Remove two cleanups using std::string
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observer.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "common/byte-vector.h"
60 #include "selftest.h"
61
62 #include <sys/types.h>
63 #include <fcntl.h>
64 #include <sys/stat.h>
65 #include <ctype.h>
66 #include <chrono>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
72 void (*deprecated_show_load_progress) (const char *section,
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
76 unsigned long total_size);
77 void (*deprecated_pre_add_symbol_hook) (const char *);
78 void (*deprecated_post_add_symbol_hook) (void);
79
80 static void clear_symtab_users_cleanup (void *ignore);
81
82 /* Global variables owned by this file. */
83 int readnow_symbol_files; /* Read full symbols immediately. */
84 int readnever_symbol_files; /* Never read full symbols. */
85
86 /* Functions this file defines. */
87
88 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
89 objfile_flags flags);
90
91 static const struct sym_fns *find_sym_fns (bfd *);
92
93 static void overlay_invalidate_all (void);
94
95 static void simple_free_overlay_table (void);
96
97 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
98 enum bfd_endian);
99
100 static int simple_read_overlay_table (void);
101
102 static int simple_overlay_update_1 (struct obj_section *);
103
104 static void symfile_find_segment_sections (struct objfile *objfile);
105
106 /* List of all available sym_fns. On gdb startup, each object file reader
107 calls add_symtab_fns() to register information on each format it is
108 prepared to read. */
109
110 struct registered_sym_fns
111 {
112 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
113 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
114 {}
115
116 /* BFD flavour that we handle. */
117 enum bfd_flavour sym_flavour;
118
119 /* The "vtable" of symbol functions. */
120 const struct sym_fns *sym_fns;
121 };
122
123 static std::vector<registered_sym_fns> symtab_fns;
124
125 /* Values for "set print symbol-loading". */
126
127 const char print_symbol_loading_off[] = "off";
128 const char print_symbol_loading_brief[] = "brief";
129 const char print_symbol_loading_full[] = "full";
130 static const char *print_symbol_loading_enums[] =
131 {
132 print_symbol_loading_off,
133 print_symbol_loading_brief,
134 print_symbol_loading_full,
135 NULL
136 };
137 static const char *print_symbol_loading = print_symbol_loading_full;
138
139 /* If non-zero, shared library symbols will be added automatically
140 when the inferior is created, new libraries are loaded, or when
141 attaching to the inferior. This is almost always what users will
142 want to have happen; but for very large programs, the startup time
143 will be excessive, and so if this is a problem, the user can clear
144 this flag and then add the shared library symbols as needed. Note
145 that there is a potential for confusion, since if the shared
146 library symbols are not loaded, commands like "info fun" will *not*
147 report all the functions that are actually present. */
148
149 int auto_solib_add = 1;
150 \f
151
152 /* Return non-zero if symbol-loading messages should be printed.
153 FROM_TTY is the standard from_tty argument to gdb commands.
154 If EXEC is non-zero the messages are for the executable.
155 Otherwise, messages are for shared libraries.
156 If FULL is non-zero then the caller is printing a detailed message.
157 E.g., the message includes the shared library name.
158 Otherwise, the caller is printing a brief "summary" message. */
159
160 int
161 print_symbol_loading_p (int from_tty, int exec, int full)
162 {
163 if (!from_tty && !info_verbose)
164 return 0;
165
166 if (exec)
167 {
168 /* We don't check FULL for executables, there are few such
169 messages, therefore brief == full. */
170 return print_symbol_loading != print_symbol_loading_off;
171 }
172 if (full)
173 return print_symbol_loading == print_symbol_loading_full;
174 return print_symbol_loading == print_symbol_loading_brief;
175 }
176
177 /* True if we are reading a symbol table. */
178
179 int currently_reading_symtab = 0;
180
181 /* Increment currently_reading_symtab and return a cleanup that can be
182 used to decrement it. */
183
184 scoped_restore_tmpl<int>
185 increment_reading_symtab (void)
186 {
187 gdb_assert (currently_reading_symtab >= 0);
188 return make_scoped_restore (&currently_reading_symtab,
189 currently_reading_symtab + 1);
190 }
191
192 /* Remember the lowest-addressed loadable section we've seen.
193 This function is called via bfd_map_over_sections.
194
195 In case of equal vmas, the section with the largest size becomes the
196 lowest-addressed loadable section.
197
198 If the vmas and sizes are equal, the last section is considered the
199 lowest-addressed loadable section. */
200
201 void
202 find_lowest_section (bfd *abfd, asection *sect, void *obj)
203 {
204 asection **lowest = (asection **) obj;
205
206 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
207 return;
208 if (!*lowest)
209 *lowest = sect; /* First loadable section */
210 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
211 *lowest = sect; /* A lower loadable section */
212 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
213 && (bfd_section_size (abfd, (*lowest))
214 <= bfd_section_size (abfd, sect)))
215 *lowest = sect;
216 }
217
218 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
219 new object's 'num_sections' field is set to 0; it must be updated
220 by the caller. */
221
222 struct section_addr_info *
223 alloc_section_addr_info (size_t num_sections)
224 {
225 struct section_addr_info *sap;
226 size_t size;
227
228 size = (sizeof (struct section_addr_info)
229 + sizeof (struct other_sections) * (num_sections - 1));
230 sap = (struct section_addr_info *) xmalloc (size);
231 memset (sap, 0, size);
232
233 return sap;
234 }
235
236 /* Build (allocate and populate) a section_addr_info struct from
237 an existing section table. */
238
239 extern struct section_addr_info *
240 build_section_addr_info_from_section_table (const struct target_section *start,
241 const struct target_section *end)
242 {
243 struct section_addr_info *sap;
244 const struct target_section *stp;
245 int oidx;
246
247 sap = alloc_section_addr_info (end - start);
248
249 for (stp = start, oidx = 0; stp != end; stp++)
250 {
251 struct bfd_section *asect = stp->the_bfd_section;
252 bfd *abfd = asect->owner;
253
254 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
255 && oidx < end - start)
256 {
257 sap->other[oidx].addr = stp->addr;
258 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
259 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
260 oidx++;
261 }
262 }
263
264 sap->num_sections = oidx;
265
266 return sap;
267 }
268
269 /* Create a section_addr_info from section offsets in ABFD. */
270
271 static struct section_addr_info *
272 build_section_addr_info_from_bfd (bfd *abfd)
273 {
274 struct section_addr_info *sap;
275 int i;
276 struct bfd_section *sec;
277
278 sap = alloc_section_addr_info (bfd_count_sections (abfd));
279 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
280 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
281 {
282 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
283 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
284 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
285 i++;
286 }
287
288 sap->num_sections = i;
289
290 return sap;
291 }
292
293 /* Create a section_addr_info from section offsets in OBJFILE. */
294
295 struct section_addr_info *
296 build_section_addr_info_from_objfile (const struct objfile *objfile)
297 {
298 struct section_addr_info *sap;
299 int i;
300
301 /* Before reread_symbols gets rewritten it is not safe to call:
302 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
303 */
304 sap = build_section_addr_info_from_bfd (objfile->obfd);
305 for (i = 0; i < sap->num_sections; i++)
306 {
307 int sectindex = sap->other[i].sectindex;
308
309 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
310 }
311 return sap;
312 }
313
314 /* Free all memory allocated by build_section_addr_info_from_section_table. */
315
316 extern void
317 free_section_addr_info (struct section_addr_info *sap)
318 {
319 int idx;
320
321 for (idx = 0; idx < sap->num_sections; idx++)
322 xfree (sap->other[idx].name);
323 xfree (sap);
324 }
325
326 /* Initialize OBJFILE's sect_index_* members. */
327
328 static void
329 init_objfile_sect_indices (struct objfile *objfile)
330 {
331 asection *sect;
332 int i;
333
334 sect = bfd_get_section_by_name (objfile->obfd, ".text");
335 if (sect)
336 objfile->sect_index_text = sect->index;
337
338 sect = bfd_get_section_by_name (objfile->obfd, ".data");
339 if (sect)
340 objfile->sect_index_data = sect->index;
341
342 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
343 if (sect)
344 objfile->sect_index_bss = sect->index;
345
346 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
347 if (sect)
348 objfile->sect_index_rodata = sect->index;
349
350 /* This is where things get really weird... We MUST have valid
351 indices for the various sect_index_* members or gdb will abort.
352 So if for example, there is no ".text" section, we have to
353 accomodate that. First, check for a file with the standard
354 one or two segments. */
355
356 symfile_find_segment_sections (objfile);
357
358 /* Except when explicitly adding symbol files at some address,
359 section_offsets contains nothing but zeros, so it doesn't matter
360 which slot in section_offsets the individual sect_index_* members
361 index into. So if they are all zero, it is safe to just point
362 all the currently uninitialized indices to the first slot. But
363 beware: if this is the main executable, it may be relocated
364 later, e.g. by the remote qOffsets packet, and then this will
365 be wrong! That's why we try segments first. */
366
367 for (i = 0; i < objfile->num_sections; i++)
368 {
369 if (ANOFFSET (objfile->section_offsets, i) != 0)
370 {
371 break;
372 }
373 }
374 if (i == objfile->num_sections)
375 {
376 if (objfile->sect_index_text == -1)
377 objfile->sect_index_text = 0;
378 if (objfile->sect_index_data == -1)
379 objfile->sect_index_data = 0;
380 if (objfile->sect_index_bss == -1)
381 objfile->sect_index_bss = 0;
382 if (objfile->sect_index_rodata == -1)
383 objfile->sect_index_rodata = 0;
384 }
385 }
386
387 /* The arguments to place_section. */
388
389 struct place_section_arg
390 {
391 struct section_offsets *offsets;
392 CORE_ADDR lowest;
393 };
394
395 /* Find a unique offset to use for loadable section SECT if
396 the user did not provide an offset. */
397
398 static void
399 place_section (bfd *abfd, asection *sect, void *obj)
400 {
401 struct place_section_arg *arg = (struct place_section_arg *) obj;
402 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
403 int done;
404 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
405
406 /* We are only interested in allocated sections. */
407 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
408 return;
409
410 /* If the user specified an offset, honor it. */
411 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
412 return;
413
414 /* Otherwise, let's try to find a place for the section. */
415 start_addr = (arg->lowest + align - 1) & -align;
416
417 do {
418 asection *cur_sec;
419
420 done = 1;
421
422 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
423 {
424 int indx = cur_sec->index;
425
426 /* We don't need to compare against ourself. */
427 if (cur_sec == sect)
428 continue;
429
430 /* We can only conflict with allocated sections. */
431 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
432 continue;
433
434 /* If the section offset is 0, either the section has not been placed
435 yet, or it was the lowest section placed (in which case LOWEST
436 will be past its end). */
437 if (offsets[indx] == 0)
438 continue;
439
440 /* If this section would overlap us, then we must move up. */
441 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
442 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
443 {
444 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
445 start_addr = (start_addr + align - 1) & -align;
446 done = 0;
447 break;
448 }
449
450 /* Otherwise, we appear to be OK. So far. */
451 }
452 }
453 while (!done);
454
455 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
456 arg->lowest = start_addr + bfd_get_section_size (sect);
457 }
458
459 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
460 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
461 entries. */
462
463 void
464 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
465 int num_sections,
466 const struct section_addr_info *addrs)
467 {
468 int i;
469
470 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
471
472 /* Now calculate offsets for section that were specified by the caller. */
473 for (i = 0; i < addrs->num_sections; i++)
474 {
475 const struct other_sections *osp;
476
477 osp = &addrs->other[i];
478 if (osp->sectindex == -1)
479 continue;
480
481 /* Record all sections in offsets. */
482 /* The section_offsets in the objfile are here filled in using
483 the BFD index. */
484 section_offsets->offsets[osp->sectindex] = osp->addr;
485 }
486 }
487
488 /* Transform section name S for a name comparison. prelink can split section
489 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
490 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
491 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
492 (`.sbss') section has invalid (increased) virtual address. */
493
494 static const char *
495 addr_section_name (const char *s)
496 {
497 if (strcmp (s, ".dynbss") == 0)
498 return ".bss";
499 if (strcmp (s, ".sdynbss") == 0)
500 return ".sbss";
501
502 return s;
503 }
504
505 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
506 their (name, sectindex) pair. sectindex makes the sort by name stable. */
507
508 static int
509 addrs_section_compar (const void *ap, const void *bp)
510 {
511 const struct other_sections *a = *((struct other_sections **) ap);
512 const struct other_sections *b = *((struct other_sections **) bp);
513 int retval;
514
515 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
516 if (retval)
517 return retval;
518
519 return a->sectindex - b->sectindex;
520 }
521
522 /* Provide sorted array of pointers to sections of ADDRS. The array is
523 terminated by NULL. Caller is responsible to call xfree for it. */
524
525 static struct other_sections **
526 addrs_section_sort (struct section_addr_info *addrs)
527 {
528 struct other_sections **array;
529 int i;
530
531 /* `+ 1' for the NULL terminator. */
532 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
533 for (i = 0; i < addrs->num_sections; i++)
534 array[i] = &addrs->other[i];
535 array[i] = NULL;
536
537 qsort (array, i, sizeof (*array), addrs_section_compar);
538
539 return array;
540 }
541
542 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
543 also SECTINDEXes specific to ABFD there. This function can be used to
544 rebase ADDRS to start referencing different BFD than before. */
545
546 void
547 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
548 {
549 asection *lower_sect;
550 CORE_ADDR lower_offset;
551 int i;
552 struct cleanup *my_cleanup;
553 struct section_addr_info *abfd_addrs;
554 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
555 struct other_sections **addrs_to_abfd_addrs;
556
557 /* Find lowest loadable section to be used as starting point for
558 continguous sections. */
559 lower_sect = NULL;
560 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
561 if (lower_sect == NULL)
562 {
563 warning (_("no loadable sections found in added symbol-file %s"),
564 bfd_get_filename (abfd));
565 lower_offset = 0;
566 }
567 else
568 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
569
570 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
571 in ABFD. Section names are not unique - there can be multiple sections of
572 the same name. Also the sections of the same name do not have to be
573 adjacent to each other. Some sections may be present only in one of the
574 files. Even sections present in both files do not have to be in the same
575 order.
576
577 Use stable sort by name for the sections in both files. Then linearly
578 scan both lists matching as most of the entries as possible. */
579
580 addrs_sorted = addrs_section_sort (addrs);
581 my_cleanup = make_cleanup (xfree, addrs_sorted);
582
583 abfd_addrs = build_section_addr_info_from_bfd (abfd);
584 make_cleanup_free_section_addr_info (abfd_addrs);
585 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
586 make_cleanup (xfree, abfd_addrs_sorted);
587
588 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
589 ABFD_ADDRS_SORTED. */
590
591 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
592 make_cleanup (xfree, addrs_to_abfd_addrs);
593
594 while (*addrs_sorted)
595 {
596 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
597
598 while (*abfd_addrs_sorted
599 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
600 sect_name) < 0)
601 abfd_addrs_sorted++;
602
603 if (*abfd_addrs_sorted
604 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
605 sect_name) == 0)
606 {
607 int index_in_addrs;
608
609 /* Make the found item directly addressable from ADDRS. */
610 index_in_addrs = *addrs_sorted - addrs->other;
611 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
612 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
613
614 /* Never use the same ABFD entry twice. */
615 abfd_addrs_sorted++;
616 }
617
618 addrs_sorted++;
619 }
620
621 /* Calculate offsets for the loadable sections.
