sizes[0] = high - low;
861
862 return data;
863 }
864
865 /* This is a convenience function to call sym_read for OBJFILE and
866 possibly force the partial symbols to be read. */
867
868 static void
869 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
870 {
871 (*objfile->sf->sym_read) (objfile, add_flags);
872 objfile->per_bfd->minsyms_read = 1;
873
874 /* find_separate_debug_file_in_section should be called only if there is
875 single binary with no existing separate debug info file. */
876 if (!objfile_has_partial_symbols (objfile)
877 && objfile->separate_debug_objfile == NULL
878 && objfile->separate_debug_objfile_backlink == NULL)
879 {
880 bfd *abfd = find_separate_debug_file_in_section (objfile);
881 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
882
883 if (abfd != NULL)
884 {
885 /* find_separate_debug_file_in_section uses the same filename for the
886 virtual section-as-bfd like the bfd filename containing the
887 section. Therefore use also non-canonical name form for the same
888 file containing the section. */
889 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
890 objfile);
891 }
892
893 do_cleanups (cleanup);
894 }
895 if ((add_flags & SYMFILE_NO_READ) == 0)
896 require_partial_symbols (objfile, 0);
897 }
898
899 /* Initialize entry point information for this objfile. */
900
901 static void
902 init_entry_point_info (struct objfile *objfile)
903 {
904 struct entry_info *ei = &objfile->per_bfd->ei;
905
906 if (ei->initialized)
907 return;
908 ei->initialized = 1;
909
910 /* Save startup file's range of PC addresses to help blockframe.c
911 decide where the bottom of the stack is. */
912
913 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
914 {
915 /* Executable file -- record its entry point so we'll recognize
916 the startup file because it contains the entry point. */
917 ei->entry_point = bfd_get_start_address (objfile->obfd);
918 ei->entry_point_p = 1;
919 }
920 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
921 && bfd_get_start_address (objfile->obfd) != 0)
922 {
923 /* Some shared libraries may have entry points set and be
924 runnable. There's no clear way to indicate this, so just check
925 for values other than zero. */
926 ei->entry_point = bfd_get_start_address (objfile->obfd);
927 ei->entry_point_p = 1;
928 }
929 else
930 {
931 /* Examination of non-executable.o files. Short-circuit this stuff. */
932 ei->entry_point_p = 0;
933 }
934
935 if (ei->entry_point_p)
936 {
937 struct obj_section *osect;
938 CORE_ADDR entry_point = ei->entry_point;
939 int found;
940
941 /* Make certain that the address points at real code, and not a
942 function descriptor. */
943 entry_point
944 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
945 entry_point,
946 &current_target);
947
948 /* Remove any ISA markers, so that this matches entries in the
949 symbol table. */
950 ei->entry_point
951 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
952
953 found = 0;
954 ALL_OBJFILE_OSECTIONS (objfile, osect)
955 {
956 struct bfd_section *sect = osect->the_bfd_section;
957
958 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
959 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
960 + bfd_get_section_size (sect)))
961 {
962 ei->the_bfd_section_index
963 = gdb_bfd_section_index (objfile->obfd, sect);
964 found = 1;
965 break;
966 }
967 }
968
969 if (!found)
970 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
971 }
972 }
973
974 /* Process a symbol file, as either the main file or as a dynamically
975 loaded file.
976
977 This function does not set the OBJFILE's entry-point info.
978
979 OBJFILE is where the symbols are to be read from.
980
981 ADDRS is the list of section load addresses. If the user has given
982 an 'add-symbol-file' command, then this is the list of offsets and
983 addresses he or she provided as arguments to the command; or, if
984 we're handling a shared library, these are the actual addresses the
985 sections are loaded at, according to the inferior's dynamic linker
986 (as gleaned by GDB's shared library code). We convert each address
987 into an offset from the section VMA's as it appears in the object
988 file, and then call the file's sym_offsets function to convert this
989 into a format-specific offset table --- a `struct section_offsets'.
990
991 ADD_FLAGS encodes verbosity level, whether this is main symbol or
992 an extra symbol file such as dynamically loaded code, and wether
993 breakpoint reset should be deferred. */
994
995 static void
996 syms_from_objfile_1 (struct objfile *objfile,
997 struct section_addr_info *addrs,
998 symfile_add_flags add_flags)
999 {
1000 struct section_addr_info *local_addr = NULL;
1001 struct cleanup *old_chain;
1002 const int mainline = add_flags & SYMFILE_MAINLINE;
1003
1004 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
1005
1006 if (objfile->sf == NULL)
1007 {
1008 /* No symbols to load, but we still need to make sure
1009 that the section_offsets table is allocated. */
1010 int num_sections = gdb_bfd_count_sections (objfile->obfd);
1011 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
1012
1013 objfile->num_sections = num_sections;
1014 objfile->section_offsets
1015 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
1016 size);
1017 memset (objfile->section_offsets, 0, size);
1018 return;
1019 }
1020
1021 /* Make sure that partially constructed symbol tables will be cleaned up
1022 if an error occurs during symbol reading. */
1023 old_chain = make_cleanup_free_objfile (objfile);
1024
1025 /* If ADDRS is NULL, put together a dummy address list.
1026 We now establish the convention that an addr of zero means
1027 no load address was specified. */
1028 if (! addrs)
1029 {
1030 local_addr = alloc_section_addr_info (1);
1031 make_cleanup (xfree, local_addr);
1032 addrs = local_addr;
1033 }
1034
1035 if (mainline)
1036 {
1037 /* We will modify the main symbol table, make sure that all its users
1038 will be cleaned up if an error occurs during symbol reading. */
1039 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1040
1041 /* Since no error yet, throw away the old symbol table. */
1042
1043 if (symfile_objfile != NULL)
1044 {
1045 free_objfile (symfile_objfile);
1046 gdb_assert (symfile_objfile == NULL);
1047 }
1048
1049 /* Currently we keep symbols from the add-symbol-file command.
1050 If the user wants to get rid of them, they should do "symbol-file"
1051 without arguments first. Not sure this is the best behavior
1052 (PR 2207). */
1053
1054 (*objfile->sf->sym_new_init) (objfile);
1055 }
1056
1057 /* Convert addr into an offset rather than an absolute address.
1058 We find the lowest address of a loaded segment in the objfile,
1059 and assume that <addr> is where that got loaded.
1060
1061 We no longer warn if the lowest section is not a text segment (as
1062 happens for the PA64 port. */
1063 if (addrs->num_sections > 0)
1064 addr_info_make_relative (addrs, objfile->obfd);
1065
1066 /* Initialize symbol reading routines for this objfile, allow complaints to
1067 appear for this new file, and record how verbose to be, then do the
1068 initial symbol reading for this file. */
1069
1070 (*objfile->sf->sym_init) (objfile);
1071 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1072
1073 (*objfile->sf->sym_offsets) (objfile, addrs);
1074
1075 read_symbols (objfile, add_flags);
1076
1077 /* Discard cleanups as symbol reading was successful. */
1078
1079 discard_cleanups (old_chain);
1080 xfree (local_addr);
1081 }
1082
1083 /* Same as syms_from_objfile_1, but also initializes the objfile
1084 entry-point info. */
1085
1086 static void
1087 syms_from_objfile (struct objfile *objfile,
1088 struct section_addr_info *addrs,
1089 symfile_add_flags add_flags)
1090 {
1091 syms_from_objfile_1 (objfile, addrs, add_flags);
1092 init_entry_point_info (objfile);
1093 }
1094
1095 /* Perform required actions after either reading in the initial
1096 symbols for a new objfile, or mapping in the symbols from a reusable
1097 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1098
1099 static void
1100 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1101 {
1102 /* If this is the main symbol file we have to clean up all users of the
1103 old main symbol file. Otherwise it is sufficient to fixup all the
1104 breakpoints that may have been redefined by this symbol file. */
1105 if (add_flags & SYMFILE_MAINLINE)
1106 {
1107 /* OK, make it the "real" symbol file. */
1108 symfile_objfile = objfile;
1109
1110 clear_symtab_users (add_flags);
1111 }
1112 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1113 {
1114 breakpoint_re_set ();
1115 }
1116
1117 /* We're done reading the symbol file; finish off complaints. */
1118 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1119 }
1120
1121 /* Process a symbol file, as either the main file or as a dynamically
1122 loaded file.
1123
1124 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1125 A new reference is acquired by this function.
1126
1127 For NAME description see allocate_objfile's definition.
1128
1129 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1130 extra, such as dynamically loaded code, and what to do with breakpoins.
1131
1132 ADDRS is as described for syms_from_objfile_1, above.
1133 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1134
1135 PARENT is the original objfile if ABFD is a separate debug info file.
1136 Otherwise PARENT is NULL.
1137
1138 Upon success, returns a pointer to the objfile that was added.
1139 Upon failure, jumps back to command level (never returns). */
1140
1141 static struct objfile *
1142 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1143 symfile_add_flags add_flags,
1144 struct section_addr_info *addrs,
1145 objfile_flags flags, struct objfile *parent)
1146 {
1147 struct objfile *objfile;
1148 const int from_tty = add_flags & SYMFILE_VERBOSE;
1149 const int mainline = add_flags & SYMFILE_MAINLINE;
1150 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1151 && (readnow_symbol_files
1152 || (add_flags & SYMFILE_NO_READ) == 0));
1153
1154 if (readnow_symbol_files)
1155 {
1156 flags |= OBJF_READNOW;
1157 add_flags &= ~SYMFILE_NO_READ;
1158 }
1159
1160 /* Give user a chance to burp if we'd be
1161 interactively wiping out any existing symbols. */
1162
1163 if ((have_full_symbols () || have_partial_symbols ())
1164 && mainline
1165 && from_tty
1166 && !query (_("Load new symbol table from \"%s\"? "), name))
1167 error (_("Not confirmed."));
1168
1169 if (mainline)
1170 flags |= OBJF_MAINLINE;
1171 objfile = allocate_objfile (abfd, name, flags);
1172
1173 if (parent)
1174 add_separate_debug_objfile (objfile, parent);
1175
1176 /* We either created a new mapped symbol table, mapped an existing
1177 symbol table file which has not had initial symbol reading
1178 performed, or need to read an unmapped symbol table. */
1179 if (should_print)
1180 {
1181 if (deprecated_pre_add_symbol_hook)
1182 deprecated_pre_add_symbol_hook (name);
1183 else
1184 {
1185 printf_unfiltered (_("Reading symbols from %s..."), name);
1186 wrap_here ("");
1187 gdb_flush (gdb_stdout);
1188 }
1189 }
1190 syms_from_objfile (objfile, addrs, add_flags);
1191
1192 /* We now have at least a partial symbol table. Check to see if the
1193 user requested that all symbols be read on initial access via either
1194 the gdb startup command line or on a per symbol file basis. Expand
1195 all partial symbol tables for this objfile if so. */
1196
1197 if ((flags & OBJF_READNOW))
1198 {
1199 if (should_print)
1200 {
1201 printf_unfiltered (_("expanding to full symbols..."));
1202 wrap_here ("");
1203 gdb_flush (gdb_stdout);
1204 }
1205
1206 if (objfile->sf)
1207 objfile->sf->qf->expand_all_symtabs (objfile);
1208 }
1209
1210 if (should_print && !objfile_has_symbols (objfile))
1211 {
1212 wrap_here ("");
1213 printf_unfiltered (_("(no debugging symbols found)..."));
1214 wrap_here ("");
1215 }
1216
1217 if (should_print)
1218 {
1219 if (deprecated_post_add_symbol_hook)
1220 deprecated_post_add_symbol_hook ();
1221 else
1222 printf_unfiltered (_("done.\n"));
1223 }
1224
1225 /* We print some messages regardless of whether 'from_tty ||
1226 info_verbose' is true, so make sure they go out at the right
1227 time. */
1228 gdb_flush (gdb_stdout);
1229
1230 if (objfile->sf == NULL)
1231 {
1232 observer_notify_new_objfile (objfile);
1233 return objfile; /* No symbols. */
1234 }
1235
1236 finish_new_objfile (objfile, add_flags);
1237
1238 observer_notify_new_objfile (objfile);
1239
1240 bfd_cache_close_all ();
1241 return (objfile);
1242 }
1243
1244 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1245 see allocate_objfile's definition. */
1246
1247 void
1248 symbol_file_add_separate (bfd *bfd, const char *name,
1249 symfile_add_flags symfile_flags,
1250 struct objfile *objfile)
1251 {
1252 struct section_addr_info *sap;
1253 struct cleanup *my_cleanup;
1254
1255 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1256 because sections of BFD may not match sections of OBJFILE and because
1257 vma may have been modified by tools such as prelink. */
1258 sap = build_section_addr_info_from_objfile (objfile);
1259 my_cleanup = make_cleanup_free_section_addr_info (sap);
1260
1261 symbol_file_add_with_addrs
1262 (bfd, name, symfile_flags, sap,
1263 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1264 | OBJF_USERLOADED),
1265 objfile);
1266
1267 do_cleanups (my_cleanup);
1268 }
1269
1270 /* Process the symbol file ABFD, as either the main file or as a
1271 dynamically loaded file.