622 FIXME! Sections must be in order of increasing loadable section
623 so that contiguous sections can use the lower-offset!!!
624
625 Adjust offsets if the segments are not contiguous.
626 If the section is contiguous, its offset should be set to
627 the offset of the highest loadable section lower than it
628 (the loadable section directly below it in memory).
629 this_offset = lower_offset = lower_addr - lower_orig_addr */
630
631 for (i = 0; i < addrs->num_sections; i++)
632 {
633 struct other_sections *sect = addrs_to_abfd_addrs[i];
634
635 if (sect)
636 {
637 /* This is the index used by BFD. */
638 addrs->other[i].sectindex = sect->sectindex;
639
640 if (addrs->other[i].addr != 0)
641 {
642 addrs->other[i].addr -= sect->addr;
643 lower_offset = addrs->other[i].addr;
644 }
645 else
646 addrs->other[i].addr = lower_offset;
647 }
648 else
649 {
650 /* addr_section_name transformation is not used for SECT_NAME. */
651 const char *sect_name = addrs->other[i].name;
652
653 /* This section does not exist in ABFD, which is normally
654 unexpected and we want to issue a warning.
655
656 However, the ELF prelinker does create a few sections which are
657 marked in the main executable as loadable (they are loaded in
658 memory from the DYNAMIC segment) and yet are not present in
659 separate debug info files. This is fine, and should not cause
660 a warning. Shared libraries contain just the section
661 ".gnu.liblist" but it is not marked as loadable there. There is
662 no other way to identify them than by their name as the sections
663 created by prelink have no special flags.
664
665 For the sections `.bss' and `.sbss' see addr_section_name. */
666
667 if (!(strcmp (sect_name, ".gnu.liblist") == 0
668 || strcmp (sect_name, ".gnu.conflict") == 0
669 || (strcmp (sect_name, ".bss") == 0
670 && i > 0
671 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
672 && addrs_to_abfd_addrs[i - 1] != NULL)
673 || (strcmp (sect_name, ".sbss") == 0
674 && i > 0
675 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
676 && addrs_to_abfd_addrs[i - 1] != NULL)))
677 warning (_("section %s not found in %s"), sect_name,
678 bfd_get_filename (abfd));
679
680 addrs->other[i].addr = 0;
681 addrs->other[i].sectindex = -1;
682 }
683 }
684
685 do_cleanups (my_cleanup);
686 }
687
688 /* Parse the user's idea of an offset for dynamic linking, into our idea
689 of how to represent it for fast symbol reading. This is the default
690 version of the sym_fns.sym_offsets function for symbol readers that
691 don't need to do anything special. It allocates a section_offsets table
692 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
693
694 void
695 default_symfile_offsets (struct objfile *objfile,
696 const struct section_addr_info *addrs)
697 {
698 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
699 objfile->section_offsets = (struct section_offsets *)
700 obstack_alloc (&objfile->objfile_obstack,
701 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
702 relative_addr_info_to_section_offsets (objfile->section_offsets,
703 objfile->num_sections, addrs);
704
705 /* For relocatable files, all loadable sections will start at zero.
706 The zero is meaningless, so try to pick arbitrary addresses such
707 that no loadable sections overlap. This algorithm is quadratic,
708 but the number of sections in a single object file is generally
709 small. */
710 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
711 {
712 struct place_section_arg arg;
713 bfd *abfd = objfile->obfd;
714 asection *cur_sec;
715
716 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
717 /* We do not expect this to happen; just skip this step if the
718 relocatable file has a section with an assigned VMA. */
719 if (bfd_section_vma (abfd, cur_sec) != 0)
720 break;
721
722 if (cur_sec == NULL)
723 {
724 CORE_ADDR *offsets = objfile->section_offsets->offsets;
725
726 /* Pick non-overlapping offsets for sections the user did not
727 place explicitly. */
728 arg.offsets = objfile->section_offsets;
729 arg.lowest = 0;
730 bfd_map_over_sections (objfile->obfd, place_section, &arg);
731
732 /* Correctly filling in the section offsets is not quite
733 enough. Relocatable files have two properties that
734 (most) shared objects do not:
735
736 - Their debug information will contain relocations. Some
737 shared libraries do also, but many do not, so this can not
738 be assumed.
739
740 - If there are multiple code sections they will be loaded
741 at different relative addresses in memory than they are
742 in the objfile, since all sections in the file will start
743 at address zero.
744
745 Because GDB has very limited ability to map from an
746 address in debug info to the correct code section,
747 it relies on adding SECT_OFF_TEXT to things which might be
748 code. If we clear all the section offsets, and set the
749 section VMAs instead, then symfile_relocate_debug_section
750 will return meaningful debug information pointing at the
751 correct sections.
752
753 GDB has too many different data structures for section
754 addresses - a bfd, objfile, and so_list all have section
755 tables, as does exec_ops. Some of these could probably
756 be eliminated. */
757
758 for (cur_sec = abfd->sections; cur_sec != NULL;
759 cur_sec = cur_sec->next)
760 {
761 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
762 continue;
763
764 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
765 exec_set_section_address (bfd_get_filename (abfd),
766 cur_sec->index,
767 offsets[cur_sec->index]);
768 offsets[cur_sec->index] = 0;
769 }
770 }
771 }
772
773 /* Remember the bfd indexes for the .text, .data, .bss and
774 .rodata sections. */
775 init_objfile_sect_indices (objfile);
776 }
777
778 /* Divide the file into segments, which are individual relocatable units.
779 This is the default version of the sym_fns.sym_segments function for
780 symbol readers that do not have an explicit representation of segments.
781 It assumes that object files do not have segments, and fully linked
782 files have a single segment. */
783
784 struct symfile_segment_data *
785 default_symfile_segments (bfd *abfd)
786 {
787 int num_sections, i;
788 asection *sect;
789 struct symfile_segment_data *data;
790 CORE_ADDR low, high;
791
792 /* Relocatable files contain enough information to position each
793 loadable section independently; they should not be relocated
794 in segments. */
795 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
796 return NULL;
797
798 /* Make sure there is at least one loadable section in the file. */
799 for (sect = abfd->sections; sect != NULL; sect = sect->next)
800 {
801 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
802 continue;
803
804 break;
805 }
806 if (sect == NULL)
807 return NULL;
808
809 low = bfd_get_section_vma (abfd, sect);
810 high = low + bfd_get_section_size (sect);
811
812 data = XCNEW (struct symfile_segment_data);
813 data->num_segments = 1;
814 data->segment_bases = XCNEW (CORE_ADDR);
815 data->segment_sizes = XCNEW (CORE_ADDR);
816
817 num_sections = bfd_count_sections (abfd);
818 data->segment_info = XCNEWVEC (int, num_sections);
819
820 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
821 {
822 CORE_ADDR vma;
823
824 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
825 continue;
826
827 vma = bfd_get_section_vma (abfd, sect);
828 if (vma < low)
829 low = vma;
830 if (vma + bfd_get_section_size (sect) > high)
831 high = vma + bfd_get_section_size (sect);
832
833 data->segment_info[i] = 1;
834 }
835
836 data->segment_bases[0] = low;
837 data->segment_sizes[0] = high - low;
838
839 return data;
840 }
841
842 /* This is a convenience function to call sym_read for OBJFILE and
843 possibly force the partial symbols to be read. */
844
845 static void
846 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
847 {
848 (*objfile->sf->sym_read) (objfile, add_flags);
849 objfile->per_bfd->minsyms_read = true;
850
851 /* find_separate_debug_file_in_section should be called only if there is
852 single binary with no existing separate debug info file. */
853 if (!objfile_has_partial_symbols (objfile)
854 && objfile->separate_debug_objfile == NULL
855 && objfile->separate_debug_objfile_backlink == NULL)
856 {
857 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
858
859 if (abfd != NULL)
860 {
861 /* find_separate_debug_file_in_section uses the same filename for the
862 virtual section-as-bfd like the bfd filename containing the
863 section. Therefore use also non-canonical name form for the same
864 file containing the section. */
865 symbol_file_add_separate (abfd.get (), objfile->original_name,
866 add_flags, objfile);
867 }
868 }
869 if ((add_flags & SYMFILE_NO_READ) == 0)
870 require_partial_symbols (objfile, 0);
871 }
872
873 /* Initialize entry point information for this objfile. */
874
875 static void
876 init_entry_point_info (struct objfile *objfile)
877 {
878 struct entry_info *ei = &objfile->per_bfd->ei;
879
880 if (ei->initialized)
881 return;
882 ei->initialized = 1;
883
884 /* Save startup file's range of PC addresses to help blockframe.c
885 decide where the bottom of the stack is. */
886
887 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
888 {
889 /* Executable file -- record its entry point so we'll recognize
890 the startup file because it contains the entry point. */
891 ei->entry_point = bfd_get_start_address (objfile->obfd);
892 ei->entry_point_p = 1;
893 }
894 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
895 && bfd_get_start_address (objfile->obfd) != 0)
896 {
897 /* Some shared libraries may have entry points set and be
898 runnable. There's no clear way to indicate this, so just check
899 for values other than zero. */
900 ei->entry_point = bfd_get_start_address (objfile->obfd);
901 ei->entry_point_p = 1;
902 }
903 else
904 {
905 /* Examination of non-executable.o files. Short-circuit this stuff. */
906 ei->entry_point_p = 0;
907 }
908
909 if (ei->entry_point_p)
910 {
911 struct obj_section *osect;
912 CORE_ADDR entry_point = ei->entry_point;
913 int found;
914
915 /* Make certain that the address points at real code, and not a
916 function descriptor. */
917 entry_point
918 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
919 entry_point,
920 &current_target);
921
922 /* Remove any ISA markers, so that this matches entries in the
923 symbol table. */
924 ei->entry_point
925 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
926
927 found = 0;
928 ALL_OBJFILE_OSECTIONS (objfile, osect)
929 {
930 struct bfd_section *sect = osect->the_bfd_section;
931
932 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
933 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
934 + bfd_get_section_size (sect)))
935 {
936 ei->the_bfd_section_index
937 = gdb_bfd_section_index (objfile->obfd, sect);
938 found = 1;
939 break;
940 }
941 }
942
943 if (!found)
944 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
945 }
946 }
947
948 /* Process a symbol file, as either the main file or as a dynamically
949 loaded file.
950
951 This function does not set the OBJFILE's entry-point info.
952
953 OBJFILE is where the symbols are to be read from.
954
955 ADDRS is the list of section load addresses. If the user has given
956 an 'add-symbol-file' command, then this is the list of offsets and
957 addresses he or she provided as arguments to the command; or, if
958 we're handling a shared library, these are the actual addresses the
959 sections are loaded at, according to the inferior's dynamic linker
960 (as gleaned by GDB's shared library code). We convert each address
961 into an offset from the section VMA's as it appears in the object
962 file, and then call the file's sym_offsets function to convert this
963 into a format-specific offset table --- a `struct section_offsets'.
964
965 ADD_FLAGS encodes verbosity level, whether this is main symbol or
966 an extra symbol file such as dynamically loaded code, and wether
967 breakpoint reset should be deferred. */
968
969 static void
970 syms_from_objfile_1 (struct objfile *objfile,
971 struct section_addr_info *addrs,
972 symfile_add_flags add_flags)
973 {
974 struct section_addr_info *local_addr = NULL;
975 struct cleanup *old_chain;
976 const int mainline = add_flags & SYMFILE_MAINLINE;
977
978 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
979
980 if (objfile->sf == NULL)
981 {
982 /* No symbols to load, but we still need to make sure
983 that the section_offsets table is allocated. */
984 int num_sections = gdb_bfd_count_sections (objfile->obfd);
985 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
986
987 objfile->num_sections = num_sections;
988 objfile->section_offsets
989 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
990 size);
991 memset (objfile->section_offsets, 0, size);
992 return;
993 }
994
995 /* Make sure that partially constructed symbol tables will be cleaned up
996 if an error occurs during symbol reading. */
997 old_chain = make_cleanup (null_cleanup, NULL);
998 std::unique_ptr<struct objfile> objfile_holder (objfile);
999
1000 /* If ADDRS is NULL, put together a dummy address list.
1001 We now establish the convention that an addr of zero means
1002 no load address was specified. */
1003 if (! addrs)
1004 {
1005 local_addr = alloc_section_addr_info (1);
1006 make_cleanup (xfree, local_addr);
1007 addrs = local_addr;
1008 }
1009
1010 if (mainline)
1011 {
1012 /* We will modify the main symbol table, make sure that all its users
1013 will be cleaned up if an error occurs during symbol reading. */
1014 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1015
1016 /* Since no error yet, throw away the old symbol table. */
1017
1018 if (symfile_objfile != NULL)
1019 {
1020 delete symfile_objfile;
1021 gdb_assert (symfile_objfile == NULL);
1022 }
1023
1024 /* Currently we keep symbols from the add-symbol-file command.
1025 If the user wants to get rid of them, they should do "symbol-file"
1026 without arguments first. Not sure this is the best behavior
1027 (PR 2207). */
1028
1029 (*objfile->sf->sym_new_init) (objfile);
1030 }
1031
1032 /* Convert addr into an offset rather than an absolute address.
1033 We find the lowest address of a loaded segment in the objfile,
1034 and assume that <addr> is where that got loaded.
1035
1036 We no longer warn if the lowest section is not a text segment (as
1037 happens for the PA64 port. */
1038 if (addrs->num_sections > 0)
1039 addr_info_make_relative (addrs, objfile->obfd);
1040
1041 /* Initialize symbol reading routines for this objfile, allow complaints to
1042 appear for this new file, and record how verbose to be, then do the
1043 initial symbol reading for this file. */
1044
1045 (*objfile->sf->sym_init) (objfile);
1046 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1047
1048 (*objfile->sf->sym_offsets) (objfile, addrs);
1049
1050 read_symbols (objfile, add_flags);
1051
1052 /* Discard cleanups as symbol reading was successful. */
1053
1054 objfile_holder.release ();
1055 discard_cleanups (old_chain);
1056 xfree (local_addr);
1057 }
1058
1059 /* Same as syms_from_objfile_1, but also initializes the objfile
1060 entry-point info. */
1061
1062 static void
1063 syms_from_objfile (struct objfile *objfile,
1064 struct section_addr_info *addrs,
1065 symfile_add_flags add_flags)
1066 {
1067 syms_from_objfile_1 (objfile, addrs, add_flags);
1068 init_entry_point_info (objfile);
1069 }
1070
1071 /* Perform required actions after either reading in the initial
1072 symbols for a new objfile, or mapping in the symbols from a reusable
1073 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1074
1075 static void
1076 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1077 {
1078 /* If this is the main symbol file we have to clean up all users of the
1079 old main symbol file. Otherwise it is sufficient to fixup all the
1080 breakpoints that may have been redefined by this symbol file. */
1081 if (add_flags & SYMFILE_MAINLINE)
1082 {
1083 /* OK, make it the "real" symbol file. */
1084 symfile_objfile = objfile;
1085
1086 clear_symtab_users (add_flags);
1087 }
1088 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1089 {
1090 breakpoint_re_set ();
1091 }
1092
1093 /* We're done reading the symbol file; finish off complaints. */
1094 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1095 }
1096
1097 /* Process a symbol file, as either the main file or as a dynamically
1098 loaded file.