1272 See symbol_file_add_with_addrs's comments for details. */
1273
1274 struct objfile *
1275 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1276 symfile_add_flags add_flags,
1277 struct section_addr_info *addrs,
1278 objfile_flags flags, struct objfile *parent)
1279 {
1280 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1281 parent);
1282 }
1283
1284 /* Process a symbol file, as either the main file or as a dynamically
1285 loaded file. See symbol_file_add_with_addrs's comments for details. */
1286
1287 struct objfile *
1288 symbol_file_add (const char *name, symfile_add_flags add_flags,
1289 struct section_addr_info *addrs, objfile_flags flags)
1290 {
1291 bfd *bfd = symfile_bfd_open (name);
1292 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1293 struct objfile *objf;
1294
1295 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
1296 do_cleanups (cleanup);
1297 return objf;
1298 }
1299
1300 /* Call symbol_file_add() with default values and update whatever is
1301 affected by the loading of a new main().
1302 Used when the file is supplied in the gdb command line
1303 and by some targets with special loading requirements.
1304 The auxiliary function, symbol_file_add_main_1(), has the flags
1305 argument for the switches that can only be specified in the symbol_file
1306 command itself. */
1307
1308 void
1309 symbol_file_add_main (const char *args, int from_tty)
1310 {
1311 symbol_file_add_main_1 (args, from_tty, 0);
1312 }
1313
1314 static void
1315 symbol_file_add_main_1 (const char *args, int from_tty, objfile_flags flags)
1316 {
1317 symfile_add_flags add_flags = (current_inferior ()->symfile_flags
1318 | SYMFILE_MAINLINE);
1319
1320 if (from_tty)
1321 add_flags |= SYMFILE_VERBOSE;
1322
1323 symbol_file_add (args, add_flags, NULL, flags);
1324
1325 /* Getting new symbols may change our opinion about
1326 what is frameless. */
1327 reinit_frame_cache ();
1328
1329 if ((add_flags & SYMFILE_NO_READ) == 0)
1330 set_initial_language ();
1331 }
1332
1333 void
1334 symbol_file_clear (int from_tty)
1335 {
1336 if ((have_full_symbols () || have_partial_symbols ())
1337 && from_tty
1338 && (symfile_objfile
1339 ? !query (_("Discard symbol table from `%s'? "),
1340 objfile_name (symfile_objfile))
1341 : !query (_("Discard symbol table? "))))
1342 error (_("Not confirmed."));
1343
1344 /* solib descriptors may have handles to objfiles. Wipe them before their
1345 objfiles get stale by free_all_objfiles. */
1346 no_shared_libraries (NULL, from_tty);
1347
1348 free_all_objfiles ();
1349
1350 gdb_assert (symfile_objfile == NULL);
1351 if (from_tty)
1352 printf_unfiltered (_("No symbol file now.\n"));
1353 }
1354
1355 static int
1356 separate_debug_file_exists (const char *name, unsigned long crc,
1357 struct objfile *parent_objfile)
1358 {
1359 unsigned long file_crc;
1360 int file_crc_p;
1361 bfd *abfd;
1362 struct stat parent_stat, abfd_stat;
1363 int verified_as_different;
1364
1365 /* Find a separate debug info file as if symbols would be present in
1366 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1367 section can contain just the basename of PARENT_OBJFILE without any
1368 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1369 the separate debug infos with the same basename can exist. */
1370
1371 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1372 return 0;
1373
1374 abfd = gdb_bfd_open (name, gnutarget, -1);
1375
1376 if (!abfd)
1377 return 0;
1378
1379 /* Verify symlinks were not the cause of filename_cmp name difference above.
1380
1381 Some operating systems, e.g. Windows, do not provide a meaningful
1382 st_ino; they always set it to zero. (Windows does provide a
1383 meaningful st_dev.) Files accessed from gdbservers that do not
1384 support the vFile:fstat packet will also have st_ino set to zero.
1385 Do not indicate a duplicate library in either case. While there
1386 is no guarantee that a system that provides meaningful inode
1387 numbers will never set st_ino to zero, this is merely an
1388 optimization, so we do not need to worry about false negatives. */
1389
1390 if (bfd_stat (abfd, &abfd_stat) == 0
1391 && abfd_stat.st_ino != 0
1392 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1393 {
1394 if (abfd_stat.st_dev == parent_stat.st_dev
1395 && abfd_stat.st_ino == parent_stat.st_ino)
1396 {
1397 gdb_bfd_unref (abfd);
1398 return 0;
1399 }
1400 verified_as_different = 1;
1401 }
1402 else
1403 verified_as_different = 0;
1404
1405 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
1406
1407 gdb_bfd_unref (abfd);
1408
1409 if (!file_crc_p)
1410 return 0;
1411
1412 if (crc != file_crc)
1413 {
1414 unsigned long parent_crc;
1415
1416 /* If the files could not be verified as different with
1417 bfd_stat then we need to calculate the parent's CRC
1418 to verify whether the files are different or not. */
1419
1420 if (!verified_as_different)
1421 {
1422 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1423 return 0;
1424 }
1425
1426 if (verified_as_different || parent_crc != file_crc)
1427 warning (_("the debug information found in \"%s\""
1428 " does not match \"%s\" (CRC mismatch).\n"),
1429 name, objfile_name (parent_objfile));
1430
1431 return 0;
1432 }
1433
1434 return 1;
1435 }
1436
1437 char *debug_file_directory = NULL;
1438 static void
1439 show_debug_file_directory (struct ui_file *file, int from_tty,
1440 struct cmd_list_element *c, const char *value)
1441 {
1442 fprintf_filtered (file,
1443 _("The directory where separate debug "
1444 "symbols are searched for is \"%s\".\n"),
1445 value);
1446 }
1447
1448 #if ! defined (DEBUG_SUBDIRECTORY)
1449 #define DEBUG_SUBDIRECTORY ".debug"
1450 #endif
1451
1452 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1453 where the original file resides (may not be the same as
1454 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1455 looking for. CANON_DIR is the "realpath" form of DIR.
1456 DIR must contain a trailing '/'.
1457 Returns the path of the file with separate debug info, of NULL. */
1458
1459 static char *
1460 find_separate_debug_file (const char *dir,
1461 const char *canon_dir,
1462 const char *debuglink,
1463 unsigned long crc32, struct objfile *objfile)
1464 {
1465 char *debugdir;
1466 char *debugfile;
1467 int i;
1468 VEC (char_ptr) *debugdir_vec;
1469 struct cleanup *back_to;
1470 int ix;
1471
1472 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1473 i = strlen (dir);
1474 if (canon_dir != NULL && strlen (canon_dir) > i)
1475 i = strlen (canon_dir);
1476
1477 debugfile
1478 = (char *) xmalloc (strlen (debug_file_directory) + 1
1479 + i
1480 + strlen (DEBUG_SUBDIRECTORY)
1481 + strlen ("/")
1482 + strlen (debuglink)
1483 + 1);
1484
1485 /* First try in the same directory as the original file. */
1486 strcpy (debugfile, dir);
1487 strcat (debugfile, debuglink);
1488
1489 if (separate_debug_file_exists (debugfile, crc32, objfile))
1490 return debugfile;
1491
1492 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1493 strcpy (debugfile, dir);
1494 strcat (debugfile, DEBUG_SUBDIRECTORY);
1495 strcat (debugfile, "/");
1496 strcat (debugfile, debuglink);
1497
1498 if (separate_debug_file_exists (debugfile, crc32, objfile))
1499 return debugfile;
1500
1501 /* Then try in the global debugfile directories.
1502
1503 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1504 cause "/..." lookups. */
1505
1506 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1507 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1508
1509 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1510 {
1511 strcpy (debugfile, debugdir);
1512 strcat (debugfile, "/");
1513 strcat (debugfile, dir);
1514 strcat (debugfile, debuglink);
1515
1516 if (separate_debug_file_exists (debugfile, crc32, objfile))
1517 {
1518 do_cleanups (back_to);
1519 return debugfile;
1520 }
1521
1522 /* If the file is in the sysroot, try using its base path in the
1523 global debugfile directory. */
1524 if (canon_dir != NULL
1525 && filename_ncmp (canon_dir, gdb_sysroot,
1526 strlen (gdb_sysroot)) == 0
1527 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1528 {
1529 strcpy (debugfile, debugdir);
1530 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1531 strcat (debugfile, "/");
1532 strcat (debugfile, debuglink);
1533
1534 if (separate_debug_file_exists (debugfile, crc32, objfile))
1535 {
1536 do_cleanups (back_to);
1537 return debugfile;
1538 }
1539 }
1540 }
1541
1542 do_cleanups (back_to);
1543 xfree (debugfile);
1544 return NULL;
1545 }
1546
1547 /* Modify PATH to contain only "[/]directory/" part of PATH.
1548 If there were no directory separators in PATH, PATH will be empty
1549 string on return. */
1550
1551 static void
1552 terminate_after_last_dir_separator (char *path)
1553 {
1554 int i;
1555
1556 /* Strip off the final filename part, leaving the directory name,
1557 followed by a slash. The directory can be relative or absolute. */
1558 for (i = strlen(path) - 1; i >= 0; i--)
1559 if (IS_DIR_SEPARATOR (path[i]))
1560 break;
1561
1562 /* If I is -1 then no directory is present there and DIR will be "". */
1563 path[i + 1] = '\0';
1564 }
1565
1566 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1567 Returns pathname, or NULL. */
1568
1569 char *
1570 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1571 {
1572 char *debuglink;
1573 char *dir, *canon_dir;
1574 char *debugfile;
1575 unsigned long crc32;
1576 struct cleanup *cleanups;
1577
1578 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1579
1580 if (debuglink == NULL)
1581 {
1582 /* There's no separate debug info, hence there's no way we could
1583 load it => no warning. */
1584 return NULL;
1585 }
1586
1587 cleanups = make_cleanup (xfree, debuglink);
1588 dir = xstrdup (objfile_name (objfile));
1589 make_cleanup (xfree, dir);
1590 terminate_after_last_dir_separator (dir);
1591 canon_dir = lrealpath (dir);
1592
1593 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1594 crc32, objfile);
1595 xfree (canon_dir);
1596
1597 if (debugfile == NULL)
1598 {
1599 /* For PR gdb/9538, try again with realpath (if different from the
1600 original). */
1601
1602 struct stat st_buf;
1603
1604 if (lstat (objfile_name (objfile), &st_buf) == 0
1605 && S_ISLNK (st_buf.st_mode))
1606 {
1607 char *symlink_dir;
1608
1609 symlink_dir = lrealpath (objfile_name (objfile));
1610 if (symlink_dir != NULL)
1611 {
1612 make_cleanup (xfree, symlink_dir);
1613 terminate_after_last_dir_separator (symlink_dir);
1614 if (strcmp (dir, symlink_dir) != 0)
1615 {
1616 /* Different directory, so try using it. */
1617 debugfile = find_separate_debug_file (symlink_dir,
1618 symlink_dir,
1619 debuglink,
1620 crc32,
1621 objfile);
1622 }
1623 }
1624 }
1625 }
1626
1627 do_cleanups (cleanups);
1628 return debugfile;
1629 }
1630
1631 /* This is the symbol-file command. Read the file, analyze its
1632 symbols, and add a struct symtab to a symtab list. The syntax of
1633 the command is rather bizarre:
1634
1635 1. The function buildargv implements various quoting conventions
1636 which are undocumented and have little or nothing in common with
1637 the way things are quoted (or not quoted) elsewhere in GDB.