1099
1100 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1101 A new reference is acquired by this function.
1102
1103 For NAME description see the objfile constructor.
1104
1105 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1106 extra, such as dynamically loaded code, and what to do with breakpoins.
1107
1108 ADDRS is as described for syms_from_objfile_1, above.
1109 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1110
1111 PARENT is the original objfile if ABFD is a separate debug info file.
1112 Otherwise PARENT is NULL.
1113
1114 Upon success, returns a pointer to the objfile that was added.
1115 Upon failure, jumps back to command level (never returns). */
1116
1117 static struct objfile *
1118 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1119 symfile_add_flags add_flags,
1120 struct section_addr_info *addrs,
1121 objfile_flags flags, struct objfile *parent)
1122 {
1123 struct objfile *objfile;
1124 const int from_tty = add_flags & SYMFILE_VERBOSE;
1125 const int mainline = add_flags & SYMFILE_MAINLINE;
1126 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1127 && (readnow_symbol_files
1128 || (add_flags & SYMFILE_NO_READ) == 0));
1129
1130 if (readnow_symbol_files)
1131 {
1132 flags |= OBJF_READNOW;
1133 add_flags &= ~SYMFILE_NO_READ;
1134 }
1135 else if (readnever_symbol_files
1136 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1137 {
1138 flags |= OBJF_READNEVER;
1139 add_flags |= SYMFILE_NO_READ;
1140 }
1141
1142 /* Give user a chance to burp if we'd be
1143 interactively wiping out any existing symbols. */
1144
1145 if ((have_full_symbols () || have_partial_symbols ())
1146 && mainline
1147 && from_tty
1148 && !query (_("Load new symbol table from \"%s\"? "), name))
1149 error (_("Not confirmed."));
1150
1151 if (mainline)
1152 flags |= OBJF_MAINLINE;
1153 objfile = new struct objfile (abfd, name, flags);
1154
1155 if (parent)
1156 add_separate_debug_objfile (objfile, parent);
1157
1158 /* We either created a new mapped symbol table, mapped an existing
1159 symbol table file which has not had initial symbol reading
1160 performed, or need to read an unmapped symbol table. */
1161 if (should_print)
1162 {
1163 if (deprecated_pre_add_symbol_hook)
1164 deprecated_pre_add_symbol_hook (name);
1165 else
1166 {
1167 printf_unfiltered (_("Reading symbols from %s..."), name);
1168 wrap_here ("");
1169 gdb_flush (gdb_stdout);
1170 }
1171 }
1172 syms_from_objfile (objfile, addrs, add_flags);
1173
1174 /* We now have at least a partial symbol table. Check to see if the
1175 user requested that all symbols be read on initial access via either
1176 the gdb startup command line or on a per symbol file basis. Expand
1177 all partial symbol tables for this objfile if so. */
1178
1179 if ((flags & OBJF_READNOW))
1180 {
1181 if (should_print)
1182 {
1183 printf_unfiltered (_("expanding to full symbols..."));
1184 wrap_here ("");
1185 gdb_flush (gdb_stdout);
1186 }
1187
1188 if (objfile->sf)
1189 objfile->sf->qf->expand_all_symtabs (objfile);
1190 }
1191
1192 if (should_print && !objfile_has_symbols (objfile))
1193 {
1194 wrap_here ("");
1195 printf_unfiltered (_("(no debugging symbols found)..."));
1196 wrap_here ("");
1197 }
1198
1199 if (should_print)
1200 {
1201 if (deprecated_post_add_symbol_hook)
1202 deprecated_post_add_symbol_hook ();
1203 else
1204 printf_unfiltered (_("done.\n"));
1205 }
1206
1207 /* We print some messages regardless of whether 'from_tty ||
1208 info_verbose' is true, so make sure they go out at the right
1209 time. */
1210 gdb_flush (gdb_stdout);
1211
1212 if (objfile->sf == NULL)
1213 {
1214 observer_notify_new_objfile (objfile);
1215 return objfile; /* No symbols. */
1216 }
1217
1218 finish_new_objfile (objfile, add_flags);
1219
1220 observer_notify_new_objfile (objfile);
1221
1222 bfd_cache_close_all ();
1223 return (objfile);
1224 }
1225
1226 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1227 see the objfile constructor. */
1228
1229 void
1230 symbol_file_add_separate (bfd *bfd, const char *name,
1231 symfile_add_flags symfile_flags,
1232 struct objfile *objfile)
1233 {
1234 struct section_addr_info *sap;
1235 struct cleanup *my_cleanup;
1236
1237 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1238 because sections of BFD may not match sections of OBJFILE and because
1239 vma may have been modified by tools such as prelink. */
1240 sap = build_section_addr_info_from_objfile (objfile);
1241 my_cleanup = make_cleanup_free_section_addr_info (sap);
1242
1243 symbol_file_add_with_addrs
1244 (bfd, name, symfile_flags, sap,
1245 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1246 | OBJF_USERLOADED),
1247 objfile);
1248
1249 do_cleanups (my_cleanup);
1250 }
1251
1252 /* Process the symbol file ABFD, as either the main file or as a
1253 dynamically loaded file.
1254 See symbol_file_add_with_addrs's comments for details. */
1255
1256 struct objfile *
1257 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1258 symfile_add_flags add_flags,
1259 struct section_addr_info *addrs,
1260 objfile_flags flags, struct objfile *parent)
1261 {
1262 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1263 parent);
1264 }
1265
1266 /* Process a symbol file, as either the main file or as a dynamically
1267 loaded file. See symbol_file_add_with_addrs's comments for details. */
1268
1269 struct objfile *
1270 symbol_file_add (const char *name, symfile_add_flags add_flags,
1271 struct section_addr_info *addrs, objfile_flags flags)
1272 {
1273 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1274
1275 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1276 flags, NULL);
1277 }
1278
1279 /* Call symbol_file_add() with default values and update whatever is
1280 affected by the loading of a new main().
1281 Used when the file is supplied in the gdb command line
1282 and by some targets with special loading requirements.
1283 The auxiliary function, symbol_file_add_main_1(), has the flags
1284 argument for the switches that can only be specified in the symbol_file
1285 command itself. */
1286
1287 void
1288 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1289 {
1290 symbol_file_add_main_1 (args, add_flags, 0);
1291 }
1292
1293 static void
1294 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1295 objfile_flags flags)
1296 {
1297 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1298
1299 symbol_file_add (args, add_flags, NULL, flags);
1300
1301 /* Getting new symbols may change our opinion about
1302 what is frameless. */
1303 reinit_frame_cache ();
1304
1305 if ((add_flags & SYMFILE_NO_READ) == 0)
1306 set_initial_language ();
1307 }
1308
1309 void
1310 symbol_file_clear (int from_tty)
1311 {
1312 if ((have_full_symbols () || have_partial_symbols ())
1313 && from_tty
1314 && (symfile_objfile
1315 ? !query (_("Discard symbol table from `%s'? "),
1316 objfile_name (symfile_objfile))
1317 : !query (_("Discard symbol table? "))))
1318 error (_("Not confirmed."));
1319
1320 /* solib descriptors may have handles to objfiles. Wipe them before their
1321 objfiles get stale by free_all_objfiles. */
1322 no_shared_libraries (NULL, from_tty);
1323
1324 free_all_objfiles ();
1325
1326 gdb_assert (symfile_objfile == NULL);
1327 if (from_tty)
1328 printf_unfiltered (_("No symbol file now.\n"));
1329 }
1330
1331 /* See symfile.h. */
1332
1333 int separate_debug_file_debug = 0;
1334
1335 static int
1336 separate_debug_file_exists (const std::string &name, unsigned long crc,
1337 struct objfile *parent_objfile)
1338 {
1339 unsigned long file_crc;
1340 int file_crc_p;
1341 struct stat parent_stat, abfd_stat;
1342 int verified_as_different;
1343
1344 /* Find a separate debug info file as if symbols would be present in
1345 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1346 section can contain just the basename of PARENT_OBJFILE without any
1347 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1348 the separate debug infos with the same basename can exist. */
1349
1350 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1351 return 0;
1352
1353 if (separate_debug_file_debug)
1354 printf_unfiltered (_(" Trying %s\n"), name.c_str ());
1355
1356 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
1357
1358 if (abfd == NULL)
1359 return 0;
1360
1361 /* Verify symlinks were not the cause of filename_cmp name difference above.
1362
1363 Some operating systems, e.g. Windows, do not provide a meaningful
1364 st_ino; they always set it to zero. (Windows does provide a
1365 meaningful st_dev.) Files accessed from gdbservers that do not
1366 support the vFile:fstat packet will also have st_ino set to zero.
1367 Do not indicate a duplicate library in either case. While there
1368 is no guarantee that a system that provides meaningful inode
1369 numbers will never set st_ino to zero, this is merely an
1370 optimization, so we do not need to worry about false negatives. */
1371
1372 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1373 && abfd_stat.st_ino != 0
1374 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1375 {
1376 if (abfd_stat.st_dev == parent_stat.st_dev
1377 && abfd_stat.st_ino == parent_stat.st_ino)
1378 return 0;
1379 verified_as_different = 1;
1380 }
1381 else
1382 verified_as_different = 0;
1383
1384 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1385
1386 if (!file_crc_p)
1387 return 0;
1388
1389 if (crc != file_crc)
1390 {
1391 unsigned long parent_crc;
1392
1393 /* If the files could not be verified as different with
1394 bfd_stat then we need to calculate the parent's CRC
1395 to verify whether the files are different or not. */
1396
1397 if (!verified_as_different)
1398 {
1399 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1400 return 0;
1401 }
1402
1403 if (verified_as_different || parent_crc != file_crc)
1404 warning (_("the debug information found in \"%s\""
1405 " does not match \"%s\" (CRC mismatch).\n"),
1406 name.c_str (), objfile_name (parent_objfile));
1407
1408 return 0;
1409 }
1410
1411 return 1;
1412 }
1413
1414 char *debug_file_directory = NULL;
1415 static void
1416 show_debug_file_directory (struct ui_file *file, int from_tty,
1417 struct cmd_list_element *c, const char *value)
1418 {
1419 fprintf_filtered (file,
1420 _("The directory where separate debug "
1421 "symbols are searched for is \"%s\".\n"),
1422 value);
1423 }
1424
1425 #if ! defined (DEBUG_SUBDIRECTORY)
1426 #define DEBUG_SUBDIRECTORY ".debug"
1427 #endif
1428
1429 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1430 where the original file resides (may not be the same as
1431 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1432 looking for. CANON_DIR is the "realpath" form of DIR.
1433 DIR must contain a trailing '/'.
1434 Returns the path of the file with separate debug info, or an empty
1435 string. */
1436
1437 static std::string
1438 find_separate_debug_file (const char *dir,
1439 const char *canon_dir,
1440 const char *debuglink,
1441 unsigned long crc32, struct objfile *objfile)
1442 {
1443 if (separate_debug_file_debug)
1444 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1445 "%s\n"), objfile_name (objfile));
1446
1447 /* First try in the same directory as the original file. */
1448 std::string debugfile = dir;
1449 debugfile += debuglink;
1450
1451 if (separate_debug_file_exists (debugfile, crc32, objfile))
1452 return debugfile;
1453
1454 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1455 debugfile = dir;
1456 debugfile += DEBUG_SUBDIRECTORY;
1457 debugfile += "/";
1458 debugfile += debuglink;
1459
1460 if (separate_debug_file_exists (debugfile, crc32, objfile))
1461 return debugfile;
1462
1463 /* Then try in the global debugfile directories.
1464
1465 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1466 cause "/..." lookups. */
1467
1468 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1469 = dirnames_to_char_ptr_vec (debug_file_directory);
1470
1471 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1472 {
1473 debugfile = debugdir.get ();
1474 debugfile += "/";
1475 debugfile += dir;
1476 debugfile += debuglink;
1477
1478 if (separate_debug_file_exists (debugfile, crc32, objfile))
1479 return debugfile;
1480
1481 /* If the file is in the sysroot, try using its base path in the
1482 global debugfile directory. */
1483 if (canon_dir != NULL
1484 && filename_ncmp (canon_dir, gdb_sysroot,
1485 strlen (gdb_sysroot)) == 0
1486 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1487 {
1488 debugfile = debugdir.get ();
1489 debugfile += (canon_dir + strlen (gdb_sysroot));
1490 debugfile += "/";
1491 debugfile += debuglink;
1492
1493 if (separate_debug_file_exists (debugfile, crc32, objfile))
1494 return debugfile;
1495 }
1496 }
1497
1498 return std::string ();
1499 }
1500
1501 /* Modify PATH to contain only "[/]directory/" part of PATH.
1502 If there were no directory separators in PATH, PATH will be empty
1503 string on return. */
1504
1505 static void
1506 terminate_after_last_dir_separator (char *path)
1507 {
1508 int i;
1509
1510 /* Strip off the final filename part, leaving the directory name,
1511 followed by a slash. The directory can be relative or absolute. */
1512 for (i = strlen(path) - 1; i >= 0; i--)
1513 if (IS_DIR_SEPARATOR (path[i]))
1514 break;
1515
1516 /* If I is -1 then no directory is present there and DIR will be "". */
1517 path[i + 1] = '\0';
1518 }
1519
1520 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1521 Returns pathname, or an empty string. */
1522
1523 std::string
1524 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1525 {
1526 unsigned long crc32;
1527
1528 gdb::unique_xmalloc_ptr<char> debuglink
1529 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1530
1531 if (debuglink == NULL)
1532 {
1533 /* There's no separate debug info, hence there's no way we could
1534 load it => no warning. */
1535 return std::string ();
1536 }
1537
1538 std::string dir = objfile_name (objfile);
1539 terminate_after_last_dir_separator (&dir[0]);
1540 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1541
1542 std::string debugfile
1543 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1544 debuglink.get (), crc32, objfile);
1545
1546 if (debugfile.empty ())
1547 {
1548 /* For PR gdb/9538, try again with realpath (if different from the
1549 original). */
1550
1551 struct stat st_buf;
1552
1553 if (lstat (objfile_name (objfile), &st_buf) == 0
1554 && S_ISLNK (st_buf.st_mode))
1555 {
1556 gdb::unique_xmalloc_ptr<char> symlink_dir
1557 (lrealpath (objfile_name (objfile)));
1558 if (symlink_dir != NULL)
1559 {
1560 terminate_after_last_dir_separator (symlink_dir.get ());
1561 if (dir != symlink_dir.get ())
1562 {
1563 /* Different directory, so try using it. */
1564 debugfile = find_separate_debug_file (symlink_dir.get (),
1565 symlink_dir.get (),
1566 debuglink.get (),
1567 crc32,
1568 objfile);
1569 }
1570 }
1571 }
1572 }
1573
1574 return debugfile;
1575 }
1576
1577 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1578 simultaneously. */
1579
1580 static void
1581 validate_readnow_readnever (objfile_flags flags)
1582 {
1583 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1584 error (_("-readnow and -readnever cannot be used simultaneously"));
1585 }
1586
1587 /* This is the symbol-file command. Read the file, analyze its
1588 symbols, and add a struct symtab to a symtab list. The syntax of
1589 the command is rather bizarre:
1590
1591 1. The function buildargv implements various quoting conventions
1592 which are undocumented and have little or nothing in common with
1593 the way things are quoted (or not quoted) elsewhere in GDB.