1638
1639 2. Options are used, which are not generally used in GDB (perhaps
1640 "set mapped on", "set readnow on" would be better)
1641
1642 3. The order of options matters, which is contrary to GNU
1643 conventions (because it is confusing and inconvenient). */
1644
1645 void
1646 symbol_file_command (char *args, int from_tty)
1647 {
1648 dont_repeat ();
1649
1650 if (args == NULL)
1651 {
1652 symbol_file_clear (from_tty);
1653 }
1654 else
1655 {
1656 char **argv = gdb_buildargv (args);
1657 objfile_flags flags = OBJF_USERLOADED;
1658 struct cleanup *cleanups;
1659 char *name = NULL;
1660
1661 cleanups = make_cleanup_freeargv (argv);
1662 while (*argv != NULL)
1663 {
1664 if (strcmp (*argv, "-readnow") == 0)
1665 flags |= OBJF_READNOW;
1666 else if (**argv == '-')
1667 error (_("unknown option `%s'"), *argv);
1668 else
1669 {
1670 symbol_file_add_main_1 (*argv, from_tty, flags);
1671 name = *argv;
1672 }
1673
1674 argv++;
1675 }
1676
1677 if (name == NULL)
1678 error (_("no symbol file name was specified"));
1679
1680 do_cleanups (cleanups);
1681 }
1682 }
1683
1684 /* Set the initial language.
1685
1686 FIXME: A better solution would be to record the language in the
1687 psymtab when reading partial symbols, and then use it (if known) to
1688 set the language. This would be a win for formats that encode the
1689 language in an easily discoverable place, such as DWARF. For
1690 stabs, we can jump through hoops looking for specially named
1691 symbols or try to intuit the language from the specific type of
1692 stabs we find, but we can't do that until later when we read in
1693 full symbols. */
1694
1695 void
1696 set_initial_language (void)
1697 {
1698 enum language lang = main_language ();
1699
1700 if (lang == language_unknown)
1701 {
1702 char *name = main_name ();
1703 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1704
1705 if (sym != NULL)
1706 lang = SYMBOL_LANGUAGE (sym);
1707 }
1708
1709 if (lang == language_unknown)
1710 {
1711 /* Make C the default language */
1712 lang = language_c;
1713 }
1714
1715 set_language (lang);
1716 expected_language = current_language; /* Don't warn the user. */
1717 }
1718
1719 /* Open the file specified by NAME and hand it off to BFD for
1720 preliminary analysis. Return a newly initialized bfd *, which
1721 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1722 absolute). In case of trouble, error() is called. */
1723
1724 bfd *
1725 symfile_bfd_open (const char *name)
1726 {
1727 bfd *sym_bfd;
1728 int desc = -1;
1729 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1730
1731 if (!is_target_filename (name))
1732 {
1733 char *expanded_name, *absolute_name;
1734
1735 expanded_name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1736
1737 /* Look down path for it, allocate 2nd new malloc'd copy. */
1738 desc = openp (getenv ("PATH"),
1739 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1740 expanded_name, O_RDONLY | O_BINARY, &absolute_name);
1741 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1742 if (desc < 0)
1743 {
1744 char *exename = (char *) alloca (strlen (expanded_name) + 5);
1745
1746 strcat (strcpy (exename, expanded_name), ".exe");
1747 desc = openp (getenv ("PATH"),
1748 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1749 exename, O_RDONLY | O_BINARY, &absolute_name);
1750 }
1751 #endif
1752 if (desc < 0)
1753 {
1754 make_cleanup (xfree, expanded_name);
1755 perror_with_name (expanded_name);
1756 }
1757
1758 xfree (expanded_name);
1759 make_cleanup (xfree, absolute_name);
1760 name = absolute_name;
1761 }
1762
1763 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1764 if (!sym_bfd)
1765 error (_("`%s': can't open to read symbols: %s."), name,
1766 bfd_errmsg (bfd_get_error ()));
1767
1768 if (!gdb_bfd_has_target_filename (sym_bfd))
1769 bfd_set_cacheable (sym_bfd, 1);
1770
1771 if (!bfd_check_format (sym_bfd, bfd_object))
1772 {
1773 make_cleanup_bfd_unref (sym_bfd);
1774 error (_("`%s': can't read symbols: %s."), name,
1775 bfd_errmsg (bfd_get_error ()));
1776 }
1777
1778 do_cleanups (back_to);
1779
1780 return sym_bfd;
1781 }
1782
1783 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1784 the section was not found. */
1785
1786 int
1787 get_section_index (struct objfile *objfile, char *section_name)
1788 {
1789 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1790
1791 if (sect)
1792 return sect->index;
1793 else
1794 return -1;
1795 }
1796
1797 /* Link SF into the global symtab_fns list.
1798 FLAVOUR is the file format that SF handles.
1799 Called on startup by the _initialize routine in each object file format
1800 reader, to register information about each format the reader is prepared
1801 to handle. */
1802
1803 void
1804 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1805 {
1806 registered_sym_fns fns = { flavour, sf };
1807
1808 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
1809 }
1810
1811 /* Initialize OBJFILE to read symbols from its associated BFD. It
1812 either returns or calls error(). The result is an initialized
1813 struct sym_fns in the objfile structure, that contains cached
1814 information about the symbol file. */
1815
1816 static const struct sym_fns *
1817 find_sym_fns (bfd *abfd)
1818 {
1819 registered_sym_fns *rsf;
1820 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1821 int i;
1822
1823 if (our_flavour == bfd_target_srec_flavour
1824 || our_flavour == bfd_target_ihex_flavour
1825 || our_flavour == bfd_target_tekhex_flavour)
1826 return NULL; /* No symbols. */
1827
1828 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1829 if (our_flavour == rsf->sym_flavour)
1830 return rsf->sym_fns;
1831
1832 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1833 bfd_get_target (abfd));
1834 }
1835 \f
1836
1837 /* This function runs the load command of our current target. */
1838
1839 static void
1840 load_command (char *arg, int from_tty)
1841 {
1842 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1843
1844 dont_repeat ();
1845
1846 /* The user might be reloading because the binary has changed. Take
1847 this opportunity to check. */
1848 reopen_exec_file ();
1849 reread_symbols ();
1850
1851 if (arg == NULL)
1852 {
1853 char *parg;
1854 int count = 0;
1855
1856 parg = arg = get_exec_file (1);
1857
1858 /* Count how many \ " ' tab space there are in the name. */
1859 while ((parg = strpbrk (parg, "\\\"'\t ")))
1860 {
1861 parg++;
1862 count++;
1863 }
1864
1865 if (count)
1866 {
1867 /* We need to quote this string so buildargv can pull it apart. */
1868 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1869 char *ptemp = temp;
1870 char *prev;
1871
1872 make_cleanup (xfree, temp);
1873
1874 prev = parg = arg;
1875 while ((parg = strpbrk (parg, "\\\"'\t ")))
1876 {
1877 strncpy (ptemp, prev, parg - prev);
1878 ptemp += parg - prev;
1879 prev = parg++;
1880 *ptemp++ = '\\';
1881 }
1882 strcpy (ptemp, prev);
1883
1884 arg = temp;
1885 }
1886 }
1887
1888 target_load (arg, from_tty);
1889
1890 /* After re-loading the executable, we don't really know which
1891 overlays are mapped any more. */
1892 overlay_cache_invalid = 1;
1893
1894 do_cleanups (cleanup);
1895 }
1896
1897 /* This version of "load" should be usable for any target. Currently
1898 it is just used for remote targets, not inftarg.c or core files,
1899 on the theory that only in that case is it useful.
1900
1901 Avoiding xmodem and the like seems like a win (a) because we don't have
1902 to worry about finding it, and (b) On VMS, fork() is very slow and so
1903 we don't want to run a subprocess. On the other hand, I'm not sure how
1904 performance compares. */
1905
1906 static int validate_download = 0;
1907
1908 /* Callback service function for generic_load (bfd_map_over_sections). */
1909
1910 static void
1911 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1912 {
1913 bfd_size_type *sum = (bfd_size_type *) data;
1914
1915 *sum += bfd_get_section_size (asec);
1916 }
1917
1918 /* Opaque data for load_section_callback. */
1919 struct load_section_data {
1920 CORE_ADDR load_offset;
1921 struct load_progress_data *progress_data;
1922 VEC(memory_write_request_s) *requests;
1923 };
1924
1925 /* Opaque data for load_progress. */
1926 struct load_progress_data {
1927 /* Cumulative data. */
1928 unsigned long write_count;
1929 unsigned long data_count;
1930 bfd_size_type total_size;
1931 };
1932
1933 /* Opaque data for load_progress for a single section. */
1934 struct load_progress_section_data {
1935 struct load_progress_data *cumulative;
1936
1937 /* Per-section data. */
1938 const char *section_name;
1939 ULONGEST section_sent;
1940 ULONGEST section_size;
1941 CORE_ADDR lma;
1942 gdb_byte *buffer;
1943 };
1944
1945 /* Target write callback routine for progress reporting. */
1946
1947 static void
1948 load_progress (ULONGEST bytes, void *untyped_arg)
1949 {
1950 struct load_progress_section_data *args
1951 = (struct load_progress_section_data *) untyped_arg;
1952 struct load_progress_data *totals;
1953
1954 if (args == NULL)
1955 /* Writing padding data. No easy way to get at the cumulative
1956 stats, so just ignore this. */
1957 return;
1958
1959 totals = args->cumulative;
1960
1961 if (bytes == 0 && args->section_sent == 0)
1962 {
1963 /* The write is just starting. Let the user know we've started
1964 this section. */
1965 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1966 args->section_name, hex_string (args->section_size),
1967 paddress (target_gdbarch (), args->lma));
1968 return;
1969 }
1970
1971 if (validate_download)
1972 {
1973 /* Broken memories and broken monitors manifest themselves here
1974 when bring new computers to life. This doubles already slow
1975 downloads. */
1976 /* NOTE: cagney/1999-10-18: A more efficient implementation
1977 might add a verify_memory() method to the target vector and
1978 then use that. remote.c could implement that method using
1979 the ``qCRC'' packet. */
1980 gdb_byte *check = (gdb_byte *) xmalloc (bytes);
1981 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1982
1983 if (target_read_memory (args->lma, check, bytes) != 0)
1984 error (_("Download verify read failed at %s"),
1985 paddress (target_gdbarch (), args->lma));
1986 if (memcmp (args->buffer, check, bytes) != 0)
1987 error (_("Download verify compare failed at %s"),
1988 paddress (target_gdbarch (), args->lma));
1989 do_cleanups (verify_cleanups);
1990 }
1991 totals->data_count += bytes;
1992 args->lma += bytes;
1993 args->buffer += bytes;
1994 totals->write_count += 1;
1995 args->section_sent += bytes;
1996 if (check_quit_flag ()
1997 || (deprecated_ui_load_progress_hook != NULL
1998 && deprecated_ui_load_progress_hook (args->section_name,
1999 args->section_sent)))
2000 error (_("Canceled the download"));
2001
2002 if (deprecated_show_load_progress != NULL)
2003 deprecated_show_load_progress (args->section_name,
2004 args->section_sent,
2005 args->section_size,
2006 totals->data_count,
2007 totals->total_size);
2008 }
2009
2010 /* Callback service function for generic_load (bfd_map_over_sections). */
2011
2012 static void
2013 load_section_callback (bfd *abfd, asection *asec, void *data)
2014 {
2015 struct memory_write_request *new_request;
2016 struct load_section_data *args = (struct load_section_data *) data;
2017 struct load_progress_section_data *section_data;
2018 bfd_size_type size = bfd_get_section_size (asec);
2019 gdb_byte *buffer;
2020 const char *sect_name = bfd_get_section_name (abfd, asec);
2021
2022 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2023 return;
2024
2025 if (size == 0)
2026 return;
2027
2028 new_request = VEC_safe_push (memory_write_request_s,
2029 args->requests, NULL);
2030 memset (new_request, 0, sizeof (struct memory_write_request));
2031 section_data = XCNEW (struct load_progress_section_data);
2032 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2033 new_request->end = new_request->begin + size; /* FIXME Should size
2034 be in instead? */
2035 new_request->data = (gdb_byte *) xmalloc (size);
2036 new_request->baton = section_data;
2037
2038 buffer = new_request->data;
2039
2040 section_data->cumulative = args->progress_data;
2041 section_data->section_name = sect_name;
2042 section_data->section_size = size;
2043 section_data->lma = new_request->begin;
2044 section_data->buffer = buffer;
2045
2046 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2047 }
2048
2049 /* Clean up an entire memory request vector, including load
2050 data and progress records. */
2051
2052 static void
2053 clear_memory_write_data (void *arg)
2054 {
2055 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
2056 VEC(memory_write_request_s) *vec = *vec_p;
2057 int i;
2058 struct memory_write_request *mr;
2059
2060 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2061 {
2062 xfree (mr->data);
2063 xfree (mr->baton);
2064 }
2065 VEC_free (memory_write_request_s, vec);
2066 }
2067
2068 void
2069 generic_load (const char *args, int from_tty)
2070 {
2071 bfd *loadfile_bfd;
2072 struct timeval start_time, end_time;
2073 char *filename;
2074 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2075 struct load_section_data cbdata;
2076 struct load_progress_data total_progress;
2077 struct ui_out *uiout = current_uiout;
2078
2079 CORE_ADDR entry;
2080 char **argv;
2081
2082 memset (&cbdata, 0, sizeof (cbdata));
2083 memset (&total_progress, 0, sizeof (total_progress));
2084 cbdata.progress_data = &total_progress;
2085
2086 make_cleanup (clear_memory_write_data, &cbdata.requests);
2087
2088 if (args == NULL)
2089 error_no_arg (_("file to load"));
2090
2091 argv = gdb_buildargv (args);
2092 make_cleanup_freeargv (argv);
2093
2094 filename = tilde_expand (argv[0]);
2095 make_cleanup (xfree, filename);
2096
2097 if (argv[1] != NULL)
2098 {
2099 const char *endptr;
2100
2101 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2102
2103 /* If the last word was not a valid number then
2104 treat it as a file name with spaces in. */
2105 if (argv[1] == endptr)
2106 error (_("Invalid download offset:%s."), argv[1]);
2107
2108 if (argv[2] != NULL)
2109 error (_("Too many parameters."));
2110 }
2111
2112 /* Open the file for loading. */
2113 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2114 if (loadfile_bfd == NULL)
2115 {
2116 perror_with_name (filename);
2117 return;
2118 }
2119
2120 make_cleanup_bfd_unref (loadfile_bfd);
2121
2122 if (!bfd_check_format (loadfile_bfd, bfd_object))
2123 {
2124 error (_("\"%s\" is not an object file: %s"), filename,
2125 bfd_errmsg (bfd_get_error ()));
2126 }
2127
2128 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2129 (void *) &total_progress.total_size);
2130
2131 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2132
2133 gettimeofday (&start_time, NULL);
2134
2135 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2136 load_progress) != 0)
2137 error (_("Load failed"));
2138
2139 gettimeofday (&end_time, NULL);
2140
2141 entry = bfd_get_start_address (loadfile_bfd);
2142 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2143 ui_out_text (uiout, "Start address ");
2144 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2145 ui_out_text (uiout, ", load size ");
2146 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2147 ui_out_text (uiout, "\n");
2148 regcache_write_pc (get_current_regcache (), entry);
2149
2150 /* Reset breakpoints, now that we have changed the load image. For
2151 instance, breakpoints may have been set (or reset, by
2152 post_create_inferior) while connected to the target but before we
2153 loaded the program. In that case, the prologue analyzer could
2154 have read instructions from the target to find the right
2155 breakpoint locations. Loading has changed the contents of that
2156 memory. */
2157
2158 breakpoint_re_set ();
2159
2160 print_transfer_performance (gdb_stdout, total_progress.data_count,
2161 total_progress.write_count,
2162 &start_time, &end_time);
2163
2164 do_cleanups (old_cleanups);
2165 }
2166
2167 /* Report how fast the transfer went. */
2168
2169 void
2170 print_transfer_performance (struct ui_file *stream,
2171 unsigned long data_count,
2172 unsigned long write_count,
2173 const struct timeval *start_time,
2174 const struct timeval *end_time)
2175 {
2176 ULONGEST time_count;
2177 struct ui_out *uiout = current_uiout;
2178
2179 /* Compute the elapsed time in milliseconds, as a tradeoff between
2180 accuracy and overflow. */
2181 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2182 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2183
2184 ui_out_text (uiout, "Transfer rate: ");
2185 if (time_count > 0)
2186 {
2187 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2188
2189 if (ui_out_is_mi_like_p (uiout))
2190 {
2191 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2192 ui_out_text (uiout, " bits/sec");
2193 }
2194 else if (rate < 1024)
2195 {
2196 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2197 ui_out_text (uiout, " bytes/sec");
2198 }
2199 else
2200 {
2201 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2202 ui_out_text (uiout, " KB/sec");
2203 }
2204 }
2205 else
2206 {
2207 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2208 ui_out_text (uiout, " bits in <1 sec");
2209 }
2210 if (write_count > 0)
2211 {
2212 ui_out_text (uiout, ", ");
2213 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2214 ui_out_text (uiout, " bytes/write");
2215 }
2216 ui_out_text (uiout, ".\n");
2217 }
2218
2219 /* This function allows the addition of incrementally linked object files.
2220 It does not modify any state in the target, only in the debugger. */
2221 /* Note: ezannoni 2000-04-13 This function/command used to have a
2222 special case syntax for the rombug target (Rombug is the boot
2223 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2224 rombug case, the user doesn't need to supply a text address,
2225 instead a call to target_link() (in target.c) would supply the
2226 value to use. We are now discontinuing this type of ad hoc syntax. */
2227
2228 static void
2229 add_symbol_file_command (char *args, int from_tty)
2230 {
2231 struct gdbarch *gdbarch = get_current_arch ();
2232 char *filename = NULL;
2233 char *arg;
2234 int section_index = 0;
2235 int argcnt = 0;
2236 int sec_num = 0;
2237 int i;
2238 int expecting_sec_name = 0;
2239 int expecting_sec_addr = 0;
2240 char **argv;
2241 struct objfile *objf;
2242 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2243 symfile_add_flags add_flags = 0;
2244
2245 if (from_tty)
2246 add_flags |= SYMFILE_VERBOSE;
2247
2248 struct sect_opt
2249 {
2250 char *name;
2251 char *value;
2252 };
2253
2254 struct section_addr_info *section_addrs;
2255 struct sect_opt *sect_opts = NULL;
2256 size_t num_sect_opts = 0;
2257 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2258
2259 num_sect_opts = 16;
2260 sect_opts = XNEWVEC (struct sect_opt, num_sect_opts);
2261
2262 dont_repeat ();
2263
2264 if (args == NULL)
2265 error (_("add-symbol-file takes a file name and an address"));
2266
2267 argv = gdb_buildargv (args);
2268 make_cleanup_freeargv (argv);
2269
2270 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2271 {
2272 /* Process the argument. */
2273 if (argcnt == 0)
2274 {
2275 /* The first argument is the file name. */
2276 filename = tilde_expand (arg);
2277 make_cleanup (xfree, filename);
2278 }
2279 else if (argcnt == 1)
2280 {
2281 /* The second argument is always the text address at which
2282 to load the program. */
2283 sect_opts[section_index].name = ".text";
2284 sect_opts[section_index].value = arg;
2285 if (++section_index >= num_sect_opts)
2286 {
2287 num_sect_opts *= 2;
2288 sect_opts = ((struct sect_opt *)
2289 xrealloc (sect_opts,
2290 num_sect_opts
2291 * sizeof (struct sect_opt)));
2292 }
2293 }
2294 else
2295 {
2296 /* It's an option (starting with '-') or it's an argument
2297 to an option. */
2298 if (expecting_sec_name)
2299 {
2300 sect_opts[section_index].name = arg;
2301 expecting_sec_name = 0;
2302 }
2303 else if (expecting_sec_addr)
2304 {
2305 sect_opts[section_index].value = arg;
2306 expecting_sec_addr = 0;
2307 if (++section_index >= num_sect_opts)
2308 {
2309 num_sect_opts *= 2;
2310 sect_opts = ((struct sect_opt *)
2311 xrealloc (sect_opts,
2312 num_sect_opts
2313 * sizeof (struct sect_opt)));
2314 }
2315 }
2316 else if (strcmp (arg, "-readnow") == 0)
2317 flags |= OBJF_READNOW;
2318 else if (strcmp (arg, "-s") == 0)
2319 {
2320 expecting_sec_name = 1;
2321 expecting_sec_addr = 1;
2322 }
2323 else
2324 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2325 " [-readnow] [-s <secname> <addr>]*"));
2326 }
2327 }
2328
2329 /* This command takes at least two arguments. The first one is a
2330 filename, and the second is the address where this file has been
2331 loaded. Abort now if this address hasn't been provided by the
2332 user. */
2333 if (section_index < 1)
2334 error (_("The address where %s has been loaded is missing"), filename);
2335
2336 /* Print the prompt for the query below. And save the arguments into
2337 a sect_addr_info structure to be passed around to other
2338 functions. We have to split this up into separate print
2339 statements because hex_string returns a local static
2340 string. */
2341
2342 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2343 section_addrs = alloc_section_addr_info (section_index);
2344 make_cleanup (xfree, section_addrs);
2345 for (i = 0; i < section_index; i++)
2346 {
2347 CORE_ADDR addr;
2348 char *val = sect_opts[i].value;
2349 char *sec = sect_opts[i].name;
2350
2351 addr = parse_and_eval_address (val);
2352
2353 /* Here we store the section offsets in the order they were
2354 entered on the command line. */
2355 section_addrs->other[sec_num].name = sec;
2356 section_addrs->other[sec_num].addr = addr;
2357 printf_unfiltered ("\t%s_addr = %s\n", sec,
2358 paddress (gdbarch, addr));
2359 sec_num++;
2360
2361 /* The object's sections are initialized when a
2362 call is made to build_objfile_section_table (objfile).
2363 This happens in reread_symbols.
2364 At this point, we don't know what file type this is,
2365 so we can't determine what section names are valid. */
2366 }
2367 section_addrs->num_sections = sec_num;
2368
2369 if (from_tty && (!query ("%s", "")))
2370 error (_("Not confirmed."));
2371
2372 objf = symbol_file_add (filename, add_flags, section_addrs, flags);
2373
2374 add_target_sections_of_objfile (objf);
2375
2376 /* Getting new symbols may change our opinion about what is
2377 frameless. */
2378 reinit_frame_cache ();
2379 do_cleanups (my_cleanups);
2380 }
2381 \f
2382
2383 /* This function removes a symbol file that was added via add-symbol-file. */
2384
2385 static void
2386 remove_symbol_file_command (char *args, int from_tty)
2387 {
2388 char **argv;
2389 struct objfile *objf = NULL;
2390 struct cleanup *my_cleanups;
2391 struct program_space *pspace = current_program_space;
2392
2393 dont_repeat ();
2394
2395 if (args == NULL)
2396 error (_("remove-symbol-file: no symbol file provided"));
2397
2398 my_cleanups = make_cleanup (null_cleanup, NULL);
2399
2400 argv = gdb_buildargv (args);
2401
2402 if (strcmp (argv[0], "-a") == 0)
2403 {
2404 /* Interpret the next argument as an address. */
2405 CORE_ADDR addr;
2406
2407 if (argv[1] == NULL)
2408 error (_("Missing address argument"));
2409
2410 if (argv[2] != NULL)
2411 error (_("Junk after %s"), argv[1]);
2412
2413 addr = parse_and_eval_address (argv[1]);
2414
2415 ALL_OBJFILES (objf)
2416 {
2417 if ((objf->flags & OBJF_USERLOADED) != 0
2418 && (objf->flags & OBJF_SHARED) != 0
2419 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2420 break;
2421 }
2422 }
2423 else if (argv[0] != NULL)
2424 {
2425 /* Interpret the current argument as a file name. */
2426 char *filename;
2427
2428 if (argv[1] != NULL)
2429 error (_("Junk after %s"), argv[0]);
2430
2431 filename = tilde_expand (argv[0]);
2432 make_cleanup (xfree, filename);
2433
2434 ALL_OBJFILES (objf)
2435 {
2436 if ((objf->flags & OBJF_USERLOADED) != 0
2437 && (objf->flags & OBJF_SHARED) != 0
2438 && objf->pspace == pspace
2439 && filename_cmp (filename, objfile_name (objf)) == 0)
2440 break;
2441 }
2442 }
2443
2444 if (objf == NULL)
2445 error (_("No symbol file found"));
2446
2447 if (from_tty
2448 && !query (_("Remove symbol table from file \"%s\"? "),
2449 objfile_name (objf)))
2450 error (_("Not confirmed."));
2451
2452 free_objfile (objf);
2453 clear_symtab_users (0);
2454
2455 do_cleanups (my_cleanups);
2456 }
2457
2458 typedef struct objfile *objfilep;
2459
2460 DEF_VEC_P (objfilep);
2461
2462 /* Re-read symbols if a symbol-file has changed. */
2463
2464 void
2465 reread_symbols (void)
2466 {
2467 struct objfile *objfile;
2468 long new_modtime;
2469 struct stat new_statbuf;
2470 int res;
2471 VEC (objfilep) *new_objfiles = NULL;
2472 struct cleanup *all_cleanups;
2473
2474 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2475
2476 /* With the addition of shared libraries, this should be modified,
2477 the load time should be saved in the partial symbol tables, since
2478 different tables may come from different source files. FIXME.