1594
1595 2. Options are used, which are not generally used in GDB (perhaps
1596 "set mapped on", "set readnow on" would be better)
1597
1598 3. The order of options matters, which is contrary to GNU
1599 conventions (because it is confusing and inconvenient). */
1600
1601 void
1602 symbol_file_command (const char *args, int from_tty)
1603 {
1604 dont_repeat ();
1605
1606 if (args == NULL)
1607 {
1608 symbol_file_clear (from_tty);
1609 }
1610 else
1611 {
1612 objfile_flags flags = OBJF_USERLOADED;
1613 symfile_add_flags add_flags = 0;
1614 char *name = NULL;
1615 bool stop_processing_options = false;
1616 int idx;
1617 char *arg;
1618
1619 if (from_tty)
1620 add_flags |= SYMFILE_VERBOSE;
1621
1622 gdb_argv built_argv (args);
1623 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1624 {
1625 if (stop_processing_options || *arg != '-')
1626 {
1627 if (name == NULL)
1628 name = arg;
1629 else
1630 error (_("Unrecognized argument \"%s\""), arg);
1631 }
1632 else if (strcmp (arg, "-readnow") == 0)
1633 flags |= OBJF_READNOW;
1634 else if (strcmp (arg, "-readnever") == 0)
1635 flags |= OBJF_READNEVER;
1636 else if (strcmp (arg, "--") == 0)
1637 stop_processing_options = true;
1638 else
1639 error (_("Unrecognized argument \"%s\""), arg);
1640 }
1641
1642 if (name == NULL)
1643 error (_("no symbol file name was specified"));
1644
1645 validate_readnow_readnever (flags);
1646
1647 symbol_file_add_main_1 (name, add_flags, flags);
1648 }
1649 }
1650
1651 /* Set the initial language.
1652
1653 FIXME: A better solution would be to record the language in the
1654 psymtab when reading partial symbols, and then use it (if known) to
1655 set the language. This would be a win for formats that encode the
1656 language in an easily discoverable place, such as DWARF. For
1657 stabs, we can jump through hoops looking for specially named
1658 symbols or try to intuit the language from the specific type of
1659 stabs we find, but we can't do that until later when we read in
1660 full symbols. */
1661
1662 void
1663 set_initial_language (void)
1664 {
1665 enum language lang = main_language ();
1666
1667 if (lang == language_unknown)
1668 {
1669 char *name = main_name ();
1670 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1671
1672 if (sym != NULL)
1673 lang = SYMBOL_LANGUAGE (sym);
1674 }
1675
1676 if (lang == language_unknown)
1677 {
1678 /* Make C the default language */
1679 lang = language_c;
1680 }
1681
1682 set_language (lang);
1683 expected_language = current_language; /* Don't warn the user. */
1684 }
1685
1686 /* Open the file specified by NAME and hand it off to BFD for
1687 preliminary analysis. Return a newly initialized bfd *, which
1688 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1689 absolute). In case of trouble, error() is called. */
1690
1691 gdb_bfd_ref_ptr
1692 symfile_bfd_open (const char *name)
1693 {
1694 int desc = -1;
1695
1696 gdb::unique_xmalloc_ptr<char> absolute_name;
1697 if (!is_target_filename (name))
1698 {
1699 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1700
1701 /* Look down path for it, allocate 2nd new malloc'd copy. */
1702 desc = openp (getenv ("PATH"),
1703 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1704 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1705 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1706 if (desc < 0)
1707 {
1708 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1709
1710 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1711 desc = openp (getenv ("PATH"),
1712 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1713 exename, O_RDONLY | O_BINARY, &absolute_name);
1714 }
1715 #endif
1716 if (desc < 0)
1717 perror_with_name (expanded_name.get ());
1718
1719 name = absolute_name.get ();
1720 }
1721
1722 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1723 if (sym_bfd == NULL)
1724 error (_("`%s': can't open to read symbols: %s."), name,
1725 bfd_errmsg (bfd_get_error ()));
1726
1727 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1728 bfd_set_cacheable (sym_bfd.get (), 1);
1729
1730 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1731 error (_("`%s': can't read symbols: %s."), name,
1732 bfd_errmsg (bfd_get_error ()));
1733
1734 return sym_bfd;
1735 }
1736
1737 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1738 the section was not found. */
1739
1740 int
1741 get_section_index (struct objfile *objfile, const char *section_name)
1742 {
1743 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1744
1745 if (sect)
1746 return sect->index;
1747 else
1748 return -1;
1749 }
1750
1751 /* Link SF into the global symtab_fns list.
1752 FLAVOUR is the file format that SF handles.
1753 Called on startup by the _initialize routine in each object file format
1754 reader, to register information about each format the reader is prepared
1755 to handle. */
1756
1757 void
1758 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1759 {
1760 symtab_fns.emplace_back (flavour, sf);
1761 }
1762
1763 /* Initialize OBJFILE to read symbols from its associated BFD. It
1764 either returns or calls error(). The result is an initialized
1765 struct sym_fns in the objfile structure, that contains cached
1766 information about the symbol file. */
1767
1768 static const struct sym_fns *
1769 find_sym_fns (bfd *abfd)
1770 {
1771 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1772
1773 if (our_flavour == bfd_target_srec_flavour
1774 || our_flavour == bfd_target_ihex_flavour
1775 || our_flavour == bfd_target_tekhex_flavour)
1776 return NULL; /* No symbols. */
1777
1778 for (const registered_sym_fns &rsf : symtab_fns)
1779 if (our_flavour == rsf.sym_flavour)
1780 return rsf.sym_fns;
1781
1782 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1783 bfd_get_target (abfd));
1784 }
1785 \f
1786
1787 /* This function runs the load command of our current target. */
1788
1789 static void
1790 load_command (const char *arg, int from_tty)
1791 {
1792 dont_repeat ();
1793
1794 /* The user might be reloading because the binary has changed. Take
1795 this opportunity to check. */
1796 reopen_exec_file ();
1797 reread_symbols ();
1798
1799 std::string temp;
1800 if (arg == NULL)
1801 {
1802 const char *parg, *prev;
1803
1804 arg = get_exec_file (1);
1805
1806 /* We may need to quote this string so buildargv can pull it
1807 apart. */
1808 prev = parg = arg;
1809 while ((parg = strpbrk (parg, "\\\"'\t ")))
1810 {
1811 temp.append (prev, parg - prev);
1812 prev = parg++;
1813 temp.push_back ('\\');
1814 }
1815 /* If we have not copied anything yet, then we didn't see a
1816 character to quote, and we can just leave ARG unchanged. */
1817 if (!temp.empty ())
1818 {
1819 temp.append (prev);
1820 arg = temp.c_str ();
1821 }
1822 }
1823
1824 target_load (arg, from_tty);
1825
1826 /* After re-loading the executable, we don't really know which
1827 overlays are mapped any more. */
1828 overlay_cache_invalid = 1;
1829 }
1830
1831 /* This version of "load" should be usable for any target. Currently
1832 it is just used for remote targets, not inftarg.c or core files,
1833 on the theory that only in that case is it useful.
1834
1835 Avoiding xmodem and the like seems like a win (a) because we don't have
1836 to worry about finding it, and (b) On VMS, fork() is very slow and so
1837 we don't want to run a subprocess. On the other hand, I'm not sure how
1838 performance compares. */
1839
1840 static int validate_download = 0;
1841
1842 /* Callback service function for generic_load (bfd_map_over_sections). */
1843
1844 static void
1845 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1846 {
1847 bfd_size_type *sum = (bfd_size_type *) data;
1848
1849 *sum += bfd_get_section_size (asec);
1850 }
1851
1852 /* Opaque data for load_progress. */
1853 struct load_progress_data
1854 {
1855 /* Cumulative data. */
1856 unsigned long write_count = 0;
1857 unsigned long data_count = 0;
1858 bfd_size_type total_size = 0;
1859 };
1860
1861 /* Opaque data for load_progress for a single section. */
1862 struct load_progress_section_data
1863 {
1864 load_progress_section_data (load_progress_data *cumulative_,
1865 const char *section_name_, ULONGEST section_size_,
1866 CORE_ADDR lma_, gdb_byte *buffer_)
1867 : cumulative (cumulative_), section_name (section_name_),
1868 section_size (section_size_), lma (lma_), buffer (buffer_)
1869 {}
1870
1871 struct load_progress_data *cumulative;
1872
1873 /* Per-section data. */
1874 const char *section_name;
1875 ULONGEST section_sent = 0;
1876 ULONGEST section_size;
1877 CORE_ADDR lma;
1878 gdb_byte *buffer;
1879 };
1880
1881 /* Opaque data for load_section_callback. */
1882 struct load_section_data
1883 {
1884 load_section_data (load_progress_data *progress_data_)
1885 : progress_data (progress_data_)
1886 {}
1887
1888 ~load_section_data ()
1889 {
1890 for (auto &&request : requests)
1891 {
1892 xfree (request.data);
1893 delete ((load_progress_section_data *) request.baton);
1894 }
1895 }
1896
1897 CORE_ADDR load_offset = 0;
1898 struct load_progress_data *progress_data;
1899 std::vector<struct memory_write_request> requests;
1900 };
1901
1902 /* Target write callback routine for progress reporting. */
1903
1904 static void
1905 load_progress (ULONGEST bytes, void *untyped_arg)
1906 {
1907 struct load_progress_section_data *args
1908 = (struct load_progress_section_data *) untyped_arg;
1909 struct load_progress_data *totals;
1910
1911 if (args == NULL)
1912 /* Writing padding data. No easy way to get at the cumulative
1913 stats, so just ignore this. */
1914 return;
1915
1916 totals = args->cumulative;
1917
1918 if (bytes == 0 && args->section_sent == 0)
1919 {
1920 /* The write is just starting. Let the user know we've started
1921 this section. */
1922 current_uiout->message ("Loading section %s, size %s lma %s\n",
1923 args->section_name,
1924 hex_string (args->section_size),
1925 paddress (target_gdbarch (), args->lma));
1926 return;
1927 }
1928
1929 if (validate_download)
1930 {
1931 /* Broken memories and broken monitors manifest themselves here
1932 when bring new computers to life. This doubles already slow
1933 downloads. */
1934 /* NOTE: cagney/1999-10-18: A more efficient implementation
1935 might add a verify_memory() method to the target vector and
1936 then use that. remote.c could implement that method using
1937 the ``qCRC'' packet. */
1938 gdb::byte_vector check (bytes);
1939
1940 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1941 error (_("Download verify read failed at %s"),
1942 paddress (target_gdbarch (), args->lma));
1943 if (memcmp (args->buffer, check.data (), bytes) != 0)
1944 error (_("Download verify compare failed at %s"),
1945 paddress (target_gdbarch (), args->lma));
1946 }
1947 totals->data_count += bytes;
1948 args->lma += bytes;
1949 args->buffer += bytes;
1950 totals->write_count += 1;
1951 args->section_sent += bytes;
1952 if (check_quit_flag ()
1953 || (deprecated_ui_load_progress_hook != NULL
1954 && deprecated_ui_load_progress_hook (args->section_name,
1955 args->section_sent)))
1956 error (_("Canceled the download"));
1957
1958 if (deprecated_show_load_progress != NULL)
1959 deprecated_show_load_progress (args->section_name,
1960 args->section_sent,
1961 args->section_size,
1962 totals->data_count,
1963 totals->total_size);
1964 }
1965
1966 /* Callback service function for generic_load (bfd_map_over_sections). */
1967
1968 static void
1969 load_section_callback (bfd *abfd, asection *asec, void *data)
1970 {
1971 struct load_section_data *args = (struct load_section_data *) data;
1972 bfd_size_type size = bfd_get_section_size (asec);
1973 const char *sect_name = bfd_get_section_name (abfd, asec);
1974
1975 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1976 return;
1977
1978 if (size == 0)
1979 return;
1980
1981 ULONGEST begin = bfd_section_lma (abfd, asec) + args->load_offset;
1982 ULONGEST end = begin + size;
1983 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
1984 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1985
1986 load_progress_section_data *section_data
1987 = new load_progress_section_data (args->progress_data, sect_name, size,
1988 begin, buffer);
1989
1990 args->requests.emplace_back (begin, end, buffer, section_data);
1991 }
1992
1993 static void print_transfer_performance (struct ui_file *stream,
1994 unsigned long data_count,
1995 unsigned long write_count,
1996 std::chrono::steady_clock::duration d);
1997
1998 void
1999 generic_load (const char *args, int from_tty)
2000 {
2001 struct load_progress_data total_progress;
2002 struct load_section_data cbdata (&total_progress);
2003 struct ui_out *uiout = current_uiout;
2004
2005 if (args == NULL)
2006 error_no_arg (_("file to load"));
2007
2008 gdb_argv argv (args);
2009
2010 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2011
2012 if (argv[1] != NULL)
2013 {
2014 const char *endptr;
2015
2016 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2017
2018 /* If the last word was not a valid number then
2019 treat it as a file name with spaces in. */
2020 if (argv[1] == endptr)
2021 error (_("Invalid download offset:%s."), argv[1]);
2022
2023 if (argv[2] != NULL)
2024 error (_("Too many parameters."));
2025 }
2026
2027 /* Open the file for loading. */
2028 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
2029 if (loadfile_bfd == NULL)
2030 perror_with_name (filename.get ());
2031
2032 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2033 {
2034 error (_("\"%s\" is not an object file: %s"), filename.get (),
2035 bfd_errmsg (bfd_get_error ()));
2036 }
2037
2038 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2039 (void *) &total_progress.total_size);
2040
2041 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2042
2043 using namespace std::chrono;
2044
2045 steady_clock::time_point start_time = steady_clock::now ();
2046
2047 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2048 load_progress) != 0)
2049 error (_("Load failed"));
2050
2051 steady_clock::time_point end_time = steady_clock::now ();
2052
2053 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
2054 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2055 uiout->text ("Start address ");
2056 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2057 uiout->text (", load size ");
2058 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2059 uiout->text ("\n");
2060 regcache_write_pc (get_current_regcache (), entry);
2061
2062 /* Reset breakpoints, now that we have changed the load image. For
2063 instance, breakpoints may have been set (or reset, by
2064 post_create_inferior) while connected to the target but before we
2065 loaded the program. In that case, the prologue analyzer could
2066 have read instructions from the target to find the right
2067 breakpoint locations. Loading has changed the contents of that
2068 memory. */
2069
2070 breakpoint_re_set ();
2071
2072 print_transfer_performance (gdb_stdout, total_progress.data_count,
2073 total_progress.write_count,
2074 end_time - start_time);
2075 }
2076
2077 /* Report on STREAM the performance of a memory transfer operation,
2078 such as 'load'. DATA_COUNT is the number of bytes transferred.