2479 This routine should then walk down each partial symbol table
2480 and see if the symbol table that it originates from has been changed. */
2481
2482 for (objfile = object_files; objfile; objfile = objfile->next)
2483 {
2484 if (objfile->obfd == NULL)
2485 continue;
2486
2487 /* Separate debug objfiles are handled in the main objfile. */
2488 if (objfile->separate_debug_objfile_backlink)
2489 continue;
2490
2491 /* If this object is from an archive (what you usually create with
2492 `ar', often called a `static library' on most systems, though
2493 a `shared library' on AIX is also an archive), then you should
2494 stat on the archive name, not member name. */
2495 if (objfile->obfd->my_archive)
2496 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2497 else
2498 res = stat (objfile_name (objfile), &new_statbuf);
2499 if (res != 0)
2500 {
2501 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2502 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2503 objfile_name (objfile));
2504 continue;
2505 }
2506 new_modtime = new_statbuf.st_mtime;
2507 if (new_modtime != objfile->mtime)
2508 {
2509 struct cleanup *old_cleanups;
2510 struct section_offsets *offsets;
2511 int num_offsets;
2512 char *original_name;
2513
2514 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2515 objfile_name (objfile));
2516
2517 /* There are various functions like symbol_file_add,
2518 symfile_bfd_open, syms_from_objfile, etc., which might
2519 appear to do what we want. But they have various other
2520 effects which we *don't* want. So we just do stuff
2521 ourselves. We don't worry about mapped files (for one thing,
2522 any mapped file will be out of date). */
2523
2524 /* If we get an error, blow away this objfile (not sure if
2525 that is the correct response for things like shared
2526 libraries). */
2527 old_cleanups = make_cleanup_free_objfile (objfile);
2528 /* We need to do this whenever any symbols go away. */
2529 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2530
2531 if (exec_bfd != NULL
2532 && filename_cmp (bfd_get_filename (objfile->obfd),
2533 bfd_get_filename (exec_bfd)) == 0)
2534 {
2535 /* Reload EXEC_BFD without asking anything. */
2536
2537 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2538 }
2539
2540 /* Keep the calls order approx. the same as in free_objfile. */
2541
2542 /* Free the separate debug objfiles. It will be
2543 automatically recreated by sym_read. */
2544 free_objfile_separate_debug (objfile);
2545
2546 /* Remove any references to this objfile in the global
2547 value lists. */
2548 preserve_values (objfile);
2549
2550 /* Nuke all the state that we will re-read. Much of the following
2551 code which sets things to NULL really is necessary to tell
2552 other parts of GDB that there is nothing currently there.
2553
2554 Try to keep the freeing order compatible with free_objfile. */
2555
2556 if (objfile->sf != NULL)
2557 {
2558 (*objfile->sf->sym_finish) (objfile);
2559 }
2560
2561 clear_objfile_data (objfile);
2562
2563 /* Clean up any state BFD has sitting around. */
2564 {
2565 struct bfd *obfd = objfile->obfd;
2566 char *obfd_filename;
2567
2568 obfd_filename = bfd_get_filename (objfile->obfd);
2569 /* Open the new BFD before freeing the old one, so that
2570 the filename remains live. */
2571 objfile->obfd = gdb_bfd_open (obfd_filename, gnutarget, -1);
2572 if (objfile->obfd == NULL)
2573 {
2574 /* We have to make a cleanup and error here, rather
2575 than erroring later, because once we unref OBFD,
2576 OBFD_FILENAME will be freed. */
2577 make_cleanup_bfd_unref (obfd);
2578 error (_("Can't open %s to read symbols."), obfd_filename);
2579 }
2580 gdb_bfd_unref (obfd);
2581 }
2582
2583 original_name = xstrdup (objfile->original_name);
2584 make_cleanup (xfree, original_name);
2585
2586 /* bfd_openr sets cacheable to true, which is what we want. */
2587 if (!bfd_check_format (objfile->obfd, bfd_object))
2588 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2589 bfd_errmsg (bfd_get_error ()));
2590
2591 /* Save the offsets, we will nuke them with the rest of the
2592 objfile_obstack. */
2593 num_offsets = objfile->num_sections;
2594 offsets = ((struct section_offsets *)
2595 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2596 memcpy (offsets, objfile->section_offsets,
2597 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2598
2599 /* FIXME: Do we have to free a whole linked list, or is this
2600 enough? */
2601 if (objfile->global_psymbols.list)
2602 xfree (objfile->global_psymbols.list);
2603 memset (&objfile->global_psymbols, 0,
2604 sizeof (objfile->global_psymbols));
2605 if (objfile->static_psymbols.list)
2606 xfree (objfile->static_psymbols.list);
2607 memset (&objfile->static_psymbols, 0,
2608 sizeof (objfile->static_psymbols));
2609
2610 /* Free the obstacks for non-reusable objfiles. */
2611 psymbol_bcache_free (objfile->psymbol_cache);
2612 objfile->psymbol_cache = psymbol_bcache_init ();
2613 obstack_free (&objfile->objfile_obstack, 0);
2614 objfile->sections = NULL;
2615 objfile->compunit_symtabs = NULL;
2616 objfile->psymtabs = NULL;
2617 objfile->psymtabs_addrmap = NULL;
2618 objfile->free_psymtabs = NULL;
2619 objfile->template_symbols = NULL;
2620
2621 /* obstack_init also initializes the obstack so it is
2622 empty. We could use obstack_specify_allocation but
2623 gdb_obstack.h specifies the alloc/dealloc functions. */
2624 obstack_init (&objfile->objfile_obstack);
2625
2626 /* set_objfile_per_bfd potentially allocates the per-bfd
2627 data on the objfile's obstack (if sharing data across
2628 multiple users is not possible), so it's important to
2629 do it *after* the obstack has been initialized. */
2630 set_objfile_per_bfd (objfile);
2631
2632 objfile->original_name
2633 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2634 strlen (original_name));
2635
2636 /* Reset the sym_fns pointer. The ELF reader can change it
2637 based on whether .gdb_index is present, and we need it to
2638 start over. PR symtab/15885 */
2639 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2640
2641 build_objfile_section_table (objfile);
2642 terminate_minimal_symbol_table (objfile);
2643
2644 /* We use the same section offsets as from last time. I'm not
2645 sure whether that is always correct for shared libraries. */
2646 objfile->section_offsets = (struct section_offsets *)
2647 obstack_alloc (&objfile->objfile_obstack,
2648 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2649 memcpy (objfile->section_offsets, offsets,
2650 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2651 objfile->num_sections = num_offsets;
2652
2653 /* What the hell is sym_new_init for, anyway? The concept of
2654 distinguishing between the main file and additional files
2655 in this way seems rather dubious. */
2656 if (objfile == symfile_objfile)
2657 {
2658 (*objfile->sf->sym_new_init) (objfile);
2659 }
2660
2661 (*objfile->sf->sym_init) (objfile);
2662 clear_complaints (&symfile_complaints, 1, 1);
2663
2664 objfile->flags &= ~OBJF_PSYMTABS_READ;
2665 read_symbols (objfile, 0);
2666
2667 if (!objfile_has_symbols (objfile))
2668 {
2669 wrap_here ("");
2670 printf_unfiltered (_("(no debugging symbols found)\n"));
2671 wrap_here ("");
2672 }
2673
2674 /* We're done reading the symbol file; finish off complaints. */
2675 clear_complaints (&symfile_complaints, 0, 1);
2676
2677 /* Getting new symbols may change our opinion about what is
2678 frameless. */
2679
2680 reinit_frame_cache ();
2681
2682 /* Discard cleanups as symbol reading was successful. */
2683 discard_cleanups (old_cleanups);
2684
2685 /* If the mtime has changed between the time we set new_modtime
2686 and now, we *want* this to be out of date, so don't call stat
2687 again now. */
2688 objfile->mtime = new_modtime;
2689 init_entry_point_info (objfile);
2690
2691 VEC_safe_push (objfilep, new_objfiles, objfile);
2692 }
2693 }
2694
2695 if (new_objfiles)
2696 {
2697 int ix;
2698
2699 /* Notify objfiles that we've modified objfile sections. */
2700 objfiles_changed ();
2701
2702 clear_symtab_users (0);
2703
2704 /* clear_objfile_data for each objfile was called before freeing it and
2705 observer_notify_new_objfile (NULL) has been called by
2706 clear_symtab_users above. Notify the new files now. */
2707 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2708 observer_notify_new_objfile (objfile);
2709
2710 /* At least one objfile has changed, so we can consider that
2711 the executable we're debugging has changed too. */
2712 observer_notify_executable_changed ();
2713 }
2714
2715 do_cleanups (all_cleanups);
2716 }
2717 \f
2718
2719 typedef struct
2720 {
2721 char *ext;
2722 enum language lang;
2723 } filename_language;
2724
2725 DEF_VEC_O (filename_language);
2726
2727 static VEC (filename_language) *filename_language_table;
2728
2729 /* See symfile.h. */
2730
2731 void
2732 add_filename_language (const char *ext, enum language lang)
2733 {
2734 filename_language entry;
2735
2736 entry.ext = xstrdup (ext);
2737 entry.lang = lang;
2738
2739 VEC_safe_push (filename_language, filename_language_table, &entry);
2740 }
2741
2742 static char *ext_args;
2743 static void
2744 show_ext_args (struct ui_file *file, int from_tty,
2745 struct cmd_list_element *c, const char *value)
2746 {
2747 fprintf_filtered (file,
2748 _("Mapping between filename extension "
2749 "and source language is \"%s\".\n"),
2750 value);
2751 }
2752
2753 static void
2754 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2755 {
2756 int i;
2757 char *cp = ext_args;
2758 enum language lang;
2759 filename_language *entry;
2760
2761 /* First arg is filename extension, starting with '.' */
2762 if (*cp != '.')
2763 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2764
2765 /* Find end of first arg. */
2766 while (*cp && !isspace (*cp))
2767 cp++;
2768
2769 if (*cp == '\0')
2770 error (_("'%s': two arguments required -- "
2771 "filename extension and language"),
2772 ext_args);
2773
2774 /* Null-terminate first arg. */
2775 *cp++ = '\0';
2776
2777 /* Find beginning of second arg, which should be a source language. */
2778 cp = skip_spaces (cp);
2779
2780 if (*cp == '\0')
2781 error (_("'%s': two arguments required -- "
2782 "filename extension and language"),
2783 ext_args);
2784
2785 /* Lookup the language from among those we know. */
2786 lang = language_enum (cp);
2787
2788 /* Now lookup the filename extension: do we already know it? */
2789 for (i = 0;
2790 VEC_iterate (filename_language, filename_language_table, i, entry);
2791 ++i)
2792 {
2793 if (0 == strcmp (ext_args, entry->ext))
2794 break;
2795 }
2796
2797 if (entry == NULL)
2798 {
2799 /* New file extension. */
2800 add_filename_language (ext_args, lang);
2801 }
2802 else
2803 {
2804 /* Redefining a previously known filename extension. */
2805
2806 /* if (from_tty) */
2807 /* query ("Really make files of type %s '%s'?", */
2808 /* ext_args, language_str (lang)); */
2809
2810 xfree (entry->ext);
2811 entry->ext = xstrdup (ext_args);
2812 entry->lang = lang;
2813 }
2814 }
2815
2816 static void
2817 info_ext_lang_command (char *args, int from_tty)
2818 {
2819 int i;
2820 filename_language *entry;
2821
2822 printf_filtered (_("Filename extensions and the languages they represent:"));
2823 printf_filtered ("\n\n");
2824 for (i = 0;
2825 VEC_iterate (filename_language, filename_language_table, i, entry);
2826 ++i)
2827 printf_filtered ("\t%s\t- %s\n", entry->ext, language_str (entry->lang));
2828 }
2829
2830 enum language
2831 deduce_language_from_filename (const char *filename)
2832 {
2833 int i;
2834 const char *cp;
2835
2836 if (filename != NULL)
2837 if ((cp = strrchr (filename, '.')) != NULL)
2838 {
2839 filename_language *entry;
2840
2841 for (i = 0;
2842 VEC_iterate (filename_language, filename_language_table, i, entry);
2843 ++i)
2844 if (strcmp (cp, entry->ext) == 0)
2845 return entry->lang;
2846 }
2847
2848 return language_unknown;
2849 }
2850 \f
2851 /* Allocate and initialize a new symbol table.