2079 WRITE_COUNT is the number of separate write operations, or 0, if
2080 that information is not available. TIME is how long the operation
2081 lasted. */
2082
2083 static void
2084 print_transfer_performance (struct ui_file *stream,
2085 unsigned long data_count,
2086 unsigned long write_count,
2087 std::chrono::steady_clock::duration time)
2088 {
2089 using namespace std::chrono;
2090 struct ui_out *uiout = current_uiout;
2091
2092 milliseconds ms = duration_cast<milliseconds> (time);
2093
2094 uiout->text ("Transfer rate: ");
2095 if (ms.count () > 0)
2096 {
2097 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2098
2099 if (uiout->is_mi_like_p ())
2100 {
2101 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2102 uiout->text (" bits/sec");
2103 }
2104 else if (rate < 1024)
2105 {
2106 uiout->field_fmt ("transfer-rate", "%lu", rate);
2107 uiout->text (" bytes/sec");
2108 }
2109 else
2110 {
2111 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2112 uiout->text (" KB/sec");
2113 }
2114 }
2115 else
2116 {
2117 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2118 uiout->text (" bits in <1 sec");
2119 }
2120 if (write_count > 0)
2121 {
2122 uiout->text (", ");
2123 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2124 uiout->text (" bytes/write");
2125 }
2126 uiout->text (".\n");
2127 }
2128
2129 /* This function allows the addition of incrementally linked object files.
2130 It does not modify any state in the target, only in the debugger. */
2131 /* Note: ezannoni 2000-04-13 This function/command used to have a
2132 special case syntax for the rombug target (Rombug is the boot
2133 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2134 rombug case, the user doesn't need to supply a text address,
2135 instead a call to target_link() (in target.c) would supply the
2136 value to use. We are now discontinuing this type of ad hoc syntax. */
2137
2138 static void
2139 add_symbol_file_command (const char *args, int from_tty)
2140 {
2141 struct gdbarch *gdbarch = get_current_arch ();
2142 gdb::unique_xmalloc_ptr<char> filename;
2143 char *arg;
2144 int argcnt = 0;
2145 int sec_num = 0;
2146 struct objfile *objf;
2147 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2148 symfile_add_flags add_flags = 0;
2149
2150 if (from_tty)
2151 add_flags |= SYMFILE_VERBOSE;
2152
2153 struct sect_opt
2154 {
2155 const char *name;
2156 const char *value;
2157 };
2158
2159 struct section_addr_info *section_addrs;
2160 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2161 bool stop_processing_options = false;
2162 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2163
2164 dont_repeat ();
2165
2166 if (args == NULL)
2167 error (_("add-symbol-file takes a file name and an address"));
2168
2169 bool seen_addr = false;
2170 gdb_argv argv (args);
2171
2172 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2173 {
2174 if (stop_processing_options || *arg != '-')
2175 {
2176 if (filename == NULL)
2177 {
2178 /* First non-option argument is always the filename. */
2179 filename.reset (tilde_expand (arg));
2180 }
2181 else if (!seen_addr)
2182 {
2183 /* The second non-option argument is always the text
2184 address at which to load the program. */
2185 sect_opts[0].value = arg;
2186 seen_addr = true;
2187 }
2188 else
2189 error (_("Unrecognized argument \"%s\""), arg);
2190 }
2191 else if (strcmp (arg, "-readnow") == 0)
2192 flags |= OBJF_READNOW;
2193 else if (strcmp (arg, "-readnever") == 0)
2194 flags |= OBJF_READNEVER;
2195 else if (strcmp (arg, "-s") == 0)
2196 {
2197 if (argv[argcnt + 1] == NULL)
2198 error (_("Missing section name after \"-s\""));
2199 else if (argv[argcnt + 2] == NULL)
2200 error (_("Missing section address after \"-s\""));
2201
2202 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2203
2204 sect_opts.push_back (sect);
2205 argcnt += 2;
2206 }
2207 else if (strcmp (arg, "--") == 0)
2208 stop_processing_options = true;
2209 else
2210 error (_("Unrecognized argument \"%s\""), arg);
2211 }
2212
2213 if (filename == NULL)
2214 error (_("You must provide a filename to be loaded."));
2215
2216 validate_readnow_readnever (flags);
2217
2218 /* This command takes at least two arguments. The first one is a
2219 filename, and the second is the address where this file has been
2220 loaded. Abort now if this address hasn't been provided by the
2221 user. */
2222 if (!seen_addr)
2223 error (_("The address where %s has been loaded is missing"),
2224 filename.get ());
2225
2226 /* Print the prompt for the query below. And save the arguments into
2227 a sect_addr_info structure to be passed around to other
2228 functions. We have to split this up into separate print
2229 statements because hex_string returns a local static
2230 string. */
2231
2232 printf_unfiltered (_("add symbol table from file \"%s\" at\n"),
2233 filename.get ());
2234 section_addrs = alloc_section_addr_info (sect_opts.size ());
2235 make_cleanup (xfree, section_addrs);
2236 for (sect_opt &sect : sect_opts)
2237 {
2238 CORE_ADDR addr;
2239 const char *val = sect.value;
2240 const char *sec = sect.name;
2241
2242 addr = parse_and_eval_address (val);
2243
2244 /* Here we store the section offsets in the order they were
2245 entered on the command line. */
2246 section_addrs->other[sec_num].name = (char *) sec;
2247 section_addrs->other[sec_num].addr = addr;
2248 printf_unfiltered ("\t%s_addr = %s\n", sec,
2249 paddress (gdbarch, addr));
2250 sec_num++;
2251
2252 /* The object's sections are initialized when a
2253 call is made to build_objfile_section_table (objfile).
2254 This happens in reread_symbols.
2255 At this point, we don't know what file type this is,
2256 so we can't determine what section names are valid. */
2257 }
2258 section_addrs->num_sections = sec_num;
2259
2260 if (from_tty && (!query ("%s", "")))
2261 error (_("Not confirmed."));
2262
2263 objf = symbol_file_add (filename.get (), add_flags, section_addrs, flags);
2264
2265 add_target_sections_of_objfile (objf);
2266
2267 /* Getting new symbols may change our opinion about what is
2268 frameless. */
2269 reinit_frame_cache ();
2270 do_cleanups (my_cleanups);
2271 }
2272 \f
2273
2274 /* This function removes a symbol file that was added via add-symbol-file. */
2275
2276 static void
2277 remove_symbol_file_command (const char *args, int from_tty)
2278 {
2279 struct objfile *objf = NULL;
2280 struct program_space *pspace = current_program_space;
2281
2282 dont_repeat ();
2283
2284 if (args == NULL)
2285 error (_("remove-symbol-file: no symbol file provided"));
2286
2287 gdb_argv argv (args);
2288
2289 if (strcmp (argv[0], "-a") == 0)
2290 {
2291 /* Interpret the next argument as an address. */
2292 CORE_ADDR addr;
2293
2294 if (argv[1] == NULL)
2295 error (_("Missing address argument"));
2296
2297 if (argv[2] != NULL)
2298 error (_("Junk after %s"), argv[1]);
2299
2300 addr = parse_and_eval_address (argv[1]);
2301
2302 ALL_OBJFILES (objf)
2303 {
2304 if ((objf->flags & OBJF_USERLOADED) != 0
2305 && (objf->flags & OBJF_SHARED) != 0
2306 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2307 break;
2308 }
2309 }
2310 else if (argv[0] != NULL)
2311 {
2312 /* Interpret the current argument as a file name. */
2313
2314 if (argv[1] != NULL)
2315 error (_("Junk after %s"), argv[0]);
2316
2317 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2318
2319 ALL_OBJFILES (objf)
2320 {
2321 if ((objf->flags & OBJF_USERLOADED) != 0
2322 && (objf->flags & OBJF_SHARED) != 0
2323 && objf->pspace == pspace
2324 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
2325 break;
2326 }
2327 }
2328
2329 if (objf == NULL)
2330 error (_("No symbol file found"));
2331
2332 if (from_tty
2333 && !query (_("Remove symbol table from file \"%s\"? "),
2334 objfile_name (objf)))
2335 error (_("Not confirmed."));
2336
2337 delete objf;
2338 clear_symtab_users (0);
2339 }
2340
2341 /* Re-read symbols if a symbol-file has changed. */
2342
2343 void
2344 reread_symbols (void)
2345 {
2346 struct objfile *objfile;
2347 long new_modtime;
2348 struct stat new_statbuf;
2349 int res;
2350 std::vector<struct objfile *> new_objfiles;
2351
2352 /* With the addition of shared libraries, this should be modified,
2353 the load time should be saved in the partial symbol tables, since
2354 different tables may come from different source files. FIXME.
2355 This routine should then walk down each partial symbol table
2356 and see if the symbol table that it originates from has been changed. */
2357
2358 for (objfile = object_files; objfile; objfile = objfile->next)
2359 {
2360 if (objfile->obfd == NULL)
2361 continue;
2362
2363 /* Separate debug objfiles are handled in the main objfile. */
2364 if (objfile->separate_debug_objfile_backlink)
2365 continue;
2366
2367 /* If this object is from an archive (what you usually create with
2368 `ar', often called a `static library' on most systems, though
2369 a `shared library' on AIX is also an archive), then you should
2370 stat on the archive name, not member name. */
2371 if (objfile->obfd->my_archive)
2372 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2373 else
2374 res = stat (objfile_name (objfile), &new_statbuf);
2375 if (res != 0)
2376 {
2377 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2378 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2379 objfile_name (objfile));
2380 continue;
2381 }
2382 new_modtime = new_statbuf.st_mtime;
2383 if (new_modtime != objfile->mtime)
2384 {
2385 struct cleanup *old_cleanups;
2386 struct section_offsets *offsets;
2387 int num_offsets;
2388 char *original_name;
2389
2390 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2391 objfile_name (objfile));
2392
2393 /* There are various functions like symbol_file_add,
2394 symfile_bfd_open, syms_from_objfile, etc., which might
2395 appear to do what we want. But they have various other
2396 effects which we *don't* want. So we just do stuff
2397 ourselves. We don't worry about mapped files (for one thing,
2398 any mapped file will be out of date). */
2399
2400 /* If we get an error, blow away this objfile (not sure if
2401 that is the correct response for things like shared
2402 libraries). */
2403 std::unique_ptr<struct objfile> objfile_holder (objfile);
2404
2405 /* We need to do this whenever any symbols go away. */
2406 old_cleanups = make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2407
2408 if (exec_bfd != NULL
2409 && filename_cmp (bfd_get_filename (objfile->obfd),
2410 bfd_get_filename (exec_bfd)) == 0)
2411 {
2412 /* Reload EXEC_BFD without asking anything. */
2413
2414 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2415 }
2416
2417 /* Keep the calls order approx. the same as in free_objfile. */
2418
2419 /* Free the separate debug objfiles. It will be
2420 automatically recreated by sym_read. */
2421 free_objfile_separate_debug (objfile);
2422
2423 /* Remove any references to this objfile in the global
2424 value lists. */
2425 preserve_values (objfile);
2426
2427 /* Nuke all the state that we will re-read. Much of the following
2428 code which sets things to NULL really is necessary to tell
2429 other parts of GDB that there is nothing currently there.
2430
2431 Try to keep the freeing order compatible with free_objfile. */
2432
2433 if (objfile->sf != NULL)
2434 {
2435 (*objfile->sf->sym_finish) (objfile);
2436 }
2437
2438 clear_objfile_data (objfile);
2439
2440 /* Clean up any state BFD has sitting around. */
2441 {
2442 gdb_bfd_ref_ptr obfd (objfile->obfd);
2443 char *obfd_filename;
2444
2445 obfd_filename = bfd_get_filename (objfile->obfd);
2446 /* Open the new BFD before freeing the old one, so that
2447 the filename remains live. */
2448 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2449 objfile->obfd = temp.release ();
2450 if (objfile->obfd == NULL)
2451 error (_("Can't open %s to read symbols."), obfd_filename);
2452 }
2453
2454 original_name = xstrdup (objfile->original_name);
2455 make_cleanup (xfree, original_name);
2456
2457 /* bfd_openr sets cacheable to true, which is what we want. */
2458 if (!bfd_check_format (objfile->obfd, bfd_object))
2459 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2460 bfd_errmsg (bfd_get_error ()));
2461
2462 /* Save the offsets, we will nuke them with the rest of the
2463 objfile_obstack. */
2464 num_offsets = objfile->num_sections;
2465 offsets = ((struct section_offsets *)
2466 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2467 memcpy (offsets, objfile->section_offsets,
2468 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2469
2470 /* FIXME: Do we have to free a whole linked list, or is this
2471 enough? */
2472 objfile->global_psymbols.clear ();
2473 objfile->static_psymbols.clear ();
2474
2475 /* Free the obstacks for non-reusable objfiles. */
2476 psymbol_bcache_free (objfile->psymbol_cache);
2477 objfile->psymbol_cache = psymbol_bcache_init ();
2478
2479 /* NB: after this call to obstack_free, objfiles_changed
2480 will need to be called (see discussion below). */
2481 obstack_free (&objfile->objfile_obstack, 0);
2482 objfile->sections = NULL;
2483 objfile->compunit_symtabs = NULL;
2484 objfile->psymtabs = NULL;
2485 objfile->psymtabs_addrmap = NULL;
2486 objfile->free_psymtabs = NULL;
2487 objfile->template_symbols = NULL;
2488
2489 /* obstack_init also initializes the obstack so it is
2490 empty. We could use obstack_specify_allocation but
2491 gdb_obstack.h specifies the alloc/dealloc functions. */
2492 obstack_init (&objfile->objfile_obstack);
2493
2494 /* set_objfile_per_bfd potentially allocates the per-bfd
2495 data on the objfile's obstack (if sharing data across
2496 multiple users is not possible), so it's important to
2497 do it *after* the obstack has been initialized. */
2498 set_objfile_per_bfd (objfile);
2499
2500 objfile->original_name
2501 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2502 strlen (original_name));
2503
2504 /* Reset the sym_fns pointer. The ELF reader can change it
2505 based on whether .gdb_index is present, and we need it to
2506 start over. PR symtab/15885 */
2507 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2508
2509 build_objfile_section_table (objfile);
2510 terminate_minimal_symbol_table (objfile);
2511
2512 /* We use the same section offsets as from last time. I'm not
2513 sure whether that is always correct for shared libraries. */
2514 objfile->section_offsets = (struct section_offsets *)
2515 obstack_alloc (&objfile->objfile_obstack,
2516 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2517 memcpy (objfile->section_offsets, offsets,
2518 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2519 objfile->num_sections = num_offsets;
2520
2521 /* What the hell is sym_new_init for, anyway? The concept of
2522 distinguishing between the main file and additional files
2523 in this way seems rather dubious. */
2524 if (objfile == symfile_objfile)
2525 {
2526 (*objfile->sf->sym_new_init) (objfile);
2527 }
2528
2529 (*objfile->sf->sym_init) (objfile);
2530 clear_complaints (&symfile_complaints, 1, 1);
2531
2532 objfile->flags &= ~OBJF_PSYMTABS_READ;
2533
2534 /* We are about to read new symbols and potentially also
2535 DWARF information. Some targets may want to pass addresses
2536 read from DWARF DIE's through an adjustment function before
2537 saving them, like MIPS, which may call into
2538 "find_pc_section". When called, that function will make
2539 use of per-objfile program space data.