2852 CUST is from the result of allocate_compunit_symtab. */
2853
2854 struct symtab *
2855 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2856 {
2857 struct objfile *objfile = cust->objfile;
2858 struct symtab *symtab
2859 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2860
2861 symtab->filename
2862 = (const char *) bcache (filename, strlen (filename) + 1,
2863 objfile->per_bfd->filename_cache);
2864 symtab->fullname = NULL;
2865 symtab->language = deduce_language_from_filename (filename);
2866
2867 /* This can be very verbose with lots of headers.
2868 Only print at higher debug levels. */
2869 if (symtab_create_debug >= 2)
2870 {
2871 /* Be a bit clever with debugging messages, and don't print objfile
2872 every time, only when it changes. */
2873 static char *last_objfile_name = NULL;
2874
2875 if (last_objfile_name == NULL
2876 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2877 {
2878 xfree (last_objfile_name);
2879 last_objfile_name = xstrdup (objfile_name (objfile));
2880 fprintf_unfiltered (gdb_stdlog,
2881 "Creating one or more symtabs for objfile %s ...\n",
2882 last_objfile_name);
2883 }
2884 fprintf_unfiltered (gdb_stdlog,
2885 "Created symtab %s for module %s.\n",
2886 host_address_to_string (symtab), filename);
2887 }
2888
2889 /* Add it to CUST's list of symtabs. */
2890 if (cust->filetabs == NULL)
2891 {
2892 cust->filetabs = symtab;
2893 cust->last_filetab = symtab;
2894 }
2895 else
2896 {
2897 cust->last_filetab->next = symtab;
2898 cust->last_filetab = symtab;
2899 }
2900
2901 /* Backlink to the containing compunit symtab. */
2902 symtab->compunit_symtab = cust;
2903
2904 return symtab;
2905 }
2906
2907 /* Allocate and initialize a new compunit.
2908 NAME is the name of the main source file, if there is one, or some
2909 descriptive text if there are no source files. */
2910
2911 struct compunit_symtab *
2912 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2913 {
2914 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2915 struct compunit_symtab);
2916 const char *saved_name;
2917
2918 cu->objfile = objfile;
2919
2920 /* The name we record here is only for display/debugging purposes.
2921 Just save the basename to avoid path issues (too long for display,
2922 relative vs absolute, etc.). */
2923 saved_name = lbasename (name);
2924 cu->name
2925 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2926 strlen (saved_name));
2927
2928 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2929
2930 if (symtab_create_debug)
2931 {
2932 fprintf_unfiltered (gdb_stdlog,
2933 "Created compunit symtab %s for %s.\n",
2934 host_address_to_string (cu),
2935 cu->name);
2936 }
2937
2938 return cu;
2939 }
2940
2941 /* Hook CU to the objfile it comes from. */
2942
2943 void
2944 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2945 {
2946 cu->next = cu->objfile->compunit_symtabs;
2947 cu->objfile->compunit_symtabs = cu;
2948 }
2949 \f
2950
2951 /* Reset all data structures in gdb which may contain references to
2952 symbol table data. */
2953
2954 void
2955 clear_symtab_users (symfile_add_flags add_flags)
2956 {
2957 /* Someday, we should do better than this, by only blowing away
2958 the things that really need to be blown. */
2959
2960 /* Clear the "current" symtab first, because it is no longer valid.
2961 breakpoint_re_set may try to access the current symtab. */
2962 clear_current_source_symtab_and_line ();
2963
2964 clear_displays ();
2965 clear_last_displayed_sal ();
2966 clear_pc_function_cache ();
2967 observer_notify_new_objfile (NULL);
2968
2969 /* Clear globals which might have pointed into a removed objfile.
2970 FIXME: It's not clear which of these are supposed to persist
2971 between expressions and which ought to be reset each time. */
2972 expression_context_block = NULL;
2973 innermost_block = NULL;
2974
2975 /* Varobj may refer to old symbols, perform a cleanup. */
2976 varobj_invalidate ();
2977
2978 /* Now that the various caches have been cleared, we can re_set
2979 our breakpoints without risking it using stale data. */
2980 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2981 breakpoint_re_set ();
2982 }
2983
2984 static void
2985 clear_symtab_users_cleanup (void *ignore)
2986 {
2987 clear_symtab_users (0);
2988 }
2989 \f
2990 /* OVERLAYS:
2991 The following code implements an abstraction for debugging overlay sections.
2992
2993 The target model is as follows:
2994 1) The gnu linker will permit multiple sections to be mapped into the
2995 same VMA, each with its own unique LMA (or load address).
2996 2) It is assumed that some runtime mechanism exists for mapping the
2997 sections, one by one, from the load address into the VMA address.
2998 3) This code provides a mechanism for gdb to keep track of which
2999 sections should be considered to be mapped from the VMA to the LMA.
3000 This information is used for symbol lookup, and memory read/write.
3001 For instance, if a section has been mapped then its contents
3002 should be read from the VMA, otherwise from the LMA.
3003
3004 Two levels of debugger support for overlays are available. One is
3005 "manual", in which the debugger relies on the user to tell it which
3006 overlays are currently mapped. This level of support is
3007 implemented entirely in the core debugger, and the information about
3008 whether a section is mapped is kept in the objfile->obj_section table.
3009
3010 The second level of support is "automatic", and is only available if
3011 the target-specific code provides functionality to read the target's
3012 overlay mapping table, and translate its contents for the debugger
3013 (by updating the mapped state information in the obj_section tables).
3014
3015 The interface is as follows:
3016 User commands:
3017 overlay map <name> -- tell gdb to consider this section mapped
3018 overlay unmap <name> -- tell gdb to consider this section unmapped
3019 overlay list -- list the sections that GDB thinks are mapped
3020 overlay read-target -- get the target's state of what's mapped
3021 overlay off/manual/auto -- set overlay debugging state
3022 Functional interface:
3023 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3024 section, return that section.
3025 find_pc_overlay(pc): find any overlay section that contains
3026 the pc, either in its VMA or its LMA
3027 section_is_mapped(sect): true if overlay is marked as mapped
3028 section_is_overlay(sect): true if section's VMA != LMA
3029 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3030 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3031 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3032 overlay_mapped_address(...): map an address from section's LMA to VMA
3033 overlay_unmapped_address(...): map an address from section's VMA to LMA
3034 symbol_overlayed_address(...): Return a "current" address for symbol:
3035 either in VMA or LMA depending on whether
3036 the symbol's section is currently mapped. */
3037
3038 /* Overlay debugging state: */
3039
3040 enum overlay_debugging_state overlay_debugging = ovly_off;
3041 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
3042
3043 /* Function: section_is_overlay (SECTION)
3044 Returns true if SECTION has VMA not equal to LMA, ie.
3045 SECTION is loaded at an address different from where it will "run". */
3046
3047 int
3048 section_is_overlay (struct obj_section *section)
3049 {
3050 if (overlay_debugging && section)
3051 {
3052 bfd *abfd = section->objfile->obfd;
3053 asection *bfd_section = section->the_bfd_section;
3054
3055 if (bfd_section_lma (abfd, bfd_section) != 0
3056 && bfd_section_lma (abfd, bfd_section)
3057 != bfd_section_vma (abfd, bfd_section))
3058 return 1;
3059 }
3060
3061 return 0;
3062 }
3063
3064 /* Function: overlay_invalidate_all (void)
3065 Invalidate the mapped state of all overlay sections (mark it as stale). */
3066
3067 static void
3068 overlay_invalidate_all (void)
3069 {
3070 struct objfile *objfile;
3071 struct obj_section *sect;
3072
3073 ALL_OBJSECTIONS (objfile, sect)
3074 if (section_is_overlay (sect))
3075 sect->ovly_mapped = -1;
3076 }
3077
3078 /* Function: section_is_mapped (SECTION)
3079 Returns true if section is an overlay, and is currently mapped.
3080
3081 Access to the ovly_mapped flag is restricted to this function, so
3082 that we can do automatic update. If the global flag
3083 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3084 overlay_invalidate_all. If the mapped state of the particular
3085 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3086
3087 int
3088 section_is_mapped (struct obj_section *osect)
3089 {
3090 struct gdbarch *gdbarch;
3091
3092 if (osect == 0 || !section_is_overlay (osect))
3093 return 0;
3094
3095 switch (overlay_debugging)
3096 {
3097 default:
3098 case ovly_off:
3099 return 0; /* overlay debugging off */
3100 case ovly_auto: /* overlay debugging automatic */
3101 /* Unles there is a gdbarch_overlay_update function,
3102 there's really nothing useful to do here (can't really go auto). */
3103 gdbarch = get_objfile_arch (osect->objfile);
3104 if (gdbarch_overlay_update_p (gdbarch))
3105 {
3106 if (overlay_cache_invalid)
3107 {
3108 overlay_invalidate_all ();
3109 overlay_cache_invalid = 0;
3110 }
3111 if (osect->ovly_mapped == -1)
3112 gdbarch_overlay_update (gdbarch, osect);
3113 }
3114 /* fall thru to manual case */
3115 case ovly_on: /* overlay debugging manual */
3116 return osect->ovly_mapped == 1;
3117 }
3118 }
3119
3120 /* Function: pc_in_unmapped_range
3121 If PC falls into the lma range of SECTION, return true, else false. */
3122
3123 CORE_ADDR
3124 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3125 {
3126 if (section_is_overlay (section))
3127 {
3128 bfd *abfd = section->objfile->obfd;
3129 asection *bfd_section = section->the_bfd_section;
3130
3131 /* We assume the LMA is relocated by the same offset as the VMA. */
3132 bfd_vma size = bfd_get_section_size (bfd_section);
3133 CORE_ADDR offset = obj_section_offset (section);
3134
3135 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3136 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3137 return 1;
3138 }
3139
3140 return 0;
3141 }
3142
3143 /* Function: pc_in_mapped_range
3144 If PC falls into the vma range of SECTION, return true, else false. */
3145
3146 CORE_ADDR
3147 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3148 {
3149 if (section_is_overlay (section))
3150 {
3151 if (obj_section_addr (section) <= pc
3152 && pc < obj_section_endaddr (section))
3153 return 1;
3154 }
3155
3156 return 0;
3157 }
3158
3159 /* Return true if the mapped ranges of sections A and B overlap, false
3160 otherwise. */
3161
3162 static int
3163 sections_overlap (struct obj_section *a, struct obj_section *b)
3164 {
3165 CORE_ADDR a_start = obj_section_addr (a);
3166 CORE_ADDR a_end = obj_section_endaddr (a);
3167 CORE_ADDR b_start = obj_section_addr (b);
3168 CORE_ADDR b_end = obj_section_endaddr (b);
3169
3170 return (a_start < b_end && b_start < a_end);
3171 }
3172
3173 /* Function: overlay_unmapped_address (PC, SECTION)
3174 Returns the address corresponding to PC in the unmapped (load) range.
3175 May be the same as PC. */
3176
3177 CORE_ADDR
3178 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3179 {
3180 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3181 {
3182 bfd *abfd = section->objfile->obfd;
3183 asection *bfd_section = section->the_bfd_section;
3184
3185 return pc + bfd_section_lma (abfd, bfd_section)
3186 - bfd_section_vma (abfd, bfd_section);
3187 }
3188
3189 return pc;
3190 }
3191
3192 /* Function: overlay_mapped_address (PC, SECTION)
3193 Returns the address corresponding to PC in the mapped (runtime) range.
3194 May be the same as PC. */
3195
3196 CORE_ADDR
3197 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3198 {
3199 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3200 {
3201 bfd *abfd = section->objfile->obfd;
3202 asection *bfd_section = section->the_bfd_section;
3203
3204 return pc + bfd_section_vma (abfd, bfd_section)
3205 - bfd_section_lma (abfd, bfd_section);
3206 }
3207
3208 return pc;
3209 }
3210
3211 /* Function: symbol_overlayed_address
3212 Return one of two addresses (relative to the VMA or to the LMA),
3213 depending on whether the section is mapped or not. */
3214
3215 CORE_ADDR
3216 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3217 {
3218 if (overlay_debugging)
3219 {
3220 /* If the symbol has no section, just return its regular address. */
3221 if (section == 0)
3222 return address;
3223 /* If the symbol's section is not an overlay, just return its
3224 address. */
3225 if (!section_is_overlay (section))
3226 return address;
3227 /* If the symbol's section is mapped, just return its address. */
3228 if (section_is_mapped (section))
3229 return address;
3230 /*
3231 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3232 * then return its LOADED address rather than its vma address!!
3233 */
3234 return overlay_unmapped_address (address, section);
3235 }
3236 return address;
3237 }
3238
3239 /* Function: find_pc_overlay (PC)
3240 Return the best-match overlay section for PC:
3241 If PC matches a mapped overlay section's VMA, return that section.
3242 Else if PC matches an unmapped section's VMA, return that section.
3243 Else if PC matches an unmapped section's LMA, return that section. */
3244
3245 struct obj_section *
3246 find_pc_overlay (CORE_ADDR pc)
3247 {
3248 struct objfile *objfile;
3249 struct obj_section *osect, *best_match = NULL;
3250
3251 if (overlay_debugging)
3252 {
3253 ALL_OBJSECTIONS (objfile, osect)
3254 if (section_is_overlay (osect))
3255 {
3256 if (pc_in_mapped_range (pc, osect))
3257 {
3258 if (section_is_mapped (osect))
3259 return osect;
3260 else
3261 best_match = osect;
3262 }
3263 else if (pc_in_unmapped_range (pc, osect))
3264 best_match = osect;
3265 }
3266 }
3267 return best_match;
3268 }
3269
3270 /* Function: find_pc_mapped_section (PC)
3271 If PC falls into the VMA address range of an overlay section that is
3272 currently marked as MAPPED, return that section. Else return NULL. */
3273
3274 struct obj_section *
3275 find_pc_mapped_section (CORE_ADDR pc)
3276 {
3277 struct objfile *objfile;
3278 struct obj_section *osect;
3279
3280 if (overlay_debugging)
3281 {
3282 ALL_OBJSECTIONS (objfile, osect)
3283 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3284 return osect;
3285 }
3286
3287 return NULL;
3288 }
3289
3290 /* Function: list_overlays_command
3291 Print a list of mapped sections and their PC ranges. */
3292
3293 static void
3294 list_overlays_command (char *args, int from_tty)
3295 {
3296 int nmapped = 0;
3297 struct objfile *objfile;
3298 struct obj_section *osect;
3299
3300 if (overlay_debugging)
3301 {
3302 ALL_OBJSECTIONS (objfile, osect)
3303 if (section_is_mapped (osect))
3304 {
3305 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3306 const char *name;
3307 bfd_vma lma, vma;
3308 int size;
3309
3310 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3311 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3312 size = bfd_get_section_size (osect->the_bfd_section);
3313 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3314
3315 printf_filtered ("Section %s, loaded at ", name);
3316 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3317 puts_filtered (" - ");
3318 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3319 printf_filtered (", mapped at ");
3320 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3321 puts_filtered (" - ");
3322 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3323 puts_filtered ("\n");
3324
3325 nmapped++;
3326 }
3327 }
3328 if (nmapped == 0)
3329 printf_filtered (_("No sections are mapped.\n"));
3330 }
3331
3332 /* Function: map_overlay_command
3333 Mark the named section as mapped (ie. residing at its VMA address). */
3334
3335 static void
3336 map_overlay_command (char *args, int from_tty)
3337 {
3338 struct objfile *objfile, *objfile2;
3339 struct obj_section *sec, *sec2;
3340
3341 if (!overlay_debugging)
3342 error (_("Overlay debugging not enabled. Use "
3343 "either the 'overlay auto' or\n"
3344 "the 'overlay manual' command."));
3345
3346 if (args == 0 || *args == 0)
3347 error (_("Argument required: name of an overlay section"));
3348
3349 /* First, find a section matching the user supplied argument. */
3350 ALL_OBJSECTIONS (objfile, sec)
3351 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3352 {
3353 /* Now, check to see if the section is an overlay. */
3354 if (!section_is_overlay (sec))
3355 continue; /* not an overlay section */
3356
3357 /* Mark the overlay as "mapped". */
3358 sec->ovly_mapped = 1;
3359
3360 /* Next, make a pass and unmap any sections that are
3361 overlapped by this new section: */
3362 ALL_OBJSECTIONS (objfile2, sec2)
3363 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3364 {
3365 if (info_verbose)
3366 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3367 bfd_section_name (objfile->obfd,
3368 sec2->the_bfd_section));
3369 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3370 }
3371 return;
3372 }
3373 error (_("No overlay section called %s"), args);
3374 }
3375
3376 /* Function: unmap_overlay_command
3377 Mark the overlay section as unmapped
3378 (ie. resident in its LMA address range, rather than the VMA range). */
3379
3380 static void
3381 unmap_overlay_command (char *args, int from_tty)
3382 {
3383 struct objfile *objfile;
3384 struct obj_section *sec = NULL;
3385
3386 if (!overlay_debugging)
3387 error (_("Overlay debugging not enabled. "
3388 "Use either the 'overlay auto' or\n"
3389 "the 'overlay manual' command."));
3390
3391 if (args == 0 || *args == 0)
3392 error (_("Argument required: name of an overlay section"));
3393
3394 /* First, find a section matching the user supplied argument. */
3395 ALL_OBJSECTIONS (objfile, sec)
3396 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3397 {
3398 if (!sec->ovly_mapped)
3399 error (_("Section %s is not mapped"), args);
3400 sec->ovly_mapped = 0;
3401 return;
3402 }
3403 error (_("No overlay section called %s"), args);
3404 }
3405
3406 /* Function: overlay_auto_command
3407 A utility command to turn on overlay debugging.
3408 Possibly this should be done via a set/show command. */
3409
3410 static void
3411 overlay_auto_command (char *args, int from_tty)
3412 {
3413 overlay_debugging = ovly_auto;
3414 enable_overlay_breakpoints ();
3415 if (info_verbose)
3416 printf_unfiltered (_("Automatic overlay debugging enabled."));
3417 }
3418
3419 /* Function: overlay_manual_command
3420 A utility command to turn on overlay debugging.
3421 Possibly this should be done via a set/show command. */
3422
3423 static void
3424 overlay_manual_command (char *args, int from_tty)
3425 {
3426 overlay_debugging = ovly_on;
3427 disable_overlay_breakpoints ();
3428 if (info_verbose)
3429 printf_unfiltered (_("Overlay debugging enabled."));
3430 }
3431
3432 /* Function: overlay_off_command
3433 A utility command to turn on overlay debugging.
3434 Possibly this should be done via a set/show command. */
3435
3436 static void
3437 overlay_off_command (char *args, int from_tty)
3438 {
3439 overlay_debugging = ovly_off;
3440 disable_overlay_breakpoints ();
3441 if (info_verbose)
3442 printf_unfiltered (_("Overlay debugging disabled."));
3443 }
3444
3445 static void
3446 overlay_load_command (char *args, int from_tty)
3447 {
3448 struct gdbarch *gdbarch = get_current_arch ();
3449
3450 if (gdbarch_overlay_update_p (gdbarch))
3451 gdbarch_overlay_update (gdbarch, NULL);
3452 else
3453 error (_("This target does not know how to read its overlay state."));
3454 }
3455
3456 /* Function: overlay_command
3457 A place-holder for a mis-typed command. */
3458
3459 /* Command list chain containing all defined "overlay" subcommands. */
3460 static struct cmd_list_element *overlaylist;
3461
3462 static void
3463 overlay_command (char *args, int from_tty)
3464 {
3465 printf_unfiltered
3466 ("\"overlay\" must be followed by the name of an overlay command.\n");
3467 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3468 }
3469
3470 /* Target Overlays for the "Simplest" overlay manager:
3471
3472 This is GDB's default target overlay layer. It works with the
3473 minimal overlay manager supplied as an example by Cygnus. The
3474 entry point is via a function pointer "gdbarch_overlay_update",
3475 so targets that use a different runtime overlay manager can
3476 substitute their own overlay_update function and take over the
3477 function pointer.
3478
3479 The overlay_update function pokes around in the target's data structures
3480 to see what overlays are mapped, and updates GDB's overlay mapping with
3481 this information.
3482
3483 In this simple implementation, the target data structures are as follows:
3484 unsigned _novlys; /# number of overlay sections #/
3485 unsigned _ovly_table[_novlys][4] = {
3486 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3487 {..., ..., ..., ...},
3488 }
3489 unsigned _novly_regions; /# number of overlay regions #/
3490 unsigned _ovly_region_table[_novly_regions][3] = {
3491 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3492 {..., ..., ...},
3493 }
3494 These functions will attempt to update GDB's mappedness state in the
3495 symbol section table, based on the target's mappedness state.
3496
3497 To do this, we keep a cached copy of the target's _ovly_table, and
3498 attempt to detect when the cached copy is invalidated. The main
3499 entry point is "simple_overlay_update(SECT), which looks up SECT in
3500 the cached table and re-reads only the entry for that section from
3501 the target (whenever possible). */
3502
3503 /* Cached, dynamically allocated copies of the target data structures: */
3504 static unsigned (*cache_ovly_table)[4] = 0;
3505 static unsigned cache_novlys = 0;
3506 static CORE_ADDR cache_ovly_table_base = 0;
3507 enum ovly_index
3508 {
3509 VMA, OSIZE, LMA, MAPPED
3510 };
3511
3512 /* Throw away the cached copy of _ovly_table. */
3513
3514 static void
3515 simple_free_overlay_table (void)
3516 {
3517 if (cache_ovly_table)
3518 xfree (cache_ovly_table);
3519 cache_novlys = 0;
3520 cache_ovly_table = NULL;
3521 cache_ovly_table_base = 0;
3522 }
3523
3524 /* Read an array of ints of size SIZE from the target into a local buffer.
3525 Convert to host order. int LEN is number of ints. */
3526
3527 static void
3528 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3529 int len, int size, enum bfd_endian byte_order)
3530 {
3531 /* FIXME (alloca): Not safe if array is very large. */
3532 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3533 int i;
3534
3535 read_memory (memaddr, buf, len * size);
3536 for (i = 0; i < len; i++)
3537 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3538 }
3539
3540 /* Find and grab a copy of the target _ovly_table
3541 (and _novlys, which is needed for the table's size). */
3542
3543 static int
3544 simple_read_overlay_table (void)
3545 {
3546 struct bound_minimal_symbol novlys_msym;
3547 struct bound_minimal_symbol ovly_table_msym;
3548 struct gdbarch *gdbarch;
3549 int word_size;
3550 enum bfd_endian byte_order;
3551
3552 simple_free_overlay_table ();
3553 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3554 if (! novlys_msym.minsym)
3555 {
3556 error (_("Error reading inferior's overlay table: "
3557 "couldn't find `_novlys' variable\n"
3558 "in inferior. Use `overlay manual' mode."));
3559 return 0;
3560 }
3561
3562 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3563 if (! ovly_table_msym.minsym)
3564 {
3565 error (_("Error reading inferior's overlay table: couldn't find "
3566 "`_ovly_table' array\n"
3567 "in inferior. Use `overlay manual' mode."));
3568 return 0;
3569 }
3570
3571 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3572 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3573 byte_order = gdbarch_byte_order (gdbarch);
3574
3575 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3576 4, byte_order);
3577 cache_ovly_table
3578 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3579 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3580 read_target_long_array (cache_ovly_table_base,
3581 (unsigned int *) cache_ovly_table,
3582 cache_novlys * 4, word_size, byte_order);
3583
3584 return 1; /* SUCCESS */
3585 }
3586
3587 /* Function: simple_overlay_update_1
3588 A helper function for simple_overlay_update. Assuming a cached copy
3589 of _ovly_table exists, look through it to find an entry whose vma,
3590 lma and size match those of OSECT. Re-read the entry and make sure
3591 it still matches OSECT (else the table may no longer be valid).
3592 Set OSECT's mapped state to match the entry. Return: 1 for
3593 success, 0 for failure. */
3594
3595 static int
3596 simple_overlay_update_1 (struct obj_section *osect)
3597 {
3598 int i;
3599 bfd *obfd = osect->objfile->obfd;
3600 asection *bsect = osect->the_bfd_section;
3601 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3602 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3603 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3604
3605 for (i = 0; i < cache_novlys; i++)
3606 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3607 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3608 {
3609 read_target_long_array (cache_ovly_table_base + i * word_size,
3610 (unsigned int *) cache_ovly_table[i],
3611 4, word_size, byte_order);
3612 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3613 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3614 {
3615 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3616 return 1;
3617 }
3618 else /* Warning! Warning! Target's ovly table has changed! */
3619 return 0;
3620 }
3621 return 0;
3622 }
3623
3624 /* Function: simple_overlay_update
3625 If OSECT is NULL, then update all sections' mapped state
3626 (after re-reading the entire target _ovly_table).
3627 If OSECT is non-NULL, then try to find a matching entry in the
3628 cached ovly_table and update only OSECT's mapped state.