2540
2541 Since we discarded our section information above, we have
2542 dangling pointers in the per-objfile program space data
2543 structure. Force GDB to update the section mapping
2544 information by letting it know the objfile has changed,
2545 making the dangling pointers point to correct data
2546 again. */
2547
2548 objfiles_changed ();
2549
2550 read_symbols (objfile, 0);
2551
2552 if (!objfile_has_symbols (objfile))
2553 {
2554 wrap_here ("");
2555 printf_unfiltered (_("(no debugging symbols found)\n"));
2556 wrap_here ("");
2557 }
2558
2559 /* We're done reading the symbol file; finish off complaints. */
2560 clear_complaints (&symfile_complaints, 0, 1);
2561
2562 /* Getting new symbols may change our opinion about what is
2563 frameless. */
2564
2565 reinit_frame_cache ();
2566
2567 /* Discard cleanups as symbol reading was successful. */
2568 objfile_holder.release ();
2569 discard_cleanups (old_cleanups);
2570
2571 /* If the mtime has changed between the time we set new_modtime
2572 and now, we *want* this to be out of date, so don't call stat
2573 again now. */
2574 objfile->mtime = new_modtime;
2575 init_entry_point_info (objfile);
2576
2577 new_objfiles.push_back (objfile);
2578 }
2579 }
2580
2581 if (!new_objfiles.empty ())
2582 {
2583 clear_symtab_users (0);
2584
2585 /* clear_objfile_data for each objfile was called before freeing it and
2586 observer_notify_new_objfile (NULL) has been called by
2587 clear_symtab_users above. Notify the new files now. */
2588 for (auto iter : new_objfiles)
2589 observer_notify_new_objfile (iter);
2590
2591 /* At least one objfile has changed, so we can consider that
2592 the executable we're debugging has changed too. */
2593 observer_notify_executable_changed ();
2594 }
2595 }
2596 \f
2597
2598 struct filename_language
2599 {
2600 filename_language (const std::string &ext_, enum language lang_)
2601 : ext (ext_), lang (lang_)
2602 {}
2603
2604 std::string ext;
2605 enum language lang;
2606 };
2607
2608 static std::vector<filename_language> filename_language_table;
2609
2610 /* See symfile.h. */
2611
2612 void
2613 add_filename_language (const char *ext, enum language lang)
2614 {
2615 filename_language_table.emplace_back (ext, lang);
2616 }
2617
2618 static char *ext_args;
2619 static void
2620 show_ext_args (struct ui_file *file, int from_tty,
2621 struct cmd_list_element *c, const char *value)
2622 {
2623 fprintf_filtered (file,
2624 _("Mapping between filename extension "
2625 "and source language is \"%s\".\n"),
2626 value);
2627 }
2628
2629 static void
2630 set_ext_lang_command (const char *args,
2631 int from_tty, struct cmd_list_element *e)
2632 {
2633 char *cp = ext_args;
2634 enum language lang;
2635
2636 /* First arg is filename extension, starting with '.' */
2637 if (*cp != '.')
2638 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2639
2640 /* Find end of first arg. */
2641 while (*cp && !isspace (*cp))
2642 cp++;
2643
2644 if (*cp == '\0')
2645 error (_("'%s': two arguments required -- "
2646 "filename extension and language"),
2647 ext_args);
2648
2649 /* Null-terminate first arg. */
2650 *cp++ = '\0';
2651
2652 /* Find beginning of second arg, which should be a source language. */
2653 cp = skip_spaces (cp);
2654
2655 if (*cp == '\0')
2656 error (_("'%s': two arguments required -- "
2657 "filename extension and language"),
2658 ext_args);
2659
2660 /* Lookup the language from among those we know. */
2661 lang = language_enum (cp);
2662
2663 auto it = filename_language_table.begin ();
2664 /* Now lookup the filename extension: do we already know it? */
2665 for (; it != filename_language_table.end (); it++)
2666 {
2667 if (it->ext == ext_args)
2668 break;
2669 }
2670
2671 if (it == filename_language_table.end ())
2672 {
2673 /* New file extension. */
2674 add_filename_language (ext_args, lang);
2675 }
2676 else
2677 {
2678 /* Redefining a previously known filename extension. */
2679
2680 /* if (from_tty) */
2681 /* query ("Really make files of type %s '%s'?", */
2682 /* ext_args, language_str (lang)); */
2683
2684 it->lang = lang;
2685 }
2686 }
2687
2688 static void
2689 info_ext_lang_command (const char *args, int from_tty)
2690 {
2691 printf_filtered (_("Filename extensions and the languages they represent:"));
2692 printf_filtered ("\n\n");
2693 for (const filename_language &entry : filename_language_table)
2694 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2695 language_str (entry.lang));
2696 }
2697
2698 enum language
2699 deduce_language_from_filename (const char *filename)
2700 {
2701 const char *cp;
2702
2703 if (filename != NULL)
2704 if ((cp = strrchr (filename, '.')) != NULL)
2705 {
2706 for (const filename_language &entry : filename_language_table)
2707 if (entry.ext == cp)
2708 return entry.lang;
2709 }
2710
2711 return language_unknown;
2712 }
2713 \f
2714 /* Allocate and initialize a new symbol table.
2715 CUST is from the result of allocate_compunit_symtab. */
2716
2717 struct symtab *
2718 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2719 {
2720 struct objfile *objfile = cust->objfile;
2721 struct symtab *symtab
2722 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2723
2724 symtab->filename
2725 = (const char *) bcache (filename, strlen (filename) + 1,
2726 objfile->per_bfd->filename_cache);
2727 symtab->fullname = NULL;
2728 symtab->language = deduce_language_from_filename (filename);
2729
2730 /* This can be very verbose with lots of headers.
2731 Only print at higher debug levels. */
2732 if (symtab_create_debug >= 2)
2733 {
2734 /* Be a bit clever with debugging messages, and don't print objfile
2735 every time, only when it changes. */
2736 static char *last_objfile_name = NULL;
2737
2738 if (last_objfile_name == NULL
2739 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2740 {
2741 xfree (last_objfile_name);
2742 last_objfile_name = xstrdup (objfile_name (objfile));
2743 fprintf_unfiltered (gdb_stdlog,
2744 "Creating one or more symtabs for objfile %s ...\n",
2745 last_objfile_name);
2746 }
2747 fprintf_unfiltered (gdb_stdlog,
2748 "Created symtab %s for module %s.\n",
2749 host_address_to_string (symtab), filename);
2750 }
2751
2752 /* Add it to CUST's list of symtabs. */
2753 if (cust->filetabs == NULL)
2754 {
2755 cust->filetabs = symtab;
2756 cust->last_filetab = symtab;
2757 }
2758 else
2759 {
2760 cust->last_filetab->next = symtab;
2761 cust->last_filetab = symtab;
2762 }
2763
2764 /* Backlink to the containing compunit symtab. */
2765 symtab->compunit_symtab = cust;
2766
2767 return symtab;
2768 }
2769
2770 /* Allocate and initialize a new compunit.
2771 NAME is the name of the main source file, if there is one, or some
2772 descriptive text if there are no source files. */
2773
2774 struct compunit_symtab *
2775 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2776 {
2777 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2778 struct compunit_symtab);
2779 const char *saved_name;
2780
2781 cu->objfile = objfile;
2782
2783 /* The name we record here is only for display/debugging purposes.
2784 Just save the basename to avoid path issues (too long for display,
2785 relative vs absolute, etc.). */
2786 saved_name = lbasename (name);
2787 cu->name
2788 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2789 strlen (saved_name));
2790
2791 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2792
2793 if (symtab_create_debug)
2794 {
2795 fprintf_unfiltered (gdb_stdlog,
2796 "Created compunit symtab %s for %s.\n",
2797 host_address_to_string (cu),
2798 cu->name);
2799 }
2800
2801 return cu;
2802 }
2803
2804 /* Hook CU to the objfile it comes from. */
2805
2806 void
2807 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2808 {
2809 cu->next = cu->objfile->compunit_symtabs;
2810 cu->objfile->compunit_symtabs = cu;
2811 }
2812 \f
2813
2814 /* Reset all data structures in gdb which may contain references to
2815 symbol table data. */
2816
2817 void
2818 clear_symtab_users (symfile_add_flags add_flags)
2819 {
2820 /* Someday, we should do better than this, by only blowing away
2821 the things that really need to be blown. */
2822
2823 /* Clear the "current" symtab first, because it is no longer valid.
2824 breakpoint_re_set may try to access the current symtab. */
2825 clear_current_source_symtab_and_line ();
2826
2827 clear_displays ();
2828 clear_last_displayed_sal ();
2829 clear_pc_function_cache ();
2830 observer_notify_new_objfile (NULL);
2831
2832 /* Clear globals which might have pointed into a removed objfile.
2833 FIXME: It's not clear which of these are supposed to persist
2834 between expressions and which ought to be reset each time. */
2835 expression_context_block = NULL;
2836 innermost_block.reset ();
2837
2838 /* Varobj may refer to old symbols, perform a cleanup. */
2839 varobj_invalidate ();
2840
2841 /* Now that the various caches have been cleared, we can re_set
2842 our breakpoints without risking it using stale data. */
2843 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2844 breakpoint_re_set ();
2845 }
2846
2847 static void
2848 clear_symtab_users_cleanup (void *ignore)
2849 {
2850 clear_symtab_users (0);
2851 }
2852 \f
2853 /* OVERLAYS:
2854 The following code implements an abstraction for debugging overlay sections.
2855
2856 The target model is as follows:
2857 1) The gnu linker will permit multiple sections to be mapped into the
2858 same VMA, each with its own unique LMA (or load address).
2859 2) It is assumed that some runtime mechanism exists for mapping the
2860 sections, one by one, from the load address into the VMA address.
2861 3) This code provides a mechanism for gdb to keep track of which
2862 sections should be considered to be mapped from the VMA to the LMA.
2863 This information is used for symbol lookup, and memory read/write.
2864 For instance, if a section has been mapped then its contents
2865 should be read from the VMA, otherwise from the LMA.
2866
2867 Two levels of debugger support for overlays are available. One is
2868 "manual", in which the debugger relies on the user to tell it which
2869 overlays are currently mapped. This level of support is
2870 implemented entirely in the core debugger, and the information about
2871 whether a section is mapped is kept in the objfile->obj_section table.
2872
2873 The second level of support is "automatic", and is only available if
2874 the target-specific code provides functionality to read the target's
2875 overlay mapping table, and translate its contents for the debugger
2876 (by updating the mapped state information in the obj_section tables).
2877
2878 The interface is as follows:
2879 User commands:
2880 overlay map <name> -- tell gdb to consider this section mapped
2881 overlay unmap <name> -- tell gdb to consider this section unmapped
2882 overlay list -- list the sections that GDB thinks are mapped
2883 overlay read-target -- get the target's state of what's mapped
2884 overlay off/manual/auto -- set overlay debugging state
2885 Functional interface:
2886 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2887 section, return that section.
2888 find_pc_overlay(pc): find any overlay section that contains
2889 the pc, either in its VMA or its LMA
2890 section_is_mapped(sect): true if overlay is marked as mapped
2891 section_is_overlay(sect): true if section's VMA != LMA
2892 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2893 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2894 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2895 overlay_mapped_address(...): map an address from section's LMA to VMA
2896 overlay_unmapped_address(...): map an address from section's VMA to LMA
2897 symbol_overlayed_address(...): Return a "current" address for symbol:
2898 either in VMA or LMA depending on whether
2899 the symbol's section is currently mapped. */
2900
2901 /* Overlay debugging state: */
2902
2903 enum overlay_debugging_state overlay_debugging = ovly_off;
2904 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2905
2906 /* Function: section_is_overlay (SECTION)
2907 Returns true if SECTION has VMA not equal to LMA, ie.
2908 SECTION is loaded at an address different from where it will "run". */
2909
2910 int
2911 section_is_overlay (struct obj_section *section)
2912 {
2913 if (overlay_debugging && section)
2914 {
2915 asection *bfd_section = section->the_bfd_section;
2916
2917 if (bfd_section_lma (abfd, bfd_section) != 0
2918 && bfd_section_lma (abfd, bfd_section)
2919 != bfd_section_vma (abfd, bfd_section))
2920 return 1;
2921 }
2922
2923 return 0;
2924 }
2925
2926 /* Function: overlay_invalidate_all (void)
2927 Invalidate the mapped state of all overlay sections (mark it as stale). */
2928
2929 static void
2930 overlay_invalidate_all (void)
2931 {
2932 struct objfile *objfile;
2933 struct obj_section *sect;
2934
2935 ALL_OBJSECTIONS (objfile, sect)
2936 if (section_is_overlay (sect))
2937 sect->ovly_mapped = -1;
2938 }
2939
2940 /* Function: section_is_mapped (SECTION)
2941 Returns true if section is an overlay, and is currently mapped.
2942
2943 Access to the ovly_mapped flag is restricted to this function, so
2944 that we can do automatic update. If the global flag
2945 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2946 overlay_invalidate_all. If the mapped state of the particular
2947 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2948
2949 int
2950 section_is_mapped (struct obj_section *osect)
2951 {
2952 struct gdbarch *gdbarch;
2953
2954 if (osect == 0 || !section_is_overlay (osect))
2955 return 0;
2956
2957 switch (overlay_debugging)
2958 {
2959 default:
2960 case ovly_off:
2961 return 0; /* overlay debugging off */
2962 case ovly_auto: /* overlay debugging automatic */
2963 /* Unles there is a gdbarch_overlay_update function,
2964 there's really nothing useful to do here (can't really go auto). */
2965 gdbarch = get_objfile_arch (osect->objfile);
2966 if (gdbarch_overlay_update_p (gdbarch))
2967 {
2968 if (overlay_cache_invalid)
2969 {
2970 overlay_invalidate_all ();
2971 overlay_cache_invalid = 0;
2972 }
2973 if (osect->ovly_mapped == -1)
2974 gdbarch_overlay_update (gdbarch, osect);
2975 }
2976 /* fall thru to manual case */
2977 case ovly_on: /* overlay debugging manual */
2978 return osect->ovly_mapped == 1;
2979 }
2980 }
2981
2982 /* Function: pc_in_unmapped_range
2983 If PC falls into the lma range of SECTION, return true, else false. */
2984
2985 CORE_ADDR
2986 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
2987 {
2988 if (section_is_overlay (section))
2989 {
2990 bfd *abfd = section->objfile->obfd;
2991 asection *bfd_section = section->the_bfd_section;
2992
2993 /* We assume the LMA is relocated by the same offset as the VMA. */
2994 bfd_vma size = bfd_get_section_size (bfd_section);
2995 CORE_ADDR offset = obj_section_offset (section);
2996
2997 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2998 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2999 return 1;
3000 }
3001
3002 return 0;
3003 }
3004
3005 /* Function: pc_in_mapped_range
3006 If PC falls into the vma range of SECTION, return true, else false. */
3007
3008 CORE_ADDR
3009 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3010 {
3011 if (section_is_overlay (section))
3012 {
3013 if (obj_section_addr (section) <= pc
3014 && pc < obj_section_endaddr (section))
3015 return 1;
3016 }
3017
3018 return 0;
3019 }
3020
3021 /* Return true if the mapped ranges of sections A and B overlap, false
3022 otherwise. */
3023
3024 static int
3025 sections_overlap (struct obj_section *a, struct obj_section *b)
3026 {
3027 CORE_ADDR a_start = obj_section_addr (a);
3028 CORE_ADDR a_end = obj_section_endaddr (a);
3029 CORE_ADDR b_start = obj_section_addr (b);
3030 CORE_ADDR b_end = obj_section_endaddr (b);
3031
3032 return (a_start < b_end && b_start < a_end);
3033 }
3034
3035 /* Function: overlay_unmapped_address (PC, SECTION)
3036 Returns the address corresponding to PC in the unmapped (load) range.
3037 May be the same as PC. */
3038
3039 CORE_ADDR
3040 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3041 {
3042 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3043 {
3044 asection *bfd_section = section->the_bfd_section;
3045
3046 return pc + bfd_section_lma (abfd, bfd_section)
3047 - bfd_section_vma (abfd, bfd_section);
3048 }
3049
3050 return pc;
3051 }
3052
3053 /* Function: overlay_mapped_address (PC, SECTION)
3054 Returns the address corresponding to PC in the mapped (runtime) range.
3055 May be the same as PC. */
3056
3057 CORE_ADDR
3058 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3059 {
3060 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3061 {
3062 asection *bfd_section = section->the_bfd_section;
3063
3064 return pc + bfd_section_vma (abfd, bfd_section)
3065 - bfd_section_lma (abfd, bfd_section);
3066 }
3067
3068 return pc;
3069 }
3070
3071 /* Function: symbol_overlayed_address
3072 Return one of two addresses (relative to the VMA or to the LMA),
3073 depending on whether the section is mapped or not. */
3074
3075 CORE_ADDR
3076 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3077 {
3078 if (overlay_debugging)
3079 {
3080 /* If the symbol has no section, just return its regular address. */
3081 if (section == 0)
3082 return address;
3083 /* If the symbol's section is not an overlay, just return its
3084 address. */
3085 if (!section_is_overlay (section))
3086 return address;
3087 /* If the symbol's section is mapped, just return its address. */
3088 if (section_is_mapped (section))
3089 return address;
3090 /*
3091 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3092 * then return its LOADED address rather than its vma address!!