3629 If a cached entry can't be found or the cache isn't valid, then
3630 re-read the entire cache, and go ahead and update all sections. */
3631
3632 void
3633 simple_overlay_update (struct obj_section *osect)
3634 {
3635 struct objfile *objfile;
3636
3637 /* Were we given an osect to look up? NULL means do all of them. */
3638 if (osect)
3639 /* Have we got a cached copy of the target's overlay table? */
3640 if (cache_ovly_table != NULL)
3641 {
3642 /* Does its cached location match what's currently in the
3643 symtab? */
3644 struct bound_minimal_symbol minsym
3645 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3646
3647 if (minsym.minsym == NULL)
3648 error (_("Error reading inferior's overlay table: couldn't "
3649 "find `_ovly_table' array\n"
3650 "in inferior. Use `overlay manual' mode."));
3651
3652 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3653 /* Then go ahead and try to look up this single section in
3654 the cache. */
3655 if (simple_overlay_update_1 (osect))
3656 /* Found it! We're done. */
3657 return;
3658 }
3659
3660 /* Cached table no good: need to read the entire table anew.
3661 Or else we want all the sections, in which case it's actually
3662 more efficient to read the whole table in one block anyway. */
3663
3664 if (! simple_read_overlay_table ())
3665 return;
3666
3667 /* Now may as well update all sections, even if only one was requested. */
3668 ALL_OBJSECTIONS (objfile, osect)
3669 if (section_is_overlay (osect))
3670 {
3671 int i;
3672 bfd *obfd = osect->objfile->obfd;
3673 asection *bsect = osect->the_bfd_section;
3674
3675 for (i = 0; i < cache_novlys; i++)
3676 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3677 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3678 { /* obj_section matches i'th entry in ovly_table. */
3679 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3680 break; /* finished with inner for loop: break out. */
3681 }
3682 }
3683 }
3684
3685 /* Set the output sections and output offsets for section SECTP in
3686 ABFD. The relocation code in BFD will read these offsets, so we
3687 need to be sure they're initialized. We map each section to itself,
3688 with no offset; this means that SECTP->vma will be honored. */
3689
3690 static void
3691 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3692 {
3693 sectp->output_section = sectp;
3694 sectp->output_offset = 0;
3695 }
3696
3697 /* Default implementation for sym_relocate. */
3698
3699 bfd_byte *
3700 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3701 bfd_byte *buf)
3702 {
3703 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3704 DWO file. */
3705 bfd *abfd = sectp->owner;
3706
3707 /* We're only interested in sections with relocation
3708 information. */
3709 if ((sectp->flags & SEC_RELOC) == 0)
3710 return NULL;
3711
3712 /* We will handle section offsets properly elsewhere, so relocate as if
3713 all sections begin at 0. */
3714 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3715
3716 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3717 }
3718
3719 /* Relocate the contents of a debug section SECTP in ABFD. The
3720 contents are stored in BUF if it is non-NULL, or returned in a
3721 malloc'd buffer otherwise.
3722
3723 For some platforms and debug info formats, shared libraries contain
3724 relocations against the debug sections (particularly for DWARF-2;
3725 one affected platform is PowerPC GNU/Linux, although it depends on
3726 the version of the linker in use). Also, ELF object files naturally
3727 have unresolved relocations for their debug sections. We need to apply
3728 the relocations in order to get the locations of symbols correct.
3729 Another example that may require relocation processing, is the
3730 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3731 debug section. */
3732
3733 bfd_byte *
3734 symfile_relocate_debug_section (struct objfile *objfile,
3735 asection *sectp, bfd_byte *buf)
3736 {
3737 gdb_assert (objfile->sf->sym_relocate);
3738
3739 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3740 }
3741
3742 struct symfile_segment_data *
3743 get_symfile_segment_data (bfd *abfd)
3744 {
3745 const struct sym_fns *sf = find_sym_fns (abfd);
3746
3747 if (sf == NULL)
3748 return NULL;
3749
3750 return sf->sym_segments (abfd);
3751 }
3752
3753 void
3754 free_symfile_segment_data (struct symfile_segment_data *data)
3755 {
3756 xfree (data->segment_bases);
3757 xfree (data->segment_sizes);
3758 xfree (data->segment_info);
3759 xfree (data);
3760 }
3761
3762 /* Given:
3763 - DATA, containing segment addresses from the object file ABFD, and
3764 the mapping from ABFD's sections onto the segments that own them,
3765 and
3766 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3767 segment addresses reported by the target,
3768 store the appropriate offsets for each section in OFFSETS.
3769
3770 If there are fewer entries in SEGMENT_BASES than there are segments
3771 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3772
3773 If there are more entries, then ignore the extra. The target may
3774 not be able to distinguish between an empty data segment and a
3775 missing data segment; a missing text segment is less plausible. */
3776
3777 int
3778 symfile_map_offsets_to_segments (bfd *abfd,
3779 const struct symfile_segment_data *data,
3780 struct section_offsets *offsets,
3781 int num_segment_bases,
3782 const CORE_ADDR *segment_bases)
3783 {
3784 int i;
3785 asection *sect;
3786
3787 /* It doesn't make sense to call this function unless you have some
3788 segment base addresses. */
3789 gdb_assert (num_segment_bases > 0);
3790
3791 /* If we do not have segment mappings for the object file, we
3792 can not relocate it by segments. */
3793 gdb_assert (data != NULL);
3794 gdb_assert (data->num_segments > 0);
3795
3796 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3797 {
3798 int which = data->segment_info[i];
3799
3800 gdb_assert (0 <= which && which <= data->num_segments);
3801
3802 /* Don't bother computing offsets for sections that aren't
3803 loaded as part of any segment. */
3804 if (! which)
3805 continue;
3806
3807 /* Use the last SEGMENT_BASES entry as the address of any extra
3808 segments mentioned in DATA->segment_info. */
3809 if (which > num_segment_bases)
3810 which = num_segment_bases;
3811
3812 offsets->offsets[i] = (segment_bases[which - 1]
3813 - data->segment_bases[which - 1]);
3814 }
3815
3816 return 1;
3817 }
3818
3819 static void
3820 symfile_find_segment_sections (struct objfile *objfile)
3821 {
3822 bfd *abfd = objfile->obfd;
3823 int i;
3824 asection *sect;
3825 struct symfile_segment_data *data;
3826
3827 data = get_symfile_segment_data (objfile->obfd);
3828 if (data == NULL)
3829 return;
3830
3831 if (data->num_segments != 1 && data->num_segments != 2)
3832 {
3833 free_symfile_segment_data (data);
3834 return;
3835 }
3836
3837 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3838 {
3839 int which = data->segment_info[i];
3840
3841 if (which == 1)
3842 {
3843 if (objfile->sect_index_text == -1)
3844 objfile->sect_index_text = sect->index;
3845
3846 if (objfile->sect_index_rodata == -1)
3847 objfile->sect_index_rodata = sect->index;
3848 }
3849 else if (which == 2)
3850 {
3851 if (objfile->sect_index_data == -1)
3852 objfile->sect_index_data = sect->index;
3853
3854 if (objfile->sect_index_bss == -1)
3855 objfile->sect_index_bss = sect->index;
3856 }
3857 }
3858
3859 free_symfile_segment_data (data);
3860 }
3861
3862 /* Listen for free_objfile events. */
3863
3864 static void
3865 symfile_free_objfile (struct objfile *objfile)
3866 {
3867 /* Remove the target sections owned by this objfile. */
3868 if (objfile != NULL)
3869 remove_target_sections ((void *) objfile);
3870 }
3871
3872 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3873 Expand all symtabs that match the specified criteria.
3874 See quick_symbol_functions.expand_symtabs_matching for details. */
3875
3876 void
3877 expand_symtabs_matching (expand_symtabs_file_matcher_ftype *file_matcher,
3878 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3879 expand_symtabs_exp_notify_ftype *expansion_notify,
3880 enum search_domain kind,
3881 void *data)
3882 {
3883 struct objfile *objfile;
3884
3885 ALL_OBJFILES (objfile)
3886 {
3887 if (objfile->sf)
3888 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3889 symbol_matcher,
3890 expansion_notify, kind,
3891 data);
3892 }
3893 }
3894
3895 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3896 Map function FUN over every file.
3897 See quick_symbol_functions.map_symbol_filenames for details. */
3898
3899 void
3900 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3901 int need_fullname)
3902 {
3903 struct objfile *objfile;
3904
3905 ALL_OBJFILES (objfile)
3906 {
3907 if (objfile->sf)
3908 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3909 need_fullname);
3910 }
3911 }
3912
3913 void
3914 _initialize_symfile (void)
3915 {
3916 struct cmd_list_element *c;
3917
3918 observer_attach_free_objfile (symfile_free_objfile);
3919
3920 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3921 Load symbol table from executable file FILE.\n\
3922 The `file' command can also load symbol tables, as well as setting the file\n\
3923 to execute."), &cmdlist);
3924 set_cmd_completer (c, filename_completer);
3925
3926 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3927 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3928 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3929 ...]\nADDR is the starting address of the file's text.\n\
3930 The optional arguments are section-name section-address pairs and\n\
3931 should be specified if the data and bss segments are not contiguous\n\
3932 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3933 &cmdlist);
3934 set_cmd_completer (c, filename_completer);
3935
3936 c = add_cmd ("remove-symbol-file", class_files,
3937 remove_symbol_file_command, _("\
3938 Remove a symbol file added via the add-symbol-file command.\n\
3939 Usage: remove-symbol-file FILENAME\n\
3940 remove-symbol-file -a ADDRESS\n\
3941 The file to remove can be identified by its filename or by an address\n\
3942 that lies within the boundaries of this symbol file in memory."),
3943 &cmdlist);
3944
3945 c = add_cmd ("load", class_files, load_command, _("\
3946 Dynamically load FILE into the running program, and record its symbols\n\
3947 for access from GDB.\n\
3948 A load OFFSET may also be given."), &cmdlist);
3949 set_cmd_completer (c, filename_completer);
3950
3951 add_prefix_cmd ("overlay", class_support, overlay_command,
3952 _("Commands for debugging overlays."), &overlaylist,
3953 "overlay ", 0, &cmdlist);
3954
3955 add_com_alias ("ovly", "overlay", class_alias, 1);
3956 add_com_alias ("ov", "overlay", class_alias, 1);
3957
3958 add_cmd ("map-overlay", class_support, map_overlay_command,
3959 _("Assert that an overlay section is mapped."), &overlaylist);
3960
3961 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3962 _("Assert that an overlay section is unmapped."), &overlaylist);
3963
3964 add_cmd ("list-overlays", class_support, list_overlays_command,
3965 _("List mappings of overlay sections."), &overlaylist);
3966
3967 add_cmd ("manual", class_support, overlay_manual_command,
3968 _("Enable overlay debugging."), &overlaylist);
3969 add_cmd ("off", class_support, overlay_off_command,
3970 _("Disable overlay debugging."), &overlaylist);
3971 add_cmd ("auto", class_support, overlay_auto_command,
3972 _("Enable automatic overlay debugging."), &overlaylist);
3973 add_cmd ("load-target", class_support, overlay_load_command,
3974 _("Read the overlay mapping state from the target."), &overlaylist);
3975
3976 /* Filename extension to source language lookup table: */
3977 add_setshow_string_noescape_cmd ("extension-language", class_files,
3978 &ext_args, _("\
3979 Set mapping between filename extension and source language."), _("\
3980 Show mapping between filename extension and source language."), _("\
3981 Usage: set extension-language .foo bar"),
3982 set_ext_lang_command,
3983 show_ext_args,
3984 &setlist, &showlist);
3985
3986 add_info ("extensions", info_ext_lang_command,
3987 _("All filename extensions associated with a source language."));
3988
3989 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3990 &debug_file_directory, _("\
3991 Set the directories where separate debug symbols are searched for."), _("\
3992 Show the directories where separate debug symbols are searched for."), _("\
3993 Separate debug symbols are first searched for in the same\n\
3994 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3995 and lastly at the path of the directory of the binary with\n\
3996 each global debug-file-directory component prepended."),
3997 NULL,
3998 show_debug_file_directory,
3999 &setlist, &showlist);
4000
4001 add_setshow_enum_cmd ("symbol-loading", no_class,
4002 print_symbol_loading_enums, &print_symbol_loading,
4003 _("\
4004 Set printing of symbol loading messages."), _("\
4005 Show printing of symbol loading messages."), _("\
4006 off == turn all messages off\n\
4007 brief == print messages for the executable,\n\
4008 and brief messages for shared libraries\n\
4009 full == print messages for the executable,\n\
4010 and messages for each shared library."),
4011 NULL,
4012 NULL,
4013 &setprintlist, &showprintlist);
4014 }
This page took 0.111042 seconds and 5 git commands to generate.