3093 */
3094 return overlay_unmapped_address (address, section);
3095 }
3096 return address;
3097 }
3098
3099 /* Function: find_pc_overlay (PC)
3100 Return the best-match overlay section for PC:
3101 If PC matches a mapped overlay section's VMA, return that section.
3102 Else if PC matches an unmapped section's VMA, return that section.
3103 Else if PC matches an unmapped section's LMA, return that section. */
3104
3105 struct obj_section *
3106 find_pc_overlay (CORE_ADDR pc)
3107 {
3108 struct objfile *objfile;
3109 struct obj_section *osect, *best_match = NULL;
3110
3111 if (overlay_debugging)
3112 {
3113 ALL_OBJSECTIONS (objfile, osect)
3114 if (section_is_overlay (osect))
3115 {
3116 if (pc_in_mapped_range (pc, osect))
3117 {
3118 if (section_is_mapped (osect))
3119 return osect;
3120 else
3121 best_match = osect;
3122 }
3123 else if (pc_in_unmapped_range (pc, osect))
3124 best_match = osect;
3125 }
3126 }
3127 return best_match;
3128 }
3129
3130 /* Function: find_pc_mapped_section (PC)
3131 If PC falls into the VMA address range of an overlay section that is
3132 currently marked as MAPPED, return that section. Else return NULL. */
3133
3134 struct obj_section *
3135 find_pc_mapped_section (CORE_ADDR pc)
3136 {
3137 struct objfile *objfile;
3138 struct obj_section *osect;
3139
3140 if (overlay_debugging)
3141 {
3142 ALL_OBJSECTIONS (objfile, osect)
3143 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3144 return osect;
3145 }
3146
3147 return NULL;
3148 }
3149
3150 /* Function: list_overlays_command
3151 Print a list of mapped sections and their PC ranges. */
3152
3153 static void
3154 list_overlays_command (const char *args, int from_tty)
3155 {
3156 int nmapped = 0;
3157 struct objfile *objfile;
3158 struct obj_section *osect;
3159
3160 if (overlay_debugging)
3161 {
3162 ALL_OBJSECTIONS (objfile, osect)
3163 if (section_is_mapped (osect))
3164 {
3165 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3166 const char *name;
3167 bfd_vma lma, vma;
3168 int size;
3169
3170 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3171 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3172 size = bfd_get_section_size (osect->the_bfd_section);
3173 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3174
3175 printf_filtered ("Section %s, loaded at ", name);
3176 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3177 puts_filtered (" - ");
3178 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3179 printf_filtered (", mapped at ");
3180 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3181 puts_filtered (" - ");
3182 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3183 puts_filtered ("\n");
3184
3185 nmapped++;
3186 }
3187 }
3188 if (nmapped == 0)
3189 printf_filtered (_("No sections are mapped.\n"));
3190 }
3191
3192 /* Function: map_overlay_command
3193 Mark the named section as mapped (ie. residing at its VMA address). */
3194
3195 static void
3196 map_overlay_command (const char *args, int from_tty)
3197 {
3198 struct objfile *objfile, *objfile2;
3199 struct obj_section *sec, *sec2;
3200
3201 if (!overlay_debugging)
3202 error (_("Overlay debugging not enabled. Use "
3203 "either the 'overlay auto' or\n"
3204 "the 'overlay manual' command."));
3205
3206 if (args == 0 || *args == 0)
3207 error (_("Argument required: name of an overlay section"));
3208
3209 /* First, find a section matching the user supplied argument. */
3210 ALL_OBJSECTIONS (objfile, sec)
3211 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3212 {
3213 /* Now, check to see if the section is an overlay. */
3214 if (!section_is_overlay (sec))
3215 continue; /* not an overlay section */
3216
3217 /* Mark the overlay as "mapped". */
3218 sec->ovly_mapped = 1;
3219
3220 /* Next, make a pass and unmap any sections that are
3221 overlapped by this new section: */
3222 ALL_OBJSECTIONS (objfile2, sec2)
3223 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3224 {
3225 if (info_verbose)
3226 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3227 bfd_section_name (objfile->obfd,
3228 sec2->the_bfd_section));
3229 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3230 }
3231 return;
3232 }
3233 error (_("No overlay section called %s"), args);
3234 }
3235
3236 /* Function: unmap_overlay_command
3237 Mark the overlay section as unmapped
3238 (ie. resident in its LMA address range, rather than the VMA range). */
3239
3240 static void
3241 unmap_overlay_command (const char *args, int from_tty)
3242 {
3243 struct objfile *objfile;
3244 struct obj_section *sec = NULL;
3245
3246 if (!overlay_debugging)
3247 error (_("Overlay debugging not enabled. "
3248 "Use either the 'overlay auto' or\n"
3249 "the 'overlay manual' command."));
3250
3251 if (args == 0 || *args == 0)
3252 error (_("Argument required: name of an overlay section"));
3253
3254 /* First, find a section matching the user supplied argument. */
3255 ALL_OBJSECTIONS (objfile, sec)
3256 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3257 {
3258 if (!sec->ovly_mapped)
3259 error (_("Section %s is not mapped"), args);
3260 sec->ovly_mapped = 0;
3261 return;
3262 }
3263 error (_("No overlay section called %s"), args);
3264 }
3265
3266 /* Function: overlay_auto_command
3267 A utility command to turn on overlay debugging.
3268 Possibly this should be done via a set/show command. */
3269
3270 static void
3271 overlay_auto_command (const char *args, int from_tty)
3272 {
3273 overlay_debugging = ovly_auto;
3274 enable_overlay_breakpoints ();
3275 if (info_verbose)
3276 printf_unfiltered (_("Automatic overlay debugging enabled."));
3277 }
3278
3279 /* Function: overlay_manual_command
3280 A utility command to turn on overlay debugging.
3281 Possibly this should be done via a set/show command. */
3282
3283 static void
3284 overlay_manual_command (const char *args, int from_tty)
3285 {
3286 overlay_debugging = ovly_on;
3287 disable_overlay_breakpoints ();
3288 if (info_verbose)
3289 printf_unfiltered (_("Overlay debugging enabled."));
3290 }
3291
3292 /* Function: overlay_off_command
3293 A utility command to turn on overlay debugging.
3294 Possibly this should be done via a set/show command. */
3295
3296 static void
3297 overlay_off_command (const char *args, int from_tty)
3298 {
3299 overlay_debugging = ovly_off;
3300 disable_overlay_breakpoints ();
3301 if (info_verbose)
3302 printf_unfiltered (_("Overlay debugging disabled."));
3303 }
3304
3305 static void
3306 overlay_load_command (const char *args, int from_tty)
3307 {
3308 struct gdbarch *gdbarch = get_current_arch ();
3309
3310 if (gdbarch_overlay_update_p (gdbarch))
3311 gdbarch_overlay_update (gdbarch, NULL);
3312 else
3313 error (_("This target does not know how to read its overlay state."));
3314 }
3315
3316 /* Function: overlay_command
3317 A place-holder for a mis-typed command. */
3318
3319 /* Command list chain containing all defined "overlay" subcommands. */
3320 static struct cmd_list_element *overlaylist;
3321
3322 static void
3323 overlay_command (const char *args, int from_tty)
3324 {
3325 printf_unfiltered
3326 ("\"overlay\" must be followed by the name of an overlay command.\n");
3327 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3328 }
3329
3330 /* Target Overlays for the "Simplest" overlay manager:
3331
3332 This is GDB's default target overlay layer. It works with the
3333 minimal overlay manager supplied as an example by Cygnus. The
3334 entry point is via a function pointer "gdbarch_overlay_update",
3335 so targets that use a different runtime overlay manager can
3336 substitute their own overlay_update function and take over the
3337 function pointer.
3338
3339 The overlay_update function pokes around in the target's data structures
3340 to see what overlays are mapped, and updates GDB's overlay mapping with
3341 this information.
3342
3343 In this simple implementation, the target data structures are as follows:
3344 unsigned _novlys; /# number of overlay sections #/
3345 unsigned _ovly_table[_novlys][4] = {
3346 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3347 {..., ..., ..., ...},
3348 }
3349 unsigned _novly_regions; /# number of overlay regions #/
3350 unsigned _ovly_region_table[_novly_regions][3] = {
3351 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3352 {..., ..., ...},
3353 }
3354 These functions will attempt to update GDB's mappedness state in the
3355 symbol section table, based on the target's mappedness state.
3356
3357 To do this, we keep a cached copy of the target's _ovly_table, and
3358 attempt to detect when the cached copy is invalidated. The main
3359 entry point is "simple_overlay_update(SECT), which looks up SECT in
3360 the cached table and re-reads only the entry for that section from
3361 the target (whenever possible). */
3362
3363 /* Cached, dynamically allocated copies of the target data structures: */
3364 static unsigned (*cache_ovly_table)[4] = 0;
3365 static unsigned cache_novlys = 0;
3366 static CORE_ADDR cache_ovly_table_base = 0;
3367 enum ovly_index
3368 {
3369 VMA, OSIZE, LMA, MAPPED
3370 };
3371
3372 /* Throw away the cached copy of _ovly_table. */
3373
3374 static void
3375 simple_free_overlay_table (void)
3376 {
3377 if (cache_ovly_table)
3378 xfree (cache_ovly_table);
3379 cache_novlys = 0;
3380 cache_ovly_table = NULL;
3381 cache_ovly_table_base = 0;
3382 }
3383
3384 /* Read an array of ints of size SIZE from the target into a local buffer.
3385 Convert to host order. int LEN is number of ints. */
3386
3387 static void
3388 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3389 int len, int size, enum bfd_endian byte_order)
3390 {
3391 /* FIXME (alloca): Not safe if array is very large. */
3392 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3393 int i;
3394
3395 read_memory (memaddr, buf, len * size);
3396 for (i = 0; i < len; i++)
3397 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3398 }
3399
3400 /* Find and grab a copy of the target _ovly_table
3401 (and _novlys, which is needed for the table's size). */
3402
3403 static int
3404 simple_read_overlay_table (void)
3405 {
3406 struct bound_minimal_symbol novlys_msym;
3407 struct bound_minimal_symbol ovly_table_msym;
3408 struct gdbarch *gdbarch;
3409 int word_size;
3410 enum bfd_endian byte_order;
3411
3412 simple_free_overlay_table ();
3413 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3414 if (! novlys_msym.minsym)
3415 {
3416 error (_("Error reading inferior's overlay table: "
3417 "couldn't find `_novlys' variable\n"
3418 "in inferior. Use `overlay manual' mode."));
3419 return 0;
3420 }
3421
3422 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3423 if (! ovly_table_msym.minsym)
3424 {
3425 error (_("Error reading inferior's overlay table: couldn't find "
3426 "`_ovly_table' array\n"
3427 "in inferior. Use `overlay manual' mode."));
3428 return 0;
3429 }
3430
3431 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3432 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3433 byte_order = gdbarch_byte_order (gdbarch);
3434
3435 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3436 4, byte_order);
3437 cache_ovly_table
3438 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3439 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3440 read_target_long_array (cache_ovly_table_base,
3441 (unsigned int *) cache_ovly_table,
3442 cache_novlys * 4, word_size, byte_order);
3443
3444 return 1; /* SUCCESS */
3445 }
3446
3447 /* Function: simple_overlay_update_1
3448 A helper function for simple_overlay_update. Assuming a cached copy
3449 of _ovly_table exists, look through it to find an entry whose vma,
3450 lma and size match those of OSECT. Re-read the entry and make sure
3451 it still matches OSECT (else the table may no longer be valid).
3452 Set OSECT's mapped state to match the entry. Return: 1 for
3453 success, 0 for failure. */
3454
3455 static int
3456 simple_overlay_update_1 (struct obj_section *osect)
3457 {
3458 int i;
3459 asection *bsect = osect->the_bfd_section;
3460 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3461 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3462 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3463
3464 for (i = 0; i < cache_novlys; i++)
3465 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3466 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3467 {
3468 read_target_long_array (cache_ovly_table_base + i * word_size,
3469 (unsigned int *) cache_ovly_table[i],
3470 4, word_size, byte_order);
3471 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3472 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3473 {
3474 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3475 return 1;
3476 }
3477 else /* Warning! Warning! Target's ovly table has changed! */
3478 return 0;
3479 }
3480 return 0;
3481 }
3482
3483 /* Function: simple_overlay_update
3484 If OSECT is NULL, then update all sections' mapped state
3485 (after re-reading the entire target _ovly_table).
3486 If OSECT is non-NULL, then try to find a matching entry in the
3487 cached ovly_table and update only OSECT's mapped state.
3488 If a cached entry can't be found or the cache isn't valid, then
3489 re-read the entire cache, and go ahead and update all sections. */
3490
3491 void
3492 simple_overlay_update (struct obj_section *osect)
3493 {
3494 struct objfile *objfile;
3495
3496 /* Were we given an osect to look up? NULL means do all of them. */
3497 if (osect)
3498 /* Have we got a cached copy of the target's overlay table? */
3499 if (cache_ovly_table != NULL)
3500 {
3501 /* Does its cached location match what's currently in the
3502 symtab? */
3503 struct bound_minimal_symbol minsym
3504 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3505
3506 if (minsym.minsym == NULL)
3507 error (_("Error reading inferior's overlay table: couldn't "
3508 "find `_ovly_table' array\n"
3509 "in inferior. Use `overlay manual' mode."));
3510
3511 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3512 /* Then go ahead and try to look up this single section in
3513 the cache. */
3514 if (simple_overlay_update_1 (osect))
3515 /* Found it! We're done. */
3516 return;
3517 }
3518
3519 /* Cached table no good: need to read the entire table anew.
3520 Or else we want all the sections, in which case it's actually
3521 more efficient to read the whole table in one block anyway. */
3522
3523 if (! simple_read_overlay_table ())
3524 return;
3525
3526 /* Now may as well update all sections, even if only one was requested. */
3527 ALL_OBJSECTIONS (objfile, osect)
3528 if (section_is_overlay (osect))
3529 {
3530 int i;
3531 asection *bsect = osect->the_bfd_section;
3532
3533 for (i = 0; i < cache_novlys; i++)
3534 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3535 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3536 { /* obj_section matches i'th entry in ovly_table. */
3537 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3538 break; /* finished with inner for loop: break out. */
3539 }
3540 }
3541 }
3542
3543 /* Set the output sections and output offsets for section SECTP in
3544 ABFD. The relocation code in BFD will read these offsets, so we
3545 need to be sure they're initialized. We map each section to itself,
3546 with no offset; this means that SECTP->vma will be honored. */
3547
3548 static void
3549 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3550 {
3551 sectp->output_section = sectp;
3552 sectp->output_offset = 0;
3553 }
3554
3555 /* Default implementation for sym_relocate. */
3556
3557 bfd_byte *
3558 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3559 bfd_byte *buf)
3560 {
3561 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3562 DWO file. */
3563 bfd *abfd = sectp->owner;
3564
3565 /* We're only interested in sections with relocation
3566 information. */
3567 if ((sectp->flags & SEC_RELOC) == 0)
3568 return NULL;
3569
3570 /* We will handle section offsets properly elsewhere, so relocate as if
3571 all sections begin at 0. */
3572 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3573
3574 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3575 }
3576
3577 /* Relocate the contents of a debug section SECTP in ABFD. The
3578 contents are stored in BUF if it is non-NULL, or returned in a
3579 malloc'd buffer otherwise.
3580
3581 For some platforms and debug info formats, shared libraries contain
3582 relocations against the debug sections (particularly for DWARF-2;
3583 one affected platform is PowerPC GNU/Linux, although it depends on
3584 the version of the linker in use). Also, ELF object files naturally
3585 have unresolved relocations for their debug sections. We need to apply
3586 the relocations in order to get the locations of symbols correct.
3587 Another example that may require relocation processing, is the
3588 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3589 debug section. */
3590
3591 bfd_byte *
3592 symfile_relocate_debug_section (struct objfile *objfile,
3593 asection *sectp, bfd_byte *buf)
3594 {
3595 gdb_assert (objfile->sf->sym_relocate);
3596
3597 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3598 }
3599
3600 struct symfile_segment_data *
3601 get_symfile_segment_data (bfd *abfd)
3602 {
3603 const struct sym_fns *sf = find_sym_fns (abfd);
3604
3605 if (sf == NULL)
3606 return NULL;
3607
3608 return sf->sym_segments (abfd);
3609 }
3610
3611 void
3612 free_symfile_segment_data (struct symfile_segment_data *data)
3613 {
3614 xfree (data->segment_bases);
3615 xfree (data->segment_sizes);
3616 xfree (data->segment_info);
3617 xfree (data);
3618 }
3619
3620 /* Given:
3621 - DATA, containing segment addresses from the object file ABFD, and
3622 the mapping from ABFD's sections onto the segments that own them,
3623 and
3624 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3625 segment addresses reported by the target,
3626 store the appropriate offsets for each section in OFFSETS.
3627
3628 If there are fewer entries in SEGMENT_BASES than there are segments
3629 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3630
3631 If there are more entries, then ignore the extra. The target may
3632 not be able to distinguish between an empty data segment and a
3633 missing data segment; a missing text segment is less plausible. */
3634
3635 int
3636 symfile_map_offsets_to_segments (bfd *abfd,
3637 const struct symfile_segment_data *data,
3638 struct section_offsets *offsets,
3639 int num_segment_bases,
3640 const CORE_ADDR *segment_bases)
3641 {
3642 int i;
3643 asection *sect;
3644
3645 /* It doesn't make sense to call this function unless you have some
3646 segment base addresses. */
3647 gdb_assert (num_segment_bases > 0);
3648
3649 /* If we do not have segment mappings for the object file, we
3650 can not relocate it by segments. */
3651 gdb_assert (data != NULL);
3652 gdb_assert (data->num_segments > 0);
3653
3654 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3655 {
3656 int which = data->segment_info[i];
3657
3658 gdb_assert (0 <= which && which <= data->num_segments);
3659
3660 /* Don't bother computing offsets for sections that aren't
3661 loaded as part of any segment. */
3662 if (! which)
3663 continue;
3664
3665 /* Use the last SEGMENT_BASES entry as the address of any extra
3666 segments mentioned in DATA->segment_info. */
3667 if (which > num_segment_bases)
3668 which = num_segment_bases;
3669
3670 offsets->offsets[i] = (segment_bases[which - 1]
3671 - data->segment_bases[which - 1]);
3672 }
3673
3674 return 1;
3675 }
3676
3677 static void
3678 symfile_find_segment_sections (struct objfile *objfile)
3679 {
3680 bfd *abfd = objfile->obfd;
3681 int i;
3682 asection *sect;
3683 struct symfile_segment_data *data;
3684
3685 data = get_symfile_segment_data (objfile->obfd);
3686 if (data == NULL)
3687 return;
3688
3689 if (data->num_segments != 1 && data->num_segments != 2)
3690 {
3691 free_symfile_segment_data (data);
3692 return;
3693 }
3694
3695 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3696 {
3697 int which = data->segment_info[i];
3698
3699 if (which == 1)
3700 {
3701 if (objfile->sect_index_text == -1)
3702 objfile->sect_index_text = sect->index;
3703
3704 if (objfile->sect_index_rodata == -1)
3705 objfile->sect_index_rodata = sect->index;
3706 }
3707 else if (which == 2)
3708 {
3709 if (objfile->sect_index_data == -1)
3710 objfile->sect_index_data = sect->index;
3711
3712 if (objfile->sect_index_bss == -1)
3713 objfile->sect_index_bss = sect->index;
3714 }
3715 }
3716
3717 free_symfile_segment_data (data);
3718 }
3719
3720 /* Listen for free_objfile events. */
3721
3722 static void
3723 symfile_free_objfile (struct objfile *objfile)
3724 {
3725 /* Remove the target sections owned by this objfile. */
3726 if (objfile != NULL)
3727 remove_target_sections ((void *) objfile);
3728 }
3729
3730 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3731 Expand all symtabs that match the specified criteria.
3732 See quick_symbol_functions.expand_symtabs_matching for details. */
3733
3734 void
3735 expand_symtabs_matching
3736 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3737 const lookup_name_info &lookup_name,
3738 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3739 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3740 enum search_domain kind)
3741 {
3742 struct objfile *objfile;
3743
3744 ALL_OBJFILES (objfile)
3745 {
3746 if (objfile->sf)
3747 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3748 lookup_name,
3749 symbol_matcher,
3750 expansion_notify, kind);
3751 }
3752 }
3753
3754 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3755 Map function FUN over every file.
3756 See quick_symbol_functions.map_symbol_filenames for details. */
3757
3758 void
3759 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3760 int need_fullname)
3761 {
3762 struct objfile *objfile;
3763
3764 ALL_OBJFILES (objfile)
3765 {
3766 if (objfile->sf)
3767 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3768 need_fullname);
3769 }
3770 }
3771
3772 #if GDB_SELF_TEST
3773
3774 namespace selftests {
3775 namespace filename_language {
3776
3777 static void test_filename_language ()
3778 {
3779 /* This test messes up the filename_language_table global. */
3780 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3781
3782 /* Test deducing an unknown extension. */
3783 language lang = deduce_language_from_filename ("myfile.blah");
3784 SELF_CHECK (lang == language_unknown);
3785
3786 /* Test deducing a known extension. */
3787 lang = deduce_language_from_filename ("myfile.c");
3788 SELF_CHECK (lang == language_c);
3789
3790 /* Test adding a new extension using the internal API. */
3791 add_filename_language (".blah", language_pascal);
3792 lang = deduce_language_from_filename ("myfile.blah");
3793 SELF_CHECK (lang == language_pascal);
3794 }
3795
3796 static void
3797 test_set_ext_lang_command ()
3798 {
3799 /* This test messes up the filename_language_table global. */
3800 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3801
3802 /* Confirm that the .hello extension is not known. */
3803 language lang = deduce_language_from_filename ("cake.hello");
3804 SELF_CHECK (lang == language_unknown);
3805
3806 /* Test adding a new extension using the CLI command. */
3807 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3808 ext_args = args_holder.get ();
3809 set_ext_lang_command (NULL, 1, NULL);
3810
3811 lang = deduce_language_from_filename ("cake.hello");
3812 SELF_CHECK (lang == language_rust);
3813
3814 /* Test overriding an existing extension using the CLI command. */
3815 int size_before = filename_language_table.size ();
3816 args_holder.reset (xstrdup (".hello pascal"));
3817 ext_args = args_holder.get ();
3818 set_ext_lang_command (NULL, 1, NULL);
3819 int size_after = filename_language_table.size ();
3820
3821 lang = deduce_language_from_filename ("cake.hello");
3822 SELF_CHECK (lang == language_pascal);
3823 SELF_CHECK (size_before == size_after);
3824 }
3825
3826 } /* namespace filename_language */
3827 } /* namespace selftests */
3828
3829 #endif /* GDB_SELF_TEST */
3830
3831 void
3832 _initialize_symfile (void)
3833 {
3834 struct cmd_list_element *c;
3835
3836 observer_attach_free_objfile (symfile_free_objfile);
3837
3838 #define READNOW_READNEVER_HELP \
3839 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3840 immediately. This makes the command slower, but may make future operations\n\
3841 faster.\n\
3842 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3843 symbolic debug information."
3844
3845 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3846 Load symbol table from executable file FILE.\n\
3847 Usage: symbol-file [-readnow | -readnever] FILE\n\
3848 The `file' command can also load symbol tables, as well as setting the file\n\
3849 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3850 set_cmd_completer (c, filename_completer);
3851
3852 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3853 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3854 Usage: add-symbol-file FILE ADDR [-readnow | -readnever | \
3855 -s SECT-NAME SECT-ADDR]...\n\
3856 ADDR is the starting address of the file's text.\n\
3857 Each '-s' argument provides a section name and address, and\n\
3858 should be specified if the data and bss segments are not contiguous\n\
3859 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n"
3860 READNOW_READNEVER_HELP),
3861 &cmdlist);
3862 set_cmd_completer (c, filename_completer);
3863
3864 c = add_cmd ("remove-symbol-file", class_files,
3865 remove_symbol_file_command, _("\
3866 Remove a symbol file added via the add-symbol-file command.\n\
3867 Usage: remove-symbol-file FILENAME\n\
3868 remove-symbol-file -a ADDRESS\n\
3869 The file to remove can be identified by its filename or by an address\n\
3870 that lies within the boundaries of this symbol file in memory."),
3871 &cmdlist);
3872
3873 c = add_cmd ("load", class_files, load_command, _("\
3874 Dynamically load FILE into the running program, and record its symbols\n\
3875 for access from GDB.\n\
3876 Usage: load [FILE] [OFFSET]\n\
3877 An optional load OFFSET may also be given as a literal address.\n\
3878 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3879 on its own."), &cmdlist);
3880 set_cmd_completer (c, filename_completer);
3881
3882 add_prefix_cmd ("overlay", class_support, overlay_command,
3883 _("Commands for debugging overlays."), &overlaylist,
3884 "overlay ", 0, &cmdlist);
3885
3886 add_com_alias ("ovly", "overlay", class_alias, 1);
3887 add_com_alias ("ov", "overlay", class_alias, 1);
3888
3889 add_cmd ("map-overlay", class_support, map_overlay_command,
3890 _("Assert that an overlay section is mapped."), &overlaylist);
3891
3892 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3893 _("Assert that an overlay section is unmapped."), &overlaylist);
3894
3895 add_cmd ("list-overlays", class_support, list_overlays_command,
3896 _("List mappings of overlay sections."), &overlaylist);
3897
3898 add_cmd ("manual", class_support, overlay_manual_command,
3899 _("Enable overlay debugging."), &overlaylist);
3900 add_cmd ("off", class_support, overlay_off_command,
3901 _("Disable overlay debugging."), &overlaylist);
3902 add_cmd ("auto", class_support, overlay_auto_command,
3903 _("Enable automatic overlay debugging."), &overlaylist);
3904 add_cmd ("load-target", class_support, overlay_load_command,
3905 _("Read the overlay mapping state from the target."), &overlaylist);
3906
3907 /* Filename extension to source language lookup table: */
3908 add_setshow_string_noescape_cmd ("extension-language", class_files,
3909 &ext_args, _("\
3910 Set mapping between filename extension and source language."), _("\
3911 Show mapping between filename extension and source language."), _("\
3912 Usage: set extension-language .foo bar"),
3913 set_ext_lang_command,
3914 show_ext_args,
3915 &setlist, &showlist);
3916
3917 add_info ("extensions", info_ext_lang_command,
3918 _("All filename extensions associated with a source language."));
3919
3920 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3921 &debug_file_directory, _("\
3922 Set the directories where separate debug symbols are searched for."), _("\
3923 Show the directories where separate debug symbols are searched for."), _("\
3924 Separate debug symbols are first searched for in the same\n\
3925 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3926 and lastly at the path of the directory of the binary with\n\
3927 each global debug-file-directory component prepended."),
3928 NULL,
3929 show_debug_file_directory,
3930 &setlist, &showlist);
3931
3932 add_setshow_enum_cmd ("symbol-loading", no_class,
3933 print_symbol_loading_enums, &print_symbol_loading,
3934 _("\
3935 Set printing of symbol loading messages."), _("\
3936 Show printing of symbol loading messages."), _("\
3937 off == turn all messages off\n\
3938 brief == print messages for the executable,\n\
3939 and brief messages for shared libraries\n\
3940 full == print messages for the executable,\n\
3941 and messages for each shared library."),
3942 NULL,
3943 NULL,
3944 &setprintlist, &showprintlist);
3945
3946 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3947 &separate_debug_file_debug, _("\
3948 Set printing of separate debug info file search debug."), _("\
3949 Show printing of separate debug info file search debug."), _("\
3950 When on, GDB prints the searched locations while looking for separate debug \
3951 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3952
3953 #if GDB_SELF_TEST
3954 selftests::register_test
3955 ("filename_language", selftests::filename_language::test_filename_language);
3956 selftests::register_test
3957 ("set_ext_lang_command",
3958 selftests::filename_language::test_set_ext_lang_command);
3959 #endif
3960 }
This page took 0.125801 seconds and 5 git commands to generate.